

RHAPSODY
OPERATING

SYSTEM SOFTWARE

Rhapsody Operating System Software

 copyright , 1997 Apple Computer, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical,
electronic, photocopying, recording, or otherwise, without prior written permission of Apple Computer, Inc., except to make a backup
copy of any documentation provided on CD-ROM.

The Apple Logo is a trademark of Apple Computer, Inc. Use of the keyboard Apple logo (Option-shift-K) for commercial purposes without
prior written consent of Apple may constitute trademark infringement and unfair competition in violation of federal and state laws.

No licenses, express or implied, are granted with respect to any of the technology described in this book. Apple retains all intellectual
property rights associated with the technology described in this book. This book is intended to assist application developers to develop
applications only for Apple-labeled or Apple-licensed computers.

Every effort has been made to ensure that the information in this manual is accurate.

Apple Computer
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, and the Apple logo are trademarks of Apple Computer, Inc., registered in the United States and other countries. NeXT, the NeXT
logo, NEXTSTEP, Application Kit, BusProbe, Digital Librarian, NBIC, NeXTbus, NeXTcube, NeXTdimension, NeXTstation, Sound Kit, and
Workspace Manager are trademarks of Apple Computer, Inc. Display PostScript and PostScript are registered trademarks of Adobe
Systems Incorporated. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company, Ltd.

1 2 3 4 5 7 8 9 -AL-9695949392
First printing, September 1992

ISBN 0-201-63252-7

Contents
Preface v

Conventions vi
Syntax Notation vi

Notes and Warnings vii

 Mach Concepts 1

Design Philosophy 4

The Mach Kernel 6
Mach Tasks and Threads 6

Task and Thread Ports 8

Mach Ports and Messages 9

Port Access Rights 11

Port Sets 12

Port Names 12

Port Queues 12

Extended Communication Functionality 13

Messaging in a Network Environment 14

Mach Virtual Memory Management 14

Demand Paging 15

Inheritance and Protection of Memory 15

Interprocess Communication 17

Memory-Mapped Files 17

Paging Objects 18

Virtual Memory Functions 18

Program Examples: Virtual Memory 19

Mach Scheduling 24

Priorities 24

Policies 25

Mach C-Thread Functions 26
Using External Functions and Methods 27

Using Shared Variables 27

Synchronization of Variables 28

Program Example: C Threads 30
Mach Exception Handling 32
The UNIX Approach to Exception Handling 33

A Model for Generalized Exception Handling 34

Exception Handling in Mach 35

Exception Ports 36

User Extensibility 37

Implementing Error Handlers 38

Implementing Debuggers 38

Debugger Attachment 39

Parallel and Distributed Debugging 40

GDB Enhancements 41

Exception Classification 42

Kernel Interface 43

Program Example: Exception Handling 43

Using Mach Messages 49

Message Structure 51
Message Header 51

Message Body 53

Creating Messages by Hand 54
Setting Up a Simple Message 54

Setting Up a Nonsimple Message 55

Setting Up a Reply Message 56

Mach Interface Generator 57
Creating Mach Servers with MiG 58

Client’s View 59

Common Error Codes 59

Out-of-Line Data 60

Compiling the Client 60

MiG Specification File 60

Subsystem Identification 61

Type Declarations 61

Import Declarations 65

Operation Descriptions 66

Options Declarations 68

Syntax Summary 70

Compiling MiG Specification Files 73
iii

Mach Functions 77

C-Thread Functions 79

Mach Kernel Functions 99

Bootstrap Server Functions 194

Network Name Server Functions 204

Glossary 209
iv

Preface

Preface

This manual describes the Rhapsody Mach operating system. It’s part of the
Rhapsody Developer’s Library.

The following three chapters describe the Rhapsody Mach Operating System.

• Chapter 1, “Mach Concepts,” describes Apple’s version of Mach. It
discusses concepts such as the kernel, tasks and threads, and ports and
messages. This chapter also explains how Mach manages virtual memory
allocation and how it handles exceptions.

• Chapter 2, “Using Mach Messages,” describes how to create Mach
messages, either by hand or by using the Mach Interface Generator (MiG).

• Chapter 3, “Mach Functions,” provides detailed descriptions of all Mach
operating system functions that are available to user-level programs. Some
of these functions are also available to loadable kernel servers.

 Library functions and system calls aren’t covered in Chapter 3; they’re
described in the on-line Rhapsody manual pages.

User level operating environment topics aren’t covered in this manual. For
information about the operating environment, you should refer to the books
listed in “Suggested Reading” (at the end of this manual) or to the on-line
Rhapsody manual pages .

Conventions

Syntax Notation
Where this manual shows the syntax of a function, command, or other
programming element, the use of bold, italic, square brackets, and ellipsis has
special significance, as described here.

Bold denotes words or characters that are to be taken literally (typed as they
appear). Italic denotes words that represent something else or can be varied.
For example, the syntax

print expression

means that you follow the word print with an expression.

Square brackets [] mean that the enclosed syntax is optional, except when
they’re bold [], in which case they’re to be taken literally. The exceptions are
few and will be clear from the context. For example,

pointer [filename]
vi

Conventions

means that you type a pointer with or without a file name after it, but

[receiver message]

means that you specify a receiver and a message enclosed in square
brackets.

Ellipsis (...) indicates that the previous syntax element may be repeated.
For example:

Notes and Warnings
Note: Paragraphs like this contain incidental information that may be of
interest to curious readers but can safely be skipped.

Important: Paragraphs like this contain important information.

Warning: Paragraphs like this are extremely important to read.

Syntax Allows

pointer ... One or more pointers

pointer [, pointer] ... One or more pointers separated by commas

pointer [filename ...] A pointer optionally followed by one or more file names

pointer [, filename] ... A pointer optionally followed by a comma and one or
more file names separated by commas

Note

Gray boxes like this contain information that isn’t necessary for understanding the information discussed
nearby, but that is useful when you start to use the information.
vii

Preface

viii

Chapter 1
 Mach Concepts

Mach, the kernel at the core of the Rhapsody OS, was designed by
researchers at Carnegie Mellon University (CMU). Mach is a simple
communication-oriented kernel, and is designed to support distributed and
parallel computation while still providing BSD 4.4 compatibility.

The Rhapsody version of the Mach kernel is a port of CMU Release 2.0,
with additional features both from Apple and from later versions of CMU
Mach. Apple-only features include the Bootstrap Server and loadable
kernel servers. Features from CMU Release 2.5 and beyond include
scheduling and some details of messaging.

Mach consists of the following components:

• A small, extensible system kernel that provides scheduling, virtual
memory, and interprocess communications; the kernel exports a small
number of abstractions to the user through an integrated interface.

• Operating system support environments that provide distributed file
access, transparent network interprocess communication, remote
execution facilities, and BSD 4.4 emulation. Many traditional operating
system functions can be implemented by user programs or servers outside
the kernel.

Although Mach’s design is conceptually unlike that of BSD 4.4, it maintains
BSD 4.4 compatibility. Mach system calls are upwardly compatible with
those of BSD 4.4, and Mach supports BSD 4.4 commands. This
compatibility is transparent to user programs and requires no special
libraries or other utilities. Most programs that operate under BSD 4.4
operate under Mach without modification, after being recompiled.

Mach provides the following features not found in BSD 4.4:

• Multiple tasks, each with a large, paged virtual memory space
• Multiple threads of execution within each task, with a flexible scheduling

facility
• Flexible sharing of memory between tasks
• Efficient and consistent message-based interprocess communication
• Memory-mapped files
• Transparent network extensibility
• A flexible, capability-based approach to security and protection
• Support for multiprocessor scheduling

Mach is sometimes referred to as an object-oriented operating system
because it provides most services through user-level programs accessible by
a consistent system of message passing. It’s important, however, to
distinguish between Mach objects and messages and the Objective-C
3

Chapter 1

Mach Concepts

objects and messages used in higher-level software kits such as the Application
Kit . Mach objects and messages are distinct from those used in the kits. Kit
objects can, however, communicate with the operating system by sending Mach
messages to Mach objects or by using the standard system call interface.

This chapter describes both the Mach kernel and user-level programs that
interact with it, but doesn’t attempt to redocument standard features of BSD
4.4. Individual Mach functions are described in detail in Chapter 3, “Mach
Functions.”

Design Philosophy

Several factors were considered in choosing Apple’s next-generation operating
system. It was important that the operating system be:

• Multiuser and multitasking
• Network-compatible
• An excellent program-development environment
• Well-represented in the university, research, and business communities
• Extensible and robust
• Capable of running on multiple architectures (cross-platform)
• Capable of providing room for growth and future extensions

Although a standard version of the UNIX operating system would have satisfied
many of these criteria, Apple wanted an operating system offering better
performance and a better foundation for future extensions. Mach, with its BSD
4.4 compatibility and improved system design, provided these.

BSD 4.4 compatibility is important because as a multitasking, multiuser
operating system, the UNIX environment has gained wide acceptance in many
fields, particularly education. Since the creation of the UNIX operating system
in 1969, many hours have been spent testing, improving, and extending its
features. Currently the UNIX environment is considered one of the best for
developing both small and large applications.

However, the success and longevity of the UNIX operating system have
exacted their own costs. Many of the features that made the UNIX operating
system popular have disappeared in the quest for functionality beyond the
scope of the original design. During two decades, the UNIX operating system
has grown from a system designed for 16-bit minicomputers without paged
memory or networking, to a system that supports multiprocessor mainframes
with virtual memory and support for both local and wide-area networks. As a
result of these extensions, the UNIX kernel (originally attractive to developers
4

Design Philosophy

because of its small size, handful of system calls, and ease of modification)
has grown to immense proportions.

As new features have been added to the kernel, its size and complexity have
grown to the point where its underlying conceptual structure is obscured.
Over time, programmers have added multiple routines that perform similar
services for different kernel features. The complexity added by each of
these extensions ensures that future kernel extensions will be based on an
even less sound understanding of what already exists. The result is a system
whose complex internal state and interactions make it very difficult to
extend, debug, and configure.

Not only has the UNIX kernel grown more complex as new features have
been added, so has the interface presented to programmers who would like
to make use of these features. For example, current UNIX systems provide
an overwhelming variety of interprocess communication (IPC) facilities,
including pipes, named pipes, sockets, and message queues. Unfortunately,
none of these facilities is general enough to replace the others. As a result,
the programmer must understand not only how to use a variety of IPC
facilities, but also the tradeoffs involved in choosing one over another.

While retaining BSD 4.4 functionality, Mach departs from current UNIX
design and returns to the tenets on which the UNIX operating system was
originally built. Foremost among these is the idea that the kernel should be
as small as possible, containing only a set of conceptually simple, yet
powerful, primitive functions that programmers can use to construct more
complex objects.

Mach is designed to put most services provided by the current UNIX
kernel into independent user-level programs, with the Mach kernel itself
providing only the most basic services:

• Processor scheduling
• Interprocess communication
• Management of virtual memory

These services and others are accessed through a single form of IPC,
regardless of whether they’re provided by the kernel or by user-level
programs. Modularity and a consistent pattern of IPC simplify the interface
presented to the programmer. For example, a network expert can
implement a new protocol without having to understand or modify other
subsystems in the operating system.

Modularity has other advantages as well. Moving functionality to user-level
programs makes the kernel smaller and therefore easier to comprehend and
5

Chapter 1

Mach Concepts

debug. Another advantage is the ability to use standard debuggers and other
tools to develop new system services rather than having to use special, less
powerful tools. Also, configuring the system is simply a matter of choosing which
user-level services to initiate, rather than building and linking a new kernel.

The movement of Mach toward providing most operating system features as
user-level processes is an evolutionary one. Currently, Mach supports some
features within the kernel while others exist at the user level. Although Mach
will change as it evolves, its developers are committed to maintaining BSD 4.4
compatibility at each stage of development. If you design your programs to run
under BSD 4.4, they’ll run under current and subsequent releases of the Mach
operating system. However, if you choose to take advantage of features unique
to Mach, future releases of the operating system may require you to modify and
recompile some of your programs.

The Mach Kernel

Mach minimizes kernel size by moving most kernel services into user-level
processes. The kernel itself contains only the services needed to implement a
communication system between various user-level processes. The kernel
exports several abstractions to users, including tasks, threads, ports, and
messages.

The functionality of the Mach kernel can be divided into the following
categories:

• Task and thread creation and management facilities
• Port management facilities
• Basic message functions and support facilities
• Virtual memory management functions
• Scheduling functions

Descriptions of these areas of functionality are provided in the following
sections. Messages are described in detail in Chapter 2, “Using Mach
Messages.”

Mach Tasks and Threads
Mach splits the traditional UNIX notion of a process into two abstractions, the
task and the thread:

• A task is the environment within which program execution occurs. It’s also the
basic unit of resource allocation—each task includes a paged virtual address
6

The Mach Kernel

space and port rights that protect access to system resources such as
processors, communication capabilities, and virtual memory. The task
itself performs no computation; rather, it’s a framework for running
threads.

• A thread is the basic unit of execution. It’s a lightweight process
executing within a task, and consists solely of the processor state (such as
program counter and hardware registers) necessary for independent
execution. Each thread executes within the context of a single task,
though each task may contain more than one thread. All threads within a
task share the virtual memory address space and communication rights of
that task.

The task is the basic unit of protection—all threads within a task have
access to all that task’s capabilities, and aren’t protected from each other.

A traditional UNIX process is represented in Mach as a task with a single
thread of execution. One major difference between a UNIX process and a
Mach task is that creating a new thread in a task is faster and more
conservative of system resources than creating a new UNIX process.
Creating a new UNIX process involves making a copy of the parent task’s
address space, but threads share the address space of their task.

Threads are the basic unit of scheduling. On a multiprocessor host, multiple
threads from one task may be executing simultaneously within the task’s
one address space. A thread may be in a suspended state (prevented from
running), or in a runnable state (that is, either currently running or
scheduled to run). A nonnegative suspend count is associated with each
thread. The suspend count is 0 for runnable threads and positive
for suspended threads.

Tasks can be suspended or resumed (made runnable) as a whole. A thread
can execute only when both it and its task are runnable.

Multiple threads executing within a single task are useful if several program
operations need to execute concurrently while accessing the same data. For
example, a word processing application could be designed as multiple
threads within a single task. The main thread of execution could provide
the basic services of the program: formatting text, processing user requests,
and so on. Another thread could check the spelling of each word as it’s typed
in. A third thread could modify the shape of the cursor based on its position
within the text window. Since these threads must have access to the same
data and should execute concurrently, Mach’s design is particularly
advantageous.
7

Chapter 1

Mach Concepts

In addition, threads are well adapted for use with computers that incorporate a
multiprocessor architecture. With some multiprocessor machines, individual
threads can execute on separate processors, vastly improving overall application
performance.

To create and use threads in an application, you should use the C-thread
functions. C threads are described later in this chapter; each C-thread function
is described in detail in Chapter 3.

Task and Thread Ports
Both tasks and threads are represented by ports. (Ports in Mach are message
queues; they’re described in the following section.) The task port and the
thread port are the arguments used in Mach function calls to identify to the
kernel which task or thread is to be affected by the call. The two functions
task_self() and thread_self() return the task and thread ports of the currently
executing thread.

Tasks can have access to the task and thread ports of other tasks and threads. For
example, a task that creates another task or thread gets access to the new task
port or thread port. Also, any thread can pass access to these ports in a message
to another thread in the same or a different task.

Having access to a task or thread port enables the possessor to perform Mach
function calls on behalf of that task or thread. Access to a task’s port indirectly
permits access to all threads within that task with the task_threads() call;
however, access to a thread’s port doesn’t imply access to its task’s port.

The task port and thread port are often called kernel ports. In addition to the
kernel ports, tasks and threads have a number of special ports associated with
them. These are ports that the kernel must know about to communicate with
the task or thread in a structured manner.

A task has three ports associated with it, in addition to its kernel port:

• Notify port—The port on which the task receives messages from the kernel
advising it of changes in port access rights and of the status of messages it has
sent. For example, if a thread is unsuccessful in sending a message to another
thread’s port, its notify port will contain a status message stating that the port
has been intentionally destroyed, that the port’s task no longer exists, or that
there has been a network failure. The task can get this port’s value from the
function task_notify().

Note that if a task’s notify port is PORT_NULL, no notification messages
are generated. This port is set to PORT_NULL at task creation, so a task
8

The Mach Kernel

that wants to receive notifications must explicitly set its notify port
with the function task_set_special_port().

• Exception port—The port on which the task receives messages from the
kernel when an exception occurs. Exceptions are synchronous
interruptions to the normal flow of program control caused by the program
itself. They include illegal memory accesses, protection violations,
arithmetic exceptions, and hardware instructions intended to support
emulation, debugging, and error detection. Some of these exceptions are
handled transparently by the operating system, but some must be
reported to the user program. A default exception port is inherited from
the parent at task creation time. This port can be changed by the task or
any one of its threads in order to take an active role in handling
exceptions.

• Bootstrap port—The port to which a new task can send a message that
will return any other system service ports that the task needs (for
example, a port to the Network Name Server). A default bootstrap port is
inherited from the parent at task creation. This is the one port that the
kernel doesn’t actually use; it just makes it available to a new task.

A thread has two ports, in addition to its kernel port:

• Reply port—Used in Mach remote procedure calls (remote procedure
calls are described in Chapter 2). The thread_reply() function returns the
reply port of the calling thread.

• Exception port—The port to which the kernel sends exceptions occurring
in this thread. This port is set to PORT_NULL at thread creation and can
be set subsequently with the function thread_set_exception_port(). As
long as the thread exception port is PORT_NULL, the task exception
port is used instead.

Customarily, only threads within a task manipulate that task’s state, but this
custom isn’t enforced by the Mach kernel. A debugger task, for example,
can manipulate the state of the task being debugged by getting the task’s
kernel port and using it in Mach function calls.

Mach Ports and Messages
In Mach, communication among operating system objects is achieved
through messages. Mach messaging is implemented by three kernel
abstractions:

• Port—A protected communication channel (implemented as a finite-
length message queue) to which messages may be sent and logically
9

Chapter 1

Mach Concepts

queued until reception. The port is also the basic object reference mechanism
in Mach; its use is similar to that of object references in an object-oriented
system. That is, operations on objects are requested by sending messages to
and from the ports that represent them. When a task is created, a port that
represents the task is simultaneously created. When the task is destroyed, its
port is also destroyed.

• Port set—A group of ports, implemented as a queue combining the message
queues of the constituent ports. A thread may use a port set to receive a
message sent to any of several ports.

• Message—Used to communicate between objects; the message is passed to an
object by being sent to the port that represents the object. Each message is a
data stream consisting of two parts: a fixed-length header and a variable-length
message body composed of zero or more typed data objects. The header
contains information about the size of the message, its type, and its
destination. The body contains the content (or a pointer to the content) of the
message. Messages may be of any size, and may contain in-line data, pointers
to data, and capabilities for ports. A single message may transfer up to the
entire address space of a task.

Message passing is the primary means of communication both among tasks and
between tasks and the kernel. In fact, the only way one object can communicate
with another object is by sending a message to that object’s port. System
services, for example, are invoked by a thread in one task sending a message to
another task that provides the desired service. The only functions implemented
by system traps are those directly concerned with message communication; all
the rest are implemented by messages to the kernel port of a task.

Threads within a single task also use messages and ports to communicate with
each other. For example, one thread can suspend or resume the execution of
another thread by sending the appropriate message to the thread’s port. A thread
can also suspend or resume the execution of all threads within another task by
sending the appropriate message to the task’s port.

The indirection provided by message passing allows objects to be arbitrarily
placed in the network without regard to programming details. For example, a
thread can suspend another thread by sending a suspend message to the port
representing that other thread even if the request is initiated on another node in
a network. It’s thus possible to run varying system configurations on different
classes of machines while providing a consistent interface to all resources. The
actual system running on any particular machine is more a function of its servers
than its kernel.
10

The Mach Kernel

Port Access Rights
Communication between objects is protected by a system of port access
rights. Access rights to a port consist of the ability to send to or receive from
that port. For example, before a task can send a message to a port, it must
gain send rights to that port. Before a message can be received, a task must
gain receive rights to the port containing the message.

The port access rights operate as follows:

• Send access to a port—Implies that a message can be sent to that port. If
the port is destroyed during the time a task has send access, the kernel
sends a message to that task’s notify port indicating that the port has
disappeared. For loadable kernel servers, this notification message isn’t
sent unless the server has requested notification by calling
kern_serv_notify().

• Receive access to a port—Allows a message to be dequeued from that
port. Only one task may have receive access for a given port at a time;
however, more than one thread within that task may concurrently attempt
to receive messages from a given port. When the receive rights to a port
are destroyed, that port is destroyed and tasks holding send rights are
notified. Receive access implies send rights.

Although multiple tasks may hold send rights to the same port, only one
task at a time may hold receive rights to a port.

A thread’s right of access is identical to that of the thread’s task. Also, when
a thread creates a port, send and receive rights are accorded to the task
within which the thread is executing. Thus, all threads within the task have
equivalent access rights to the new port. Thereafter, any thread within the
task can deallocate any or all of these rights, or transfer them to other tasks.
The transfer of port rights is accomplished through the Mach messaging
system: Access to a port is gained by receiving a message containing a port
capability (that is, a capability to either send or receive messages).

Port access rights can be passed in messages. The rights are interpreted by
the kernel and transferred from the sender to the kernel upon message
transmission and to the receiver upon message reception. Send rights are
kept by the original task as well as being transmitted to the receiver task,
but receive rights are removed from the original task at the time of the send,
and appear in the user task when the receive is done.

During the time between a send and receive, the kernel holds the rights,
and any messages sent to the port will be queued waiting for a new task to
receive on the port. If the task that was intended to receive the rights dies
11

Chapter 1

Mach Concepts

before it receives them, the rights are handled as though the task had received
them before it died.

The type usually used for ports is port_t. However, ports can also be referred to
as the equivalent types port_name_t and port_all_t. The port_name_t type
implies that no port access rights are being transferred; the port is merely being
referred to by its name. The port_all_t type implies that all rights (both send
and receive) for a port are being transferred.

Port Sets
Conceptually, a port set is a bag holding zero or more receive rights. A port set
allows a thread to block while waiting for a message sent to any of several ports.
A port may be a member of no more than one port set at any time, and a task can
have only one port set.

A task’s port set right, created by port_set_allocate(), allows the task to receive
a message from the port set with msg_receive() and manipulate the port set
with port_set_add(), port_set_remove(), port_set_status(), and
port_set_deallocate(). Unlike port rights, a port set right can’t be passed in
messages.

Port set rights usually have the type port_set_name_t, which is equivalent to
port_name_t.

Port Names
Every task has its own port name space, used for port and port set names. For
example, one task with receive rights for a port may know the port by the name
13, while another task with send rights for the same port may know it by the
name 17. A task has only one name for a port, so if the task with send rights
named 17 receives another message carrying send rights for the same port, the
arriving rights will also be named 17.

Typically, these names are small integers, but this is implementation
dependent. When a task receives a message carrying rights for a new port, the
Mach kernel is free to choose any unused name. The port_rename() call can
be used to change a task’s name for a port.

Port Queues
Messages that are sent to a port are held there until removed by a thread. The
queue associated with a port is of finite length and may become full. If an
12

The Mach Kernel

attempt is made to send a message to a port that’s temporarily full, the
sending thread has a choice of three alternatives:

• By default, the sender is suspended until it can successfully transmit the
message.

• The sender can have the kernel hold the message for later transmission to
the currently full port. If the sender selects this action, it can’t transmit
further messages to the port (nor can it have the kernel hold additional
messages for the port) until the kernel notifies it that the port has received
the initial message.

• The attempt to send a message to a full port can simply be reported to the
sender as an error.

Extended Communication Functionality
The kernel’s message-based communication facility is the building block
on which more complicated facilities may be constructed; for example, it’s
the underlying communication mechanism for the Mach exception-
handling facility. Two properties of the Mach communication facility
simplify the process of extending the functionality of systems based on it:

• Independence—A port is an independent entity from the tasks that use it
to communicate. Port rights can be exchanged in messages, and are
tracked by the kernel to maintain protection.

• Network transparency—As described in the following section, user-level
network message servers transparently extend the Mach communication
facility across a network, allowing messages to be sent between tasks on
different computers. The forwarding process is invisible to both the
sender and the receiver of the message.

This combination of independence and network transparency enables
Mach to support parallel and distributed architectures with no change to the
operating system kernel. These properties of the communication facility
also simplify the incorporation of new operating system functionality,
because user-level programs can easily be added to the existing kernel
without the need to modify the underlying kernel base.

Although messaging is similar to 4.4BSD stream sockets in that it permits
reliable, kernel-mediated communication between tasks, messaging has a
much more fundamental role within Mach. Whereas UNIX processes
obtain system services through a variety of interfaces (for example, the
open() system call for files, the socket() and bind() system calls for
network connections, and numerous access protocols for user-level
13

Chapter 1

Mach Concepts

services), Mach provides all services through messaging. Because of this
consistency of interprocess communication, the Mach operating system can
easily be extended to incorporate new features.

As an alternative to messaging, Mach also supports interprocess communication
using shared memory. However, if you use shared memory for interprocess
communication, you’re responsible for synchronizing the transmission and
reception of the message. With the Mach messaging system, Mach itself
schedules the transmission and reception of messages, thereby ensuring that no
message is read before it’s been sent in its entirety.

Messaging in a Network Environment
Mach’s object-oriented design is well-suited for network operation. Messages
may be sent between tasks on different computers just as they’re sent between
tasks on the same computer. The only difference is the transparent intervention
of a new user-level object, the network server.

Programs called network servers act as intermediaries for messages sent
between tasks on separate computers. Each network server implements
network ports that represent ports for tasks on remote nodes. A unique network
port identifier is used to distinguish each network port.

A message addressed to a remote port is first received at the local network port
that represents the remote port. The network server, upon receiving the
message, translates it into a form compatible with the network protocol and then
transmits the message to the counterpart network server on the destination
node. The destination server decodes the message, and determines its ultimate
destination from the network port identifier in the message. Finally, the
destination network server dispatches the message to the local port to which it
was addressed.

This network messaging process is transparent to the sender; all routing services
are provided by the network server.

Mach Virtual Memory Management
Each Mach task receives a 4-gigabyte virtual address space for its threads to
execute in. This address space consists of a series of mappings between ranges
of memory addressable to the task and memory objects. Besides
accommodating the task and its threads, this space serves as the basis of the
Mach messaging system and allows space for memory-mapped files.

A task can modify its address space in several ways. It can:

• Allocate a region of virtual memory (on a page boundary).
14

The Mach Kernel

• Deallocate a region of virtual memory.

• Set the protection status of a region of virtual memory.

• Specify the inheritance of a region of virtual memory.

• Create and manage a memory object that can then be mapped into the
space of another task.

The only restriction imposed by Mach on the nature of the regions that may
be specified for virtual memory operations is that they must be aligned on
system page boundaries. The size in bytes of a virtual memory page is
contained in the vm_page_size variable.

Demand Paging
The memory management hardware of a computer running Rhapsody is
responsible for mapping sections of the virtual memory space into pages of
physical memory as needed. The process the kernel uses to decide which
virtual pages should be resident in physical memory at a given time is
known as demand paging.

While a task is executing, only the page of memory containing the addresses
referenced by the active thread must reside in physical memory. If the
thread references an address not contained in a page of physical memory,
the kernel requests the appropriate pager to read in the needed page from
storage. Then, the computer’s memory management unit maps the
referenced virtual page onto this new physical page of memory.

If there are no free pages of physical memory available, the Mach kernel
asks the pager to copy the least recently used page to the paging file on disk.
The kernel then reassigns the newly freed page of memory.

Mach’s paged virtual address space makes it possible to run extremely large
applications, regardless of the installed physical memory in the computer.
With all but the largest applications, you can continue to allocate memory
without concern for exceeding the system’s capacity, although to prevent
unnecessary performance degradation, you should deallocate memory that’s
no longer needed.

Inheritance and Protection of Memory
The Mach virtual memory management system also streamlines the
creation of a new task (the child) from an existing task (the parent), an
operation similar to forking a UNIX process. Traditionally, under the UNIX
operating system, creating a new process entails creating a copy of the
15

Chapter 1

Mach Concepts

parent’s address space. This is an inefficient operation since often the child task,
during its existence, touches only a portion of its copy of the parent’s address
space. Under Mach, the child task initially shares the parent’s address space and
copying occurs only when needed, on a page-by-page basis.

A region of an address space represents the memory associated with a
continuous range of addresses, marked by a starting address and an ending
address. Regions consist of pages that have different protection or inheritance
characteristics. The Mach kernel extends each region to include the entire
virtual memory pages that contain the starting and ending addresses in the
specified range.

Inheritance and protection are attached to a task’s address space, not the
physical memory contained in that address space. Tasks that share memory may
specify different protection or inheritance for their shared regions.

Inheritance
A task may specify that pages of its address space be inherited by child tasks in
three ways:

• Copy—Pages marked as copy are logically copied by value, although for
efficiency copy-on-write techniques are used. This means the first time the
child task attempts to write to shared memory, a protection fault occurs. The
kernel responds to this fault by making a copy, for the child task, of the page
being written. This is the default mode of inheritance if no mode is specified.

• Shared—Pages specified as shared can be read from and written to by both the
parent and child.

• None—Pages marked as none aren’t passed to a child. In this case, the child’s
corresponding address is left unallocated.

Inheritance may be specified globally or on a page-by-page basis when a task is
forked. Inheritance may be changed at any time; only at the time of task creation
is inheritance information used.

Copy-on-write sharing between unrelated tasks is typically the result of large
message transfers. An entire address space may be sent in a single message with
no actual data copy operations performed.

Currently the only way two Mach tasks can share the same physical memory is
for one of the tasks to inherit shared access to memory from a parent.
16

The Mach Kernel

Protection
Besides specifying page inheritance attributes, a task may assign protection
values to protect the virtual pages of its address space by allowing or
preventing access to that memory. Protection values are a combination of
read, write, and execute permissions.

By default, when a child task inherits memory from a parent, it gets the
same protection on that memory that its parent had.

Like inheritance, protection is specified on a per-page basis. For each group
of pages there exist two protection values: the current and the maximum
protection. The current protection is used to determine the access rights of
an executing thread, and the maximum protection specifies the maximum
value that the current protection may take. The maximum value may be
lowered but not raised. If the maximum protection is lowered to a level
below the current protection, the current protection is also lowered to that
level.

For example, a parent task may create a child task and set the maximum
protection value for some pages of memory to read-only. Thereafter, the
parent task can be assured that the child won’t be able to alter the
information in those pages.

Interprocess Communication
Mach virtual memory management provides an efficient method of
interprocess communication. Messages of any size (up to the limits imposed
by the virtual address space) can be transferred between tasks by revising
the mapping from the virtual address space of a process to physical address
space. This is accomplished by mapping an unused portion of the virtual
address space of the receiving process onto the addresses of the sender’s
message.

The efficiency of this method can be appreciated more fully when
compared to the standard UNIX method. Under the UNIX operating
system, a message must be physically copied from the address space of the
sender into the address space of the kernel. From there, the message is
copied into the address space of the receiver.

Memory-Mapped Files
Memory-mapped files are a further benefit of the Mach virtual memory
system. Under Mach, all or part of a disk file can be mapped onto a section
of virtual memory. A reference to a position within this section is equivalent
to a reference to the same position in the physical file. If that portion of the
17

Chapter 1

Mach Concepts

file isn’t currently in memory, a page fault occurs, prompting the kernel to
request the file system to read the needed section of the file into physical
memory. From the point of view of the process, the entire file is in memory
at once.

With Mach, the use of memory-mapped files is optional and currently only
supports reading files. Mach also supports the standard UNIX read(), lseek(),
and write() system calls.

Paging Objects
A paging object is a secondary storage object that’s mapped into a task’s virtual
memory. Paging objects are commonly files managed by a file server, but as far
as the Mach kernel is concerned, a paging object may be implemented by any
port that can handle requests to read and write data.

Physical pages in an address space have paging objects associated with them.
These objects identify the backing storage to be used when a page is to be read
in as the result of a reference or written to in order to free physical memory.

Virtual Memory Functions
The Mach kernel provides a set of functions to allow a programmer to
manipulate the virtual address space of a task. The two most fundamental are
vm_allocate() to get new virtual memory and vm_deallocate() to free virtual
memory. The programmer also has available the functions malloc(), calloc(),
and free(), which have been implemented to use vm_allocate() and
vm_deallocate().

In addition to memory explicitly allocated using vm_allocate(), memory may
appear in a task’s address space as the result of a msg_receive() operation.

The decision to use one allocation method rather than another should be based
on several factors. The vm_allocate() function always adds new, zero-filled
virtual memory in page-aligned chunks that are multiples of the page size. The
malloc() function allocates approximately the size asked for (plus a few bytes)
out of a preallocated heap. The calloc() function is the same as malloc() except
that it zeros the memory before returning it. Both malloc() and calloc() are
library subroutine calls; vm_allocate() is a Mach kernel function, which is
somewhat more expensive.

The most obvious basis on which to choose an allocation function is the size of
the desired space. One other consideration is the desirability of page-aligned
storage. If the memory that’s allocated is to be passed out-of-line in a message
(referred to by a pointer in the message), it’s more efficient if it’s page-aligned.
18

The Mach Kernel
Note that it’s essential that the correct deallocation function be used. If
memory has been allocated with vm_allocate(), it must be deallocated
with vm_deallocate(); if it was allocated with malloc() it must be
deallocated with free(). Memory that’s received out-of-line from a message
has been allocated by the kernel with vm_allocate().

Program Examples: Virtual Memory
The following three examples demonstrate various aspects of the use of
virtual memory functions in C programs.

The first program, vm_read.c, demonstrates the use of vm_allocate(),
vm_deallocate(), and another virtual memory function called vm_read().
First some memory is allocated and filled with data. The vm_read() Mach
function is then called, with reading starting at the previously allocated
chunk. The contents of the two pieces of memory (that is, the one retrieved
by vm_allocate() and the one by vm_read()) are compared. The
vm_deallocate() function is then used to get rid of the two chunks of
memory.

#import <mach/mach.h>
#import <stdio.h>

main(int argc, char *argv[])
{
 char *data1, *temp;
 char *data2;
 int i, min;
 unsigned int data_cnt;
 kern_return_t rtn;

 if (argc > 1) {
 printf("vm_read takes no switches. ");
 printf("This program is an example vm_read\n");
 exit(-1);
 }

 if ((rtn = vm_allocate(task_self(), (vm_address_t *)&data1,
 vm_page_size, TRUE)) != KERN_SUCCESS) {
 mach_error("vm_allocate failed", rtn);
 printf("vmread: Exiting.\n");
 exit(-1);
 }
19

Chapter 1 Mach Concepts
 temp = data1;
 for (i = 0; (i < vm_page_size); i++)
 temp[i] = i;
 printf("Filled space allocated with some data.\n");
 printf("Doing vm_read....\n");
 if ((rtn = vm_read(task_self(), (vm_address_t)data1,
 vm_page_size, (pointer_t *)&data2, &data_cnt))
 != KERN_SUCCESS) {
 mach_error("vm_read failed", rtn);
 printf("vmread: Exiting.\n");
 exit(-1);
 }
 printf("Successful vm_read.\n");

 if (vm_page_size != data_cnt) {
 printf("vmread: Number of bytes read not equal to number");
 printf("available and requested.\n");
 }
 min = (vm_page_size < data_cnt) ? vm_page_size : data_cnt;

 for (i = 0; (i < min); i++) {
 if (data1[i] != data2[i]) {
 printf("vmread: Data not read correctly.\n");
 printf("vmread: Exiting.\n");
 exit(-1);
 }
 }
 printf("Checked data successfully.\n");

 if ((rtn = vm_deallocate(task_self(), (vm_address_t)data1,
 vm_page_size)) != KERN_SUCCESS) {
 mach_error("vm_deallocate failed", rtn);
 printf("vmread: Exiting.\n");
 exit(-1);
 }

 if ((rtn = vm_deallocate(task_self(), (vm_address_t)data2,
 data_cnt)) != KERN_SUCCESS) {
 mach_error("vm_deallocate failed", rtn);
 printf("vmread: Exiting.\n");
 exit(-1);
 }
}

The next program, vm_copy.c, demonstrates the use of vm_allocate(),
vm_deallocate(), and vm_copy(). First, some memory is allocated and filled
with data. Then another chunk of memory is allocated, and vm_copy() is called
to copy the contents of the first chunk to the second. The data in the two spaces
is compared to be sure it’s the same, checking vm_copy(). The
vm_deallocate() function is then used to get rid of the two chunks of memory.
20

The Mach Kernel
#import <mach/mach.h>
#import <stdio.h>

main(int argc, char *argv[])
{
 int *data1, *data2, *temp;
 int i;
 kern_return_t rtn;

 if (argc > 1) {
 printf("vm_copy takes no switches. ");
 printf("This program is an example vm_copy\n");
 exit(-1);
 }

 if ((rtn = vm_allocate(task_self(), (vm_address_t *)&data1,
 vm_page_size, TRUE)) != KERN_SUCCESS) {
 mach_error("vm_allocate failed", rtn);
 printf("vm_copy: Exiting.\n");
 exit(-1);
 }

 temp = data1;
 for (i = 0; (i < vm_page_size / sizeof(int)); i++)
 temp[i] = i;
 printf("vm_copy: set data\n");

 if ((rtn = vm_allocate(task_self(), (vm_address_t *)&data2,
 vm_page_size, TRUE)) != KERN_SUCCESS) {
 mach_error("vm_allocate failed", rtn);
 printf("vm_copy: Exiting.\n");
 exit(-1);
 }

 if ((rtn = vm_copy(task_self(), (vm_address_t)data1, vm_page_size,
 (vm_address_t)data2)) != KERN_SUCCESS) {
 mach_error("vm_copy failed", rtn);
 printf("vm_copy: Exiting.\n");
 exit(-1);
 }
 printf("vm_copy: copied data\n");

 for (i = 0; (i < vm_page_size / sizeof(int)); i++) {
 if (data1[i] != data2[i]) {
 printf("vm_copy: Data not copied correctly.\n");
 printf("vm_copy: Exiting.\n");
 exit(-1);
 }
 }
 printf("vm_copy: Successful vm_copy.\n");
21

Chapter 1 Mach Concepts
 if ((rtn = vm_deallocate(task_self(), (vm_address_t)data1,
 vm_page_size)) != KERN_SUCCESS) {
 mach_error("vm_deallocate failed", rtn);
 printf("vm_copy: Exiting.\n");
 exit(-1);
 }

 if ((rtn = vm_deallocate(task_self(), (vm_address_t)data2,
 vm_page_size)) != KERN_SUCCESS) {
 mach_error("vm_deallocate failed", rtn);
 printf("vm_copy: Exiting.\n");
 exit(-1);
 }
 printf("vm_copy: Finished successfully!\n");
}

The following program, copy_on_write.c, demonstrates the use of
vm_inherit() and copy-on-write memory. A child and parent task share
memory, polling this memory to see whose turn it is to proceed.

First, some memory is allocated, and vm_inherit() is called on this memory, the
variable lock. Then more memory is allocated for the copy-on-write test. A fork
is executed, and the parent then stores new data in the copy-on-write memory
previously allocated, and sets the shared variable signaling to the child that the
parent is now waiting. The child, polling the shared variable, sees that the
parent is waiting. The child prints the value of the variable lock and a value of
the copy-on-write memory as the child sees it. The value of lock is what the
parent set it to be, but the value of the copy-on-write memory is the original
value and not what the parent changed it to be. The parent then awakens and
prints out the two values once more. The program then ends with the parent
signaling the child using the shared variable lock.

Typically you wouldn’t do this synchronization directly as shown here, but
would use C-thread functions (described later in this chapter).

#import <mach/mach.h>
#import <stdio.h>

#define NO_ONE_WAIT 0
#define PARENT_WAIT 1
#define CHILD_WAIT 2
#define COPY_ON_WRITE 0
#define PARENT_CHANGED 1
#define CHILD_CHANGED 2
#define MAXDATA 100

main(int argc, char *argv[])
{
 int pid;
 int *mem;
 int *lock;
 kern_return_t ret;
22

The Mach Kernel
 if (argc > 1) {
 printf("cowtest takes no switches. ");
 printf("This is an example of copy-on-write \n");
 printf("memory and the use of vm_inherit.\n");
 exit(-1);
 }

 if ((ret = vm_allocate(task_self(), (vm_address_t *)&lock,
 sizeof(int), TRUE)) != KERN_SUCCESS) {
 mach_error("vm_allocate failed:", ret);
 printf("Exiting with error.\n");
 exit(-1);
 }

 if ((ret = vm_inherit(task_self(), (vm_address_t)lock,
 sizeof(int), VM_INHERIT_SHARE)) != KERN_SUCCESS) {
 mach_error("vm_inherit failed:", ret);
 printf("Exiting with error.\n");
 exit(-1);
 }

 *lock = NO_ONE_WAIT;

 if ((ret = vm_allocate(task_self(), (vm_address_t *)&mem,
 sizeof(int) * MAXDATA, TRUE)) != KERN_SUCCESS) {
 mach_error("vm_allocate failed:", ret);
 printf("Exiting with error.\n");
 exit(-1);
 }

 mem[0] = COPY_ON_WRITE;
 printf("value of lock before fork: %d\n", *lock);
 pid = fork();

 if (pid) {
 printf("PARENT: copied memory = %d\n", mem[0]);
 printf("PARENT: changing to %d\n", PARENT_CHANGED);
 mem[0] = PARENT_CHANGED;
 printf("\n");
 printf("PARENT: lock = %d\n", *lock);
 printf("PARENT: changing lock to %d\n", PARENT_WAIT);
 printf("\n");
 *lock = PARENT_WAIT;
 while (*lock == PARENT_WAIT)
 /* wait for child to change the value */ ;
 printf("PARENT: copied memory = %d\n", mem[0]);
 printf("PARENT: lock = %d\n", *lock);
 printf("PARENT: Finished.\n");
 *lock = PARENT_WAIT;
 exit(-1);
 }

 while (*lock != PARENT_WAIT)
 /* wait for parent to change lock */ ;
23

Chapter 1 Mach Concepts
 printf("CHILD: copied memory = %d\n", mem[0]);
 printf("CHILD: changing to %d\n", CHILD_CHANGED);
 mem[0] = CHILD_CHANGED;
 printf("\n");
 printf("CHILD: lock = %d\n", *lock);
 printf("CHILD: changing lock to %d\n", CHILD_WAIT);
 printf("\n");

 *lock = CHILD_WAIT;
 while (*lock == CHILD_WAIT)
 /* wait for parent to change lock */ ;
 if ((ret = vm_deallocate(task_self(), (vm_address_t)lock,
 sizeof(int))) != KERN_SUCCESS) {
 mach_error("vm_deallocate failed:", ret);
 printf("Exiting.\n");
 exit(-1);
 }

 if ((ret = vm_deallocate(task_self(), (vm_address_t)mem,
 MAXDATA * sizeof(char))) != KERN_SUCCESS) {
 mach_error("vm_deallocate failed:", ret);
 printf("Exiting.\n");
 exit(-1);
 }
 printf("CHILD: Finished.\n");
}

Mach Scheduling
Each thread has a scheduling priority and policy. The priority is a number
between 0 and 31 that indicates how likely the thread is to run. The higher the
priority, the more likely the thread is to run. For example, a thread with priority
16 is more likely to run than a thread with priority 10. The policy is by default a
timesharing policy, which means that whenever the running thread blocks or a
certain amount of time passes, the highest-priority runnable thread is executed.
Under the timesharing policy, a thread’s priority gets lower as it runs (it ages), so
that not even a high-priority thread can keep a low-priority thread from
eventually running.

Priorities
Each thread has three types of priorities associated with it: its base priority, its
current priority, and its maximum priority. The base priority is the one the
thread starts with; it can be explicitly set using a function such as
cthread_priority(). The current priority is the one at which the thread is
executing; it may be lower than the base priority due to aging or a call to
thread_switch(). The maximum priority is the highest priority at which the
thread can execute. When a thread starts, it inherits its base priority from its
parent task and its maximum priority is set to a system-defined maximum.
24

The Mach Kernel
These priorities can be set at three levels: the thread, the task, and (on
multiprocessors) the processor set. At the thread level, you can use
cthread_priority() or thread_priority() to set the base priority and to
optionally lower the maximum priority. You can raise or lower just the
maximum priority using cthread_max_priority() or
thread_max_priority(). To raise a thread’s maximum priority, you must
obtain the privileged port of the thread’s processor set, which only the
superuser can do.

At the task level, you can set the task’s base priority using task_priority().
The task’s base priority is inherited by all threads that it forks; you can also
specify that all existing threads in the task get the new base priority.

You can get the priorities of running tasks using task_info() and
thread_info(). Or, from a shell window, you can view the priorities of
running tasks using the command-line program ps. The -l option of ps
displays, among other things, the lowest values for maximum priority and
current priority that were found in all the threads in the task. The -m option
displays the current priority of every thread in the task. The following
example shows the ps displays for Terminal.

localhost> ps -axu | grep Terminal
me 1658 2.8 2.4 1.31M 200K p2 S 0:00 grep Terminal
root 174 2.4 11.4 3.84M 936K p1 S 0:41 /NextApps/Terminal.app/T

localhost> ps -l 174
 F UID PID PPID CP PRI BASE VSIZE RSIZE WCHAN STAT TT TIME COMMAND
 1 0 174 156 0 10 10 4.30M 1.14K 0 S ? 0:41 /NextAp

localhost> ps -m 174
USER PID TT %CPU STAT PRI SYSTEM USER COMMAND
root 174 ? 1.8 S 16 0:15.76 0:19.17 /NextApps/Terminal.app/
 0.1 S 10 0:06.15 0:00.54

Policies
The Rhapsody Mach operating system has three scheduling policies:

• Timesharing
• Interactive
• Fixed priority

Every thread starts with the timesharing policy, no matter what policy the
creator of the thread has. If you want the policy of any thread to be
something other than timesharing, you must set that thread’s policy using
thread_policy().

The interactive policy is a variant of timesharing that’s designed to be
optimized for interactive applications. The kernel makes the first thread in
a task use interactive policy by default. Currently, the interactive policy is
25

Chapter 1 Mach Concepts
exactly the same as timesharing, but in the future performance might be
enhanced by, for example, making interactive policy threads have higher
priorities than the other threads in the task.

Fixed priority can be a dangerous policy if you aren’t familiar with all of its
consequences. For this reason, the fixed-priority policy is disabled by default. If
you want to use fixed priorities, you must enable them using
processor_set_policy_enable(). Threads that have the fixed-priority policy
have their current priority always equal to their base priority (unless their
priority is depressed by thread_switch()). A thread with the fixed-priority
policy runs until one of the following happens:

• A higher-priority process becomes available to run.
• A per-thread, user-specified amount of time (the quantum) passes.
• The thread blocks, waiting for some event or system resource.

Because fixed-priority threads don’t lose priority over time, they can prevent
lower-priority threads from running. The opposite can happen, too; a low-
priority, fixed-priority thread can be kept from running for enough time by
higher-priority threads. The first problem can be solved in some cases by the
fixed-priority thread calling thread_switch() to temporarily depress its priority
or hand off the processor to another thread. The fixed-priority policy is often
used for real-time problems, such as on-line transaction processing.

Mach C-Thread Functions

Mach provides a set of low-level, language-independent functions for
manipulating threads of control. The C-thread functions are higher-level, C
language functions in a run-time library that provide an interface to the Mach
facilities. The constructs provided in the C-thread functions are:

• Forking and joining of threads
• Protection of critical regions with mutual exclusion (mutex) variables
• Condition variables for synchronization of threads

Another way of protecting critical regions and synchronizing threads is to use the
Foundation framework’s locking classes. See the online documentation for
information on the Foundation framework.

If you intend to build multithreaded applications, you should use the NSThread
class from the Foundation framework or the C-thread functions, rather than
using the Mach kernel functions. The C-thread functions are a natural and
efficient set of functions for multithreaded applications, whereas the Mach
26

Mach C-Thread Functions
thread functions are designed to provide the low-level mechanisms that
packages such as the C-thread functions can be built with.

Using External Functions and Methods
Many of the functions and methods provided by Rhapsody weren’t
designed with multithreaded applications in mind. As a result, they might
not work correctly when called simultaneously by two or more of your
application’s threads. (A function or method that can safely be called by
more than one thread at once is thread-safe.) In general, unless you know
that a function or method is thread-safe, you should assume that it isn’t.

The following are thread-safe:

• Distributed Objects, which is described in the online Foundation
documentation

• Mach functions (except for mach_error())

• BSD 4.4 system calls (you should use cthread_errno() instead of errno)

• The malloc() function and its related functions, though their thread
safety can be disabled by calling malloc_singlethreaded() (which in
general should not be done)

The Objective C runtime system is not thread-safe by default. To make it
thread-safe, use the function objc_setMultithreaded().

The following are not thread-safe:

• Standard I/O functions, such as printf()
• Most of the functions in the libc library
In particular, the usleep() function should never be used in multithreaded
programs. As an alternative, you can use NSThread’s sleepUntilDate:
method, as follows:

[NSThread sleepUntilDate:[NSDate
dateWithTimeIntervalSinceNow:seconds]];

NSThread is described in the Foundation on-line documentation.

Using Shared Variables
All global and static variables are shared among all threads: If one thread
modifies such a variable, all other threads will observe the new value. In
addition, a variable reachable from a pointer is shared among all threads that
can dereference that pointer. This includes objects pointed to by shared
27

Chapter 1 Mach Concepts
variables of pointer type, as well as arguments passed by reference in
cthread_fork(). You should be careful to declare all shared variables as volatile,
or the optimizer might remove references to them.

When pointers are shared, some care is required to avoid problems with
dangling references. You must ensure that the lifetime of the object pointed to
is long enough to allow the other threads to dereference the pointer. Since
there’s no bound on the relative execution speed of threads, the simplest
solution is to share pointers to global or heap-allocated objects only. If a pointer
to a local variable is shared, the function that variable is defined in must remain
active until it can be guaranteed that the pointer will no longer be dereferenced
by other threads. The synchronization functions can be used to ensure this.

Unless a library has been designed to work in the presence of reentrancy, you
should assume that the library makes unprotected use of shared data. You must
protect against this through the use of a mutex that’s locked before every library
call (or sequence of library calls) and unlocked afterward. For example, you
should lock a mutex before calling printf() and unlock the mutex afterward.

Synchronization of Variables
This section describes mutual exclusion and synchronization functions, which
are used to constrain the possible interleavings of the execution streams of
threads. These functions manipulate mutex and condition variables, which are
defined as follows:

typedef struct mutex {...} *mutex_t;

typedef struct condition {...} *condition_t;

Mutually exclusive access to mutable data is necessary to prevent corruption of
data. As a simple example, consider concurrent attempts to update a simple
counter. If two threads fetch the current value into a (thread-local) register,
increment, and write the value back in some order, the counter will only be
incremented once, losing one thread’s operation. A mutex solves this problem
by making the fetch-increment-deposit action atomic. Before fetching a
counter, a thread locks the associated mutex, and after depositing a new value
the thread unlocks the mutex:

mutex_lock(m);
count += 1;
mutex_unlock(m);

If any other thread tries to use the counter in the meantime, it will block when
it tries to lock the mutex. If more than one thread tries to lock the mutex at the
same time, only one will succeed; the rest will block.
28

Mach C-Thread Functions
Condition variables are used when one thread wants to wait until another
thread has finished doing something. Every condition variable should be
protected by a mutex. Conceptually, the condition is a boolean function of
the shared data that the mutex protects. Commonly, a thread locks the
mutex and inspects the shared data. If it doesn’t like what it finds, it waits,
using a condition variable:

mutex_lock(mutex_t m);
. . .
while (/* condition isn’t true */)
 condition_wait(condition_t c, mutex_t m);
. . .
mutex_unlock(mutex_t m);

The call to condition_wait() temporarily unlocks the mutex to give other
threads a chance to get in and modify the shared data. Eventually, one of
them should signal the condition (which wakes up the blocked thread)
before it unlocks the mutex:

mutex_lock(mutex_t m);
. . . /* modify shared data */
condition_signal(condition_t c);
mutex_unlock(mutex_t m);

At that point, the original thread will regain its lock and can look at the
shared data to see if things have improved. It can’t assume that it will like
what it sees, because some other thread may have slipped in and altered the
data after the condition was signaled.

You must take special care with data structures that are dynamically
allocated and deallocated. In particular, if the mutex that’s controlling
access to a dynamically allocated record is part of the record, make sure that
no thread is waiting for the mutex before freeing the record.

Attempting to lock a mutex that one already holds is another common error.
The offending thread will block waiting for itself. This can happen when a
thread is traversing a complicated data structure, locking as it goes, and
reaches the same data by different paths. Another instance of this is when a
thread is locking elements in an array, say to swap them, and it doesn’t
check for the special case that the elements are the same.

You must be careful to avoid deadlock, a condition in which one or more
threads are permanently blocked waiting for each other. The above
scenarios are a special case of deadlock. The easiest way to avoid deadlock
with mutexes is to impose a total ordering on the mutexes, and then ensure
that threads only lock mutexes in increasing order.
29

Chapter 1 Mach Concepts
You must decide what kind of granularity to use in protecting shared data with
mutexes. The two extremes are to have one mutex protecting all shared
memory, or to have one mutex for every byte of shared memory. Finer
granularity normally increases the possible parallelism because less data is
locked at any one time. However, it also increases the overhead lost to locking
and unlocking mutexes and increases the possibility of deadlock.

Program Example: C Threads
This section demonstrates the use of the C-thread functions in writing a
multithreaded program. The program is an example of how to structure a
program with a single master thread that spawns a number of concurrent slaves.
The master thread waits until all the slaves have finished and then exits.

Once created, a slave thread simply loops calling a function that makes the
processor available to other threads. After this loop is finished, the slave thread
informs the master that it’s done, and then dies. In a more useful version of this
program, each slave process would do something while looping.

#import <stdio.h>
#import <mach/cthreads.h>

volatile int count; /* number of slave threads active */
mutex_t lock; /* mutual exclusion for count */
mutex_t print; /* mutual exclusion for printfs */
condition_t done; /* signaled each time a slave finishes */

void init()
{
 /* Allocate mutex variables "lock" and "print". */
 lock = mutex_alloc();
 print = mutex_alloc();

 /* Allocate condition variable "done". */
 done = condition_alloc();

 count = 0;
}

/*
 * Each slave just loops, yielding the processor on each
 * iteration. When it's finished, it decrements the global
 * count and signals that it's done.
 */
void slave(int n)
{
 int i;

 for (i = 0; i < 100; i += 1)
 cthread_yield();
30

Mach C-Thread Functions
 /*
 * If any thread wants to access the count variable, it
 * first locks the mutex. When the mutex is locked, any
 * other thread wanting the count variable must wait until
 * the mutex is unlocked.
 */
 mutex_lock(lock);
 count -= 1;
 mutex_lock(print);
 printf("Slave %d finished.\n", n);
 mutex_unlock(print);
 /* Signal that this slave has finished. */
 condition_signal(done);
 mutex_unlock(lock);
}

/*
 * The master spawns a given number of slaves and then waits
 * for them all to finish.
 */
void master(int nslaves)
{
 int i;

 for (i = 1; i <= nslaves; i++) {
 mutex_lock(lock);
 /* Increment count with the creation of each slave thread. */
 count += 1;
 /* Fork a slave and detach it. */
 cthread_detach(cthread_fork((cthread_fn_t)slave, (any_t)i));
 mutex_unlock(lock);
 }

 mutex_lock(lock);
 /*
 * Master thread loops waiting on the condition done. Each
 * time the master thread is signaled by a condition_signal
 * call, it tests the count for a value of zero.
 */
 while (count != 0)
 condition_wait(done, lock);
 mutex_unlock(lock);

 mutex_lock(print);
 printf("All %d slaves have finished.\n", nslaves);
 mutex_unlock(print);
}

main()
{
 init();
 master(15); /* Create master thread and 15 slaves. */
}

31

Chapter 1 Mach Concepts
Mach Exception Handling

Exceptions are synchronous interruptions to the normal flow of program control
caused by the occurrence of unusual conditions during program execution.
Raising an exception causes the operating system to manage recovery from the
unusual condition.

Exceptions include:

• Illegal accesses (bus errors, segmentation and protection violations)

• Arithmetic errors (overflow, underflow, divide by zero)

• Hardware instructions intended to support facilities such as emulation,
debugging, and error detection

Note: Software interrupts and other actions caused by asynchronous external
events aren’t considered exceptions.

Although many exceptions, such as page faults, can be handled by the operating
system and dismissed transparently to the user, the remaining exceptions are
exported to the user by the operating system’s exception-handling facility (for
example, by invoking a handler or producing a core dump).

Four major classes of applications use exceptions:

• Debugging—Debuggers rely on exceptions generated by hardware trace and
breakpoint facilities. Other exceptions that indicate errors must be reported to
the debugger; the presence of the debugger indicates the user’s interest in any
anomalous program behavior.

• Core dumps—In the absence of a debugger, a fatal exception can cause the
execution state of a program to be saved in a file for later examination.

• Error handling—Certain applications sometimes handle their own exceptions
(particularly arithmetic). For example, an error handler could substitute 0 for
the result of a floating underflow and continue execution. Error handlers are
often required by high-level languages.

• Emulation—Generally, computers generate exceptions upon encountering
operation codes that can’t be executed by the hardware. Emulators can be
built to execute the desired operation in software. Such emulators serve to
extend the instruction set of the underlying machine by performing
instructions that aren’t present in the hardware.
32

Mach Exception Handling
The following sections contrast the UNIX approach to error handling with
the general model upon which the Mach exception-handling facility is
built, and then present specific information about the Mach exception-
handling facility.

The UNIX Approach to Exception Handling
Designers of operating systems have approached exceptions in a variety of
ways. The drawbacks of most approaches include limited functionality
(often the result of designing only for debuggers) and lack of extensibility
to a multithreaded environment.

The UNIX operating system generalizes exception handling to the signal
facility, which handles all interruptions to normal program flow. The varying
requirements of different types of interruptions (such as exceptions, timer
expiration, or a control character from the terminal) entail semantics that
vary from signal to signal; the default action can be nothing, stop, continue
from stop, or terminate (with or without a core dump). The user can change
these defaults or specify a handler to be invoked by a signal. The interface
to these handlers includes a partial machine context, but registers outside
this context aren’t accessible.

Debugging support in UNIX is centralized in the ptrace() system call: It
performs all data transfer and process control needed by debuggers, and
interacts with the signal facility to make signals visible to debuggers
(including signals that would otherwise invoke error handlers or emulators).
The occurrence of a signal in a debugged process causes that process to stop
in a peculiar manner and notify the debugger that something has happened.
This notification is implemented by special treatment of debugged
processes in the wait() system call; this call usually detects terminated
processes, but also detects stopped processes that are being debugged. One
consequence of these features and their implementation is that debuggers
are restricted to debugging processes that are the immediate children of the
debugger.

Two major problems with the UNIX signal facility are:

• Executing the signal handler in the same context as the exception makes
many registers inaccessible. These registers are often the very registers
that an arithmetic error handler needs to modify (for example, by
substituting 0 for a floating underflow).

• The entire concept of signals is predicated on single-threaded
applications. Adapting signals to multithreaded applications is difficult
and complicates the interface to them. At least half a dozen major changes
33

Chapter 1 Mach Concepts
to the UNIX signal implementation in the Mach kernel have been required
for this reason.

The typical use of signal handlers is to detect and respond to external events; for
this they’re adequate, but as an exception-handling facility, they leave much to
be desired.

A Model for Generalized Exception Handling
The Mach exception-handling facility is based on a model whose generality is
sufficient to describe virtually all uses of exceptions, including those made by
the four classes of applications discussed earlier.

The Mach exception-handling model divides applications that use exceptions
into two major classes:

• Error handlers—Perform recovery actions in response to an exception and
resume execution of the thread involved. This class includes both error
handlers and emulators. Error handlers typically execute in the same address
space as that thread for efficiency reasons (access to state).

• Debuggers—Examine the state of an entire application to investigate why an
exception occurred or why the program is misbehaving. This class includes
both interactive debuggers and the servers that produce core dumps; the latter
can be viewed as front ends to debuggers that examine core dumps.
Debuggers usually execute in address spaces distinct from the application for
protection reasons.

This chapter uses the terms error handler and debugger to refer to these two
classes (for example, a core dumper is a debugger). The term handler is used to
refer to any application that uses exceptions.

The Mach exception-handling model is derived by examining the requirements
common to error handlers and debuggers. Specifically, the occurrence of an
exception requires suspension of the thread involved and notification of a
handler. The handler receives the notification and performs some computation
(for example, an error handler fixes the error, a debugger decides what to do
next), after which the thread is either resumed or terminated.

The model presented in this section covers all uses of exceptions. The
occurrence of an exception invokes a four-step process involving the thread that
caused the exception (victim) and the entity that handles the exception
(handler, which may be the operating system):

1. Victim does a raise, causing notification of the occurrence of an exception.
34

Mach Exception Handling
2. Victim does a wait, synchronizing with completion of exception handling.

3. Handler does a catch, receiving notification. This notification usually
identifies the exception and the victim, although some of this
identification may be implicit in where and how the notification is
received.

4. Handler takes either of two possible actions: clear the exception (causing
the victim to return from the wait), or terminate the victim thread.

The primitives appearing in bold in this model constitute the high-level
model interface to exceptions and can be viewed as operating on exception
objects. The handler will usually perform other functions between the catch
step and the clear or terminate step; these functions are part of the handler
application itself, rather than part of the exception model.

Exception Handling in Mach
The Mach exception-handling facility was designed as a general
implementation of the exception-handling model described above. The
major design goals for this new facility were:

• Single facility with consistent semantics for all exceptions
• Clean and simple interface
• Full support for debuggers and error handlers
• No duplication of functionality within kernel
• Support for user-defined exceptions

A consequence of these goals is a rejection of the notion of a handler
executing in the same context as the exception it’s handling. There is no
clean and straightforward way to make a thread’s context available to the
thread itself; this results in a single thread having multiple contexts (a
currently executing context and one or more saved exception contexts). In
turn this causes serious naming and functionality problems for operations
that access or manipulate thread contexts. Because Mach supports multiple
threads within the same task, it’s sufficient to stop the thread that caused
the exception and execute the handler as another thread in the same task.

The Mach exception-handling facility implements the exception-handling
model with Mach kernel functions to avoid duplicating kernel functionality.
Because the handler never executes in the context of the victim thread, the
raise, wait, notify, and clear primitives constitute a remote procedure call
(RPC). They’re therefore implemented using a message-based RPC
provided by the Mach communication facility. The remaining terminate
primitive is exactly the thread_terminate() or task_terminate() function;
35

Chapter 1 Mach Concepts
no special action is required to terminate the thread or task instead of
completing the RPC.

The exception RPC consists of two messages: an initial message to invoke the
RPC, and a reply message to complete the RPC. The initial message contains
the following items:

• Send and reply ports for the RPC
• The identities of the thread that caused the exception and of the

corresponding task
• A machine-independent exception class (see the section “Exception

Classification”)
• Two machine-dependent fields that further identify the exception

If the RPC is completed, the reply message contains the two RPC ports and a
return code from the handler that handled the exception (success in almost all
cases). MiG-generated stub routines perform the generation and decoding of
the messages; this allows users to avoid dealing directly with the contents of the
messages. (MiG is described in Chapter 2.)

An exception RPC corresponds to our exception model as follows:

• raise—Send initial message.
• wait—Wait for and receive reply message.
• catch—Receive initial message.
• clear—Send reply message.

Exception Ports
The two messages that constitute the RPC are sent to and received from ports
corresponding to the handler (initial message) and victim (reply message). The
handler’s port is registered as the exception port for either the victim’s task or
thread; the kernel consults this registration when an exception occurs. The reply
port is specified in the initial message; for hardware exceptions, the kernel
allocates the reply port and caches it for reuse on a per-thread basis. Mach kernel
functions are available to register a port as an exception port for a task or thread,
and to return the port currently registered; these functions for implementing
debuggers and error handlers are described in the section “Program Example:
Exception Handling.”

Registering exception ports for both tasks and threads effects a separation of
concerns between error handlers and debuggers. Error handlers are supported
by the thread exception ports because error handlers usually affect only the
victim thread; different threads within a task can have different error handlers.
The registered exception port for a thread defaults to the null port at thread
creation; this defaults the initial error handler to no handler. Debuggers are
36

Mach Exception Handling
supported by the task exception ports because debuggers operate on the
application level; this includes at least all the threads in the victim’s task, so
at most one debugger is associated with a single task. The registered
exception port for a task is inherited from the parent task at task creation;
this supports debuggers that handle trees of tasks (such as a multitasking
parallel program) and inheritance of core-dump servers.

The presence of both task and thread exception ports creates a potential
conflict because both are applicable to any exception. This is resolved by
examining the differences between error handlers and debuggers. Error
handlers use exceptions to implement portions of an application; an error
handler is an integral part of the application that generates its exceptions.
Exceptions handled by an error handler may be unusual, but they don’t
indicate anomalous or erroneous behavior. In contrast, debuggers use
exceptions to investigate anomalous or erroneous application behavior; as a
result debuggers have little interest in exceptions successfully handled by
error handlers. This implies that exceptions should invoke error handlers in
preference to debuggers; this preference is implemented by having thread
exception ports take precedence over task exception ports in determining
where to direct the RPC invoked by an exception. If neither an error
handler nor a debugger can successfully handle an exception, the task is
terminated.

User Extensibility
The Mach exception-handling facility permits you to define and handle
your own exceptions in addition to those defined by the system.

The software class of exceptions (see the section “Exception
Classification”) contains a range of codes reserved for user-defined
exceptions; this allows the handling of these exceptions to be integrated
into the handling of system-defined exceptions. The same ports are used in
both cases, and the interface to handlers is identical.

An advantage of this approach is that user-defined exceptions can
immediately be recognized as such, even by debuggers that can’t decode
the machine-dependent fields that identify the exact exception.

Generation of user-defined exceptions is facilitated by a MiG stub routine
that implements the exception RPC (in turn this routine is generated
automatically from an interface description of the exception RPC). User
code that detects an exception simply obtains the appropriate exception
port from the kernel and calls this stub routine; the stub routine handles the
RPC and returns a return code from the handler. Alternatively, you may use
the MiG exception interface with your own exceptions and exception ports;
37

Chapter 1 Mach Concepts
this approach may be advantageous for applications that handle only user-
defined exceptions.

Implementing Error Handlers
Error handlers are supported by thread exception ports and invoked by remote
procedure calls on those ports. An error handler is associated with a thread by
registering a port on which the error handler receives exception RPCs as the
exception port of the thread. This registration causes all exceptions occurring in
the thread to invoke RPCs to the error handler’s port. Since most error handlers
can’t handle all possible exceptions that could occur, they must check each
exception and forward it to the corresponding task exception port if it can’t be
handled. This forwarding can be performed by obtaining the exception port for
the task specified in the initial message and sending the initial message there.
Alternatively, the error handler can return a failure code in the reply message;
this causes the sender of the initial message to reinitiate the RPC using the task
exception port.

Implementation of error handlers requires additional functionality beyond
completing the RPC. This functionality is supported by separate Mach kernel
functions that can also be used by other applications. The most common actions
and corresponding functions are:

• Read/write register state: thread_get_state(), thread_set_state()

• Read/write memory state: Access memory directly within task; otherwise
vm_read(), vm_write()

• Terminate thread: thread_terminate()

• Resume thread: Send reply message to complete RPC (msg_send())

Some applications may require that error handlers execute in the context of (that
is, on the stack of) the thread that caused the exception (such as emulation of
UNIX signal handlers). Although this appears to conflict with the principle of
never executing an error handler in the context of the victim thread, it can be
implemented by using a system-invoked error handler to set up the application’s
handler. Specifically, the error handler invoked by the exception RPC modifies
the victim thread so that the application’s handler is executed when the thread
is resumed. Unwinding the stack when the application’s error handler finishes is
the responsibility of the application developer.

Implementing Debuggers
Debuggers are supported by the task exception ports; exceptions invoke
debuggers with remote procedure calls on those ports. A debugger is associated
38

Mach Exception Handling
with a task by registering a port on which the debugger receives exception
RPCs as the task’s exception port. An exception RPC stops only the victim
thread pending RPC completion; other threads in the task continue
running. This has two consequences:

• If the debugger wants to stop the entire task, a task_suspend() must be
performed. A straightforward way to accomplish this is to do it inside the
exception RPC and then complete the RPC; the victim thread can’t
resume execution upon RPC completion because its task has been
suspended.

• Multiple exceptions from a multithreaded task may be outstanding for the
debugger on a single debugger invocation. If the debugger doesn’t handle
these pending exceptions for the task, some may appear to occur at
impossible times (such as a breakpoint occurring after the user has
removed it).

The Mach exception-handling facility is one small component of the kernel
that can be used by debuggers. The various actions required to support
debuggers are implemented using general-purpose functions that also
support other applications. Some of the more important debugger actions
and corresponding kernel functions are:

• Detect event: msg_receive(). System components that generate or detect
external events (such as interrupt characters on a terminal) signal the
events by sending messages.

• Read and write application memory (includes setting breakpoints):
vm_read(), vm_write().

• Read and write application registers (includes setting single-step mode if
available): thread_get_state(), thread_set_state().

• Continue application: Task and thread control functions.

• End debugging session: task_terminate().

Exceptions that invoke error handlers using thread exception ports aren’t
visible to debuggers. A debugger that wants to detect error handler
invocation can insert one or more breakpoints in the error handler itself;
exceptions caused by these breakpoints will be reported to the debugger.

Debugger Attachment
The independence property of the Mach kernel described previously
allows Mach to support debugger attachment and detachment without
change to the kernel itself. Traditional UNIX systems require that the
39

Chapter 1 Mach Concepts
debugged process be the child of the debugger; this makes it impossible to
debug a process that wasn’t started by the debugger. Subsequent developers
have expended considerable effort to implement an attach primitive that allows
a debugger to attach to a previously started process and debug it; this allows
analysis of failures that may not be repeatable. Similarly these systems allow a
debugger to detach from a running process and exit without affecting the
process. No design change is required to support this functionality; the
debugger need only obtain the port representing the task to be debugged, and
may then use all of the functions previously discussed to debug that task. A
debugger can detach from a task by resetting the task’s exception port to its
former value; there is no other connection between the debugger and task being
debugged.

Parallel and Distributed Debugging
The design of the exception-handling facility also supports parallel and
distributed debugging without change. There are several cases to be considered
based on the structure of the debugger and the application being debugged. In
all of these cases the debugger itself may be a parallel or distributed application
consisting of multiple tasks and threads.

For parallel applications composed of multiple threads within a single task, a
debugger need only register its exception RPC port as that task’s exception port.
Multiple concurrent exceptions result in multiple RPC invocations being
queued to that port; each invocation identifies the thread involved. The Mach
communication facility allows the debugger to accept all of these RPCs before
responding to any of them, and to respond to them in any order. (Of course the
debugger must keep track of the RPCs and make sure they’re all responded to
when continuing the application.) A straightforward implementation is to
suspend the task in response to the first RPC, and then complete all pending
exception RPCs recording the threads and exceptions involved. The exceptions
can then be reported to the user all at once.

For parallel applications composed of multiple tasks within a single machine,
only minor changes to the above debugger logic are required. The debugger
must now register its exception RPC port as the task exception port for each
task, and may choose to identify components of the parallel application by tasks
instead of threads. Suspending or resuming the entire application now requires
an operation on each task. If the application dynamically creates tasks, an
additional interface to report these new tasks to the debugger may be required
so that the new tasks can be suspended and resumed by the debugger.

Network transparency allows the components of a debugger and the debugged
application to be spread throughout a network; all required operations extend
40

Mach Exception Handling
transparently across the network. This supports a number of possible
debugging scenarios:

• The application and the debugger are on separate hosts.

• The application being debugged is distributed over the network. The
debugger doesn’t require modifications beyond those needed to deal with
applications composed of multiple tasks.

• The debugger itself can be distributed over the network.

The last scenario is useful for implementing fast exception response in a
debugger for applications that run in parallel on several distributed hosts; if
the exception RPC stays within the host, suspending of all application
components on that host can be done faster.

GDB Enhancements
The Mach exception-handling facility and other Mach kernel functions
have been used to enhance GDB (the GNU source-level debugger) for
debugging multithreaded tasks. This enhanced version of GDB operates at
the task level (that is, any exception causes GDB to suspend the entire
task). A notion of the current thread has been added; this thread is used by
any thread-specific command that doesn’t specify a thread. New commands
are provided to list the threads in the task, change the current thread, and
examine or control individual threads. Thread-specific breakpoints are
supported by logic that transparently continues the application from the
breakpoint until the desired thread hits it. Implementation of attachment
to running tasks, as described earlier in the section “Debugger
Attachment,” is in progress, as are changes to deal with multiple concurrent
breakpoints.

The existence of multiple threads within a debugged task complicates
GDB’s execution control logic. In addition to the task_suspend() required
upon exception detection, resuming from a breakpoint becomes somewhat
intricate. Standard GDB removes the breakpoint, single-steps the process,
puts back the breakpoint and continues. The enhanced version must
ensure that only the thread at the breakpoint executes while performing the
single step; this requires switching from task suspension to suspension of all
of the threads except one and then back again before resuming the
application.

The Mach exception-handling facility is an important implementation base
for the enhancements to GDB. Identification of the victim thread in the
initial message makes it possible to handle multiple concurrent exceptions;
41

Chapter 1 Mach Concepts
all the system functions (for example, ptrace()) are restricted to one current
signal per task, and hence preclude handling of multiple concurrent exceptions.
Additionally, the independence of the debugger from the debugged application
makes it possible to implement debugger attachment without kernel
modifications; the UNIX operating system requires extensive kernel
modifications to achieve similar functionality.

Exception Classification
The Mach exception-handling facility employs a new hardware-independent
classification of exceptions. This is in contrast to previous systems, whose
exception classifications are closely wedded to the hardware they were originally
developed on. This new classification divides all exceptions into six classes
based on the causes and uses of the exceptions; further hardware-specific and
software-specific distinctions can be made within these classes as needed. The
six classes are:

• Bad access—A user access to memory failed for some reason and the operating
system was unable to recover (such as invalid memory or protection violation).

• Bad instruction—A user executed an illegitimate instruction (such as an
undefined instruction, reserved operand, or privileged instruction).

• Arithmetic—A user arithmetic instruction failed for an arithmetic reason (such
as overflow, underflow, or divide by zero).

• Emulation—A user executed an instruction requiring software emulation.

• Software—A broad class including all exceptions intended to support
software. These fall into three subclasses:

• Debugger—Hardware exceptions to support debuggers (such as breakpoint
instruction and trace trap).

In cases of potential confusion (for example, is it a bad instruction or an
instruction requiring emulation?) the correct classification is always clear from

Hardware Hardware instructions to support error detection (such as trap on overflow or trap on
subscript out of range).

Operating system Exceptions detected by operating system during system call execution (such as no
receiver on pipe). These are for operating system emulation (such as UNIX emulation).
Mach doesn’t use exceptions for system call errors.

User Exceptions defined and caused by user software for its own purposes.
42

Mach Exception Handling
the intended uses of the instruction as determined by the hardware and
system designers.

Two machine-dependent fields are used to identify the precise exception
within a class for flexibility in encoding exception numbers. Two fields are
needed for emulation instructions containing a single argument (one for the
instruction, one for the argument), but we have also found them useful for
constructing machine-dependent exception classifications (for example,
using one field to hold the trap number or vector, and the other to
distinguish this trap from the others that use this number or vector). Cases
in which two fields don’t suffice require a separate interface to extract the
additional machine-dependent status.

Kernel Interface
This section lists functions that relate directly to the exception-handling
facility. The following Mach functions let you raise exceptions, handle
them, and get or set exception ports. See Chapter 3 for descriptions of each
of these functions and macros.

• exception_raise()
• exc_server()
• mach_NeXT_exception()
• mach_NeXT_exception_string()
• task_set_exception_port()
• task_get_exception_port()
• thread_set_exception_port()
• thread_get_exception_port()

Another important function is one you implement yourself:
catch_exception_raise(). If you implement this function, it must have the
following syntax:

kern_return_t catch_exception_raise(port_t exception_port, port_t
thread,

port_t task, int exception, int code, int subcode)

Program Example: Exception Handling
The following example shows how to raise and handle user-defined
exceptions. The program sets up a new exception port, sets up a thread to
listen to this port, and then raises an exception by calling
exception_raise(). The thread that’s listening to the exception port
receives the exception message and passes it to exc_server(), which calls
the user-implemented function catch_exception_raise().
43

Chapter 1 Mach Concepts
This program’s implementation of catch_exception_raise() determines
whether it understands the exception. If so, it handles the exception by
displaying a message. If not, this implementation of catch_exception_raise()
sets a global variable that indicates that its calling thread should forward the
exception to the old exception port. This program doesn’t know which
exception handler is listening to the old exception port; it could be the default
exception handler, GDB, or any other exception handler.

/*
 * raise.c: This program shows how to raise user-specified exceptions.
 * If you use GDB, you can't set any breakpoints or step through any
 * code between the call to task_set_exception_port and the return
 * from exception_raise(). (You can never use GDB to debug exception
 * handling code, since GDB stops the program by generating an
 * EXC_BREAKPOINT exception.)
 */
#import <mach/mach.h>
#import <mach/exception.h>
#import <mach/cthreads.h>
#import <mach/mig_errors.h>

typedef struct {
 port_t old_exc_port;
 port_t clear_port;
 port_t exc_port;
} ports_t;

volatile boolean_t pass_on = FALSE;
mutex_t printing;

/* Listen on the exception port. */
any_t exc_thread(ports_t *port_p)
{
 kern_return_t r;
 char *msg_data[2][64];
 msg_header_t *imsg = (msg_header_t *)msg_data[0],
 *omsg = (msg_header_t *)msg_data[1];

 /* Wait for exceptions. */
 while (1) {
 imsg->msg_size = 64;
 imsg->msg_local_port = port_p->exc_port;
 r = msg_receive(imsg, MSG_OPTION_NONE, 0);
44

Mach Exception Handling
 if (r==RCV_SUCCESS) {
 /* Give the message to the Mach exception server. */
 if (exc_server(imsg, omsg)) {
 /* Send the reply message that exc_serv gave us. */
 r = msg_send(omsg, MSG_OPTION_NONE, 0);
 if (r != SEND_SUCCESS) {
 mach_error("exc_thread msg_send", r);
 exit(1);
 }
 }
 else { /* exc_server refused to handle imsg. */
 mutex_lock(printing);
 printf("exc_server didn't like the message\n");
 mutex_unlock(printing);
 exit(2);
 }
 }
 else { /* msg_receive() returned an error. */
 mach_error("exc_thread msg_receive", r);
 exit(3);
 }

 /* Pass the message to old exception handler, if necessary. */
 if (pass_on == TRUE) {
 imsg->msg_remote_port = port_p->old_exc_port;
 imsg->msg_local_port = port_p->clear_port;
 r = msg_send(imsg, MSG_OPTION_NONE, 0);
 if (r != SEND_SUCCESS) {
 mach_error("msg_send to old_exc_port", r);
 exit(4);
 }
 }
 }
}

45

Chapter 1 Mach Concepts
/*
 * catch_exception_raise() is called by exc_server(). The only
 * exception it can handle is EXC_SOFTWARE.
 */
kern_return_t catch_exception_raise(port_t exception_port,
 port_t thread, port_t task, int exception, int code, int subcode)
{
 if ((exception == EXC_SOFTWARE) && (code == 0x20000)) {
 pass_on = FALSE;
 /* Handle the exception so that the program can continue. */
 mutex_lock(printing);
 printf("Handling the exception\n");
 mutex_unlock(printing);
 return KERN_SUCCESS;
 }
 else { /* Pass the exception on to the old port. */
 pass_on = TRUE;
 mutex_lock(printing);
 mach_NeXT_exception("Forwarding exception", exception,
 code, subcode);
 mutex_unlock(printing);
 return KERN_FAILURE; /* Couldn't handle this exception. */
 }
}

main()
{
 int i;
 kern_return_t r;
 ports_t ports;

 printing = mutex_alloc();

 /* Save the old exception port for this task. */
 r = task_get_exception_port(task_self(), &(ports.old_exc_port));
 if (r != KERN_SUCCESS) {
 mach_error("task_get_exception_port", r);
 exit(1);
 }

 /* Create a new exception port for this task. */
 r = port_allocate(task_self(), &(ports.exc_port));
 if (r != KERN_SUCCESS) {
 mach_error("port_allocate 0", r);
 exit(1);
 }
 r = task_set_exception_port(task_self(), (ports.exc_port));
 if (r != KERN_SUCCESS) {
 mach_error("task_set_exception_port", r);
 exit(1);
 }
46

Mach Exception Handling
 /* Fork the thread that listens to the exception port. */
 cthread_detach(cthread_fork((cthread_fn_t)exc_thread,
 (any_t)&ports));
 /* Raise the exception. */
 ports.clear_port = thread_reply();
#ifdef NOT_OUR_EXCEPTION
 /* By default, EXC_BAD_ACCESS causes a core dump. */
 r = exception_raise(ports.exc_port, ports.clear_port,
 thread_self(), task_self(), EXC_BAD_ACCESS, 0, 0);
#else
 r = exception_raise(ports.exc_port, ports.clear_port,
 thread_self(), task_self(), EXC_SOFTWARE, 0x20000, 0);
#endif

 if (r != KERN_SUCCESS)
 mach_error("catch_exception_raise didn't handle exception",
 r);
 else {
 mutex_lock(printing);
 printf("Successfully called exception_raise\n");
 mutex_unlock(printing);
 }

 sleep(5); /* Exiting too soon can disturb other exception
 * handlers. */
}

47

Chapter 1 Mach Concepts
48

Chapter 2
 Using Mach Messages

Message Structure
This chapter describes how to use Mach messages for interprocess
communication (IPC). Programs can either send and receive Mach
messages directly, or they can use remote procedure calls (RPCs) generated
by MiG (Mach Interface Generator). MiG-generated RPCs appear to be
simple function calls but actually involve messages. Many kernel functions,
such as host_info(), are really RPCs.

This chapter first describes the structure of all messages. It then discusses
how to set up messages for direct sending. Finally, it discusses how to use
MiG to build a Mach server—a program that provides services to clients by
using remote procedure calls. This chapter assumes that you understand
the concepts of ports, port sets, and messages, which are described in
Chapter 1, “Mach Concepts.”

You should usually use MiG to generate messages. MiG-generated code is
easier for clients to use, and using MiG is a good way to define an interface
that’s separate from the implementation. However, you might want to build
messages by hand if the messages are very simple or if you want fine control
over communication details.

Note: Tasks can also communicate with each other using Distributed Objects.
See the online documentation for information on Distributed Objects.

Message Structure

A message consists of a fixed header often followed by the message body.
The body consists of alternating type descriptors and data items. Here’s a
typical message structure:

typedef struct {
 msg_header_t Head;
 msg_type_t aType;
 int a;
 msg_type_t bType;
 int b;
} Request;

Message Header
The C type definition for the message header is as follows (from the header
file mach/message.h):
51

Chapter 2 Using Mach Messages
typedef struct {
 unsigned int msg_unused : 24,
 msg_simple : 8;
 unsigned int msg_size;
 int msg_type;
 port_t msg_local_port;
 port_t msg_remote_port;
 int msg_id;
} msg_header_t;

The msg_simple field indicates whether the message is simple or nonsimple; the
message is simple if its body contains neither ports nor out-of-line data
(pointers).

The msg_size field specifies the size of the message to be sent, or the maximum
size of the message that can be received. When a message is received, Mach sets
msg_size to the size of the received message. The size includes the header and
in-line data and is given in bytes.

The msg_type field specifies the general type of the message. For hand-built
messages, it’s MSG_TYPE_NORMAL; MiG-generated servers use the type
MSG_TYPE_RPC. Other values for the msg_type field are defined in the
header files mach/message.h and mach/msg_type.h.

The msg_local_port and msg_remote_port fields name the ports on which a
message is to be received or sent. Before a message is sent, msg_local_port
must be set to the port to which a reply, if any, should be sent;
msg_remote_port must specify the port to which the message is being sent.
Before a message is received, msg_local_port must be set to the port or port set
to receive on. When a message is received, Mach sets msg_local_port to the
port the message is received on, and msg_remote_port to the port any reply
should be sent to (the sender’s msg_local_port).

The msg_id field can be used to identify the meaning of the message to the
intended recipient. For example, a program that can send two kinds of messages
should set the msg_id field to indicate to the receiver which kind of message is
being sent. MiG automatically generates values for the msg_id field.
52

Message Structure
Message Body
The body of a message consists of an array of type descriptors and data.
Each type descriptor contains the following structure:

typedef struct {
 unsigned int
 msg_type_name : MSG_TYPE_BYTE, /* Type of data */
 msg_type_size : 8, /* Number of bits per item */
 msg_type_number : 12, /* Number of items */
 msg_type_inline : 1, /* If true, data follows; else
 a ptr to data follows */
 msg_type_longform : 1, /* Name, size, number follow */
 msg_type_deallocate : 1, /* Deallocate port rights or
 memory */
 msg_type_unused : 1;
} msg_type_t;

The msg_type_name field describes the basic type of data comprising this
object. The system-defined data types include:

• Ports, including combinations of send and receive rights.

• Port and port set names. This is the same language data type as port rights,
but the message only carries a task’s name for a port and doesn’t cause any
transferral of rights.

• Simple data types, such as integers, characters, and floating-point values.

The msg_type_size field indicates the size in bits of the basic object
named in the msg_type_name field.

The msg_type_number field indicates the number of items of the basic
data type present after the type descriptor.

The msg_type_inline field indicates that the actual data is included after
the type descriptor; otherwise, the word following the descriptor is a pointer
to the data to be sent.

The msg_type_longform field indicates that the name, size, and number
fields were too long to fit into the msg_type_t structure. These fields
instead follow the msg_type_t structure, and the type descriptor consists of
a msg_type_long_t:

typedef struct {
 msg_type_t msg_type_header;
 short msg_type_long_name;
 short msg_type_long_size;
 int msg_type_long_number;
} msg_type_long_t;
53

Chapter 2 Using Mach Messages
When msg_type_deallocate is nonzero, it indicates that Mach should
deallocate this data item from the sender’s address space after the message is
queued. You can deallocate only port rights or out-of-line data.

A data item, an array of data items, or a pointer to data follows each type
descriptor.

Creating Messages by Hand

This section shows how to create messages to be sent using msg_send() or
msg_rpc(). You don’t usually have to set up messages by hand. For example,
although Mach servers call msg_send(), almost all the message fields are
already set up in MiG-generated code. However, this section might be useful if
you want to send messages without using MiG, or if you want to read through
MiG-generated code.

Setting Up a Simple Message
As described earlier, a message is simple if its body doesn’t contain any ports or
out-of-line data (pointers). The msg_remote_port field must contain the port
the message is to be sent to. The msg_local_port field should be set to the port
a reply message (if any) is expected on.

The following example shows the creation of a simple message. Because every
item in the body of the message is of the same type (int), only one type
descriptor is necessary, even though the items are in two different fields.

#define BEGIN_MSG 0 /* Constants to identify the different messages */
#define END_MSG 1
#define REPLY_MSG 2

#define MAXDATA 3

struct simp_msg_struct {
 msg_header_t h; /* message header */
 msg_type_t t; /* type descriptor */
 int inline_data1; /* start of data array */
 int inline_data2[2];
};
struct simp_msg_struct msg_xmt;
port_t comm_port, reply_port;
54

Creating Messages by Hand
/* Fill in the message header. */
msg_xmt.h.msg_simple = TRUE;
msg_xmt.h.msg_size = sizeof(struct simp_msg_struct);
msg_xmt.h.msg_type = MSG_TYPE_NORMAL;
msg_xmt.h.msg_local_port = reply_port;
msg_xmt.h.msg_remote_port = comm_port;
msg_xmt.h.msg_id = BEGIN_MSG;

/* Fill in the type descriptor. */
msg_xmt.t.msg_type_name = MSG_TYPE_INTEGER_32;
msg_xmt.t.msg_type_size = 32;
msg_xmt.t.msg_type_number = MAXDATA;
msg_xmt.t.msg_type_inline = TRUE;
msg_xmt.t.msg_type_longform = FALSE;
msg_xmt.t.msg_type_deallocate = FALSE;

/* Fill in the array of data items. */
msg_xmt.inline_data1 = value1;
msg_xmt.inline_data2[1] = value2;
msg_xmt.inline_data2[2] = value3;

Setting Up a Nonsimple Message
A message is nonsimple if its body contains ports or out-of-line data. The
most common reason for sending data out-of-line is that the data block is
very large or of variable size.

In-line data is copied by the sender into the message structure and then
often copied out of the message by the receiver. Out-of-line data, however,
is mapped by the kernel from the address space of the sender to the address
space of the receiver. No actual copying of out-of-line data is done unless
one of the two tasks subsequently modifies the data.

This example shows how to construct a message containing out-of-line
data:

#define BEGIN_MSG 0 /* Constants to identify the different messages */
#define END_MSG 1
#define REPLY_MSG 2

#define MAXDATA 3

struct ool_msg_struct {
 msg_header_t h; /* message header */
 msg_type_t t; /* type descriptor */
 int *out_of_line_data; /* address of data */
};
struct ool_msg_struct msg_xmt;
port_t comm_port, reply_port;
55

Chapter 2 Using Mach Messages
/* Fill in the message header. */
msg_xmt.h.msg_simple = FALSE;
msg_xmt.h.msg_size = sizeof(struct ool_msg_struct);
msg_xmt.h.msg_type = MSG_TYPE_NORMAL;
msg_xmt.h.msg_local_port = reply_port;
msg_xmt.h.msg_remote_port = comm_port;
msg_xmt.h.msg_id = BEGIN_MSG;

/* Fill in the type descriptor. */
msg_xmt.t.msg_type_name = MSG_TYPE_INTEGER_32;
msg_xmt.t.msg_type_size = 32;
msg_xmt.t.msg_type_number = MAXDATA;
msg_xmt.t.msg_type_inline = FALSE;
msg_xmt.t.msg_type_longform = FALSE;
msg_xmt.t.msg_type_deallocate = FALSE;

/* Fill in the out-of-line data. */
msg_xmt.out_of_line_data = (int *)&mydata;

The fields that change values from those in the simple message example are
msg_simple, msg_type_inline, and possibly msg_type_deallocate. The
msg_type_name, msg_type_size, and msg_type_number fields remain the
same as before, so that Mach can determine how much memory to map.

The msg_remote_port field must contain the port the message is to be sent to.
The msg_local_port field should be set to the port where a reply message (if
any) is expected.

Setting Up a Reply Message
Once a message has been received, a reply message may have to be sent to the
sender of the received message. In the following example, the reply message,
msg_xmt, is simply a msg_header_t since no data is required. The
msg_remote_port field, which designates where to send the message, must be
set to the remote port of the previously received message (which Mach set to the
previous sender’s msg_local_port field). The msg_local_port field of the
outgoing message is set to PORT_NULL because no reply to this message is
expected.

#define BEGIN_MSG 0 /* Constants to identify the different messages */
#define END_MSG 1
#define REPLY_MSG 2

struct simp_msg_struct { /* format of received message */
 msg_header_t h; /* message header */
 msg_type_t t; /* type descriptor */
 int inline_data1; /* start of data array */
 int inline_data2[2];
};
msg_header_t msg_xmt;
struct simp_msg_struct *msg_rcv;
56

Mach Interface Generator
msg_xmt.h.msg_remote_port = msg_rcv->h.msg_remote_port;
msg_xmt.h.msg_local_port = PORT_NULL; /* no reply expected */
msg_xmt.h.msg_id = REPLY_MSG;
msg_xmt.h.msg_size = sizeof(msg_header_t);
msg_xmt.h.msg_type = MSG_TYPE_NORMAL;
msg_xmt.h.msg_simple = TRUE;

Mach Interface Generator

The Mach Interface Generator (known as MiG) is a program that generates
remote procedure call (RPC) code for communication between a client and
a server process. The operations of sending a message and receiving a reply
are represented as a single remote procedure call.

For example, if a program makes a call to host_info(), it actually calls a
library routine that sends a message to the Mach kernel and then waits to
receive a reply message. After the Mach kernel sends a reply message
containing the information, the library routine takes the data out of the
reply message and returns it to the program in parameters to the
host_info() call. However, the program sees none of this complexity—it
merely makes the following function call:

ret = host_info(host_self(), HOST_SCHED_INFO,
 (host_info_t)&sched_info, &sched_count);

A Mach server executes as a separate task and communicates with its clients
by sending Mach messages. As you can see from the previous sections in
this chapter, Mach messages are fairly complex. The MiG program is
designed to automatically generate procedures in C to pack and send, or
receive and unpack the messages used to communicate between processes.

Because of the complexity of sending and decoding messages, Mach
remote procedure calls are an order of magnitude slower than real function
calls, even if the server is on the local machine. Calls to servers on remote
machines take longer. However, Mach RPC has the advantages of the
separation of interface and implementation, and of network transparency.

Using MiG, you can create RPC interfaces for sending messages between
tasks on the local machine, or between tasks on separate machines in a
network. In the network environment, MiG both encodes messages to be
transmitted and decodes them upon arrival at the destination node, taking
into account dissimilarities in machine architecture.

MiG is especially useful if you’re faced with a mixed network environment.
Without MiG, you’re responsible for providing routines to translate
57

Chapter 2 Using Mach Messages
messages between two machines with different data representations. Using
MiG, you need only specify the calling arguments of the procedure and the
procedure’s return variables. The low-level routines required to translate
messages between these machines are then generated automatically.

MiG is flexible enough to describe most data structures that might be sent as
messages between processes. MiG supports the data types boolean, character,
signed and unsigned integers, integer subranges, strings, reals, and
communication port types. MiG also supports the limited creation of new data
types through the use of enumerations, fixed-size and variable-size arrays,
records, pointers to these types, and unions.

Creating Mach Servers with MiG
To create a Mach server, you must provide a specification file defining
parameters of both the message-passing interface and the procedure-call
interface. MiG then generates three files from the specification file:

• User interface file (xxxUser.c, where xxx is the subsystem name)—Should be
compiled and linked into the client program. It implements and exports the
procedures and functions for sending and receiving the appropriate messages
to and from the server.

• User header file (xxx.h)—Defines the functions to be called by a client of the
server. It’s included in the user interface file (xxxUser.c) and defines the types
and routines needed at compilation time.

• Server interface file (xxxServer.c)—Should be compiled and linked into the
server process. It extracts the input parameters from an IPC message, and calls
a server procedure to perform the operation. When the server procedure or
function returns, the Server interface also gathers the output parameters and
formats a reply message.

Besides the specification file, you must write at least two functions for the Mach
server. One is the main routine of the server, which registers the server and then
goes into a loop that receives a message, calls the MiG-generated code to process
the request, and sends a reply message. You must also write one function for
each remote procedure call, so that the MiG-generated server code can call the
appropriate function for each request.

In addition, you should provide a library routine that clients can use to look up
your server. For example, the kernel-server loader has a routine called
kern_loader_look_up() that clients call to obtain the kernel-server loader’s
port. This port must be specified as the first argument in every RPC to the
kernel-server loader.
58

Mach Interface Generator
You can register your server with either the Network Name Server or the
Bootstrap Server, depending on whether you want your server to be
available to other machines on a network. The Bootstrap Server allows only
processes that are on the local machine (or a subset of local processes) to get
your server’s port. For example, the sound driver registers its port with the
Bootstrap Server so that only processes descended from the local machine’s
Login Window can control sound. The Network Name Server allows tasks
on remote machines to get the server’s port. See Chapter 3, “Mach
Functions,” for more information on Network Name Server and Bootstrap
Server functions.

Client’s View
This section describes how clients use servers, so that you can better create
and document your own server.

Before a client can make remote procedure calls to the server, it must find
the server’s port. If the server doesn’t provide a library function to do this
lookup, then the client must call either netname_look_up() or
bootstrap_look_up() and supply the name of the server.

When a client makes a remote procedure call, it appears to be a simple
function call. The return type depends on whether the RPC is defined in
the server’s MiG specification file to be a routine, procedure, or function (as
described later in this chapter).

The most convenient interfaces are to routines, which return a value of type
kern_return_t. The returned value is either KERN_SUCCESS or a MiG,
Mach, or server-specific error code. MiG and Mach error codes can be
interpreted by mach_error() and mach_error_string().

Procedure and function RPCs are less convenient than routines because
they don’t directly return error codes. Instead, the client must provide an
error-handling routine named either MsgError() or whatever name the
server developer specified in the server’s MiG specification file. The error-
handling routine must be defined as follows:

void error_proc(kern_return_t error_code)

Common Error Codes
The most common system error that an RPC returns to a client is an invalid
port. This can mean several things:

• The request port (usually the first parameter in the RPC) is an invalid
port, or the client doesn’t have send rights for it.
59

Chapter 2 Using Mach Messages
• The reply port is invalid or lacks receive rights. (This problem can’t occur
unless the client provides the reply port; usually the system provides it.)

• Another port that the client is passing in the message is invalid.

• A port that’s being passed back to the client is invalid.

Another system error a client might receive is a timeout. This can happen only
if a timeout is specified in an argument or in the server’s specification file, and
usually doesn’t happen unless the server is on a different machine from the
client.

MiG errors, which are defined in the header file mach/mig_errors.h, usually
occur only if the client is using a different version of the interface than the
server.

Out-of-Line Data
When making specific interface calls, the client should be aware if any out-of-
line data is being returned to it. If so, it might want to deallocate the space with
a call to vm_deallocate().

Compiling the Client
The client must be compiled and linked with the xxxUser.c and xxx.h files that
MiG produced from the server’s specification file. The client should also include
or be linked with any files that are necessary to communicate with the server
(such as the file containing the routine that looks up the server). For example,
clients of the kernel-server loader must be linked against the kernload library,
which supplies all non-RPC kernel-server loader functions.

MiG Specification File
You must first write a MiG specification file to specify the details of the
procedure arguments and the messages to be used. A MiG specification file
contains the following components, some of which may be omitted:

• Subsystem identification
• Type declarations
• Import declarations
• Operation descriptions
• Options declarations

The subsystem identification should appear first for clarity. Types must be
declared before they’re used. Code is generated for the operations and import
60

Mach Interface Generator
declarations in the order in which they appear in the specification files.
Options affect the operations that follow them.

Subsystem Identification
The subsystem identification statement has the following form:

subsystem sys message_base_id ;

sys is the name of the subsystem. It’s used as the prefix for all generated file
names. The user file name will be sysUser.c, the user header file will be
sys.h, and the server file will be sysServer.c.

message_base_id is a decimal integer that’s used as the IPC message ID of the
first operation in the specification file. Operations are numbered
sequentially beginning with this base. The MiG-generated server function
checks the message ID of an incoming message to make sure that it’s no less
than message_base_id and no greater than message_base_id + num_messages −1,
where num_messages is the number of messages understood by the server.

Several servers can use just one message receive loop as long as they have
different subsystem numbers (and they have few enough messages so that
message IDs don’t overlap). The message receive loop should call each
MiG-generated server function in turn until one of them returns true
(indicating the message ID is in the range understood by that server.) Once
a MiG-generated server function has returned true or all the servers have
returned false, the receive-serve-send loop should send a reply (unless the
reply message returned by the server function has MIG_NO_REPLY in its
RetCode field).

Example:

subsystem random 500;

Type Declarations

Simple Types
A simple type declaration has the following form:

type user_type_name = type_desc [translation_info]

where a type_desc is either a previously defined user_type_name or an
ipc_type_desc, which has one of the following forms:
61

Chapter 2 Using Mach Messages
ipc_type_name
(ipc_type_name [, size [, dealloc]])

user_type_name is the name of a C type that will be used for some parameters of
the calls exported by the user interface file. The ipc_type_desc of simple types are
enclosed in parentheses and consist of an IPC type name, decimal integer, or
integer expression that’s the number of bits in the IPC type and, optionally, the
dealloc keyword.

The standard system-defined IPC type names are:

MSG_TYPE_BOOLEAN
MSG_TYPE_BIT
MSG_TYPE_BYTE
MSG_TYPE_CHAR
MSG_TYPE_INTEGER_8
MSG_TYPE_INTEGER_16
MSG_TYPE_INTEGER_32
MSG_TYPE_REAL
MSG_TYPE_STRING
MSG_TYPE_PORT
MSG_TYPE_PORT_ALL
MSG_TYPE_UNSTRUCTURED

The current set of these type names is contained in the header file
mach/message.h, which defines all the message-related types needed by a user
of the Mach kernel. The programmer may define additional types. If the
ipc_type_name is a system-defined one other than MSG_TYPE_STRING,
MSG_TYPE_UNSTRUCTURED, or MSG_TYPE_REAL, size (the bit
length) need not be specified and the parentheses can be omitted.

The dealloc keyword controls the treatment of ports and pointers after the
messages they’re associated with have been sent. The dealloc keyword causes
the deallocation bit in the IPC message to be set on; otherwise, it’s off. If dealloc
is used with a port, the port is deallocated after the message is sent. If dealloc is
used with a pointer, the memory that the pointer references will be deallocated
after the message has been sent. An error results if dealloc is used with any
argument other than a port or a pointer.

Some examples of simple type declarations are:

type int = MSG_TYPE_INTEGER_32;
type my_string = (MSG_TYPE_STRING,8*80);
type kern_return_t = int;
type disposable_port = (MSG_TYPE_PORT_ALL,32,dealloc);
62

Mach Interface Generator
The MiG-generated code assumes that the C types my_string,
kern_return_t, and disposable_port are defined in a compatible way by a
programmer-provided header file. The basic C and Mach types are defined
in the header file mach/std_types.defs.

MiG assumes that any variable of type MSG_TYPE_STRING is declared
as a C char * or char array[n]. Thus it generates code for a parameter
passed by reference and uses strncpy() for assignment statements.

Optional translation_info information describing procedures for translating
or deallocating values of the type may appear after the type definition
information:

• Translation functions, intran and outtran, allow the type as seen by the
user process and the server process to be different.

• Destructor functions allow the server code to automatically deallocate
input types after they have been used.

For example:

type task_t = (MSG_TYPE_PORT,32)
intran: i_task_t PortToTask(task_t)
outtran: task_t TaskToPort(i_task_t)
destructor: DeallocT(i_task_t)
;

Note: Because translation_info is part of the type declaration, the semicolon (;)
doesn’t appear until after the end of translation_info.

In this example, task_t, which is the type seen by the user code, is defined
as a port in the message. The type seen by the server code is i_task_t,
which is a data structure used by the server to store information about each
task it’s serving. The intran function PortToTask() translates values of
type task_t to i_task_t on receipt by the server process. The outtran
function TaskToPort() translates values of type i_task_t to type task_t
before return. The destructor function DeallocT() is called on the
translated input parameter, i_task_type, after the return from the server
procedure and can be used to deallocate any or all parts of the internal
variable. The destructor function won’t be called if the parameter is also an
out parameter (as described later in this chapter, in the section “Operation
Descriptions”); this is because the correct time to deallocate an out
parameter is after the reply message has been sent, which MiG doesn’t do.
A destructor function can also be used independently of the translation
routines. For example, if a large out-of-line data segment is passed to the
server, it could use a destructor function to deallocate the memory after the
data was used.
63

Chapter 2 Using Mach Messages
Although calls to these functions are generated automatically by MiG, the
function definitions must be hand-coded and imported using:

i_task_t PortToTask(task_t x)
task_t TaskToPort(i_task_t y)
void DeallocT(i_task_t y)

Structured Types
Three kinds of structured types are recognized: arrays, structures, and pointers.
Definitions of arrays and structures have the following syntax:

array [size] of comp_type_desc
array [* : maxsize] of comp_type_desc
struct [size] of comp_type_desc

where comp_type_desc may be a simple type_desc or may be an array or struct
type, and size may be a decimal integer constant or expression. The second array
form specifies that a variable-length array is to be passed in-line in the message.
In this form maxsize is the maximum length of the item. Currently, only one
variable-length array may be passed per message. For variable-length arrays an
additional count parameter is generated to specify how much of the array is
actually being used.

If a type is declared as an array, the C type must also be an array, since the MiG
RPC code will treat the user type as an array (that is, MiG will assume that the
user type is passed by reference and it will generate special code for array
assignments). A variable declared as a struct is assumed to be passed by value
and treated as a C structure in assignment statements. There is no way to specify
the fields of a C structure to MiG. The size and type_desc are used only to give the
size of the structure. The following example shows how to declare a C structure
as a struct.

/* declaration in MiG .defs file */
type short = MSG_TYPE_INTEGER_16;
type port_t = MSG_TYPE_PORT;
type lock_struct = struct [9] of short;
routine fl_message(server_port: port_t; inout arg: lock_struct);

/* declaration in C code */
typedef struct {
 short l_type;
 short l_whence;
 long l_start;
 long l_len;
 short l_pid;
 long l_hostid;
} lock_struct;
64

Mach Interface Generator
Pointer Types
In the definition of pointer types, the symbol ^ precedes a simple, array, or
structure definition.

^ comp_type_desc
^ array [size] of comp_type_desc
^ struct [size] of com_type_desc

The size may be left blank or be *. In either case, the array or structure is of
variable size, and a parameter is defined immediately following the array
parameter to contain its size. Data types declared as pointers are sent out-
of-line in the message. Since sending out-of-line data is considerably more
expensive than sending in-line data, pointer types should be used only for
large or variable amounts of data. A call that returns an out-of-line item
allocates the necessary space in the user’s virtual memory. It’s up to the user
to call vm_deallocate() on this memory when finished with the data.

Some examples of complex types are:

type procids = array [10] of int;
type procidinfo = struct [5*10] of (MSG_TYPE_INTEGER_32);
type vardata = array [* : 1024] of int;
type array_by_value = struct [1] of array [20] of (MSG_TYPE_CHAR);
type page_ptr = ^ array [4096] of (MSG_TYPE_INTEGER_32);
type var_array = ^ array [] of int;

Import Declarations
If any of the user_type_names or server_type_names are other than the standard
C types (such as int and char), C type specification files must be imported
into the user interface and server interface files so that they’ll compile. The
import declarations specify files that are imported into the modules
generated by MiG.

An import declaration has one of the following forms:

import file_name;
uimport file_name;
simport file_name;

where file_name has the same form as file name specifications in #include
statements (that is, <file_name> or "file_name").

For example:

import "my_defs.h";
import "/usr/include/mach/cthreads.h";
import <mach/cthreads.h>;
65

Chapter 2 Using Mach Messages
Files included with import are included in both the user-side and server-side
code. Those included with uimport are included in just the user side. Those
included with simport are included in just the server side.

Operation Descriptions
Any of five standard operations may be specified by using the following
keywords:

function
routine
procedure
simpleprocedure
simpleroutine

One other keyword, skip, may be used in place of a standard operation.

Functions and routines have a return value; procedures don’t. Routines are
functions whose result is of type kern_return_t. This result indicates whether
the requested operation was successfully completed. If a routine returns a value
other than KERN_SUCCESS, the reply message won’t include any of the reply
parameters except the error code. Neither procedures nor functions return
indications of errors directly; instead they call a hand-coded error function in the
client. The name of the error function is MsgError(), by default; you can
specify another name using the error declaration in the MiG specification file.

Simple procedures and simple routines send a message to the server but don’t
expect a reply. The return value of a simple routine is the value returned by the
function msg_send(). Simple routines or simple procedures are used when
asynchronous communication with a server is desired. The rest of the operations
wait for a reply before returning to the caller.

The syntax of the procedure, simpleprocedure, simpleroutine, and routine
statements are identical. The syntax of function is also the same except for the
type name of the value of the function. The general syntax of an operation
definition for everything except function has the following form:

operation_type operation_name (parameter_list) ;

For function the form is:

function operation_name (parameter_list) : function_value_type ;

The parameter_list is a list of parameter names and types separated by a
semicolon. The form of each parameter is:
66

Mach Interface Generator
[specification] var_name : type_description [, dealloc]

If not omitted, specification must be one of the following:

in
out
inout
requestport
replyport
waittime
sendtime
msgtype

The type_description can be any user_type_name or a complete type
description (see the earlier section in this chapter, “Type Declarations”).

The first unspecified parameter in any operation statement is assumed be
the requestport unless a requestport parameter was already specified.
This is the port that the message is to be sent to. If a replyport parameter
is specified, it will be used as the port that the reply message is sent to. If no
replyport parameter is specified, a per-thread global port is used for the
reply message.

The keywords in, out, and inout are optional and indicate the direction of
the parameter. The keyword in is used with parameters that are to be sent
to the server. The keyword out is used with parameters to be returned by
the server. The keyword inout is used with parameters to be both sent and
returned. If no such keyword is given, the default is in.

The keywords waittime, replyport, and msgtype can be used to specify
dynamic values for the wait time, the reply port, or the message type for this
message. These parameters aren’t passed to the server code, but are used
when generating the send and receive calls. The requestport and
replyport parameters must be of types that resolve to MSG_TYPE_PORT.
The waittime and msgtype parameters must resolve to
MSG_TYPE_INTEGER_32.

The keyword skip is provided to allow a procedure to be removed from a
subsystem without causing all the subsequent message interfaces to be
renumbered. It causes no code to be generated, but uses up a msg_id
number.
67

Chapter 2 Using Mach Messages
Here are some examples:

procedure init_seed (server_port : port_t;
 seed : dbl);
routine get_random (server_port : port_t;
 out num : int);
simpleroutine use_random (server_port : port_t;
 info_seed : string80;
 info : comp_arr;
 info_1 : words);
simpleprocedure exit (server_port : port_t);

Options Declarations
Several special-purpose options about the generated code may be specified.
Defaults are available for each, and simple interfaces don’t usually need to
change them. First-time readers may want to skip this section. These options
may occur more than once in the specification file. Each time an option
declaration appears, it sets that option for all the following operations.

The waittime Specification
The waittime specification has one of the following two forms:

waittime time ;
nowaittime ;

The word waittime is followed by an integer or an identifier that specifies the
maximum time in milliseconds that the user code will wait for a reply from the
server. If an identifier is used, it should be declared as an extern variable by
some module in the user code. If the waittime option is omitted, or if the
nowaittime statement is seen, the RPC doesn’t return until a message is
received.

The timeout value for the msg_receive() can alternatively be controlled by
using a waittime parameter to the RPC.

The sendtime Specification
The sendtime specification has one of the following two forms:

sendtime time ;
nosendtime ;

The word sendtime is followed by an integer or an identifier that specifies the
maximum time in milliseconds that the user code will wait for the number of
messages queued on the server’s port to fall below the port’s backlog. If an
identifier is used, it should be declared as an extern variable by some module in
the user code. If the sendtime option is omitted, or if the nosendtime
68

Mach Interface Generator
statement is seen, the RPC doesn’t return until the message has been
enqueued on the server’s port.

The timeout value for the msg_send() can be controlled alternatively by
using a sendtime parameter to the RPC.

The msgtype Specification
The msgtype specification has the following form:

msgtype msgtype_value ;

msgtype_value may be one of the values from the header file
mach/msg_type.h. The available types are MSG_TYPE_RPC and
MSG_TYPE_NORMAL. The MSG_TYPE_RPC is set to a correct value
by default; this value normally shouldn’t be changed. The value
MSG_TYPE_NORMAL can be used to reset the msgtype option.

The msgtype value for the msg_send() can be controlled alternatively by
using a msgtype parameter to the RPC.

The error Specification
The error specification has the following form:

error error_proc ;

The error specification is used to specify how message-passing errors are to
be handled for operations other than routines or simple routines. In all types
of routines, any message errors are returned in the return value of the
routine. For operations of types other than routines, the procedure
error_proc is called when a message error is detected. The procedure
specified by error_proc has to be supplied by the user, and must be of the
form:

void error_proc (kern_return_t error_code)

If the error specification is omitted, error_proc is set to MsgError().

The serverprefix Specification
The serverprefix specification has the following form:

serverprefix string ;

The word serverprefix is followed by an identifier string that will be
prepended to the actual names of all the following server-side functions
69

Chapter 2 Using Mach Messages
implementing the message operations. This is particularly useful when it’s
necessary for the user-side and server-side functions to have different names, as
must be the case when a server is also a user of copies of itself.

The userprefix Specification
The userprefix specification has the following form:

userprefix string ;

The word userprefix is followed by an identifier string that will be prepended
to the actual names of all the following user-side functions calling the message
operations. serverprefix should usually be used when different names are
needed for the user and server functions, but userprefix is also available for the
sake of completeness.

The rcsid Specification
The rcsid specification has the following form:

rcsid string ;

This specification causes a string variable sys_user_rscid in the user module and
sys_server_rcsid in the server module to be set equal to the input string. The
subsystem name sys was described earlier in this chapter, in the section
“Subsystem Identification.”

Syntax Summary
This section summarizes the syntax of MiG specification files. Note the
following conventions:

• Terminal symbols (literals) are shown in boldface type.

• Nonterminal symbols are shown in italic type.

• Alternatives are listed on separate lines.

• Brackets indicate zero or one occurrence of the bracketed item. An ellipsis (...)
indicates one or more repetitions of the preceding item. Brackets and ellipsis
combined, as in [item ...] indicate zero, one, or more repetitions of the item.

• Types must be declared before they’re used.

• Comments may be included in a “.defs” file if surrounded by /* and */.
Comments are parsed and removed by the C preprocessor.
70

Mach Interface Generator
specification_file:
subsystem_description [waittime_description] [sendtime_description]
[msgtype_description] [error_description] [server_prefix_description]
[user_prefix_description] [rscid_description] [type_description ...]
[import_declaration ...] operation_description ...

subsystem_description:
subsystem identifier decimal_integer ;

waittime_description:
waittime time_value ;
nowaittime ;

sendtime_description:
sendtime time_value ;
nosendtime ;

time_value:
MSG_TYPE_INTEGER_32

msgtype_description:
msgtype msgtype_value ;

msgtype_value:
MSG_TYPE_RPC
MSG_TYPE_NORMAL

error_description:
error error_procedure ;

server_prefix_description:
serverprefix identifier_string ;

user_prefix_description:
userprefix identifier_string ;

rcsid_description:
rcsid identifier_string ;

type_description:
type type_definition ;

import_declaration:
import_keyword include_name ;
71

Chapter 2 Using Mach Messages
import_keyword:
import
uimport
simport

include_name:
"file_name"
<file_name>

operation_description:
routine_description
simpleroutine_description
procedure_description
simpleprocedure_description
function_description

routine_description:
routine argument_list ;

simpleroutine_description:
simpleroutine argument_list ;

procedure_description:
procedure argument_list ;

simpleprocedure_description:
simpleprocedure argument_list ;

function_description:
function argument_list : type_definition ;

argument_list:
([argument_definition] [; argument_definition] ...)

argument_definition:
[specification] identifier : type_definition [, dealloc]

specification:
in
out
inout
requestport
replyport
waittime
msgtype
72

Mach Interface Generator
type_definition:
identifier = [^] [repetition ...] ipc_info [translation]

repetition:
array [[size]] of
struct [[size]] of

size:
integer_expression

integer_expression:
integer_expression + integer_expression
integer_expression − integer_expression
integer_expression * integer_expression
integer_expression / integer_expression
(integer_expression)
integer

ipc_info:
(ipc_type_name , size_in_bits [, dealloc])
ipc_type_name
identifier

translation:
[input_function] [output_function] [destructor_function]

input_function:
intran : identifier

output_function:
outtran : identifier

destructor_function:
destructor : identifier

ipc_type_name:
integer
manifest_constant

Compiling MiG Specification Files
To compile a MiG specification file, specify the name of your “.defs” file (or
files) and any switches as arguments to the mig command. For example:

mig -v random.defs
73

Chapter 2 Using Mach Messages
MiG recognizes the following switches:

[handler name]
Specifies a name for the file that’s usually called sysServer.c, and specifies that it should
provide a handler interface instead of the usual server interface. An additional header file called
sys_handler.h is also produced, as if the sheader option were specified.

[header name]
Specifies a name for the file that’s usually called sys.h.

[p,P] If p, use 2-byte message padding. You should use this option only if your server or client might
be exchanging messages containing fields shorter than 4 bytes with a client or server that was
built using NeXT Software Release 1. If P, use 4-byte message padding. The default value is P.
For example, a 1-byte message element would be padded to 2 bytes if you specify p, or 4 bytes
by default.

[q,Q] If q, suppress warning statements. If Q, print warning statements. The default value is Q.

[r,R] If r, use msg_rpc(); if R, use msg_send(), msg_receive() pairs. The default value is r.

[s,S] If s, generate symbol table with sysServer.c code. The layout of a symbol table
(mig_symtab_t) is defined in the header file mach/mig_errors.h. If S, suppress the
symbol table. The default value is S. This is useful for protection systems where access to the
server’s operations is dynamically specifiable or for providing a run-time indirected server call
interface with syscall() (server-to-server calls made on behalf of a client).

[server name]
Specifies a name for the file that’s usually called sysServer.c.

[sheader name]
Specifies that MiG create an additional header file, called name, that’s suitable for inclusion in
the server defined by the “.defs” file.

[user name]
Specifies a name for the file that’s usually called sysUser.c.

[v,V] If v (verbose), print routines and types as they’re processed. If V, compile silently. The default
value is V.

Any switches MiG doesn’t recognize are passed to the C preprocessor. MiG also
notices if the -MD option is being passed to the C preprocessor. If it is, MiG
fixes up the resulting “.d” file to show the dependencies of the “.h,” and “.c”
files on the “.defs” file and any included “.defs” files. For this feature to work
correctly, the name of the subsystem must be the same as the name of the
“.defs” file.

MiG runs the C preprocessor to process comments and preprocessor macros
such as #include or #define. For example, the following statement can be used
to include the type definitions for standard Mach and C types:

#include <mach/std_types.defs>
74

Mach Interface Generator
The output from the C preprocessor is then passed to the program migcom,
which generates the C files.
75

Chapter 2 Using Mach Messages
76

Chapter 3
 Mach Functions

C-Thread Functions
This chapter gives detailed descriptions of the C functions provided by the
Rhapsody Mach operating system. It also describes some macros that
behave like functions. For this chapter, the functions and macros are
divided into five groups:

• C-thread functions—Use these to implement multiple threads in an
application.

• Mach kernel functions—Use these to get access to the Mach operating
system.

• Bootstrap Server functions—Use these to set up communication between
the task that provides a local service and the tasks that use the service.

• Network Name Server functions—Use these to set up communication
between tasks that might not be on the same machine.

• Kernel-server loader functions—Use these to load and unload loadable
kernel servers, to add and delete servers to and from the kernel-server
loader, and to get information about servers.

Within each section, functions are subgrouped with other functions that
perform related tasks. These subgroups are described in alphabetical order
by the name of the first function listed in the subgroup. Functions within
subgroups are also listed alphabetically, with a pointer to the subgroup
description.

C-Thread Functions

These functions provide a C language interface to the low-level, language-
independent primitives for manipulating threads of control.

In a multithreaded application, you should use the C-thread functions
whenever possible, rather than Mach kernel functions. If you need to call
a Mach kernel function that requires a thread_t argument, you can find the
Mach thread that corresponds to a particular C thread by calling
cthread_thread().
79

Chapter 3 Mach Functions
condition_alloc(), mutex_alloc()

SUMMARY Create a condition or mutex object

SYNOPSIS #import <mach/cthreads.h>

condition_t condition_alloc(void)
mutex_t mutex_alloc(void)

DESCRIPTION The macros condition_alloc() and mutex_alloc() provide dynamic allocation of
condition and mutex objects. When you’re finished using these objects, you can
deallocate them using condition_free() and mutex_free().

EXAMPLE my_condition = condition_alloc();

my_mutex = mutex_alloc();

SEE ALSO condition_init(), mutex_init(), condition_free(), mutex_free()

condition_broadcast()

SUMMARY Broadcast a condition

SYNOPSIS #import <mach/cthreads.h>

void condition_broadcast(condition_t c)

DESCRIPTION The macro condition_broadcast() wakes up all threads that are waiting (with
condition_wait()) for the condition c. This macro is similar to
condition_signal(), except that condition_signal() doesn’t wake up every
waiting thread.
80

C-Thread Functions
EXAMPLE any_t listen(any_t arg)

{

 mutex_lock(my_mutex);

 while(!data)

 condition_wait(my_condition, my_mutex);

 /* . . . */

 mutex_unlock(my_mutex);

 mutex_lock(printing);

 printf("Condition has been met\n");

 mutex_unlock(printing);

}

main()

{

 my_condition = condition_alloc();

 my_mutex = mutex_alloc();

 printing = mutex_alloc();

 cthread_detach(cthread_fork((cthread_fn_t)listen, (any_t)0));

 mutex_lock(my_mutex);

 data = 1;

 mutex_unlock(my_mutex);

 condition_broadcast(my_condition);

 /* . . . */

}

SEE ALSO condition_signal(), condition_wait()

condition_clear(), mutex_clear()

SUMMARY Clear a condition or mutex object

SYNOPSIS #import <mach/cthreads.h>

void condition_clear(struct condition *c)
void mutex_clear(struct mutex *m)

DESCRIPTION You must call one of these macros before freeing an object of type struct
condition or struct mutex. See the discussion of condition_init() and
81

Chapter 3 Mach Functions
mutex_init() for information on why you might want to use these types instead of
condition_t and mutex_t.

EXAMPLE struct mystruct {

 my_data_t data;

 struct mutex m;

};

struct mystruct *mydata;

mydata = (struct mystruct *)malloc(sizeof (struct mystruct));

mutex_init(&mydata->m);

/* . . . */

mutex_lock(&mydata->m);

/* Do something to mydata that only one thread can do. */

mutex_unlock(&mydata->m);

/* . . . */

mutex_clear(&mydata->m);

free(mydata);

SEE ALSO condition_init(), mutex_init(), condition_free(), mutex_free()

condition_free(), mutex_free()

SUMMARY Deallocate a condition or mutex object

SYNOPSIS #import <mach/cthreads.h>

void condition_free(condition_t c)
void mutex_free(mutex_t m)

DESCRIPTION The macros condition_free() and mutex_free() let you deallocate condition and
mutex objects that were allocated dynamically. Before deallocating such an
object, you must guarantee that no other thread will reference it. In particular, a
thread blocked in mutex_lock() or condition_wait() should be viewed as
referencing the object continually; freeing the object out from under such a thread
is erroneous, and can result in bugs that are extremely difficult to track down.

SEE ALSO condition_alloc(), mutex_alloc(), condition_clear(), mutex_clear()
82

C-Thread Functions
condition_init(), mutex_init()

SUMMARY Initialize a condition variable or mutex

SYNOPSIS #import <mach/cthreads.h>

void condition_init(struct condition *c)
void mutex_init(struct mutex *m)

DESCRIPTION The macros condition_init() and mutex_init() initialize an object of the
struct condition or struct mutex referent type, so that its address can be
used wherever an object of type condition_t or mutex_t is expected.
Initialization of the referent type is most often used when you have included
the referent type itself (rather than a pointer) in a larger structure, for more
efficient storage allocation.

For instance, a data structure might contain a component of type struct
mutex to allow each instance of that structure to be locked independently.
During initialization of the instance, you would call mutex_init() on the
struct mutex component. The alternative of using a mutex_t component
and initializing it using mutex_alloc() would be less efficient.

If you’re going to free a condition or mutex object of type struct condition
or struct mutex, you should first clear it using condition_clear() or
mutex_clear().

EXAMPLE struct mystruct {

 my_data_t data;

 struct mutex m;

};

struct mystruct *mydata;

mydata = (struct mystruct *)malloc(sizeof (struct mystruct));

mutex_init(&mydata->m);

/* . . . */

mutex_lock(&mydata->m);

/* Do something to mydata that only one thread can do. */

mutex_unlock(&mydata->m);

/* . . . */

mutex_clear(&mydata->m);

free(mydata);

SEE ALSO condition_alloc(), mutex_alloc(), condition_clear(), mutex_clear()
83

Chapter 3 Mach Functions
condition_name(), condition_set_name(), mutex_name(), mutex_set_name()

SUMMARY Associate a string with a condition or mutex variable

SYNOPSIS #import <mach/cthreads.h>

char *condition_name(condition_t c)
void condition_set_name(condition_t c, char *name)
char *mutex_name(mutex_t m)
void mutex_set_name(mutex_t m, char *name)

DESCRIPTION These macros let you associate a name with a condition or a mutex object. The
name is used when trace information is displayed. You can also use this name for
your own application-dependent purposes.

EXAMPLE /* Do something if this is a "TYPE 1" condition. */

if (strcmp(condition_name(c), "TYPE 1") == 0)

 /* Do something. */;

condition_set_name() → See condition_name()

condition_signal()

SUMMARY Signal a condition

SYNOPSIS #import <mach/cthreads.h>

void condition_signal(condition_t c)

DESCRIPTION The macro condition_signal() should be called when one thread needs to
indicate that the condition represented by the condition variable is now true. If
any other threads are waiting (using condition_wait()), at least one of them will
be awakened. If no threads are waiting, nothing happens. The macro
condition_broadcast() is similar to this one, except that it wakes up all threads
that are waiting.
84

C-Thread Functions
EXAMPLE any_t listen(any_t arg)

{

 mutex_lock(my_mutex);

 while(!data)

 condition_wait(my_condition, my_mutex);

 /* . . . */

 mutex_unlock(my_mutex);

 mutex_lock(printing);

 printf("Condition has been met\n");

 mutex_unlock(printing);

}

main()

{

 my_condition = condition_alloc();

 my_mutex = mutex_alloc();

 printing = mutex_alloc();

 cthread_detach(cthread_fork((cthread_fn_t)listen, (any_t)0));

 mutex_lock(my_mutex);

 data = 1;

 mutex_unlock(my_mutex);

 condition_signal(my_condition);

 /* . . . */

}

SEE ALSO condition_broadcast(), condition_wait()

condition_wait()

SUMMARY Wait on a condition

SYNOPSIS #import <mach/cthreads.h>

void condition_wait(condition_t c, mutex_t m)

DESCRIPTION The function condition_wait() unlocks the mutex it takes as a argument,
suspends the calling thread until the specified condition is likely to be true,
and locks the mutex again when the thread resumes. There’s no guarantee
85

Chapter 3 Mach Functions
that the condition will be true when the thread resumes, so this function should
always be used as follows:

mutex_t m;

condition_t c;

mutex_lock(m);

/* . . . */

while (/* condition isn’t true */)

 condition_wait(c, m);

/* . . . */

mutex_unlock(m);

SEE ALSO condition_broadcast(), condition_signal()

cthread_abort()

SUMMARY Interrupt a C thread

SYNOPSIS #import <mach/cthreads.h>

kern_return_t cthread_abort(cthread_t t)

DESCRIPTION This function provides the functionality of thread_abort() to C threads. The
cthread_abort() function interrupts system calls; it’s usually used along with
thread_suspend(), which stops a thread from executing any more user code.
Calling cthread_abort() on a thread that isn’t suspended is risky, since it’s
difficult to know exactly what system trap, if any, the thread might be executing
and whether an interrupt return would cause the thread to do something useful.

See thread_abort() for a full description of the use of this function.

cthread_count()

SUMMARY Get the number of threads in this task

SYNOPSIS #import <mach/cthreads.h>

int cthread_count()
86

C-Thread Functions
DESCRIPTION This function returns the number of threads that exist in the current task. You
can use this function to help make sure that your task doesn’t create too many
threads (over 200 or so). See cthread_set_limit() for information on
restricting the number of threads in a task.

EXAMPLE printf("C thread count should be 1, is %d\n", cthread_count());

cthread_detach(cthread_fork((cthread_fn_t)listen, (any_t)0));

printf("C thread count should be 2, is %d\n", cthread_count());

SEE ALSO cthread_limit(), cthread_set_limit()

cthread_data(), cthread_set_data()

SUMMARY Associate data with a thread

SYNOPSIS #import <mach/cthreads.h>

any_t cthread_data(cthread_t t)
void cthread_set_data(cthread_t t, any_t data)

DESCRIPTION The macros cthread_data() and cthread_set_data() let you associate
arbitrary data with a thread, providing a simple form of thread-specific
“global” variable. More elaborate mechanisms, such as per-thread property
lists or hash tables, can then be built with these macros.

EXAMPLE int listen(any_t arg)

{

 mutex_lock(printing);

 printf("This thread’s data is: %d\n",

 (int)cthread_data(cthread_self()));

 mutex_unlock(printing);

 /* . . . */

}

87

Chapter 3 Mach Functions
main()

{

 cthread_t lthread;

 printing = mutex_alloc();

 lthread = cthread_fork((cthread_fn_t)listen, (any_t)0);

 cthread_set_data(lthread, (any_t)100);

 cthread_detach(lthread);

 /* . . . */

}

SEE ALSO cthread_name(), cthread_set_name()

cthread_detach()

SUMMARY Detach a thread

SYNOPSIS #import <mach/cthreads.h>

void cthread_detach(cthread_t t)

DESCRIPTION The function cthread_detach() is used to indicate that cthread_join() will never
be called on the given thread. This is usually known at the time the thread is
forked, so the most efficient usage is the following:

cthread_detach(cthread_fork(function, argument));

A thread may, however, be detached at any time after it’s forked, as long as no
other attempt is made to join it or detach it.

EXAMPLE cthread_detach(cthread_fork((cthread_fn_t)listen, (any_t)reply_port));

SEE ALSO cthread_fork(), cthread_join()
88

C-Thread Functions
cthread_errno()

SUMMARY Get a thread’s errno value

SYNOPSIS #import <mach/cthreads.h>

int cthread_errno(void)

DESCRIPTION Use the cthread_errno() function to get the errno value for the current
thread. In the UNIX operating system, errno is a process-wide global
variable that’s set to an error number when a UNIX system call fails.
However, because Mach has multiple threads per process, Mach keeps errno
information on a per-thread basis as well as in errno.

Like the value of errno, the value returned by cthread_errno() is valid
only if the last UNIX system call returned −1. Errno values are defined in
the header file bsd/sys/errno.h.

EXAMPLE int ret;

ret = chown(FILEPATH, newOwner, newGroup);

if (ret == -1) {

 if (cthread_errno() == ENAMETOOLONG)

 /* . . . */

}

SEE ALSO cthread_set_errno(), intro(2) UNIX manual page

cthread_exit()

SUMMARY Exit a thread

SYNOPSIS #import <mach/cthreads.h>

void cthread_exit(any_t result)

DESCRIPTION The function cthread_exit() terminates the calling thread. The result is
passed to the thread that joins the caller, or is discarded if the caller is
detached.

An implicit cthread_exit() occurs when the top-level function of a thread
returns, but it may also be called explicitly.
89

Chapter 3 Mach Functions
EXAMPLE cthread_exit(0);

SEE ALSO cthread_detach(), cthread_fork(), cthread_join()

cthread_fork()

SUMMARY Fork a thread

SYNOPSIS #import <mach/cthreads.h>

cthread_t cthread_fork(any_t (*function)(), any_t arg)

DESCRIPTION The function cthread_fork() takes two arguments: a function for the new thread
to execute, and an argument to this function. The cthread_fork() function
creates a new thread of control in which the specified function is executed
concurrently with the caller’s thread. This is the sole means of creating new
threads.

The any_t type represents a pointer to any C type. The cthread_t type is an
integer-size handle that uniquely identifies a thread of control. Values of type
cthread_t will be referred to as thread identifiers. Arguments larger than a
pointer must be passed by reference. Similarly, multiple arguments must be
simulated by passing a pointer to a structure containing several components.
The call to cthread_fork() returns a thread identifier that can be passed to
cthread_join() or cthread_detach(). Every thread must be either joined or
detached exactly once.

EXAMPLE cthread_detach(cthread_fork((cthread_fn_t)listen, (any_t)reply_port));

SEE ALSO cthread_detach(), cthread_exit(), cthread_join()

cthread_join()

SUMMARY Join threads

SYNOPSIS #import <mach/cthreads.h>

any_t cthread_join(cthread_t t)
90

C-Thread Functions
DESCRIPTION The function cthread_join() suspends the caller until the specified thread t
terminates. The caller receives either the result of t’s top-level function or the
argument with which t explicitly called cthread_exit().

Attempting to join one’s own thread results in deadlock.

EXAMPLE cthread_t t;

t = cthread_fork((any_t (*)())listen, (any_t)reply_port);

/* . . . (Do some work, perhaps forking other threads.) */

result = cthread_join(t); /* Wait for the thread to finish

executing. */

/* . . . (Continue doing work) */

SEE ALSO cthread_detach(), cthread_exit(), cthread_fork()

cthread_limit(), cthread_set_limit()

SUMMARY Get or set the maximum number of threads in this task

SYNOPSIS #import <mach/cthreads.h>

int cthread_limit(void)
void cthread_set_limit(int limit)

ARGUMENTS limit: The new maximum number of C threads per task. Specify zero if you
want no limit.

DESCRIPTION These functions can help you to avoid creating too many threads. The danger
in creating a large number of threads is that the kernel might run out of
resources and panic. Usually, a task should avoid creating more than about
200 threads.

Use cthread_set_limit() to set a limit on the number of threads in the
current task. When the limit is reached, new C threads will appear to fork
successfully. However, they will have no associated Mach thread, so they
won’t do anything.

Use cthread_limit() to find out how many threads can exist in the current
task. If the returned value is zero (the default), then no limit is currently
being enforced.

Important: Use cthread_count() to determine when your task is approaching the maximum number of
threads.
91

Chapter 3 Mach Functions
EXAMPLE cthread_set_limit(LIMIT);

/* . . . */

/* Fork if we haven’t reached the limit. */

if ((LIMIT == 0) || (LIMIT > cthread_count()))

 cthread_detach(cthread_fork((any_t (*)())a_thread,(any_t)0));

cthread_name(), cthread_set_name()

SUMMARY Associate a string with a thread

SYNOPSIS #import <mach/cthreads.h>

char *cthread_name(cthread_t t)
void cthread_set_name(cthread_t t, char *name)

DESCRIPTION The functions cthread_name() and cthread_set_name() let you associate an
arbitrary name with a thread. The name is used when trace information is
displayed. The name may also be used for application-specific diagnostics.

EXAMPLE int listen(any_t arg)

{

 mutex_lock(printing);

 printf("This thread’s name is: %s\n",

 cthread_name(cthread_self()));

 mutex_unlock(printing);

 /* . . . */

}

92

C-Thread Functions
main()

{

 cthread_t lthread;

 printing = mutex_alloc();

 lthread = cthread_fork((cthread_fn_t)listen, (any_t)0);

 cthread_set_name(lthread, "lthread");

 cthread_detach(lthread);

 /* . . . */

}

SEE ALSO cthread_data(), cthread_set_data()

cthread_priority(), cthread_max_priority()

SUMMARY Set the scheduling priority for a C thread

SYNOPSIS #import <mach/cthreads.h>

kern_return_t cthread_priority(cthread_t t, int priority, boolean_t set_max)
kern_return_t cthread_max_priority(cthread_t t, processor_set_t
processor_set, int max_priority)

ARGUMENTS t: The C thread whose priority is to be changed.

priority: The new priority to change it to.

set_max: Also set t’s maximum priority if true.

processor_set: The privileged port for the processor set to which thread is
currently assigned.

max_priority: The new maximum priority.

DESCRIPTION These functions give C threads the functionality of thread_priority() and
thread_max_priority(). See those functions for more details than are
provided here.

The cthread_priority() function changes the base priority and (optionally)
the maximum priority of t. If the new base priority is higher than the
scheduled priority of the currently executing thread, this thread might be
preempted. The maximum priority of the thread is also set if set_max is
93

Chapter 3 Mach Functions
true. This call fails if priority is greater than the current maximum priority of the
thread. As a result, cthread_priority() can lower—but never raise—the value
of a thread’s maximum priority.

The cthread_max_priority() function changes the maximum priority of the
thread. Because it requires the privileged port for the processor set, this call can
reset the maximum priority to any legal value. If the new maximum priority is
less than the thread’s base priority, then the thread’s base priority is set to the
new maximum priority.

EXAMPLE /* Get the privileged port for the default processor set. */

error=processor_set_default(host_self(), &default_set);

if (error!=KERN_SUCCESS) {

 mach_error("Error calling processor_set_default()", error);

 exit(1);

}

error=host_processor_set_priv(host_priv_self(), default_set,

 &default_set_priv);

if (error!=KERN_SUCCESS) {

 mach_error("Call to host_processor_set_priv() failed", error);

 exit(1);

}

/* Set the max priority. */

error=cthread_max_priority(cthread_self(), default_set_priv,

 priority);

if (error!=KERN_SUCCESS)

 mach_error("Call to cthread_max_priority() failed",error);

/* Set the thread’s priority. */

error=cthread_priority(cthread_self(), priority, FALSE);

if (error!=KERN_SUCCESS)

 mach_error("Call to cthread_priority() failed",error);

RETURN KERN_SUCCESS: Operation completed successfully

KERN_INVALID_ARGUMENT: cthread is not a C thread, processor_set is not
a privileged port for a processor set, or priority is out of range (not in 0-31).
94

C-Thread Functions
KERN_FAILURE: The requested operation would violate the thread’s
maximum priority (only for cthread_priority()) or the thread is not
assigned to the processor set whose privileged port was presented.

SEE ALSO thread_priority(), thread_max_priority(), thread_policy(),
task_priority(), processor_set_priority()

cthread_self()

SUMMARY Return the caller’s C-thread identifier

SYNOPSIS #import <mach/cthreads.h>

cthread_t cthread_self(void)

DESCRIPTION The function cthread_self() returns the caller’s own C-thread identifier,
which is the same value that was returned by cthread_fork() to the creator of
the thread. The C-thread identifier uniquely identifies the thread, and hence
may be used as a key in data structures that associate user data with individual
threads. Since thread identifiers may be reused by the underlying
implementation, you should be careful to clean up such associations when
threads exit.

EXAMPLE printf("This thread’s name is: %s\n",

 cthread_name(cthread_self()));

mutex_unlock(printing);

SEE ALSO cthread_fork(), cthread_thread(), thread_self()

cthread_set_data() → See cthread_data()
95

Chapter 3 Mach Functions
cthread_set_errno_self()

SUMMARY Set the current thread’s errno value

SYNOPSIS #import <mach/cthreads.h>

void cthread_set_errno_self(int error)

DESCRIPTION Use this function to set the errno value for the current thread to error. In the
UNIX operating system, errno is a process-wide global variable that’s set to an
error number when a UNIX system call fails. However, because Mach has
multiple threads per process, Mach keeps errno information on a per-thread basis
as well as in errno. This function has no effect on the value of errno.

The current thread’s errno value can be obtained by calling cthread_errno().
Errno values are defined in the header file bsd/sys/errno.h.

EXAMPLE cthread_set_errno_self(EPERM);

SEE ALSO cthread_errno(), intro(2) UNIX manual page

cthread_set_limit() → See cthread_limit()

cthread_set_name() → See cthread_name()

cthread_thread()

SUMMARY Return the caller’s Mach thread identifier

SYNOPSIS #import <mach/cthreads.h>

thread_t cthread_thread(cthread_t t)

DESCRIPTION The macro cthread_thread() returns the Mach thread that corresponds to the
specified C thread t.
96

C-Thread Functions
EXAMPLE /* Save the cthread and thread values for the forked thread. */

l_cthread = cthread_fork((cthread_fn_t)listen, (any_t)0);

cthread_detach(l_cthread);

l_realthread = cthread_thread(l_cthread);

SEE ALSO cthread_fork(), cthread_self()

cthread_yield()

SUMMARY Yield the processor to other threads

SYNOPSIS #import <mach/cthreads.h>

void cthread_yield(void)

DESCRIPTION The function cthread_yield() is a hint to the scheduler, suggesting that this
would be a convenient point to schedule another thread to run on the current
processor.

EXAMPLE int i, n;

/* n is set previously */

for (i = 0; i < n; i += 1)

 cthread_yield();

SEE ALSO cthread_priority(), thread_switch()

mutex_alloc() → See condition_alloc()

mutex_clear() → See condition_clear()

mutex_free() → See condition_free()

mutex_init() → See condition_init()
97

Chapter 3 Mach Functions
mutex_lock()

SUMMARY Lock a mutex variable

SYNOPSIS #import <mach/cthreads.h>

void mutex_lock(mutex_t m)

DESCRIPTION The macro mutex_lock() attempts to lock the mutex m and blocks until it
succeeds. If several threads attempt to lock the same mutex concurrently, one will
succeed, and the others will block until m is unlocked. A deadlock occurs if a
thread attempts to lock a mutex it has already locked.

EXAMPLE /* Only one thread at a time should call printf. */

mutex_lock(printing);

printf("Condition has been met\n");

mutex_unlock(printing);

SEE ALSO mutex_try_lock(), mutex_unlock()

mutex_name() → See condition_name()

mutex_set_name() → See condition_name()

mutex_try_lock()

SUMMARY Try to lock a mutex variable

SYNOPSIS #import <mach/cthreads.h>

int mutex_try_lock(mutex_t m)

DESCRIPTION The function mutex_try_lock() attempts to lock the mutex m, like
mutex_lock(), and returns true if it succeeds. If m is already locked, however,
mutex_try_lock() immediately returns false rather than blocking. For example,
a busy-waiting version of mutex_lock() could be written using
mutex_try_lock():
98

Mach Kernel Functions
void mutex_lock(mutex_t m)

{

 for (;;)

 if (mutex_try_lock(m))

 return;

}

SEE ALSO mutex_lock(), mutex_unlock()

mutex_unlock()

SUMMARY Unlock a mutex variable

SYNOPSIS #import <mach/cthreads.h>

void mutex_unlock(mutex_t m)

DESCRIPTION The function mutex_unlock() unlocks m, giving other threads a chance to
lock it.

EXAMPLE /* Only one thread at a time should call printf. */

mutex_lock(printing);

printf("Condition has been met\n");

mutex_unlock(printing);

SEE ALSO mutex_lock(), mutex_try_lock()

Mach Kernel Functions

exc_server()

SUMMARY Dispatch a message received on an exception port

SYNOPSIS #import <mach/mach.h>
#import <mach/exception.h>

boolean_t exc_server(msg_header_t *in, msg_header_t *out)
99

Chapter 3 Mach Functions
ARGUMENTS in: A message that was received on the exception port. This message structure
should be at least 64 bytes long.

out: An empty message to be filled by exc_server() and then sent. This
message buffer should be at least 32 bytes long.

DESCRIPTION This function calls the appropriate exception handler. You should call this
function after you’ve received a message on an exception port that you set up
previously. Usually, this function is used along with a user-defined exception
handler, which must have the following protocol:

kern_return_t catch_exception_raise(port_t exception_port, port_t thread,
port_t task, int exception, int code, int subcode)

To receive a message on an exception port, you must first create a new port and
make it the task or thread exception port. (You can’t use the default task
exception port because you can’t get receive rights for it.) Before calling
msg_receive(), you must set the local_port field of the header to the
appropriate exception port and the msg_size field to the size of the structure for
the incoming message.

If it accepted the incoming message, exc_server() returns true; otherwise it
returns false.

You should keep a global value that indicates whether your exception handler
successfully handled the exception. If it couldn’t, then you should forward the
exception message to the old exception port.

EXAMPLE typedef struct {

 port_t old_exc_port;

 port_t clear_port;

 port_t exc_port;

} ports_t;

volatile boolean_t pass_on = FALSE;

mutex_t printing;

/* Listen on the exception port. */

any_t exc_thread(ports_t *port_p)

{

 kern_return_t r;

 char *msg_data[2][64];

 msg_header_t *imsg = (msg_header_t *)msg_data[0],

 *omsg = (msg_header_t *)msg_data[1];
100

Mach Kernel Functions
 /* Wait for exceptions. */

 while (1) {

 imsg->msg_size = 64;

 imsg->msg_local_port = port_p->exc_port;

 r = msg_receive(imsg, MSG_OPTION_NONE, 0);

 if (r==RCV_SUCCESS) {

 /* Give the message to the Mach exception server. */

 if (exc_server(imsg, omsg)) {

 /* Send the reply message that exc_serv gave us. */

 r = msg_send(omsg, MSG_OPTION_NONE, 0);

 if (r != SEND_SUCCESS) {

 mach_error("msg_send", r);

 exit(1);

 }

 }

 else { /* exc_server refused to handle imsg. */

 mutex_lock(printing);

 printf("exc_server didn’t like the message\n");

 mutex_unlock(printing);

 exit(2);

 }

 }

 else { /* msg_receive() returned an error. */

 mach_error("msg_receive", r);

 exit(3);

 }

 /* Pass the message to old exception handler, if necessary. */

 if (pass_on == TRUE) {

 imsg->msg_remote_port = port_p->old_exc_port;

 imsg->msg_local_port = port_p->clear_port;

 r = msg_send(imsg, MSG_OPTION_NONE, 0);

 if (r != SEND_SUCCESS) {

 mach_error("msg_send to old_exc_port", r);

 exit(4);

 }

 }

 }

}

101

Chapter 3 Mach Functions
/*

 * catch_exception_raise() is called by exc_server(). The only

 * exception it can handle is EXC_SOFTWARE.

 */

kern_return_t catch_exception_raise(port_t exception_port,

 port_t thread, port_t task, int exception, int code, int subcode)

{

 if ((exception == EXC_SOFTWARE) && (code == 0x20000)) {

 /* Handle the exception so that the program can continue. */

 mutex_lock(printing);

 printf("Handling the exception\n");

 mutex_unlock(printing);

 return KERN_SUCCESS;

 }

 else { /* Pass the exception on to the old port. */

 pass_on = TRUE;

 mach_NeXT_exception("Forwarding exception", exception,

 code, subcode);

 return KERN_FAILURE; /* Couldn’t handle this exception. */

 }

}

main()

{

 int i;

 kern_return_t r;

 ports_t ports;

 printing = mutex_alloc();

 /* Save the old exception port for this task. */

 r = task_get_exception_port(task_self(), &(ports.old_exc_port));

 if (r != KERN_SUCCESS) {

 mach_error("task_get_exception_port", r);

 exit(1);

 }
102

Mach Kernel Functions
 /* Create a new exception port for this task. */

 r = port_allocate(task_self(), &(ports.exc_port));

 if (r != KERN_SUCCESS) {

 mach_error("port_allocate 0", r);

 exit(1);

 }

 r = task_set_exception_port(task_self(), (ports.exc_port));

 if (r != KERN_SUCCESS) {

 mach_error("task_set_exception_port", r);

 exit(1);

 }

 /* Fork the thread that listens to the exception port. */

 cthread_detach(cthread_fork((cthread_fn_t)exc_thread,

 (any_t)&ports));

 /* Raise the exception. */

 ports.clear_port = thread_self();

 r = exception_raise(ports.exc_port, thread_reply(),

 ports.clear_port, task_self(), EXC_SOFTWARE, 0x20000, 6);

 if (r != KERN_SUCCESS)

 mach_error("catch_exception_raise didn’t handle exception",

 r);

 else {

 mutex_lock(printing);

 printf("Successfully called exception_raise\n");

 mutex_unlock(printing);

 }

}

SEE ALSO exception_raise(), mach_NeXT_exception()

exception_raise()

SUMMARY Cause an exception to occur

SYNOPSIS #import <mach/mach.h>
#import <mach/exception.h>

kern_return_t exception_raise(port_t exception_port, port_t clear_port, port_t
thread, port_t task, int exception, int code, int subcode)
103

Chapter 3 Mach Functions
ARGUMENTS exception_port: The exception port of the affected thread. (If the thread doesn’t
have its own exception port, then this should be the exception port of the task.)

clear_port: The port to which a reply message should be sent from the exception
handler. If you don’t care to see the reply, you can use thread_reply().

thread: The thread in which the exception condition occurred. If the exception
isn’t thread-specific, then specify THREAD_NULL.

task: The task in which the exception condition occurred.

exception: The type of exception that occurred; for example,
EXC_SOFTWARE. Values for this variable are defined in the header file
mach/exception.h.

code: The exception code. The meaning of this code depends on the value of
exception.

subcode: The exception subcode. The meaning of this subcode depends on the
values of exception and code.

DESCRIPTION This function causes an exception message to be sent to exception_port, which
results in a call to the exception handler. Usually this function is used along with
a user-defined exception handler. (See exc_server() and
mach_NeXT_exception() for more information on user-defined exception
handlers.)

You can obtain exception_port by calling thread_get_exception_port() or (if no
thread exception port exists or the exception affects the whole task)
task_get_exception_port().

If you’re defining your own type of exception, you must have exception equal to
EXC_SOFTWARE and code equal to or greater than 0x20000.

EXAMPLE /* Raise the exception. */

r = exception_raise(ports.exc_port, thread_reply(), thread_self(),

 task_self(), EXC_SOFTWARE, 0x20000, 6);

if (r != KERN_SUCCESS)

 mach_error("catch_exception_raise didn’t handle exception", r);

else {

 /* Use mutex so only one thread at a time can call printf. */

 mutex_lock(printing);

 printf("Successfully called exception_raise\n");

 mutex_unlock(printing);

}

104

Mach Kernel Functions
RETURN KERN_SUCCESS: The call succeeded.

KERN_FAILURE: The exception handler didn’t successfully deal with
the exception.

KERN_INVALID_ARGUMENT: One of the arguments wasn’t valid.

SEE ALSO exc_server(), mach_NeXT_exception(), task_get_exception_port(),
thread_get_exception_port()

host_info()

SUMMARY Get information about a host

SYNOPSIS #import <mach/mach.h>

kern_return_t host_info(host_t host, int flavor, host_info_t host_info,
unsigned int *host_info_count)

ARGUMENTS host: The host for which information is to be obtained.

flavor: The type of statistics to be returned. Currently
HOST_BASIC_INFO, HOST_PROCESSOR_SLOTS, and
HOST_SCHED_INFO are implemented.

host_info: Returns statistics about host.

host_info_count: The number of integers in the info structure; returns the
number of integers that Mach tried to fill the info structure with. For
HOST_BASIC_INFO, you should set host_info_count to
HOST_BASIC_INFO_COUNT. For HOST_PROCESSOR_SLOTS,
you should set it to the maximum number of CPUs (returned by
HOST_BASIC_INFO). For HOST_SCHED_INFO, set it to
HOST_SCHED_INFO_COUNT.

DESCRIPTION Returns the selected information array for a host, as specified by flavor. The
host_info argument is an array of integers that’s supplied by the caller and
returned filled with specified information. The host_info_count argument is
supplied by the caller as the maximum number of integers in host_info (which
can be larger than the space required for the information). On return, it
contains the actual number of integers in host_info.
105

Chapter 3 Mach Functions
Warning: This replaces the old host_info() call. It isn’t backwards compatible.

Basic information is defined by HOST_BASIC_INFO. Its size is defined by
HOST_BASIC_INFO_COUNT. Possible values of the cpu_type and
cpu_subtype fields are defined in the header file mach/machine.h, which is
included in mach/mach.h.

struct host_basic_info {

 int max_cpus; /* maximum possible cpus for

 * which kernel is configured */

 int avail_cpus; /* number of cpus now available */

 vm_size_t memory_size; /* size of memory in bytes */

 cpu_type_t cpu_type; /* cpu type */

 cpu_subtype_t cpu_subtype; /* cpu subtype */

};

typedef struct host_basic_info *host_basic_info_t;

Processor slots of the active (available) processors are defined by
HOST_PROCESSOR_SLOTS. The size of this information should be
obtained from the max_cpus field of the structure returned by
HOST_BASIC_INFO. HOST_PROCESSOR_SLOTS returns an array of
integers, each of which is the slot number of a CPU.

Additional information of interest to schedulers is defined by
HOST_SCHED_INFO. The size of this information is defined by
HOST_SCHED_INFO_COUNT.

struct host_sched_info {

 int min_timeout; /* minimum timeout in milliseconds */

 int min_quantum; /* minimum quantum in milliseconds */

};

typedef struct host_sched_info *host_sched_info_t

EXAMPLE An example of using HOST_BASIC_INFO:
106

Mach Kernel Functions
kern_return_t ret;

struct host_basic_info basic_info;

unsigned int count=HOST_BASIC_INFO_COUNT;

ret=host_info(host_self(), HOST_BASIC_INFO,

 (host_info_t)&basic_info, &count);

if (ret != KERN_SUCCESS)

 mach_error("host_info() call failed", ret);

else printf("This system has %d bytes of RAM.\n",

 basic_info.memory_size);

An example of using HOST_PROCESSOR_SLOTS (you also need to include the

HOST_BASIC_INFO code above so you can get max_cpus):

host_info_t slots;

unsigned int cpu_count, i;

cpu_count=basic_info.max_cpus;

slots=(host_info_t)malloc(cpu_count*sizeof(int));

ret=host_info(host_self(), HOST_PROCESSOR_SLOTS, slots,

 &cpu_count);

if (ret!=KERN_SUCCESS)

 mach_error("PROCESSOR host_info() call failed", ret);

else for (i=0; i<cpu_count; i++)

 printf("CPU %d is in slot %d.\n", i, *slots++);

An example of using HOST_SCHED_INFO:

kern_return_t ret;

struct host_sched_info sched_info;

unsigned int sched_count=HOST_SCHED_INFO_COUNT;

ret=host_info(host_self(), HOST_SCHED_INFO,

 (host_info_t)&sched_info, &sched_count);

if (ret != KERN_SUCCESS)

 mach_error("SCHED host_info() call failed", ret);

else

 printf("The minimum quantum is %d milliseconds.\n",

 sched_info.min_quantum);

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: host is not a host, flavor is not
recognized, or (for HOST_PROCESSOR_SLOTS) *count is less than
max_cpus.
107

Chapter 3 Mach Functions
KERN_FAILURE: *count is less than HOST_BASIC_INFO_COUNT (when
flavor is HOST_BASIC_INFO) or HOST_SCHED_INFO_COUNT (for
HOST_SCHED_INFO).

MIG_ARRAY_TOO_LARGE: Returned info array is too large for host_info.
The host_info argument is filled as much as possible, and host_info_count is set to
the number of elements that would be returned if there were enough room.

SEE ALSO host_kernel_version(), host_processors(), processor_info()

host_kernel_version()

SUMMARY Get kernel version information

SYNOPSIS #import <mach/mach.h>

kern_return_t host_kernel_version(host_t host, kernel_version_t version)

ARGUMENTS host: The host for which information is being requested.

version: Returns a character string describing the kernel version executing on
host.

DESCRIPTION This function returns the version string compiled into host’s kernel at the time it
was built. If you don’t use the kernel_version_t declaration, then you should
allocate KERNEL_VERSION_MAX bytes for the version string.

EXAMPLE kern_return_t ret;

kernel_version_t string;

ret=host_kernel_version(host_self(), string);

if (ret != KERN_SUCCESS)

 mach_error("host_kernel_version() call failed", ret);

else

 printf("Version string: %s\n", string);

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: host was not a host.
108

Mach Kernel Functions
KERN_INVALID_ADDRESS: version points to inaccessible memory.

SEE ALSO host_info(), host_processors(), processor_info()

host_priv_self() → See host_self()

host_processor_set_priv()

SUMMARY Get the privileged port of a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t host_processor_set_priv(host_priv_t host_priv,
processor_set_t processor_set_name, processor_set_t *processor_set)

ARGUMENTS host_priv: The privileged host port for the desired host.

processor_set_name: The name port of the processor set.

processor_set: Returns the privileged port of the processor set.

DESCRIPTION This function returns send rights to the privileged port for the specified
processor set. This port is used in calls that can affect other threads or tasks.
For example, processor_set_tasks() requires the privileged port because it
returns the port of every task on the system.

EXAMPLE kern_return_t error;

processor_set_t processor_set;

processor_set_t default_set;

error=processor_set_default(host_self(), &default_set);

if (error != KERN_SUCCESS)

 mach_error("Call to processor_set_default failed", error);
109

Chapter 3 Mach Functions
error=host_processor_set_priv(host_priv_self(), default_set,

 &processor_set);

if (error != KERN_SUCCESS)

 mach_error("Call to host_processor_set_priv failed; make sure

 you’re superuser", error);

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: host_priv was not a privileged host port, or
processor_set_name didn’t name a valid processor set.

host_processor_sets()

SUMMARY Get the name ports of all processor sets on a host

SYNOPSIS #import <mach/mach.h>

kern_return_t host_processor_sets(host_t host,
processor_set_name_array_t *processor_set_list, unsigned int *processor_set_count)

ARGUMENTS host: The host port for the desired host.

processor_set_list: Returns an array of processor sets currently existing on host; no
particular ordering is guaranteed.

processor_set_ count: Returns the number of processor sets in the processor_set_list.

DESCRIPTION This function returns send rights to the name port for each processor set currently
assigned to host. The host_processor_set_priv() function can be used to obtain
the privileged ports from these if desired. The processor_set_list argument is an
array that is created as a result of this call. You should call vm_deallocate() on this
array when the data is no longer needed.

Note: In single-processor systems, you can get the same information by calling
processor_set_default().
110

Mach Kernel Functions
EXAMPLE kern_return_t ret;

processor_set_name_array_t list;

unsigned int count;

ret=host_processor_sets(host_self(), &list, &count);

if (ret!=KERN_SUCCESS)

 mach_error("error calling host_processor_sets", ret);

else {

 /* . . . */

 ret=vm_deallocate(task_self(), (vm_address_t)list,

 sizeof(list)*count);

 if (ret!=KERN_SUCCESS)

 mach_error("error calling vm_deallocate", ret);

}

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: host is not a host.

SEE ALSO host_processor_set_priv(), processor_set_create(),
processor_set_tasks(), processor_set_threads(),
processor_set_default()

host_processors()

SUMMARY Get the processor ports for a host

SYNOPSIS #import <mach/mach.h>

kern_return_t host_processors(host_priv_t host_priv,
processor_array_t *processor_list, unsigned int *processor_count)

ARGUMENTS host_priv: Privileged host port for the desired host.

processor_list: Returns the processors existing on host_priv; no particular
ordering is guaranteed.

processor_count: Returns the number of processors in processor_list.

DESCRIPTION host_processors() gets send rights to the processor port for each processor
existing on host_priv. The processor_list argument is an array that is created as
a result of this call. The caller may wish to call vm_deallocate() on this array
when the data is no longer needed.
111

Chapter 3 Mach Functions
EXAMPLE kern_return_t error;

processor_array_t list;

unsigned int count;

error=host_processors(host_priv_self(), &list, &count);

if (error!=KERN_SUCCESS){

 mach_error("error calling host_processors", error);

 exit(1);

}

/* . . . */

vm_deallocate(task_self(), (vm_address_t)list, sizeof(list)*count);

if (error!=KERN_SUCCESS)

 mach_error("Trouble freeing list", error);

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: host_priv is not a privileged host port.

SEE ALSO processor_info(), processor_start(), processor_exit(), processor_control()

host_self(), host_priv_self()

SUMMARY Get the host port for this host

SYNOPSIS #import <mach/mach.h>

host_t host_self(void)
host_priv_t host_priv_self(void)

DESCRIPTION The host_self() function returns send rights to the host port for the host on which
the call is executed. This port can be used only to obtain information about the
host, not to control the host.

The host_priv_self() function returns send rights to the privileged host port for
the host on which the call is executed. This port is used to control physical
resources on that host and is only available to privileged tasks. PORT_NULL
is returned if the invoker is not the UNIX superuser.
112

Mach Kernel Functions
EXAMPLE /* Get the privileged port for the default processor set. */

error=processor_set_default(host_self(), &default_set);

if (error!=KERN_SUCCESS) {

 mach_error("Error calling processor_set_default()", error);

 exit(1);

}

error=host_processor_set_priv(host_priv_self(), default_set,

 &default_set_priv);

if (error!=KERN_SUCCESS) {

 mach_error("Call to host_processor_set_priv() failed", error);

 exit(1);

}

SEE ALSO host_processors(), host_info(), host_kernel_version()

mach_error(), mach_error_string()

SUMMARY Display or get a Mach error string

SYNOPSIS #import <mach/mach.h>
#import <mach/mach_error.h>

void mach_error(char *string, kern_return_t error)
char *mach_error_string(kern_return_t error)

ARGUMENTS string: The string you want displayed before the Mach error string.

error: The error value for which you want an error string.

DESCRIPTION The function mach_error() displays a message on stderr. The message
contains the string specified by string, the string returned by
mach_error_string(), and the actual error value (error). Since
mach_error() isn’t thread-safe, you might want to protect it with a mutex if
you call it in a multiple-thread task.

The function mach_error_string() returns the string associated with error.

Note that because the error value specified by error is of type
kern_return_t, these functions work only with Mach functions.
113

Chapter 3 Mach Functions
EXAMPLE mutex_t printing;

main()

{

 kern_return_t error;

 port_t result;

 printing = mutex_alloc();

 /* . . . */

 if ((error=port_allocate(task_self(), &result)) != KERN_SUCCESS) {

 mutex_lock(printing);

 mach_error("Error calling port_allocate", error);

 mutex_unlock(printing);

 exit(1);

 }

 /* . . . */

}

mach_NeXT_exception(), mach_NeXT_exception_string()

SUMMARY Display or get a Mach exception string

SYNOPSIS #import <mach/mach.h>

void mach_NeXT_exception(char *string, int exception, int code, int subcode)
char *mach_NeXT_exception_string(int exception, int code, int subcode)

ARGUMENTS string: The string you want displayed before the Mach exception string.

exception: The exception value for which you want a string.

code: The exception code. How this is used depends on the value of exception.

subcode: The exception subcode. How this is used depends on the value of
exception.

DESCRIPTION The function mach_NeXT_exception() displays a message on stderr. The
message contains the string specified by string, then the string returned by
mach_NeXT_exception_string(), and then the values of exception, code, and
subcode. Since mach_NeXT_exception() isn’t thread-safe, you might want to
protect it with a mutex if you call it in a multiple-thread task.
114

Mach Kernel Functions
The function mach_NeXT_exception_string() returns the string
associated with exception, code, and subcode.

EXAMPLE /*

 * catch_exception_raise() is called by exc_server(). The only

 * exception it can handle is EXC_SOFTWARE.

 */

kern_return_t catch_exception_raise(port_t exception_port,

 port_t thread, port_t task, int exception, int code, int subcode)

{

 if ((exception == EXC_SOFTWARE) && (code == 0x20000)) {

 /* Handle the exception so that the program can continue. */

 mutex_lock(printing);

 printf("Handling the exception\n");

 mutex_unlock(printing);

 return KERN_SUCCESS;

 }

 else { /* Pass the exception on to the old port. */

 pass_on = TRUE;

 mach_NeXT_exception("Forwarding exception", exception,

 code, subcode);

 return KERN_FAILURE; /* Couldn’t handle this exception. */

 }

}

SEE ALSO exception_raise(), exc_server()

map_fd()

SUMMARY Map a file into virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t map_fd(int fd, vm_offset_t offset, vm_offset_t *address,
boolean_t find_space, vm_size_t size)

ARGUMENTS fd: An open UNIX file descriptor for the file that’s to be mapped.

offset: The byte offset within the file, at which mapping is to begin.

address: A pointer to an address in the calling process at which the mapped
file should start. This address, unlike the offset, must be page-aligned.
115

Chapter 3 Mach Functions
find_space: If true, the kernel will select an unused address range at which to
map the file and return its value in address.

size: The number of bytes to be mapped.

DESCRIPTION The function map_fd() is a UNIX extension that’s technically not part of Mach.
This function causes size bytes of data starting at offset in the file specified by fd to
be mapped into the virtual memory at the address specified by address. If
find_space is true, the input value of address can be null, and the kernel will find an
unused piece of virtual memory to use. (You should free this space with
vm_deallocate() when you no longer need it.) If you provide a value for address,
it must be page-aligned and at least size bytes long. The sum of offset and size must
not exceed the length of the file.

Memory mapping doesn’t cause I/O to take place. When specific pages are first
referenced, they cause page faults that bring in the data. The mapped memory
is copy-on-write. Modified data is returned to the file only by a write() call.

EXAMPLE kern_return_t r;

int fd;

char *memfile, *filename = "/tmp/myfile";

/* Open the file. */

fd = open(filename, O_RDONLY);

/* Map part of it into memory. */

r = map_fd(fd, (vm_offset_t)0, &(vm_offset_t)memfile, TRUE,

 (vm_size_t)5);

if (r != KERN_SUCCESS)

 mach_error("Error calling map_fd()", r);

else

 printf("Second character in %s is: %c\n", filename, memfile[1]);

RETURN KERN_SUCCESS: The data was mapped successfully.

KERN_INVALID_ADDRESS: address wasn’t valid.

KERN_INVALID_ARGUMENT: An invalid argument was passed.
116

Mach Kernel Functions
msg_receive()

SUMMARY Receive a message

SYNOPSIS #import <mach/mach.h>
#import <mach/message.h>

msg_return_t msg_receive(msg_header_t *header, msg_option_t option,
msg_timeout_t timeout)

ARGUMENTS header: The address of a buffer in which the message is to be received. Two
fields of the message header must be set before the call is made:
msg_local_port must be set to the value of the port from which the message
is to be received, and msg_size must be set to the maximum size of the
message that may be received. This maximum size must be less than or
equal to the size of the buffer.

option: The failure conditions under which msg_receive() should
terminate. The value of this argument is a combination (using the bitwise
OR operator) of the following options. Unless one of these values is
explicitly specified, msg_receive() does not return until a message has
been received.

RCV_TIMEOUT: Specifies that msg_receive() should return when
the specified timeout elapses if a message has not arrived by that time;
if not specified, the timeout will be ignored (that is, it will be infinite).

RCV_INTERRUPT: Specifies that msg_receive() should return
when a software interrupt occurs in this thread.

RCV_LARGE: Specifies that msg_receive() should return without
dequeuing a message if the next message in the queue is larger than
header.msg_size. (Normally, a message that is too large is dequeued
and lost.) You can use this option to dynamically determine how large
your message buffer must be.

Use MSG_OPTION_NONE to specify that none of the above options is
desired.

timeout: If RCV_TIMEOUT is specified in option, then timeout is the
maximum time in milliseconds to wait for a message before giving up.

DESCRIPTION The function msg_receive() retrieves the next message from the port or port
set specified in the msg_local_port field of header. If a port is specified, the
port must not be a member of a port set.
117

Chapter 3 Mach Functions
If a port set is specified, then msg_receive() will retrieve messages sent to any
of the set’s member ports. Mach sets the msg_local_port field to the specific
port on which the message was found. It’s not an error for the port set to have
no members, or for members to be added and removed from a port set while a
msg_receive() on the port set is in progress.

The message consists of its header, followed by a variable amount of data; the
message header supplied to msg_receive() must specify (in msg_size) the
maximum size of the message that can be received into the buffer provided.

If no messages are present on the port(s) in question, msg_receive() will wait
until a message arrives, or until one of the specified termination conditions is
met (see the description of the option argument for this function).

If the message is successfully received, then msg_receive() sets the msg_size
field of the header to the size of the received message. If the RCV_LARGE
option was set and msg_receive() returned RCV_TOO_LARGE, then the
msg_size field is set to the size of the message that was too large.

If the received message contains out-of-line data (that is, data for which the
msg_type_inline attribute was specified as false), the data will be returned in a
newly allocated region of memory; the message body will contain a pointer to
that new region. You should deallocate this memory when the data is no longer
needed. See the vm_allocate() call for a description of the state of newly
allocated memory.

See Chapter 2, “Using Mach Messages,” for information on setting up messages
and on writing Mach servers.

EXAMPLE msg_header_t *imsg, header;

/* Wait for messages. */

while (1) {

 /* Set up the message structure. */

 header.msg_size = sizeof header;

 header.msg_local_port = receive_port;

 /* Get the next message on the queue. */

 r = msg_receive(&header, RCV_LARGE, 0);
118

Mach Kernel Functions
 /* If the message is too big ... */

 if (r==RCV_TOO_LARGE) {

 /* ... allocate a structure for it ... */

 imsg = (msg_header_t *)malloc(header.msg_size);

 /* ... initialize the structure ... */

 imsg->msg_size = header.msg_size;

 imsg->msg_local_port = receive_port;

 /* ... and get the message. */

 r = msg_receive(imsg, MSG_OPTION_NONE, 0);

 }

 if (r==RCV_SUCCESS) {

 /* Handle the message. */

 }

 else { /* msg_receive() returned an error. */

 mach_error("msg_receive", r);

 exit(3);

 }

}

RETURN RCV_SUCCESS: The message has been received.

RCV_INVALID_MEMORY: The message specified was not writable by
the calling task.

RCV_INVALID_PORT: An attempt was made to receive on a port to
which the calling task does not have the proper access, or which was
deallocated (see port_deallocate()) while waiting for a message.

RCV_TOO_LARGE: The message header and body combined are larger
than the size specified by msg_size. Unless the RCV_LARGE option was
set, the message has been dequeued and lost. If the RCV_LARGE option
was specified, then Mach sets msg_size to the size of the message that was
too large and leaves the message at the head of the queue.

RCV_NOT_ENOUGH_MEMORY: The message to be received contains
more out-of-line data than can be allocated in the receiving task.

RCV_TIMED_OUT: The message was not received after timeout
milliseconds.

RCV_INTERRUPTED: A software interrupt occurred and the
RCV_INTERRUPT option was specified.

RCV_PORT_CHANGE: The port specified was added to a port set during
the duration of the msg_receive() call.
119

Chapter 3 Mach Functions
msg_rpc()

SUMMARY Send and receive a message

SYNOPSIS #import <mach/mach.h>
#import <mach/message.h>

msg_return_t msg_rpc(msg_header_t *header, msg_option_t option,
msg_size_t rcv_size, msg_timeout_t send_timeout, msg_timeout_t rcv_timeout)

ARGUMENTS header: Address of a message buffer that will be used for both msg_send() and
msg_receive(). This buffer contains a message header followed by the data for
the message to be sent. The msg_remote_port field specifies the port to which
the message is to be sent. The msg_local_port field specifies the port on which
a message is then to be received; if this port is the special value
PORT_DEFAULT, it gets replaced by the value PORT_NULL for the
purposes of the msg_send() operation.

option: A union of the option arguments for the send and receive (see
msg_send() and msg_receive()).

rcv_size: The maximum size allowed for the received message; this must be less
than or equal to the size of the message buffer. The msg_size field in the
header specifies the size of the message to be sent.

send_timeout, rcv_timeout: The timeout values to be applied to the component
operations. These are used only if the option SEND_TIMEOUT or
RCV_TIMEOUT is specified.

DESCRIPTION The function msg_rpc() is a hybrid call that performs a msg_send() followed by
a msg_receive(), using the same message buffer. Because of the order of the send
and receive, this function is appropriate for clients of Mach servers. However, the
msg_rpc() call to a Mach server is usually performed by MiG-generated code, not
by handwritten code.

See Chapter 2, “Using Mach Messages,” for information on setting up messages
and on writing Mach servers.

RETURN RPC_SUCCESS: The message was successfully sent and a reply was received.

Other possible values are the same as those for msg_send() and msg_receive();
any error during the msg_send() portion will terminate the call.
120

Mach Kernel Functions
msg_send()

SUMMARY Send a message

SYNOPSIS #import <mach/mach.h>
#import <mach/message.h>

msg_return_t msg_send(msg_header_t *header, msg_option_t option,
msg_timeout_t timeout)

ARGUMENTS header: The address of the message to be sent. A message consists of a fixed-
size header followed by a variable number of data descriptors and data
items. See the header file mach/message.h for a definition of the message
structure.

option: The failure conditions under which msg_send() should terminate.
The value of this argument is a combination (using the bitwise OR
operator) of the following options. Unless one of these values is explicitly
specified, msg_send() does not return until the message is successfully
queued for the intended receiver.

SEND_TIMEOUT: Specifies that the msg_send() request should
terminate after the timeout period has elapsed, even if the kernel has
been unable to queue the message.

SEND_NOTIFY: Allows the sender to send exactly one message
without being suspended even if the destination port is full. When
that message can be posted to the receiving port queue, this task
receives a message that notifies it that another message can be sent. If
the sender tries to send a second message with this option to the same
port before the first notification arrives, the result is an error. If both
SEND_NOTIFY and SEND_TIMEOUT are specified, msg_send()
will wait until the specified timeout has elapsed before invoking the
SEND_NOTIFY option.

SEND_INTERRUPT: Specifies that msg_send() should return if a
software interrupt occurs in this thread.

Use MSG_OPTION_NONE to specify that none of the above options is
wanted.

timeout: If the destination port is full and the SEND_TIMEOUT option
has been specified, this value specifies the maximum wait time (in
milliseconds).
121

Chapter 3 Mach Functions
DESCRIPTION The function msg_send() transmits a message from the current task to the port
specified in the message header field. The message consists of its header,
followed by a variable number of data descriptors and data items.

If the msg_local_port field isn’t set to PORT_NULL, send rights to that port
will be passed to the receiver of this message. The receiver task can use that
port to send a reply to this message.

If the SEND_NOTIFY option is used and this call returns a
SEND_WILL_NOTIFY code, you can expect to receive a notify message from
the kernel. This message will be either a NOTIFY_MSG_ACCEPTED or a
NOTIFY_PORT_DELETED message, depending on what happened to the
queued message. The notify_port field in these messages is the port to which
the original message was sent. The formats for these messages are defined in
the header file sys/notify.h.

See Chapter 2, “Using Mach Messages,” for information on setting up messages
and on writing Mach servers.

EXAMPLE /* From the handwritten part of a Mach server... */

while (TRUE)

{

 /* Receive a request from a client. */

 msg.head.msg_local_port = port;

 msg.head.msg_size = sizeof(struct message);

 ret = msg_receive(&msg.head, MSG_OPTION_NONE, 0);

 if (ret != RCV_SUCCESS) /* ignore errors */;

 /* Feed the request into the server. */

 (void)add_server(&msg, &reply);

 /* Send a reply to the client. */

 reply.head.msg_local_port = port;

 ret = msg_send(&reply.head, MSG_OPTION_NONE, 0);

 if (ret != SEND_SUCCESS) /* ignore errors */;

}

RETURN SEND_SUCCESS: The message has been queued for the destination port.

SEND_INVALID_MEMORY: The message header or body was not readable
by the calling task, or the message body specified out-of-line data that was not
readable.

SEND_INVALID_PORT: The message refers either to a port for which the
current task does not have access, or to which access was explicitly removed
from the current task (see port_deallocate()) while waiting for the message to
122

Mach Kernel Functions
be posted, or a msg_type_name field in the message specifies rights that
the name doesn’t denote in the task (for example, specifying
MSG_TYPE_SEND and supplying a port set name).

SEND_TIMED_OUT: The message was not sent since the destination
port was still full after timeout milliseconds.

SEND_WILL_NOTIFY: The destination port was full but the
SEND_NOTIFY option was specified. A notification message will be sent
when the message can be posted.

SEND_NOTIFY_IN_PROGRESS: The SEND_NOTIFY option was
specified but a notification request is already outstanding for this thread and
given destination port.

port_allocate()

SUMMARY Create a port

SYNOPSIS #import <mach/mach.h>

kern_return_t port_allocate(task_t task, port_name_t *port_name)

ARGUMENTS task: The task in which the new port is created (for example, use task_self()
to specify the caller’s task).

port_name: Returns the name used by task for the new port.

DESCRIPTION The function port_allocate() causes a port to be created for the specified
task; the resulting port is returned in port_name. The target task initially has
both send and receive rights to the port. The new port isn’t a member of any
port set.

EXAMPLE port_t myport;

kern_return_t error;

if ((error=port_allocate(task_self(), &myport)) != KERN_SUCCESS) {

 mach_error("port_allocate failed", error);

 exit(1);

}

123

Chapter 3 Mach Functions
RETURN KERN_SUCCESS: A port has been allocated.

KERN_INVALID_ARGUMENT: task was invalid.

KERN_RESOURCE_SHORTAGE: No more port slots are available for this
task.

SEE ALSO port_deallocate()

port_deallocate()

SUMMARY Deallocate a port

SYNOPSIS #import <mach/mach.h>

kern_return_t port_deallocate(task_t task, port_name_t port_name)

ARGUMENTS task: The task that wants to relinquish rights to the port (for example, use
task_self() to specify the caller’s task).

port_name: The name that task uses for the port to be deallocated.

DESCRIPTION The function port_deallocate() requests that the target task’s access to a port be
relinquished.

If task has receive rights for the port and the port doesn’t have a backup port,
these things happen:

• The port is destroyed.
• All other tasks with send access to the port are notified of its destruction.
• If the port is a member of a port set, it’s removed from the port set.
• If task has receive rights for the port and the port does have a backup port, then

the following things happen:
• If the port is a member of a port set, it’s removed from the port set.
• Send and receive rights for the port are sent to the backup port in a notification

message (see port_set_backup()).
124

Mach Kernel Functions
EXAMPLE port_t my_port;

kern_return_t error;

/* . . . */

error=port_deallocate(task_self(), my_port);

if (error != KERN_SUCCESS) {

 mach_error("port_deallocate failed", error);

 exit(1);

}

RETURN KERN_SUCCESS: The port has been deallocated.

KERN_INVALID_ARGUMENT: task was invalid or port_name doesn’t
name a valid port.

SEE ALSO port_allocate()

port_extract_receive(), port_extract_send()

SUMMARY Remove access rights to a port and return them to the caller

SYNOPSIS #import <mach/mach.h>

kern_return_t port_extract_receive(task_t task, port_name_t its_name,
port_t *its_port)
kern_return_t port_extract_send(task_t task, port_name_t its_name,
port_t *its_port)

ARGUMENTS task: The task whose rights the caller takes.

its_name: The name by which task knows the port.

its_port: Returns the receive or send rights.

DESCRIPTION The functions port_extract_receive() and port_extract_send() remove the
port access rights that task has for a port and return the rights to the caller.
This leaves task with no rights for the port.

The port_extract_send() function extracts send rights; task can’t have
receive rights for the named port. The port_extract_receive() function
extracts receive rights.
125

Chapter 3 Mach Functions
RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: task was invalid or its_name doesn’t name a
port for which task has the required rights.

SEE ALSO port_insert_send(), port_insert_receive()

port_extract_send() → See port_extract_receive()

port_insert_receive(), port_insert_send()

SUMMARY Give a task rights with a specific name

SYNOPSIS #import <mach/mach.h>

kern_return_t port_insert_receive(task_t task, port_t my_port,
port_name_t its_name)
kern_return_t port_insert_send(task_t task, port_t my_port, port_name_t
its_name)

ARGUMENTS task: The task getting the new rights.

my_port: Rights supplied by the caller.

its_name: The name by which task will know the new rights.

DESCRIPTION The functions port_insert_receive() and port_insert_send() give a task rights
with a specific name. If task already has rights named its_name, or has some other
name for my_port, the operation will fail. The its_name argument can’t be a
predefined port, such as PORT_NULL.

The port_insert_send() function inserts send rights, and
port_insert_receive() inserts receive rights.

RETURN KERN_SUCCESS: The call succeeded.

KERN_NAME_EXISTS: task already has a right named its_name.

KERN_FAILURE: task already has rights to my_port.
126

Mach Kernel Functions
KERN_INVALID_ARGUMENT: task was invalid or its_name was an
invalid name.

SEE ALSO port_extract_send(), port_extract_receive()

port_insert_send() → See port_insert_receive()

port_names()

SUMMARY Get information about the port name space of a task

SYNOPSIS #import <mach/mach.h>

kern_return_t port_names(task_t task, port_name_array_t *port_names,
unsigned int *port_names_count, port_type_array_t *port_types,
unsigned int *port_types_count)

ARGUMENTS task: The task whose port name space is queried.

port_names: Returns the names of the ports and port sets in the port name
space of task, in no particular order.

port_names_count: Returns the number of names returned.

port_types: Returns the type of each corresponding name. This indicates
what kind of rights the task holds for the port, or whether the name refers
to a port set. The type is one of the following: PORT_TYPE_SEND (send
rights only), PORT_TYPE_RECEIVE_OWN (send and receive rights),
PORT_TYPE_SET (the port is a port set).

port_types_count: Returns the same value as port_names_count.

DESCRIPTION The function port_names() returns information about the port name space
of task. It returns the port and port set names that are currently valid for task.
For each name, it also returns what type of rights task holds.

The port_names and port_types arguments are arrays that are automatically
allocated when the reply message is received. You should use
vm_deallocate() on them when the data is no longer needed.
127

Chapter 3 Mach Functions
EXAMPLE kern_return_t error;

port_name_array_t names;

unsigned int names_count, types_count;

port_type_array_t types;

error=port_names(task_self(), &names, &names_count, &types,

 &types_count);

if (error != KERN_SUCCESS) {

 mach_error("port_rename returned value of ", error);

 exit(1);

}

/* . . . */

error=vm_deallocate(task_self(), (vm_address_t)names,

 sizeof(names)*names_count);

if (error != KERN_SUCCESS)

 mach_error("Trouble freeing names", error);

error=vm_deallocate(task_self(), (vm_address_t)types,

 sizeof(names)*types_count);

if (error != KERN_SUCCESS)

 mach_error("Trouble freeing types", error);

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: task was invalid.

SEE ALSO port_type(), port_status(), port_set_status()

port_rename()

SUMMARY Change the name by which a port or port set is known to a task

SYNOPSIS #import <mach/mach.h>

kern_return_t port_rename(task_t task, port_name_t old_name,
port_name_t new_name)

ARGUMENTS task: The task whose port name space is changed.

old_name: The current name of the port or port set.

new_name: The new name for the port or port set.
128

Mach Kernel Functions
DESCRIPTION The function port_rename() changes the name by which a port or port set is
known to task. The port name specified in new_name must not already be in
use, and it can’t be a predefined port, such as PORT_NULL. Currently, a
name is a small integer.

One way to guarantee that a name isn’t already in use is to deallocate a port
and then use its name as new_name. Another way is to check all the existing
names, using port_names(), before you call port_rename(). If you choose
another naming scheme, you should be prepared to try another name if
port_rename() returns a KERN_NAME_EXISTS error.

EXAMPLE #define MY_PORT (port_name_t)99

port_name_t my_port;

kern_return_t error;

error=port_allocate(task_self(),&my_port);

if (error != KERN_SUCCESS) {

 mach_error("port_allocate failed", error);

 exit(1);

}

error=port_rename(task_self(), my_port, MY_PORT);

if (error == KERN_NAME_EXISTS)

 /* try again with a different name */;

else if (error != KERN_SUCCESS) {

 mach_error("port_rename failed", error);

 exit(1);

 }

RETURN KERN_SUCCESS: The call succeeded.

KERN_NAME_EXISTS: task already has a port or port set named
new_name.

KERN_INVALID_ARGUMENT: task was invalid, or task didn’t know any
ports or port sets named old_name, or new_name was an invalid name.

SEE ALSO port_names()
129

Chapter 3 Mach Functions
port_set_add()

SUMMARY Move the named port into the named port set

SYNOPSIS #import <mach/mach.h>

kern_return_t port_set_add(task_t task, port_set_name_t set_name,
port_name_t port_name)

ARGUMENTS task: The task that has receive rights for the port set and port.

set_name: task’s name for the port set.

port_name: task’s name for the port.

DESCRIPTION The function port_set_add() moves the named port into the named port set. The
task must have receive rights for the port. If the port is already a member of
another port set, it’s removed from that set first.

EXAMPLE kern_return_t error;

port_set_name_t set_name;

port_t my_port;

error=port_set_allocate(task_self(),&set_name);

if (error != KERN_SUCCESS) {

 mach_error("port_set_allocate failed", error);

 exit(1);

}

error=port_allocate(task_self(),&my_port);

if (error != KERN_SUCCESS) {

 mach_error("port_allocate failed", error);

 exit(1);

}

error=port_set_add(task_self(), set_name, my_port);

if (error != KERN_SUCCESS) {

 mach_error("port_allocate failed", error);

 exit(1);

}

130

Mach Kernel Functions
RETURN KERN_SUCCESS: The call succeeded.

KERN_NOT_RECEIVER: task doesn’t have receive rights for the port.

KERN_INVALID_ARGUMENT: task was invalid, or set_name doesn’t
name a valid port set, or port_name doesn’t name a valid port.

SEE ALSO port_set_remove()

port_set_allocate()

SUMMARY Create a port set

SYNOPSIS #import <mach/mach.h>

kern_return_t port_set_allocate(task_t task, port_set_name_t *set_name)

ARGUMENTS task: The task in which the new port set is created.

set_name: Returns task’s name for the new port set.

DESCRIPTION The function port_set_allocate() causes a port set to be created for the
specified task; the resulting set’s name is returned in set_name. The new port
set is empty.

EXAMPLE kern_return_t error;

port_set_name_t set_name;

error=port_set_allocate(task_self(),&set_name);

if (error != KERN_SUCCESS) {

 mach_error("port_set_allocate failed", error);

 exit(1);

}

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: task was invalid.

KERN_RESOURCE_SHORTAGE: The kernel ran out of memory.

SEE ALSO port_set_deallocate(), port_set_add()
131

Chapter 3 Mach Functions
port_set_backlog()

SUMMARY Set the size of the port queue

SYNOPSIS #import <mach/mach.h>

kern_return_t port_set_backlog(task_t task, port_name_t port_name, int backlog)

ARGUMENTS task: The task that has receive rights for the named port (for example, use
task_self() to specify the caller’s task).

port_name: task’s name for the port.

backlog: The new backlog to be set.

DESCRIPTION The function port_set_backlog() changes the backlog value on the specified port
(the port’s backlog value is the number of unreceived messages that are allowed
in its message queue before the kernel will refuse to accept any more sends to that
port).

The task specified by task must have receive rights for the named port.

The maximum backlog value is the constant PORT_BACKLOG_MAX. You
can get a port’s current backlog value by calling port_status().

EXAMPLE #define MY_BACKLOG 10

kern_return_t error;

port_t my_port;

error=port_allocate(task_self(),&my_port);

if (error != KERN_SUCCESS) {

 mach_error("port_allocate failed", error);

 exit(1);

}

error=port_set_backlog(task_self(), my_port, MY_BACKLOG);

if (error!=KERN_SUCCESS)

 mach_error("Call to port_set_backlog failed", error);

RETURN KERN_SUCCESS: The backlog value has been changed.

KERN_NOT_RECEIVER: task doesn’t have receive rights for the port.
132

Mach Kernel Functions
KERN_INVALID_ARGUMENT: task was invalid, or port_name doesn’t
name a valid port, or the desired backlog wasn’t greater than 0, or the
desired backlog was greater than PORT_BACKLOG_MAX.

SEE ALSO msg_send(), port_status()

port_set_backup()

SUMMARY Set the backup port for a port

SYNOPSIS #import <mach/mach.h>

kern_return_t port_set_backup(task_t task, port_name_t port_name, port_t
backup, port_t *previous)

ARGUMENTS task: The task that has receive rights for the named port (for example, use
task_self() to specify the caller’s task).

port_name: task’s name for the port right.

backup: The new backup port. If you want to disable the current backup
port without setting a new one, set this to PORT_NULL.

previous: Returns the previous backup port.

DESCRIPTION Use this function to keep a port alive despite its being deallocated by its
receiver. If the call to port_set_backup() is successful, then whenever
port_name is deallocated by its receiver, backup will receive a notification
message with receive and send rights for port_name. As far as task is
concerned, the port will be deleted; however, as far as senders to the port are
concerned, the port will continue to exist.

To let a port die naturally after its backup port has been set, call
port_set_backup() on it with backup set to PORT_NULL.
133

Chapter 3 Mach Functions
EXAMPLE kern_return_t error;

port_t my_port, backup_port, previous_port;

error=port_allocate(task_self(),&my_port);

if (error != KERN_SUCCESS) {

 mach_error("port_allocate failed", error);

 exit(1);

}

error=port_allocate(task_self(),&backup_port);

if (error != KERN_SUCCESS) {

 mach_error("port_allocate failed", error);

 exit(1);

}

error=port_set_backup(task_self(), my_port, backup_port,

 &previous_port);

if (error!=KERN_SUCCESS)

 mach_error("Call to port_set_backlog failed", error);

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: task was invalid, or port_name doesn’t name
a valid port.

KERN_NOT_RECEIVER: task doesn’t have receive rights for port_name.

port_set_deallocate()

SUMMARY Destroy a port set

SYNOPSIS #import <mach/mach.h>

kern_return_t port_set_deallocate(task_t task, port_set_name_t set_name)

ARGUMENTS task: The task that has receive rights for the port set to be destroyed.

set_name: task’s name for the doomed port set.
134

Mach Kernel Functions
DESCRIPTION The function port_set_deallocate() requests that the port set of task be
destroyed. If the port set isn’t empty, any members are first removed.

EXAMPLE kern_return_t error;

port_set_name_t set_name;

error=port_set_deallocate(task_self(),set_name);

if (error != KERN_SUCCESS) {

 mach_error("port_set_deallocate failed", error);

 exit(1);

}

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: task was invalid or set_name doesn’t
name a valid port set.

SEE ALSO port_set_allocate()

port_set_remove()

SUMMARY Remove the named port from a port set

SYNOPSIS #import <mach/mach.h>

kern_return_t port_set_remove(task_t task, port_name_t port_name)

ARGUMENTS task: The task that has receive rights for the port and port set.

port_name: task’s name for the receive rights to be removed.

DESCRIPTION The function port_set_remove() removes the named port from a port set.
The task must have receive rights for the port, and the port must be a member
of a port set.

EXAMPLE error=port_set_remove(task_self(), my_port);

if (error != KERN_SUCCESS) {

 mach_error("port_set_remove failed", error);

 exit(1);

}

135

Chapter 3 Mach Functions
RETURN KERN_SUCCESS: The call succeeded.

KERN_NOT_RECEIVER: task doesn’t have receive rights for the port.

KERN_NOT_IN_SET: The port isn’t a member of a set.

KERN_INVALID_ARGUMENT: task was invalid or port_name doesn’t name
a valid port.

SEE ALSO port_set_add()

port_set_status()

SUMMARY Get the members of a port set

SYNOPSIS #import <mach/mach.h>

kern_return_t port_set_status(task_t task, port_set_name_t set_name,
port_name_array_t *members, unsigned int *members_count)

ARGUMENTS task: The task whose port set is queried.

set_name: task’s name for the port set.

members: Returns task’s names for the members of its port set.

members_count: Returns the number of port names in members.

DESCRIPTION The function port_set_status() returns a list of the ports in a port set. The
members argument is an array that’s automatically allocated when the reply
message is received. You should use vm_deallocate() on it when the data is no
longer needed.

EXAMPLE error=port_set_status(task_self(), set_name, &members,

 &members_count);

if (error != KERN_SUCCESS) {

 mach_error("port_set_status failed", error);

 exit(1);

}

136

Mach Kernel Functions
/* . . . */

error=vm_deallocate(task_self(), (vm_address_t)members,

 sizeof(members)*members_count);

if (error != KERN_SUCCESS)

 mach_error("Trouble freeing members", error);

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: task was invalid or set_name doesn’t
name a valid port set.

SEE ALSO port_status()

port_status()

SUMMARY Examine a port’s current status

SYNOPSIS #import <mach/mach.h>

kern_return_t port_status(task_t task, port_name_t port_name,
port_set_name_t *port_set_name, int *num_msgs, int *backlog,
boolean_t *owner, boolean_t *receiver)

ARGUMENTS task: The task that has receive rights for the port in question (for example,
use task_self() to specify the caller’s task).

port_name: task’s name for the port right.

port_set_name: Returns task’s name for the port set that the named port
belongs to, or PORT_NULL if it isn’t in a set.

num_msgs: Returns the number of messages queued on this port. If task
isn’t the port’s receiver, the number of messages will be returned as
negative.

backlog: Returns the number of messages that can be queued to this port
without causing the sender to block.

owner: Returns the same value as receiver, since ownership rights and
receive rights aren’t separable.

receiver: Returns true if task has receive rights to port_name; otherwise,
returns false.
137

Chapter 3 Mach Functions
DESCRIPTION The function port_status() returns the current port status associated with
port_name.

EXAMPLE error=port_status(task_self(), my_port, &port_set_name, &num_msgs,

 &backlog, &owner, &receiver);

if (error!=KERN_SUCCESS)

 mach_error("Call to port_status failed", error);

RETURN KERN_SUCCESS: The data has been retrieved.

KERN_INVALID_ARGUMENT: task was invalid or port_name doesn’t name
a valid port.

SEE ALSO port_set_backlog(), port_set_status()

port_type()

SUMMARY Determine the access rights of a task for a specific port name

SYNOPSIS #import <mach/mach.h>

kern_return_t port_type(task_t task, port_name_t port_name, port_type_t
*port_type)

ARGUMENTS task: The task whose port name space is queried.

port_name: The name being queried.

port_type: Returns a value that indicates what kind of rights the task holds for
the port, or whether the name refers to a port set. This value is one of the
following: PORT_TYPE_SEND (send rights only),
PORT_TYPE_RECEIVE_OWN (send and receive rights),
PORT_TYPE_SET (the port is a port set).

DESCRIPTION The function port_type() returns information about task’s rights for a specific
name in its port name space.

EXAMPLE error=port_type(task_self(), port, &type);

if (error != KERN_SUCCESS)

 mach_error("Couldn’t get type of port", error);
138

Mach Kernel Functions
RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: task was invalid or task didn’t have any
rights named port_name.

SEE ALSO port_names(), port_status(), port_set_status()

processor_assign(), processor_control(), processor_exit(),
processor_get_assignment(), processor_start()

SUMMARY Control a processor

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_assign(processor_t processor,
processor_set_t new_processor_set, boolean_t wait)
kern_return_t processor_control(processor_t processor, processor_info_t
info, long *count)
kern_return_t processor_exit(processor_t processor)
kern_return_t processor_get_assignment(processor_t processor,
processor_set_t *processor_set)
kern_return_t processor_start(processor_t processor)

DESCRIPTION processor_assign() changes the processor set to which processor is assigned.
processor_control() returns information about processor. processor_exit()
shuts down processor. processor_get_assignment() returns the processor set
to which processor is assigned. processor_start() starts up processor.

Note: These functions are useful only on multiprocessor systems.

processor_info()

SUMMARY Get information about a processor

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_info(processor_t processor, int flavor, host_t *host,
processor_info_t processor_info, unsigned int *processor_info_count)
139

Chapter 3 Mach Functions
ARGUMENTS processor: The processor for which information is to be obtained.

flavor: The type of information that is wanted. Currently only
PROCESSOR_BASIC_INFO is implemented.

host: Returns the non-privileged host port for the host on which the processor
resides.

processor_info: Returns information about the processor specified by processor.

processor_info_count: Size of the info structure. Should be
PROCESSOR_BASIC_INFO_COUNT when flavor is
PROCESSOR_BASIC_INFO.

DESCRIPTION Returns the selected information array for a processor, as specified by flavor. The
processor_info argument is an array of integers that is supplied by the caller and
filled with specified information. The processor_info_count argument is supplied as
the maximum number of integers in processor_info. On return, it contains the
actual number of integers in processor_info.

Basic information is defined by PROCESSOR_BASIC_INFO. The size of this
information is defined by PROCESSOR_BASIC_INFO_COUNT. The data
structures used by PROCESSOR_BASIC_INFO are defined in the header file
mach/processor_info.h. Possible values of the cpu_type and cpu_subtype
fields are defined in the header file mach/machine.h.

typedef int *processor_info_t; /* variable length array of int */

/* one interpretation of info is */

struct processor_basic_info {

 cpu_type_t cpu_type; /* cpu type */

 cpu_subtype_t cpu_subtype; /* cpu subtype */

 boolean_t running; /* is processor running? */

 int slot_num; /* slot number */

 boolean_t is_master; /* is this the master processor */

};

typedef struct processor_basic_info *processor_basic_info_t;

EXAMPLE kern_return_t error;

host_t host;

unsigned int list_size, info_count;

struct processor_basic_info info;

processor_array_t list;
140

Mach Kernel Functions
/* Get the processor port. */

error=host_processors(host_priv_self(), &list, &list_size);

if ((error!=KERN_SUCCESS) || (list_size < 1)){

 mach_error("Error calling host_processors (are you root?)",

 error);

 exit(1);

}

/* Get information about the processor. */

info_count=PROCESSOR_BASIC_INFO_COUNT;

error=processor_info(list[0], PROCESSOR_BASIC_INFO, &host,

 (processor_info_t)&info, &info_count);

if (error != KERN_SUCCESS)

 mach_error("Error calling processor_info", error);

/* Now that we’re done with the processor port, free it. */

vm_deallocate(task_self(), (vm_address_t)list,

 sizeof(list)*list_size);

if (error!=KERN_SUCCESS)

 mach_error("Trouble freeing list", error);

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: processor isn’t a known processor.

MIG_ARRAY_TOO_LARGE: Returned info array is too large for
processor_info. The processor_info argument is filled as much as possible, and
processor_info_count is set to the number of elements that would be returned
if there were enough room.

KERN_FAILURE: flavor isn’t recognized or processor_info_count is too
small.

SEE ALSO processor_start(), processor_exit(), processor_control(),
host_processors()
141

Chapter 3 Mach Functions
processor_set_create()

SUMMARY Create a new processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_create(host_t host, port_t *new_set, port_t
*new_name)

DESCRIPTION This function creates a new processor set on host.

Note: This function is useful only on multiprocessor systems.

processor_set_default()

SUMMARY Get the port of the default processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_default(host_t host, processor_set_t *default_set)

ARGUMENTS host: The host whose default processor set is requested.

default_set: Returns the name (nonprivileged) port for the default processor set.

DESCRIPTION The default processor set is used by all threads, tasks, and processors that aren’t
explicitly assigned to other sets. This function returns a port that can be used to
obtain information about this set (for example, how many threads are assigned to
it). This port isn’t privileged and thus can’t be used to perform operations on that
set; call host_processor_set_priv() after processor_set_default() to get the
privileged port.

EXAMPLE error=processor_set_default(host_self(), &default_set);

if (error!=KERN_SUCCESS){

 mach_error("Error calling processor_set_default", error);

 exit(1);

}

142

Mach Kernel Functions
RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: host is not a host.

SEE ALSO processor_set_info(), task_assign(), thread_assign()

processor_set_destroy()

SUMMARY Delete a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_destroy(processor_set_t processor_set)

DESCRIPTION This function destroys processor_set, reassigning all of its tasks, threads, and
processors to the default processor set.

Note: This function is useful only on multiprocessor systems.

processor_set_info()

SUMMARY Get information about a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_info(processor_set_t processor_set, int flavor,
host_t *host, processor_set_info_t processor_set_info,
unsigned int *processor_set_info_count)

ARGUMENTS processor_set: The processor set for which information is to be obtained.

flavor: The type of information that is wanted. Should be
PROCESSOR_SET_BASIC_INFO or
PROCESSOR_SET_SCHED_INFO.

host: Returns the nonprivileged host port for the host on which the
processor set resides.

processor_set_info: Returns information about the processor set specified by
processor_set.
143

Chapter 3 Mach Functions
processor_set_info_count: Size of the info structure. Should be
PROCESSOR_SET_BASIC_INFO_COUNT when flavor is
PROCESSOR_SET_BASIC_INFO, and
PROCESSOR_SET_SCHED_INFO_COUNT when flavor is
PROCESSOR_SET_SCHED_INFO.

DESCRIPTION Returns the selected information array for a processor set, as specified by flavor.
The processor_set_info argument is an array of integers that is supplied by the caller,
and filled with specified information. The processor_set_info_count argument is
supplied as the maximum number of integers in processor_set_info. On return, it
contains the actual number of integers in processor_set_info.

Basic information is defined by PROCESSOR_SET_BASIC_INFO. The size
of this information is defined by
PROCESSOR_SET_BASIC_INFO_COUNT. The load_average and
mach_factor fields are scaled by the constant LOAD_SCALE (that is, the
integer value returned is the load average or Mach factor multiplied by
LOAD_SCALE).

The Mach factor, like the UNIX load average, is a measurement of how busy the
system is. Unlike the load average, higher Mach factors mean that the system
is less busy. The Mach factor tells you how much of a CPU you have available
for running an application. For example, on a single-processor system with one
job running, the Mach factor is 0.5; this means if another job starts running it will
get half of the CPU. (Two jobs will be running, each getting half the CPU.) On
a single-processor system, the Mach factor is between zero and one. On a
multiprocessor system, the Mach factor can go over one. For example, a three-
processor system with one job running has a Mach factor of 2.0, since two
processors are available to new jobs.

struct processor_set_basic_info {

 int processor_count; /* number of processors */

 int task_count; /* number of tasks */

 int thread_count; /* number of threads */

 int load_average; /* scaled load average */

 int mach_factor; /* scaled mach factor */

};

typedef struct processor_set_basic_info *processor_set_basic_info_t;

Scheduling information is defined by PROCESSOR_SET_SCHED_INFO.
The size of this information is given by
PROCESSOR_SET_SCHED_INFO_COUNT.
144

Mach Kernel Functions
struct processor_set_sched_info {

 int policies; /* allowed policies */

 int max_priority; /* max priority for new threads */

};

typedef struct processor_set_sched_info *processor_set_sched_info_t;

EXAMPLE kern_return_t error;

host_t host;

unsigned int info_count;

struct processor_set_basic_info info;

processor_set_t default_set;

error=processor_set_default(host_self(), &default_set);

if (error!=KERN_SUCCESS){

 mach_error("Error calling processor_set_default", error);

 exit(1);

}

info_count=PROCESSOR_SET_BASIC_INFO_COUNT;

error=processor_set_info(default_set, PROCESSOR_SET_BASIC_INFO,

 &host, (processor_set_info_t)&info, &info_count);

if (error != KERN_SUCCESS)

 mach_error("Error calling processor_set_info", error);

printf("The UNIX load average is %f\n",

 (float)info.load_average/LOAD_SCALE);

printf("The Mach factor is %f\n", (float)info.mach_factor/LOAD_SCALE);

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: processor_set is not a processor set, or
flavor is not recognized.

KERN_FAILURE: processor_set_info_count is less than what it should be.

MIG_ARRAY_TOO_LARGE: Returned info array is too large for
processor_set_info.

SEE ALSO processor_set_create(), processor_set_default(), processor_assign(),
task_assign(), thread_assign()
145

Chapter 3 Mach Functions
processor_set_max_priority()

SUMMARY Set the maximum priority permitted on a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_max_priority(processor_set_t processor_set,
int max_priority, boolean_t change_threads)

DESCRIPTION This function affects only newly created or newly assigned threads unless you
specify change_threads as true.

Note: This function is useful only on multiprocessor systems.

processor_set_policy_enable(), processor_set_policy_disable()

SUMMARY Enable or disable a scheduling policy on a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_policy_enable(processor_set_t processor_set,
int policy)
kern_return_t processor_set_policy_disable(processor_set_t processor_set,
int policy, boolean_t change_threads)

ARGUMENTS processor_set: The processor set whose allowed policies are to be changed. This
must be the privileged processor set port, which is returned by
host_processor_set_priv().

policy: The policy to enable or disable. Currently, the only valid policies are
POLICY_TIMESHARE, POLICY_INTERACTIVE, and
POLICY_FIXEDPRI. You can’t disable timesharing.

change_threads: Specify true if you want to reset to timesharing the policies of
any threads with the newly disallowed policy. Otherwise, specify false.

DESCRIPTION Processor sets may restrict the scheduling policies to be used for threads assigned
to them. These two calls provide the mechanism for designating permitted and
forbidden policies. The current set of permitted policies can be obtained from
processor_set_info(). Timesharing can’t be forbidden by any processor set. This
is a compromise to reduce the complexity of the assign operation; any thread
146

Mach Kernel Functions
whose policy is forbidden by the target processor set has its policy reset to
timesharing. If the change_threads argument to
processor_set_policy_disable() is true, threads currently assigned to this
processor set and using the newly disabled policy will have their policy reset
to timesharing.

Warning: Don’t use POLICY_FIXEDPRI unless you’re familiar with the
consequences of fixed-priority scheduling. Using fixed-priority scheduling
in a process can keep other processes from getting any CPU time. If
processes that are essential to the functioning of the system don’t get CPU
time, you might have to reboot your system to make it work normally.

EXAMPLE kern_return_t error;

processor_set_t default_set, default_set_priv;

error=processor_set_default(host_self(), &default_set);

if (error!=KERN_SUCCESS) {

 mach_error("Error calling processor_set_default()", error);

 exit(1);

}

error=host_processor_set_priv(host_priv_self(), default_set,

 &default_set_priv);

if (error != KERN_SUCCESS) {

 mach_error("Call to host_processor_set_priv() failed", error);

 exit(1);

}

error=processor_set_policy_enable(default_set_priv, POLICY_FIXEDPRI);

if (error != KERN_SUCCESS)

 mach_error("Error calling processor_set_policy_enable", error);

RETURN KERN_SUCCESS: Operation completed successfully.

KERN_INVALID_ARGUMENT: processor_set isn’t the privileged port of
a processor set, policy isn’t a valid policy, or an attempt was made to disable
timesharing.

SEE ALSO thread_policy(), thread_switch()
147

Chapter 3 Mach Functions
processor_set_tasks()

SUMMARY Get kernel ports for tasks assigned to a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_tasks(processor_set_t processor_set,
task_array_t *task_list, unsigned int *task_count)

ARGUMENTS processor_set: The processor set to be affected. This must be the privileged
processor set port, which is returned by host_processor_set_priv().

task_list: Returns the set of tasks currently assigned to processor_set; no particular
ordering is guaranteed.

task_count: Returns the number of tasks in task_list.

DESCRIPTION This function gets send rights to the kernel port for each task currently assigned
to processor_set. The task_list argument is an array that is created as a result of this
call. You should call vm_deallocate() on this array when you no longer need the
data.

EXAMPLE task_array_t task_list;

unsigned int task_count;

processor_set_t default_set, default_set_priv;

kern_return_t error;

error=processor_set_default(host_self(), &default_set);

if (error!=KERN_SUCCESS) {

 mach_error("Error calling processor_set_default()", error);

 exit(1);

}

error=host_processor_set_priv(host_priv_self(), default_set,

 &default_set_priv);

if (error != KERN_SUCCESS) {

 mach_error("Call to host_processor_set_priv() failed", error);

 exit(1);

}

148

Mach Kernel Functions
error=processor_set_tasks(default_set_priv, &task_list, &task_count);

if (error != KERN_SUCCESS) {

 mach_error("Call to processor_set_tasks() failed", error);

 exit(1);

}

/* . . . */

error=vm_deallocate(task_self(), (vm_address_t)task_list,

 sizeof(task_list)*task_count);

if (error != KERN_SUCCESS)

 mach_error("Trouble freeing task_list", error);

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: processor_set isn’t a privileged processor
set.

SEE ALSO task_assign(), thread_assign(), processor_set_threads()

processor_set_threads()

SUMMARY Get kernel ports for threads assigned to a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_threads(processor_set_t processor_set,
thread_array_t *thread_list, unsigned int *thread_count)

ARGUMENTS processor_set: The processor set to be affected. This must be the privileged
processor set port, which is returned by host_processor_set_priv().

thread_list: Returns the set of threads currently assigned to processor_set; no
particular ordering is guaranteed.

thread_count: Returns the number of threads in thread_list.

DESCRIPTION This function gets send rights to the kernel port for each thread currently
assigned to processor_set. The thread_list argument is an array that is created as
a result of this call. You should call vm_deallocate() on thread_list when you
no longer need the data.
149

Chapter 3 Mach Functions
EXAMPLE thread_array_t thread_list;

unsigned int thread_count;

processor_set_t default_set, default_set_priv;

kern_return_t error;

error=processor_set_default(host_self(), &default_set);

if (error!=KERN_SUCCESS) {

 mach_error("Error calling processor_set_default()", error);

 exit(1);

}

error=host_processor_set_priv(host_priv_self(), default_set,

 &default_set_priv);

if (error != KERN_SUCCESS) {

 mach_error("Call to host_processor_set_priv() failed", error);

 exit(1);

}

error=processor_set_threads(default_set_priv, &thread_list,

&thread_count);

if (error != KERN_SUCCESS) {

 mach_error("Call to processor_set_threads() failed", error);

 exit(1);

}

/* . . . */

error=vm_deallocate(task_self(), (vm_address_t)thread_list,

 sizeof(thread_list)*thread_count);

if (error != KERN_SUCCESS)

 mach_error("Trouble freeing thread_list", error);

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: processor_set isn’t a privileged processor set.

SEE ALSO task_assign(), thread_assign(), processor_set_tasks()

processor_start() → See processor_assign()
150

Mach Kernel Functions
task_assign(), task_assign_default()

SUMMARY Assign a task to a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t task_assign(task_t task, processor_set_t new_processor_set,
boolean_t assign_threads)
kern_return_t task_assign_default(task_t task, boolean_t assign_threads)

DESCRIPTION The task_assign() function assigns task to new_processor_set;
task_assign_default() assigns task to the default processor set.

Note: These functions are useful only on multiprocessor systems.

task_by_unix_pid()

SUMMARY Get the task port for a UNIX process on the same host

SYNOPSIS #import <mach/mach.h>

kern_return_t task_by_unix_pid(task_t task, int pid, task_t *result_task)

ARGUMENTS task: A task that is used to check permission (usually task_self()).

pid: The process ID of the desired process.

result_task: Returns send rights to the task port of the process specified by
pid.

DESCRIPTION Returns the task port for another process, named by its process ID, on the
same host as task. This call succeeds only if the caller is the superuser or task
has the same user ID as the process specified by pid. If the call fails, result_task
is set to TASK_NULL.
151

Chapter 3 Mach Functions
EXAMPLE pid=fork();

if (pid==0) /* We’re in the child. */ {

 /* do childish things */

}

else /* We’re in the parent */ {

 result=task_by_unix_pid(task_self(), pid, &child_task);

 if (result != KERN_SUCCESS)

 mach_error("task_by_unix_pid", result);

 /* . . . */

}

RETURN KERN_SUCCESS: The call succeeded.

KERN_FAILURE: target_task has a different user ID from the process
corresponding to pid, and the caller isn’t the superuser; or pid didn’t refer to a
valid process; or target_task wasn’t a valid task.

SEE ALSO unix_pid()

task_create()

SUMMARY Create a task

SYNOPSIS #import <mach/mach.h>

kern_return_t task_create(task_t parent_task, boolean_t inherit_memory,
task_t *child_task)

ARGUMENTS parent_task: The task from which the child’s capabilities are drawn.

inherit_memory: If set, the address space of the child task is built from the parent
task according to its memory inheritance values; otherwise, the child task is
given an empty address space.

child_task: Returns the new task.

DESCRIPTION The function task_create() creates a new task from parent_task; the resulting task
(child_task) acquires shared or copied parts of the parent’s address space (see
vm_inherit()). The child task initially has no threads; you put threads in it using
thread_create().

Important: Normally, you should use the UNIX fork() system call instead of task_create().
152

Mach Kernel Functions
The child task gets the four special ports initialized for it at task creation.
The kernel port (task port) is created, and send rights for it are given to the
child and returned to the caller in child_task. The notify port is initialized to
null. The child inherits its bootstrap and exception ports from the parent
task. The new task can get send rights to these ports with the call
task_get_special_port().

EXAMPLE error=task_create(task_self(), TRUE, &child_task);

if(error!=KERN_SUCCESS)

 mach_error("Call to task_create() failed", error);

RETURN KERN_SUCCESS: A new task has been created.

KERN_INVALID_ARGUMENT: parent_task is not a valid task port.

KERN_RESOURCE_SHORTAGE: Some critical kernel resource is
unavailable.

SEE ALSO task_terminate(), task_suspend(), task_resume(),
task_get_special_port(), task_set_special_port(), task_self(),
task_threads(), thread_create(), thread_resume(), vm_inherit()

task_get_assignment()

SUMMARY Get the name of the processor set that a task is assigned to

SYNOPSIS #import <mach/mach.h>

kern_return_t task_get_assignment(task_t task, processor_set_t
*processor_set)
Note: This function is useful only on multiprocessor systems.
153

Chapter 3 Mach Functions
task_get_special_port(), task_set_special_port(), task_self(), task_notify()

SUMMARY Get or set a task’s special ports

SYNOPSIS #import <mach/mach.h>

kern_return_t task_get_special_port(task_t task, int which_port,
port_t *special_port)
kern_return_t task_set_special_port(task_t task, int which_port, port_t
special_port)
task_t task_self(void)
port_t task_notify(void)

ARGUMENTS task: The task to get the port for.

which_port: The port that’s requested. This is one of:

TASK_NOTIFY_PORT
TASK_BOOTSTRAP_PORT
TASK_EXCEPTION_PORT

special_port: The value of the port that’s being requested or set.

DESCRIPTION The function task_get_special_port() returns send rights to one of a set of special
ports for the task specified by task. In the case of the task’s own notify port, the
task also gets receive rights.

The function task_set_special_port() sets one of a set of special ports for the
task specified by task.

The function task_self() returns the port to which kernel calls for the currently
executing thread should be directed. Currently, task_self() returns the task
kernel port, which is a port for which the kernel has receive rights and which it
uses to identify a task. In the future it may be possible for one task to interpose
a port as another task’s kernel port. At that time task_self() will still return the
port to which the executing thread should direct kernel calls, but it may no
longer be a port for which the kernel has receive rights.

If a controller task has send access to the kernel port of a subject task, then the
controller task can perform kernel operations for the subject task. Normally,
only the task itself and the task that created it will have access to the task kernel
port, but any task may pass rights to its kernel port to any other task.

The function task_notify() returns receive and send rights to the notify port
associated with the task to which the executing thread belongs. The notify port
154

Mach Kernel Functions
is a port on which the task should receive notification of such kernel events
as the destruction of a port to which it has send rights.

The other special ports associated with a task are the bootstrap port and the
exception port. The bootstrap port is a port to which a thread may send a
message requesting other system service ports. This port isn’t used by the
kernel. The task’s exception port is the port to which messages are sent by
the kernel when an exception occurs and the thread causing the exception
has no exception port of its own.

Important: If you set your task’s bootstrap port, you should also set the global variable bootstrap_port
to special_port. The bootstrap_port variable is task-wide and is used by mach_init and other
processes to determine your task’s bootstrap port. Since you can’t change the value of the
bootstrap_port variable in another task, you should use care when changing the bootstrap port of
another task.

MACRO
EQUIVALENTS The following macros are defined in the header file

mach/task_special_ports.h:

task_get_notify_port(task, port)
task_set_notify_port(task, port)

task_get_exception_port(task, port)
task_set_exception_port(task, port)

task_get_bootstrap_port(task, port)
task_set_bootstrap_port(task, port)

EXAMPLE /* Save the old exception port for this task. */

r = task_get_exception_port(task_self(), &(ports.old_exc_port));

if (r != KERN_SUCCESS) {

 mach_error("task_get_exception_port", r);

 exit(1);

}

 /* Create a new exception port for this task. */

r = port_allocate(task_self(), &(ports.exc_port));

if (r != KERN_SUCCESS) {

 mach_error("port_allocate 0", r);

 exit(1);

}

r = task_set_exception_port(task_self(), (ports.exc_port));

if (r != KERN_SUCCESS) {

 mach_error("task_set_exception_port", r);

 exit(1);

}

155

Chapter 3 Mach Functions
RETURN KERN_SUCCESS: The port was returned or set.

KERN_INVALID_ARGUMENT: Either task is not a task or which_port is an
invalid port selector.

SEE ALSO thread_special_ports(), task_create()

task_info()

SUMMARY Get information about a task

SYNOPSIS #import <mach/mach.h>

kern_return_t task_info(task_t target_task, int flavor, task_info_t task_info,
unsigned int *task_info_count)

ARGUMENTS target_task: The task to be affected (for example, use task_self() to specify the
caller’s task).

flavor: The type of statistics that are wanted. Currently only
TASK_BASIC_INFO is implemented.

task_info: Returns statistics about target_task.

task_info_count: Size of the info structure. Currently this must be
TASK_BASIC_INFO_COUNT.

DESCRIPTION The function task_info() returns the information specified by flavor about a task.
The task_info argument is an array of integers that’s supplied by the caller and
returned filled with information. The task_info_count argument is supplied as the
maximum number of integers in task_info. On return, it contains the actual
number of integers in task_info.

Currently there’s only one flavor of information, defined by
TASK_BASIC_INFO. Its size is defined by TASK_BASIC_INFO_COUNT.
The definition of the information structure returned by TASK_BASIC_INFO
is:
156

Mach Kernel Functions
struct task_basic_info {
 int suspend_count; /* suspend count for task */
 int base_priority; /* base scheduling priority */
 vm_size_t virtual_size; /* number of virtual pages */
 vm_size_t resident_size; /* number of resident pages */
 time_value_t user_time; /* total user run time for
 terminated threads */
 time_value_t system_time; /* total system run time for
 terminated threads */
};
typedef struct task_basic_info *task_basic_info_t;

EXAMPLE kern_return_t error;

struct task_basic_info info;

unsigned int info_count=TASK_BASIC_INFO_COUNT;

error=task_info(task_self(), TASK_BASIC_INFO,

 (task_info_t)&info, &info_count);

if (error!=KERN_SUCCESS)

 mach_error("Error calling task_info()", error);

else

 printf("Base priority is %d\n", info.base_priority);

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: target_task isn’t a task, or flavor isn’t
recognized.

MIG_ARRAY_TOO_LARGE: The returned info array is too large for
task_info. The task_info argument is filled as much as possible, and
task_info_count is set to the number of elements that would be returned if
there were enough room.

SEE ALSO task_threads(), thread_info(), thread_get_state()

task_notify() → See task_get_special_port()
157

Chapter 3 Mach Functions
task_priority()

SUMMARY Set the scheduling priority for a task

SYNOPSIS #import <mach/mach.h>

kern_return_t task_priority(task_t task, int priority, boolean_t change_threads)

ARGUMENTS task: Task to set priority for.

priority: New priority.

change_threads: Change priority of existing threads if true.

DESCRIPTION The priority of a task is used only for creation of new threads; the priority of a new
thread priority is set to that of its task. The task_priority() function changes this
task priority. It also sets the priorities of all threads in the task to this new priority
if change_threads is true. Existing threads are not affected otherwise. If this priority
change violates the maximum priority of some threads, as many threads as
possible will be changed and an error code will be returned.

Priorities range from 0 to 31, where higher numbers denote higher priorities.
You can retrieve the current scheduling priority using thread_info().

EXAMPLE kern_return_t error;

struct task_basic_info info;

unsigned int info_count=TASK_BASIC_INFO_COUNT;

error=task_info(task_self(), TASK_BASIC_INFO,

 (task_info_t)&info, &info_count);

if (error!=KERN_SUCCESS)

 mach_error("Error calling task_info()", error);

else {

 /* Set this task’s base priority to be much lower than normal */

 error = task_priority(task_self(), info.base_priority - 4, TRUE);

 if (error != KERN_SUCCESS)

 mach_error("Call to task_priority() failed", error);

}

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: task is not a task, or priority is not a valid
priority.
158

Mach Kernel Functions
KERN_FAILURE: change_threads was true and the attempt to change the
priority of at least one existing thread failed because the new priority would
have exceeded that thread’s maximum priority.

SEE ALSO thread_priority(), processor_set_max_priority(), thread_switch()

task_resume()

SUMMARY Resume a task

SYNOPSIS #import <mach/mach.h>

kern_return_t task_resume(task_t target_task)

ARGUMENTS target_task: The task to be resumed.

DESCRIPTION The function task_resume() decrements the task’s suspend count. If the
suspend count becomes 0, all threads with 0 suspend counts in the task are
resumed. If the suspend count is already 0, it’s not decremented (it never
becomes negative).

RETURN KERN_SUCCESS: The task has been resumed.

KERN_FAILURE: The suspend count is already 0.

KERN_INVALID_ARGUMENT: target_task isn’t a task.

SEE ALSO task_create(), task_terminate(), task_suspend(), task_info(),
thread_suspend(), thread_resume(), thread_info()

task_self() → See task_get_special_port()

task_set_special_port() → See task_get_special_port()
159

Chapter 3 Mach Functions
task_suspend()

SUMMARY Suspend a task

SYNOPSIS #import <mach/mach.h>

kern_return_t task_suspend(task_t target_task)

ARGUMENTS target_task: The task to be suspended (for example, use task_self() to specify
the caller’s task).

DESCRIPTION The function task_suspend() increments the task’s suspend count and stops all
threads in the task. As long as the suspend count is positive, newly created threads
will not run. This call doesn’t return until all threads are suspended.

If the count becomes greater than 1, it will take more than one task_resume()
call to restart the task.

RETURN KERN_SUCCESS: The task has been suspended.

KERN_INVALID_ARGUMENT: target_task isn’t a task.

SEE ALSO task_create(), task_terminate(), task_resume(), task_info(),
thread_suspend()

task_terminate()

SUMMARY Terminate a task

SYNOPSIS #import <mach/mach.h>

kern_return_t task_terminate(task_t target_task)

ARGUMENTS target_task: The task to be destroyed (for example, use task_self() to specify the
caller’s task).

DESCRIPTION The function task_terminate() destroys the task specified by target_task and all
its threads. All resources that are used only by this task are freed. Any port to
which this task has receive rights is destroyed.
160

Mach Kernel Functions
RETURN KERN_SUCCESS: The task has been destroyed.

KERN_INVALID_ARGUMENT: target_task isn’t a task.

SEE ALSO task_create(), task_suspend(), task_resume(), thread_terminate(),
thread_suspend()

task_threads()

SUMMARY Get a task’s threads

SYNOPSIS #import <mach/mach.h>

kern_return_t task_threads(task_t target_task, thread_array_t *thread_list,
unsigned int *thread_count)

ARGUMENTS target_task: The task to be affected (for example, use task_self() to specify
the caller’s task).

thread_list: Returns the set of threads contained within target_task; no
particular ordering is guaranteed.

thread_count: Returns the number of threads in thread_list.

DESCRIPTION The function task_threads() gets send rights to the kernel port for each
thread contained in target_task.

The array thread_list is created as a result of this call. You should call
vm_deallocate() on this array when the data is no longer needed.

EXAMPLE r = task_threads(task_self(), &thread_list, &thread_count);

if (r != KERN_SUCCESS)

 mach_error("Error calling task_threads", r);

else {

 if (thread_count == 1)

 printf ("There’s 1 thread in this task\n");

 else

 printf("There are %d threads in this task\n", thread_count);
161

Chapter 3 Mach Functions
/* Deallocate the list of threads. */

 r = vm_deallocate(task_self(), (vm_address_t)thread_list,

 sizeof(thread_list)*thread_count);

 if (r != KERN_SUCCESS)

 mach_error("Trouble freeing thread_list", r);

}

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: target_task isn’t a task.

SEE ALSO thread_create(), thread_terminate(), thread_suspend()

thread_abort()

SUMMARY Interrupt a thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_abort(thread_t target_thread)

ARGUMENTS target_thread: The thread to be interrupted.

DESCRIPTION The function thread_abort() aborts page faults and the kernel functions
msg_send(), msg_receive(), and msg_rpc(), making the call return a code
indicating that it was interrupted. The call is interrupted whether or not the
thread (or task containing it) is currently suspended. If it’s suspended, the thread
receives the interrupt when it resumes.

A thread will retry an aborted page fault if its state isn’t modified before it
resumes. The function msg_send() returns SEND_INTERRUPTED;
msg_receive() returns RCV_INTERRUPTED; and msg_rpc() returns either
SEND_INTERRUPTED or RCV_INTERRUPTED, depending on which
half of the RPC was interrupted.

This function lets one thread stop another thread cleanly, thereby allowing the
future execution of the target thread to be controlled in a predictable way. The
thread_suspend() function keeps the target thread from executing any further
instructions at the user level, including the return from a system call. The
thread_get_state() and thread_set_state() functions let you examine or
modify the user state of a target thread. However, if a suspended thread was
executing within a system call, it also has associated with it a kernel state. This
162

Mach Kernel Functions
kernel state can’t be modified by thread_set_state(); therefore, when the
thread is resumed the system call may return, changing the user state and
possibly user memory.

The thread_abort() function aborts the kernel call from the target thread’s
point of view by resetting the kernel state so that the thread will resume
execution just after the system call. The system call will return one of the
interrupted codes described previously. The system call will either be
entirely completed or entirely aborted, depending on the precise moment
at which the abort was received. Thus if the thread’s user state has been
changed by thread_set_state(), it won’t be modified by any unexpected
system call side effects.

For example, to simulate a UNIX signal, the following sequence of calls
may be used:

1. thread_suspend()—Stops the thread.

2. thread_abort()—Interrupts any system call in progress, setting the return
value to “interrupted.” Since the thread is stopped, it won’t return to user
code.

3. thread_set_state()—Alters the thread’s state to simulate a procedure call
to the signal handler.

4. thread_resume()—Resumes execution at the signal handler. If the
thread’s stack has been correctly set up, the thread can return to the
interrupted system call.

Calling thread_abort() on a thread that’s not suspended is risky, since it’s
difficult to know exactly what system trap, if any, the thread might be
executing and whether an interrupt return would cause the thread to do
something useful.

RETURN KERN_SUCCESS: The thread received an interrupt.

KERN_INVALID_ARGUMENT: target_thread isn’t a thread.

SEE ALSO thread_get_state(), thread_info(), thread_terminate(),
thread_suspend()
163

Chapter 3 Mach Functions
thread_assign(), thread_assign_default()

SUMMARY Assign a thread to a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_assign(thread_t thread, processor_set_t new_processor_set)
kern_return_t thread_assign_default(thread_t thread)

DESCRIPTION thread_assign() assigns thread to new_processor_set; thread_assign_default()
assigns thread to the default processor set.

Note: These functions are useful only on multiprocessor systems.

thread_create()

SUMMARY Create a thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_create(task_t parent_task, thread_t *child_thread)

ARGUMENTS parent_task: The task that should contain the new thread.

child_thread: Returns the new thread.

DESCRIPTION The function thread_create() creates a new thread within parent_task. The new
thread has no processor state, and has a suspend count of 1. To get a new thread
to run, first call thread_create() to get the new thread’s identifier, child_thread.
Then call thread_set_state() to set a processor state. Finally, call
thread_resume() to schedule the thread to execute.

Important: Don’t use this function unless you’re writing a loadable kernel server or implementing a new thread
package, such as the C-thread functions. For normal, user-level programming, use cthread_fork() instead.
You can then use cthread_thread() if you need to get the Mach thread that corresponds to the new C-thread.

When the thread is created, send rights to its thread kernel port are given to it
and returned to the caller in child_thread. The new thread’s exception port is set
to PORT_NULL.
164

Mach Kernel Functions
RETURN KERN_SUCCESS: A new thread has been created.

KERN_INVALID_ARGUMENT: parent_task isn’t a valid task.

KERN_RESOURCE_SHORTAGE: Some critical kernel resource isn’t
available.

SEE ALSO task_create(), task_threads(), thread_terminate(), thread_suspend(),
thread_resume(), thread_special_ports(), thread_set_state()

thread_get_assignment()

SUMMARY Get the name of the processor set to which a thread is assigned

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_get_assignment(thread_t thread, processor_set_t
*processor_set)
Note: This function is useful only in multiprocessor systems.

thread_get_special_port(), thread_set_special_port(), thread_self(),
thread_reply()

SUMMARY Get or set a thread’s special ports

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_get_special_port(thread_t thread, int which_port,
port_t *special_port)
kern_return_t thread_set_special_port(thread_t thread, int which_port,
port_t special_port)
thread_t thread_self(void)
port_t thread_reply(void)

ARGUMENTS thread: The thread to get the port for.
165

Chapter 3 Mach Functions
which_port: The port that’s requested. This is one of:

THREAD_REPLY_PORT
THREAD_EXCEPTION_PORT

special_port: The value of the port that’s being requested or set.

DESCRIPTION The function thread_get_special_port() returns send rights to one of a set of
special ports for the thread specified by thread. In the case of getting the thread’s
own reply port, receive rights are also given to the thread.

The function thread_set_special_port() sets one of a set of special ports for the
thread specified by thread.

The function thread_self() returns the port to which kernel calls for the
currently executing thread should be directed. Currently thread_self() returns
the thread kernel port, which is a port for which the kernel has receive rights and
which it uses to identify a thread. In the future it may be possible for one thread
to interpose a port as another thread’s kernel port. At that time thread_self()
will still return the port to which the executing thread should direct kernel calls,
but it may no longer be a port for which the kernel has receive rights.

If a controller thread has send access to the kernel port of a subject thread, the
controller thread can perform kernel operations for the subject thread.
Normally only the thread itself and its parent task will have access to the thread
kernel port, but any thread may pass rights to its kernel port to any other thread.

The function thread_reply() returns receive and send rights to the reply port
of the calling thread. The reply port is a port to which the thread has receive
rights. It’s used to receive any initialization messages and as a reply port for early
remote procedure calls.

A thread also has access to its task’s special ports.

MACRO
EQUIVALENTS The following macros are defined in the header file

mach/thread_special_ports.h:

thread_get_reply_port(thread, port)
thread_set_reply_port(thread, port)

thread_get_exception_port(thread, port)
thread_set_exception_port(thread, port)
166

Mach Kernel Functions
RETURN KERN_SUCCESS: The port was returned or set.

KERN_INVALID_ARGUMENT: thread isn’t a thread, or which_port is an
invalid port selector.

SEE ALSO task_get_special_port(), task_set_special_port(), task_self(),
thread_create()

thread_get_state(), thread_set_state()

SUMMARY Get or set a thread’s state

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_get_state(thread_t target_thread, int flavor,
thread_state_data_t old_state, unsigned int *old_state_count)
kern_return_t thread_set_state(thread_t target_thread, int flavor,
thread_state_data_t new_state, unsigned int new_state_count)

ARGUMENTS target_thread: The thread whose state is affected.

flavor: The type of state that’s to be manipulated. This may be any one of
the following:

NeXT_THREAD_STATE_REGS
NeXT_THREAD_STATE_68882
NeXT_THREAD_STATE_USER_REG

old_state: Returns an array of state information.

new_state: An array of state information.

old_state_count: The size of the state information array. This may be any
one of the following:

NeXT_THREAD_STATE_REGS_COUNT
NeXT_THREAD_STATE_68882_COUNT
NeXT_THREAD_STATE_USER_REG_COUNT

new_state_count: Same as old_state_count.

DESCRIPTION The function thread_get_state() returns the state component (that is, the
machine registers) of target_thread as specified by flavor. The old_state is an
array of integers that’s provided by the caller and returned filled with the
167

Chapter 3 Mach Functions
specified information. You should set old_state_count to the maximum number of
integers in old_state. On return, old_state_count is equal to the actual number of
integers in old_state.

The function thread_set_state() sets the state component of target_thread as
specified by flavor. The new_state is an array of integers that the caller fills. You
should set new_state_count to the number of elements in new_state. The entire
set of registers is reset.

target_thread must not be thread_self() for either of these calls.

The state structures are defined in the header file
mach/machine/thread_status.h.

RETURN KERN_SUCCESS: The state has been set or returned.

MIG_ARRAY_TOO_LARGE: The returned state is too large for the new_state.
The new_state argument is filled in as much as possible, and new_state_count is set
to the number of elements that would be returned if there were enough room.

KERN_INVALID_ARGUMENT: target_thread isn’t a thread, target_thread is
thread_self(), or flavor is unrecognized for this machine.

SEE ALSO task_info(), thread_info()

thread_info()

SUMMARY Get information about a thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_info(thread_t target_thread, int flavor,
thread_info_t thread_info, unsigned int *thread_info_count)

ARGUMENTS target_thread: The thread to be affected.

flavor: The type of statistics wanted. This can be THREAD_BASIC_INFO or
THREAD_SCHED_INFO.

thread_info: Returns statistics about target_thread.
168

Mach Kernel Functions
thread_info_count: Size of the info structure. This can be
THREAD_BASIC_INFO_COUNT or
THREAD_SCHED_INFO_COUNT.

DESCRIPTION The function thread_info() returns the selected information array for a
thread, as specified by flavor. The thread_info argument is an array of integers
that’s supplied by the caller and returned filled with specified information.
The thread_info_count argument is supplied as the maximum number of
integers in thread_info. On return, it contains the actual number of integers in
thread_info.

The size of the information returned by THREAD_BASIC_INFO is
defined by THREAD_BASIC_INFO_COUNT. The definition of the
information structure returned by THREAD_BASIC_INFO is:

struct thread_basic_info {
 time_value_t user_time; /* user run time */
 time_value_t system_time; /* system run time */
 int cpu_usage; /* scaled cpu usage percentage */
 int base_priority; /* base scheduling priority */
 int cur_priority; /* current scheduling priority */
 int run_state; /* run state */
 int flags; /* various flags */
 int suspend_count; /* suspend count for thread */
 long sleep_time; /* number of seconds that thread
 has been sleeping */
};
typedef struct thread_basic_info *thread_basic_info_t;

The run_state field has one of the following values:

TH_STATE_RUNNING: The thread is running normally.

TH_STATE_STOPPED: The thread is suspended. This happens when the thread or task suspend count is
greater than zero.

TH_STATE_WAITING: The thread is sleeping normally.

TH_STATE_UNINTERRUPTIBLE: The thread is in an uninterruptible sleep. This should happen only for very
short times during some system calls.

TH_STATE_HALTED: The thread is halted at a clean point. This state happens only after a call to
thread_abort().

Possible values of the flags field are:

TH_FLAGS_SWAPPED: The thread is swapped out. This happens when the thread hasn’t run in a long time,
and the kernel stack for the thread has been swapped out.

TH_FLAGS_IDLE: The thread is the idle thread for the CPU. This means that the CPU runs this thread
whenever it has no other threads to run.
169

Chapter 3 Mach Functions
The sleep_time field is useful only when run_state is
TH_STATE_STOPPED. (Currently sleep_time is always set to zero, no
matter how long the thread has been sleeping.)

The size of the information returned by THREAD_SCHED_INFO is defined
by THREAD_SCHED_INFO_COUNT. The definition of the information
structure returned by THREAD_SCHED_INFO is:

struct thread_sched_info {
 int policy; /* scheduling policy */
 int data; /* associated data */
 int base_priority; /* base priority */
 int max_priority; /* max priority */
 int cur_priority; /* current priority */
 boolean_t depressed; /* depressed ? */
 int depress_priority; /* priority depressed from */
};
typedef struct thread_sched_info *thread_sched_info_t;

The policy field has one of the following values: POLICY_FIXEDPRI,
POLICY_TIMESHARE, or POLICY_INTERACTIVE. If policy is
POLICY_FIXEDPRI, then data is the quantum (in milliseconds). Otherwise,
data is meaningless.

EXAMPLE Example of using THREAD_BASIC_INFO:

kern_return_t error;
struct thread_basic_info info;
unsigned int info_count=THREAD_BASIC_INFO_COUNT;

error=thread_info(thread_self(), THREAD_BASIC_INFO,
 (thread_info_t)&info, &info_count);
if (error!=KERN_SUCCESS)
 mach_error("Error calling thread_info()", error);
else {
 printf("User time is %d seconds, %d microseconds\n",
 info.user_time.seconds, info.user_time.microseconds);
 printf("System time is %d seconds, %d microseconds\n",
 info.system_time.seconds, info.system_time.microseconds);
}

Example of using THREAD_SCHED_INFO:

kern_return_t error;
struct thread_sched_info info;
unsigned int info_count=THREAD_SCHED_INFO_COUNT;
170

Mach Kernel Functions
error=thread_info(thread_self(), THREAD_SCHED_INFO,
 (thread_info_t)&info, &info_count);
if (error!=KERN_SUCCESS)
 mach_error("Error calling thread_info()", error);
else {
 printf("Base priority is %d\n", info.base_priority);
 printf("Max priority is %d\n", info.max_priority);
}

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: target_thread isn’t a thread, or flavor
isn’t recognized, or thread_info_count is smaller than it’s supposed to be.

MIG_ARRAY_TOO_LARGE: The returned info array is too large for
thread_info. The thread_info argument is filled as much as possible, and
thread_info_count is set to the number of elements that would have been
returned if there were enough room.

SEE ALSO thread_get_special_port(), task_threads(), task_info(),
thread_get_state()

thread_max_priority() → See thread_priority()

thread_policy()

SUMMARY Set scheduling policy for a thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_policy(thread_t thread, int policy, int data)

ARGUMENTS thread: Thread to set policy for.

policy: Policy to set. This must be POLICY_TIMESHARE,
POLICY_INTERACTIVE, or POLICY_FIXEDPRI.

data: Policy-specific data.

DESCRIPTION This function changes the scheduling policy for thread to policy.
171

Chapter 3 Mach Functions
The data argument is meaningless for the timesharing and interactive policies;
for the fixed-priority policy, it’s the quantum to be used (in milliseconds). The
system will always round the quantum up to the next multiple of the basic
system quantum (min_quantum, which can be obtained from host_info()).
You can find the current quantum using thread_info().

Processor sets can restrict the allowed policies, so this call will fail if the
processor set to which thread is currently assigned doesn’t permit policy.

EXAMPLE kern_return_t error;

struct host_sched_info sched_info;

unsigned int sched_count=HOST_SCHED_INFO_COUNT;

int quantum;

processor_set_t default_set, default_set_priv;

/* Set quantum to a reasonable value. */

error=host_info(host_self(), HOST_SCHED_INFO,

 (host_info_t)&sched_info, &sched_count);

if (error != KERN_SUCCESS) {

 mach_error("SCHED host_info() call failed", error);

 exit(1);

}

else

 quantum = sched_info.min_quantum;

/*

 * Fix the default processor set to take a fixed priority thread.

 */

error=processor_set_default(host_self(), &default_set);

if (error!=KERN_SUCCESS) {

 mach_error("Error calling processor_set_default()", error);

 exit(1);

}

error=host_processor_set_priv(host_priv_self(), default_set,

 &default_set_priv);

if (error != KERN_SUCCESS) {

 mach_error("Call to host_processor_set_priv() failed", error);

 exit(1);

}

error=processor_set_policy_enable(default_set_priv, POLICY_FIXEDPRI);

if (error != KERN_SUCCESS)

 mach_error("Error calling processor_set_policy_enable", error);
172

Mach Kernel Functions
/*

 * Change the thread’s scheduling policy to fixed priority.

 */

error=thread_policy(thread_self(), POLICY_FIXEDPRI, quantum);

if (error != KERN_SUCCESS)

 mach_error("thread_policy() call failed", error);

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: thread is not a thread, or policy is not a
recognized policy.

KERN_FAILURE: The processor set to which thread is currently assigned
doesn’t permit policy.

SEE ALSO processor_set_policy(), thread_switch()

thread_priority(), thread_max_priority()

SUMMARY Set scheduling priority for thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_priority(thread_t thread, int priority, boolean_t
set_max)
kern_return_t thread_max_priority(thread_t thread, processor_set_t
processor_set, int priority)

ARGUMENTS thread: The thread whose priority is to be changed.

priority: The new priority to change it to.

set_max: Also set thread’s maximum priority if true.

processor_set: The privileged port for the processor set to which thread is
currently assigned.

DESCRIPTION Threads have three priorities associated with them by the system: a base
priority, a maximum priority, and a scheduled priority.
173

Chapter 3 Mach Functions
The scheduled priority is used to make scheduling decisions about the thread.
It’s determined from the base priority by the policy. (For the timesharing and
interactive policies, this means adding an increment derived from CPU usage).
The base priority can be set under user control, but can never exceed the
maximum priority. Raising the maximum priority requires presentation of the
privileged port for the thread’s processor set; since the privileged port for the
default processor set is available only to the superuser, users cannot raise their
maximum priority to unfairly compete with other users on that set. Newly
created threads obtain their base priority from the task and their maximum
priority from the thread.

Priorities range from 0 to 31, where higher numbers denote higher priorities.
You can obtain the base, scheduled, and maximum priorities using
thread_info().

The thread_priority() function changes the base priority and optionally the
maximum priority of thread. If the new base priority is higher than the
scheduled priority of the currently executing thread, preemption may occur as a
result of this call. The maximum priority of the thread is also set if set_max is
true. This call fails if priority is greater than the current maximum priority of the
thread. As a result, thread_priority() can lower—but never raise—the value of
a thread’s maximum priority.

The thread_max_priority() function changes the maximum priority of the
thread. Because it requires the privileged port for the processor set, this call can
reset the maximum priority to any legal value. If the new maximum priority is
less than the thread’s base priority, then the thread’s base priority is set to the
new maximum priority.

EXAMPLE /* Get the privileged port for the default processor set. */

error=processor_set_default(host_self(), &default_set);

if (error!=KERN_SUCCESS) {

 mach_error("Error calling processor_set_default()", error);

 exit(1);

}

error=host_processor_set_priv(host_priv_self(), default_set,

 &default_set_priv);

if (error!=KERN_SUCCESS) {

 mach_error("Call to host_processor_set_priv() failed", error);

 exit(1);

}

174

Mach Kernel Functions
/* Set the max priority. */

error=thread_max_priority(thread_self(), default_set_priv, priority);

if (error!=KERN_SUCCESS)

 mach_error("Call to thread_max_priority() failed",error);

/* Set the thread’s priority. */

error=thread_priority(thread_self(), priority, FALSE);

if (error!=KERN_SUCCESS)

 mach_error("Call to thread_priority() failed",error);

RETURN KERN_SUCCESS: Operation completed successfully.

KERN_INVALID_ARGUMENT: thread is not a thread, processor_set is not
a privileged port for a processor set, or priority is out of range (not in 0-31).

KERN_FAILURE: The requested operation would violate the thread’s
maximum (only for thread_priority()), or the thread is not assigned to the
processor set whose privileged port was presented.

SEE ALSO thread_policy(), task_priority(), processor_set_priority(),
thread_switch()

thread_reply() → See thread_get_special_port()

thread_resume()

SUMMARY Resume a thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_resume(thread_t target_thread)

ARGUMENTS target_thread: The thread to be resumed.

DESCRIPTION The function thread_resume() decrements the thread’s suspend count. If
the count becomes 0, the thread is resumed. If it’s still positive, the thread is
left suspended. The suspend count never becomes negative.
175

Chapter 3 Mach Functions
RETURN KERN_SUCCESS: The thread has been resumed.

KERN_FAILURE: The suspend count is already 0.

KERN_INVALID_ARGUMENT: target_thread isn’t a thread.

SEE ALSO task_suspend(), task_resume(), thread_info(), thread_create(),
thread_terminate(), thread_suspend()

thread_self() → See thread_get_special_port()

thread_set_special_port() → See thread_get_special_port()

thread_set_state() → See thread_get_state()

thread_suspend()

SUMMARY Suspend a thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_suspend(thread_t target_thread)

ARGUMENTS target_thread: The thread to be suspended.

DESCRIPTION The function thread_suspend() increments the thread’s suspend count and
prevents the thread from executing any more user-level instructions. In this
context, a user-level instruction is either a machine instruction executed in user
mode or a system trap instruction (including page faults).

If a thread is currently executing within a system trap, the kernel code may
continue to execute until it reaches the system return code, or it may suspend
within the kernel code. In either case, when the thread is resumed the system
trap will return. This could cause unpredictable results if you did a suspend and
then altered the user state of the thread in order to change its direction upon a
resume. The function thread_abort() lets you abort any currently executing
system call in a predictable way.

If the suspend count becomes greater than 1, it will take more than one
thread_resume() call to restart the thread.
176

Mach Kernel Functions
RETURN KERN_SUCCESS: The thread has been suspended.

KERN_INVALID_ARGUMENT: target_thread isn’t a thread.

SEE ALSO task_suspend(), task_resume(), thread_get_state(), thread_info(),
thread_resume(), thread_terminate(), thread_abort()

thread_switch()

SUMMARY Cause a context switch

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_switch(thread_t new_thread, int option, int time)

ARGUMENTS new_thread: Thread to switch to. If you specify THREAD_NULL, be sure
to specify the option argument to be either SWITCH_OPTION_WAIT or
SWITCH_OPTION_DEPRESS.

option: Specifies options associated with context switch. Three options are
recognized:

SWITCH_OPTION_NONE: No options; the time argument is
ignored. (You must set new_thread to a valid thread.)

SWITCH_OPTION_WAIT: This thread is blocked for the specified
time. The block can be aborted by thread_abort().

SWITCH_OPTION_DEPRESS: This thread’s priority is depressed
to the lowest possible value until one of the following happens: time
milliseconds pass, this thread is scheduled again, or thread_abort() is
called on this thread (whichever happens first). Priority depression is
independent of operations that change this thread’s priority; for
example, thread_priority() will not abort the depression.

time: Time duration (in milliseconds) for options. The minimum time can
be obtained as the min_timeout value from host_info().

DESCRIPTION This function provides low-level access to the scheduler’s context switching
code. new_thread is a hint that implements handoff scheduling. The
operating system will attempt to switch directly to new_thread (bypassing the
177

Chapter 3 Mach Functions
normal logic that selects the next thread to run) if possible. If new_thread isn’t valid
or THREAD_NULL, thread_switch() returns an error.

The thread_switch() function is often called when the current thread can
proceed no farther for some reason; the various options and arguments allow
information about this reason to be transmitted to the kernel. The new_thread
argument (handoff scheduling) is useful when the identity of the thread that
must make progress before the current thread runs again is known. The
SWITCH_OPTION_WAIT option is used when the amount of time that the
current thread must wait before it can do anything useful can be estimated and
is fairly long. The SWITCH_OPTION_DEPRESS option is used when the
required waiting time is fairly short, especially when the identity of the thread
that is being waited for is not known.

Users should beware of calling thread_switch() with an invalid new_thread (for
example, THREAD_NULL) and no option. Because the timesharing and
interactive schedulers vary the priority of threads based on usage, this may result
in a waste of CPU time if the thread that must be run is of lower priority. The
use of the SWITCH_OPTION_DEPRESS option in this situation is highly
recommended.

When a thread that’s depressed is scheduled, it regains its old priority. The code
should recheck the conditions to see if it wants to depress again. If
thread_abort() is called on a depressed thread, the priority of the thread is
restored.

Users relying on the preemption semantics of a fixed-priority policy should be
aware that thread_switch() ignores these semantics; it will run the specified
new_thread independent of its priority and the priority of any other threads that
could be run instead.

RETURN KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: new_thread is not a thread, or option is not a
recognized option.
178

Mach Kernel Functions
thread_terminate()

SUMMARY Terminate a thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_terminate(thread_t target_thread)

ARGUMENTS target_thread: The thread to be destroyed.

DESCRIPTION The function thread_terminate() destroys the thread specified by
target_thread.

Warning: Don’t use this function on threads that were created using the C-
thread functions. Each C thread must terminate itself either explicitly, by
calling cthread_exit(), or implicitly, by returning from its top-level
function.

RETURN KERN_SUCCESS: The thread has been destroyed.

KERN_INVALID_ARGUMENT: target_thread isn’t a thread.

SEE ALSO task_terminate(), task_threads(), thread_create(), thread_resume(),
thread_suspend()

unix_pid()

SUMMARY Get the process ID of a task

SYNOPSIS #import <mach/mach.h>

kern_return_t unix_pid(task_t target_task, int *pid)

ARGUMENTS target_task: The task for which you want the process ID.

pid: Returns the process ID of target_task.

DESCRIPTION Returns the process ID of target_task. If the call doesn’t succeed, pid is set to
-1.
179

Chapter 3 Mach Functions
EXAMPLE result=unix_pid(task_self(), &my_pid);

if (result!=KERN_SUCCESS) {

 mach_error("Call to unix_pid failed", result);

 exit(1);

}

printf("My process ID is %d\n", my_pid);

RETURN KERN_SUCCESS: The call succeeded.

KERN_FAILURE: target_task isn’t a valid task. This might be because
target_task is a pure Mach task (one created using task_create()).

SEE ALSO task_by_unix_pid()

vm_allocate()

SUMMARY Allocate virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_allocate(vm_task_t target_task, vm_address_t *address,
vm_size_t size, boolean_t anywhere)

ARGUMENTS target_task: Task whose virtual memory is to be affected. Use task_self() to
allocate memory in the caller’s address space.

address: Starting address. If anywhere is true, the input value of this address will
be ignored, and the space will be allocated wherever it’s available. If anywhere is
false, an attempt is made to allocate virtual memory starting at this virtual
address. If this address isn’t at the beginning of a virtual page, it gets rounded
down so that it is. If there isn’t enough space at this address, no memory will be
allocated. No matter what the value of anywhere is, the address at which memory
is actually allocated is returned in address.

size: Number of bytes to allocate (rounded up by the system to an integral
number of virtual pages).

anywhere: If true, the kernel should find and allocate any region of the specified
size. If false, virtual memory is allocated starting at address (rounded down to a
virtual page boundary) if sufficient space exists.
180

Mach Kernel Functions
DESCRIPTION The function vm_allocate() allocates a region of virtual memory, placing it in
the address space of the specified task. The physical memory isn’t actually
allocated until the new virtual memory is referenced. By default, the kernel
rounds all addresses down to the nearest page boundary and all memory sizes
up to the nearest page size. The global variable vm_page_size contains the
page size. For languages other than C, the value of vm_page_size can be
obtained by calling vm_statistics().

Initially, the pages of allocated memory are protected to allow all forms of
access, and are inherited in child tasks as a copy. Subsequent calls to
vm_protect() and vm_inherit() may be used to change these properties.
The allocated region is always zero-filled.

Note: Unless you have a special reason for calling vm_allocate() (such as a
need for page-aligned memory), you should usually call malloc() or a
similar C library function instead. The C library functions don’t necessarily
make UNIX or Mach system calls, so they’re generally faster than using a
Mach function such as vm_allocate().

EXAMPLE if ((ret = vm_allocate(task_self(), (vm_address_t *)&lock,

 sizeof(int), TRUE)) != KERN_SUCCESS) {

 mach_error("vm_allocate returned value of ", ret);

 printf("Exiting with error.\n");

 exit(-1);

}

if ((ret = vm_inherit(task_self(), (vm_address_t)lock, sizeof(int),

 VM_INHERIT_SHARE)) != KERN_SUCCESS) {

 mach_error("vm_inherit returned value of ", ret);

 printf("Exiting with error.\n");

 exit(-1);

}

RETURN KERN_SUCCESS: Memory allocated.

KERN_INVALID_ADDRESS: Illegal address specified.

KERN_NO_SPACE: Not enough space left to satisfy this request.

SEE ALSO vm_deallocate(), vm_inherit(), vm_protect(), vm_region(),
vm_statistics()
181

Chapter 3 Mach Functions
vm_copy()

SUMMARY Copy virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_copy(vm_task_t target_task, vm_address_t source_address,
vm_size_t size, vm_address_t dest_address)

ARGUMENTS target_task: The task whose virtual memory is to be affected.

source_address: The address in target_task of the start of the source range (must
be a page boundary).

size: The number of bytes to copy (must be a multiple of vm_page_size).

dest_address: The address in target_task of the start of the destination range (must
be a page boundary).

DESCRIPTION The function vm_copy() causes the source memory range to be copied to the
destination address; the destination region must not overlap the source region.
The destination address range must already be allocated and writable; the source
range must be readable.

For languages other than C, the value of vm_page_size can be obtained by
calling vm_statistics().

EXAMPLE if ((rtn = vm_allocate(task_self(), (vm_address_t *)&data1,

 vm_page_size, TRUE)) != KERN_SUCCESS) {

 mach_error("vm_allocate returned value of ", rtn);

 printf("vm_copy: Exiting.\n");

 exit(-1);

}

temp = data1;

for (i = 0; (i < vm_page_size / sizeof(int)); i++)

 temp[i] = i;

printf("vm_copy: set data\n");

if ((rtn = vm_allocate(task_self(), (vm_address_t *)&data2,

 vm_page_size, TRUE)) != KERN_SUCCESS) {

 mach_error("vm_allocate returned value of ", rtn);

 printf("vm_copy: Exiting.\n");

 exit(-1);

}

182

Mach Kernel Functions
if ((rtn = vm_copy(task_self(), (vm_address_t)data1, vm_page_size,

 (vm_address_t)data2)) != KERN_SUCCESS) {

 mach_error("vm_copy returned value of ", rtn);

 printf("vm_copy: Exiting.\n");

 exit(-1);

}

RETURN KERN_SUCCESS: Memory copied.

KERN_INVALID_ARGUMENT: The address doesn’t start on a page
boundary or the size isn’t a multiple of vm_page_size.

KERN_PROTECTION_FAILURE: The destination region isn’t
writable, or the source region isn’t readable.

KERN_INVALID_ADDRESS: An illegal or nonallocated address was
specified, or insufficient memory was allocated at one of the addresses.

SEE ALSO vm_allocate(), vm_protect(), vm_write(), vm_statistics()

vm_deactivate()

SUMMARY Mark virtual memory as unlikely to be used soon

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_deactivate(vm_task_t target_task, vm_address_t address,
vm_size_t size, int when)

ARGUMENTS target_task: Task whose virtual memory is to be affected.

address: Starting address (must be on a page boundary).

size: The number of bytes to deactivate (must be a multiple of
vm_page_size). Specifying 0 deactivates all of the task’s memory at or
above address.

when: A mask specifying how aggressively the system should deactivate the
memory, and whether the memory should be deactivated if it’s shared.
Values for when are defined in the header file mach/vm_policy.h.
183

Chapter 3 Mach Functions
DESCRIPTION This function lets you tell the operating system that a region of memory won’t be
used for a long time. It differs from vm_deallocate() in that the task’s mapping to
the memory is retained; only the physical memory associated with the region is
affected.

A when value of VM_DEACTIVATE_NOW is the most extreme—the system
will immediately place clean pages at the front of the free list, and dirty pages at
the front of the inactive list. A when value of VM_DEACTIVATE_SOON
specifies that the system should place all pages on the tail of the inactive list.
You can add the mask VM_DEACTIVATE_SHARED to indicate that only
shared memory should be affected.

This call is used in the window server to deactivate the backing stores of
windows in hidden applications, and is used in the Application Kit to deactivate
the text, data, and stack of hidden applications.

SEE ALSO vm_set_policy()

vm_deallocate()

SUMMARY Deallocate virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_deallocate(vm_task_t target_task, vm_address_t address,
vm_size_t size)

ARGUMENTS target_task: Task whose virtual memory is to be affected.

address: Starting address (this gets rounded down to a page boundary).

size: Number of bytes to deallocate (this gets rounded up to a page boundary).

DESCRIPTION The function vm_deallocate() relinquishes access to a region of a task’s address
space, causing further access to that memory to fail. This address range will be
available for reallocation. Note that because of the rounding to virtual page
boundaries, more than size bytes may be deallocated. Use vm_statistics() or the
global variable vm_page_size to get the current virtual page size.

This function may be used to deallocate memory that was passed to a task in a
message (using out-of-line data). In that case, the rounding should cause no
trouble, since the region of memory was allocated as a set of pages.
184

Mach Kernel Functions
The function vm_deallocate() affects only the task specified by target_task.
Other tasks that may have access to this memory can continue to reference
it.

EXAMPLE r = vm_deallocate(task_self(), (vm_address_t)thread_list,

 sizeof(thread_list)*thread_count);

if (r != KERN_SUCCESS)

 mach_error("Trouble freeing thread_list", r);

RETURN KERN_SUCCESS: Memory deallocated.

KERN_INVALID_ADDRESS: Illegal or nonallocated address specified.

SEE ALSO vm_allocate(), vm_statistics(), msg_receive()

vm_inherit()

SUMMARY Inherit virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_inherit(vm_task_t target_task, vm_address_t address,
vm_size_t size, vm_inherit_t new_inheritance)

ARGUMENTS target_task: Task whose virtual memory is to be affected.

address: Starting address (this gets rounded down to a page boundary).

size: Size in bytes of the region for which inheritance is to change (this gets
rounded up to a page boundary).

new_inheritance: How this memory is to be inherited in child tasks.
Inheritance is specified by using one of these following three values:

VM_INHERIT_SHARE: Child tasks will share this memory with this task.
VM_INHERIT_COPY: Child tasks will receive a copy of this region.
VM_INHERIT_NONE: This region will be absent from child tasks.

DESCRIPTION The function vm_inherit() specifies how a region of a task’s address space is
to be passed to child tasks at the time of task creation. Inheritance is an
attribute of virtual pages; thus the addresses and size of memory to be set will
be rounded to refer to whole pages.
185

Chapter 3 Mach Functions
Setting vm_inherit() to VM_INHERIT_SHARE and forking a child task is the
only way two Mach tasks can share physical memory. However, all the threads
of a given task share all the same memory.

EXAMPLE if ((ret = vm_allocate(task_self(), (vm_address_t *)&lock, sizeof(int),

 TRUE)) != KERN_SUCCESS) {

 mach_error("vm_allocate returned value of ", ret);

 printf("Exiting with error.\n");

 exit(-1);

}

if ((ret = vm_inherit(task_self(), (vm_address_t)lock, sizeof(int),

 VM_INHERIT_SHARE)) != KERN_SUCCESS) {

 mach_error("vm_inherit returned value of ", ret);

 printf("Exiting with error.\n");

 exit(-1);

}

RETURN KERN_SUCCESS: The inheritance has been set.

KERN_INVALID_ADDRESS: Illegal address specified.

SEE ALSO task_create(), vm_region()

vm_protect()

SUMMARY Protect virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_protect(vm_task_t target_task, vm_address_t address,
vm_size_t size, boolean_t set_maximum, vm_prot_t new_protection)

ARGUMENTS target_task: Task whose virtual memory is to be affected.

address: Starting address (this gets rounded down to a page boundary).

size: Size in bytes of the region for which protection is to change (this gets
rounded up to a page boundary).

set_maximum: If set, make the protection change apply to the maximum
protection associated with this address range; otherwise, change the current
186

Mach Kernel Functions
protection on this range. If the maximum protection is reduced below the
current protection, both will be changed to reflect the new maximum.

new_protection: A new protection value for this region; either
VM_PROT_NONE or some combination of VM_PROT_READ,
VM_PROT_WRITE, and VM_PROT_EXECUTE.

DESCRIPTION The function vm_protect() changes the protection of some pages of
allocated memory in a task’s address space. In general, a protection value
permits the named operation. When memory is first allocated it has all
protection bits on. The exact interpretation of a protection value is machine-
dependent. In the NeXT Mach operating system, three levels of memory
protection are provided:

• No access
• Read and execute access
• Read, execute, and write access
VM_PROT_NONE permits no access. VM_PROT_WRITE permits
read, execute, and write access; VM_PROT_READ or
VM_PROT_EXECUTE permits read and execute access, but not write
access.

EXAMPLE vm_address_t addr = (vm_address_t)mlock;

r = vm_protect(task_self(), addr, vm_page_size, FALSE, 0);

if (r != KERN_SUCCESS) {

 mach_error("vm_protect 0", r);

 exit(1);

}

printf("protect on\n");

RETURN KERN_SUCCESS: The memory has been protected.

KERN_PROTECTION_FAILURE: An attempt was made to increase
the current or maximum protection beyond the existing maximum
protection value.

KERN_INVALID_ADDRESS: An illegal or nonallocated address was
specified.
187

Chapter 3 Mach Functions
vm_read()

SUMMARY Read virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_read(vm_task_t target_task, vm_address_t address, vm_size_t
size, pointer_t *data, unsigned int *data_count)

ARGUMENTS target_task: Task whose memory is to be read.

address: The first address to be read (must be on a page boundary).

size: The number of bytes of data to be read (must be a multiple of
vm_page_size).

data: The array of data copied from the given task.

data_count: Returns the size of the data array in bytes (will be an integral
number of pages).

DESCRIPTION The function vm_read() allows one task’s virtual memory to be read by another
task. The data array is returned in a newly allocated region; the task reading the
data should call vm_deallocate() on this region when it’s done with the data.

For languages other than C, the value of vm_page_size can be obtained by
calling vm_statistics().

EXAMPLE if ((rtn = vm_allocate(task_self(), (vm_address_t *)&data1,

 vm_page_size, TRUE)) != KERN_SUCCESS) {

 mach_error("vm_allocate returned value of ", rtn);

 printf("vmread: Exiting.\n");

 exit(-1);

}

188

Mach Kernel Functions
temp = data1;

for (i = 0; (i < vm_page_size); i++)

 temp[i] = i;

printf("Filled space allocated with some data.\n");

printf("Doing vm_read....\n");

if ((rtn = vm_read(task_self(), (vm_address_t)data1, vm_page_size,

 (pointer_t *)&data2, &data_cnt)) != KERN_SUCCESS) {

 mach_error("vm_read returned value of ", rtn);

 printf("vmread: Exiting.\n");

 exit(-1);

}

printf("Successful vm_read.\n");

RETURN KERN_SUCCESS: The memory has been read.

KERN_INVALID_ARGUMENT: Either address does not start on a page
boundary or size isn’t an integral number of pages.

KERN_NO_SPACE: There isn’t enough room in the caller’s virtual
memory to allocate space for the data to be returned.

KERN_PROTECTION_FAILURE: The address region in the target
task is protected against reading.

KERN_INVALID_ADDRESS: An illegal or nonallocated address was
specified, or there were not size bytes of data following that address.

SEE ALSO vm_write(), vm_copy(), vm_deallocate()

vm_region()

SUMMARY Get information about virtual memory regions

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_region(vm_task_t target_task, vm_address_t *address,
vm_size_t *size, vm_prot_t *protection, vm_prot_t *max_protection,
vm_inherit_t *inheritance, boolean_t *shared, port_t *object_name,
vm_offset_t *offset)

ARGUMENTS target_task: The task for which an address space description is requested.
189

Chapter 3 Mach Functions
address: The address at which to start looking for a region. On return, address
will contain the start of the region (therefore, the value returned will be different
from the value that was passed in if the specified region is part of a larger region).

size: Returns the size (in bytes) of the located region.

protection: Returns the current protection of the region.

max_protection: Returns the maximum allowable protection for this region.

inheritance: Returns the inheritance attribute for this region.

shared: Returns true if this region is shared, false if it isn’t.

object_name: Returns the port identifying the region’s memory object.

offset: Returns the offset into the pager object at which this region begins.

DESCRIPTION The vm_region() function returns a description of the specified region of the
target task’s virtual address space. This function begins at address, looking forward
through memory until it comes to an allocated region. (If address is in a region, that
region is used.) If address isn’t in a region, it’s set to the start of the first region that
follows the incoming value. In this way an entire address space can be scanned.
You can set address to the constant VM_MIN_ADDRESS (defined in the header
file mach/machine/vm_param.h) to specify the first address in the address
space.

EXAMPLE char *data;

kern_return_t r;

vm_size_t size;

vm_prot_t protection, max_protection;

vm_inherit_t inheritance;

boolean_t shared;

port_t object_name;

vm_offset_t offset;

vm_address_t address;

/* . . . */

/* Check the inheritance of "data". */

address = (vm_address_t)&data;

r = vm_region(task_self(), &address, &size, &protection,

 &max_protection, &inheritance, &shared, &object_name, &offset);
190

Mach Kernel Functions
if (r != KERN_SUCCESS)

 mach_error("Error calling vm_region", r);

else {

 printf("Inheritance is: ");

 switch (inheritance) {

 case VM_INHERIT_SHARE:

 printf("Share with child\n");

 break;

 case VM_INHERIT_COPY:

 printf("Copy into child\n");

 break;

 case VM_INHERIT_NONE:

 printf("Absent from child\n");

 break;

 case VM_INHERIT_DONATE_COPY:

 printf("Copy and delete\n");

 break;

 }

}

RETURN KERN_SUCCESS: The region was located and information has been
returned.

KERN_NO_SPACE: The task contains no region at or above address.

SEE ALSO vm_allocate(), vm_deallocate(), vm_protect(), vm_inherit()

vm_set_policy()

SUMMARY Set the paging policy for a region of memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_set_policy(vm_task_t target_task, vm_address_t address,
vm_size_t size, int policy)

ARGUMENTS target_task: Task whose virtual memory is to be affected.

address: Starting address (must be on a page boundary).

size: Number of bytes (must be a multiple of vm_page_size).
191

Chapter 3 Mach Functions
policy: Mask specifying the paging policy. Values for policy are defined in the
header file mach/vm_policy.h.

DESCRIPTION This function lets you control the paging policy for a region of memory. In
addition to its normal paging policy, the system can control the placement of pages
under certain patterns of access. These patterns are currently limited to strictly
sequential access in either direction.

The policy mask can have the following values, which can be combined:

• VM_POLICY_PAGE_AHEAD (page ahead)
• VM_POLICY_SEQ_DEACTIVATE (deactivate behind)
• VM_POLICY_SEQ_FREE (free behind)
• VM_POLICY_RANDOM (don’t use a special paging policy)

Note: The page-ahead policy isn’t currently implemented.

Calls to vm_policy() affect memory at the backing store level, not the mapping
level. For example, calling vm_policy() on a memory-mapped file affects the
underlying file, and consequently all uses of that file. It is currently impossible
for different users of the same file to have different policies for that file.

SEE ALSO vm_deactivate()

vm_statistics()

SUMMARY Examine virtual memory statistics

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_statistics(vm_task_t target_task, vm_statistics_data_t
*vm_stats)

ARGUMENTS target_task: The task that’s requesting the statistics.

vm_stats: Returns the statistics.

DESCRIPTION The function vm_statistics() returns statistics about the kernel’s use of virtual
memory since the kernel was booted. The system page size is contained in both
the pagesize field of the vm_status and the global variable vm_page_size, which
is set at task initialization and remains constant for the life of the task.
192

Mach Kernel Functions
struct vm_statistics {

 long pagesize; /* page size in bytes */

 long free_count; /* number of pages free */

 long active_count; /* number of pages active */

 long inactive_count; /* number of pages inactive */

 long wire_count; /* number of pages wired down */

 long zero_fill_count; /* number of zero-fill pages */

 long reactivations; /* number of pages reactivated */

 long pageins; /* number of pageins */

 long pageouts; /* number of pageouts */

 long faults; /* number of faults */

 long cow_faults; /* number of copy-on-writes */

 long lookups; /* object cache lookups */

 long hits; /* object cache hits */

};

typedef struct vm_statistics vm_statistics_data_t;

EXAMPLE result=vm_statistics(task_self(), &vm_stats);

if (result != KERN_SUCCESS)

 mach_error("An error calling vm_statistics()!", result);

else

 printf("%d bytes of RAM are free\n",

 vm_stats.free_count * vm_stats.pagesize);

RETURN KERN_SUCCESS: The operation was successful.

vm_write()

SUMMARY Write virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_write(vm_task_t target_task, vm_address_t address,
pointer_t data, unsigned int data_count)

ARGUMENTS target_task: Task whose memory is to be written.

address: Starting address in task to be affected (must be a page boundary).

data: An array of bytes to be written.

data_count: The size in bytes of the data array (must be a multiple of
vm_page_size).
193

Chapter 3 Mach Functions
DESCRIPTION The function vm_write() allows a task’s virtual memory to be written by another
task. For languages other than C, the value of vm_page_size can be obtained by
calling vm_statistics().

RETURN KERN_SUCCESS: Memory written.

KERN_INVALID_ARGUMENT: The address doesn’t start on a page
boundary, or the size isn’t an integral number of pages.

KERN_PROTECTION_FAILURE: The address region in the target task is
protected against writing.

KERN_INVALID_ADDRESS: An illegal or nonallocated address was
specified or the amount of allocated memory starting at address was less than
data_count.

SEE ALSO vm_copy(), vm_protect(), vm_read(), vm_statistics()

Bootstrap Server Functions

The Bootstrap Server, like the Network Name Server, lets tasks publish ports
that other tasks can send messages to. Unlike the Network Name Server, the
Bootstrap Server is designed so that each server and its clients must be on the
same host. The Bootstrap Server accomplishes this by using each task’s
bootstrap port (which is inherited from its parent) to ensure that the task is a
descendent of a local task.

When a task forks a child task that shouldn’t have access to the same set of
services as the parent, the parent task must change its own bootstrap port—
perhaps only temporarily—so that its child inherits a subset port. The parent
should then change the set of services available on the subset port to suit the
child’s requirements.

The Bootstrap Server was created by NeXT, so these functions aren’t in other
versions of Mach. See /NextDeveloper/Headers/servers/bootstrap.defs for
more information of how the Bootstrap Server works.

Note: If possible, you should use Distributed Objects instead of the Bootstrap
Server. The Distributed Objects system is described in the NEXTSTEP General
Reference.
194

Bootstrap Server Functions
bootstrap_check_in()

SUMMARY Get receive rights to a service port

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_check_in(port_t bootstrap_port, name_t
service_name, port_all_t *service_port)

ARGUMENTS bootstrap_port: A bootstrap port. Usually, this should be the task’s default
bootstrap port, which is returned by task_get_bootstrap_port().

service_name: The string that names the service.

service_port: Returns receive rights to the service port.

DESCRIPTION Use this function in a server to start providing a service. The service must
already be defined, either by the appropriate line in /etc/bootstrap.conf or by
a call to bootstrap_create_service(). Calling bootstrap_check_in() makes
the service active.

EXAMPLE /* Get receive rights for our service. */

result=bootstrap_check_in(bootstrap_port, MYNAME,

&my_service_port);

if (result != BOOTSTRAP_SUCCESS)

 mach_error("Couldn’t create service", result);

RETURN BOOTSTRAP_SUCCESS: The call succeeded.

BOOTSTRAP_NOT_PRIVILEGED: bootstrap_port is an unprivileged
bootstrap port.

BOOTSTRAP_UNKNOWN_SERVICE: The service doesn’t exist. It
might be defined in a subset (see bootstrap_subset()).

BOOTSTRAP_SERVICE_ACTIVE: The service has already been
registered or checked in and the server hasn’t died.

Returns appropriate kernel errors on RPC failure.
195

Chapter 3 Mach Functions
bootstrap_create_service()

SUMMARY Create a service and service port

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_create_service(port_t bootstrap_port, name_t
service_name, port_t *service_port)

ARGUMENTS bootstrap_port: A bootstrap port. Usually, this should be the task’s default
bootstrap port, which is returned by task_get_bootstrap_port().

service_name: The string that specifies the service.

service_port: Returns send rights for the service.

DESCRIPTION Creates a service named service_name and returns send rights to that port in
service_port. The port may later be checked in as if this port were configured in the
bootstrap configuration file. (At that time bootstrap_check_in() will return
receive rights to service_port and will make the service active.)

This function is often used to create services that are available only to a subset
of tasks (see bootstrap_subset()). Any task can call this function—it doesn’t
have to be the server.

EXAMPLE /* Tell the bootstrap server about a service. */

result=bootstrap_create_service(bootstrap_port, SERVICENAME,

 &service_port);

if (result!=BOOTSTRAP_SUCCESS)

 mach_error("Couldn’t create service", result);

RETURN BOOTSTRAP_SUCCESS: The call succeeded.

BOOTSTRAP_NOT_PRIVILEGED: bootstrap_port is an unprivileged
bootstrap port.

BOOTSTRAP_SERVICE_ACTIVE: The service already exists.

Returns appropriate kernel errors on RPC failure.
196

Bootstrap Server Functions
bootstrap_info()

SUMMARY Get information about all known services

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_info(port_t bootstrap_port, name_array_t
*service_names, unsigned int *service_names_count, name_array_t
*server_names, unsigned int *server_names_count, bool_array_t *service_active,
unsigned int *service_active_count)

ARGUMENTS bootstrap_port: A bootstrap port. Usually, this should be the task’s default
bootstrap port, which is returned by task_get_bootstrap_port().

service_names: Returns the names of all known services.

service_names_count: Returns the number of service names.

server_names: Returns the name, if known, of the server that provides the
corresponding service. Except for the mach_init server, this name isn’t
known unless the bootstrap configuration file has a server line for this
server.

server_names_count: Returns the number of server names.

service_active: Returns an array of booleans that correspond to the
service_names array. For each item, the boolean value is true if the service is
receiving messages sent to its port; otherwise, it’s false.

service_active_count: Returns the number of items in the service_active array.

DESCRIPTION This function returns information about all services that are known. Note that
it won’t return information on services that are defined only in subsets, unless
the subset port is an ancestor of bootstrap_port. (See bootstrap_subset() for
information on subsets.)
197

Chapter 3 Mach Functions
EXAMPLE result = bootstrap_info(bootstrap_port, &service_names, &service_cnt,

 &server_names, &server_cnt, &service_active, &service_active_cnt);

if (result != BOOTSTRAP_SUCCESS)

 printf("ERROR: info failed: %d", result);

else {

 for (i = 0; i < service_cnt; i++)

 printf("Name: %-15s Server: %-15s Active: %-4s",

 service_names[i],

 server_names[i][0] == ’\0’ ? "Unknown" : server_names[i],

 service_active[i] ? "Yes\n" : "No\n");

}

RETURN BOOTSTRAP_SUCCESS: The call succeeded.

BOOTSTRAP_NO_MEMORY: The Bootstrap Server couldn’t allocate
enough memory to return the information.

Returns appropriate kernel errors on RPC failure.

bootstrap_look_up()

SUMMARY Get the service port of a particular service

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_look_up(port_t bootstrap_port, name_t service_name,
port_t *service_port)

ARGUMENTS bootstrap_port: A bootstrap port. Usually, this should be the task’s default
bootstrap port, which is returned by task_get_bootstrap_port().

service_name: The string that identifies the service.

service_port: Returns send rights for the service port.

DESCRIPTION Returns send rights for the service port of the specified service. The service isn’t
guaranteed to be active. (To check whether the service is active, use
bootstrap_status().)
198

Bootstrap Server Functions
EXAMPLE result=bootstrap_look_up(bootstrap_port, "FreeService2",

&srvc_port);

if (result!=BOOTSTRAP_SUCCESS)

 printf("lookup failed: %d\n", result);

else {

 /* Access the service by sending messages to srvc_port. */

}

RETURN BOOTSTRAP_SUCCESS: The call succeeded.

BOOTSTRAP_UNKNOWN_SERVICE: The service doesn’t exist. It
might be defined in a subset (see bootstrap_subset()).

Returns appropriate kernel errors on RPC failure.

bootstrap_look_up_array()

SUMMARY Get the service ports for an array of services

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_look_up_array(port_t bootstrap_port,
name_array_t service_names, unsigned int service_names_count,
port_array_t *service_ports, unsigned int *service_ports_count,
boolean_t *all_services_known)

ARGUMENTS bootstrap_port: A bootstrap port. Usually, this should be the task’s default
bootstrap port, which is returned by task_get_bootstrap_port().

service_names: An array of service names.

service_names_count: The number of service names.

service_ports: Returns an array of service ports.

service_ports_count: Returns the number of service ports. This should be
equal to service_names_count.

all_services_known: Returns true if every service name was recognized;
otherwise returns false.
199

Chapter 3 Mach Functions
DESCRIPTION Returns port send rights in corresponding entries of the array service_ports for all
services named in the array service_names. You should call vm_deallocate() on
service_ports when you no longer need it.

Unknown service names have the corresponding service port set to
PORT_NULL. Note that these services might be available in a subset (see
bootstrap_subset()).

EXAMPLE kern_return_t result;

port_t my_bootstrap_port;

unsigned int port_cnt;

boolean_t all_known;

name_t name_array[2]={"Service", "NetMessage"};

port_array_t ports;

result = task_get_bootstrap_port(task_self(), &my_bootstrap_port);

if (result != KERN_SUCCESS) {

 mach_error("Couldn’t get bootstrap port", result);

 exit(1);

}

result=bootstrap_look_up_array(my_bootstrap_port, name_array, 2,

 &ports, &port_cnt, &all_known);

if (result!=BOOTSTRAP_SUCCESS)

 mach_error("Lookup array failed", result);

else

 printf("Port count = %d, all known = %d\n", port_cnt, all_known);

/* . . . */

result=vm_deallocate(task_self(), (vm_address_t)ports,

 sizeof(ports)*port_cnt);

if (result != KERN_SUCCESS)

 mach_error("Trouble freeing ports", result);

RETURN BOOTSTRAP_SUCCESS: The call succeeded.

BOOTSTRAP_BAD_COUNT: service_names_count was too large (greater than
BOOTSTRAP_MAX_LOOKUP_COUNT, which is defined in the header file
server/bootstrap_defs.h).

Returns appropriate kernel errors on RPC failure.
200

Bootstrap Server Functions
bootstrap_register()

SUMMARY Register send rights for a service port

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_register(port_t bootstrap_port, name_t
service_name, port_t service_port)

ARGUMENTS bootstrap_port: A bootstrap port. Usually, this should be the task’s default
bootstrap port, which is returned by task_get_bootstrap_port().

service_name: The string that identifies the service.

service_port: The service port for the service.

DESCRIPTION You can use this function to create a server that hasn’t been defined in the
bootstrap configuration file. This function specifies to the Bootstrap Server
exactly which port should be the service port.

You can’t register a service if an active binding already exists. However, you
can register a service if the existing binding is inactive (that is, the Bootstrap
Server currently holds receive rights for the service port); in this case the
previous service port will be deallocated.

A service that is restarting can resume service for previous clients by setting
service_port to the previous service port. You can get this port by calling
bootstrap_check_in().

EXAMPLE /* Create a port to use as the service port. */

result=port_allocate(task_self(), &myport);

if (result != KERN_SUCCESS) {

 mach_error("Couldn’t allocate a service port", result);

 exit(1);

}

/* Tell the bootstrap server about my service. */

result=bootstrap_register(bootstrap_port, MYNAME, myport);

if (result != BOOTSTRAP_SUCCESS)

 printf("Call to bootstrap_register failed: %d", result);
201

Chapter 3 Mach Functions
RETURN BOOTSTRAP_SUCCESS: The call succeeded.

BOOTSTRAP_NOT_PRIVILEGED: bootstrap_port is an unprivileged
bootstrap port.

BOOTSTRAP_NAME_IN_USE: The service is already active.

Returns appropriate kernel errors on RPC failure.

bootstrap_status()

SUMMARY Check whether a service is available

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_status(port_t bootstrap_port, name_t service_name,
boolean_t *service_active∞)

ARGUMENTS bootstrap_port: A bootstrap port. Usually, this should be the task’s default
bootstrap port, which is returned by task_get_bootstrap_port().

service_name: The string that specifies a particular service.

service_active: Returns true if the service is active; otherwise, returns false.

DESCRIPTION This function tells you whether a service is known to users of bootstrap_port, and
whether it’s active. A service is active if a server is able to receive messages on its
service port. If a service isn’t active, the Bootstrap Server holds receive rights for
the service port.

EXAMPLE result=bootstrap_status(bootstrap_port, MYNAME, &service_active);

if (result!=BOOTSTRAP_SUCCESS)

 printf("status check failed\n");

else {

 if (service_active)

 printf("Server %s is active\n", MYNAME);

 else

 printf ("Server %s is NOT active\n", MYNAME);

}

202

Bootstrap Server Functions
RETURN BOOTSTRAP_SUCCESS: The call succeeded.

BOOTSTRAP_UNKNOWN_SERVICE: The service doesn’t exist. It
might be defined in a subset (see bootstrap_subset()).

Returns appropriate kernel errors on RPC failure.

bootstrap_subset()

SUMMARY Get a new port to use as a bootstrap port

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_subset(port_t bootstrap_port, port_t requestor_port,
port_t *subset_port)

ARGUMENTS bootstrap_port: A bootstrap port. Usually, this should be the task’s default
bootstrap port, which is returned by task_get_bootstrap_port().

requestor_port: A port that determines the life span of the subset.

subset_port: Returns the subset port.

DESCRIPTION Returns a new port to use as a bootstrap port. This port behaves exactly like
the previous bootstrap_port, with one exception: When you register a port by
calling bootstrap_register() using subset_port as the bootstrap port, the
registered port is available only to users of subset_port and its descendants.
Lookups on the subset_port will return ports registered specifically with this
port, and will also return ports registered with ancestors of this subset_port.
(The ancestors of subset_port are bootstrap_port and, if bootstrap_port is itself a
subset port, any ancestors of bootstrap_port.)

You can override a service already registered with an ancestor port by
registering it with the subset port. Any thread that looks up the service
using the subset port will see only the version of the service that’s registered
with the subset port. This is one way to transparently provide services such
as monitor programs or individualized spelling checkers, while the rest of
the system still uses the default service.

When it's detected that requestor_port is destroyed, the subset port and its
descendants are destroyed; the services advertised by these ports are
destroyed, as well.
203

Chapter 3 Mach Functions
/* Get and save the current bootstrap port for this task. */

r = task_get_bootstrap_port(task_self(), &old_bs_port);

if (r != KERN_SUCCESS) {

 mach_error("task_get_bootstrap_port", r);

 exit(1);

}

/* Get a subset port. */

r = bootstrap_subset(old_bs_port, task_self(), &subset_port);

if (r != BOOTSTRAP_SUCCESS) {

 mach_error("Couldn't get unpriv port", r);

 exit(1);

}

/* Set the bootstrap port */

r = task_set_bootstrap_port(task_self(), subset_port);

if (r != KERN_SUCCESS) {

 mach_error("task_set_bootstrap_port", r);

 exit(1);

}

bootstrap_port = subset_port;

RETURN BOOTSTRAP_SUCCESS: The call succeeded.

BOOTSTRAP_NOT_PRIVILEGED: bootstrap_port is an unprivileged
bootstrap port.

Returns appropriate kernel errors on RPC failure.

Network Name Server Functions

If possible, you should use Distributed Objects instead of the Network Name
Server functions. The Distributed Objects system is described in the
NEXTSTEP General Reference.
204

Network Name Server Functions
netname_check_in()

SUMMARY Check a name into the local name space

SYNOPSIS #import <mach/mach.h>
#import <servers/netname.h>

kern_return_t netname_check_in(port_t server_port, netname_name_t
port_name, port_t signature, port_t port_id)

ARGUMENTS server_port: The task’s port to the Network Name Server. To use the system
Network Name Server, this should be set to the global variable
name_server_port.

port_name: The name of the port to be checked in.

signature: The port used to protect the right to remove a name.

port_id: The port to be checked in.

DESCRIPTION The function netname_check_in() enters a port with the name port_name
into the name space of the local network server. The signature argument is a
port that’s used to protect this name. This same port must be presented on a
netname_check_out() call for that call to be able to remove the name from
the name space.

RETURN NETNAME_SUCCESS: The operation succeeded.

SEE ALSO netname_check_out(), netname_look_up()

netname_check_out()

SUMMARY Remove a name from the local name space

SYNOPSIS #import <mach/mach.h>
#import <servers/netname.h>

kern_return_t netname_check_out(port_t server_port, netname_name_t
port_name, port_t signature)
205

Chapter 3 Mach Functions
ARGUMENTS server_port: The task’s port to the Network Name Server. To use the system
Network Name Server, this should be set to name_server_port.

port_name: The name of the port to be checked out.

signature: The port used to protect the right to remove a name.

DESCRIPTION The function netname_check_out() removes a port with the name port_name
from the name space of the local network server. The signature argument must be
the same port as the signature port passed to netname_check_in() when this
name was checked in.

RETURN NETNAME_SUCCESS: The operation succeeded.

NETNAME_NOT_YOURS: The signature given to netname_check_out()
did not match the signature with which the port was checked in.

SEE ALSO netname_check_in(), netname_look_up()

netname_look_up()

SUMMARY Look up a name on a specific host

SYNOPSIS #import <mach/mach.h>
#import <servers/netname.h>

kern_return_t netname_look_up(port_t server_port, netname_name_t
host_name, netname_name_t port_name, port_t *port_id)

ARGUMENTS server_port: The task’s port to the Network Name Server. To use the system
Network Name Server, this should be set to name_server_port.

host_name: The name of the host to query. This can’t be a null pointer.

port_name: The name of port to be looked up.

port_id: The port that was looked up.

DESCRIPTION The function netname_look_up() returns the value of the port named by
port_name by questioning the host named by the host_name argument. Thus this
call is a directed name lookup. The host_name may be any of the host’s official
206

Network Name Server Functions
nicknames. If it’s an empty string, the local host is assumed. If host_name is
“*”, a broadcast lookup is performed.

Important: Use NXPortNameLookup() instead of netname_look_up() in all NEXTSTEP
applications. (In the future, Listener instances might register with a server other than the Network Name
Server.)

RETURN NETNAME_SUCCESS: The operation succeeded.

NETNAME_NOT_CHECKED_IN: netname_look_up() could not
find the name at the given host.

NETNAME_NO_SUCH_HOST: The host_name argument to
netname_look_up() does not name a valid host.

NETNAME_HOST_NOT_FOUND: netname_look_up() could not
reach the host named by host_name (for instance, because it’s down).

SEE ALSO netname_check_in(), netname_check_out()
207

Chapter 3 Mach Functions
208

Glossary
Application Kit
The Objective-C classes and C functions available for implementing
the Rhapsody window-based user interface in an application. The
Application Kit provides a basic program structure for applications
that draw on the screen and respond to events.

board address space
256 megabytes per slot of physical address space, from 0xs0000000
to 0xsfffffff, where s is the slot number.

bootstrap port
A port to which a new task can send a message that will return any
other system service ports that the task needs.

condition variable
A type of variable provided by the C-thread functions to help
synchronize the threads in a task.

console
A special window that displays system log messages, as well as
output written to the standard error and standard output streams by
applications launched from the Workspace Manager.

demand paging
An operating system facility that causes pages of data to be brought
Glossary-209

from disk into physical memory only as they are needed.

Glossary-2

Glossary

device driver
A thread running in the kernel’s address space that supports a specific
device. Some Apple device drivers and all non-Apple device drivers
are implemented as loadable kernel servers.

DMA
Direct memory access; a means of transferring data between host
memory and a peripheral device without involving the host processor.

DSP
Digital signal processor, a device that modifies digital signals.

Ethernet
A high-speed local area network technology. Ethernet is considered
the industry standard for networking because of its reliability and
capacity to rapidly transfer large amount of information.

exception
A synchronous interruption to the normal flow of program control
caused by the program itself.

exception port
In Mach, a port on which a task or thread receives messages when
exceptions occur.

host
The computer that’s running (is host to) a particular program. The
term is usually used to refer to a computer on a network.

host processor
The microprocessor on which an application program resides. When
an application is running, the host processor may call other, peripheral
microprocessors, such as a DSP, to perform specialized operations.

inheritance attribute

In Mach, a value indicating the degree to which a parent process and
its child process share the parent process’s address space. A memory
page can be inherited copy-on-write, shared, or not at all.

10

in-line data
Data that’s included directly in a Mach message, as opposed to
referred to by a pointer. See also out-of-line data.

instance variable
In a loadable kernel server, the ordinary C variable of type
kern_server_t that the kernel-server loader uses to keep track of
the loadable kernel server.

I/O

Input/output; the sending and retrieving of information into the
memory of a program, usually to and from a file or a peripheral
device through an I/O port.

IPC

Interprocess communication; the transfer of information between
processes. In Mach, IPC is performed through the use of
messages.

kernel port

A port used to represent a task or thread in Mach function calls.
Also known as a task port or thread port.

loadable kernel server

In the Rhapsody Mach operating system, a software module that’s
loaded into the kernel after the system has been booted. See also

device driver

or

network module

.

loadable object file

For loadable kernel servers, an object file that has been linked
against the kernel. Loadable object files are required for debugging
loadable kernel servers with GDB. See also

relocatable object file

.

Mach

The kernel used by Rhapsody. Mach is compatible with BSD 4.4
but adds additional features.

Mach factor

A measurement of how busy the system is. Unlike the UNIX load
average, higher Mach factors mean that the system is less busy.

Mach server

A task that provides services to clients, using a MiG-generated
Glossary-211

RPC interface.

Glossary-2

Glossary

makefile

A specification file used by the program make to build an executable
version of an application. A makefile details the files, dependencies,
and rules by which the application is built.

master computer

When debugging a loadable kernel server with GDB, the master
computer is the one on which GDB is running. The master computer
uses GDB to watch the slave computer execute the server being
debugged.

memory-mapped files

A Mach facility that maps virtual memory onto a physical file.
Thereafter, any reference to that part of virtual memory causes the
corresponding page of the physical file to be brought into memory.

message

In Mach, a message consists of a header and a variable-length body;
operating system services are invoked by passing a message from a
thread to the port representing the task that provides the desired
service.

MIDI

Musical Instrument Digital Interface; the industry standard used by
modern keyboard synthesizers for transmitting and storing musical
performance information.

MiG

Mach’s message interface generator. MiG provides a procedure call
interface to Mach’s system of interprocess messaging.

multitasking

Describes an operating system that allows the concurrent execution of
multiple programs. Rhapsody is a multitasking operating system.

mutex variable

Mutual exclusion variable; a type of variable provided by the C-thread
functions to help protect critical regions in a multiple-thread task.

12

netbuf
Network buffer; a data structure that network modules use for
network packet buffers.

netif

Network interface; a data structure used to register and refer to
network modules.

network

A group of hosts that can directly communicate with each other.

network module

A loadable kernel server that performs a network-related
function. See also

protocol handler

,

packet sniffer

, and

device driver

.

network port

In Mach, a port by which local objects communicate with remote
objects. A message sent to a network port is received by the local
network server, processed, and then sent across the network to a
remote network server.

network port identifier

A code by which a network server determines the identity of the
recipient local task.

network server

A local operating system representative for tasks on a remote
computer. Messages intended for a remote task are processed and
redirected by a local network server.

NFS

Network File System. An NFS file server allows users on the
network to share files as if they were on their own local disk.

NMI

Non-maskable interrupt; an interrupt produced by a particular
keyboard sequence.

nonsimple message

In Mach, a message that contains either a reference to a port or a
pointer to data.

notify port

Glossary-213

In Mach, a port on which a task receives messages from the kernel
advising it of changes in port access rights and of the status of
messages it has sent.

Glossary-2

Glossary

out-of-line data

Data that’s passed by reference in a Mach message, as opposed to
being included in the message. See also

in-line data

.

packet

An individual piece of information sent on a TCP/IP network.

packet sniffer

A network module that examines input packets for diagnostic
purposes. See also

protocol handler

.

paging object

In Mach, a secondary storage object that’s mapped into a task’s virtual
memory. See also

demand paging

.

physical address

An address to which a hardware device, such as a memory chip or a
peripheral board, can directly respond. Programs, including the Mach
kernel and loadable kernel servers, use virtual addresses that are
translated to physical addresses by mapping hardware controlled by
the Mach kernel. See also

board address space

,

slot address space

, and

virtual address

.

policy

In Mach, a thread’s scheduling policy determines how the thread’s
priority is set and under what circumstances the thread runs. See also

priority

.

port

In Mach, a protected communication channel by which messages are
sent to, and received from, operating system objects.

port access rights

In Mach, the ability to send to or receive from a port.

port set

In Mach, a set of zero or more ports. A thread can receive messages
sent to any of the ports contained in a port set by specifying the port
set as a parameter to msg_receive().
14

priority

In Mach scheduling, a number between 0 and 31 that indicates
how likely a thread is to run. The higher the thread’s priority, the
more likely the thread is to run. See also

policy

.

process

A program that is at some stage of execution. In Mach, a task
containing a single thread of execution is equivalent to a process.

process identifier,

or

 process ID

In UNIX, a number that uniquely identifies a process.

programmed I/O

Byte-by-byte or word-by-word data transfer to a device. Also
known as “direct I/O.”

∫

 See also

DMA

.

protocol handler

A network module that extracts data from input packets (giving
the data to interested programs) and inserts data into output
packets (giving the output packet to the appropriate network
device driver).

quantum

The fixed amount of time a thread can run before being preempted.

RAM

Random-access memory; memory that a microprocessor can
either read or write to.

real time

A concept of time when using a computer. If the user defines or
initiates an event and the event occurs instantaneously, the
computer is said to be operating in real time.

receive rights

In Mach, the ability to receive messages on a port. Only one task
at a time can have receive rights for any one port. See also

send
rights

.

Glossary-215

relocatable object file
For loadable kernel servers, the object file that the kernel-server
loader uses to load the server into the kernel. See also loadable
object file.

Glossary-2

Glossary

reply port

A port associated with a thread that’s used in Mach remote procedure
calls.

ROM

Read-only memory; memory that a microprocessor can read but not
write to.

RPC

Remote procedure call; in Mach, RPCs are implemented using MiG-
generated messages.

SCSI

Small Computer Systems Interface. A standard connector and
communications protocol used for connecting devices such as disk
drives to computers.

send rights

In Mach, the ability to send messages to a port. Many tasks can have
send rights for the same port. See also

receive rights

.

server

See

loadable kernel server

,

Mach server

, or

network server

.

simple message

In Mach, a message that contains neither references to ports nor
pointers to data.

slave computer

When debugging a loadable kernel server with the GNU source-level
debugger (GDB), the slave computer is the one on which the driver
being debugged is running. The execution of the slave's kernel is
watched by the master computer.

slot address space

16 megabytes per slot of physical address space, from 0xf

s

000000 to
0xf

s

ffffff, where

s

 is the slot number.

Sound Kit

16

The Objective C classes and C functions available for creating sound
effects, doing speech analysis, and performing other sound
manipulation.

task

In Mach, a paged virtual address space along with protected
access to ports, virtual memory, and system processor(s). A task
itself performs no computation; rather, it's a framework for
running threads. See also

thread

.

task port

In Mach, a port by which all threads within a task may be
addressed. Also known as the task’s kernel port.

TCP/IP

Transmission Control Protocol/Internet Protocol. The protocols
used to deliver messages between computers over the network.
TCP/IP support is included in NeXT computers.

thread

In Mach, the basic unit of program execution. A thread consists of
a program counter, a set of registers, and a stack pointer. See also

task

.

thread port

In Mach, a port that represents a single thread within a task. Also
known as the thread’s kernel port.

thread-safe

Code that can be used safely by several threads simultaneously.

virtual address
An address that is usable by software. Each task running under
Rhapsody has its own range of virtual addresses, which begins at
address zero. The Mach operating system makes the CPU
hardware map these addresses onto physical memory only when
necessary, using disk memory at other times. See also physical
address.

Window Server
A process that dispatches user events to applications and renders
PostScript code on behalf of applications.
Glossary-217

wired down
Always resident in memory. A region of virtual memory that’s
wired down can’t be swapped or paged out. Memory must be wired
down for interrupt handlers and the hardware to use it safely.

Glossary-2
Glossary
18

	Preface
	Mach Concepts
	Using Mach Messages
	Mach Functions
	Glossary

