


The NewtonScript
Programming Language

 Apple Computer, Inc.
© 1996, Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the normal
use of the software or to make a
backup copy of the software. The
same proprietary and copyright
notices must be affixed to any
permitted copies as were affixed to
the original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all
backup copies) may be sold, given,
or loaned to another person. Under
the law, copying includes
translating into another language or
format. You may use the software on
any computer owned by you, but
extra copies cannot be made for this
purpose.
Printed in the United States of
America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for licensed
Newton platforms.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter,
Macintosh, and Newton are
trademarks of Apple Computer,
Inc., registered in the United States
and other countries.
The light bulb logo, MessagePad,
NewtonScript, and Newton Toolkit
are trademarks of Apple Computer,
Inc.
Adobe Illustrator and PostScript
are trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

11/95

iii

Contents

Figures, Tables, and Listings ix

Preface About This Book xi

About the Audience xi
Related Books xi
Sample Code xii
Conventions Used in This Book xiii

Special Fonts in Text xiii
Syntax Conventions xiv

Developer Products and Support xv
Undocumented System Software Objects xvi

Chapter 1 Overview 1-1

Introduction 1-1
Semantic Overview 1-2

Expressions 1-2
The Object Model 1-2
Data Types and Classes 1-3
Scope 1-4
Extent 1-6
Garbage Collection 1-6
How Is NewtonScript Dynamic? 1-7

Basic Syntax 1-8
Semicolon Separators 1-8
In-Line Object Syntax 1-9
Character Set 1-9
Comments 1-10

A Code Example 1-10
Compatibility 1-11

iv

Chapter 2 Objects, Expressions, and Operators 2-1

Objects and the Class System 2-1
Classes and Subclasses 2-3
Immediate and Reference Values 2-5

The NewtonScript Objects 2-8
Character 2-8
Boolean 2-9
Integer 2-10
Real 2-11
Symbol 2-12
String 2-13
Array 2-15

Array Accessor 2-16
Frame 2-17

Frame Accessor 2-19
Path Expression 2-20

Expressions 2-22
Variables 2-23

Local 2-23
Constants 2-26

Constant 2-26
Quoted Constant 2-28

Operators 2-29
Assignment Operator 2-29
Arithmetic Operators 2-31
Equality and Relational Operators 2-33
Boolean Operators 2-34
Unary Operators 2-35
String Operators 2-36
Exists 2-37

Operator Precedence 2-38

v

Chapter 3 Flow of Control 3-1

Compound Expressions 3-1
If…Then…Else 3-2
Iterators 3-3

For 3-4
Foreach 3-6
Loop 3-10
While 3-11
Repeat 3-12
Break 3-13

Exception Handling 3-13
Working with Exceptions 3-14

Defining Exceptions 3-15
Exception Symbol Parts 3-16
Exception Frames 3-16

The Try Statement 3-18
Throwing Exceptions 3-19

Throwing an Exception to Another Handler 3-20
Catching Exceptions 3-21
Responding to Exceptions 3-24

Chapter 4 Functions and Methods 4-1

About Functions and Methods 4-1
Function Constructor 4-2
Return 4-3

Function Invocations 4-3
Message-Send Operators 4-4
Call With 4-6
Global Function Declaration 4-7
Global Function Invocation 4-8

Passing Parameters 4-8

vi

Function Objects 4-9
Function Context 4-10

The Lexical Environment 4-10
The Message Environment 4-11
An Example Function Object 4-13
Using Function Objects to Implement Abstract Data

Types 4-15
Native Functions 4-16

Chapter 5 Inheritance and Lookup 5-1

Inheritance 5-2
Prototype Inheritance 5-2

Creating Prototype Frames 5-2
Prototype Inheritance Rules 5-3

Parent Inheritance 5-4
Creating Parent Frames 5-4
Parent Inheritance Rules 5-5

Combining Prototype and Parent Inheritance 5-6
Inheritance Rules for Slot and Message Lookup 5-7
Inheritance Rules for Testing for the Existence of a Slot 5-9
Inheritance Rules for Setting Slot Values 5-9

An Object-Oriented Example 5-11

Chapter 6 Built-In Functions 6-1

Compatibility 6-2
New Functions 6-2

New Object System Functions 6-2
New String Functions 6-3
New Array Functions 6-3
New Sorted Array Functions 6-3
New Message Sending Functions 6-4

vii

New Data Stuffing Functions 6-4
New Functions to Get and Set Globals 6-4
New Miscellaneous Functions 6-4

Obsolete Functions 6-5
Object System Functions 6-5
String Functions 6-16
Bitwise Functions 6-23
Array Functions 6-23
Sorted Array Functions 6-36
Integer Math Functions 6-45
Floating Point Math Functions 6-48

Managing the Floating Point Environment 6-65
Financial Function 6-69
Exception Functions 6-71
Message Sending Functions 6-73
Data Extraction Functions 6-77
Data Stuffing Functions 6-81
Getting and Setting Global Variables and Functions 6-86
Miscellaneous Functions 6-89
Summary of Functions and Methods 6-92

Appendix A Reserved Words A-1

Appendix B Special Character Codes B-1

Appendix C Class-Based Programming C-1

What Are Classes Good For? C-1
Classes: A Brief Reminder C-2
Inheritance in NewtonScript C-3

viii

The Basic Idea C-3
Practical Issues C-6
Class Variables C-7
Superclasses C-9
Using Classes to Encapsulate Soup Entries C-10
ROM Instance Prototypes C-10
Leaving Instances Behind C-11
Conclusion C-11

Appendix D NewtonScript Syntax Definition D-1

About the Grammar D-2
Phrasal Grammar D-2
Lexical Grammar D-12
Operator Precedence D-16

Appendix E Quick Reference Card E-1

Glossary GL-1

Index IN-1

ix

Figures, Tables, and Listings

Chapter 1 Overview 1-1

Figure 1-1 A sample data structure 1-4

Listing 1-1 A simple frame 1-3
Listing 1-2 A dynamic example 1-11

Chapter 2 Objects, Expressions, and Operators 2-1

Figure 2-1 NewtonScript built-in classes 2-3
Figure 2-2 NewtonScript code sample 2-6
Figure 2-3 C code sample 2-7

Table 2-1 Characters with special meanings 2-9
Table 2-2 Codes for specifying special characters within

strings 2-14
Table 2-3 Special slot names and their specifications 2-19
Table 2-4 Constant substitution work-arounds 2-27
Table 2-5 Operator precedence and associativity 2-39

Chapter 3 Flow of Control 3-1

Figure 3-1 Data objects and their relationships 3-9

Table 3-1 Result comparison for the iterators foreach and
foreach deeply 3-10

Table 3-2 Exception frame data slot name and contents 3-17
Table 3-3 Exception frame examples 3-17

Listing 3-1 Exception symbols 3-16
Listing 3-2 The Throw function 3-19
Listing 3-3 Several onexception clauses ordered

improperly 3-22

x

Listing 3-4 The onexception clauses properly ordered 3-22
Listing 3-5 Improperly nested try blocks 3-23
Listing 3-6 Nested try block problem fixed using begin and end

(shown in bold) 3-23
Listing 3-7 Handling a soup store exception 3-24
Listing 3-8 An exception handler checking the exception

frame 3-25

Chapter 4 Functions and Methods 4-1

Figure 4-1 The parts of a function object 4-10
Figure 4-2 functionObject1 dissected 4-14

Chapter 5 Inheritance and Lookup 5-1

Figure 5-1 A prototype frame 5-3
Figure 5-2 A prototype chain 5-4
Figure 5-3 Parent-child relationship 5-5
Figure 5-4 Prototype and parent inheritance interaction

order 5-7
Figure 5-5 An inheritance structure 5-12

Chapter 6 Built-In Functions 6-1

Table 6-1 Floating point exceptions 6-65
Table 6-2 Exception frame data slot name and contents 6-72

Appendix B Special Character Codes B-1

Table B-1 Character codes sorted by Macintosh character
code B-1

Table B-2 Character codes sorted by Unicode B-7

P R E F A C E

xi

About This Book

The NewtonScript Programming Language is the definitive reference
for anyone learning the NewtonScript programming language.
If you are planning to begin developing applications for the
Newton platform, you should read this book first. After you
are familiar with the NewtonScript language you should read the
Newton Programmer’s Guide for implementation details and the
Newton Toolkit User’s Guide to learn how to install and use Newton
Toolkit, which is the development environment for writing
NewtonScript programs for the Newton platform.

About the Audience

This book is for programmers who have experience with high
level programming languages, like C or Pascal, and who already
understand object-oriented programming concepts.

If you are not familiar with the concepts of object-oriented
programming there are many books available on the subject
available at your local computer bookstore.

Related Books

This book is one in a set of books included with Newton Toolkit,
the Newton development environment. You’ll also need to refer to
these other books in the set:

■ Newton Programmer’s Guide: System Software. This set of books is
the definitive guide and reference for Newton programming
topics other than communications.

P R E F A C E

xii

■ Newton Programmer’s Guide: Communications. This book is the
definitive guide and reference for Newton communications
programming.

■ Newton Toolkit User’s Guide. This book introduces the Newton
development environment and shows how to develop Newton
applications using Newton Toolkit. You should read this book
first if you are a new Newton application developer.

■ Newton Book Maker User’s Guide. This book describes how to use
Newton Book Maker and Newton Toolkit to make Newton
digital books and to add online help to Newton applications.
You have this book only if you purchased the Newton Toolkit
package that includes Book Maker.

■ Newton 2.0 User Interface Guidelines. This book contains
guidelines to help you design Newton applications that
optimize the interaction between people and Newton devices.

Sample Code

The Newton Toolkit product includes many sample code projects.
You can examine these samples, learn from them, experiment with
them, and use them as a starting point for your own applications.
These sample code projects illustrate most of the topics covered in
this book. They are an invaluable resource for understanding the
topics discussed in this book and for making your journey into the
world of Newton programming an easier one.

The Newton Developer Technical Support team continually
revises the existing samples and creates new sample code. You can
find the latest collection of sample code in the Newton developer
area on eWorld. You can gain access to the sample code by

P R E F A C E

xiii

participating in the Newton developer support program. For
information about how to contact Apple regarding the Newton
developer support program, see the section “Developer Products
and Support,” on page xv.

Conventions Used in This Book

This book uses various conventions to present information.

Special Fonts in Text
The following special fonts are used:

■ Boldface. Key terms and concepts appear in boldface on first
use. These terms are also defined in the Glossary.

■ Courier typeface. Code listings, code snippets, and special
identifiers in the text such as predefined system frame names,
slot names, function names, method names, symbols, and
constants are shown in the Courier typeface to distinguish
them from regular body text. If you are programming, items
that appear in Courier should be typed exactly as shown.

■ Italic typeface. Italic typeface is used in code to indicate
replaceable items, such as the names of function parameters,
which you must replace with your own names. The names of
other books are also shown in italic type, and rarely, this style is
used for emphasis.

P R E F A C E

xiv

Syntax Conventions
In this manual, syntax is presented in two formats, as an extended
BNF, and as bubble diagrams defined as follows:

Bubble
Diagram Extended BNF Description

terminal Oval boxes / courier text indicates a
word or character that must appear
exactly as shown. Ambiguous terminal
characters are enclosed in single quotes
(‘’).

nonterminal Rectangular boxes / italics indicate a
word that is defined further.

[] Dashed lines / brackets indicate that
the enclosed item is optional.

{choose|one} Forked arrows / a group of words,
separated by vertical bars (|) and
grouped with curly brackets, indicates
an either/or choice.

[]* A dashed box with a repeating arrow /
an asterik (*) indicates that the
preceding item(s), which is enclosed in
square brackets, can be repeated zero
or more times.

[]+ A solid box with a repeating arrow / a
plus sign (+) indicates that the
preceding item(s), which is enclosed in
square brackets, can be repeated one or
more times.

terminal

non-terminal

optionaloptional

option 1
choice

option 2

repeat/optional

repeat

P R E F A C E

xv

Developer Products and Support

APDA is Apple’s worldwide source for hundreds of development
tools, technical resources, training products, and information for
anyone interested in developing applications for Apple computer
platforms. Customers receive the Apple Developer Catalog featuring
all current versions of Apple and the most popular third-party
development tools. APDA offers convenient payment and
shipping options, including site licensing.

To order product or to request a complimentary copy of the Apple
Developer Catalog:

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

If you provide commercial products and services, call
408-974-4897 for information on the developer support
programs available from Apple.

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

P R E F A C E

xvi

Undocumented System Software Objects

When browsing in the NTK Inspector window, you may see
functions, methods, and data objects that are not documented in
this book. Undocumented functions, methods, and data objects
are not supported, nor are they guaranteed to work in future
Newton devices. Using them may produce undesirable effects on
current and future Newton devices.

Introduction 1-1

C H A P T E R 1

Overview 1

NewtonScript is a state-of-the-art, dynamic, object-oriented programming
language, developed for the Newton platform.

Introduction 1

The goal of NewtonScript is to enable developers to create fast, smart
applications easily. This calls for a language that is

■ expressive, flexible, and straightforward to use

■ consistent enough to allow reuse of concepts and structures

■ portable enough to permit exploration of different architectures, and

■ sufficiently compact to work with limited RAM

The constraints of the Newton system require a language capable of producing
reusable code libraries, which uses memory efficiently, and collects garbage
automatically.

NewtonScript is based on principles first used in Smalltalk and LISP, and
was also influenced by Self, a language developed at Stanford University.

Figure 1-0
Listing 1-0
Table 1-0

C H A P T E R 1

Overview

1-2 Semantic Overview

Semantic Overview 1

This section briefly introduces some special features of the NewtonScript
language.

Expressions 1
NewtonScript is an expression-based language, rather than statement-based,
as many other programming languages are. Almost everything
in NewtonScript returns a value. Therefore, we talk about expressions
rather than statements or commands in this manual.

The Object Model 1
NewtonScript is built on an object model. All data is stored as objects,
or typed pieces of data. This differs from other object-oriented languages
like C++ or Object Pascal, where data is a hybrid of objects and regular
data types.

NewtonScript also differs from Smalltalk, although, like Smalltalk, it
represents all data as objects. Only one kind of NewtonScript object, the
frame, can receive messages.

The Newton object model structures data by using two kinds of 32-bit values
to represent objects. These values are

■ immediates—in which the 32 bits contain immutable data

■ references—in which the 32 bits refer indirectly to an object

This is explained in greater detail in the section “Immediate and Reference
Values” beginning on page 2-5 of Chapter 2, “Objects, Expressions, and
Operators.”

C H A P T E R 1

Overview

Semantic Overview 1-3

Data Types and Classes 1
NewtonScript uses a class as a semantic type as opposed to a typical data
type. The Newton platform uses classes to let parts of the system, like the
Intelligent Assistant (which is described in the Newton Programmer’s Guide)
determine properties of the object at run time. Thus it can treat particular
types of objects in interesting and different ways.

For instance, you can set up a data object containing personal data as shown
in Listing 1-1. Note that the curly braces surrounding Listing 1-1 denote a
frame object, that contains places, or slots, for objects that have the identifiers
name, company, and phones.

Listing 1-1 A simple frame

{ name: "Walter Smith",

company: "Apple Computer",

phones: ["408-996-1010", "408-555-1234"] }

In the Newton system, objects can be typed. For instance, the values of name
and company are plain strings. However, you can further define phones as
being of type workPhone and faxPhone. These user-defined objects can
then be manipulated by the Newton system in different ways. For instance,
when the person using your application uses a fax phone number, a set of
actions different from those for a work phone number is initiated.

The data object constructed in Listing 1-1 is shown in Figure 1-1.

The facility that lets the system know about an object’s type is known
as latent typing. Types are associated with objects. This means that a
variable can hold any kind of object and can hold different types of objects at
different times.

The class system is explained in further detail in “Objects and the Class
System” beginning on page 2-1.

C H A P T E R 1

Overview

1-4 Semantic Overview

Figure 1-1 A sample data structure

Note

Smalltalk enthusiasts should keep in mind that
NewtonScript classes have nothing in common with those
used in class-based programming in a language such as
Smalltalk. You can, however, use class-based programming
concepts to organize parts of your NewtonScript application.
For more information about this see Appendix C,
“Class-Based Programming.” ◆

Scope 1
The part of a program within which a variable can be used is called the scope
of the variable. Normally a variable is available within the function where it
is defined, although slots that are used like variables can also be inherited
from proto and parent frames. See the section “Frame” beginning on
page 2-17, and Chapter 5, “Inheritance and Lookup,” for more information
about frames and inheritance, respectively.

When looking up the value of a variable, NewtonScript first searches local
variables, then global variables, and finally inherited variables, through the
proto and parent chains.

Frame

Full Name

"Walter

Smith"

Corp Name

"Apple"

Array

Work phone

FAX phone

0

1

Work Phone

408-996-1010

FAX Phone

408-555-1234

Name:

Company:

Phones:

"Walter Smith"

"Apple"

["408-966-1010",
"408-555-1234"]

Name

Company

Phones

C H A P T E R 1

Overview

Semantic Overview 1-5

Consider, for example, the following code segment:

aFrame:= {foo: 10,

bar: func(x)

begin

if foo then Print ("hello");

if x > 0 then

begin

local foo; //local variable to function

foo:= 42;

end

return foo;

end;

}

Here the local variable foo is restricted in scope to the function definition
bar. Even though foo is declared within a begin … end code segment, its
scope is not confined by that construct. When foo is used in the expression,

if foo then Print ("hello");

before it is declared as a local variable, it is already defined by the compiler
as an implicit local and is initialized to the value of nil.

If the slot variable, foo, with the value of 10, is to be used as the value for
foo, that is stated explicitly as

if self.foo then Print ("hello");

Otherwise, the search for the value of the variable goes by the rules, first to
local variables, (the local variable foo was initialized to nil), then to global
variables named foo, and then to inherited slot variables named foo.

In this example, the compiler creates a local variable foo, which is local to
the method bar and is not initialized until the if expression that assigns it
the value 42 executes. Therefore, nothing is ever printed.

C H A P T E R 1

Overview

1-6 Semantic Overview

When you send the message, bar, with a parameter value of ten, to the
aFrame object, in the expression

aFrame:bar(10)

a value of 42 is returned. The same message with a parameter value of
negative five

aFrame:bar(-5)

returns nil. See the section “Function Invocations” in Chapter 4 to learn
more about message sending.

Extent 1
The extent of a variable refers to the period of time in which it may be used.
In many languages, the scope of a variable is the same thing as its extent.
However, in NewtonScript a variable has data storage space allocated for it
while it is referenced anywhere in executing code.

Automatic garbage collection occurs only after an object is no longer
referenced anywhere. Therefore, storage allocated for data structures is
available until no references to the structure exist.

Make sure not to leave any references to large data structures you’ve
allocated after you’re finished using them. If you do, NewtonScript will not
reclaim the associated memory.

An example of where you might think about this on the Newton platform is
when you close an application, you can set slots to nil in the application’s
base frame to conserve memory.

Garbage Collection 1
In NewtonScript, garbage collection—that is, reclaiming the storage of
objects that are no longer used—is carried out automatically by the system.
Thus, the programmer does not need to worry about memory management.

C H A P T E R 1

Overview

Semantic Overview 1-7

In fact, in NewtonScript it’s impossible to have “dangling pointers,” which
often cause the most insidious and hard to find bugs in an application.

If you’ve had to do garbage disposal manually in another language you can
relax; the Newton system reclaims memory for you sometime after the last
reference to an object goes away. Setting the value of all slots and variables
referring to an object to nil allows the Newton garbage collector to reclaim
the memory used by the object.

Automatic garbage collection is triggered every time the system runs out of
memory. There’s not really any reason to invoke garbage collection manually.
However, if you must do so, you can call the global function GC. For more
information on this function, see the chapter “Debugging” in The Newton
Toolkit User’s Guide.

How Is NewtonScript Dynamic? 1
In general, the term “dynamic” refers to the ability of the language to change
properties of objects at run time. Therefore, the NewtonScript dynamic
model is useful when you want to change an object at run time. For instance,
it’s possible to change an object to another kind of object in response to a
user’s actions while the application is running, if needed.

You can also add new data to objects while an application is in use. For
instance, you can write NewtonScript code that dynamically adds a new
variable to an executing object at run time and uses it, then adds a method to
the same object and uses it, and finally changes the inheritance structure of
the object by adding a special reference to another object. (This “special
reference” is what is denoted as _parent in Listing 1-2 on page 1-11). The
object can now use a method it inherits from the parent frame.

All of these operations are impossible in a static language, and they require a
great deal of thought and discipline in dynamic languages. Though this
powerful feature enables you to interactively program in a way that is
impossible in static languages, it should be used sparingly and with caution.

C H A P T E R 1

Overview

1-8 Basic Syntax

Basic Syntax 1

Rather than invent an entirely new syntax, NewtonScript was designed with
Pascal in mind. Wherever possible, its syntax is modeled closely on Pascal’s.

Semicolon Separators 1
The semicolon (;) is used to separate lines, not to terminate them. Though
semicolons are not required at the end of a line, you may spread one
expression over several lines or enter multiple expressions on a single line
by using the semicolon.

Expressions can be entered in a free-form manner, but we recommend that
standard indentation be used for enhanced readability, as in this example:

if expression then

expression

else

another_expression;

NewtonScript syntax allows you to use as much white space as you wish; it
is ignored.

Note

If you forget to add an important semicolon at the end of a
NewtonScript expression, the interpreter uses whatever is on
the next line as it tries to interpret a larger statement than
intended, thus causing unusual error reports. ◆

C H A P T E R 1

Overview

Basic Syntax 1-9

In-Line Object Syntax 1
NewtonScript has two syntax features that make it easy to create objects:
object literals and object constructors.

The object literal syntax lets you put a complex object into your program as
easily as an integer. This syntactic mode is entered by writing a single quote,
as shown in this simple example of a frame containing two strings:

x := '{name: "xxx", phone: "yyy"};

The object is constructed at compile time, and a reference to the same object
results each time the object literal is evaluated.

The object constructor syntax makes it easy to construct objects at run time.
The syntax is similar to object literals, but without the quote. In the object
constructor syntax the slot value positions are evaluated expressions rather
than nested literals. Each time the constructor is evaluated, a new object is
created, and its slots are filled in with the results of the slot expressions. An
object constructor is much easier to read than the equivalent operation
written without it, as shown in the following two examples.

First, the example with an object constructor:

x := {name: first && last, tax: wage * taxRate};

Next, the equivalent operation without the object constructor:

x := {};

x.name := first && last;

x.tax := wage * taxRate;

Character Set 1
NewtonScript uses the standard 7-bit ASCII character set rather than the
enhanced ASCII character set used by Macintosh computers. This ensures
that your code will work in any Newton development environment.

C H A P T E R 1

Overview

1-10 A Code Example

Comments 1
NewtonScript uses the same convention for delineating comments as the
C++ programming language. Multiline comment text needs to be
surrounded by an opening right slash, asterisk (/*) and a matching asterisk,
right slash (*/) at the end. For example:

/* This is an example of

a comment. It can be on one line

or as many lines as you need. */

If your comment is short enough to keep to one line, you can use two back
slashes (//) before the text to signal that the rest of the line is a comment and
should be ignored. This is often useful for putting a comment on the same
line as a line of code, as in this example:

x:= 5 ; //This is a single-line comment.

Note that nested multiline comments are not allowed. However, within a
/* ... */ comment block, comments using the // notation are allowed.

A Code Example 1

If you like to try to understand code before reading the manual, continue on
through this section. Otherwise, stop here and go to the next chapter.

Note that in the code the curly brackets ({}) denote a frame object, colon-
equal (:=) is the assignment operator, and the colon (:) is the message-send
operator, which sends the message following it to the frame expression that
appears before it.

The code shown in Listing 1-2 is partially described in the section “How Is
NewtonScript Dynamic?” beginning on page 1-7.

C H A P T E R 1

Overview

Compatibility 1-11

Listing 1-2 A dynamic example

y := { YMethod: func () print("Y method"), yVar: 14 };

x := { Demo: func () begin

self.newVar := 37;

print(newVar);

self.NewMethod := func () print("hello");

self:NewMethod();

self._parent := y;

print(yVar);

self:YMethod();

end

};

x:Demo();

37

"hello"

14

"Y method"

#2 NIL

Compatibility 1

There are two main enhancements to the 2.0 version of the NewtonScript
language:

■ new subclassing mechanism

■ native functions

The new subclassing mechanism is described in the section “Classes and
Subclasses” on page 2-3. This new subclassing mechanism allows user-
defined classes to have more precise semantic definitions, while preserving
the logical structure of these categories.

C H A P T E R 1

Overview

1-12 Compatibility

Native functions, described in the section “Native Functions” on page 4-16,
are executed directly by the Newton processor, instead of going through the
interpreter. This can increase the speed of your functions, but can also slow
them down.

In addition, two type identifiers have been added to the language to speed
up processing of native functions: int and array. There are two places
where these type identifiers can be used: in declaring local variables, and in
the argument list of a function declaration. For information on their syntax,
see the section “Local” on page 2-23, and “Function Constructor” on page 4-2.
For a detailed discussion of native functions and the use of type identifiers,
see the chapter “Tuning Performance,” of the Newton Toolkit User’s Guide.

The 2.0 version of the language also includes new built-in functions, for a list
of these see the section “Compatibility” beginning on page 6-2 of Chapter 6,
“Built-In Functions.”

Objects and the Class System 2-1

C H A P T E R 2

Objects, Expressions, and
Operators 2

This chapter discusses objects, expressions, and operators.

Objects and the Class System 2

The semantic type of an object is identified by a class. The Newton object
system has four built-in primitive classes which describe an object’s basic
type. They are:

■ Immediate

■ Binary

■ Array

■ Frame

Figure 2-0
Listing 2-0
Table 2-0

C H A P T E R 2

Objects, Expressions, and Operators

2-2 Objects and the Class System

You can determine the primitive class of an object, obj, by executing the
expression PrimClassOf(obj). Similarly, you can determine the class of
an object, obj, by executing the expression ClassOf(obj). A number of
functions exist to check if an object is of a particular type, which are faster
than ClassOf and PrimClassOf. These are IsArray, IsFrame, IsInteger,
IsSymbol, IsCharacter, IsReal, and IsString. These and the other
Newton built-in functions are documented in Chapter 6, “Built-In Functions.”

The primitive classes are of two categories: immediates and reference objects.
The reference object category is composed of the binary, array, and frame
classes. See “Immediate and Reference Values” beginning on page 2-5 for
a more detailed discussion of the differences between these two categories
of objects.

Objects with Immediate as their primitive class can be further identified as
belonging to a class of Int, Char, or Boolean. System-defined objects with
Binary as their primitive class can also be further identified as belonging to
a class of Symbol, String, or Real. NewtonScript also allows user-defined
classes for reference objects.

The NewtonScript class structure is shown in Figure 2-1

Classes function as semantic types that inform the system about the data in a
reference object. For example, the class 'string indicates a binary object
containing a string and the class 'phoneNumber indicates a string containing
a phone number. With this knowledge, a Newton device could use phone
numbers in ways it would not use other strings (to dial a phone, for instance.)

C H A P T E R 2

Objects, Expressions, and Operators

Objects and the Class System 2-3

Figure 2-1 NewtonScript built-in classes

Classes and Subclasses 2
NewtonScript provides the SetClass(obj, classSymbol) function to assign a
class, classSymbol, to a reference object, obj. Arrays and frames also have
internal mechanisms for setting user-defined classes, but for binary objects
the SetClass function must be used. These mechanisms are described in
“Array” beginning on page 2-15, and “Frame” beginning on page 2-17.

Primitive Classes

Reference
Reference
Reference
Reference

Array

0
1
2
3

Slot1
Slot2
Slot3
Slot4

Frame

Classes

Binary

Reference
Reference
Reference
Reference

String Real

"A string" 3.14159

Int Char Boolean

$A true42

Symbol

'someSymbol

Immediate

Value

Binary
Data

C H A P T E R 2

Objects, Expressions, and Operators

2-4 Objects and the Class System

Class symbols are arranged in a hierarchy; that is, some classes have
subclasses. This allows objects to have more precise semantic definitions,
while preserving the logical structure of these definitions.

To create a subclass add a period (.) and a symbol to the class name. For
example, '|rectangle.square| is a subclass of 'rectangle. Thus, a
class symbol X is a subclass of a class symbol Y if either X is the same as Y, or
Y is a prefix of X at a period (.) boundary. Everything is a subclass of the
empty symbol ||.

The symbol added after the period cannot, of course, itself contain a period
(.). And neither symbol can contain a semicolon (;), which is reserved for
future expansion. Furthermore, a class symbol that contains periods (.),
must be surrounded by vertical bars (|), this is required by the syntax of a
symbol which is described in “Symbol” beginning on page 2-12.

You can use the built-in function IsSubclass(x, y) to determine if x is a
subclass of y. You can determine if an object obj is of class x or any subclass
of x by using the function IsInstance(obj, x). Note that this is just
shorthand for IsSubclass(ClassOf(obj), x). For more information
about these functions see Chapter 6, “Built-In Functions.”

Note

The period method of creating subclasses is new to
NewtonScript; it is not supported by the NewtonScript
interpreter on 1.x Newton devices. If your application might
be run on a 1.x machine, do not use this mechanism. ◆

Adding classes to objects increases the complexity of your application. If you
do not need to, do not add a class to your objects.

Note also that the there is no subclass relationship in the sense being
discussed in this section between the built-in primitive classes and those
classes that are derived from them. String, for example, is not a subclass
of Binary.

The only class whose subclasses are important to the NewtonScript built-
in functions is 'string. There are several string-manipulation functions
that require their arguments to have either the class 'string or a subclass
of 'string.

C H A P T E R 2

Objects, Expressions, and Operators

Objects and the Class System 2-5

A number of class symbols are automatically understood by the Newton
system to be subclasses of 'string. These are: 'company, 'address,
'title, 'name, 'phone, 'homePhone, 'workPhone, 'faxPhone,
'otherPhone, 'carPhone, 'beeperPhone, and 'mobilePhone.

To create other subclasses of 'string, e.g. 'firstName, define the class
explicitly as '|string.firstName|.

Immediate and Reference Values 2
In NewtonScript, values are stored in 32 bits, two of which are used for class
information. Immediate objects (integers, characters, and Booleans) contain
their values within the remaining 30 bits. Reference objects, (binaries, arrays,
and frames) on the other hand, contain a reference to the area of memory
where their data resides.

This is an important distinction to keep in mind when assigning values to a
variable. When a variable is assigned an immediate object, that object is
copied directly into the variable. When a variable is assigned a reference
object, on the other hand, only a reference to the object is copied in.

The behavior caused by this can be somewhat confusing. Consider, for
example the following code fragment:

local a := {x: 1, y: 3};

local b := a;

a.x := 2;

// at this point b.x = 2

The first line declares a local variable, a, and assigns to it a frame with two
slots – named x and y – whose values are 1 and 3, respectively.

The second line creates another local variable, b, and assigns to it the value
of a, which is a reference to the frame object created in the first line. Thus
both local variables a and b now refer to the same are of memory.

The third line (a.x := 2;) changes the value of the x slot. Since both
variables a and b refer to the same frame, the value of b.x now also equals

C H A P T E R 2

Objects, Expressions, and Operators

2-6 Objects and the Class System

2, though it was not explicitly assigned. You can see these results in
Figure 2-2.

Figure 2-2 NewtonScript code sample

Consider now the C code:

struct foo {

 int x,y;

 };

foo a;

foo b;

a.x = 1;

a.y = 3;

b = a;

a.x = 2;

// at this point b.x = 1

a.x : = 2;

reference

alocal a : = {x:1, y:3};

reference

a

reference

b

reference

a

reference

b
x 2

y 3

x 1

y 3

x 1

y 3

local b : = a;

C H A P T E R 2

Objects, Expressions, and Operators

Objects and the Class System 2-7

In this example there are two separate struct objects, a and b, residing in
separate areas of memory. Each struct contains two integers, x and y. The
integer a.x is assigned the value 1. The value of struct a is saved in
struct b and a.x then is set to 2. As you would expect, the value of b.x is
unchanged at this point (it is still 1.) The results of this code example are
shown in Figure 2-3.

Figure 2-3 C code sample

Note that assignments of references in NewtonScript are handled in the same
manner as assignments of arrays and strings in C, since arrays and strings in
C are pointers. Thus NewtonScript does not fundamentally differ from C in
this respect.

a.x = 2;

x 1
y 3

a

a

x 1
y 3

b

x 1
y 3

a

x 2
y 3

b

x 1
y 3

a.x = 1;
a.y = 3;

b = a;

C H A P T E R 2

Objects, Expressions, and Operators

2-8 The NewtonScript Objects

The NewtonScript Objects 2

This section individually discusses the objects listed in “NewtonScript
built-in classes” on page 2-3: characters, Booleans, integers, reals, symbols,
strings, arrays, and frames.

Character 2
$ { nonEscapeCharacter |\ { \ | n | t |hexDigit hexDigit |

u hexDigit hexDigit hexDigit hexDigit } }

Characters in the standard character set are specified in your code by the
dollar sign ($) and

■ a backslash escape character (\) followed by a special character
specification such as, \, n, and t, or by 2 hexadecimal digits

■ a backslash escape character (\) followed by u (for Unicode) and four
hexadecimal digits

■ a non-escape character

The character set in Newton is stored as Unicode, in two bytes, to facilitate
international conversions. By design, the first 128 characters match the ASCII
character set. You must use Unicode character codes to specify special
characters other than the ASCII character set.

$

non-escape-character

hex-digit

hex-digit

\

t

u

n

\

hex-digit

hex-digit hex-digit hex-digit

C H A P T E R 2

Objects, Expressions, and Operators

The NewtonScript Objects 2-9

Characters are immediate objects. (For more information about immediate
objects see “Immediate and Reference Values” beginning on page 2-5.)

nonEscapeCharacter Consists of any ASCII character with code 32–127 except
the back slash (\).

hexDigit Consists of: {0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9| a |
b| c | d | e | f | A | B | C | D | E | F}

For example, $a or $7 represent the characters “a” and “7”, respectively.

Special characters like “π” must be specified as Unicode (16-bit) characters
by using the four-digit hex character code preceded by $\u. For example, the
Unicode equivalent of “π” is: $\u03C0.

You specify a new line by imbedding the code $\n in a string. Special
character codes are summarized in Table 2-1.

See Appendix B, “Special Character Codes,” for a list of the special
characters and their Unicode equivalents.

Boolean 2
NewtonScript defines only one Boolean constant, true. Functions and
control structures use nil as false and anything else as true. When you don't
have anything else to use as true, use the special immediate true.

Table 2-1 Characters with special meanings

Character code Meaning

$\n newline character

$\t tab character

$\\ backslash character

$\ hexDigit hexDigit hexadecimal

$\u hexDigit hexDigit hexDigit hexDigit Unicode

C H A P T E R 2

Objects, Expressions, and Operators

2-10 The NewtonScript Objects

Integer 2
[-] {[digit]+ | 0x [hexDigit]+}

All integers in NewtonScript can be written in either decimal or hexadecimal.
When a digit is prefixed with zero and the letter x (0x) it signifies a
hexadecimal value. The optional minus sign (-) before a digit signifies a
negative integer. Here are some examples of integers:

13475 -86 0x56a

Integers range from 536870911 through -536870912. When that limit is
exceeded behavior is undefined.

Integers are immediate objects. (For more information about immediate
objects see “Immediate and Reference Values” beginning on page 2-5.)

digit Consists of: {0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}

hexDigit Consists of: {digit | a | b| c | d | e | f | A | B | C | D
| E | F}

Note

The integer -536870912 can’t be specified as
a literal but it can be computed. ◆

-

x hex-digit

digit

0

C H A P T E R 2

Objects, Expressions, and Operators

The NewtonScript Objects 2-11

Real 2
[-] [digit]+.[digit]* [{ e | E } [-] [digit]+

A real number consists of one or more digits followed by a decimal point
with zero or more additional digits. The optional minus (-) at the start
indicates a negative number. You can specify scientific notation by placing
the letter e (upper or lower case) directly after the last digit and following
it with a negative or positive digit in the range of -308 to +308.

digit Consists of: {0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}

NewtonScript floating point real numbers are represented internally in
double precision; 64 bits. They have approximately 15 decimal digits of
precision. Some examples of real numbers include:

-0.587 123.9 3.141592653589

Here are some examples of exponential notation used to represent
real numbers:

763.112e4 87.3789E-45 -34.2e6 69.e-5

Real numbers are stored as binary objects and have the class Real.

-
e

E
digitdigit - digit.

C H A P T E R 2

Objects, Expressions, and Operators

2-12 The NewtonScript Objects

Symbol 2
{ { alpha | _ } [{ alpha | digit | _ }]* |

'|' [{ symbolChar| \ { '|' | \ }]* '|'}

A symbol is an object used as an identifier. NewtonScript uses symbols to
name variables, classes, messages, and frame slots. You can also use symbols
as simple identifying values, as you would use enumerated types in other
languages.

Symbol names may be up to 254 characters long and may include any
printable ASCII character; for instance, |Weird%Symbol!| is valid. A
symbol can be written by itself, without being enclosed in vertical bars, if it
begins with an alphabetic character or an underscore and contains only
alphabetic characters, underscores, and digits. NewtonScript is case
insensitive, though it preserves case.

alpha Consists of: {A–Z and a–z}.

digit Consists of: {0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}.

symbolChar Consists of any ASCII character with code 32–127
except | or \.

One place where the Newton system requires symbols is in exception
handling. An example of an exception symbol is: |evt.ex.fr.intrp|
Note that vertical bars are required because of the dots in the symbol. You
can read more about them in “Defining Exceptions” beginning on page 3-15.

_

alpha alpha

digit_

|
|

\

|

symbolChar

\

C H A P T E R 2

Objects, Expressions, and Operators

The NewtonScript Objects 2-13

Symbols appearing in expressions are normally evaluated as variable
references. You can prevent this by preceding the symbol with a single quote
('). The quoted symbol evaluates to the symbol itself. See also “Quoted
Constant” beginning on page 2-28.

String 2
" [{ stringChar | escSeq }]* [truncEscape]] "

A string constant is written as a sequence of characters enclosed in
double-quotation marks.

stringChar Consists of a tab character or any ASCII character with
code 32–127 except the double quote (") or backslash (\).

escSeq Consists of either a special character specification
sequence or a unicode specification sequence.The
special character specification sequence is: backslash (\)
followed by a quote ("), backslash (\), the letter n or
the letter t. The escape sequence for specifying
Unicode begins with backslash-u (\u), is followed by
any number of groups of four hexDigits, and ends
with backslash-u (\u).

truncEscape Consists of the shortened unicode specification
sequence. It is: backslash-u (\u), is followed by
any number of groups of four hexDigits.

Here are some simple examples of strings:

"pqr" "Now is the time" ""

Within strings you can include Unicode characters that are not in the
standard character set by inserting the escape code, \u, to toggle on the
Unicode hex mode. Follow the \u with any number of groups of four-

" "truncEscape
escSeq

stringChar

C H A P T E R 2

Objects, Expressions, and Operators

2-14 The NewtonScript Objects

number codes specifying the special character. You can add another \u to
toggle the Unicode hex mode off and return to the regular character set,
though, you are not required to toggle the hex mode off. (See Appendix B,
“Special Character Codes,” for a list of these characters.)

For example, you could specify the French phrase, “Garçon, l’addition, s’il
vous plaît!”, by embedding Unicode in the string to specify the special
characters as follows:

"Gar\u00e7\uon, l’addition, s’il vous pla\u00ee\ut!"

Other codes you use within strings to specify special characters are
summarized in Table 2-2.

You can also use array accessor syntax to refer to a character in a string. See
“Array Accessor” beginning on page 2-16 for more information. For
example, you can define a string

aString := "ABCDE";

and then refer to the B by using an array accessor

aLetter := aString[1];

Note that the index to aString is one, because array indices are numbered
beginning with zero.

Table 2-2 Codes for specifying special characters within strings

Character code Meaning

\n newline character

\t tab character

\u toggles Unicode on and off

\\ backslash character

\" double quote character

C H A P T E R 2

Objects, Expressions, and Operators

The NewtonScript Objects 2-15

Array 2
‘[’ [symbol :] [object [, object]* [,]] ‘]’

An array is a collection of zero or more objects enclosed in square brackets
([]) and separated by commas. The user-defined class for the array may
optionally be specified by beginning the array with a symbol followed by
a colon (:).

symbol Consists of an identifier that is syntactically a symbol. If
present, sets a user-specified class for the array. See the
section “Symbol” beginning on page 2-12, for more
information about their syntax.

object May consist of any NewtonScript object. NewtonScript
numbers the elements in an array by beginning with
zero for the first element. Objects are separated by
commas if there are more than one in the array.

Note

The syntax [symbol: object (…)] is ambiguous; the first
symbol could be either a class for an array, or a variable to be
used as the receiver for a message send. NewtonScript uses
the first interpretation. (Message sends are described
inChapter 4, “Functions and Methods.”) ◆

Semantically, the array is an ordered collection of objects which are indexed
numerically, beginning with zero. As with frames, the array can hold any
type of object, including methods, frames, and arrays. Like other non-
immediate objects, arrays can have a user-specified class, and can have their
size changed dynamically.

Here is a simple example of an array literal:
[1,2,3]

], objectobject:symbol ,[

C H A P T E R 2

Objects, Expressions, and Operators

2-16 The NewtonScript Objects

You can specify a class name for an array by preceding the first array element
with any arbitrary identifier that specifies a class and a trailing colon, as
shown here:

[RandomData: [1,2,3], 0, "Last element"]

Note that this array, which has the class RandomData, holds a mixture of
objects. It contains another array as its first element, the integer zero as the
second element, and a string as the third element.

Note

NewtonScript allows an optional trailing comma after the
last array element. The trailing comma can be useful if you
are going to add more elements to the array, or move
elements around within an array, when editing source code.
The presence or absence of this comma, does not affect
the program. ◆

Array Accessor 2

arrayExpression ‘[’ indexEpression ‘]’

Array elements are accessed with an expression, that evaluates to an array,
and an index expression, that evaluates to an integer and is enclosed in
square brackets.

arrayExpression An expression that evaluates to an array.

indexEpression An expression that evaluates to an integer. The
indexExpression corresponds to the element of the array
you wish to access. Note that arrays are indexed starting
with zero.

For example, with the array myArray, which is defined as

myArray := [123, [4,5,6], "Alice's Restaurant"];

][arrayExpression indexExpression

C H A P T E R 2

Objects, Expressions, and Operators

The NewtonScript Objects 2-17

you access the second element in the array by using the expression:

myArray[1];

This expression evaluates to [4,5,6].

You can also access array elements by using a path expression. Read about
these in the section “Path Expression” beginning on page 2-20.

Note that array accessors are actually operators and are included here for
your convenience. The rest of the NewtonScript operators are documented in
“Operators” beginning on page 2-29.

Frame 2
‘{’ [symbol : value [, symbol : value]* [,]] ‘}’

A frame is a collection of zero or more slots enclosed in curly brackets and
separated by commas. A slot consists of a symbol followed by a colon (:)
and a slot expression. The symbol refers to the value of the slot expression.

symbol A symbol giving the name of the slot. Note that slot
symbols beginning with the underscore character (_) are
reserved for system use; do not begin your slot symbol
with the underscore character.

value Can be any object, including another frame or a method.

A frame is an unordered collection of slots which consist of a name and
value pair. As with arrays, the value of a slot can be any type of object,
including methods and even other frames and arrays.

Frames can be used as repositories for data, like records in Pascal and structs
in C, but can also be used as objects which respond to messages. As such, the
frame is the basic programming unit in NewtonScript.

, }, symbol value:{ :symbol value

C H A P T E R 2

Objects, Expressions, and Operators

2-18 The NewtonScript Objects

A simple record-like frame containing names and phone numbers might
appear as

{name:"Joe Bob", phone:"4-5678", employee:12345}

Here is an example frame that contains integers in the first three slots, and a
method in the fourth slot:

Jupiter := {size:491,

distance:8110,

speed: 34,

position: func(foo) speed*foo/3.1416}

You may specify an optional class name for a frame by using the slot name
class. Inserting the class slot:

class : 'planet

into the Jupiter frame gives it an appropriate class name. Just as for array
classes, the class of a frame gives it a type, not special properties. However, if
you wanted to give all objects of class planet special characteristics and
functionality you could use the NewtonScript inheritance structure to set up
relationships that allow objects to inherit data from other objects. (See
Chapter 5, “Inheritance and Lookup.”)

You specify these relationships to other frames by referencing them from
slots named _proto and _parent. The relationships these slots establish
allow you to take advantage of the NewtonScript double inheritance scheme
to construct object-oriented applications. Chapter 5, “Inheritance and
Lookup,” describes these concepts.

There are several slot names which are recognized by the system and used
for special purposes. All these slots are optional. They are described in
Table 2-3.

C H A P T E R 2

Objects, Expressions, and Operators

The NewtonScript Objects 2-19

Frame Accessor 2

frameExpr. {symbol | (pathExpr)}

Frame values are accessed with an expression–that evaluates to a frame–and
either a symbol, or an expression enclosed in parentheses, that evaluates to a
path expression.

A frame accessor expression returns the contents of the specified slot, or if
the slot does not exist the expression evaluates to nil.

frameExpr Any expression that evaluates to a frame.

symbol A symbol reference to a slot. See “Symbol” beginning on
page 2-12 for the syntax of symbols.

Table 2-3 Special slot names and their specifications

Slot Name Specification

class: identifier You use the special slot name class to specify a
semantic type for your frame. The class of your
object must be a symbol.

_parent: frame You use the special slot name _parent to designate
another frame as a parent frame to this frame. You can
repeat this process, as necessary with other frames, to
construct a parent inheritance chain. For information
about inheritance see Chapter 5, “Inheritance and
Lookup.”

_proto: frame You use the special slot name _proto to designate
another frame as a prototype frame to this frame.
Repeat this process, as necessary with other frames,
to construct a prototype inheritance chain. For
information about inheritance see Chapter 5,
“Inheritance and Lookup.”

pathExpr

symbol
frameExpr .

()

C H A P T E R 2

Objects, Expressions, and Operators

2-20 The NewtonScript Objects

pathExpr Any expression that evaluates to a path expression
object. The pathExpr corresponds to the slot of the frame
you wish to access. Note that arrays are indexed starting
with zero. See also “Path Expression” on page 2-20.

Slots in a particular frame can be accessed by using a dot (.) followed by a
symbol. For example, the expression:

myFrame.name;

evaluates to the contents of the name slot from the frame referenced by the
variable myFrame.

If the slot is not found in the specified frame using this syntax, the search for
the slot continues through the inheritance chain. The next place NewtonScript
looks is in the prototype frame and then in any of the prototype frame’s
prototypes until the end of the prototype chain is reached. If the slot is not
found, the search stops; it does not continue up through the parent frames. If
the slot does not exist the expression evaluates to nil.

The built-in functions GetVariable and GetSlot provide similar kinds of
slot access but with different inheritance behavior. For more information see
Chapter 6, “Built-In Functions.”

For more information about the inheritance mechanism see Chapter 5,
“Inheritance and Lookup.”

Note that frame accessors are actually operators; they are included here for
your convenience. The rest of the NewtonScript operators are documented in
“Operators” beginning on page 2-29.

You can also access frame slots by using a path expression. Read about these
in the section “Path Expression.”

Path Expression 2
A path expression object encapsulates an access path through a set of
objects. These objects are necessarily arrays or frames, since these are the
only objects in NewtonScript that can contain other objects.

C H A P T E R 2

Objects, Expressions, and Operators

The NewtonScript Objects 2-21

A path expression can take one of three forms:

■ an integer

■ a symbol

■ an array of class pathExpr

A path expression which is an integer necessarily refers to an array element,
since frame slot names must be symbols. The following code sample shows
how an integer path expression can be used to refer to an array element.

anArray := ["zero", "one", "two"];

aPathExpression := 1;

anArray.(aPathExpression);

"one"

Similarly, a symbol path expression necessarily refers to a frame slot, as in
this code fragment:

aFrame := {name: "Fred", height: 6.0, weight: 150};

aPathExpression := 'height;

aFrame.(aPathExpression);

6.0

The third kind of path expression can refer to any object, whether it is nested
in arrays, frames, or both. The following code sample shows how a path
expression can encapsulate an access path to an object within both arrays
and frames:

myFrame:={name:"Matt",info:{grade:"B",tests:[87,96,73]}};

myPath:='[pathExpr: info,tests,1];

myFrame.(myPath);

96

C H A P T E R 2

Objects, Expressions, and Operators

2-22 Expressions

If a path expression consists entirely of symbols, then the following syntax
can be used:

symbol[.symbol]+

symbol Any valid NewtonScript symbol.

This syntax will actually create an array of class pathExpr, and a path
expression written in this syntax will be printed out in the Inspector as an
array of class pathExpr. The following code sample illustrates how this
syntax is used.

myFrame := {kind:"Cat",type:{hair:"Long",color:"Black"}};

myPath := 'type.color;

myFrame.(myPath);

"Black"

Note that you can also use path expressions to set the value of a slot. For
instance, to change the color of the cat, use an expression like:

myFrame.(myPath):= "White";

Expressions 2

A simple expression consists of values and an operator, as shown in the code:

12 + 3;

The values (12 and 3) and the infix operator plus (+), that appears in the line
between them, are evaluated to return the value 15.

.symbol symbol

C H A P T E R 2

Objects, Expressions, and Operators

Expressions 2-23

Variables are often used in expressions as named containers in which to store
values. For example, you can use a variable on the left side of an assignment
expression, as in

currentScore := 12;

to store a value. The variable currentScore then becomes the identifier for
the value. For more information about the assignment operator (:=), see the
section “Operators,” in this chapter.

Variables 2
A variable is named by a symbol. You can use this symbol to refer to any
kind of value; from numbers to frames.

When a method is executing and a variable reference is encountered, the
system evaluates the value of the variable. This is done following the
variable lookup rules of NewtonScript’s double inheritance scheme. Variable
lookup is discussed in Chapter 5, “Inheritance and Lookup.”

The next section discusses the use of the local keyword to declare
local variables.

Local 2

local [typeIdentifier]varSymbol1 [:= expression]
[, varSymbol2 [:= expression]]*

The local declaration consists of the keyword local, and any number of
initialization clauses – an optional type identifier, a symbol, and optionally
an assignment operator (:=), followed by an expression.

:= expressionvarSymbol1

varSymbol2, := expression

local type-specifier

C H A P T E R 2

Objects, Expressions, and Operators

2-24 Expressions

varSymbol Consists of an identifier that is, syntactically, a symbol.
The symbol names a variable that may be initialized
with the optional expression. For more information on
symbols see the section “Symbol” beginning on
page 2-12.

typeIdentifier Either of the keywords int or array. It is important to
include a typeIdentifier when declaring local arrays or
integers in a native function, since this will improve
performance. For more information on native functions,
see “Native Functions” on page 4-16.

expression Consists of any valid NewtonScript expression. If a local
variable is not explicitly initialized, NewtonScript will
initialize it to nil.

Use of the local keyword is optional. If it is omitted the variables are still
declared and initialized—so long as no other variables have these names.
This keyword should never be omitted, however, for the following reasons:

■ Performance is improved; the system has to search globals and the
inheritance structure before declaring the local variable.

■ Possible hard-to-find bugs are avoided. If a global variable or an inherited
slot has this name, that variable will have its value changed; a new
variable will not be declared. When the value of the global variable or
inherited slot is then accessed, unexpected results might occur.

■ Explicitly declaring local variables makes code easier to read and maintain.

■ The native compiler cannot handle undeclared locals.

The scope of a local variable is restricted to the function definition in which it
is declared. You can refer to it only within that function.

C H A P T E R 2

Objects, Expressions, and Operators

Expressions 2-25

You may use the local expression to identify a variable as local without
initializing it as in the example:

myFunc: func (x)

begin

local myVar, counter;

...

end

This example declares the variables myVar and counter as local variables
and initializes them to nil. Then, each time the function definition for
myFunc is executed, new local variables are created that are unique to
that function.

You may optionally use a local expression with one or multiple assignment
clauses to assign a value to a variable or variables, as shown in the
expression:

local x:=3, y:=2+2, z;

This expression creates three local variables, x, y, and z, and initializes them
to the values of 3, 4, and nil, respectively.

The declaration of the local variable is processed at compile time but the
values are assigned at run time, when the expression is encountered. For
example, the expressions

x := 10;

local x, y := 20;

result in a value of 10 for x and a value of 20 for y. This works because
local definitions work anywhere in the function.

By contrast, a run-time error is produced by the following code fragment:

x := y + 10;

local x, y := 20;

C H A P T E R 2

Objects, Expressions, and Operators

2-26 Expressions

This is because at compile time x and y are declared and initialized to nil.
When the assignments are made at run time, y evaluates to nil, and an error
is produced in the computation of nil+10.

Constants 2
There are several ways to get unchangeable objects in NewtonScript. You can

■ use the keyword constant

■ put a single quote character (') before an object literal

■ initialize a variable to a literal value

Constant 2

constant constSymbol1 := expression [, constSymbol2 := expression]*

The constant declaration consists of the keyword constant and one or
more initialization clauses consisting of a symbol, assignment operator (:=),
and expression.

constSymbol Consists of an identifier that is, syntactically, a symbol.
For more information see the section “Symbol”
beginning on page 2-12.

expression Any expression consisting of operators and constants.
The value of this expression becomes the value of
constSymbol.

When a constants is used as a value, NewtonScript effectively substitutes
literal values for the constant. This means that if you declare a constant, as in
the expression

constant kConst := 32;

,constant := expressionconstSymbol1 := expressionconstSymbol2

C H A P T E R 2

Objects, Expressions, and Operators

Expressions 2-27

then when you use kConst as a value in your code, NewtonScript automati-
cally substitutes the value 32. If you write

sum := kConst + 10;

it’s exactly as if you had written

sum := 32 + 10;

However, if you use the same identifier as anything other than a value, as in
the expressions:

x:kConst(42);

kConst(42);

x.kConst;

the value you defined is not substituted. This can be a problem if you define
a constant to have a function or method as its value. For these cases there are
built-in functions you can use as work-arounds, as shown in Table 2-4.

You should also note that the constant value you assign does not get
substituted when used in a quoted expressions like:

'{foo: kConst};

'[kConst];

See the next section to learn more about the single quote syntax.

Table 2-4 Constant substitution work-arounds

No Substitution Work-around

x:kConst(42); Perform(x,kConst,[42]);

kConst(42); call kConst with (42);

x.kConst; x.(kConst);

C H A P T E R 2

Objects, Expressions, and Operators

2-28 Expressions

▲ W A R N I N G

You can create local constants by putting the declaration in a
function. Since they are in the same name space of the
compiler as local variables, a local variable with the same
name can override constants and vice versa. ▲

Quoted Constant 2
'object

The single quote character (') begins a kind of expression called a
 quoted constant.

You use the quote to create a literal object. The object is constructed at
compile time, and a reference to the same object results each time the object
literal is evaluated.

Here are several examples of literal objects formed with the quoted
constant syntax:

'{name: "Joe Bob", income: yearTotal};

'myFrame.someSlot;

'[foo, 1234, "a string"];

When a quote appears outside of the brackets or braces, it applies to every
element in the array or frame, and symbols within the array or frame do not
need individual quotes. For instance, if you try to create this seemingly
correct frame:

storyFrame := {Bear1: Mama, Bear2: Papa, Bear3: Baby};

you find that an error is caused when the value Mama gets interpreted as
an undefined variable. One way to fix this is to put quotes before each name,
or more simply to put one quote before the whole frame, as shown in
the expression:

storyFrame := '{Bear1: Mama, Bear2: Papa, Bear3:Baby};

object'

C H A P T E R 2

Objects, Expressions, and Operators

Operators 2-29

You can pass a quoted frame literal as a parameter to apply the object
as needed.

Operators 2

The NewtonScript operators are:

■ assignment

■ arithmetic

■ Boolean

■ equality

■ relational

■ unary

■ message-send

■ array and frame accessors

All NewtonScript operators, except the message-send operators and array
and frame accessors are discussed in this section. The message-send opera-
tors are described in Chapter 4, “Functions and Methods.” The access
operators are described in “Frame Accessor” beginning on page 2-19 and
“Array Accessor” beginning on page 2-16.

Assignment Operator 2
lvalue:= expression

In an assignment expression, the symbol, frame accessor, or array accessor
that is the left-hand value for the assignment operator (:=), is assigned the
value of the expression appearing to the right of assignment operator. An

expression=:lvalue

C H A P T E R 2

Objects, Expressions, and Operators

2-30 Operators

assignment expression evaluates to the expression on the right-hand side of
the assignment operator (:=).

lvalue Consists of a symbol, a reference to an array element, or
a reference to a frame slot.

expression Consists of any valid NewtonScript expression.

You use assignment expressions to change the value of variables and slots. A
simple assignment expression looks like this:

a := 10;

However, you can use any NewtonScript expression on the right-hand side
of an assignment expression; when it is evaluated its value is assigned to the
lvalue. For example, the variable x is set to refer to the value of the if
expression in this assignment expression:

x := if a > b then a else b;

Here is an example of the assignment of a frame to a variable:

myFrame := {name: "", phone: "123-4567"}

Now you can assign a value to the name like this:

myFrame.name := "Julia"

Note that the NewtonScript inheritance rules affect the ultimate behavior of
assignment expressions in frames. For more information about inheritance
and setting slot values see “Inheritance Rules for Setting Slot Values,” in
Chapter 5.

You can assign values to array slots in a similar manner. The second line of
this code fragment changes the value 789 to 987.

myArray := [123, 456, 789, "a string"];

myArray [2] := 987;

Note that assignments of reference objects to variables will only copy a
pointer to the object into the variable, see “Immediate and Reference Values”
beginning on page 2-5. The built in functions Clone, DeepClone, and

C H A P T E R 2

Objects, Expressions, and Operators

Operators 2-31

TotalClone allow you to work around this behavior. See Chapter 6,
“Built-In Functions” for an explanation of how these functions work.

An assignment expression, lvalue := expression, evaluates to the value of
expression. Furthermore, the assignment operator associates right-to-left.
Thus, you can write an expression such as:

aVariable := anotherVariable := anExpression;

This will parse as:

aVariable := (anotherVariable := anExpression);

The (anotherVariable := anExpression) part will evaluate to
anExpression, and both aVariable and anotherVariable will be set
to the value of anExpression.

Note

If you accidentally write an equality operator (=) in an
assignment expression as rather than the assignment
operator (:=), your expression becomes a simple relational
expression. For example, the expression x = 5;
evaluates to true or nil and leaves the value of x
unchanged. ◆

Arithmetic Operators 2
{ + | - | * | / | div | mod | << | >> }

NewtonScript provides the standard set of binary arithmetic operators. They
are: the addition (+) and subtraction (-) operators, the multiplication (*) and

+ - * / div mod << >>

C H A P T E R 2

Objects, Expressions, and Operators

2-32 Operators

division (/) operators, the truncating operators div and mod, and the bitwise
shift operators, bitwise left shift (<<) and bitwise right shift (>>).

+ The plus operator adds the two numbers it appears
between.

- The minus operator subtracts the number to its right
from the number to its left. Note that minus can also be
used as a unary operator to negate an expression. See
“Unary Operators” beginning on page 2-35.

* The multiply operator multiplies the two numbers it
appears between.

/ The division operator divides the number to its left by
the number to its right.

div The divide and truncate operator divides the number to
its left by the number to its right and truncates the
remainder so that a whole number is returned.

mod The modulo operator divides the number to its left by
the number to its right and returns only the remainder.

<< The bitwise shift left operator is an infix operator. In
the expression:

x << y ;

x is shifted left by y bits.

>> The bitwise shift right operator is an infix operator. In
the expression:

x >> y ;

x is shifted right by y bits. The most significant bit is
duplicated in the shift operation.

See Table 2-5 on page 2-39 for a summary of operator precedence.

C H A P T E R 2

Objects, Expressions, and Operators

Operators 2-33

Equality and Relational Operators 2
{ = | <> | < | > | <= | >=}

NewtonScript provides the standard set of binary equality and relational
operators. The equality operators are: equal (=) and not equal (<>). The
relational operators are less than (<), greater than (>), less than or equal to
(<=), and greater than or equal to (>=).

= The equal operator tests the value of immediates and
reals, and the identity of references; returning true if
they are equal and nil if they are not equal.

<> The not equal operator tests the value of immediates
and reals, and the identity of references; returning true
if they not equal and nil if they are equal.

< The less than operator compares the values of numbers,
characters, and strings; returning true if the operand
on the left of the operator is less than the operand on its
right and nil otherwise. An error is signalled if you try
to compare arrays or frames.

> The greater than operator compares the values of
numbers, characters, and strings; returning true if the
operand on the left of the operator is greater than the
operand on its right and nil otherwise. An error is
signalled if you try to compare arrays or frames.

<= The less than or equal to operator compares the values
of numbers, characters, and strings; returning true if
the operand on the left of the operator is less than or
equal to the operand on its right and nil otherwise. An
error is signalled if you try to compare arrays or frames.

= <> < > <= >=

C H A P T E R 2

Objects, Expressions, and Operators

2-34 Operators

>= The greater than or equal to operator compares the
values of numbers, characters, and strings; returning
true if the operand on the left of the operator is greater
than or equal to the operand on its right and nil
otherwise. An error is signalled if you try to compare
arrays or frames.

This expression tests the identity of two reference objects:

"abc"<> [1, 2];

It evaluates to true because the two objects are not the same object.

In the same way, the equality operator (=), when applied to two array
objects, compares their identity, as shown when you execute the code:

[1,2] = [1,2];

This expression evaluates to nil even though at first glance it looks as
though it should be true. This is because each time the [1,2] expression is
evaluated a new object is created.

The relational operators work with numbers, characters, and strings. If you
try to use these operators with arguments that are arrays or frames, an error
is signalled.

Boolean Operators 2
 { and | or }

The Boolean operators, and and or, are binary logical operators that
compare two expressions.

and The and operator tests the logical truth of its two
operands; returning true if both expressions are true
and nil otherwise.

and or

C H A P T E R 2

Objects, Expressions, and Operators

Operators 2-35

or The or operator tests the logical truth of its two
operands; returning true if either expression is true
and nil if both expressions are false.

Expressions involving the Boolean operators, and and or, like their
counterparts, && and ||, in the C programming language, short circuit or
stop evaluation as soon as the truth of an expression is determined. For
instance, if

x < length(someArray)

evaluates to nil in a conditional expression like

if x < length(someArray) and someArray[x]

then doSomething

else doSomethingElse;

processing is stopped immediately and goes on to the else clause. If one
part of an and operation is not true, the whole and expression is not true.
Therefore, it is not necessary to evaluate the second half of the and
expression when the first half is not true. When this occurs it is said that
execution is short-circuited. Similarly, if the first part of an or operation
is true, than the whole or expression is true, and the second part is
not evaluated.

The return value of an expression using any of the logical operators is either
nil, which is false, or anything other than nil, which is true.

Unary Operators 2
{ - | not }

The unary prefix operators, minus (-) and not, precede any single expression.

- not

C H A P T E R 2

Objects, Expressions, and Operators

2-36 Operators

- The minus (-) operator returns the additive inverse of
the expression it precedes.

not The not operator is used before an expression to
perform a logical negation of that expression.

Here are some examples of these operators in use:

-x; not x; -(1 + 5);

not(a and -f(12) > 3);

Exists is another NewtonScript unary (but postfix) operator. It is described
in the section“Exists” beginning on page 2-37.

String Operators 2
string1 { & | && } string2

The two string operators, && and &, create a new string from the contents of
two strings you provide. The single & operator creates a new string that has
no spaces between the two objects, while the double && operator adds a
space between the two strings in the new string.

If you use an object that is not a string in an && or & expression, NewtonScript
converts the object to a string and uses it to construct a new string. This works
for symbols, characters, and numbers.

An & and && expression returns a new string.

& An & expression concatenates the string yielded by the
expression on its left to the string yielded by the
expression on its right.

&& An && expression creates a new string by concatenating,
with a space, the string yielded by the expression on its
left to the string yielded by the expression on its right.

& &&

C H A P T E R 2

Objects, Expressions, and Operators

Operators 2-37

The single & operator concatenates the two strings by leaving no space, in the
new string, between what was the second string and the first string. For
instance, the expression:

"foo" & 17

creates the new string:

"foo17"

In contrast, the && operator creates a new string by copying the first string,
adding a space, and then copying the second string, as you can see, in the
following expression and its result:

"happy" && "days"

"happy days"

Exists 2
lValue exists

The exists operator is a special postfix operator that follows a single
variable that can be a symbol, a frame accessor, or a message send.

The exists operator is used to check for the existence of variables, slots, or
methods. When you apply the exists operator to an identifier, such as a
variable, it returns true if the variable is defined in the current context and
nil otherwise. (For more information about the scope of variables see
“Scope” beginning on page 1-4.)

lValue Consists of an expression that evaluates to a symbol,
frame accessor, or a message-send.

All of these are legal forms for an exists expression to take:

x exists;

x.y exists;

existslvalue

C H A P T E R 2

Objects, Expressions, and Operators

2-38 Operator Precedence

x.(y) exists;

x:m exists;

Here is an example of a simple if…then structure that uses exists:

if myVar exists then myVar else 0;

When you apply exists to a frame accessor, exists returns true if the
slot exists in the frame or in any of its prototype frames, and nil otherwise.
(For more information about prototype frames and inheritance, see
Chapter 5, “Inheritance and Lookup.”) If…then expressions are described
in Chapter 3, “Flow of Control.”

This operator can be useful if you want to check for the existence of a slot
that may or may not be in a proto frame.

if myFrame.aSlot exists then

 if not hasSlot(myFrame, 'aSlot) then

print("'aSlot slot is in a prototype of myFrame")

The built-in function HasSlot provides similar functionality to the exists
operator though they differ in the type of inheritance that is used to search
for slots. See also “Inheritance Rules for Testing for the Existence of a Slot,”
in Chapter 5, and Chapter 6, “Built-In Functions.”

Note

The exists operator is not guaranteed
to work for local variables. ◆

Operator Precedence 2

In case it is not inherently apparent in an expression, a set of ratings tells
the compiler which operator to evaluate first (or which operator takes
precedence). Table 2-5 lists the order of precedence of all the NewtonScript
operators in order from top to bottom. Note that operators grouped together
in the table are of equal precedence.

C H A P T E R 2

Objects, Expressions, and Operators

Operator Precedence 2-39

Table 2-5 Operator precedence and associativity

Operator Action Associativity

. slot access left-to-right

:
:?

message send
conditional message send

left-to-right

[] array element left-to-right

- unary minus left-to-right

<<
>>

left shift
right shift

left-to-right

*
/
div
mod

multiply
float division
integer division
remainder

left-to-right

+
-

add
subtract

left-to-right

&

&&

concatenate (string copy
of expression value)
concatenate with 1 space
between

left-to-right

exists variable & slot existence none

<
<=
>
>=
=
<>

less than
less than or equal
greater than
greater than or equal
equal
not equal

left-to-right

not logical not left-to-right

and
or

logical and
logical or

left-to-right

:= assignment right-to-left

Compound Expressions 3-1

C H A P T E R 3

Flow of Control 3

This chapter discusses the syntax and semantics of the standard flow-of-
control mechanisms including compound expressions, conditional
expressions and iterators.

Also included is a discussion of the non-standard flow-of-control mechanism
called exception handling that NewtonScript uses to control exceptional
situations or errors.

Compound Expressions 3

begin

expression1;
expression2;
…

expressionN[;]
end

Figure 3-0
Table 3-0
Listing 3-0

begin end;expression expression ;

C H A P T E R 3

Flow of Control

3-2 If…Then…Else

In NewtonScript, the keywords begin and end are used to group expressions,
not to create structured blocks that define the scope of variables, as they are
in some languages.

This construct is useful in conditional expressions, in any of the looping
expressions, and in function definitions. In fact, anywhere the syntax
specifies a single expression, you can use a compound expression instead.

The compound expression returns the result of the last expression.

expression Consists of any valid NewtonScript expression; it must
be separated from the next expression by a semicolon,
unless it is the last expression in the compound
expression. In this case, the keyword end separates it
from any following expressions.

If you want to execute more than one expression in a conditional expression,
use the keywords begin and end to group the expressions as shown in
this example:

if x=length(myArray) then

begin

result := self:read(x);

print(result)

end

If…Then…Else 3

if testExpression then expression [;]
[else alternateExpression]

The if…then…else construct allows you to dictate programmatic flow of
control using test conditions.

else;thentestExpression expression alternateExpressionif

C H A P T E R 3

Flow of Control

Iterators 3-3

As is standard in other programming languages, you use an if expression to
carry out one set of operations, when the condition you set up in a test
expression is true, and another set of operations when the text expression
evaluates to nil.

The if expression returns the value of its expression or alternateExpression.
clause, unless the test condition is not true and there is no else clause. In
that case, nil is returned.

testExpression Consists of an expression that tests for the truth of a
condition. If the test expression evaluates to anything
other than nil, the expression following it is executed.

expression Consists of any valid NewtonScript expression. A
compound expression may be substituted. (For more
information see the section “Compound Expressions.”)

This expression is executed if the test is true; its value is
returned as the value of the if expression.

alternateExpression Consists of any valid NewtonScript expression. A
compound expression may be substituted. (For more
information see the section “Compound Expressions.”)

The else clause, along with the alternateExpression that
follows it, is executed if the test expression evaluates
to nil.

An else clause binds to the nearest unmatched if-then clause.

Iterators 3

NewtonScript includes these iterators:

■ For

■ Foreach

■ Loop

C H A P T E R 3

Flow of Control

3-4 Iterators

■ While

■ Repeat

■ Break

For 3
for counter := initialValue to finalValue [by incrValue] do expression

The for loop performs a set of expressions repeatedly, until a loop counter
variable equals or exceeds a specified final value or a Break expression is
reached. A counter variable keeps track of the number of times the loop has
executed. You specify the initial value and final value of the counter variable.
If you choose not to specify the amount to increase (or decrease) the counter
by using the optional keyword by followed with an incremental value, the
counter gets incremented by the default value of 1.

A for loop expression returns nil (or the argument of a break expression, if
one is used to terminate the loop.)

counter This symbol is set to the value of the initialValue
expression when a for loop starts. After each repetition
of the loop, the counter variable is incremented by the
value of incrValue. or by the default value of 1 if an
incremental value is not specified.

The counter symbol is automatically declared as a local
by the NewtonScript compiler.

On loop exit the value of counter is undefined. It is an
error to change its value from within the loop body. If
you do so, loop behavior is undefined.

tocounter initialValue finalValue

by incrValue

for : =

do expression

C H A P T E R 3

Flow of Control

Iterators 3-5

initialValue This expression must evaluate to an integer. It is
evaluated once before the loop starts and is used as the
initial value of the counter.

finalValue This expression must evaluate to an integer. It is
evaluated once before the loop starts and is used as the
final value of the counter.

incrValue This expression follows the keyword by. It is evaluated
once before the loop starts and used throughout the
loop execution to increment (or decrement) the counter
variable.

The incremental value expression must evaluate to an
integer (either positive or negative); a value of zero
generates a run-time error. If you do not specify an
incremental expression, after the keyword by, a default
value of 1 is used to increment the counter.

expression Consists of any valid NewtonScript expression. A
compound expression may be substituted. (For more
information see the section “Compound Expressions.”)

Here is an example of a for loop.

for x:=1 to 10 by 2 do print(x);

1

3

5

7

9

C H A P T E R 3

Flow of Control

3-6 Iterators

Foreach 3
foreach [slot,] value [deeply] in {frame | array}

{collect | do} expression

Using the foreach iterator is one way you can access data stored in frames
or arrays. This iterator executes once for each element in an array or frame
allowing you to either iterate an expression over each value stored in an
array or frame, or to collect data during each iteration.

In an array, iteration begins with the first element of the array, element 0. In a
frame the starting point and subsequent order of iteration is unpredictable
since frame slots are not stored in any particular order.

This iterator also has a special option, deeply, for frame iteration over
values in the target frame and in its proto chain of frames as well. For infor-
mation on prototype inheritance see Chapter 5, “Inheritance and Lookup.”

A foreach expression returns nil (or the argument of a break expression,
if one is used to terminate the loop.)

slot This symbol is set to the name or index of the next slot
on each loop iteration over the elements of an array or
frame. The value of this variable is undefined on loop
exit. Using the slot variable is optional. If you specify
just one variable of the slot, value pair, it’s assumed to
be as the value.

The slot symbol is automatically declared as a local by
the NewtonScript compiler.

indeeply, value
frame

array

expression

foreach

do

collect

slot

C H A P T E R 3

Flow of Control

Iterators 3-7

value Set to the value of the next array element or frame slot
on each loop iteration over the elements of an array or
frame. The value of this variable is undefined on loop
exit. Using the value variable is mandatory. If you
specify just one variable, of the slot, value pair, it’s value
is assigned as the element value.

The value symbol is automatically declared as a local by
the NewtonScript compiler.

array An expression that evaluates to an array.

frame An expression that evaluates to a frame.

expression Consists of any valid NewtonScript expression. A
compound expression may be substituted. (For more
information see the section “Compound Expressions”
beginning on page 3-1)

deeply Optional. If this keyword is included, iteration occurs
over values in the immediate frame first and then in the
_proto frame(s) as well. (For information on prototype
inheritance see Chapter 5, “Inheritance and Lookup.”) If
you specify the deeply option and the frame you are
concerned with does not have a _proto frame, no error
is produced. Instead, the slot values evaluate to those of
the current frame.

You use foreach to access data stored in a frame that functions like a Pascal
record or a C struct. The data used in the following example is the
nameFrame frame, defined as:

nameFrame := { name:"Carol",

office:"San Diego",

phone:"123-4567"};

C H A P T E R 3

Flow of Control

3-8 Iterators

You can use the foreach do loop to access and print the slot names and
values stored in a nameFrame by writing a method like reportIt:

report:= { reportIt: func(frameName)

foreach slot, value in frameName do

print(slot && “:” && value);

}

When you send the message reportIt with the argument nameFrame to
the report object, as shown here:

report:reportIt(nameFrame);

this is the output produced:

"name : Carol"

"office : San Diego"

"phone : 123-4567"

Using collect with the foreach iterator makes it easy to collect the data
and manipulate it. Consider a dataFrame which is defined as:

dataFrame := {1,3,5,7,9}

You can collect the squares of each value in dataFrame and print the results,
with the code shown here:

result := foreach value in dataFrame collect value*value;

print(result);

The values are collected in an array, as shown in the output:

[1,9,25,49,81]

Note

The behavior of foreach is undefined when the array or
frame is modified inside the loop body, except for the specific
case of deleting the current element. In this specific case, the
loop will continue on to the next element as expected. ◆

C H A P T E R 3

Flow of Control

Iterators 3-9

If you want the foreach iterator to look up slot values in the prototype
frame in addition to the current frame, use the deeply option. To make use
of the deeply option with this iterator, your data set must include a frame
that references a prototype frame. For purposes of example we can use the
data defined here as:

x := {one:1, two:2, three:3};

y := {four:4, five:5, combo:x};

z := {six:6, _proto:y};

You can consult the picture of this data, shown in Figure 3-1, while looking at
the accompanying table, Table 3-1, which shows the different results
produced by using foreach both alone and with the deeply option.

Figure 3-1 Data objects and their relationships

Table 3-1 allows you to compare the results produced by two functions,
normalList and deeplyList, as applied to the data in Figure 3-1.

Test Data x

one

two

three

1

2

3

x:={one:1,two:2,three:3};
#440F2D9 {One:1,
 two:2,
 three:3}

y:={four:4,five:5,combo:x};
#440F891 {four:4,
 five:5,
 combo:{One:1,
 two:2,
 three:3}

z:={six:6,_proto:y};
#440FE61 {six:6,
 _proto:{four:4,
 five:5,
 combo:{#440F2D9}}}

z

four

five

combo

4

5

x

y

six

_proto

6

y

C H A P T E R 3

Flow of Control

3-10 Iterators

Table 3-1 Result comparison for the iterators foreach and foreach deeply

Loop 3
loop expression

This mechanism simply repeats any expressions that occur within the loop
expression until a break expression is encountered; if no break expression
is reached the loop never ends.

foreach foreach deeply

normallist := func (param) begin
 foreach tempItem in param
 collect tempItem;
 end;

deeplylist := func (param) begin
 foreach tempItem deeply in param
 collect tempItem;
 end;

:normallist(x)
#4413441 [1, 2, 3]

:deeplylist(x)
#44137D9 [1, 2, 3]

:normallist(y) // same
#4413A11 [4,
 5,
 {One: 1,
 two: 2,
 three: 3}]

:deeplylist(y)
#4413C49 [4,
 5,
 {One: 1,
 two: 2,
 three: 3}]

:normallist(z)
#4416E29 [6,
 {four: 4,
 five: 5,
 combo: {#4415D79}}]

:deeplylist(z)
 #4416FE1 [6,
 4,
 5,
 {One: 1,
 two: 2,
 three: 3}]

loop expression

C H A P T E R 3

Flow of Control

Iterators 3-11

The loop expression returns the argument of the break expression that is
used to terminate the loop.

expression Consists of any valid NewtonScript expression. A
compound expression may be substituted. (For more
information see the section “Compound Expressions”
beginning on page 3-1) This expression is evaluated
during each loop iteration.

This example prints the value of the variable x until it reaches the value of 0
and the break expression is executed.

local x:=4;

loop

if x = 0 then

break

else

begin

print(x);

x:=x-1

end

4

3

2

1

While 3
while condition do expression

The while loop evaluates the conditional expression first. If it evaluates to a
non-nil value (true or any other value that is not nil) the expression after
the keyword do executes. This sequence repeats until the conditional
expression evaluates to nil and ends loop execution.

docondition expressionwhile

C H A P T E R 3

Flow of Control

3-12 Iterators

A while expression returns nil (or the argument of a break expression, if
one is used to terminate the loop.)

condition Consists of an expression that tests for the truth of a
condition. If the test expression evaluates to nil, loop
execution ends.

expression Consists of any valid NewtonScript expression. A
compound expression may be substituted. (For more
information see the section “Compound Expressions”
beginning on page 3-1) This expression is evaluated
during each loop iteration.

Repeat 3
repeat

expression1;
expression2;
…

expressionN[;]
until condition

The repeat loop executes the expression(s) inside the loop first and then
evaluates the test expression. If the expression at the end of the loop
evaluates to nil, the expressions repeat and the test expression is evaluated
again. This continues until the expression evaluates to non-nil, at which
point the loop ends.

until conditionrepeat ;expression expression ;

C H A P T E R 3

Flow of Control

Exception Handling 3-13

A repeat expression returns nil (or the argument of a break expression, if
one is used to terminate the loop.)

condition Consists of an expression that tests for the truth of a
condition. If the conditional expression evaluates to
anything other than nil, loop execution ends.

expression Consists of any valid NewtonScript expression.

Break 3
break [expression];

While not an iterator itself, the Break expression interrupts the execution of
any of the iterative structures. You must use the Break expression to stop the
simple Loop structure, which has no built-in constructs to stop it.

If a expression follows Break, it is evaluated and returned as the value of the
loop. If you use the Break with no expression following it, the loop returns
the value nil.

expression Consists of any valid NewtonScript expression. A
compound expression may be substituted. (For more
information see the section “Compound Expressions”
beginning on page 3-1) The value of this expression is
returned as the value of the Break expression.

Exception Handling 3

This section describes exception handling in NewtonScript. Exception
handling is a non-standard flow-of-control mechanism that NewtonScript
inherits from Newton system software.

NewtonScript exception handling allows you to respond to exceptional
conditions that arise during the execution of your program. An exceptional
condition, or exception, is a condition that either the Newton system

expressionbreak

C H A P T E R 3

Flow of Control

3-14 Exception Handling

software or your own code raises when something unexpected or erroneous
happens at run time.

When an exception is raised at run time, the system can transfer control to an
exception handler, which is a block of code that attempts to handle the
condition gracefully, rather than allowing the application to crash. An
exception handler can respond by displaying an error message, reverting the
state of a computation, or taking some other action or actions.

The act of raising an exception is known as throwing an exception. An
exception handler catches the exception and responds in some manner. Each
exception has a unique name and each exception handler responds to a
specific exception or class of exceptions.

Newton system software throws and catches a number of built-in exceptions.
You can define, throw, and catch your own exceptions, and you can also
catch and handle the built-in exceptions.

Working with Exceptions 3
Working with exceptions in NewtonScript involves a number of entities. You
can perform the following actions to work with exceptions:

■ define an exception symbol for a specific exception or class of exceptions

■ enclose a list of statements within a try statement to catch any exceptions
that occur during execution of those statements

■ catch a specific exception or class of exceptions with an onexception
statement

■ use the CurrentException function to examine the frame associated
with the exception that you are handling

■ throw an exception when you detect a condition that request handling

■ rethrow an exception from within your exception-handling code to allow
the next handler for the exception to respond to it

You can provide exception handling for any list of statements in your
NewtonScript programs. You can also nest an exception-handling block

C H A P T E R 3

Flow of Control

Exception Handling 3-15

of code inside of another exception-handling block of code to provide a
hierarchical chain of exception handlers.

Each exception handler can specify which exception or class of exceptions
it processes by naming the symbol or symbol prefix that it handles. An
exception handler can also reraise (rethrow) the exception that it is handling
to allow other exception handlers in the chain an opportunity to process
the exception.

The basic process for implementing exception handling is as follows:

1. Decide on a name for the exceptions that you are going to define and how
you are going to respond when each exception is raised.

2. Write your code and use the Throw function to raise exceptions where
appropriate.

3. Write an onexception clause for each exception. Each clause names an
exception and provides a statement to handle that exception.

4. Enclose the list of statements in which you are raising and handling
exceptions with a Try statement.

Defining Exceptions 3

Each exception is named with an exception symbol. You must adhere to the
following format rules when defining an exception symbol. Each symbol

■ must be enclosed in vertical bars (|)

■ must contain at least one part that begins with the prefix evt.ex

■ can contain up to 127 characters

■ can contain multiple parts that are separated by semicolons (;)

A few example of exception symbols are shown in Listing 3-1.

C H A P T E R 3

Flow of Control

3-16 Exception Handling

Listing 3-1 Exception symbols

|evt.ex|

|evt.ex.fr.intrp|

|evt.ex.div0|

|evt.ex.msg;type.ref.frame|

IMPORTANT

Do not leave a space between the parts of exception
symbols, since the vertical bars make the space part of the
exception symbol. ◆

The prefixes contained in the exception symbols are used to define the
hierarchy of exception handlers, as described in the section “Catching
Exceptions” beginning on page 3-21. These prefixes are also important
for defining exception types, as described in the section “Exception Frames”
on page 3-16.

Exception Symbol Parts 3

Each exception symbol can contain multiple parts, enclosed in vertical bars
and named as described earlier in this section. For example, the symbol

|evt.ex;type.ref.something|

contains two parts. The parts of an exception symbol must be separated by
a semicolon.

When an exception symbol contains multiple parts, the exception is still
processed as a single exception. This means that the first exception handler
to catch any part of the exception symbol handles the exception. That
handler can rethrow the exception to allow other handlers to catch it.

Exception Frames 3

A frame is associated with each exception. This exception frame contains
two slots: a name slot and a data slot. The name slot is always named name
and always contains the exception symbol. The name and contents of the

C H A P T E R 3

Flow of Control

Exception Handling 3-17

other slot, which contains the data, depend on the composition of the
exception symbol, as shown in Table 3-2.

Table 3-3 shows several examples of exceptions and the frames associated
with them.

You can access the frame that is associated with an exception from within
your exception handler by calling the built-in function CurrentException,
described in Chapter 6, “Built-In Functions.”

Table 3-2 Exception frame data slot name and contents

Exception
symbol

Slot
name Slot contents

contains part
with prefix
type.ref

data a data object, which can be any
NewtonScript object

contains part
with prefix
evt.ex.msg

message a message string

any other error an integer error code

Table 3-3 Exception frame examples

Exception symbol Exception frame

|evt.ex;type.ref| {name: '|evt.ex;type.ref|, data:
{type: 'inka, size: 42, weight:
177}}

|evt.ex.msg| {name: '|evt.ex.msg|, message:
"there seems to be a problem"}

|evt.ex| {name: '|evt.ex|, error: -48666}

C H A P T E R 3

Flow of Control

3-18 Exception Handling

The CurrentException function returns the frame that is associated with
the current exception. You can examine the frame returned by
CurrentException to determine what kind of exception you are handling.
For example, you can call the HasSlot function to determine if the frame
contains a slot named error and you can then take appropriate action.

The Try Statement 3
You use the try statement to enclose a list of statements in which you want
to handle exceptions. The syntax of a try statement is

try

expression1;
expression2;
…

expressionN
onexception exceptionSymbol do

statement
onexception exceptionSymbol do

statement...

The try statement encloses statement1 through statementN and transfers
control to one of the onexception clauses when an exception is raised. If
no exceptions are raised, the value of the try statement is the value of its
final statement. If an exception is raised and an onexception clause
handles that exception, the value of the try statement is the value of the
executed onexception clause’s statement.

doexeptionSymbol statement

try

onexception

;expression expression ;

C H A P T E R 3

Flow of Control

Exception Handling 3-19

expression Any valid NewtonScript expression.

exceptionSymbol An exception symbol that can contain multiple parts
separated by semicolons. The symbol is enclosed in
vertical bars and can contain up 127 characters.

Exception symbols are described in “Exception Symbol Parts” beginning on
page 3-16. Examples of the try statement and onexception clauses are
found in Listing 3-4 on page 3-22.

Throwing Exceptions 3
To raise an exception in NewtonScript, you need to call the Throw function
and to include the exception name and data as parameters. The form of the
data that you send as a parameter must match the type of exception you
are throwing.

The Throw(name,data) function raises an exception and creates an exception
frame with the specified name and data. The possible values for the data
parameter depend on the composition of name, and are shown in Table 3-2 on
page 3-17. The Throw function is described in Chapter 6, “Built-In Functions.”

You call the Throw function from within a list of statements that are enclosed
by a Try statement. NewtonScript transfers control to the onexception
clause whose symbol matches name. Listing 3-2 shows several examples of
calls to the Throw function.

Listing 3-2 The Throw function

Throw('|evt.ex.foo|, -12345);

Throw('|evt.ex.msg|, "This is my message");

Throw('|evt.ex;type.ref.something|, ["a", "b", "c"]);

C H A P T E R 3

Flow of Control

3-20 Exception Handling

Note that the composition of the exception symbol that you pass as the first
parameter to the Throw function defines the kind of data that you pass as the
second parameter:

■ The first statement in Listing 3-2 requires an error number as its second
parameter.

■ The second statement in Listing 3-2 contains the prefix evt.ex.msg and
thus requires a message string as its second parameter.

■ The third statement in Listing 3-2 contains the prefix type.ref and thus
requires a data object (in this case, an array) as its second parameter.

Throwing an Exception to Another Handler 3

You can pass control from within an exception handler to the next enclosing
Try statement by reraising the exception. To do this, you call the Rethrow
function. This function is described in Chapter 6, “Built-In Functions.”

The Rethrow function reraises the current exception to allow the next
enclosing Try statement an opportunity to handle it. The Rethrow function
also passes along the same parameters as were passed with the original call
to the Throw function. The following example illustrates the use of Rethrow:

onexception |evt.ex.msg| do

if StrEqual (CurrentException().message, someString)

then self:doSomething();

else Rethrow()

IMPORTANT

You can call the Rethrow function only from within an
onexception clause. ▲

C H A P T E R 3

Flow of Control

Exception Handling 3-21

Catching Exceptions 3
When an exception is thrown during the execution of a list of statements,
execution of that list of statements is terminated and control is transferred
to the first exception handler that matches the exception. Each exception
handler is an onexception clause enclosed within a try statement, as
shown in Listing 3-3 and Listing 3-4.

Each onexception clause specifies the symbol of the exception or the class
of exceptions that it handles. The first exception handler that matches the
symbol of the exception that has been raised is the handler that is invoked.
This happens as follows:

1. When an exception is raised, Newton system software examines the
onexception clauses of the try statement that is currently active.
The onexception clauses are examined in order, from first defined to
last defined.

2. The first matching onexception clause is executed and the value of the
clause becomes the value of the try statement. A matching onexception
clause is one whose exception symbol is a prefix of any of the parts of the
exception that was raised.

3. If the active try statement does not contain a matching onexception
clause, the exception is passed onto the next enclosing try statement.

4. The exception is passed along to enclosing try statements until it is
handled. If no onexception clause in your application handles it, the
exception will be handled by the system, which responds by displaying an
error alert.

There are two logical points that should be considered in structuring code
with exception handlers.

First, since exceptions are handled by the first onexception clause that
contains a prefix of a part of the exception symbol, you need to order your
onexception clauses from most specific to least specific. For example, the
code in Listing 3-3 contains three onexception clauses ordered improperly.

C H A P T E R 3

Flow of Control

3-22 Exception Handling

Listing 3-3 Several onexception clauses ordered improperly

try

c := x:myFunc(p, q);

:anotherFunc(c)

onexception |evt.ex.pgm.fnerr| do

begin

print(“function error”);

c := nil;

end

onexception |evt.ex.pgm| do

print(“program error”)

onexception |evt.ex.pgm.dataerr| do

print(“data error”);

The final onexception clause in Listing 3-3 will never be executed because
the second onexception clause catches any exceptions that contain the
evt.ex.pgm prefix. Changing the order of the clauses to make the least
specific (the |evt.ex.pgm| symbol) clause last fixes the problem. This
improved version of the code is shown in Listing 3-4.

Listing 3-4 The onexception clauses properly ordered

try

c := x:myFunc(p, q);

:anotherFunc(c)

onexception |evt.ex.pgm.fnerr| do

begin

print(“function error”); do

c := nil;

end

onexception |evt.ex.pgm.dataerr| do

print(“data error”)

onexception |evt.ex.pgm| do

print(“program error”);

C H A P T E R 3

Flow of Control

Exception Handling 3-23

Second, an onexception clause is matched with the nearest try statement,
just as an else clause is matched to the nearest if-then clause. However,
unlike the if-then case, a single try statement can bind to multiple
onexception clauses. Listing 3-5 illustrates how this can cause problems
when nesting try blocks. Listing 3-6 then shows how this problem can be
avoided by explicitly declaring try blocks with the keywords begin and end.

Listing 3-5 Improperly nested try blocks

func f()

begin

try

try

self:doSomething()

onexception |evt.ex| do

print(CurrentException());

self:doSomethingElse()

onexception |evt.ex| do

print(“There was a problem.”);

end

Listing 3-6 Nested try block problem fixed using begin and end (shown
in bold)

func f()

begin

try

try

begin

self:doSomething()

onexception |evt.ex| do

print(CurrentException());

end

C H A P T E R 3

Flow of Control

3-24 Exception Handling

self:doSomethingElse()

onexception |evt.ex| do

print(“There was a problem.”);

end

IMPORTANT

The onexception syntax is not forgiving about extra
semicolons. Never include a semicolon (;) before an
onexception clause. ▲

Responding to Exceptions 3
This section shows and describes several examples of using exception
handling in a NewtonScript application program.

Listing 3-7 shows an exception handler that catches the exception raised by
the Newton system software when there is not enough memory to store a
new date in the Datebook soup.

Listing 3-7 Handling a soup store exception

onException |evt.ex.fr.store| do

:Notify(kNotifyAlert, "Dates",

 "Not enough memory to save changes.");

Listing 3-8 shows an exception handler that examines the exception frame to
determine if the exception represents a certain error. If so, the handler takes
an action; otherwise, the handler rethrows the exception so that it can be
caught by another handler.

C H A P T E R 3

Flow of Control

Exception Handling 3-25

Listing 3-8 An exception handler checking the exception frame

onException |evt.ex| do

if HasSlot(CurrentException(), 'error) then

begin

if CurrentException().error = -48211 then

Print(“The string you entered is too large”)

else Rethrow();

end

else Rethrow();

About Functions and Methods 4-1

C H A P T E R 4

Functions and Methods 4

This chapter describes the way you encapsulate and access code in functions
and methods, as well as related topics, including:

■ method and function definition

■ messages

■ passing parameters

■ function objects

■ native functions

About Functions and Methods 4

Most functions in NewtonScript are really methods; that is, they are defined
within the context of a frame that can receive messages. In fact, a method in
NewtonScript is nothing more than a function referenced by a frame slot and
invoked with a message send.

You send messages to objects to execute methods, as in other object-oriented
languages. In NewtonScript, the frame is the only type of object that receives
messages. (See the section “Frame” beginning on page 2-17.)

Figure 4-0
Listing 4-0
Table 4-0

C H A P T E R 4

Functions and Methods

4-2 About Functions and Methods

NewtonScript also has built-in global functions that are part of the system.
These are discussed in Chapter 6, “Built-In Functions.”

Function Constructor 4
func [native](paramList) expression

The func expression is used to create a function or method.

The syntax of a function constructor consists of the reserved word, func,
and the optional keyword, native, followed by parentheses that surround
zero or more parameters in a comma-separated list, and a body of code
consisting of one expression. The keyword native denotes a native
function; see the section “Native Functions” on page 4-16.

A function constructor returns a function object, which, when executed,
returns the value of its expression. This is the last expression executed, if
expression is a compound expression. See the section “Function Objects”
beginning on page 4-9.

paramList An optional list of parameter identifiers that are
separated by commas and enclosed in parentheses. If
your function does not use parameters you must still
include an empty set of parentheses following the
keyword func, or native (if it appears). Any identifiers
in paramList can be preceded by the keywords int or
array, which automatically declares them as variables
of the respective types.

expression Consists of any valid NewtonScript expression. A
compound expression may be substituted. (For more
information see the section “Compound Expressions”
on page 3-1.)

paramListfunc expressionnative ()

C H A P T E R 4

Functions and Methods

Function Invocations 4-3

When a function is executed, it returns the value of the expression evaluated.
The following example, myFunction, simply returns the value of the
difference between its two parameters, that is, the value of the if expression.

myFunction := func(n1, n2)

if n1 > n2 then n1 - n2;

else n2 - n1

Return 4
return [returnValue]

The return expression is used to exit a function and return a value.

When an expression appears following the keyword, return, it is evaluated
and its value is returned as the value of the function. If you do not specify a
return value, nil is returned on function exit.

returnValue Optional. Consists of any valid NewtonScript
expression or compound expression. If no expression
follows the return keyword, the return expression
evaluates to nil.

Function Invocations 4

There are three ways function objects can be executed in NewtonScript:

■ as the result of a message-send

■ by using the call with syntax

■ with a global function invocation

This section describes each of these in turn.

return expression

C H A P T E R 4

Functions and Methods

4-4 Function Invocations

Message-Send Operators 4
[{inherited|frame}] {:|:?} message(paramList)

Most code is executed in response to messages you send to a frame. Messages
are sent by using either the colon (:), which is the message-send operator, or
the colon-question mark (:?), which is the conditional message-send operator.

The message-send operator (:) sends a message and its arguments, if any, to
a frame object. The conditional message-send (:?) first checks to see if a
method exists anywhere in the inheritance chain before sending the message.

The optional frame expression, frame, appears before the operator and
specifies the frame where the message is sent. If a frame expression is
specified, the message is sent directly to the frame you specify, and it
becomes the receiver of the message.

When nothing appears before the message-send operator, the message is sent
to the current receiver, which you can refer to using the pseudo-variable,
self. Rather than leaving a blank before the message-send operator, you can
make your code more readable by putting self there, to specify explicitly
the current receiver. (See “Note” on page 5-10 for a discussion of the pros
and cons of this usage of self.)

If you want to call an inherited method instead of the method that overrides
it, use the keyword, inherited, before the message-send operator. This
forces NewtonScript to bypass the receiver and look up the value of the
method in the prototype chain, starting after the frame where the currently
executing method was found. Note that lookup stops at the end of the
prototype chain and does not continue up the parent chain. For more infor-
mation on lookup see Chapter 5, “Inheritance and Lookup.”

The message that follows the message-send operator is a symbol. The
message-send operator looks for a frame slot with that name. The frame slot

(
:

?:
)

inherited

frame
message paramList

C H A P T E R 4

Functions and Methods

Function Invocations 4-5

must reference a function with the same number of parameters used in the
message-send parameter list.

frame Any valid NewtonScript expression that evaluates to a
frame. The frame specified becomes the receiver of the
message. The message is sent to the current receiver
when a frame does not appear before the colon, as in the
following expression.

:message(argList);

inherited A keyword specifying that the message is being sent
to an inherited version of the method code residing
somewhere in the prototype chain. Using the
inherited keyword forces method lookup to start in
the prototype chain rather than in the receiver.

message A symbol used to look up the method using the
standard inheritance rules, beginning with the receiver,
at run time. For more information on lookup see
Chapter 5, “Inheritance and Lookup.”

paramList Consists of a list of zero or more parameters, separated
by commas and enclosed by parentheses. The number
of parameters must match the number of parameters
expected by the method.

When the following message-send executes, the message, msg1, is sent to the
object, frame4.

frame4:msg1();

If you send the same message without specifying which frame is the receiver,
the message is sent to the current receiver, as in the expression:

:msg1();

The same operation could be written as:

self:msg1();

C H A P T E R 4

Functions and Methods

4-6 Function Invocations

If you are not sure if a method exists, send the message using the conditional
message-send operator (:?). This operator insures that the message is sent
only if NewtonScript can find the method.

Note that the following two expressions are equivalent:

if frameName:messageName exists

then frameName:messageName()

and,

frameName:?messageName()

The second is preferable, however, since the first message will be looked up
twice; once to evaluate the exists expression, and once for the
message-send.

You can also use the built-in function Perform() to send a message with
a run-time argument list. There is also a function, PerformIfDefined,
which mimics the conditional message send operator (:?). Two functions
also exist which will send a message, but only search the prototype
(and not the parent) inheritance chains; these are ProtoPerform and
ProtoPerformIfDefined. All these functions are described in Chapter 6,
“Built-In Functions.”

Call With 4
call function with (paramList)

The call with expression executes the specified function object and its
parameters, using the value of the environment that was captured when the
function object was created. Thus, the function object executes as a closure
would in a language like Lisp. See the section “Function Objects” beginning
on page 4-9 for more information.

)(paramListwithcall function

C H A P T E R 4

Functions and Methods

Function Invocations 4-7

You can call a function with a run-time argument list by using the built-in
function Apply. For more information on this function see Chapter 6,
“Built-in Functions.”

function Consists of any valid NewtonScript expression that
evaluates to a function.

paramList Consists of a list of zero or more parameters, separated
by commas and enclosed by parentheses. The number
of parameters must match the number of parameters
expected by the function.

A call with expression returns the result of the function it executes.

Global Function Declaration 4
{ global|func } functionName (paramList) expression

You can use the global function definition syntax to define global functions
in some NewtonScript implementations. Note that except for the keyword
global, this syntax is the same as the regular function definition syntax
discussed in the section “Function Constructor” beginning on page 4-2.

Global functions can only be defined at the top level, not inside another
function. The scope of a global function definition includes every
NewtonScript function.

Note

When programming in the NTK environment, this use of the
keyword global creates a function that is global within the
NewtonScript environment in NTK. If you then attempt to
call this function inside another function executing in the
NewtonScript environment on a Newton device, an
“unknown global function” error is generated. ◆

paramList expression
func

(
global

functionName)

C H A P T E R 4

Functions and Methods

4-8 Passing Parameters

Global Function Invocation 4
functionName (paramList)

The global function call syntax has the same effect as a call with
expression: it executes the specified function object functionName and its
parameters using the message environment that was captured when the
function object was created. However, the function is determined by name
rather than by evaluating an expression.

A global function call expression returns the result of the function object
it executes.

functionName A symbol naming a global function.

paramList A list of zero or more parameters, separated by commas
and enclosed by parentheses. The number of parameters
must match the number of parameters expected by
the function.

Many global function definitions are built into NewtonScript (see Chapter 6,
“Built-In Functions,” for a list of them).

Passing Parameters 4

Parameters are passed by value in NewtonScript. In other languages this
sometimes means that these parameters are unchangeable by the function.
However, you should note that some NewtonScript values are references,
and when a reference is the value of a parameter the function can modify
that object.

For more information about NewtonScript immediates and references, see
the section “Immediate and Reference Values” beginning on page 2-5.

)(paraListfunctionName

C H A P T E R 4

Functions and Methods

Function Objects 4-9

Function Objects 4

A function object is constructed when code of the following form executes:

func(paramList) expression;

Functions are first-class objects in NewtonScript. They can be assigned to
local variables, array elements, or frame slots. They can also be stored in
soups, or passed as arguments to a function. For information on soups, see
The Newton Programmer's Guide.

The term “function object,” rather than just “function,” is used to emphasize
the fact that one func statement can give rise to many different function
objects. When a function object is created it saves the environment that exists
at that time. Therefore, multiple function objects that are created by one
function constructor differ if the environments that existed when the func
statement was executed differ.

A function object consists of two main parts: its code, and the function
context, which is where the environment that existed at the time of its
creation is saved. The function context itself consists of two parts: the lexical
environment, and the message environment.

■ The lexical environment is a list of locals and parameters in the function
and in any enclosing functions.

■ The message environment consists of references to the frame in which the
function is defined (the implementor) and to the frame to which it is sent
(the receiver).

By saving the environment in which it was created, the function object has
access to local variables and to parameters that existed when it was
constructed. In addition, the function object has access to variables in the
inheritance chain of the frame that was the value of self when the function
object was created. The NewtonScript inheritance mechanism is described in
Chapter 5, “Inheritance and Lookup.”

The parts of a function object are shown in Figure 4-1.

C H A P T E R 4

Functions and Methods

4-10 Function Objects

Figure 4-1 The parts of a function object

Function Context 4
NewtonScript uses the context of a function--the lexical and message
environments--to establish values for any variables used in a function
without being defined there.

The Lexical Environment 4

The lexical environment consists of a list of locals and parameters in the
function, and any enclosing functions. For instance, the lexical environment
of the function shown in the following example is the value of the parameter
e when the function was called:

frame1:={task1: func(e)

begin

//do something

end }

Code

Function object

Function context

Parameters Locals

Lexical environment

Receiver (self) Implementor

Message environment

C H A P T E R 4

Functions and Methods

Function Objects 4-11

The lexical environment of the function, task2, shown below in boldface
type, consists of the values of the local variable total, and the parameters e,
and a when the function was called.

frame2:={task1: func(e)

begin

local total:= e;

e := 20;

task2:= func(a) … ;

total

end }

Note

Some implementations of NewtonScript optimize
the memory allocated to the lexical environment
by saving only those variables that are actually
used within the function body. ◆

The Message Environment 4

The message environment of a function consists of the implementor of the
message and the receiver of a message.

The frame in which a method is defined is called its implementor. Note that a
method could be defined in a number of places within a frame’s inheritance
chain. The implementor is the frame in the inheritance chain where the
method is found using the inheritance rules described in Chapter 5,
“Inheritance and Lookup.”

When a message is sent, the frame to which it is sent is the receiver. The
implementor and the receiver will differ when the method is found in a
frame that is in the inheritance chain of the receiver.

C H A P T E R 4

Functions and Methods

4-12 Function Objects

To illustrate this last point consider the following two frames, frame1
and frame2:

frame1 := { greeting : "HI!",

 sayHi : func() print(greeting) };

frame2 := { greeting: "Hello!",

 _proto : frame1 };

In the following expression frame1 is both the receiver and the implementor:

frame1:sayHi();

"HI"

In this next expression, however, frame2 is the receiver and frame1 is the
implementor:

frame2:sayHi();

"Hello!"

Note that the value of the variable, greeting, is based on the receiver, not
the implementor. See the section “Inheritance Rules for Slot and Message
Lookup” on page 5-7 for a discussion of this issue.

Invoking a function by using the call with syntax sets the value of self
(the receiver) to the value saved in the function’s message environment. This
is in contrast to sending a message, where the receiver is changed to the
frame specified in the message-send expression.

Self 4

The value of the pseudo-variable self is always set to the value of the
receiver. Therefore, you can use self to reference the receiver in your code.
Note that you cannot set self as you could a real variable (in an assignment
for instance), hence its designation as a pseudo-variable.

For example, when sayHi executes in the following assignment, the value of
self will be frame1:

x := frame1:sayHi();

C H A P T E R 4

Functions and Methods

Function Objects 4-13

An Example Function Object 4

The following example illustrates how the context of a function object is used
to find values for the variables in the function. This example is complicated
in that functions are nested, and the inheritance mechanism is utilized; this is
to demonstrate how every part of a function object is used. You may want to
skip this section, and come back to it after having read Chapter 5,
“Inheritance and Lookup.”

frame1 := {slot1 : 5};

frame2 := {

_parent : frame1,

slot2 : 40,

outerMethod : func (arg1)

begin

 local var1 := 2000;

 local nestedMethod := func (arg2)

slot1 + slot2 + arg1 + var1 + arg2;

 nestedMethod;

end;

}

When outerMethod executes through the following message-send

functionObject1 := frame2:outerMethod(300);

it returns the function object nestedMethod. This function object is stored
in the variable functionObject1, shown in Figure 4-2.

C H A P T E R 4

Functions and Methods

4-14 Function Objects

Figure 4-2 functionObject1 dissected

This message-send saves the environment in which it was created. This
contextual information provides values for the parameters arg1 (300) and
the local variable var1 (2000). It also provides a value for self, the receiver
of the message-send. This allows NewtonScript to provide values for slot2
(40) and the inherited slot1 (5).

When functionObject1 is executed, as in the following function call,
NewtonScript can properly lookup the value of all the addends:

call functionObject1 with (10000);

This returns 12345.

Code

functionObject1

Function context

Parameters Locals

Lexical environment

Receiver (self) Implementor

Message environment

slot1 + slot2 + arg1 + var1 + arg2

arg1, arg2

frame2 frame2

var1

C H A P T E R 4

Functions and Methods

Function Objects 4-15

Note

The following message-send does not work:

aFrame := {aSlot : functionObject1}
aFrame:aSlot(10000);

This is because the message-send changes the receiver to
aFrame, and NewtonScript is unable to produce values for
slot1 and slot2.
call aFrame.aSlot with (10000) still functions
properly, however. ◆

Using Function Objects to Implement Abstract Data Types 4

One use of function objects is to implement abstract data types. These are
types that can only be modified procedurally; their actual data is hidden.
Though it might appear so, frames with methods don’t provide the same
functionality. In a frame, the data values in the slots are visible and can be
modified even when not using the appropriate methods. Consider the
following account generator:

MakeAccount := func()begin

local balance := 0;

local d := func(amount) begin

balance := balance + amount;

end;

local c := func() begin

balance := 0;

end;

{Deposit: d, Clear: c};

end;

myAccount := call MakeAccount with ();

C H A P T E R 4

Functions and Methods

4-16 Native Functions

Calling MakeAccount returns a frame containing two function objects, d
and c. The function objects in this frame reference the local variable
balance from MakeAccount. Even though MakeAccount is no longer
executing, the balance variable continues to exist, because the nested
functions Deposit and Clear reference it. Thus, calling myAccount
modifies the hidden variable balance, as you can see in the following
Inspector output:

call myAccount.Deposit with (50);

#C8 50

call myAccount.Deposit with (75)

#1F4 125

call myAccount.Clear with ();

#0 0

Also since neither Deposit nor Clear utilizes the value of self,
message-sends can be used as well as the call/with syntax:

myAccount:Deposit (20);

#50 20

Native Functions 4

When the keyword native appears in a function constructor, some
compilers generate native code for that function. Native code is machine
language code executed directly by the Newton processor.

There are a number of considerations involved in deciding whether to
declare a function native. For a detailed discussion of these issues, see the
chapter “Tuning Performance,” in the Newton Toolkit User’s Guide.

5-1

C H A P T E R 5

Inheritance and Lookup 5

NewtonScript supports several object-oriented features and concepts through
its double inheritance scheme. Frames are the basic data structure in
NewtonScript. Inheritance between frames is set up through slots named
_parent and _proto. This chapter describes parent and prototype (proto)
inheritance. It also tells you

■ how to set up frames with these relationships

■ the rules associated with parent and prototype inheritance

■ how inheritance affects slot and method lookup

■ how inheritance affects setting slot values

■ the uses of parent and prototype inheritance

Figure 5-0
Listing 5-0
Table 5-0

C H A P T E R 5

Inheritance and Lookup

5-2 Inheritance

Inheritance 5

There are two kinds of inheritance in NewtonScript: prototype inheritance
and parent inheritance.

Prototype Inheritance 5
A frame can have a prototype, which is simply another frame it names as the
value of a _proto slot. A frame inherits slots from its prototype if it does not
contain them in itself. If a frame contains a slot with the same name as a slot
in the prototype, it overrides the value of the prototype slot.

You use inheritance from prototype frames (abbreviated as protos) for

■ object refinement—the Newton system has many user interface elements
that are system protos you can use or modify in your own interface

■ persistent storage of data—these values are commonly stored in ROM or
on a PCMCIA card

Creating Prototype Frames 5

You create a prototype relationship between frames by using a special slot
named _proto. The value of this slot must be a reference to the frame you
intend to use as your prototype frame. For example, to use a frame called
pageTemplate as a prototype for a frame called myPage, you include a
_proto slot that evaluates to a reference to the pageTemplate frame. This
is illustrated in Figure 5-1.

C H A P T E R 5

Inheritance and Lookup

Inheritance 5-3

Figure 5-1 A prototype frame

Prototype Inheritance Rules 5

If a function in the frame myPage references the slot named topMargin
during run time, as shown in Figure 5-1, the interpreter looks for the value
of topMargin in the frame myPage first. It doesn’t find the slot there it
follows the _proto reference to the frame, pageTemplate. There it finds
a topMargin slot and its value, 1. In this case, the frame myPage inherits
that slot.

If a function in myPage references the slot named leftMargin, that slot is
found in the current frame and evaluates to the value 0.75. In this case, the
value in the current frame overrides the value found in the prototype.

Note that methods in frames can also be inherited and overridden.

The system obtains values during run time by following the prototype
inheritance rules for looking up slot references. NewtonScript looks first in
the current frame for a slot name. If the slot is not found, it looks at the
prototype frame, and if the slot is still not found, it looks at the prototype
frame of that frame, and so on, through all the prototypes in the chain.

pageTemplate

{topMargin:1
bottomMargin:2
leftMargin: 1.5
rightMargin:1.5
}

myPage

{_Proto: pageTemplate

leftMargin: 0.75
}

Prototype Frame

C H A P T E R 5

Inheritance and Lookup

5-4 Inheritance

An example of a prototype chain is shown in Figure 5-2. In this figure, the
inheritance chain starts with the current frame, myPage, and follows the
arrows to its prototype frames on the right.

Figure 5-2 A prototype chain

Parent Inheritance 5
Besides prototypical relationships between frames, you can set up hierarchical
parent-child relationships.

Inheritance from parent frames is used for

■ sharing information between objects, both behavior and data objects

■ creating hierarchies, like the view hierarchy of Newton applications

Creating Parent Frames 5

The parent-child link between frames exists by way of a special slot named
_parent, which resides in the child frame. You can set this slot directly in
your code or you can use the drawing tools in the Newton Toolkit to create
view hierarchies automatically. See the Newton Toolkit User’s Guide for more
information about how to do this. Figure 5-3 shows an example of a parent-
child relationship between two frames.

Frames that serve as parents can themselves be children of other frames,
thereby forming an inheritance chain extending upwards.

myPage

{_Proto:
pageTemplate,
.
.
}

pageTemplate

{_Proto:
someFrame,
.
.
}

someOtherFrame

{
.
.
}

someFrame

{_Proto:
SomeOtherFrame,
.
.
}

C H A P T E R 5

Inheritance and Lookup

Inheritance 5-5

Figure 5-3 Parent-child relationship

Parent Inheritance Rules 5

When you create parent-child hierarchies between frames, NewtonScript
uses an inheritance mechanism that works similarly to prototype inheritance.

As in prototype inheritance, a child frame inherits slots from its parent that it
does not itself contain. However, if a child frame contains a slot name that is
the same as one in a parent frame, the child slot overrides the parent.

In this sense parent inheritance rules are like prototype inheritance rules; the
same mechanism is involved. They differ, however, in that the prototype
inheritance chain is searched in some instances where the parent inheritance
chain is not, and assignment of inherited slots is handled differently in the
two types of inheritance.

myDoc

{_Proto:
.
.
}

myPage

{_parent:myDoc
.
.
}

Parent

Child

C H A P T E R 5

Inheritance and Lookup

5-6 Inheritance

Combining Prototype and Parent Inheritance 5
In practice, most frames have prototypes and parents. When a slot is
referenced during run time, the parent inheritance mechanism interacts
with the prototype inheritance mechanism.

The basic rules for inheritance order are

1. NewtonScript looks first in the initial frame for a referenced slot. In
variable lookup the initial frame is the current receiver; in message lookup
it is the given receiver.

2. If the slot is not found, the prototype chain of the initial frame is searched.

3. If the slot is still not found, the search moves up one level to the parent
frame. The parent and its prototype chain are searched in order. The
search then moves up another level (to the parent’s parent) and continues
in the same way until the slot is found.

The numbered arrows in Figure 5-4 indicate the order in which frames are
searched for a slot reference that is made from a function in the current
frame, when that frame has both parent and proto frames.

Basically, prototype inheritance takes precedence over parent inheritance; all
prototype frames on one level are searched before moving up to search a
parent frame and its prototypes on another level.

Remember that these rule take effect within the context of the rules for
variable lookup. When looking up the value of a variable, NewtonScript
searches for the variable first as a local, then as a global, and finally through
the inheritance structure.

C H A P T E R 5

Inheritance and Lookup

Inheritance 5-7

Figure 5-4 Prototype and parent inheritance interaction order

Inheritance Rules for Slot and Message Lookup 5

There are a number of ways in which a slot can be accessed in NewtonScript.
Some of these ways search both inheritance chains, some search only the
prototype chain, and some search neither.

If the slot name appears by itself, then both inheritance chains are searched.
In the following expressions, for example, the values of chapterNum, and

1

4

6 7

2

myDoc

chapTemplate

{chapterNum: nil,
header:true
}

sectionTemp

{sides: nil,
.
.
}

pageTemplate

{_proto: sectionTemp,
topMargin: 1,
bottomMargin: 2,
leftMargin: 1.5,
rightMargin: 1.5,
sides: single
}

docTemplate

{paperSize: standard
.
.
}

baseDoc

{_proto: docTemplate,

footer: 1
}

{_proto: baseDoc,

header: nil,
footer: 2
}

5

myChap

{_parent: myDoc,
_Proto: ChapTemplate,

sides: double,
chapNum: 2
}

3

myPage

{_parent: myChap,
_Proto: pageTemplate,

leftMargin: 0.75
}

C H A P T E R 5

Inheritance and Lookup

5-8 Inheritance

rightMargin are searched in the order shown by the arrows in Figure 5-4
(after being searched for as locals and globals, of course).

presentChapter := chapterNum;

if rightMargin > 1.0 then ...

However, if the frame.slot or frame.(pathExpression) syntax is
used, as in the following examples, then only the prototype chain will
be searched.

if myChap.header then ...

x:= self.topMargin;

A message-send searches both inheritance chains, whether the receiver
is explicitly mentioned, as in frame:Message(), or is omitted, as in
:Message(). An exception to this rule is that if the keyword inherited
is used, as in inherited:Message(), the search will begins with the
current frame’s prototype frame, and only follows the prototype chain.

Note

Arguments can be made both for and against using
self:Message() as opposed to :Message(). On the one
hand, self:Message() looks like self.slot, which does
not follow the parent inheritance chain and thus might
cause confusion. On the other hand, self:Message() is
arguably more readable, and a common bug can be avoided
by always using this format. Consider these two seemingly
correct lines of code:

:Message1()

:Message2()

This sends Message2 to whatever :Message1() evaluates
to, which is not what was intended. Including self
would have prevented this bug. Another way to avoid this
type of bug is to always include a semicolon (;) after an
expression. ◆

C H A P T E R 5

Inheritance and Lookup

Inheritance 5-9

NewtonScript also has two built-in functions that can be used for accessing
frame slots: GetVariable and GetSlot. GetVariable searches both
inheritance chains, and GetSlot searches neither. See Chapter 6, “Built-In
Functions,” for a description of these functions.

Appendix E, “Quick Reference Card,” summarizes the information in
this section.

Inheritance Rules for Testing for the Existence of a Slot 5

Inheritance rules for testing for the existence of a slot are basically the same
as those for slot lookup. When the slot name appears by itself, as in slot
exists, the full inheritance chain is searched. If a frame is explicitly
mentioned however, as in frame.slot exists or self.slot exists,
only the prototype chain is searched.

A method is searched in both inheritance chains, whether a frame appears
before the colon, as in frame:Message exists, or not, as in :Message
exists.

NewtonScript also provides two built-in functions for testing whether a slot
exists: HasVariable, and HasSlot. HasVariable searches both parent
and prototype chains, and HasSlot searches neither. See Chapter 6,
“Built-In Functions,” for a description of these functions

Appendix E, “Quick Reference Card,” summarizes the information in
this section.

Inheritance Rules for Setting Slot Values 5

Inheritance rules apply not only when a slot is referenced, but also when
its value is set. However, the rules are slightly different for setting the value
of a slot.

The basic difference is that slot values are changed in parent frames only
during run time. One reason for this is that prototype frames often exist in
ROM and, therefore, cannot be changed. (Of course, when you first create
the prototype frames their slots can be set, but not when the application
is running.)

C H A P T E R 5

Inheritance and Lookup

5-10 Inheritance

When setting a slot, the inheritance search is the same as for slot lookup,
except that the slot is not always set where it is found.

These are the rules for where a slot is set:

1. If a slot exists in the currently executing frame, its value is set there.

2. If the slot exists in the prototype chain of the current frame, a new slot is
made in the currently executing frame and its value is set there.

3. If the slot exists in the parent of the currently executing frame, its value is
set in that parent frame.

4. If the slot exists in the prototype chain of the parent, a new slot is made in
the parent frame at the same level at which it was found, and its value is
set in that parent frame.

Note that if you create a variable from within a function, it is created as a
local variable that is restricted to the scope of the function. If you want to
make sure the slot is made in the receiver, you must specify that by using
self, in an expression like self.slotName := aValue;

If you want to set the value of a slot explicitly in the parent of the current
frame, you can use the expression self._parent.theSlot to force the
slot to be created there.

Note

It is unsafe to reference the _parent slot directly as a
simple expression. A few work arounds are available,
however. You can use the view system message :Parent(),
which returns the current receiver’s parent frame. Also,
using frame._parent or self._parent avoids this
problem. In summary:

_parent is risky
frame:Parent() is OK
self._parent is OK (and should be the same as :Parent())
frame._parent is OK (and should be the same as frame:Parent())

See the Newton Programmer’s Guide for more information on
:Parent() method. ◆

C H A P T E R 5

Inheritance and Lookup

Inheritance 5-11

An Object-Oriented Example 5
You may understand inheritance better if you construct an inheritance
structure on which to experiment. You can use the following code:

frame1 := {

slot1: "slot1 from frame1",

slot6: 99};

frame2 := {

_parent: frame1,

slot1: "slot1 from frame2",

slot2: "slot2 from frame2"};

frame3 := {

slot3: "slot3 from frame3",

slot5: 42};

frame4 := {

_parent: frame2,

_proto: frame3,

msg1: func()

begin

//show slot from parent inheritance

Print(slot1);

//show slot from proto inheritance

Print(slot3);

//show slot from parent inheritance - again -

//but doesn't work because

 // self.slot1 only searches proto chain

Print(self.slot1);

//show slot from proto inheritance - again

Print(self.slot3);

end }

C H A P T E R 5

Inheritance and Lookup

5-12 Inheritance

This produces the inheritance structure shown in Figure 5-5. When the
message frame4:msg1() is sent, the following output is produced:

"slot1 from frame2"

"slot3 from frame3"

NIL

"slot3 from frame3"

Figure 5-5 An inheritance structure

frame1

{
slot1:"slot1 from frame1"

slot6:99
}

frame3

{
slot3."slot3 from frame3"

slot5:42
}

frame2

{
_parent:frame1

slot1:"slot1 from frame2"

slot2:"slot2 from frame2"
}

frame4

{
_parent:frame2

_proto:frame3

msg1:func()...
}

Prototype frame

Parent frame

Parent frame

6-1

C H A P T E R 6

Built-In Functions 6

NewtonScript supports a number of built-in functions. The following
groups of functions are included here:

■ Object system

■ String

■ Bitwise

■ Array and sorted array

■ Math

■ Floating point math

■ Control of floating point math

■ Financial

■ Exception Handling

■ Message sending

■ Data extraction

■ Data stuffing

■ Getting and Setting Global Variables and Functions

■ Miscellaneous

Figure 6-0
Listing 6-0
Table 6-0

C H A P T E R 6

Built-In Functions

6-2 Compatibility

Note

The inspector examples used throughout this document
often include a number after a pound sign; for example,
#4945. This information can be ignored as it is an internal
pointer to data in the system. ◆

Compatibility 6

This section describes the changes made to the built-in functions for Newton
System Software 2.0.

New Functions 6
The following new functions have been added for this release.

New Object System Functions 6

The following new object system functions have been added.

GetFunctionArgCount

IsCharacter

IsFunction

IsInteger

IsNumber

IsReadOnly (existed in 1.0 but now documented)
IsReal

IsString

IsSubclass (existed in 1.0 but now documented)
IsSymbol

MakeBinary

SetVariable

SymbolCompareLex

C H A P T E R 6

Built-In Functions

Compatibility 6-3

New String Functions 6

The following new string functions have been added.

CharPos

StrExactCompare

StrTokenize

StyledStrTruncate

New Array Functions 6

The following new array functions have been added.

ArrayInsert

InsertionSort

LFetch

LSearch

NewWeakArray

StableSort

New Sorted Array Functions 6

The following new functions have been added that operate on sorted arrays.
These functions are based on binary search algorithms, hence the “B” prefix
to the function names.

BDelete

BDifference

BFetch

BFetchRight

BFind

BFindRight

BInsert

BInsertRight

BIntersect

BMerge

BSearchLeft

BSearchRight

C H A P T E R 6

Built-In Functions

6-4 Compatibility

New Message Sending Functions 6

The following new utility functions for sending immediate messages have
been added.

PerformIfDefined

ProtoPerform

ProtoPerformIfDefined

New Data Stuffing Functions 6

The following functions have been added to stuff data.

StuffCString

StuffPString

New Functions to Get and Set Globals 6

The following new functions that get, set, and check for the existence of
global variables and functions have been added.

GetGlobalFn

GetGlobalVar

GlobalFnExists

GlobalVarExists

DefGlobalFn

DefGlobalVar

UnDefGlobalFn

UnDefGlobalVar

New Miscellaneous Functions 6

The following function has been added.

BinEqual

C H A P T E R 6

Built-In Functions

Object System Functions 6-5

Obsolete Functions 6
Some built-in functions previously documented in the NewtonScript
Programming Language are obsolete, but are still supported for compatibility
with older applications. Do not use the following utility functions, as they
may not be supported in future system software versions:

ArrayPos (use LSearch instead)
StrTruncate (use StyledStrTruncate instead)

Object System Functions 6

The functions described in this section operate on NewtonScript objects. They
perform operations such as removing slots, cloning frames, and so forth.

ClassOf 6

ClassOf(object)

Returns the class of an object.

object The object whose class to return.

The return value is a symbol. Some of the common object classes are: 'int,
'char, 'boolean, 'string, 'array, 'frame, 'function, and 'symbol.
Note that this is not necessarily the same as the primitive class of an object.
For binary, array, and frame objects, the class can be set differently from the
primitive class.

Frames or arrays without an explicitly assigned class are of the primitive
class 'frame or 'array, respectively. If a frame has a class slot, the value
of the class slot will be returned. Here are some examples:

f:={multiply:func(x,y) x*y};

classof(f);

#1294 Frame

C H A P T E R 6

Built-In Functions

6-6 Object System Functions

f:={multiply:func(x,y) x*y, class:'Arithmetic};

classof(f);

#1294 Arithmetic

s:="India Joze";

classof(s);

#1237 String

See also “PrimClassOf” on page 6-13.

Clone 6

Clone(object)

Makes and returns a “shallow” copy of an object; that is, references within
the object are copied, but the data pointed to by the references is not.

object The object to copy.

Here is an example:

SeaFrame := {Ocean: "Pacific", Size: "large" , Color: "blue"};

seaFrameCopy := clone(seaFrame);

seaFrameCopy.Deep := true;

seaFrame

#441896D {Ocean: "Pacific", size: "large", Color: "blue"}

seaFrameCopy

#4418B0D {Ocean: "Pacific", size: "large", Color: "blue",

Deep: TRUE}

DeepClone 6

DeepClone(object)

Makes and returns a “deep” copy of an object; that is, all of the data
referenced within the object is copied, including that referenced by magic
pointers (pointers to ROM objects).

object The object to copy.

C H A P T E R 6

Built-In Functions

Object System Functions 6-7

It is not guaranteed that every part of the data structure is in RAM. (Certain
information, such as the symbols naming frame slots, may be shared with
the original object.)

Contrast this function with Clone that only makes a “shallow” copy, and the
EnsureInternal function that ensures that the object exists entirely in
internal RAM.

GetFunctionArgCount 6

GetFunctionArgCount(function)

Returns the number of arguments expected by a function.

function The function whose number of arguments you want
to get.

GetSlot 6

GetSlot(frame, slotSymbol)

Returns the value of a slot in a frame. Only the frame specified is searched.

frame A reference to the frame in which to look for the slot.

slotSymbol A symbol naming the slot whose value you want to get.

If the slot doesn’t exist, this function returns nil.

Unlike GetVariable, GetSlot searches for a slot only in the indicated
frame. Inheritance is not used to find the slot.

The use of the NewtonScript dot operator is similar to the GetSlot function
in that it also returns the value of a frame slot. For example, the expression
frame.slot returns the value of the specified slot. However, when using
the dot operator, if the slot is not found in the specified frame, proto frames
are also searched for the slot (but not parent frames).

C H A P T E R 6

Built-In Functions

6-8 Object System Functions

GetVariable 6

GetVariable(frame, slotSymbol)

Returns the value of a slot in a frame. If the slot is not found, nil is returned.

frame A reference to the frame in which to begin the search for
the slot.

slotSymbol A symbol naming the slot whose value you want to get.

This function begins its search for the slot in the specified frame and makes
use of the full proto and parent inheritance.

HasSlot 6

HasSlot(frame, slotSymbol)

Returns non-nil if the slot exists in the frame, otherwise, returns nil.
Inheritance is not used to find the slot.

frame The name of the frame in which to look for the slot.

slotSymbol A symbol naming the slot whose value you want to get.

This function begins its search for the slot in the specified frame and makes
use of the full proto and parent inheritance.

HasVariable 6

HasVariable(frame, slotSymbol)

Returns non-nil if the slot exists in the frame, otherwise, returns nil. This
function searches proto and parent frames of the specified frame if the slot is
not found there.

frame The name of the frame in which to begin the search for
the slot.

slotSymbol A symbol naming the slot whose existence you want to
check. You must use a single quote before the slot name
because it is a symbol.

C H A P T E R 6

Built-In Functions

Object System Functions 6-9

Intern 6

Intern(string)

Creates and returns a symbol whose name is given as the string parameter
string. If a symbol with that name already exists, the preexisting symbol
is returned.

string The name of the symbol.

IsArray 6

IsArray(obj)

Returns non-nil if obj is an array.

obj The object to test.

IsBinary 6

IsBinary(obj)

Returns non-nil if obj is a binary object.

obj The object to test.

IsCharacter 6

IsCharacter(obj)

Returns non-nil if obj is a character, and returns nil otherwise.

obj The object to test.

IsFrame 6

IsFrame(obj)

Returns non-nil if obj is a frame.

obj The object to test.

C H A P T E R 6

Built-In Functions

6-10 Object System Functions

IsFunction 6

IsFunction(obj)

Returns non-nil if obj is a function, and returns nil otherwise.

obj The object to test.

IsImmediate 6

IsImmediate(obj)

Returns non-nil if obj is an immediate.

obj The object to test.

IsInstance 6

IsInstance(obj, class)

Returns non-nil if obj’s class symbol the same as class or a subclass of class.

obj The object to test.

class A class symbol.

Note that this is equivalent to:

IsSubclass(ClassOf(obj), class)

IsInteger 6

IsInteger(obj)

Returns non-nil if obj is an integer, and returns nil otherwise.

obj The object to test.

IsNumber 6

IsNumber(obj)

Returns non-nil if obj is a number (integer or real), and returns nil
otherwise.

obj The object to test.

C H A P T E R 6

Built-In Functions

Object System Functions 6-11

IsReadOnly 6

IsReadOnly(obj)

Returns non-nil if obj is read-only, and returns nil otherwise. You can use
IsReadOnly to determine if an array, frame, or binary object is writable.

obj An array, frame, or binary object to test. (Immediate
objects such as integers are never read-only.)

Here is an example:

if IsReadOnly(viewBounds) then

viewBounds := Clone(viewBounds);

This function should not be used to determine the location of an object, that
is, whether it is in the heap, in ROM, or in protected memory. The
NewtonScript language could permit read-only objects in the NS heap, or
writable objects that exist in other locations.

IsReal 6

IsReal(obj)

Returns non-nil if obj is a real number, and returns nil otherwise.

obj The object to test.

IsString 6

IsString(obj)

Returns non-nil if obj is a string, and returns nil otherwise.

obj The object to test.

IsSubclass 6

IsSubclass(sub, super)

Checks if a class is a subclass of another class.

sub A class symbol you want to test.

super A class symbol.

C H A P T E R 6

Built-In Functions

6-12 Object System Functions

This function returns non-nil if sub is a subclass of super, or is the same as
super. Returns nil if sub is not a subclass of super. See also the related
function IsInstance on page 6-10.

IsSymbol 6

IsSymbol(obj)

Returns non-nil if obj is a symbol, and returns nil otherwise.

obj The object to test.

MakeBinary 6

MakeBinary(length, class)

Allocates a new binary object of the specified length and class.

length The size of the binary object in bytes.

class A symbol specifying the class

Map 6

Map(obj, function)

Applies a function to the slot name and value of each element of an array
or frame.

obj An array or frame.

function Returns nil. A function to apply to the elements or
slots in obj. The function is passed two parameters: slot
and value. The slot parameter contains an integer array
index if obj is an array, or it contains a symbol naming a
slot, if obj is a frame. The value parameter contains the
value of the array or frame slot referenced by the slot
parameter.

This is equivalent to:

foreach slot,value in obj do call function with (slot,value)

C H A P T E R 6

Built-In Functions

Object System Functions 6-13

PrimClassOf 6

PrimClassOf(obj)

Returns the primitive class of an object.

obj The object whose primitive class to return.

Returns a symbol identifying the primitive data structure type of the object,
one of: 'immediate, 'binary, 'array, or 'frame.

See also “ClassOf” on page 6-5.

RemoveSlot 6

RemoveSlot(obj, slot)

Removes a slot from a frame or array.

obj The name of the frame or array from which to remove
the slot.

slot A symbol naming the frame slot you want to remove, or
the index of the array slot to remove. Note that no
inheritance look-up is used to find this slot in obj.

This function returns the modified frame or array. If slot is not found, nothing
is done and the unmodified frame or array is returned. Note that the system
throws an exception if obj is read-only.

ReplaceObject 6

ReplaceObject(originalObject, targetObject)

Causes all references to an object to be redirected to another object.

originalObject The original object.

targetObject The object to which you want to redirect references
to originalObject.

This function always returns nil.

Note that you cannot specify immediate objects as parameters to
this function.

C H A P T E R 6

Built-In Functions

6-14 Object System Functions

Here is an example:

x:={name:"Star"};

y:={name:"Moon"};

replaceobject(x,y);

x;

#469E69 {name: "Moon"}

y;

#46A1E9 {name: "Moon"}

SetClass 6

SetClass(obj, classSymbol)

Sets the class of an object.

obj The object whose class to set.

classSymbol A symbol naming the class to give to the object.

This function returns the object whose class was set.

You can set the class of the following kinds of objects: frames, arrays, and
binary objects. Note that you cannot set the class of an immediate object.

When setting the class of a frame, if a class slot doesn't exist, one is created
in the frame. For example:

x:={name: "Star"};

setclass(x, 'someClass);

#46ACC9 {name: "Star",

 class: someClass}

C H A P T E R 6

Built-In Functions

Object System Functions 6-15

SetVariable 6

SetVariable(frame, slotSymbol, value)

Sets the value of a slot in a frame. The value is returned.

frame A reference to the frame in which to begin the search for
the slot.

slotSymbol A symbol naming the slot whose value you want to set.
If the slot is not found, it is created in frame.

value The new value of the slot.

This function begins its search for the slot in the specified frame and makes
use of the full proto and parent inheritance.

Note that if the slot is found in the proto chain, it is not set there, but is
created and set in frame, or in its parent chain, following the usual inheritance
rules as they apply to setting a value.

SymbolCompareLex 6

SymbolCompareLex(symbol1, symbol2)

Compares symbols lexically. This function returns a negative number if
symbol symbol1 is less than symbol symbol2. Returns zero if the two symbols
are equal. Returns a positive number if symbol1 is greater than symbol2. Case
is not significant (that is, 'Hello and 'hello are equal).

symbol1 A symbol.

symbol2 A symbol.

TotalClone 6

TotalClone(obj)

Makes and returns a “deep” copy of an object; that is, all of the data
referenced within the object is copied.

obj The object to copy.

This function is similar to DeepClone, except that this function guarantees
that the object returned exists entirely in internal RAM. Also, unlike

C H A P T E R 6

Built-In Functions

6-16 String Functions

DeepClone, TotalClone does not follow magic pointers, so that objects
referenced through magic pointers are not copied.

String Functions 6

These functions operate on and manipulate strings.

BeginsWith 6

BeginsWith(string, substr)

Returns non-nil if string begins with substr, or returns nil otherwise. This
function is case and diacritical-mark insensitive. An empty substr matches
any string.

string The string to test.

substr A string.

Capitalize 6

Capitalize(string)

Capitalizes the first character in string and returns the result. string
is modified.

string The string to modify.

CapitalizeWords 6

CapitalizeWords(string)

Capitalizes the first character of each word in string and returns the result.
string is modified.

string The string to modify.

C H A P T E R 6

Built-In Functions

String Functions 6-17

CharPos 6

CharPos(str, char, startpos)

Returns the position of the next occurrence of character in the specified
string, starting from the startPos (or nil if it’s not found).

str The specified string.

char The specified character in the string.

startpos The starting position of the character to return.

Downcase 6

Downcase(string)

Changes each character in string to lowercase and returns the result. string
is modified.

string The string to modify.

EndsWith 6

EndsWith(string, substr)

Returns non-nil if string ends with substr, or returns nil otherwise. This
function is case and diacritical-mark insensitive. An empty substr matches
any string.

string The string to test.

substr A string.

IsAlphaNumeric 6

IsAlphaNumeric(char)

Returns non-nil if char is a number or a letter; otherwise, this function
returns nil.

char A character to test.

C H A P T E R 6

Built-In Functions

6-18 String Functions

IsWhiteSpace 6

IsWhiteSpace(char)

Returns non-nil if char is a space ($\20), tab ($\09), linefeed ($\0A), or
carriage return ($\0D) character; otherwise, this function returns nil.

char A character.

SPrintObject 6

SPrintObject(obj)

Returns a string of the object passed in. Numbers, strings, characters, and
symbols are converted to their natural string representation. For frames,
arrays, and Booleans, this function returns an empty string.

To convert a Boolean into a string, you must check for non-nil or nil and
return the appropriate string.

Note

This function changes the number format depending on the
current locale setting. Real numbers may be formatted
unexpectedly. ◆

StrCompare 6

StrCompare(a, b)

Returns a negative number if string a is less than string b. Returns zero if
string a and b are equal. Returns a positive number if string a is greater than
string b. Case is not significant (that is, “Hello” and “hello” are equal).

a A string.

b A string.

Note that this is a content comparison of the two strings, not a pointer
comparison.

Use StrExactCompare to do a case-sensitive comparison of strings.

C H A P T E R 6

Built-In Functions

String Functions 6-19

StrConcat 6

StrConcat(a, b)

Concatenates string b onto string a and returns the result as a new string.

a A string.

b A string.

StrEqual 6

StrEqual(a, b)

Returns non-nil if the two strings, a and b, are equal.

a A string.

b A string.

Case is not significant. Note that this is a content comparison of the two
strings, not a pointer comparison.

Use StrExactCompare to do a case-sensitive comparison of strings.

StrExactCompare 6

StrExactCompare(a, b)

Returns a negative number if string a is less than string b. Returns zero if
string a and b are equal. Returns a positive number if string a is greater than
string b. Case and diacritical marks are significant (that is, “Hello” and
“hello” are not equal).

a A string.

b A string.

Note that this is a content comparison of the two strings, not a pointer
comparison.

Use StrCompare or StrEqual to do a case-insensitive comparison
of strings.

C H A P T E R 6

Built-In Functions

6-20 String Functions

StrLen 6

StrLen(string)

Returns the number of characters in a string, excluding the null terminator (if
one exists).

string A string.

StrMunger 6

StrMunger(dstString, dstStart, dstCount, srcString, srcStart, srcCount)

Replaces characters in dstString using characters from srcString and returns
the destination string after munging is complete. This function is destructive
to dstString.

dstString The destination string. The string must be writable, you
can’t specify a string literal, or an exception will be
thrown. You’ll have to use Clone (page 6-6) or a similar
function to make a writable copy from a string literal.

dstStart The starting position within dstString.

dstCount The number of characters to be replaced in dstString.
You can specify nil for dstCount to go to the end of
the string.

srcString A string. This can be nil to simply delete the characters.

srcStart The starting position in srcString from which to begin
taking characters to place into dstString.

srcCount The number of characters to use from srcString. You can
specify nil to go to the end of srcString.

Here is an example:

StrMunger("abcdef", 2, 3, "ZYXWV", 0, nil)

"abZYXWVf"

StrMunger can also be used to concatenate large strings; for example:

StrMunger(str1, StrLen(str1)+1, nil, str2, 0, nil);

C H A P T E R 6

Built-In Functions

String Functions 6-21

StrPos 6

StrPos(string, substr, start)

Returns the position of substr in string, or nil if substr is not found. The
search begins at character position start. (The first character position in a
string is zero.) This function is not case sensitive.

string A string.

substr A string.

start An integer.

Here is an example:

StrPos("abcdef", "Bcd", 0)

1

StrTokenize 6

StrTokenize(str, delimiters)

Breaks up a string into chunks for you as defined by the delimiters argument.
Each time you call the closure (passing it no arguments) you will get back the
next token, until there are no more tokens and it returns nil.

str A string to be broken up into tokens

delimiters Either a character or string (list of characters) that are
the delimiters separating the pieces of the string.

For example, to break up a sentence into space separated words you do
something like the following:

fn := StrTokenize("the quick green fox", $);

#441BE8D <function, 0 arg(s) #441BE8D>

 while x := call fn with () do Print(x);

"the"

"quick"

"green"

"fox"

#2 NIL

C H A P T E R 6

Built-In Functions

6-22 String Functions

StyledStrTruncate 6

StyledStrTruncate(string, length, font)

Truncates a string to the indicated length, in pixels. (Of course, the length
does not include the null terminator.) Returns the truncated string.

string A string.

length An integer specifying the length, in pixels, at which to
truncate the string.

font A font specification, which is used to determine how
many characters of the string will fit in the specified
length. For details on specifying a font, refer to the
section “Specifying a Font” in the chapter “Text Input
and Display,”of the Newton Programmer’s Guide.

This function adds an ellipsis (...) to the end of the truncated string.

SubStr 6

SubStr(string, start, count)

Returns a new string containing count characters from string, starting at
position start. Character positions begin with zero for the first character.

string A string.

start An integer.

count An integer.

TrimString 6

TrimString(string)

Removes any white space (spaces, tabs, and new line characters) from the
beginning and end of string and returns the result. string is modified.

string A string.

C H A P T E R 6

Built-In Functions

Bitwise Functions 6-23

Upcase 6

Upcase(string)

Capitalizes each character in string and returns the result. string is modified.

string A string.

Bitwise Functions 6

These functions perform logical operations on bits.

Band, Bor, Bxor, and Bnot 6

Band(a, b)
Bor(a, b)
Bxor(a, b)
Bnot(a)

These bitwise functions each return an integer result of their operation on
one or two integer parameters. They perform bitwise AND, OR, XOR, and
NOT, respectively.

a An integer.

b An integer.

Array Functions 6

These functions operate on and manipulate arrays.

C H A P T E R 6

Built-In Functions

6-24 Array Functions

AddArraySlot 6

AddArraySlot (array, value)

Appends a new element onto an array.

array An array.

value A value to be added as new element in the array.

For example:

myArray := [123, 456]

#1634 myArray

addArraySlot (myArray, "I want chopstix")

#12 "I want chopstix"

myArray

#1634 [123, 456, "I want chopstix"]

Array 6

Array(size, initialValue)

Returns a new array with size number of elements that each contain
initialValue.

size An integer.

initialValue A value.

ArrayInsert 6

ArrayInsert(array, element, position)

Inserts an element into an array and returns the modified array.

array The array to be modified.

element The element to be inserted into the array.

position The index where the new element is to be inserted.
Specify zero to insert the element at the beginning of the
array. Specify the result of Length(array) to insert the
element at the end of the array.

C H A P T E R 6

Built-In Functions

Array Functions 6-25

The length of the array is increased by one.

ArrayMunger 6

ArrayMunger(dstArray, dstStart, dstCount, srcArray, srcStart,
srcCount)

Replaces elements in dstArray using elements from srcArray and returns the
destination array after munging is complete. This function is destructive
to dstArray.

dstArray The destination array.

dstStart The starting element in the destination array.

dstCount The number of elements to be replaced in dstArray. You
can specify nil for dstCount to go to the end of the array.

srcArray An array. You can specify nil for srcArray to delete the
elements.

srcStart The starting position in the source array from which to
begin taking elements to place into the destination array.

srcCount The number of elements to use from the source array.
You can specify nil to go to the end of the source array.

Here is an example:

ArrayMunger([10,20,30,40,50], 2, 3, [55,66,77,88,99], 0, nil)

[10, 20, 55, 66, 77, 88, 99]

Using ArrayMunger is the most efficient way to join two arrays.

To put B at the front of A:

ArrayMunger(A, 0, 0, B, 0, nil)

To put B at the end of A:

ArrayMunger(A, Length(A), 0, B, 0, nil)

C H A P T E R 6

Built-In Functions

6-26 Array Functions

You can also do this with SetUnion (page 6-34), which has the additional
property that it eliminates duplicates, but ArrayMunger is much faster if
you don’t need that property.

ArrayRemoveCount 6

ArrayRemoveCount(array, startIndex, count)

Removes one or more elements from an array.

array The array from which to remove elements.This
parameter is modified by this function.

startIndex An integer that is the index of the first element to
remove.

count An integer specifying the number of elements to remove.

Any elements following those removed are shifted left so that no empty
elements remain.

InsertionSort 6

InsertionSort(array, test, key)

Sorts an array, preserving the original relative ordering of equivalent
elements.

array The array to modify by sorting.

test Indicates how the array is to be sorted. See the
description of the test parameter on page 6-36.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

This sort performs very well on arrays that are nearly sorted already and on
very small arrays. This sort is an O(n2) sort. To sort larger arrays, use Sort
or StableSort.

C H A P T E R 6

Built-In Functions

Array Functions 6-27

Length 6

Length (array)

Returns the number of elements in an array, the number of slots in a frame,
or the size, in bytes, of a binary object.

array An array or frame or binary object.

For example:

myArray := [123, 456, "I want chopstix"]

length (myArray)

#12 3

Note that arrays are indexed from 0, but length returns a count of the
number of characters. Therefore, the last element of this example is element 2.

Note

If you pass a string to this function, you will get the number
of bytes that a string occupies. To get the length of strings,
use StrLen instead. ◆

LFetch 6

LFetch(array, item, start, test, key)

Linearly searches an array for the specified element and returns the element,
or nil if it is not found or if start is equal to or greater than the length of the
array.

array The array in which to search.

item The key value for which to search.

start The array index at which to begin searching.

C H A P T E R 6

Built-In Functions

6-28 Array Functions

test Indicates how to compare key values to test for a match.
Specify one of the following symbols for test:

'|=| If the objects being compared are
immediates and reals, their values are
compared for equivalency. For reference
objects, their identity is compared.

'|str=| For string objects, the contents of the
strings are compared for equivalency.

Alternatively, for nonstandard sorting situations, you
can specify a function object that compares two key
values and returns a Boolean or integer value indicating
whether or not they are equivalent. This function will be
called to test for matches. The function is passed two
parameters, A and B, where A is the item parameter
passed to LFetch and B is the array element being
tested.

The function must return a non-nil value (or zero) if
the items are equivalent, or nil (or a non-zero integer)
if the items are not equivalent.

Note that specifying a function object for test results
in much slower performance than using one of the
predefined symbols.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

This function works just like LSearch, except that LSearch returns the
index of the found item.

If you know that the array you are working with is sorted, you can use the
function BFetch to search for an element. This function, based on binary
search algorithms, is much faster on large arrays than LFetch or LSearch,
though it can be used only on sorted arrays.

C H A P T E R 6

Built-In Functions

Array Functions 6-29

LSearch 6

LSearch(array, item, start, test, key)

Linearly searches an array for the specified element and returns the index of
the element, or nil if it is not found or if start is equal to or greater than the
length of the array.

array The array in which to search.

item The key value for which to search.

start The array index at which to begin searching.

test Indicates how to compare key values to test for a match.
Specify one of the following symbols for test:

'|=| If the objects being compared are
immediates and reals, their values are
compared for equivalency. For reference
objects, their identity is compared.

'|str=| For string objects, the contents of the
strings are compared for equivalency.

Alternatively, for non-standard sorting situations, you
can specify a function object that compares two key
values and returns a Boolean or integer value indicating
whether or not they are equivalent. This function will be
called to test for matches. The function is passed two
parameters, A and B, where A is the item parameter
passed to LSearch and B is the array element being
tested. The function must return a non-nil value (or
zero) if the items are equivalent, or nil (or a non-zero
integer) if the items are not equivalent. Note that
specifying a function object for test results in much
slower performance than using one of the predefined
symbols.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

C H A P T E R 6

Built-In Functions

6-30 Array Functions

This function works just like LFetch, except that LFetch returns the found
item instead of its index.

If you know that the array you are working with is sorted, you can use the
function BFind to search for an element. This function, based on binary
search algorithms, is much faster than LSearch, though it can be used only
on sorted arrays.

NewWeakArray 6

NewWeakArray(length)

Returns a new weak array with length number of elements, which are
initialized to nil.

length An integer specifying the size of the array to create.

A weak array is an array that does not prevent the objects it refers to from
being garbage-collected. That is, if the only references to an object are from
weak arrays, the object is destroyed during the next garbage collection cycle.
When that happens, the references in the weak arrays are replaced with nil.

The purpose of weak arrays is to cache objects without preventing them from
being garbage collected. For example, if you wanted to keep an array of all
objects in existence of a certain type, you could add each object to an array as
it’s created. If you use a regular array, those objects will never be
garbage-collected, because there will always be references to them in your
array, and the system will eventually run out of memory. However, if you
use a weak array, its references don’t affect garbage collection, so the objects
will be garbage-collected normally, freeing memory when it is needed.

C H A P T E R 6

Built-In Functions

Array Functions 6-31

SetAdd 6

SetAdd (array,value,uniqueOnly)

Appends an element to the specified array and returns the modified array, or
nil if the element was not added.

array The array to which SetAdd appends the element
in value.

value The element to append to the array specified by array.

uniqueOnly Whether only unique elements are to be added to the
array; if the value of this parameter is non-nil, SetAdd
appends value to the array only if it is not already
present in the array. If the element specified by the value
parameter is already present in the array, SetAdd
returns nil and does not append the element. If
uniqueOnly is nil, the item is appended to the array
without checking whether it is unique.

Note

The type of comparison used in this function is
pointer comparison, not content comparison. ◆

SetContains 6

SetContains(array, item)

array An array.

item An item that may be in the array.

Searches each element of an array to determine if item is equal to one of the
array elements. If a match is found, this function returns the array index of
the matching array element. If item is not found in the array, nil is returned.

Note

The type of comparison used in this function is
pointer comparison, not content comparison. ◆

C H A P T E R 6

Built-In Functions

6-32 Array Functions

SetDifference 6

SetDifference(array1, array2)

Returns an array that contains all of the elements in array1 that do not exist
in array2.

array1 An array.

array2 An array.

If array1 is nil, nil is returned.

Note

The type of comparison used in this function is
pointer comparison, not content comparison. ◆

SetLength 6

SetLength (array, length)

Sets the length of an array.

array An array.

length An integer.

This function is useful for increasing or decreasing the size of an array. If you
increase the size of the array, new elements are filled with a nil value.
For example:

myArray := [123, 456, "I want chopstix"]

#1634 myArray

setLength (myArray, 4)

#1634 [123, 456, "I want chopstix", NIL]

myArray [3] := 789

#3156 789

myArray

#1634 [123, 456, "I want chopstix", 789]

C H A P T E R 6

Built-In Functions

Array Functions 6-33

SetOverlaps 6

SetOverlaps(array1, array2)

Compares each element in array1 to each element in array2, and returns the
index of the first element in array1 that is equal to an element in array2. If no
equivalent elements are found, nil is returned.

array1 An array.

array2 An array.

Note

The type of comparison used in this function is
pointer comparison, not content comparison. ◆

SetRemove 6

SetRemove (array, value)

SetRemove removes the specified element from the specified array and
returns the modified array. The length of the array is shifted left by one and
all of the elements after the deleted element are shifted by one to the next
lowest numbered array position. If the item is not found in the array, this
function returns nil.

array The array from which SetRemove removes the
specified element.

value The element to remove from the array specified by array.

Note

The type of comparison used in this function is
identity comparison, not pointer comparison. ◆

C H A P T E R 6

Built-In Functions

6-34 Array Functions

SetUnion 6

SetUnion(array1, array2, uniqueFlag)

Returns an array that contains all of the elements in array1 and all of the
elements in array2.

array1 An array.

array2 An array.

uniqueFlag If any non-nil value, SetUnion will not include any
duplicate items in the array it returns. If uniqueFlag is
nil, all elements from both arrays are included, even if
there are duplicates.

If both of the arrays are nil, an empty array is returned.

SetUnion can eliminate duplicates. If you do not need that property, you
can combine two arrays more efficiently using ArrayMunger (page 6-25).

Note

The type of comparison used in this function is
identity comparison, not pointer comparison. ◆

Sort 6

Sort(array, test, key)

Sorts an array and returns it after it is sorted. The sort is destructive; that is,
the array you give it is modified. The sort also is not stable; that is, elements
with equal keys won’t necessarily have the same relative order after the sort.

array An array.

test Defines the sort order. It can be a function object that
takes two parameters A and B and returns a positive
integer if A sorts after B, returns zero if A sorts
equivalently to B, and returns a negative integer if A
sorts before B.

C H A P T E R 6

Built-In Functions

Array Functions 6-35

For much greater speed, specify one of the following
symbols for test:

'|<| Sort in ascending numerical order

'|>| Sort in descending numerical order

'|str<| Sort in ascending string order

'|str>| Sort in descending string order

key Defines the sort key within each array element. Specify
nil to use the array elements directly as they are. You
can specify a path expression, in which case the array
elements are assumed to be frames or arrays and the
path is applied to each element to find the sort key. Or,
you can specify a function that takes one parameter and
returns the key.

This example sorts myArray in ascending numerical order according to the
timestamp slot of the entries:

Sort(myArray, '|<|, 'timestamp)

This example sorts myArray in descending string order according to the first
and last names concatenated together:

Sort(myArray, '|str>|, func (e) e.first && e.last)

StableSort 6

StableSort(array, test, key)

Sorts an array, preserving the original relative ordering of equivalent
elements.

array The array to modify by sorting.

test Indicates how the array is to be sorted. See the
description of the test parameter on page 6-36.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

C H A P T E R 6

Built-In Functions

6-36 Sorted Array Functions

This sort requires working memory, so may not be suitable for extremely
large arrays or in low memory conditions.

Sorted Array Functions 6

This section describes new functions that operate on sorted arrays. These
functions are based on binary search algorithms, hence the “B” prefix to the
function names.

IMPORTANT

The arrays you pass to these functions must be ordered,
otherwise the results are undefined. To sort an array,
you can use the functions Sort, InsertionSort, or
StableSort. ▲

These sorted array functions each use test and key parameters to allow them
to be adapted to different data structures. Typically, these functions search,
or iterate over several items in an array. As each element in an array is
examined, the key argument is used to extract a value, called the key, from
the element. Then that key is treated as specified by the test argument.

Here’s an explanation of these parameters:

test Indicates the sort order of the array. Specify one of the
following symbols for test, to indicate how the array
is sorted:

'|<| Sorted in ascending numerical order
'|>| Sorted in descending numerical order
'|str<| Sorted in ascending string order
'|str>| Sorted in descending string order
'|sym<| Sorted in ascending symbol order, based

on lexical comparison of symbol name
'|sym>| Sorted in descending symbol order, based

on lexical comparison of symbol name

C H A P T E R 6

Built-In Functions

Sorted Array Functions 6-37

Alternatively, for non-standard sorting situations, you
can specify a function object that compares two key
values and returns an integer that indicates how they
are sorted relative to each other. This function will be
called by any of the sorted array functions to determine
sorting relationships between elements. The function is
passed two parameters, A and B, and must return a
positive integer if A sorts after B, must return zero if A
sorts equivalently to B, and a must return a negative
integer if A sorts before B. Note that specifying a
function object for test results in much slower
performance than using one of the predefined symbols.

key Defines the key within each array element. Specify nil
to use the array elements directly as they are. You can
specify a path expression, in which case the array
elements are assumed to be frames or arrays and the
path is applied to each element to find the key. You can
also specify a function that takes one parameter (the
element) and returns the key.

BDelete 6

BDelete(array, item, test, key, count)

Deletes elements from an ordered array.

This function returns the number of elements deleted.

array The array to be modified.

item The key value for which to search. Elements with this
key are deleted.

test Indicates the sort order of the array. See the description
of the test parameter on page 6-36.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

C H A P T E R 6

Built-In Functions

6-38 Sorted Array Functions

count The maximum number of elements to delete. Specify
nil to indicate that all matching elements are to
be deleted.

BDifference 6

BDifference(array1, array2, test, key)

Returns a new sorted array containing those elements from array1 that do not
have equivalent elements in array2.

array1 The first array. This array is not modified.

array2 The second array. This array is not modified.

test Indicates the sort order of the array. See the description
of the test parameter on page 6-36.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

BFetch 6

BFetch(array, item, test, key)

Uses a binary search to find an element in a sorted array. The leftmost found
element is returned, or nil is returned if none are found.

array The array to be searched.

item The key value for which to search.

test Indicates the sort order of the array. See the description
of the test parameter on page 6-36.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

This function works just like BFind, except that BFind returns the index of
the found item.

C H A P T E R 6

Built-In Functions

Sorted Array Functions 6-39

BFetchRight 6

BFetchRight(array, item, test, key)

Uses a binary search to find an element in a sorted array. The rightmost
found element is returned, or nil is returned if none are found.

array The array to be searched.

item The key value for which to search.

test Indicates the sort order of the array. See the description
of the test parameter on page 6-36.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

This function works just like BFindRight, except that BFindRight returns
the index of the found item.

BFind 6

BFind(array, item, test, key)

Uses a binary search to find an element in a sorted array. The index of the
leftmost found element is returned, or nil is returned if none are found.

array The array to be searched.

item The key value for which to search.

test Indicates the sort order of the array. See the description
of the test parameter on page 6-36.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

This function works just like BFetch, except that BFetch returns the found
item instead of its index.

C H A P T E R 6

Built-In Functions

6-40 Sorted Array Functions

BFindRight 6

BFindRight(array, item, test, key)

Uses a binary search to find an element in a sorted array. The index of the
rightmost found element is returned, or nil is returned if none are found.

array The array to be searched.

item The key value for which to search.

test Indicates the sort order of the array. See the description
of the test parameter on page 6-36.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

This function works just like BFetchRight, except that BFetchRight
returns the found item instead of its index.

BInsert 6

BInsert(array, element, test, key, uniqueOnly)

Inserts an element into the proper position in a sorted array. In the case of
equivalent elements, the element is inserted to the left of its equivalent.

array The array to be modified.

element The new element to be inserted. Note that the key
parameter is used to extract its key value.

test Indicates the sort order of the array. See the description
of the test parameter on page 6-36.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

C H A P T E R 6

Built-In Functions

Sorted Array Functions 6-41

uniqueOnly Specify non-nil to indicate that the element is not to be
inserted if the array already contains an element with an
equivalent key value. Specify 'returnElt to indicate
the same thing, and also that this function should return
an array element. It returns either the element that was
inserted, or if a matching element is found in the array,
that element is returned. This is useful when you want
to reuse existing objects in order to conserve space or
ensure pointer equality.

Specify nil to indicate that the element is to be inserted
even if the array already contains an element with an
equivalent key. In this case, the new element is inserted
to the left of the existing equivalent elements.

This function has three possible return values, as follows:

■ It can return nil, signaling that the element was not inserted.

■ It can return an integer, which is the index at which the element was
inserted.

■ It can return an array element—either the element that was inserted (if it
was unique), or an element that already exists in the array, whose key
value matches the key value of the element you wanted to insert. This
type of return value can occur only if you specify 'returnElt for
uniqueOnly.

Here is an example of how you might use this function with uniqueOnly set
to 'returnElt to ensure pointer equality:

// :GetStr() returns a string input by the user

bodyColor := BInsert(colorList,:GetStr(),'|str<|,nil,'returnElt);

interiorColor:= BInsert(colorList,:GetStr(),'|str<|,nil,'returnElt);

if bodyColor = interiorColor then Print("bad idea");

If GetString returns a string already in colorList, this code makes sure
that the original string is reused. This is why using the = operator to test for
equality works. It also allows the duplicate string to be garbage collected,
provided there are no remaining references to it.

C H A P T E R 6

Built-In Functions

6-42 Sorted Array Functions

BInsertRight 6

BInsertRight(array, element, test, key, uniqueOnly)

Inserts an element into the proper position in a sorted array. In the case of
equivalent elements, the element is inserted to the right of its equivalent.
The index at which it was inserted is returned, or nil is returned if it was
not inserted.

array The array to be modified.

element The new element to be inserted. Note that the key
parameter is used to extract its key value.

test Indicates the sort order of the array. See the description
of the test parameter on page 6-36.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

uniqueOnly A Boolean value. Specify a non-nil value to indicate
that the element is not to be inserted if the array already
contains an element with an equivalent key value.
Specify nil to indicate that the element is to be inserted
even if the array already contains an element with an
equivalent key. In the later case, the new element is
inserted to the right of the existing equivalent elements.

BIntersect 6

BIntersect(array1, array2, test, key, uniqueOnly)

Returns a new sorted array consisting of the equivalent elements from the
two specified arrays.

array1 The first array. This array is not modified.

array2 The second array. This array is not modified.

test Indicates the sort order of the array. See the description
of the test parameter on page 6-36.

C H A P T E R 6

Built-In Functions

Sorted Array Functions 6-43

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

uniqueOnly A Boolean value. Specify a non-nil value to indicate
that elements with duplicate key values are not allowed
in the resulting array. Note that this works only if array1
and array2 are both free of equivalent elements.

Specify nil to indicate that elements with duplicate key
values are allowed in the resulting array. Note that this
guarantees that the resulting array has at least two
equivalent elements for every intersecting value, since
intersection finds equivalent elements.

If equivalent elements are found in the resulting array,
they are ordered as follows: equivalent elements from
the same source array retain their original ordering, and
equivalent elements from array1 come before those
in array2.

BMerge 6

BMerge(array1, array2, test, key, uniqueOnly)

Merges two ordered arrays into one new ordered array, which is returned.

array1 The first array. This array is not modified.

array2 The second array. This array is not modified.

test Indicates the sort order of the array. See the description
of the test parameter on page 6-36.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

C H A P T E R 6

Built-In Functions

6-44 Sorted Array Functions

uniqueOnly A Boolean value. Specify a non-nil value to indicate
that elements with duplicate key values are not allowed
in the resulting array. Note that this works only if array1
and array2 are both free of equivalent elements.

Specify nil to indicate that elements with duplicate key
values are allowed in the resulting array.

If equivalent elements are found in the resulting array,
they are ordered as follows: equivalent elements from
the same source array retain their original ordering,
and equivalent elements from array1 come before those
in array2.

BSearchLeft 6

BSearchLeft(array, item, test, key)

Uses binary search to find an element in a sorted array. The index of the
smallest and leftmost element that is greater than or equal to item is returned.
The value Length(array) is returned if item is larger than all elements.

array The array to be searched.

item The key value for which to search.

test Indicates the sort order of the array. See the description
of the test parameter on page 6-36.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

Here is an example of how this function might be used:

// Extract all elements between "F" and "Na"

array := ["Ag","C","F","Fe","Hg","K","N","Na","Ni","Pu","Zn"];

pos1 := Min(Length(array)-1,BSearchLeft(array,"F",'|str<|,nil));

pos2 := Max(0,BSearchRight(array,"Na",'|str<|,nil));

ArrayMunger([],0,nil,array, pos1, pos2-pos1+1);

C H A P T E R 6

Built-In Functions

Integer Math Functions 6-45

BSearchRight 6

BSearchRight(array, item, test, key)

Uses binary search to find an element in a sorted array. The index of the
largest and rightmost element that is less than or equal to item is returned.
The value –1 is returned if all elements are larger than item.

array The array to be searched.

item The key value for which to search.

test Indicates the sort order of the array. See the description
of the test parameter on page 6-36.

key Defines the key within each array element. Specify
nil, a path expression, or a function that takes one
parameter. See the description of the key parameter
on page 6-37.

For an example of how this function might be used, see BSearchLeft.

Integer Math Functions 6

These math functions operate on or return integers. (Some of the floating
point functions can also operate on integers.)

Abs 6

Abs(x)

Returns the absolute value of an integer or real number.

x An integer or real number.

C H A P T E R 6

Built-In Functions

6-46 Integer Math Functions

Ceiling 6

Ceiling(x)

Returns the smallest integer not less than the specified real number. (Rounds
up the real number to an integer.)

x A real number.

Floor 6

Floor(x)

Returns the largest integer not greater than the specified real number.
(Rounds down the real number to an integer.)

x A real number.

Max 6

Max(a, b)

Returns the maximum value of the two integers a and b.

a An integer.

b An integer.

Min 6

Min(a, b)

Returns the minimum value of the two integers a and b.

a An integer.

b An integer.

C H A P T E R 6

Built-In Functions

Integer Math Functions 6-47

Random 6

Random (low, high)

Returns a random integer in the range between the two integers low and
high. The range is inclusive of the numbers low and high.

low An integer.

high An integer.

For example:

random (0, 100)

#120 72

Real 6

Real(x)

Converts the specified integer to a real number.

x An integer.

SetRandomSeed 6

SetRandomSeed (seedNumber)

Seeds the random number generator with the number you specify.

seedNumber An integer.

When seeded with the same number, the random number generator
(Random function) will return the same sequence of random numbers each
time you reseed it. Do not use 0 to seed the generator as it will return 0
instead of a random number.

Note

There is only one random number generator on the Newton,
so calls by other functions may interfere with your function
getting a consistent sequence of values. ◆

C H A P T E R 6

Built-In Functions

6-48 Floating Point Math Functions

Floating Point Math Functions 6

NewtonScript provides the floating point math functions documented in
this section.

The NewtonScript floating point number system is based on standards 754
and 854 adopted by the Institute of Electrical and Electronics Engineers
(IEEE). For more details on IEEE-standard arithmetic than are given here,
refer to the PowerPC Numerics volume of Inside Macintosh or to the Apple
Numerics Manual, Second Edition. These books describe SANE, the standard
Apple numeric environment. The NewtonScript environment supports many
features of SANE.

NewtonScript floating point numbers (also called real numbers) correspond
to the double format of the IEEE standards. The number system supports
representations for the following values:

■ Normal numbers—numbers with approximately 16 decimal digits of
precision, ranging from down to .

■ Subnormal numbers—numbers ranging from down to
, whose precision diminishes from approximately 16 decimal

digits down to less than one digit.

■ Signed zeros—the values +0 and –0, which compare equal, but whose
behavior differs when, for example, divided into nonzero values.

■ Signed infinities—the values +INF and -INF, which represent results too
large to represent or the result of dividing a nonzero numerator by a zero
denominator.

■ Not-a-Number symbols, or NaNs—values used to represent missing or
uninitialized data, or the results of operations, such as , which have
no meaning in the real number system.

In some application areas, you may find it useful to think of signed zeros and
infinities in terms of mathematical limits. For example, although +0 and –0
compare equal, it may be the case for a function f that ,

1.8
308

×10 2.2
308–

×10

2.2
308–

×10
4.9

324–
×10

3–

f x()
x 0-→
lim f x()

x 0+→
lim≠

C H A P T E R 6

Built-In Functions

Floating Point Math Functions 6-49

and you may find it useful to exploit that fact. Similarly, you may find it
useful to interpret g(+INF) as .

The functions in this section follow the model of the arithmetic operations set
forth in the IEEE standards, namely, they produce results that are exact when
the results are exactly representable in the number system, and otherwise
they deliver the nearest (or nearly so) representable number to the mathe-
matically correct result. The IEEE standards specify that one or more
exceptions be raised when the result of an operation is different from the
mathematical result, or when the result is not defined in the real number
system. The possible exceptions are

■ Inexact—the result is rounded or otherwise altered from the mathema-
tical result.

■ Underflow—the nonzero result is too tiny to represent except as zero or a
subnormal number, and is rounded to less precision than a normal number.

■ Overflow—the result is too huge to represent as a normal number.

■ Divide by Zero—the quotient of a nonzero value divided by zero
produces +INF or -INF, according to the arguments’ signs.

■ Invalid—the result is not mathematically defined, as is the case with 0/0.

See “Managing the Floating Point Environment” on page 6-65 for further
discussion of the handling of floating point exceptions.

One feature of the IEEE standards and SANE is the choice of rounding
direction for results not exactly representable. In NewtonScript systems,
rounding is always to the nearest representable number (with ties going to
the value whose least significant bit is zero). The IEEE standards also specify
rounding to the nearest value toward 0, toward +INF, or toward -INF. But
the standards are written as though rounding direction is determined by a
state variable in the floating point environment (see “Managing the Floating
Point Environment”), while on the ARM family of processors used by
NewtonScript systems, rounding direction is determined on an instruction-
by-instruction basis.

g y()
y ∞→
lim

C H A P T E R 6

Built-In Functions

6-50 Floating Point Math Functions

Acos 6

Acos(x)

Returns the inverse cosine in radians of x. Acos raises invalid for x < –1 or
x > 1. It raises inexact for all values except 1. Acos returns values between
zero and π.

x An integer or real number.

Acosh 6

Acosh(x)

Returns the inverse hyperbolic cosine of x. Acosh raises invalid for x < 1.
It raises inexact for all values except 1. Acosh(+INF) returns +INF, but
Acosh never overflows. Its value at the largest finite real number is
approximately 710.

x An integer or real number.

Asin 6

Asin(x)

Returns the inverse sine in radians of x. Asin raises invalid for x < –1 or
x > 1. It raises inexact for all values except zero and raises underflow for all
finite x near zero. Asin returns values between –π/2 and π/2.

x An integer or real number.

Asinh 6

Asinh(x)

Returns the inverse hyperbolic sine of x. Asinh raises inexact for all values
except zero. Asinh(-INF) returns -INF and Asinh(+INF) returns +INF.
Asinh raises underflow for x near zero.

x An integer or real number.

C H A P T E R 6

Built-In Functions

Floating Point Math Functions 6-51

Atan 6

Atan(x)

Returns the inverse tangent in radians of x. It raises inexact for all values
except zero. Atan(-INF) returns –π/2 and Atan(+INF) returns π/2. Atan
returns values between –π/2 and π/2. It raises inexact for all nonzero x.

x An integer or real number.

Atan2 6

Atan2(x,y)

Returns the inverse tangent in radians of x/y. Atan2 uses the algebraic signs
of x and y to determine the quadrant of the result. It returns values between
–π and π. Its special cases are those of Atan.

x An integer or real number.

y An integer or real number.

Atanh 6

Atanh(x)

Returns the inverse hyperbolic of x. Atanh raises invalid for x < –1 or x > 1.
It raises inexact for all valid arguments except zero and raises underflow
near zero.and raises underflow for all finite x near zero. Atanh(-1.0)
returns -INF and Atan(+1.0)returns +INF.

x An integer or real number.

CopySign 6

CopySign(x,y)

Returns the value with the magnitude of x and sign of y.

x An integer or real number.

y An integer or real number.

C H A P T E R 6

Built-In Functions

6-52 Floating Point Math Functions

Note

The order of the parameters for CopySign matches the
recommendation of the IEEE 754 floating point standard,
which is opposite from the SANE copysign function. ◆

Cos 6

Cos(x)

Returns the cosine of the radian value x. Cos raises inexact for all finite
arguments except zero. It is periodic with period 2π. Cos raises invalid when
x is infinite.

x An integer or real number.

Cosh 6

Cosh(x)

Returns the hyperbolic cosine of x. Cosh raises inexact for all finite
arguments except zero. Cosh(-INF) and Cosh(+INF) return +INF. Cosh
raises overflow for finite values of large magnitude.

x An integer or real number.

Erf 6

Erf(x)

Returns , the error function of x. Erf raises inexact for all

arguments except zero. It raises underflow for arguments near zero.
Erf(-INF) returns –1 and Erf(+INF) returns 1.

x An integer or real number.

Mathematically, the sum of Erf(x) and Erfc(x) should be 1, though the
relationship may not hold when roundoff or underflow affect the results
significantly.

erf x()
2

π
------- e

t
2–

td
0

x

∫=

C H A P T E R 6

Built-In Functions

Floating Point Math Functions 6-53

Erfc 6

Erfc(x)

Returns , the complementary error function of x. Erfc raises

inexact for all arguments except zero. Erfc(-INF) returns 2 and
Erfc(+INF) returns +0.

x An integer or real number.

Exp 6

Exp(x)

Returns ex, the exponential of the x. Exp is inexact for all nonzero finite
arguments. Exp(-INF) returns +0 and Exp(+INF) returns +INF. Exp raises
overflow for large, positive, finite x, and raises underflow for negative, finite
x of large magnitude.

x An integer or real number.

Expm1 6

Expm1(x)

Returns ex – 1, one less than the exponential of x. Expm1 avoids loss of
accuracy when x is nearly zero, and the difference is nearly zero. Expm1 is
inexact for all nonzero finite arguments. Expm1(-INF) returns –1 and
Expm1(+INF) returns +INF. Expm1 raises overflow for large, positive, finite
x, and raises underflow for x near zero.

x An integer or real number.

Fabs 6

Fabs(x)

Returns the absolute value of x. It never raises an exception.

x An integer or real number.

erfc x()
2

π
------- e

t
2–

td
x

∞

∫=

C H A P T E R 6

Built-In Functions

6-54 Floating Point Math Functions

FDim 6

FDim(x,y)

Returns the positive difference between its parameters:

If x > y, FDim returns x – y
■ Otherwise, if x <= y, FDim returns +0
■ Otherwise, if x is a NaN, FDim returns x.
■ Otherwise (y is a NaN), FDim returns y.

x An integer or real number.

y An integer or real number.

FMax 6

FMax(x,y)

Returns the maximum of its two parameters. NaN parameters are treated as
missing data:

■ If one parameter is a NaN and the other is a number, then the number
is returned.

■ Otherwise, if both are NaNs, then the first parameter is returned.

(This corresponds to the max function in FORTRAN.)

x An integer or real number.

y An integer or real number.

FMin 6

FMin(x,y)

Returns the minimum of its two parameters. NaN parameters are treated as
missing data:

■ If one parameter is a NaN and the other is a number, then the number
is returned.

■ Otherwise, if both are NaNs, then the first parameter is returned.

(This corresponds to the min function in FORTRAN.)

C H A P T E R 6

Built-In Functions

Floating Point Math Functions 6-55

x An integer or real number.

y An integer or real number.

Fmod 6

Fmod(x,y)

Returns the remainder when x is divided by y to produce a truncated
integral quotient. That is, Fmod returns the value x - y*Trunc(x/y).

x An integer or real number.

y An integer or real number.

Gamma 6

Gamma(x)

Returns Γ(x), the gamma function applied to x. Gamma raises inexact for all
non-integral x. It raises invalid for non-positive integral arguments z.
Gamma(p) returns (p-1)! for positive, integral p, with 0! defined to be 1.
Gamma(+INF) returns +INF. Gamma can raise overflow.

x An integer or real number.

Hypot 6

Hypot(x,y)

Returns the square root of the sum of the squares of x and y, avoiding the
hazards of overflow and underflow when the arguments are large or tiny in
magnitude but the result is within range.

x An integer or real number.

y An integer or real number.

IsFinite 6

IsFinite(x)

Returns true if x is finite; returns nil if x is infinite.

x An integer or real number.

C H A P T E R 6

Built-In Functions

6-56 Floating Point Math Functions

IsNaN 6

IsNaN(x)

Returns true if x is a NaN; returns nil if x is a number.

x An integer or real number.

Note

Saying that x “is a NaN” and “is not a number” are not the
same thing. A NaN is a non-numerical value in a numerical
format; on the other hand, a string such as "foo" is not a
number because it is not a numerical object. ◆

IsNormal 6

IsNormal(x)

Returns true if x is a normal number; returns nil if x is zero, subnormal,
infinite, or a NaN.

x An integer or real number.

LessEqualOrGreater 6

LessEqualOrGreater(x, y)

Returns true if neither x nor y is a NaN, and therefore the two arguments
are ordered; otherwise, returns nil.

x An integer or real number.

y An integer or real number.

LessOrGreater 6

LessOrGreater(x, y)

Returns true if either x < y or x > y; otherwise, returns nil.

x An integer or real number.

y An integer or real number.

C H A P T E R 6

Built-In Functions

Floating Point Math Functions 6-57

LGamma 6

LGamma(x)

Returns the natural logarithm of Γ(x), the gamma function applied to x.
LGamma raises inexact for all positive x. It raises invalid for negative or zero
x. LGamma(+INF) returns +INF.

x An integer or real number.

Log 6

Log(x)

Returns the natural logarithm of x. Log raises inexact for positive, finite
arguments except 1. Log(0.0) returns -INF and raises divide by zero.
Log(+INF) returns +INF. Log raises invalid for x < 0.

x An integer or real number.

Logb 6

Logb(x)

Returns the integral value k such that 1 ≤ |x|*2–k < 2, when x is finite and
nonzero. Logb(0.0) returns -INF and raises divide by zero. Logb(-INF)
and Logb(+INF) return +INF.

Log1p 6

Log1p(x)

Returns the natural logarithm of 1+x. While accurate for all arguments no
less than –1, Log1p preserves accuracy when x is nearly zero—when
computing Log(1.0 + x)would suffer from the mere addition of x to 1.
Log1p raises inexact for all finite arguments greater than –1 except 0. It raises
invalid for all x less than –1 and raises underflow for x near zero.
Log1p(-1.0) returns -INF and raises divide by zero. Log1p(+INF)
returns +INF.

x An integer or real number.

C H A P T E R 6

Built-In Functions

6-58 Floating Point Math Functions

Log10 6

Log10(x)

Returns the logarithm base 10 of x. Because of the mathematical relationship
, Log10 shares the computational properties of Log.

x An integer or real number.

NearbyInt 6

NearbyInt(x)

Returns x rounded to the nearest integral value. NearbyInt differs from
Rint only in that it does not raise the inexact exception.

x An integer or real number.

Note

NearbyInt always rounds to nearest. ◆

NextAfterD 6

NextAfterD(x,y)

Returns the next representable number after x in the direction of y.

If x and y are equal, then the result is x. If either argument is a NaN,
NextAfterD returns one of the NaN arguments. When x is finite but the
result is infinite, NextAfterD raises overflow. When the result is zero or
subnormal, NextAfterD raises underflow.

x An integer or real number.

y An integer or real number.

log10 x() x()log 10()logÚ=

C H A P T E R 6

Built-In Functions

Floating Point Math Functions 6-59

Pow 6

Pow(x,y)

Returns xy. When x < 0, Pow raises invalid unless y is an integral value. It can
raise inexact, overflow, underflow, and invalid.

x An integer or real number.

y An integer or real number.

RandomX 6

RandomX(x)

Returns a two-element array, based on the random seed x. The first element
of the result is a pseudo-random number that is the result of the SANE
randomx function. The second element is the new seed returned by the
randomx function. The result is an integral value between 0 and 231 – 1.

x An integer or real number.

Remainder 6

Remainder(x,y)

Returns the exact difference x – n*y, where n is a mathematical integer (as
opposed to a NewtonScript integer—n may be thousands of bits wide) to x/y
in the sense of rounding to nearest. The magnitude of the result is no greater
than half the magnitude of y. When the result is zero, it has the sign of x.
Remainder raises invalid when y is zero or x is infinite. It never raises
overflow, underflow, or inexact.

x An integer or real number.

y An integer or real number.

C H A P T E R 6

Built-In Functions

6-60 Floating Point Math Functions

RemQuo 6

RemQuo(x,y)

Returns a two-element array. The first element is Remainder(x, y). The
second element is the seven low-order bits of the quotient x / y rounded to
the nearest integer and given the sign of the quotient.

x An integer or real number.

y An integer or real number.

Rint 6

Rint(x)

Is identical to Nearbyint except that it raises inexact when its result differs
from x.

x An integer or real number.

RintToL 6

RintToL(x)

Returns an integer obtained by rounding x to an integral (real) value and
then converting that value to an integer. RintToL raises inexact when its
result differs in value from x. It raises invalid and returns an unspecified
value when the rounded value of x cannot be represented exactly as an
integer object.

x An integer or real number.

Note

RintToL always rounds to nearest. ◆

C H A P T E R 6

Built-In Functions

Floating Point Math Functions 6-61

Round 6

Round(x)

Returns the integral real number obtained from x by adding 1/2 to x and
truncating the result to the nearest integer toward 0. It raises inexact when
the result differs from x.

x An integer or real number.

Scalb 6

Scalb(x, k)

Returns x * 2k. Scalb avoids explicit computation of 2k and so avoids the
complications of overflow or underflow when 2k is out of range but the result
isn’t. Scalb can raise overflow, underflow, and inexact. Scalb and Logb are
related by the formula 1 ≤ Scalb(x, RintToL(-Logb(x))) < 2 for finite,
nonzero x.

x An integer or real number.

y An integer.

SignBit 6

SignBit(x)

Returns a nonzero integer if the sign of x is negative; otherwise (the sign of x
is positive), returns the integer 0.

x An integer or real number.

Signum 6

Signum(x)

Returns the integer value –1 if x < 0, 0 if x = 0, or 1 if x > 0. If x is an
integer, Signum returns an integer; otherwise, if x is a real, Signum returns
a real. If x is neither an integer nor a real, Signum throws the exception
kFramesErrNotANumber.

x An integer or real number.

C H A P T E R 6

Built-In Functions

6-62 Floating Point Math Functions

Sin 6

Sin(x)

Returns the sine of the radian value x. Sin raises inexact for all finite values
except zero. It is periodic with period 2π. Sin raises invalid for infinite x and
raises underflow for x near zero.

x An integer or real number.

Sinh 6

Sinh(x)

Returns the hyperbolic sine of x. Sinh raises inexact for all finite arguments
except zero. Sinh(-INF) returns -INF and Sinh(+INF) returns +INF.
Sinh raises overflow for large finite values and raises underflow near zero.

x An integer or real number.

Sqrt 6

Sqrt(x)

Returns the square root of x. It raises invalid for x < 0, and can raise inexact
for positive x.

x An integer or real number.

Tan 6

Tan(x)

Returns the tangent of the radian value x. Tan raises inexact for all finite
values except zero. It is periodic with period π. Tan raises invalid for infinite
x and raises underflow for x near zero.

x An integer or real number.

C H A P T E R 6

Built-In Functions

Floating Point Math Functions 6-63

Tanh 6

Tanh(x)

Returns the hyperbolic tangent of x. Tanh raises inexact for all finite
arguments except zero. Tanh(-INF) returns –1 and Tanh(+INF) returns
+1. Tanh raises overflow for large finite values and raises underflow
near zero.

x An integer or real number.

Trunc 6

Trunc(x)

Returns the integral real number nearest to but no larger in magnitude than x.

x An integer or real number.

Unordered 6

Unordered(x, y)

Returns true if x and y satisfy none of x < y, x = y, or x > y (because one or
both of x and y are NaNs); if neither x nor y is a NaN, they satisfy one of the
three order relations and Unordered returns nil.

x An integer or real number.

y An integer or real number.

UnorderedGreaterOrEqual 6

UnorderedGreaterOrEqual(x, y)

Returns true if x and y satisfy x ≥ y or are unordered (because one or both of
x and y are NaNs); otherwise, returns nil.

x An integer or real number.

y An integer or real number.

C H A P T E R 6

Built-In Functions

6-64 Floating Point Math Functions

UnorderedLessOrEqual 6

UnorderedLessOrEqual(x, y)

Returns true if x and y satisfy x ≤ y or are unordered (because one or both of
x and y are NaNs); otherwise, returns nil.

x An integer or real number.

y An integer or real number.

UnorderedOrEqual 6

UnorderedOrEqual(x, y)

Returns true if x and y satisfy x = y or are unordered (because one or both of
x and y are NaNs); otherwise, returns nil.

x An integer or real number.

y An integer or real number.

UnorderedOrGreater 6

UnorderedOrGreater(x, y)

Returns true if x and y satisfy x > y or are unordered (because one or both of
x and y are NaNs); otherwise, returns nil.

x An integer or real number.

y An integer or real number.

UnorderedOrLess 6

UnorderedOrLess(x, y)

Returns true if x and y satisfy x < y or are unordered (because one or both of
x and y are NaNs); otherwise, returns nil.

x An integer or real number.

y An integer or real number.

C H A P T E R 6

Built-In Functions

Floating Point Math Functions 6-65

Managing the Floating Point Environment 6
The floating point environment is a set of state variables maintained by the
Newton system and the underlying processor. The environment contains
information about which floating point exceptions have occurred. Floating
point exceptions are distinct from NewtonScript exceptions. When floating
point exceptions arise (for example, overflow arises when the sum of two
huge numbers is too large to represent in the number system), the system
raises an exception flag in the environment. Exception flags can be tested,
cleared, or raised by functions in this section. Once raised, an exception flag
remains raised until you clear it using calls from this section. The predefined
constants used to select the floating point exception flags are shown in
Table 6-1.

You can refer to multiple exceptions in a single function invocation by
forming the bitwise-OR of the predefined constants, using expressions like
Bor(Bor(fe_Invalid, fe_DivByZero), fe_Overflow).

Table 6-1 Floating point exceptions

Constant Value Meaning

fe_Inexact 0x010 inexact

fe_DivByZero 0x002 divide-by-zero

fe_Underflow 0x008 underflow

fe_Overflow 0x004 overflow

fe_Invalid 0x001 invalid

fe_All_Except 0x01F all exceptions

C H A P T E R 6

Built-In Functions

6-66 Floating Point Math Functions

Note

The representation of the floating point environment is
implementation-dependent. Functions that manipulate the
environment and its components do so without exposing
their implementation. In particular, the floating point
exception flags may or may not be implemented as
single bits. ◆

The functions that manage the floating point environment are based
on recommended numerical extensions to the ANSI C language. The
recommendations for C include functions to test and alter the direction
of rounding. Although the direction of rounding is determined by the
environment on most systems, Newton systems based on the ARM family
of processors determine the rounding direction on an instruction-by-
instruction basis, so rounding is not determined by the environment.

You can pass the predefined constant fe_Dfl_Env to the functions
FeSetEnv and FeUpdateEnv, which take an environment object as a
parameter. Fe_Dfl_Env indicates the default environment, in which all
exception flags are clear.

FeClearExcept 6

FeClearExcept(excepts)

Clears the floating point exception flags indicated by excepts.

excepts The integer bitwise-OR of one or more floating point
exceptions.

FeGetEnv 6

FeGetEnv()

Returns a data object representing the current floating point environment.

C H A P T E R 6

Built-In Functions

Floating Point Math Functions 6-67

FeGetExcept 6

FeGetExcept(excepts)

Returns a data object representing the current state of the exception flags
indicated by excepts.

excepts The integer bitwise-OR of one or more floating point
exceptions.

Note

The representation of the exception flags is unspecified. ◆

FeHoldExcept 6

FeHoldExcept()

Returns a data object representing the current floating point environment,
and clears the exception flags.

FeRaiseExcept 6

FeRaiseExcept(excepts)

Raises the floating point exception flags indicated by excepts.

excepts The integer bitwise-OR of one or more floating point
exceptions.

Note

Because floating point exceptions are not tied to the general
NewtonScript exception-handling mechanism, raising a flag
merely sets an internal variable; raising a flag will not alter
the flow of control. ◆

C H A P T E R 6

Built-In Functions

6-68 Floating Point Math Functions

FeSetEnv 6

FeSetEnv(envObj)

Installs the floating point environment represented by the object envObj.

envObj Either the predefined constant fe_Dfl_Env or an
object returned by a call to FeGetEnv or
FeHoldExcept.

FeSetExcept 6

FeSetExcept(flagObj, excepts)

The parameter flagObj is an object containing an implementation-dependent
representation of one or more floating point exception flags; flagObj must
have been set by a previous call to FeGetExcept. FeSetExcept alters the
current environment so that those floating point exception flags indicated by
excepts match the corresponding values in flagObj.

flagObj An object (returned by a previous call to FeGetExcept)
containing a representation of one or more floating
point exception flags.

excepts The integer bitwise-OR of one or more floating point
exceptions.

This function does not raise exceptions; it just alters the state of the flags.

FeTestExcept 6

FeTestExcept(excepts)

Returns the bitwise-OR of the floating point exceptions indicated by excepts
whose flags are rasied in the current environment.

excepts The integer bitwise-OR of one or more floating point
exceptions.

C H A P T E R 6

Built-In Functions

Financial Function 6-69

FeUpdateEnv 6

FeUpdateEnv(envObj)

Saves the state of the current exception flags, installs the environment
represented by envObj, and then re-raises the saved exceptions.

envObj Either the predefined constant fe_Dfl_Env or an
object returned by a call to FeGetEnv or
FeHoldExcept.

You can use FeUpdateEnv in conjunction with FeHoldExcept to write
functions which hide spurious exceptions from their callers:

func() begin

savedEnv := FeHoldExcept(); // clears flags

result := ...; // ecomputation in which underflow and

// divide by zero are benign

FeClearExcept(BOR(fe_Underflow, fe_DivByZero));

FeUpdateEnv(savedEnv); // merge old flags with new

return result

end

Financial Function 6

These functions perform financial calculations.

Annuity 6

Annuity(r, n)

Returns the value of the financial formula . When r is the

periodic interest rate and n the number of periods, p*Annuity(r, n) is the
present value of a series of n periodic payments of size p. Annuity is robust
over the entire range of r and n, whether financially meaningful or not.

1 1 r+()
n–

–
r

C H A P T E R 6

Built-In Functions

6-70 Financial Function

Annuity raises invalid for r < –1. When r = –1:

■ Annuity(-1, n) returns –1 for n < 0.

■ Annuity(-1, 0) returns 0.

■ Annuity(-1, n) returns +INF and raises divide by zero for n > 0.

Otherwise, r > –1. When r is nonzero, Annuity(r, 0) returns r; otherwise,
Annuity(0, n) returns n. Annuity raises inexact in all other cases, and
can raise overflow or underflow.

r An integer or real number.

n An integer or real number.

Compound 6

Compound(r, n)

Returns the value of the financial formula . When r is the periodic
interest rate and n the number of periods, P*Compound(r, n) is the future
value of a principal amount P. Compound is robust over the entire range of r
and n, whether financially meaningful or not.

Compound raises invalid for r < –1. When r = –1:

■ Compound(-1, n) returns +INF and raises divide by zero for n < 0.

■ Compound(-1, 0) returns 1.

■ Compound(-1, n) returns +0 for n > 0.

Otherwise, r > 0. Compound(r, 0) returns 1; Compound(0, n) raises
invalid when n is infinite. Compound can raise inexact, overflow or underflow.

r An integer or real number.

n An integer or real number.

1 r+()
n

C H A P T E R 6

Built-In Functions

Exception Functions 6-71

Exception Functions 6

These functions are used to raise and handle NewtonScript exceptions in an
application. For more information about exception handling and how to use
these functions, refer to the second half of Chapter 3, “Flow of Control,”
“Exception Handling” on page 3-13. For a list of system exceptions, see the
appendix “Errors” in the Newton Programmer’s Guide.

The section “Managing the Floating Point Environment” beginning on
page 6-65 describes some functions that deal with floating-point exceptions,
which are not related to NewtonScript exceptions.

Throw 6

Throw(name, data)

Raises an exception and creates an exception frame with the specified name
and data.

name An exception symbol that names the exception being
raised.

data The data for the exception. The possible values for this
parameter depend on the composition of name and are
shown inTable 6-2.

See “Exception Handling” beginning on page 3-13 for more information
on Throw.

C H A P T E R 6

Built-In Functions

6-72 Exception Functions

Rethrow 6

Rethrow()

Reraises the current exception to allow the next enclosing Try statement an
opportunity to handle it. Rethrow throws the current exception again,
passing along the same parameters are were passed with the original call to
the Throw function. This allows you to pass control from within an
exception handler to the next enclosing Try statement.

IMPORTANT

You can call the Rethrow function only from within the
dynamic extent of an onexception clause. ▲

CurrentException 6

CurrentException()

During exception processing (that is, inside the dynamic extent of an
onexception block), returns the frame that is associated with the current
exception. You can examine the frame returned by CurrentException to
determine what kind of exception you are handling. For example, you can
call the HasSlot function to determine if the frame contains a slot named
error, and take appropriate action thereafter. (The format of the frame
depends on the exception, but it always contains a name slot with the
exception symbol.)

Table 6-2 Exception frame data slot name and contents

Exception symbol Slot name Slot contents

contains part
with prefix
type.ref

data a data object, which can be any
NewtonScript object

contains part
with prefix
evt.ex.msg

message a message string

any other error an integer error code

C H A P T E R 6

Built-In Functions

Message Sending Functions 6-73

CurrentException gives a meaningful response only from within the
dynamic extent of an onexception clause. Outside the extent of
onexception, it returns nil.

Message Sending Functions 6

These functions send messages or execute functions.

Apply 6

Apply(function, parameterArray)

Calls a function, passing the supplied parameters. The Apply function
returns the return value of the function it called.

function The function to call.

parameterArray An array of parameters to be passed to the function. You
can specify nil if there are no parameters to be passed
(this saves allocating an empty array).

Apply respects the environment of the function object it is passed. Using
Apply is similar to using the NewtonScript call statement.

Apply is useful when you want to call a function, but don’t know until run
time the number of parameters it takes. If you do know ahead of time the
number of parameters the function takes, then you can use the NewtonScript
call statement to call the function.

Here’s an example of using this function in the Inspector:

f:=func(x,y) x*y;

Apply(f,[10,2]);

#50 20

The Apply call is equivalent to:

f(10,2);

C H A P T E R 6

Built-In Functions

6-74 Message Sending Functions

Perform 6

Perform(frame, message, parameterArray)

Sends a message to a frame; that is, a method with the name of the message
is executed in the frame. Both parent and proto inheritance are used to search
for the method if it does not exist in the frame. If the method is not found, an
exception is thrown.

frame The frame to which to send the message.

message A symbol naming the message to send.

parameterArray An array of parameters to be passed along with the
message. You can specify nil if there are no parameters
to be passed (this saves allocating an empty array).

The Perform function returns the return value of the message it sent.

Note that the method named by message is executed in the context of frame,
not in the context of the frame from within which Perform is called.

The Perform function is useful when you want to send a message, but you
don’t know until run time the name of the message or the number of
parameters it takes. If you do know these things ahead of time, then you can
just use the standard NewtonScript message sending syntax.

For variations of the Perform function, see PerformIfDefined,
ProtoPerform, and ProtoPerformIfDefined.

Here’s an example of using this function in the Inspector:

f:={multiply: func(x,y) x*y};

perform(f, 'multiply, [10,2]);

#50 20

Note that

f:multiply(10,2)

is equivalent to

Perform(f, 'multiply,[10,2])

C H A P T E R 6

Built-In Functions

Message Sending Functions 6-75

PerformIfDefined 6

PerformIfDefined(receiver,message,paramArray)

Sends a message to a frame; that is, a method with the name of the message
is executed in the frame. Both parent and proto inheritance are used to search
for the method if it does not exist in the frame. If the method is not found, an
exception is not thrown.

receiver The frame to which you want the message sent.

message A symbol that is the name of the message to send
to receiver.

paramArray An array of parameters to be passed with the message.
You can specify nil if there are no parameters to be
passed (this saves allocating an empty array).

This function returns the return value of the message it sent. If the method is
not found, this function returns nil.

Contrast this function with Perform (page 6-74), which is exactly the same,
except that Perform throws an exception if the method is not found.

Also, contrast this function with ProtoPerform and
ProtoPerformIfDefined (page 6-75), which search only the
proto chain for the method.

ProtoPerform 6

ProtoPerform(receiver,message,paramArray)

Sends a message to a frame; that is, a method with the name of the message
is executed in the frame. Only proto inheritance is used to search for the
method if it does not exist in the frame. If the method is not found, an
exception is thrown.

receiver The frame to which you want the message sent.

message A symbol that is the name of the message to send
to receiver.

C H A P T E R 6

Built-In Functions

6-76 Message Sending Functions

paramArray An array of parameters to be passed with the message.
You can specify nil if there are no parameters to be
passed (this saves allocating an empty array).

This function returns the return value of the message it sent.

Contrast this function with Perform (page 6-74), which is exactly the
same, except that Perform searches both the parent and proto chains
for the method.

Also, contrast this function with PerformIfDefined (page 6-75) and
ProtoPerformIfDefined , which do not throw exceptions if the method
is not found.

ProtoPerformIfDefined 6

ProtoPerformIfDefined(receiver,message,paramArray)

Sends a message to a frame; that is, a method with the name of the message
is executed in the frame. Only proto inheritance is used to search for the
method if it does not exist in the frame. If the method is not found, an
exception is not thrown.

receiver The frame to which you want the message sent.

message A symbol that is the name of the message to send
to receiver.

paramArray An array of parameters to be passed with the message.
You can specify nil if there are no parameters to be
passed (this saves allocating an empty array).

This function returns the return value of the message it sent. If the method is
not found, this function returns nil.

Contrast this function with PerformIfDefined (page 6-75), which is
exactly the same, except that PerformIfDefined searches both the parent
and proto chains for the method.

Also, contrast this function with Perform (page 6-74) and ProtoPerform
(page 6-75), which search both the parent and proto chains for the method.

C H A P T E R 6

Built-In Functions

Data Extraction Functions 6-77

Data Extraction Functions 6

These functions are used to extract chunks of data out of other objects of
various types.

All integers are stuffed and extracted in two’s-complement big-endian form.
In this form, byte 0 is the most significant byte, as found on the Newton
and Macintosh. The opposite of this is little-endian, where byte 0 is least
significant byte, as found on Intel-based computers. For example, the
number 0x12345678 is stored as:

big-endian 12 34 56 78

little-endian 78 56 34 12

All Unicode conversions use the Macintosh extended character set for codes
greater than or equal to 128.

ExtractByte 6

ExtractByte(data, offset)

Returns one signed byte from the given offset.

data The data from which the return value is to be extracted.

offset An integer giving the position in data from which the
return value is to be extracted.

For example:

ExtractByte("\u12345678",0);

#3FC 255

C H A P T E R 6

Built-In Functions

6-78 Data Extraction Functions

ExtractBytes 6

ExtractBytes(data, offset, length, class)

Returns a binary object of class class containing length bytes of data starting
at offset within data.

data The data from which the return value is to be extracted.

offset An integer giving the position in data from which the
return value is to be extracted.

length An integer giving the number of bytes to extract.

class A symbol specifying the class of the return value.

ExtractChar 6

ExtractChar(data, offset)

Returns a character object of the character at the given offset in the data.

data The data from which the return value is to be extracted.

offset An integer giving the position in data from which the
return value is to be extracted.

Gets one byte at the specified offset, converts it to Unicode and returns the
character it makes from it.

For example:

ExtractChar("\uFFFFFFFF",0);

//$\u02C results from a ASCII to UNICODE conversion.

#2C76 $\u02C7

//Note $a is at offset 1 in a Unicode string

ExtractChar("abc",0);

#6 $\00

ExtractChar("abc",1);

#616 $a

C H A P T E R 6

Built-In Functions

Data Extraction Functions 6-79

ExtractLong 6

ExtractLong(data, offset)

Returns an integer object of the low 29 bits of an unsigned long at the given
offset, right-justified (that is, the low 29 bits of a four-byte value).

data The data from which the return value is to be extracted.

offset An integer giving the position in data from which the
return value is to be extracted.

Reads four bytes at the specified offset, but ignores the high-order bits (first
two). Returns a 30 bit signed value

ExtractLong("\uFFFFFFFF",0);

#FFFFFFFC -1

ExtractLong("\uC0000007",0);

#1C 7

ExtractXLong 6

ExtractXLong(data, offset)

Returns an integer object of the high 29 bits of an unsigned long at the given
offset, right-justified (that is, the high 29 bits of a four-byte value).

data The data from which the return value is to be extracted.

offset An integer giving the position in data from which the
return value is to be extracted.

For example:

ExtractXLong("\u0000000F",0);

#4 1

C H A P T E R 6

Built-In Functions

6-80 Data Extraction Functions

ExtractWord 6

ExtractWord(data, offset)

Returns an two-byte signed integer object from the given offset.

data The data from which the return value is to be extracted.

offset An integer giving the position in data from which the
return value is to be extracted.

For example:

ExtractWord("\uFFFFFFFF",0);

#FFFFFFFC -1

//if you want unsigned use:

band(ExtractWord(-),0xFFFF);

#40004 65535

ExtractCString 6

ExtractCString(data, offset)

Returns a Unicode string object derived from the null-terminated C-style
string at the given offset.

data The data from which the return value is to be extracted.

offset An integer giving the position in data from which the
return value is to be extracted.

ExtractPString 6

ExtractPString(data, offset)

Returns a Unicode string object derived from the Pascal-style string (a length
byte followed by text) at the given offset.

data The data from which the return value is to be extracted.

offset An integer giving the position in data from which the
return value is to be extracted.

C H A P T E R 6

Built-In Functions

Data Stuffing Functions 6-81

ExtractUniChar 6

ExtractUniChar(data, offset)

Gets two bytes at the specified offset and returns the Unicode character
represented by those bytes.

data The data from which the return value is to be extracted.

offset An integer giving the position in data from which the
return value is to be extracted.

For example:

ExtractUniChar("abc",0);

#616 $a

Data Stuffing Functions 6

These functions are used to stuff chunks of data into objects of various types.

All integers are stuffed in two’s-complement big-endian form. For a
discussion of this, see “Data Extraction Functions” on page 6-77.

▲ W A R N I N G

It is important that the destination for the data stuffing
functions is large enough to hold the data being stuffed. If
the destination is not large enough, the NewtonScript heap
may become corrupted. Be sure to take into account the
offset. Here is a formula you can use:

Length(destObj) – offset >= size of stuffed data

In this formula, destObj is the destination object and offset is
the position within the destination object where the data is
to be stuffed. ▲

C H A P T E R 6

Built-In Functions

6-82 Data Stuffing Functions

StuffByte 6

StuffByte(obj, offset, toInsert)

Writes the low order byte of toInsert, at the specified offset in obj.

obj A binary object into which data is to be stuffed.

offset The position in obj at which stuffing is to begin.

toInsert The data to be stuffed in obj.

For example:

x := "\u00000000";

StuffByte(x,0,-1);

x[0]

#FF006 $\uFF00

x := "\u00000000";

StuffByte(x,0,0xFF);

x[0]

#FF006 $\uFF00

StuffChar 6

StuffChar(obj, offset, toInsert)

Stuffs one byte into obj at the specified offset.

obj A binary object into which data is to be stuffed.

offset The position in obj at which stuffing is to begin.

toInsert A character or integer to be stuffed in obj. You pass it a
two byte Unicode value as toInsert. The function makes
a one-byte character from that value and stuffs the
one-byte character.

This accepts a character or integer as its third parameter, toInsert:

■ If toInsert: is an integer: writes the low byte of toInsert.

■ If toInsert: is a character: converts from Unicode and writes a byte.

C H A P T E R 6

Built-In Functions

Data Stuffing Functions 6-83

For example:

x := "\u00000000";

StuffChar(x,1,Ord($Z));

x[0]

#5A6 $Z

x := "\u00000000";

StuffChar(x,1,-1);

x[0]

#1A6 $\1A

ExtractByte(x,1)

#68 26

ExtractByte(x,0)

#0 0

StuffCString 6

StuffCString(obj, offset, aString)

Converts a Newton Unicode string into a null-terminated C-style string and
stuffs it at the given offset into a binary object.

obj A binary object into which data is to be stuffed.

offset The position in obj at which stuffing is to begin.

aString A Unicode string to be stuffed into obj.

The string aString is converted into ASCII format using Macintosh roman
string encoding. It is then stuffed into obj, beginning at the byte offset offset. It
is followed by a null byte terminator.

This function throws an exception if aString will not fit into obj beginning
at the given offest, or if the offset is negative. The length of obj will not
be altered.

C H A P T E R 6

Built-In Functions

6-84 Data Stuffing Functions

StuffLong 6

StuffLong(obj, offset, toInsert)

Writes four bytes at the specified offset using the 30 bit signed value you
pass it as the third parameter, and sign extends it to 32 bytes.

obj A binary object into which data is to be stuffed.

offset The position in obj at which stuffing is to begin.

toInsert The data to be stuffed in obj.

For example:

x := "\u00000000";

StuffLong(x,0,-1);

x[0]

#FFFF6 $\uFFFF

x[1]

#FFFF6 $\uFFFF

x := "\u00000000";

StuffLong(x,0,0x3FFFFFFA);

x[0]

#FFFF6 $\uFFFF

x[1]

#FFFA6 $\uFFFA

StuffPString 6

StuffPString(obj, offset, aString)

Converts a Newton Unicode string into a Pascal-style string (a length byte
followed by text) and stuffs it at the given offset into a binary object.

object A binary object into which data is to be stuffed.

offset The position in obj at which stuffing is to begin.

aString A Unicode string to be stuffed into obj. This string must
be no longer than 255 characters.

C H A P T E R 6

Built-In Functions

Data Stuffing Functions 6-85

The string aString is converted into ASCII format using Macintosh roman
string encoding. Then a length byte followed by the string is stuffed into obj,
beginning at the byte offset offset. The length byte indicates the number of
characters in the string.

This function throws an exception if aString will not fit into obj beginning
at the given offest, or if the offset is negative. The length of obj will not
be altered.

StuffUniChar 6

StuffUniChar(obj, offset, toInsert)

Stuffs the two-byte Unicode encoding for the character indicated by toInsert
into obj at the specified offset.

obj A binary object into which data is to be stuffed.

offset The position in obj at which stuffing is to begin.

toInsert A character or integer to be stuffed in obj.

For example:

x := "\u00000000";

StuffUniChar(x,0,"\uF00F"[0]);

x[0]

#F00F6 $\uF00F

x := "\u00000000";

StuffUniChar(x,0,0x0AA0);

x[0]

#AA06 $\u0AA0

C H A P T E R 6

Built-In Functions

6-86 Getting and Setting Global Variables and Functions

StuffWord 6

StuffWord(obj, offset, toInsert)

Writes the low order two bytes of toInsert at the specified offset.

obj A binary object into which data is to be stuffed.

offset The position in obj at which stuffing is to begin.

toInsert The data to be stuffed in obj.

For example:

x := "\u00000000";
StuffWord(x,0,0x3FFF1234);
x[0]
#12346 $\u1234

x := "\u00000000";
StuffWord(x,0,-1);
x[0]
#FFFF6 $\uFFFF

Getting and Setting Global Variables and Functions 6

These functions get, set and test for the existence of global variables
and functions.

GetGlobalFn 6

GetGlobalFn(symbol)

Returns a global function. If the function is not found, nil is returned.

symbol A symbol naming the global function you want to get.

C H A P T E R 6

Built-In Functions

Getting and Setting Global Variables and Functions 6-87

GetGlobalVar 6

GetGlobalVar(symbol)

Returns the value of a slot in the system globals frame. If the slot is not
found, nil is returned.

symbol A symbol naming the global variable whose value you
want to get.

GlobalFnExists 6

GlobalFnExists(symbol)

Returns non-nil if the global function identified by symbol exists, otherwise
returns nil.

symbol A symbol naming the global function whose existence
you want to check.

GlobalVarExists 6

GlobalVarExists(symbol)

Returns non-nil if the global variable identified by symbol exists, otherwise
returns nil.

symbol A symbol naming the global variable whose existence
you want to check.

DefGlobalFn 6

DefGlobalFn(symbol, function)

Defines a global function. The symbol identifying the function is returned.

symbol A symbol naming the global function you want to
define. To avoid naming conflicts with other global
functions, you should choose a name that includes your
appSymbol, which includes the developer signature
you have registered with Newton DTS.

function A function object.

C H A P T E R 6

Built-In Functions

6-88 Getting and Setting Global Variables and Functions

Note that the global function is destroyed if the system is reset.

It is very important to remove any global functions created by your
application when your application is removed. You can do this with
UnDefGlobalFn in the application RemoveScript function.

IMPORTANT

Do not create global functions unless it is absolutely
necessary. Global functions occupy NewtonScript heap
space. They can conflict with system global functions and
other applications’ global functions. In most cases, you can
use methods in your application base view instead of global
functions. ▲

DefGlobalVar 6

DefGlobalVar(symbol, value)

Defines a global variable—that is, a slot in the system globals frame. The
value of the variable is returned.

symbol A symbol naming the global variable you want to
define. To avoid naming conflicts with other globals,
you should choose a name that includes your
appSymbol, which includes the developer signature
you have registered with Newton DTS.

value The value you want to assign to the global variable.

The system ensures that the object created exists entirely in internal RAM (it
calls EnsureInternal on the object identified by symbol. Note that the
global variable is destroyed if the system is reset.

It is very important to remove any globals created by your application when
your application is removed. You can do this with UnDefGlobalVar in the
application RemoveScript function.

C H A P T E R 6

Built-In Functions

Miscellaneous Functions 6-89

IMPORTANT

Do not create global variables unless it is absolutely
necessary. Global variables occupy NewtonScript heap
space. They can conflict with system globals and other
applications’ globals. In most cases, you can put any
global data that you need in your application base view
or in a soup. ▲

UnDefGlobalFn 6

UnDefGlobalFn(symbol)

Removes a global function you previously defined. This function returns nil.

symbol A symbol naming the global function you want to
remove.

UnDefGlobalVar 6

UnDefGlobalVar(symbol)

Removes a global variable you previously defined. This function returns nil.

symbol A symbol naming the global variable you want to
remove.

Miscellaneous Functions 6

These are other miscellaneous functions.

BinEqual 6

BinEqual(a, b)

a A binary object

b A binary object

Compares two binary objects’ data as raw bytes. Returns non-nil if they
are identical.

C H A P T E R 6

Built-In Functions

6-90 Miscellaneous Functions

BinaryMunger 6

BinaryMunger(dst, dstStart, dstCount, src, srcStart, srcCount)

Replaces bytes in dst using bytes from src and returns dst after munging is
complete. This function is destructive to dst.

dst A value to be changed.

dstStart The starting position in dst.

dstCount The number of bytes to be replaced in dst. You can
specify nil for dstCount to go to the end of dst.

src A value. Can be nil to simply delete the contents of dst.

srcStart The starting position in the source binary from which
to begin taking elements to place into the destination
binary.

srcCount The number of bytes to use from the source binary. You
can specify nil to go to the end of the source binary.

Bytes are numbered counting from zero.

Chr 6

Chr(integer)

Converts a decimal integer to its Unicode character equivalent.

integer An integer.

Here is an example:

chr(65)

$A

Compile 6

Compile(string)

Compiles an expression sequence and returns a function that evaluates it.

string The expression to compile.

C H A P T E R 6

Built-In Functions

Miscellaneous Functions 6-91

Here are two examples. Note that, in the first example, x is a local variable.

compile("x:= {a:self.b, b:1234}")

#440F711 <CodeBlock, 0 args #440F711>

f:=compile("2+2")

f();

#440F712 4

Note

All characters used in NewtonScript code must be 7-bit
ASCII. This usually is no problem, but can create problems
with Compile in certain situations. Suppose you tried
this call:

Compile ("blah, blah, blah, \u0F0F\u")

The Unicode character is not a 7-bit character, it is 16 bits.
Therefore, you get an error. (The \u switch turns on Unicode
character mode.) You should do this instead:

Compile ("blah, blah, blah, \\u0F0F\\u")

The backslash escape character preceding the \u prevents
Unicode mode from being turned on for the compile. (The
\u is read simply as the string "\u" instead of the Unicode
switch.)

Note, also, that:

compile("func()...")

returns a function that constructs the function. The
environment is captured when the function constructor
is executed:

f := compile("func()b");

x := {a:f, b:0};

g:=x:a();

#440F713 <CodeBlock, 0 args #440F711>

C H A P T E R 6

Built-In Functions

6-92 Summary of Functions and Methods

Executing the function construction captures the message
environment with x as receiver.

g();

#440F714 0

So now it can find b. ◆

Ord 6

Ord (char)

Converts a character to its Unicode decimal integer equivalent.

char A character.

Here is an example:

ord($A)

65

Summary of Functions and Methods 6

This section contains a summary of the functions and methods described
in this chapter.

Object System Functions 6

ClassOf(object)
Clone(object)
DeepClone(object)
GetFunctionArgCount(function)
GetSlot(frame, slotSymbol)
GetVariable(frame, slotSymbol)
HasSlot(frame, slotSymbol)
HasVariable(frame, slotSymbol)
Intern(string)

C H A P T E R 6

Built-In Functions

Summary of Functions and Methods 6-93

IsArray(obj)
IsBinary(obj)
IsCharacter(obj)
IsFrame(obj)
IsFunction(obj)
IsImmediate(obj)
IsInstance(obj, class)
IsInteger(obj)
IsNumber(obj)
IsReadOnly(obj)
IsReal(obj)
IsString(obj)
IsSubclass(class1, class2)
IsSymbol(obj)
MakeBinary(length, class)
Map(obj, function)
PrimClassOf(object)
RemoveSlot(object, slot)
ReplaceObject(originalObject, targetObject)
SetClass(object, classSymbol)
SetVariable(frame, slotSymbol, value)
SymbolCompareLex(symbol1, symbol2)
TotalClone(object)

String Functions 6

BeginsWith(string, substr)
Capitalize(string)
CapitalizeWords(string)
CharPos(str, char, startpos)
Downcase(string)
EndsWith(string, substr)
IsAlphaNumeric(char)
IsWhiteSpace(char)
SPrintObject(obj)
StrCompare(a, b)

C H A P T E R 6

Built-In Functions

6-94 Summary of Functions and Methods

StrConcat(a, b)
StrEqual(a, b)
StrExactCompare(a, b)
StrLen(string)
StrMunger(dstString, dstStart, dstCount, srcString, srcStart, srcCount)
StrPos(string, substr, start)
StrReplace(string, substr, replacement, count)
StrTokenize(str, delimiters)
StyledStrTruncate(string, length, font)
SubStr(string, substr, start)
TrimString(string)
Upcase(string)

Bitwise Functions 6

Band(a, b)
Bor(a, b)
Bxor(a, b)
Bnot(a)

Array Functions 6

AddArraySlot(array, value)
Array(size, initialValue)
ArrayInsert(array, element, position)
ArrayMunger(dstArray, dstStart, dstCount, srcArray, srcStart, srcCount)
ArrayRemoveCount(array, startIndex, count)
InsertionSort(array, test, key)
Length(array)
LFetch(array, item, start, test, key)
LSearch(array, item, start, test, key)
NewWeakArray(length)
SetAdd(array, value, uniqueOnly)
SetContains(array, item)
SetDifference(array1, array2)

C H A P T E R 6

Built-In Functions

Summary of Functions and Methods 6-95

SetLength(array, length)
SetOverlaps(array1, array2)
SetRemove(array, value)
SetUnion(array1, array2, uniqueFlag)
Sort(array, test, key)
StableSort(array, test, key)

Sorted Array Functions 6

BDelete(array, item, test, key, count)
BDifference(array1, array2, test, key)
BFetch(array, item, test, key)
BFetchRight(array, item, test, key)
BFind(array, item, test, key)
BFindRight(array, item, test, key)
BInsert(array, element, test, key, uniqueOnly)
BInsertRight(array, element, test, key, uniqueOnly)
BIntersect(array1, array2, test, key, uniqueOnly)
BMerge(array1, array2, test, key, uniqueOnly)
BSearchLeft(array, item, test, key)
BSearchRight(array, item, test, key)

Integer Math Functions 6

Abs(x)
Ceiling(x)
Floor(x)
Max(a, b)
Min(a, b)
Real(x)
Random(low, high)
SetRandomSeed (seedNumber)

C H A P T E R 6

Built-In Functions

6-96 Summary of Functions and Methods

Floating Point Math Functions 6

Acos(x) Logb(x)

Acosh(x) Log1p(x)

Asin(x) Log10(x)

Asinh(x) NearbyInt(x)

Atan(x) NextAfterD(x,y)

Atan2(x,y) Pow(x,y)

Atanh(x) RandomX(x)

CopySign(x,y) Remainder(x,y)

Cos(x) RemQuo(x,y)

Cosh(x) Rint(x)

Erf(x) RintToL(x)

Erfc(x) Round(x)

Exp(x) Scalb(x,y)

Expm1(x) SignBit(x)

Fabs(x) Signum(x)

FDim(x,y) Sin(x)

FMax(x,y) Sinh(x)

FMin(x,y) Sqrt(x)

Fmod(x,y) Tan(x)

Gamma(x) Tanh(x)

Hypot(x,y) Trunc(x)

IsFinite(x) Unordered(a, b)

IsNaN(x) UnorderedGreaterOrEqual(a, b)

IsNormal(x) UnorderedLessOrEqual(a, b)

LessEqualOrGreater(a, b) UnorderedOrEqual(a, b)

LessOrGreater(a, b) UnorderedOrGreater(a, b)

LGamma(x) UnorderedOrLess(a, b)

Log(x)

C H A P T E R 6

Built-In Functions

Summary of Functions and Methods 6-97

Managing the Floating Point Environment 6

FeClearExcept(excepts)
FeGetEnv()
FeGetExcept(excepts)
FeHoldExcept()
FeRaiseExcept(excepts)
FeSetEnv(envObj)
FeSetExcept(flagObj, excepts)
FeTestExcept(excepts)
FeUpdateEnv(flagObj)

Financial Functions 6

Annuity(rate, periods)
Compound(rate, periods)

Exception Functions 6

Throw(name, data)
Rethrow()
CurrentException()

Message Sending Functions 6

Apply(function, parameterArray)
Perform(frame, message, parameterArray)
PerformIfDefined(receiver,message,paramArray)
ProtoPerform(receiver,message,paramArray)
ProtoPerformIfDefined(receiver,message,paramArray)

Data Extraction Functions 6

ExtractByte(data, offset)
ExtractBytes(data, offset, length, class)
ExtractChar(data, offset)
ExtractLong(data, offset)
ExtractXLong(data, offset)

C H A P T E R 6

Built-In Functions

6-98 Summary of Functions and Methods

ExtractWord(data, offset)
ExtractCString(data, offset)
ExtractPString(data, offset)
ExtractUniChar(data, offset)

Data Stuffing Functions 6

StuffByte(aString, offset, toInsert)
StuffChar(aString, offset, toInsert)
StuffCString(obj, offset, aString)
StuffLong(aString, offset, toInsert)
StuffPString(obj, offset, aString)
StuffUniChar(aString, offset, toInsert)
StuffWord(aString, offset, toInsert)

Getting and Setting Global Variables and Functions 6

GetGlobalFn(symbol)
GetGlobalVar(symbol)
GlobalFnExists(symbol)
GlobalVarExists(symbol)
DefGlobalFn(symbol, function)
DefGlobalVar(symbol, value)
UnDefGlobalFn(symbol)
UnDefGlobalVar(symbol)

Miscellaneous Functions 6

BinEqual(a, b)
BinaryMunger(dst, dstStart, dstCount, src, srcStart, srcCount)
Chr(integer)
Compile(string)
Ord(char)

A-1

A P P E N D I X A

Reserved Words A

The following words are reserved in NewtonScript. You may not use any of
these words as symbols unless you enclose the word in vertical bars, like
this: |self|.

and end local self

begin exists loop then

break for mod to

by foreach native try

call func not until

constant global onexception while

div if or with

do in repeat

else inherited return

Figure A-0
Listing 7-0
Table A-0

B-1

A P P E N D I X B

Special Character Codes B

This appendix contains a character code table that has both Macintosh and
Unicode (16-bit) character codes for the high 128 characters in the Newton
character set (characters 128 through 254). When specifying character
constants or strings that contain characters from the high 128 characters, you
must use unicode character codes. The Macintosh character codes are
provided for convenience if you are used to using them.

Table B-1 Character codes sorted by Macintosh character code

Mac Unicode Char

80 00C4 Ä

81 00C5 Å

82 00C7 Ç

83 00C9 É

84 00D1 Ñ

85 00D6 Ö

86 00DC Ü

87 00E1 á

88 00E0 à

89 00E2 â

8A 00E4 ä

8B 00E3 ã

8C 00E5 å

continued

Figure B-0
Listing 8-0
Table B-0

A P P E N D I X B

Special Character Codes

B-2

8D 00E7 ç

8E 00E9 é

8F 00E8 è

90 00EA ê

91 00EB ë

92 00ED í

93 00EC ì

94 00EE î

95 00EF ï

96 00F1 ñ

97 00F3 ó

98 00F2 ò

99 00F4 ô

9A 00F6 ö

9B 00F5 õ

9C 00FA ú

9D 00F9 ù

9E 00FB û

9F 00FC ü

A0 2020 †

A1 00B0 °

A2 00A2 ¢

A3 00A3 £

continued

Table B-1 Character codes sorted by Macintosh character code (continued)

Mac Unicode Char

A P P E N D I X B

Special Character Codes

B-3

A4 00A7 §

A5 2022

A6 00B6 ¶

A7 00DF ß

A8 00AE ®

A9 00A9 ©

AA 2122 ™

AB 00B4 ´

AC 00A8 ¨

AD 2260 ≠

AE 00C6 Æ

AF 00D8 Ø

B0 221E ∞

B1 00B1 ±

B2 2264 ≤

B3 2265 ≥

B4 00A5 ¥

B5 00B5 µ

B6 2202 ∂

B7 2211 ∑

B8 220F ∏

B9 03C0 π

BA 222B ∫

continued

Table B-1 Character codes sorted by Macintosh character code (continued)

Mac Unicode Char

A P P E N D I X B

Special Character Codes

B-4

BB 00AA ª

BC 00BA º

BD 2126 Ω

BE 00E6 æ

BF 00F8 ø

C0 00BF ¿

C1 00A1 ¡

C2 00AC ¬

C3 221A √

C4 0192 ƒ

C5 2248 ≈

C6 2206 ∆

C7 00AB «

C8 00BB »

C9 2026 …

CA 00A0

CB 00C0 À

CC 00C3 Ã

CD 00D5 Õ

CE 0152 Œ

CF 0153 œ

D0 2013

D1 2014

continued

Table B-1 Character codes sorted by Macintosh character code (continued)

Mac Unicode Char

A P P E N D I X B

Special Character Codes

B-5

D2 201C

D3 201D

D4 2018

D5 2019

D6 00F7 ÷

D7 25CA ◊

D8 00FF ÿ

D9 0178 Ÿ

DA 2044 ⁄

DB 00A4 ¤

DC 2039 ‹

DD 203A ›

DE FB01 fi

DF FB02 fl

E0 2021 ‡

E1 00B7 ·

E2 201A ‚

E3 201E „

E4 2030 ‰

E5 00C2 Â

E6 00CA Ê

E7 00C1 Á

E8 00CB Ë

continued

Table B-1 Character codes sorted by Macintosh character code (continued)

Mac Unicode Char

A P P E N D I X B

Special Character Codes

B-6

E9 00C8 È

EA 00CD Í

EB 00CE Î

EC 00CF Ï

ED 00CC Ì

EE 00D3 Ó

EF 00D4 Ô

F0 F7FF

F1 00D2 Ò

F2 00DA Ú

F3 00DB Û

F4 00D9 Ù

F5 0131 ı

F6 02C6 ˆ

F7 02DC ˜

F8 00AF ¯

F9 02D8 ˘

FA 02D9 ˙

FB 02DA ˚

FC 00B8 ¸

FD 02DD ˝

FE 02DB ˛

FF 02C7 ˇ

Table B-1 Character codes sorted by Macintosh character code (continued)

Mac Unicode Char

A P P E N D I X B

Special Character Codes

B-7

Table B-2 Character codes sorted by Unicode

Mac Unicode Char

CA 00A0

C1 00A1 ¡

A2 00A2 ¢

A3 00A3 £

DB 00A4 ¤

B4 00A5 ¥

A4 00A7 §

AC 00A8 ¨

A9 00A9 ©

BB 00AA ª

C7 00AB «

C2 00AC ¬

A8 00AE ®

F8 00AF ¯

A1 00B0 °

B1 00B1 ±

AB 00B4 ´

B5 00B5 µ

A6 00B6 ¶

E1 00B7 ·

FC 00B8 ¸

BC 00BA º

continued

A P P E N D I X B

Special Character Codes

B-8

C8 00BB »

C0 00BF ¿

CB 00C0 À

E7 00C1 Á

E5 00C2 Â

CC 00C3 Ã

80 00C4 Ä

81 00C5 Å

AE 00C6 Æ

82 00C7 Ç

E9 00C8 È

83 00C9 É

E6 00CA Ê

E8 00CB Ë

ED 00CC Ì

EA 00CD Í

EB 00CE Î

EC 00CF Ï

84 00D1 Ñ

F1 00D2 Ò

EE 00D3 Ó

EF 00D4 Ô

CD 00D5 Õ

continued

Table B-2 Character codes sorted by Unicode (continued)

Mac Unicode Char

A P P E N D I X B

Special Character Codes

B-9

85 00D6 Ö

AF 00D8 Ø

F4 00D9 Ù

F2 00DA Ú

F3 00DB Û

86 00DC Ü

A7 00DF ß

88 00E0 à

87 00E1 á

89 00E2 â

8B 00E3 ã

8A 00E4 ä

8C 00E5 å

BE 00E6 æ

8D 00E7 ç

8F 00E8 è

8E 00E9 é

90 00EA ê

91 00EB ë

93 00EC ì

92 00ED í

94 00EE î

95 00EF ï

continued

Table B-2 Character codes sorted by Unicode (continued)

Mac Unicode Char

A P P E N D I X B

Special Character Codes

B-10

96 00F1 ñ

98 00F2 ò

97 00F3 ó

99 00F4 ô

9B 00F5 õ

9A 00F6 ö

D6 00F7 ÷

BF 00F8 ø

9D 00F9 ù

9C 00FA ú

9E 00FB û

9F 00FC ü

D8 00FF ÿ

F5 0131 ı

CE 0152 Œ

CF 0153 œ

D9 0178 Ÿ

C4 0192 ƒ

F6 02C6 ˆ

FF 02C7 ˇ

F9 02D8 ˘

FA 02D9 ˙

FB 02DA ˚

continued

Table B-2 Character codes sorted by Unicode (continued)

Mac Unicode Char

A P P E N D I X B

Special Character Codes

B-11

FE 02DB ˛

F7 02DC ˜

FD 02DD ˝

B9 03C0 π

D0 2013

D1 2014

D4 2018

D5 2019

E2 201A ‚

D2 201C

D3 201D

E3 201E „

A0 2020 †

E0 2021 ‡

A5 2022

C9 2026 …

E4 2030 ‰

DC 2039 ‹

DD 203A ›

DA 2044 ⁄

AA 2122 ™

BD 2126 Ω

B6 2202 ∂

continued

Table B-2 Character codes sorted by Unicode (continued)

Mac Unicode Char

A P P E N D I X B

Special Character Codes

B-12

C6 2206 ∆

B8 220F ∏

B7 2211 ∑

C3 221A √

B0 221E ∞

BA 222B ∫

C5 2248 ≈

AD 2260 ≠

B2 2264 ≤

B3 2265 ≥

D7 25CA ◊

F0 F7FF

DE FB01 fi

DF FB02 fl

Table B-2 Character codes sorted by Unicode (continued)

Mac Unicode Char

What Are Classes Good For? C-1

A P P E N D I X C

Class-Based Programming C

*NewtonScript is often described as an “object-oriented” language. However,
even if (or especially if) you have some experience with other object-oriented
languages, such as Smalltalk or C++, you may be a bit confused by it.
NewtonScript does have many features that will be familiar to you, but it has
one important difference: NewtonScript is prototype-based, rather than
class-based. That is, rather than dividing the world into classes and instances
for the purposes of inheritance, NewtonScript objects inherit directly from
other objects.

Don’t forget everything you know about class-based programming, though.
It is possible, and even desirable, to simulate classes in NewtonScript. Even
though the language contains no explicit features to support classes, you can
use a simple set of stylistic conventions to gain the familiar advantages of
classes when you need them, without losing the flexibility of prototypes.

What Are Classes Good For? C

Newton programming puts great emphasis on the view system. The structure
of your application is based around the views that make up the user interface.
Newton Toolkit reflects this strong view orientation, making it very easy to
create views with attached data and methods. However, it’s not necessarily
appropriate to use the view system alone to organize your program.

Most applications of any complexity use various independent, fairly
complicated data structures. A standard programming technique is to
implement these structures as abstract data types that encapsulate the
functionality. In an object-oriented program, these take the form of classes.

* Copyright © 1993, 1994 Walter R. Smith. All Rights Reserved. This article is reprinted by
permission of the author.

Figure C-0
Listing 9-0
Table C-0

A P P E N D I X C

Class-Based Programming

C-2 Classes: A Brief Reminder

Classes let you divide your program’s functionality into manageable pieces.
By combining a data structure with the functions that operate on it, classes
make the program more understandable and maintainable. A well-written
class can be reused in other applications, which saves you effort. There are
plenty of reasons why classes are a good idea; you can look in any book on
object-oriented programming for more.

You should use the view structure of your application to divide it into parts
according to the user interface. It’s a good idea to implement some or all of
the internal data structures as classes.

Classes: A Brief Reminder C

Let’s start by reviewing the traditional class-based model of object program-
ming. I use Smalltalk concepts and terminology in this article; C++ folks will
need to translate the discussion slightly to fit their frame of reference.

The principal concept in the class-based model is, not surprisingly, the class.
A class defines the structure and behavior of a set of objects called the
instances of the class. Each instance contains a set of instance variables,
which are specified in the class. Instances can respond to messages by
executing the methods defined in the class. Every instance has the same
instance variables and methods. In addition, the class can define class
variables and class methods, which are available to all the instances of
the class.

Inheritance is also determined by classes. Each class can have a superclass,
from which it inherits variable and method definitions. In some languages, a
class can have multiple superclasses, but there’s no easy way to simulate that
in NewtonScript, so I won’t consider that here.

An object is created by sending a message, usually called New or something
similar, to its class. It may also be created by sending a Clone message to an
instance of the class. When a message is sent to an instance, the corresponding
method is located in the class (or superclasses) and executed. The method can
refer directly to instance variables from that particular instance, and to class
variables.

A P P E N D I X C

Class-Based Programming

Inheritance in NewtonScript C-3

Inheritance in NewtonScript C

The NewtonScript object model is prototype-based. Frames inherit directly
from other frames; there are no classes. A frame may be linked to other
frames through its _proto and _parent slots. These slots define the
inheritance path for the frame. When you send a message to a frame, the
method that executes can use the slots of that frame (the receiver) as
variables. If a variable or method reference cannot be resolved in the receiver,
the proto chain is searched. If the desired slot still isn’t found, the search
moves one step up the parent chain, searching the parent and its proto chain,
and so forth.

These rules came about because they are a good fit for the Newton program-
ming environment, which is oriented around the view system. Parent
inheritance provides inheritance of variables and messages through the view
hierarchy: you can define a variable in a view for all its subviews to access.
Proto inheritance allows views to share common templates, and also lets
most of the data stay out of RAM.

Even though the inheritance system (and all of NewtonScript) is closely
integrated with the view system, it is really just a set of rules that can be
applied in whatever way you find useful. You can send messages to any
frame, not just a view frame, and non-view frames can take advantage of the
inheritance rules as well. As this article will demonstrate, the same rules are
suitable for a form of class-based programming.

The Basic Idea C

I will now describe the basic class-based NewtonScript technique. Remember
that there is no built-in idea of a class or an instance in NewtonScript; this is
just a set of conventions for using NewtonScript that will let you create
structures similar to those you would create in a class-based language. Thus,

A P P E N D I X C

Class-Based Programming

C-4 The Basic Idea

although I will use the terms class, instance, and so forth, they are all just
frames being used in specific ways.

The main idea is to use parent inheritance to connect instances with classes.
An instance is a frame whose slots make up the instance variables, and
whose _parent slot points to the class (another frame). The class’s slots
make up the methods.

As a simple example, consider a class Stack that implements a push-down
stack. It has the standard operations Push and Pop that add and remove
items, and a predicate IsEmpty that determines if there are any items on the
stack. The representation is very simple: just an array of items and an integer
giving the index of the topmost item.

The class frame looks like this:

Stack := {

 New:

 func (maxItems)

 {_parent: self,

 topIndex: -1,

 items: Array(maxItems, NIL)},

Clone:

 func () begin

 local newObj := Clone(self);

 newObj.items := Clone(items);

 newObj

 end,

Push:

 func (item) begin

 topIndex := topIndex + 1;

 items[topIndex] := item;

 self

 end,

A P P E N D I X C

Class-Based Programming

The Basic Idea C-5

Pop:

 func () begin

 if :IsEmpty() then

 NIL

 else begin

 local item := items[topIndex];

 items[topIndex] := NIL;

 topIndex := topIndex - 1;

 item

 end

 end,

IsEmpty:

 func ()

 topIndex = -1

};

The class frame begins with the New method. This is a class method that is
intended to be used as message of the Stack class itself, as in Stack:New(16).
It consists simply of a frame constructor that builds an instance frame. An
instance always has a _parent slot that refers to the class frame; note that
because New is a message intended to be sent to the class, it can just use self
to get the class pointer. The rest of the slots contain the instance variables: a
topIndex slot for the index of the topmost item (-1 if the stack is empty)
and an items slot for the array of items. New takes an argument that
determines the maximum number of items on the stack, but it would be easy
to make this dynamic (if it didn’t have to fit in an article like this).

It’s usually a good idea to provide a Clone method for a class. This lets you
make a copy of an object without having to know how deep the copy has to
go (such knowledge would violate the encapsulation that is one of the
reasons to have a class in the first place). In the case of Stack, a simple
Clone would leave the items array shared between two instances, which
would result in confusing and incorrect behavior. A DeepClone, on the
other hand, would copy the entire class frame along with the instance,
because of the pointer in the _parent slot. That would actually work in this

A P P E N D I X C

Class-Based Programming

C-6 Practical Issues

case, although it would waste huge amounts of space—watch out for this
sort of mistake. The correct way to clone a Stack is to clone the instance,
then give the clone a clone of the items array, which is what the Clone
method above does.

After the New and Clone methods, which are usually present in any class,
come the methods particular to this class. The Push method increments
topIndex and adds the item to the end of the items array. Note that instance
variables such as topIndex and items are accessed simply by their names,
because they are slots of the receiver. The Pop method calls the IsEmpty
method to see if the stack is empty. If so, it returns nil; if not, it returns the
topmost item and decrements topIndex. It assigns nil to the former topmost
slot so it won’t prevent the item from being garbage collected.

The NewtonScript code you write to use a class is similar to code you would
write in a language like Smalltalk. You create an object by sending the New
message to its class. You use the resulting instance by sending messages to it.
Of course, you do all this in NewtonScript syntax, which uses the colon for
sending a message.

s := Stack:New(16);

s:Push(10);

s:Push(20);

x := s:Pop() + s:Pop();

At the end of this code, the value of x will be 30.

Practical Issues C

Before getting into more advanced topics, here’s some practical information
about doing class-based programming with current tools. (See the Newton
Toolkit User’s Guide. for information about the Newton Toolkit implementa-
tion issues discussed in this section.)

The Newton Toolkit as it exists today doesn’t include any features that
specifically support class-based programming; for example, the browser only

A P P E N D I X C

Class-Based Programming

Class Variables C-7

shows the view hierarchy. Nevertheless, it’s not too hard to get classes into
your application.

You need to build the class frame itself into your package, and you need to
make it accessible from NewtonScript code. You can do both at once by
putting the class directly into an evaluate slot of your application’s main
view. For the above example, you could add a slot called Stack to the main
view and type the class frame just as it appears (but not including the Stack
assignment (:=) line) into the browser.

If you prefer, you could make the class frame a global compile-time variable
by putting it (including the assignment this time) into Project Data. That
won’t make it available to your run-time code, however; you still have to
create the Stack slot in the main view, but you can just type and enter–
Stack–as its value. You have to put the class in Project Data if you want to use
superclasses (more on this later).

Class Variables C

You can create “class variables”, that is, variables that are shared by all
instances of a class, by adding slots to the class frame. This is the same way
you add variables to a view to be shared by the subviews, but it’s a bit more
tricky because the view system does something automatically for views that
you have to do manually for classes.

Remember that your class frame, like all other data built at compile time, is
in read-only space when your application is running. It’s not possible to
change the values of the slots; thus, it’s impossible to assign a new value to
a class variable. The view system gets around this problem by creating a
heap-based frame whose _proto slot points to the view and using that frame
as the view. The original slots are accessible through proto inheritance, and
assignments create and modify slots in the heap-based frame, overriding the
initial values in the original. You can use the same trick for your class frame.

A P P E N D I X C

Class-Based Programming

C-8 Class Variables

For example, let’s say you want to have a class variable x whose initial value
is zero. The class frame, defined in the Project Data file, contains a slot
named x:

TheClass := { ... x: 0 ... }

The base view has a slot called TheClass whose value is defined simply
as TheClass. At some point early in your application’s execution, perhaps
in the viewSetupFormScript of the view where your class frame is
defined, create a heap-based version of the class and assign it to the
variable TheClass:

viewSetupFormScript:

 func () begin

 ...

 if not TheClass._proto exists then

 TheClass := {_proto: TheClass};

 ...

 end

Now you can use and assign the variable x in methods of TheClass. The
instances will inherit it via their _parent slot, and the first time x is assigned,
an x slot will be created in the heap-based part of the class, shadowing the
initial value of zero. Note that you only want to do this setup once—
otherwise you’ll end up with a chain of frames, one for each time your
application has been opened. Checking for the _proto slot, as above, is one
way to ensure this; you could also set TheClass := TheClass._proto in
your main view’s viewQuitScript.

A P P E N D I X C

Class-Based Programming

Superclasses C-9

Superclasses C

It’s easy to get the close equivalent of a superclass: just give the class a
_proto slot pointing to its superclass. This requires the class definitions to
be in Project Data so their names are available at compile time. For example,
if you have a SortedList class that should have Collection as its
superclass:

Collection := { ... };

SortedList := {_proto: Collection, ...};

Of course, you have to define Collection before SortedList to do it this
way. If you prefer to reverse their definitions for some reason, you can add
the _proto slot later:

SortedList := { ... };

Collection := { ... };

SortedList._proto := Collection;

If you override a method in a subclass, you can call the superclass version
using the inherited keyword. If you have class variables, note that because
assignments take place in the outermost frame in the _proto chain (that is,
the wrapper you create at initialization time for each class), each class gets its
own version of the class variable.

A P P E N D I X C

Class-Based Programming

C-10 Using Classes to Encapsulate Soup Entries

Using Classes to Encapsulate Soup Entries C

One use to consider for classes is encapsulating the constraints on soup
entries. (Read more about soups and soup entries in the Newton
Programmer’s Guide.)

Normally, entries in a soup are simple data records with no _parent or
_proto slots to inherit behavior. The reason is obvious: if they did, each
entry would contain a copy of the inherited frame. (Actually, _proto slots
are not followed in soup entries anyway, for various reasons.) Thus, soup
entries are not normally used in an object-oriented fashion.

Unfortunately, soup entries generally have somewhat complicated
requirements, such as a set of required slots, so it would be nice to give them
an object interface. You can do this by defining a class as a “wrapper” for a
particular kind of soup entry. In addition to a New method, it can have class
methods to retrieve entries from the soup and create objects from existing
entries, and instance methods to delete, undo changes, and save changes to
the entry. Each instance has a slot that refers to its soup entry.

Given such a wrapper class, you can treat the soup and its contents as
objects, sending messages to entries to make changes and retrieve data. The
class is then a central location for the code that implements the requirements
for entries in the soup.

ROM Instance Prototypes C

If your instances are fairly complicated and have a lot of slots whose values
aren’t all likely to change, you can save some space by using the same
_proto trick as classes and views. That is, in your New method, create the

A P P E N D I X C

Class-Based Programming

Leaving Instances Behind C-11

instance as a little frame that just refers to the class and an initial instance
variable prototype that stays in application space:

New: func ()

 {_parent: self,

 _proto: '{ ...initial instance vars... }}

Leaving Instances Behind C

Because so much is contained in the application, it’s very difficult to make
instances that can survive card or application removal. The only way to do
this is to copy the entire class (and its superclasses, if any) into the heap,
which would probably take up too much space to be practical.

Conclusion C

This technique doesn’t exactly simulate any existing class-based object
system, but it gives you what you need to encapsulate your data types into
class-like structures. I find it to be very useful (stores, soups, and cursors all
essentially follow this model), and I hope it will help you create better
Newton applications. Have fun!

Biography

Walter Smith joined the Newton group in 1988. He is the
principal designer and implementor of NewtonScript and
the Newton object store. ◆

D-1

A P P E N D I X D

NewtonScript Syntax DefinitionD

The definitions in this document are presented in two forms, as an extended
BNF, and as bubble diagrams, defined as follows:

Bubble
Diagram Extended BNF Description

terminal Oval boxes / courier text indicates a
word or character that must appear
exactly as shown. Ambiguous
terminal characters are enclosed in
single quotes (‘’).

nonterminal Rectangular boxes / italics indicate a
word that is defined further.

[] Dashed lines / brackets indicate that
the enclosed item is optional.

{choose|one} Forked arrows / a group of words,
separated by vertical bars (|) and
grouped with curly brackets, indicates
an either/or choice.

[]* A dashed box with a repeating arrow /
an asterik (*) indicates that the
preceding item(s), which is enclosed in
square brackets, can be repeated zero
or more times.

[]+ A solid box with a repeating arrow / a
plus sign (+) indicates that the
preceding item(s), which is enclosed in
square brackets, can be repeated one or
more times.

Figure 7-0
Listing 10-0
Table 7-0

terminal

non-terminal

optionaloptional

option 1
choice

option 2

repeat/optional

repeat

A P P E N D I X D

NewtonScript Syntax Definition

D-2 About the Grammar

About the Grammar 6

The grammar is divided into two parts: the phrasal and lexical grammars.

In the phrasal grammar, whitespace is insignificant. Space, tab, return,
and linefeed characters are considered whitespace. Comments are
effectively considered whitespace. Comments consist of the characters
between /* and */ (not nested), and between // and a return or
linefeed character.

In the lexical grammar, the nonterminals are characters rather than tokens
and whitespace is significant.

Because almost every construct of the language is an expression, many
productions ending in expression are ambiguous; the ambiguity is resolved
in favor of extending the expression as long as possible. For example, while
true do 2+2 is parsed as while true do (2+2) rather than (while
true do 2)+2. The specific productions affected by this rule are function-
constructor, assignment, iteration, if-expression, break-expression, try-
expression, initialization-clause, return-expression, and global-function-decl.

Phrasal Grammar 6

input:
[constituent [; constituent]* [;]]

;constituent constituent ;

A P P E N D I X D

NewtonScript Syntax Definition

Phrasal Grammar D-3

constituent:
{ expression | global-declaration }

expression:
{ simple-expression | compound-expression | literal | constructor | lvalue |
assignment | exists-expression | function-call | message-send | if-expression |
iteration | break-expression | try-expression | local-declaration |
constant-declaration | return-expression }

simple-expression:
{ expression binary-operator expression | unary-operator expression | (
expression) | self }

global-declarationexpression

compound-expression literal constructor lvalue assignment

exists-expression functional-call message-send if-expression iteration break-expression

try-expression local-declaration constant-declaration return-expression

simple-expression

expression

expression

expression expression

()

self

binary-operator

unary-operator

A P P E N D I X D

NewtonScript Syntax Definition

D-4 Phrasal Grammar

binary-operator:
{ arithmetic-operator | relational-operator | boolean-operator | string-operator }

arithmetic-operator:
{ + | - | * | / | div | mod | << | >> }

relational-operator:
{ = | <> | < | > | <= | >= }

boolean-operator:
{ and | or }

string-operator:
{ & | && }

unary-operator:
{ - | not }

relational-operator boolean-operator string-operatorarithmetic-operator

+ - * / div mod << >>

= <> < > <= >=

and or

& &&

- not

A P P E N D I X D

NewtonScript Syntax Definition

Phrasal Grammar D-5

compound-expression:
begin expression-sequence end

expression-sequence:

[expression [; expression]* [;]]

literal:
{ simple-literal | ' object }

simple-literal:
{ string | integer | real | character | true | nil }

object:
{ simple-literal | path-expression | array | frame }

path-expression:
symbol [. symbol]+

begin endexpression-sequence

;expression expression ;

object

simple-literal

'

integer real characterstring true nil

path-expression arrayframesimple-literal

.symbol symbol

A P P E N D I X D

NewtonScript Syntax Definition

D-6 Phrasal Grammar

Note

Each dot in ' symbol . symbol ... is ambiguous: it could be a
continuation of the path expression or a slot accessor.
NewtonScript uses the first interpretation: 'x.y.z is one
long path expression and not the expression: ('x).y.z. ◆

array:
‘[’ [symbol :] [object [, object]* [,]] ‘]’

frame:
‘{’ [frame-slot [, frame-slot]* [,]] ‘}’

frame-slot:
symbol : object

constructor:
{ array-constructor | frame-constructor |function-constructor }

array-constructor:
‘[’ [symbol :] [expression [, expression]* [,]] ‘]’

], objectobject:symbol ,[

}, frame-slotframe-slot ,{

:symbol object

frame-constructorarray-constructor function-constructor

], expressionexpression:symbol ,[

A P P E N D I X D

NewtonScript Syntax Definition

Phrasal Grammar D-7

Note

'[' symbol : symbol (… is ambiguous: the first symbol could
be a class for the array, or a variable to be used as the
receiver for a message send. NewtonScript uses the first
interpretation. ◆

frame-constructor:
‘{’ [frame-constructor-slot [, frame-constructor-slot]* [,]] ‘}’

frame-constructor-slot:
symbol : expression

function-constructor:
func [native] ([formal-argument-list]) expression

formal-argument-list:
{formal-argument [, formal-argument]*

formal-argument:
[[type] symbol

},,frame-constructor-slot frame-constructor-slot{

:symbol expression

formal-argument-listfunc expressionnative ()

,formal-argument formal-argument

type symbol

A P P E N D I X D

NewtonScript Syntax Definition

D-8 Phrasal Grammar

type:
{ int | array }

lvalue:
{ symbol | frame-accessor | array-accessor }

frame-accessor:
expression . { symbol | (expression) }

array-accessor:
expression ‘[’ expression ‘]’

assignment:
lvalue := expression

exists-expression:
{ symbol | frame-accessor | [expression] : symbol } exists

int array

frame-accesor array-accessorsymbol

expression

symbol
expression .

()

][expression expression

expression=:lvalue

: symbol

exists

symbol

frame-accessor

expression

A P P E N D I X D

NewtonScript Syntax Definition

Phrasal Grammar D-9

function-call:
{ symbol ([actual-argument-list]) |call expression with ([
actual-argument-list]) }

actual-argument-list:
expression [, expression]*

message-send:
[{ expression | inherited }] { : | :? } symbol ([actual-argument-list])

if-expression:
if expression then expression [;] [else expression]

Note

An else clause is associated with the most
recent unmatched then clause. ◆

iteration:
{ infinite-loop | for-loop | foreach-loop | while-loop | repeat-loop }

)

)(actual-argument-list

(actual-argument-list

withcall

symbol

expression

,expression expression

(
:

?:
)

inherited

expression
symbol actual-argument-list

else;thenexpression expression expressionif

for-loop foreach-loopinfinite-loop while-loop repeat-loop

A P P E N D I X D

NewtonScript Syntax Definition

D-10 Phrasal Grammar

infinite-loop:
loop expression

for-loop:
for symbol := expression to expression [by expression] do expression

foreach-loop:
foreach symbol [, symbol] [deeply] in expression { do | collect }
expression

while-loop:
while expression do expression

repeat-loop:
repeat expression-sequence until expression

loop expression

tosymbol expression expression

by expression

for : =

do expression

indeeply,symbol symbol expression

expression

foreach

do

collect

doexpression expressionwhile

untilexpression-sequence expressionrepeat

A P P E N D I X D

NewtonScript Syntax Definition

Phrasal Grammar D-11

break-expression:
break [expression]

try-expression:
try expression-sequence [onexception symbol do expression [;]]+

local-declaration:
local [type-specifier] initalization-clause [, initalization-clause]*

type-specifier:
{ array | int }

initialization-clause:
symbol [:= expression]

constant-declaration:
constant constant-init-clause [, constant-init-clause]*

expressionbreak

do ;expression sequence symbol expressiontry onexception

,initialization-clause initialization-clauselocal type-specifier

intarray

=: expressionsymbol

,constant constant-init-clause constant-init-clause

A P P E N D I X D

NewtonScript Syntax Definition

D-12 Lexical Grammar

constant-init-clause:
symbol := expression

return-expression:
return [expression]

global-declaration:
{ global initialization-clause | global-function-decl }

global-function-decl:
{ global | func } symbol ([formal-argument-list]) expression

Lexical Grammar 6

string:
" character-sequence "

=: expressionsymbol

return expression

global-function-decl

initialization-clauseglobal

formal-argument-list expression
func

(
global

symbol)

" "character-sequence

A P P E N D I X D

NewtonScript Syntax Definition

Lexical Grammar D-13

character-sequence:
[{ string-character | escape-sequence }]* [truncated-escape]

string-character:
<tab or any ASCII character with code 32–127 except ‘"’ or ‘\’>

escape-sequence:
{ \ { " | \ | n | t } | \ u [hex-digit hex-digit hex-digit hex-digit]* \ u }

truncated-escape:
\ u [hex-digit hex-digit hex-digit hex-digit]*

truncated-escape
escape-sequence

string-character

hex-digit hex-digit hex-digit hex-digit

\

\ u \ u

"

\

n

t

hex-digit hex-digit hex-digit hex-digit\ u

A P P E N D I X D

NewtonScript Syntax Definition

D-14 Lexical Grammar

symbol:
{ { alpha | _ } [{ alpha | digit | _ }]* |
‘|’ [{ symbol-character | \ { ‘|’ | \ }]* ‘|’ }

Note

Reserved words are excluded from
the nonterminal symbol. ◆

symbol-character:
<any ASCII character with code 32–127 except '|' or '\'>

integer:
[-] { [digit]+ | 0x [hex-digit]+ }

real:
[-] [digit]+ . [digit]* [{ e | E } [-] [digit]+]

_

alpha alpha

digit_

|
|

\

|

symbol-character

\

-

x hex-digit

digit

0

-
e

E
digitdigit - digit.

A P P E N D I X D

NewtonScript Syntax Definition

Lexical Grammar D-15

character:
$ { non-escape-character | \ { \ | n | t | hex-digit hex-digit |u hex-digit
hex-digit hex-digit hex-digit } }

non-escape-character:
<any ASCII character with code 32–127 except '\'>

alpha:
<A–Z and a–z>

digit:
{ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }

hex-digit:
{ digit | a | b | c | d | e | f | A | B | C | D | E | F }

$

non-escape-character

hex-digit

hex-digit

\

t

u

n

\

hex-digit

hex-digit hex-digit hex-digit

10 2 3 4 5 6 7 8 9

a b c d e f A B C D E Fdigit

A P P E N D I X D

NewtonScript Syntax Definition

D-16 Operator Precedence

reserved-word:
{ and | begin | break | by | call | constant | deeply | div | do |
else | end | exists | for | foreach | func | global | if | in |
inherited | local | loop | mod | native | not | onexception | or
| repeat | return | self | then | to | try | until | while | with }

Operator Precedence 6

The precedence of operators, from highest to lowest, is shown in Table 2-5 on
page 2-39.

beginand break by call constant deeply div else end

exists foreachfor func global if in inherited local loop mod

native not oronexception repeat return self then to try until while with

do

E-1

A P P E N D I X E

Quick Reference Card E

The following pages of this appendix contain a quick reference card for the
NewtonScript programming language.

Figure D-0
Listing 11-0
Table D-0

.
sl

ot
 a

cc
es

s
le

ft-
to

-r
ig

ht

:
m

es
sa

ge
 s

en
d

le
ft-

to
-r

ig
ht

:
?

co
nd

iti
on

al
 m

es
sa

ge
 s

en
d

[
]

ar
ra

y
el

em
en

t
le

ft-
to

-r
ig

ht

-
un

ar
y

m
in

us
le

ft-
to

-r
ig

ht

<
<

le
ft

sh
ift

le
ft-

to
-r

ig
ht

>
>

rig
ht

 s
hi

ft

*
m

ul
tip

ly
le

ft-
to

-r
ig

ht
/

flo
at

 d
iv

is
io

n
d
i
v

in
te

ge
r

di
vi

si
on

m
o
d

re
m

ai
nd

er

+
ad

d
-

su
bt

ra
ct

le
ft-

to
-r

ig
ht

&
co

nc
at

en
at

e
(s

tr
in

g
re

p
of

ex
pr

s)
le

ft-
to

-r
ig

ht
&
&

co
nc

at
en

at
e

w
ith

 1
 s

pa
ce

 b
et

w
ee

n

e
x
i
s
t
s

va
ria

bl
e

&
 s

lo
t e

xi
st

en
ce

no
ne

<
le

ss
 th

an
le

ft-
to

-r
ig

ht
<
=

le
ss

 th
an

 o
r

eq
ua

l
>

gr
ea

te
r

th
an

>
=

gr
ea

te
r

th
an

 o
r

eq
ua

l
=

eq
ua

l (
po

in
te

r
eq

ua
lit

y)
<
>

no
t e

qu
al

 (
po

in
te

r
in

eq
ua

lit
y)

n
o
t

lo
gi

ca
l n

ot
le

ft-
to

-r
ig

ht

a
n
d

lo
gi

ca
l a

nd

 s
ho

rt
le

ft-
to

-r
ig

ht
o
r

lo
gi

ca
l o

r

ci

rc
ui

t

:
=

as
si

gn
m

en
t

rig
ht

-t
o-

le
ft

C
on

st
ru

ct
s

U
si

ng
 In

he
ri

ta
nc

e
Lo

ok
up

pr
ot

o
pa

re
nt

slo
t

X
X

fr
am

e.
slo

t
X

fr
am

e.
(

pa
th

E
xp

r)
X

G
e
t
V
a
r
i
a
b
l
e

(fr
am

e,
slo

t)
X

X

G
e
t
S
l
o
t
(

fr
am

e,
slo

t)

fr
am

e:
m

es
sa

ge
(
)

fr
am

e:
?m

es
sa

ge
(
)

:m
es

sa
ge
(
)

X
X

i
n
h
e
r
i
t
e
d
:

m
es

sa
ge
(
)

i
n
h
e
r
i
t
e
d
:
?

m
es

sa
ge
(
)

X

sy
m

bo
le
x
i
s
t
s

X
X

fr
am

e.
slo

te
x
i
s
t
s

X

fr
am

e.
(

pa
th

E
xp

r)

e
x
i
s
t
s

X

fr
am

e:
m

es
sa

ge
e
x
i
s
t
s

:
m

es
sa

ge
e
x
i
s
t
s

X
X

H
a
s
V
a
r
i
a
b
l
e
(

fr
am

e,
slo

t)
X

X

H
a
s
S
l
o
t
(

fr
am

e,
slo

t)

N
ew

to
nS

cr
ip

t
R

ef
er

en
ce

 C
ar

d
N

ew
to

nS
cr

ip
t

D
es

cr
ip

tio
n

E
va

lu
at

io
n

O
pe

ra
to

r

p
re

ss
io

n
V

al
u

e

i
n

ex
pr

Li
st
e
n
d

va
lu

e
of

 la
st

 s
ta

tm
en

t i
n

ex
pr

Li
st

u
r
n

[e
xp

r]
n
i
l

or
ex

pr

xp
r t
h
e
n

ex
pr

va
lu

e
of

ex
pr

or
n
i
l

xp
rt
h
e
n

ex
pr

1
e
l
s
e

ex
pr

2
va

lu
e

of
ex

pr
1

or
ex

pr
2

p
ex

pr
va

lu
e

of
b
r
e
a
k

va
r:
=

ex
pr

1
t
o

ex
pr

2
d
o

ex
pr

n
i
l

or
 v

al
ue

 o
fb
r
e
a
k

va
r:
=

ex
pr

1
t
o

ex
pr

2
b
y

st
ep
d
o

ex
pr

e
a
c
h

[s
lo

t,
]

va
li
n

fr
am

eO
rA

rr
ay
d
o

ex
pr

n
i
l

or
 v

al
ue

 o
fb
r
e
a
k

e
a
c
h

[s
lo

t,
]

va
ld
e
e
p
l
y
i
n

fr
am

e
d
o

ex
pr

(d
e
e
p
l
y
i
n

fo
llo

w
s
_
p
r
o
t
o

sl
ot

s)

e
a
c
h

[s
lo

t,
]

va
li
n

fr
am

eO
rA

rr
ay
c
o
l
l
e
c
t

ex
pr

ar
ra

y
of

 c
ol

le
ct

ed
 e

xp
rv

al
ue

s
or

 v
al

ue
 o

fb
r
e
a
k

e
a
c
h

[s
lo

t,
]

va
ld
e
e
p
l
y
i
n

fr
am

e
c
o
l
l
e
c
t

ex
pr

(d
e
e
p
l
y
i
n

fo
llo

w
s
_
p
r
o
t
o

sl
ot

s)

l
e

ex
pr
d
o

ex
pr

n
i
l

or
 v

al
ue

 o
fb
r
e
a
k

ex
pr

es
si

on

e
a
t

ex
pr

Li
st
u
n
t
i
l

ex
pr

n
i
l

or
 v

al
ue

 o
f b
r
e
a
k

ex
pr

es
si

on

a
k

[e
xp

r]
n
i
l

or
ex

pr

l
fu

nc
tio

nO
bj

ec
t
w
i
t
h

(

ar
gL

ist
)

va
lu

e
fu

nc
tio

nO
bj

ec
tr

et
ur

ns

ex
pr

Li
st
o
n
e
x
c
e
p
t
i
o
n

ex
ce

pt
io

nS
ym

bo
ld
o

ex
pr

…
va

lu
e

of
 la

st
 e

xp
r

in
ex

pr
Li

st
or

 o
f t

he
 e

xe
cu

te
d
o
n
e
x
c
e
p
t
i
o
n

T
h
r
o
w
(
ex

Sy
m

, d
at

um
)
,C
u
r
r
e
n
t
E
x
c
e
p
t
i
o
n
(
)

,R
e
t
h
r
o
w
(
)

t
.
e
x
|

{
n
a
m
e
:

ex
ce

pt
io

nS
ym

bo
l,
e
r
r
o
r
:

in
te

ge
r}

t
.
e
x
.
m
s
g
|

{
n
a
m
e
:

ex
ce

pt
io

nS
ym

bo
l,
m
e
s
s
a
g
e
:

st
rin

g}
t
.
e
x
;
t
y
p
e
.
r
e
f
|

{
n
a
m
e
:

ex
ce

pt
io

nS
ym

bo
l,
d
a
t
a
:

da
tu

m
}

E
xa

m
p

le
s

C
o

m
m

en
ts

S
P

ri
n

tO
b

je
ct

C
la

ss
O

f
P

ri
m

C
la

ss
O

f

4
2
,

0
x
5
B
A
6
,

-
9
9

-2
29

…
 2

29
-1

 (
-5

36
87

09
11

…
+5

36
87

09
12

)
ba

se
 1

0
I
n
t

I
m
m
e
d
i
a
t
e

1
0
0
0
.
0
2
,
-
3
.
1
4
,
1
.
0
e
5
,

1
.
e
-
1
2

S
A

N
E

 d
ou

bl
e,

 1
5-

16
 d

ig
its

, e
xp

on
en

t:
-3

08
…

30
8

1
,
0
0
0
.
0
2

r
e
a
l

B
i
n
a
r
y

n
n
i
l

do
n’

t q
uo

te
nu

ll
st

rin
g

W
e
i
r
d
_
I
m
m
e
d
i
a
t
e

I
m
m
e
d
i
a
t
e

t
r
u
e

B
o
o
l
e
a
n

te
r

$
a
,

$
7
,

$
\
\
,

$
\
F
0
,

$
\
u
F
7
F
F

$
\x

x
fo

r
he

x,
 $
\
u

xx
xx

fo
r

un
ic

od
e

he
x

on
e

ch
ar

 s
tr

in
g

C
h
a
r

I
m
m
e
d
i
a
t
e

“
a
b
c
”
,

“
\
n
”
,
”
\
t
”
,
”
\
”
”
,
”
\
\
”

ab
c,

 n
ew

lin
e,

 ta
b,

 d
ou

bl
e

qu
ot

e,
 b

ac
ks

la
sh

th
e

st
rin

g
S
t
r
i
n
g

B
i
n
a
r
y

l
h
i
h
o
,

b
a
z
_
1
,

|
e
v
t
.
e
x
.
m
s
g
|

25
4

ch
ar

s,
 [a

-z
, A

-Z
, 0

-9
, _

],
 v

ba
rs

 a
llo

w
 a

ny
 c

ha
r

sy
m

bo
l n

am
e

S
y
m
b
o
l

B
i
n
a
r
y

[
a
r
r
a
y
C
l
a
s
s
:

e
1
,
e
2
,
e
3
]

cl
as

s
op

tio
na

l,
tr

ai
lin

g
co

m
m

a
al

lo
w

ed
nu

ll
st

rin
g

ar
ra

y
cl

as
so

r
A
r
r
a
y

A
r
r
a
y

{
s
l
o
t
1
:

v
a
l
1
,

s
l
o
t
2
:

v
a
l
2
}

tr
ai

lin
g

co
m

m
a

al
lo

w
ed

nu
ll

st
rin

g
cl

as
s s

lo
to

rF
r
a
m
e

F
r
a
m
e

GL-1

Glossary 7

Array A sequence of numerically indexed slots (also known as
the array elements) that contain objects. The first
element is indexed by zero. Like other non-immediate
objects, an array can have a user-specified class, and can
have its length changed dynamically.

Binary object A sequence of bytes that can represent any kind of data,
can be adjusted in size dynamically, and can have a
user-specified class. Examples of binary objects include
strings, real numbers, sounds, and bitmaps.

Boolean A special kind of immediate called true. Functions and
control structures use nil as false and anything else as
true. If you don't have anything else use true.

Child A frame that references another frame (its parent) from
a _parent slot.

Class A symbol that describes the data referenced by an
object. Arrays, frames, and binary objects can have
user-defined classes.

Constant A value that does not change. In NewtonScript the
value of the constant is substituted wherever the name
of the constant is used as an expression.

G L O S S A R Y

GL-2

Frame An unordered collection of slots, each of which consists
of a name and value pair. The value of a slot can be any
type of object, and slots can be added or removed from
frames dynamically. A frame can have a user-specified
class. Frames can be used like records in Pascal and
structs in C, but can also be used as objects which
respond to messages.

Function object Function objects are created by the function constructor:
func(args) funcBody

An executable function object includes values for its
lexical and message environment, as well as code. This
information is captured when the function constructor
is evaluated at run time.

Global A variable or function that is accessible from any
NewtonScript code.

Immediate A value that is stored directly rather than through an
indirect reference to a heap object. Immediates are
characters, integers, or Booleans. See also reference.

Implementor The frame in which a method is defined. See also
receiver.

Inheritance The mechanism by which attributes (slots or data) and
behaviors (methods) are made available to objects.
Parent inheritance allows views of dissimilar types to
share slots containing data or methods. Prototype
inheritance allows a template to base its definition on
that of another template or prototype.

Local A variable whose scope is the function within which it
is defined. You must use the local keyword to
explicitly create a local variable within a function.

Message A symbol with a set of arguments. A message is sent
using the message send syntax, frame:messageName(),
where the message, messageName, is sent to the
receiver, frame.

Method A function in a frame slot that is invoked in response to
a message.

G L O S S A R Y

GL-3

Object A typed piece of data that can be an immediate, array,
frame, or binary object. In NewtonScript, only frame
objects can hold methods and receive messages.

Parent A frame that is referenced through the _parent slot of
another frame.

Path expression An object that encapsulates an access path through a set
of arrays or frames.

Proto A frame that is referenced through another frame's
_proto slot.

Receiver The frame that was sent a message. The receiver for the
invocation of a function object is accessible through the
pseudo-variable self.

Reference A value that indirectly refers to an array, frame, or
binary object. See also immediate.

Self A pseudo-variable that is set to the current receiver.
Slot An element of a frame or array that can hold an

immediate or reference.

IN-1

Index

A

Abs function 6-45
abstract data types 4-15
accessor

array 2-16
frame 2-19

Acos function 6-50
Acosh function 6-50
AddArraySlot function 6-24
Annuity function 6-69
Apply function 6-73
arithmetic operators 2-31
array GL-1

accessor 2-16
object 2-15

Array function 6-24
array functions 6-23
ArrayInsert function 6-24
ArrayMunger function 6-25
ArrayRemoveCount function 6-26
Asin function 6-50
Asinh function 6-50
assignment

description of 2-30
operator 2-29

Atan2 function 6-51
Atan function 6-51
Atanh function 6-51

B

Band function 6-23
BDelete function 6-37
BDifference function 6-38
begin…end 3-1
BeginsWith function 6-16
BFetch function 6-38
BFetchRight function 6-39
BFind function 6-39
BFindRight function 6-40
binary

objects 2-2
BinaryMunger function 6-90
binary object GL-1
BinEqual function 6-89
BInsert function 6-40
BInsertRight function 6-42
BIntersect function 6-42
bitwise functions 6-23
bitwise shift left 2-32
bitwise shift right 2-32
BMerge function 6-43
Bnot function 6-23
Boolean GL-1

interpretation 2-35
object 2-9
operators 2-34

Boolean class 2-2
Bor function 6-23
break 3-13
BSearchLeft function 6-44
BSearchRight function 6-45
built-in functions 6-1
Bxor function 6-23

I N D E X

IN-2

C

Capitalize function 6-16
CapitalizeWords function 6-16
catching exceptions 3-21
Ceiling function 6-46
character

object 2-8
characters

special, in strings 2-14
with special meanings 2-9

character set 1-9, 2-8
Char class 2-2
CharPos function 6-17
child GL-1
Chr function 6-90
class 2-1, GL-1

array 2-1
for an array 2-15
binary 2-1
Boolean 2-2
Char 2-2
frame 2-1
immediate 2-1
Int 2-2
primitive 2-1
Real 2-2
semantic types 1-3
String 2-2, 2-4
subclass 2-3
Symbol 2-2
user-defined for frame 2-18

class-based programming C-1
ClassOf function 2-2, 6-5
class slot 2-19
Clone function 6-6
code indentation 1-8
combining prototype and parent inheritance 5-6
comments

syntax 1-10
compatibility 1-11

built-in functions 6-2

Compile function 6-90
compound expressions 3-1
Compound function 6-70
conditional message send operator 4-4
constant GL-1

declaration 2-26
quoted 2-28

constants 2-26
constructor

object 1-9
CopySign function 6-51
Cos function 6-52
Cosh function 6-52
CurrentException function 6-72

D

data extraction functions 6-77
data stuffing functions 6-81
data type 1-3
DeepClone function 6-6
DefGlobalVar function 6-88
double inheritance 5-1
Downcase function 6-17
dynamic model 1-7

E

EndsWith function 6-17
equality operators 2-33
Erfc function 6-53
Erf function 6-52
exception frames 3-16
exception functions 6-71
exception handling 3-13
exceptions

catching 3-21
throwing 3-19 to 3-20
working with 3-14 to 3-25

I N D E X

IN-3

exception symbols
defined 3-15
multiple parts 3-16
prefixes 3-16
types of 3-16

exists operator 2-37
Exp function 6-53
Expm1 function 6-53
expression 2-22
expressions 1-2

compound 3-1
extent 1-6
ExtractByte function 6-77
ExtractBytes function 6-78
ExtractChar function 6-78
ExtractCString function 6-80
ExtractLong function 6-79
ExtractPString function 6-80
ExtractUniChar function 6-81
ExtractWord function 6-80
ExtractXLong function 6-79

F

Fabs function 6-53
FDim function 6-54
FeClearExcept function 6-66
FeGetEnv function 6-66
FeGetExcept function 6-67
FeHoldExcept function 6-67
FeRaiseExcept function 6-67
FeSetEnv function 6-68
FeSetExcept function 6-68
FeTestExcept function 6-68
FeUpdateEnv function 6-69
financial functions 6-69
floating point exception functions 6-65
floating point math functions 6-48
Floor function 6-46
Fmax function 6-54

Fmin function 6-54
Fmod function 6-55
for 3-4 to 3-5
foreach 3-6 to 3-10
frame GL-2

accessor 2-19
object 2-17
parent 5-4
prototype 5-2
slot GL-3
slot syntax 2-17

function
context 4-10
global definition 4-7
global invocation 4-8
invocation 4-12
object 4-9
object, example of 4-13
passing parameters 4-8
return expression 4-3
simple example 4-3

function context
lexical environment 4-10
message environment 4-10

function object GL-2
and implementing abstract data types 4-15
definition 4-9
example of 4-13
parts of 4-10

functions
Abs 6-45
Acos 6-50
Acosh 6-50
AddArraySlot 6-24
Annuity 6-69
Apply 6-73
Array 6-24
array 6-23

sorted 6-36
ArrayInsert 6-24
ArrayMunger 6-25
ArrayRemoveCount 6-26

I N D E X

IN-4

functions (continued)
Asin 6-50
Asinh 6-50
Atan 6-51
Atan2 6-51
Atanh 6-51
Band 6-23
BDelete 6-37
BDifference 6-38
BeginsWith 6-16
BFetch 6-38
BFetchRight 6-39
BFind 6-39
BFindRight 6-40
BinaryMunger 6-90
BinEqual 6-89
BInsert 6-40
BInsertRight 6-42
BIntersect 6-42
bitwise 6-23
BMerge 6-43
Bnot 6-23
Bor 6-23
BSearchLeft 6-44
BSearchRight 6-45
built-in 6-1
Bxor 6-23
Capitalize 6-16
CapitalizeWords 6-16
Ceiling 6-46
CharPos 6-17
Chr 6-90
ClassOf 2-2, 6-5
Clone 6-6
Compile 6-90
Compound 6-70
CopySign 6-51
Cos 6-52
Cosh 6-52
CurrentException 6-72

data
extraction 6-77
stuffing 6-81

DeepClone 6-6
DefGlobalFn 6-87
DefGlobalVar 6-88
defining 4-2
Downcase 6-17
EndsWith 6-17
Erf 6-52
Erfc 6-53
exception 6-71
Exp 6-53
Expm1 6-53
ExtractByte 6-77
ExtractBytes 6-78
ExtractChar 6-78
ExtractCString 6-80
extraction of data 6-77
ExtractLong 6-79
ExtractPString 6-80
ExtractUniChar 6-81
ExtractWord 6-80
ExtractXLong 6-79
Fabs 6-53
FDim 6-54
FeClearExcept 6-66
FeGetEnv 6-66
FeGetExcept 6-67
FeHoldExcept 6-67
FeRaiseExcept 6-67
FeSetEnv 6-68
FeSetExcept 6-68
FeTestExcept 6-68
FeUpdateEnv 6-69
financial 6-69
floating point 6-48

exception 6-65
Floor 6-46
Fmax 6-54
Fmin 6-54
Fmod 6-55

I N D E X

IN-5

functions (continued)
Gamma 6-55
GetFunctionArgCount 6-7
GetGlobalFn 6-86
GetGlobalVar 6-87
GetSlot 6-7
GetVariable 6-8
GlobalFnExists 6-87
GlobalVarExists 6-87
global variables and functions 6-86
HasSlot 6-8
HasVariable 6-8
Hypot 6-55
InsertSlot 6-26
integer math 6-45
Intern 6-9
IsAlphaNumeric 6-17
IsArray 2-2, 6-9
IsBinary 6-9
IsCharacter 2-2, 6-9
IsFinite 6-55
IsFrame 2-2, 6-9
IsFunction 6-10
IsImmediate 6-10
IsInstance 6-10
IsInteger 2-2, 6-10
IsNaN 6-56
IsNormal 6-56
IsNumber 6-10
IsReadOnly 6-11
IsReal 2-2, 6-11
IsString 2-2, 6-11
IsSubclass 2-4, 6-11
IsSymbol 2-2, 6-12
IsWhiteSpace 6-18
Length 6-27
LessEqualOrGreater 6-56
LessOrGreater 6-56
LFetch 6-27
LGamma 6-57
Log 6-57
Log10 6-58

Log1p 6-57
Logb 6-57
LSearch 6-29
MakeBinary 6-12
Map 6-12
math 6-45
Max 6-46
message-sending 6-73
and methods 4-1
Min 6-46
miscellaneous 6-89
native 4-16
NearbyInt 6-58
NewWeakArray 6-30
NextAfterD 6-58
object system 6-5
Ord 6-92
Perform 6-74
PerformIfDefined 6-75
Pow 6-59
PrimClassOf 2-2, 6-13
ProtoPerform 6-75
ProtoPerformIfDefined 6-76
Random 6-47
RandomX 6-59
Real 6-47
Remainder 6-59
RemoveSlot 6-13
RemQuo 6-60
ReplaceObject 6-13
Rethrow 3-20, 6-72
Rint 6-60
RintToL 6-60
Round 6-61
Scalb 6-61
SetAdd 6-31
SetClass 2-3, 6-14
SetContains 6-31
SetDifference 6-32
SetLength 6-32
SetOverlaps 6-33
SetRandomSeed 6-47

I N D E X

IN-6

functions (continued)
SetRemove 6-33
SetUnion 6-34
SetVariable 6-15
SignBit 6-61
Signum 6-61
Sin 6-62
Sinh 6-62
Sort 6-34
sorted array 6-36
SPrintObject 6-18
Sqrt 6-62
StrCompare 6-18
StrConcat 6-19
StrEqual 6-19
StrExactCompare 6-19
string 6-16
StrLen 6-20
StrMunger 6-20
StrPos 6-21
StrTokenize 6-21
StuffByte 6-82
StuffChar 6-82
StuffCString 6-83
stuffing of data 6-81
StuffLong 6-84
StuffPString 6-84
StuffUniChar 6-85
StuffWord 6-86
StyledStrTruncate 6-22
SubStr 6-22
SymbolCompareLex 6-15
Tan 6-62
Tanh 6-63
Throw 3-19, 6-71
TotalClone 6-15
TrimString 6-22
Trunc 6-63
UnDefGlobalFn 6-89
UnDefGlobalVar 6-89
Unordered 6-63
UnorderedGreaterOrEqual 6-63

UnorderedLessOrEqual 6-64
UnorderedOrEqual 6-64
UnorderedOrGreater 6-64
UnorderedOrLess 6-64
UpCase 6-23

G

Gamma function 6-55
garbage collection 1-6, C-6
GetFunctionArgCount function 6-7
GetGlobalFn function 6-86, 6-87
GetGlobalVar function 6-87
GetSlot function 6-7
GetVariable function 6-8
global GL-2
GlobalFnExists function 6-87
global function definition 4-7
global function invocation 4-8
GlobalVarExists function 6-87
global variable and functions functions 6-86
glossary GL-1

H

HasSlot function 6-8
HasVariable function 6-8
Hypot function 6-55

I, J, K

if…then…else 3-2
immediate objects 2-5
immediates

object model 1-2
immediate value GL-2

I N D E X

IN-7

implementor 4-11, GL-2
indentation of code 1-8
+INF value 6-48
-INF value 6-48
inheritance 5-2 to 5-12, GL-2

and overriding values 5-3
combining proto and parent 5-6
double 5-1
interaction order 5-7
mixed proto and parent 5-6
parent 5-1, 5-4
proto 5-1
rules for setting slot values 5-9
rules for slot and message lookup 5-7
rules for testing for the existence of a slot 5-9

inheritance rules
history C-3
mixed proto and parent 5-6
parent 5-5
prototype 5-3

inherited
description 4-4

in-line object syntax 1-9
InsertSlot function 6-26
instance C-1
Intclass 2-2
integer 2-10
integer functions 6-45
Intern function 6-9
IsAlphaNumeric function 6-17
IsArray function 2-2, 6-9
IsBinary function 6-9
IsCharacter function 2-2, 6-9
IsFinite function 6-55
IsFrame function 2-2, 6-9
IsFunction function 6-10
IsImmediate function 6-10
IsInstance function 6-10
IsInteger function 2-2, 6-10
IsNaN function 6-56
IsNormal function 6-56
IsNumber function 6-10

IsReadOnly function 6-11
IsReal function 2-2, 6-11
IsString function 2-2, 6-11
IsSubclass function 2-4, 6-11
IsSymbol function 2-2, 6-12
IsWhiteSpace function 6-18
iterators 3-3
for 3-4
foreach 3-6
loop 3-10
repeat 3-12
while 3-11

L

latent typing 1-3
Length function 6-27
LessEqualOrGreater function 6-56
LessOrGreater function 6-56
lexical environment of function 4-10
LFetch function 6-27
LGamma function 6-57
line separator 1-8
local declaration 2-23
local variable GL-2
Log10 function 6-58
Log1p function 6-57
Logb function 6-57
Log function 6-57
logical operators 2-34
lookup 5-3

method C-3
mixed proto and parent 5-6
parent inheritance rules 5-5
prototype inheritance rules 5-3
variable C-3

loop 3-10
loop syntax
for 3-4
foreach 3-6

I N D E X

IN-8

loop syntax (continued)
loop 3-10
repeat 3-12
while 3-11

LSearch function 6-29

M

MakeBinary function 6-12
Map function 6-12
math functions 6-45
Max function 6-46
message GL-2

definition 4-1
environment 4-11
receiver 4-4

message sending functions 6-73
message send operator 4-4

conditional 4-4
method GL-2

definition 4-1
implementor 4-11

methods
and function 4-1

methods and functions 4-1
Min function 6-46
miscellaneous functions 6-89

N

NaN value 6-48
native functions 4-16
NearbyInt function 6-58
NewtonScript

character set 1-9
class-based programming 1-4
classes 1-3
comments 1-10

compatibility 1-11
dynamic model 1-7
expression-based language 1-2
garbage collection 1-6
goals of 1-1
in-line object syntax 1-9
latent typing 1-3
object model 1-2
prototype-based language C-1
syntax 1-8
syntax description D-1

NewtonScript constants 2-26
NewtonScript objects 2-8
NewWeakArray function 6-30
NextAfterD function 6-58
nil value 2-9
numbers

integer 2-10
real 2-11

O

object GL-3
binary 2-1
constructor 1-9
function 4-9
inheritance C-1
in-line syntax 1-9
literal syntax 1-9
model 1-2
primitive class of 2-1
typed data 1-2

object functions 6-5
object model

immediates 1-2
references 1-2

objects
array 2-15
Boolean 2-9
character 2-8

I N D E X

IN-9

objects (continued)
frame 2-17
integer 2-10
path expressions 2-20
real 2-11
string 2-13
symbol 2-12

onexception
clause 3-18 to 3-19

onexception clause 3-21 to 3-24
examples of 3-22

operator precedence 2-38
operators 2-29 to 2-38

arithmetic 2-31
array accessor 2-16

and strings 2-14
assignment 2-29
bitwise shift left 2-32
bitwise shift right 2-32
Boolean 2-34
div 2-32
equality 2-33
exists 2-37
frame accessor 2-19
mod 2-32
postfix 2-37
prefix 2-35
relational 2-33
string 2-36
unary 2-35

Ord function 6-92
overriding inherited value 5-3

P

parameter passing 4-8
_parent slot 2-19, 5-1
parent GL-3

creating a 5-4
frame 5-4

inheritance 5-4
inheritance rules 5-5

parent inheritance C-4
path expression 2-20, GL-3
Perform function 6-74
PerformIfDefined function 6-75
Pow function 6-59
precedence of operators 2-38
PrimClassOf function 2-2, 6-13
primitive class

array 2-1
binary 2-1
frame 2-1
immediate 2-1
objects 2-1

programming
class-based C-1

_proto slot 2-19, 5-2
proto GL-3
ProtoPerform function 6-75
prototype 5-2

inheritance rules 5-3
slot 5-2

ProtPerformIfDefined function 6-76

Q

quoted constant 2-28

R

Random function 6-47
RandomX function 6-59
Real class 2-2
Real function 6-47
real numbers 2-11
receiver 4-12, GL-3

definition 4-4
self 4-4

I N D E X

IN-10

reference GL-3
reference objects 2-5
references

object model 1-2
relational operators 2-33
Remainder function 6-59
RemoveSlot function 6-13
RemQuo function 6-60
repeat 3-12
ReplaceObject function 6-13
reserved words A-1
Rethrow function 3-20, 6-72
return expression 4-3
Rint function 6-60
RintToL function 6-60
Round function 6-61
rules

inheritance, history of C-3
mixed inheritance 5-6

S

Scalb function 6-61
scope 1-4

constants 2-28
local variable 2-24

self GL-3
self pseudo-variable 4-4, 4-12
semantic types 1-3
semicolon 1-8
SetAdd function 6-31
SetClass function 2-3, 6-14
SetContains function 6-31
SetDifference function 6-32
SetLength function 6-32
SetOverlaps function 6-33
SetRandomSeed function 6-47
SetRemove function 6-33
setting slot values 5-9
SetUnion function 6-34

SetVariable function 6-15
short-circuit evaluation 2-35
SignBit function 6-61
Signum function 6-61
Sin function 6-62
Sinh function 6-62
slot GL-3

access 2-20
class 2-19
global GL-2
lookup 5-3
_parent 2-19, 5-1
_proto 2-19, 5-1, 5-2
setting values 5-9
special names in frames 2-19
syntax 2-17

sorted array functions 6-36
Sort function 6-34
special characters in symbols 2-12
SPrintObject function 6-18
Sqrt function 6-62
StrCompare function 6-18
StrConcat function 6-19
StrEqual function 6-19
StrExactCompare function 6-19
string

object 2-13
operators 2-36
using array accessors on 2-14

String class 2-2, 2-4
string functions 6-16
strings, special characters in 2-14
StrLen function 6-20
StrMunger function 6-20
StrPos function 6-21
StrTokenize function 6-21
StuffByte function 6-82
StuffChar function 6-82
StuffCString function 6-83
StuffLong function 6-84
StuffPString function 6-84
StuffUniChar function 6-85

I N D E X

IN-11

StuffWord function 6-86
StyledStrTruncate function 6-22
subclasses 2-3
SubStr function 6-22
Symbol class 2-2
SymbolCompareLex function 6-15
symbols

class 2-1
special characters in 2-12
syntax 2-12
use of 2-12
and variables 2-23

syntax D-1
comments 1-10
conventions xiv
in-line object 1-9
object constructor 1-9
object literal 1-9
overview 1-8
semicolon 1-8

T

Tan function 6-62
Tanh function 6-63
Throw function 6-71

examples of 3-19
throwing exceptions 3-19 to 3-20
TotalClone function 6-15
TrimString function 6-22
true value 2-9
Trunc function 6-63
try statement 3-18 to 3-19

examples of 3-22

U

unary operators 2-35
UnDefGlobalFn function 6-89
UnDefGlobalVar function 6-89
Unicode 2-8
Unordered function 6-63
UnorderedGreaterOrEqual function 6-63
UnorderedLessOrEqual function 6-64
UnorderedOrEqual function 6-64
UnorderedOrGreater function 6-64
UnorderedOrLess function 6-64
UpCase function 6-23
user-defined class

array 2-15
frame 2-18

user-derined class 2-3

V

value
immediate GL-2
lookup 5-3
reference GL-3

variable
local GL-2

variables 2-23
view system C-1

W, X, Y, Z

while 3-11

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro 630 printer. Final page
negatives were output directly from the
text and graphics files. Line art was
created using Adobe™ Illustrator.
PostScript™, the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple
Courier.

WRITERS
Adrian Yacub, Cheryl Chambers,
Christopher Bey

PROJECT LEADER
Christopher Bey

ILLUSTRATOR
Peggy Kunz

EDITORS
Linda Ackerman, David Schneider

PRODUCTION EDITOR
Rex Wolf

PROJECT MANAGER
Gerry Kane

Special thanks to Peter Canning,
Bob Ebert, Mike Engber, Kent Sandvik,
and Walter Smith.

