AppleScript Scripting
AggitionspGuidep

English Dialect

Apple Computer, Inc.

© 1996 Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.
Printed in the United States of
America.

The Apple logo is a trademark of
Apple Computer, Inc. Use of the
“keyboard” Apple logo (Option-
Shift-K) for commercial purposes
without the prior written consent of
Apple may constitute trademark
infringement and unfair competition
in violation of federal and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleShare,
AppleTalk, HyperCard, HyperTalk,
LaserWriter, Macintosh, and MPW
are trademarks of Apple Computer,
Inc., registered in the United States
and other countries.

AppleScript, Finder, QuickDraw,
and ResEdit are trademarks of
Apple Computer, Inc.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
FrameMaker is a registered
trademark of Frame Technology
Corporation.

Helvetica and Palatino are
registered trademarks of Linotype
Company.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Microsoft is a registered trademark
of Microsoft Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manuals distributed with an Apple
product, Apple will replace the manuals
at no charge to you, provided you return
the item to be replaced with proof of
purchase to Apple or an authorized
Apple dealer during the 90-day period
after you purchased the software. In
addition, Apple will replace damaged
manuals for as long as the software is
included in Apple’s Media Exchange
program. See your authorized Apple
dealer for program coverage and details.
In some countries the replacement
period may be different; check with
your authorized Apple dealer.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTA-

BILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY, MERCHANTA-
BILITY, OR FITNESS FOR A PARTIC-
ULAR PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Preface

Contents

Figures, Tables, and Listings vii

About This Guide ix

Chapter 1

Audience ix
Organization of This Guide ix
Sample Applications and Scripts X
For More Information X

Getting Started X

AppleScript Language X

Other AppleScript Dialects X

Information for Programmers xi
Conventions Used in This Guide xi

Introduction to Scripting Additions

1

Chapter 2

Installing Scripting Additions 1
Sending Scripting Addition Commands 2

Scripting Addition Commands 5

Scripting Addition Files 5
Command Definitions 8
Activate 8
ASCII Character 10
ASCII Number 11
Beep 13
Choose Application 14
Choose File 16
Choose Folder 18
Close Access 19
Current Date 21

iii

Chapter 3

Display Dialog 22
Get EOF 27

Info For 28

List Disks 32

List Folder 33

Load Script 34

Log 36

New File 37

Offset 39

Open for Access 41
Path To 43

Random Number 46
Read 48

Round 54

Run Script 55
Scripting Components 57

Set EOF 58
Start Log 60
StopLog 62

Store Script 63
Time to GMT 66
Write 68
Using Read /Write Commands 70

Writing Scripting Additions 85

iv

Types of Scripting Additions 85
Apple Event Handler Scripting Addition 86
Apple Event Coercions Scripting Addition 87
The Scripting Addition Size Resource 89
Using Other Resources With Scripting Additions 91
Using Records for Scripting Addition Reply Values 91
Scripting Addition Limitations 93
Sample Scripting Addition 93

Appendix Scripting Additions at a Glance 105

Scripting Addition Commands 105
Placeholders 110

Index 113

Chapter 1

Chapter 2

Chapter 3

Appendix

Figures, Tables, and Listings

Introduction to Scripting Additions 1

Figure 1-1 A scripting addition icon 1

Scripting Addition Commands 5

Figure 2-1 A Choose Application dialog box 14

Figure 2-2 A Choose File dialog box 16

Figure 2-3 A Choose Folder dialog box 18

Figure 2-4 A Display Dialog dialog box 23

Figure 2-5 Alert icons 26

Figure 2-6 A New File dialog box 38

Figure 2-7 The Script Editor's Event Log window 61

Table 2-1 Scripting addition commands described in this guide 6
Listing 2-1 Reading a specific record from a text-based database file 72
Listing 2-2 Deleting a record from a text-based database file 74
Listing 2-3 Inserting a record in a database file 77

Listing 2-4 Opening a file for write access and creating one if the file

doesn't exist 82

Writing Scripting Additions 85

Listing 3-1 Resource type declaration for the ' osi z' resource 89
Listing 3-2 Classes array for a scripting addition that returns a record 92
Listing 3-3 Play Sound scripting addition 94

Scripting Additions at a Glance 105

Table A-1 Command syntax for standard AppleScript scripting
additions 106
Table A-2 Placeholders used in syntax descriptions 110

vii

PRETFACE

About This Guide

The AppleScript Scripting Additions Guide: English Dialect describes the scripting
additions that accompany the AppleScript English dialect of the AppleScript
language. Scripting additions are files that extend the capabilities of the
AppleScript language by providing additional commands you can use

in scripts.

Audience

This guide is for anyone who wants to write new scripts or modify existing
scripts. It also provides some basic information for Macintosh software
developers who want to write scripting additions.

Before using this guide, you should read Getting Started With AppleScript to
learn what hardware and software you need to use AppleScript; how to
install AppleScript; and how to run, record, and edit scripts. You should
also be familiar with the AppleScript Language Guide: English Dialect (referred
to throughout the rest of this book as the AppleScript Language Guide), which
describes the English dialect of the AppleScript scripting language.

Macintosh software developers who want to write scripting additions should
also refer to Inside Macintosh: Interapplication Communication.

Organization of This Guide

This guide contains these chapters:

= Chapter 1, “Introduction to Scripting Additions,” introduces scripting
additions and the use of their commands.

= Chapter 2, “Scripting Addition Commands,” describes the commands
provided by the standard scripting additions that come with AppleScript.

= Chapter 3, “Writing Scripting Additions,” provides information for
programmers who wish to write scripting additions.

ix

PRETFACE

At the end of the guide are one appendix and an index.

= The appendix, “Scripting Additions at a Glance,” summarizes the
commands defined by the standard scripting additions.

Sample Applications and Scripts

A sample application, the Scriptable Text Editor, is included with AppleScript.
The Scriptable Text Editor is scriptable; that is, it understands scripts written in
the AppleScript language. It also supports recording of scripts: when you use
the Record button in the Script Editor (the application you use to write and
modify scripts), the actions you perform in the Scriptable Text Editor generate
AppleScript statements for performing those actions. Scripts for performing
tasks in the Scriptable Text Editor are used as examples throughout this guide.

For More Information

Getting Started

See the companion book Getting Started With AppleScript to learn what hardware
and software you need to use AppleScript; how to install AppleScript; and how
to run, record, and edit scripts.

AppleScript Language

See the companion book AppleScript Language Guide for complete information
about the commands and other terms provided by the English dialect of the
AppleScript scripting language and by the Scriptable Text Editor application.

Other AppleScript Dialects

A dialect is a version of the AppleScript language that resembles a particular
human language or a programming language. Each AppleScript dialect has
a corresponding set of standard scripting additions for that dialect. This guide

PRETFACE

describes the terms defined by the standard scripting additions that come
with the AppleScript English dialect. Scripting additions intended for use with
other dialects work the same way but define terms and syntax appropriate for
those dialects.

Information for Programmers

If you are an experienced programmer and you want to write your own
scripting additions, you should be thoroughly familiar with the Apple Event
Manager, Apple event terminology resources, and the standard suites of Apple
events. For information about the Apple Event Manager and Apple event
terminology resources, see Inside Macintosh: Interapplication Communication. For
definitions of the standard suites, see the Apple Event Registry: Standard Suites.

Conventions Used in This Guide

Words and sample scripts in nronospaced font are AppleScript language
elements that must be typed exactly as shown.

Here are some additional conventions used in syntax descriptions:

| anguage el enent

Plain computer font indicates an element that you must
type exactly as shown. If there are special symbols (for
example, + or &), you must also type them exactly as
shown.

placeholder Italic text indicates a placeholder that you must replace
with an appropriate value. (In some programming
languages, placeholders are called nonterminals.)

[optional] Brackets indicate that the enclosed language element or
elements are optional.

(a group) Parentheses group together elements. If parentheses are
part of the syntax, they are shown in bold.

[optional] . . . Three ellipsis points (. . .) after a group defined by
brackets indicate that you can repeat the group of
elements within brackets 0 or more times.

xi

xii

PRETFACE

(agroup)...

alblc

Three ellipsis points (. . .) after a group defined by
parentheses indicate that you can repeat the group of
elements within parentheses one or more times.

Vertical bars separate elements in a group from which
you must choose a single element. The elements are
often grouped within parentheses or brackets.

CHAPTER 1

Introduction to
Scripting Additions

Scripting additions are files that extend the capabilities of the AppleScript
language by providing additional commands or coercions you can use in
scripts. They are similar to XCMDs and XFCNs in HyperTalk.

This chapter describes how to install scripting additions and briefly describes
how scripting addition commands work. For more information about the
differences between scripting addition commands, application commands,
AppleScript commands, and user-defined commands, see Chapter 4,
“Commands,” of the AppleScript Language Guide.

Installing Scripting Additions

When you install AppleScript using the Installer as described in Getting
Started With AppleScript, the Installer creates a folder in the Extensions folder
(which is located inside the System Folder for your computer) called Scripting
Additions and copies a number of scripting addition files into that folder.

The file type of a scripting addition (displayed in the Get Info window) is
“AppleScript document.”

Figure 1-1 shows a scripting addition icon. For a list of the scripting additions
installed with AppleScript and the commands they provide, see Table 2-1 on

page 6.

Figure 1-1 A scripting addition icon

b

Eeep

Installing Scripting Additions

CHAPTER 1

Introduction to Scripting Additions

Each scripting addition file contains one or more command handlers. If a
scripting addition file is located in the Scripting Additions folder (in the
Extensions folder of the System Folder), the command handlers it provides are
available for use by any script whose target is an application on that computer.

Some scripting additions also define object classes for records returned by their
commands. However, scripting addition commands do not normally act on
objects defined by individual applications.

The scripting addition commands Activate, Log, Start Log, and Stop Log are
part of the AppleScript extension and do not have separate files in the Scripting
Additions folder. With the exception of these commands, AppleScript
recognizes scripting addition commands only if the corresponding scripting
addition files are located in the Scripting Additions folder. If after installing
AppleScript you receive additional scripting additions from Apple or another
vendor, you must copy them into the Scripting Additions folder before you can
use their commands in scripts.

If you use a scripting addition command in a script and get an error message
stating that the command is undefined, check to make sure the corresponding
scripting addition is installed in the Scripting Additions folder.

Sending Scripting Addition Commands

Like the target of an application command, the target of a scripting addition
command is always an application object or a script object. If the script

doesn’t explicitly specify the target with a Tell statement, AppleScript sends
the command to the default target application, which is usually the application
running the script (for example, the Script Editor).

A scripting addition command performs its action only after the command has
been received by a target application. Unlike application commands, scripting
addition commands always work the same way regardless of the application to
which they are sent.

For example, the scripting addition command Display Dialog displays a dialog
box that can include text, one or more buttons, an icon, and a field in which the
user can type text. In the script that follows, the target of the Display Dialog
command is the Scriptable Text Editor application. When the script runs, the

2 Sending Scripting Addition Commands

CHAPTER 1

Introduction to Scripting Additions

Scriptable Text Editor becomes the frontmost application (that is, its menus
become visible and its windows become the frontmost windows on the screen)
and passes the command to the scripting addition’s handler for the Display
Dialog command, which displays the dialog box.

tell application "Scriptable Text Editor"
di splay dial og "Wiat's your nane?" default answer
end tell

In the next example, the Display Dialog command is not enclosed in a Tell
statement, nor does it have a direct parameter, so its target is the Script Editor
(or whatever application runs the script). When you run the script, the Script
Editor passes the command to the scripting addition’s handler for the Display
Dialog command, which displays the dialog box in the Script Editor’s layer
(that is, in front of any other Script Editor windows that may be open) while
the Script Editor is still the active application.

set theCount to nunber of words in front docunment of -
app "Scriptable Text Editor”
i f theCount > 500 then
di spl ay di al og "You have exceeded your word limt."
end

You can send scripting addition commands to a target on any remote computer
whose Scripting Additions folder contains the appropriate scripting addition
file. This is true no matter which scripting additions are available to the
computer from which you are sending the command. For example, you can
send the Display Dialog command to any application on a remote computer
whose Scripting Additions folder contains the Display Dialog scripting
addition, even if the Scripting Additions folder on your computer doesn’t
contain that file.

Each scripting addition that contains command handlers has its own
dictionary, which lists the reserved words—including the command
names, parameter labels, and in some cases object names—used to invoke
the commands supported by the scripting addition. If a scripting addition
dictionary includes words that are also part of an application dictionary,
then you cannot use those words within Tell statements to that application.

Sending Scripting Addition Commands

CHAPTER 1

Introduction to Scripting Additions

For example, the Offset command provided by the String Commands scripting
addition reports the offset, in characters, of a string within another string.
Offset is also a property of several Scriptable Text Editor objects and is thus a
word in the Scriptable Text Editor dictionary. Therefore, you cannot use Offset
as a scripting addition command within Tell statements to the Scriptable Text
Editor. If you do, you'll get a syntax error, because the Scriptable Text Editor
treats the word Offset as a property of a text object.

If you specify a script object as the target of a scripting addition command,
the script object either handles the command itself (potentially modifying it)
or uses a Continue statement to pass the command to the default target
application. For more information about scripting addition commands, script
objects, and the Continue statement, see Chapter 9, “Script Objects,” of the
AppleScript Language Guide.

Sending Scripting Addition Commands

CHAPTER 2

Scripting Addition Commands

This chapter describes what the standard AppleScript scripting addition
commands do and how to use them in scripts. The first two sections summarize
the standard scripting addition files and the commands they provide. The last
section describes in more detail how to use the commands provided by the
Read /Write scripting addition, whose commands are usually used together.

Scripting Addition Files

The standard scripting addition files are copied into the Scripting Additions
folder (located in the Extensions folder in the System Folder) when you install
AppleScript according to the instructions in Getting Started With AppleScript.
Each file provides one or more commands. Table 2-1 summarizes the
commands provided by the standard scripting additions.

Each scripting addition that provides commands includes its own dictionary of
the commands and object classes it defines. You can open a scripting addition’s
dictionary in much the same way you open an application’s dictionary—

by selecting the scripting addition’s icon in the Scripting Additions folder,
dragging the icon over the Script Editor’s icon, and releasing the mouse button.

For information about commands provided by scripting additions other than
those described in this manual, see the documentation for those scripting
additions. For information about using command definitions and for
definitions of AppleScript commands and standard application commands, see
the AppleScript Language Guide.

Scripting Addition Files 5

CHAPTER 2

Scripting Addition Commands

Table 2-1 Scripting addition commands described in this guide
Name of
scripting addition file Name of command Description of command
Not a separate file; Activate Activates an application.
t of AppleScript
gjsefsior? plescrip Log Places a string between comment
characters in the Script Editor’s
Event Log Window.
Start Log Turns logging on in the Script Editor’s
Event Log window.
Stop Log Turns logging off in the Script Editor’s
Event Log window.
Beep Beep Plays the alert sound.
Choose Application Choose Application Allows the user to choose a running
application from a dialog box.
Choose File Choose File Allows the user to choose a file from
a dialog box.
Choose Folder Allows the user to choose a folder
or volume from a dialog box.
Current Date Current Date Returns a date value that represents
the current time and date.
Display Dialog Display Dialog Displays a dialog box.
File Commands Info For Gets information for a file or folder.
List Disks Returns a list of currently
mounted disks.
List Folder Lists the contents of a specified folder.
Path To Returns full pathname to specified

folder or application.

continued

6 Scripting Addition Files

CHAPTER 2

Scripting Addition Commands

Table 2-1 Scripting addition commands described in this guide (continued)
Name of
scripting addition file Name of command Description of command
Load Script Load Script Loads a compiled script into the current
script as a script object.
New File New File Allows a user to create a new file.
Numerics Random Number Generates a random number.
Round Rounds a number to the nearest integer.
Read /Write Close Access Closes a file opened with Open
Commands for Access.

Get EOF Returns the offset, in bytes, of the end
of a specified file from the beginning
of the file.

Open for Access Opens a file for reading or writing using
Read or Write commands.

Read Reads data from file previously opened
with Open for Access command, or
opens file for access, reads data, and
closes file.

Set EOF Sets the end of a specified file.

Write Writes data to file previously opened
with Open for Access command, or
opens file for access, writes data, and
closes file.

Run Script Run Script Runs a specified script.

Scripting Components Scripting Components Returns a list of the scripting
components currently available.

Store Script Store Script Stores a specified script object in a

Scripting Addition Files

specified file.

continued

CHAPTER 2

Scripting Addition Commands

Table 2-1 Scripting addition commands described in this guide (continued)
Name of
scripting addition file Name of command Description of command
String Commands ASCII Character Converts a number to its
ASCII equivalent.
ASCII Number Returns the ASCII number
of a character.
Offset Determines the offset of a string
within another string.
Time to GMT Time to GMT Returns the difference, in seconds,

between the current time and
Greenwich mean time.

Command Definitions

The sections that follow are in alphabetical order by command name and
provide definitions for all the standard scripting addition commands. For
information about using command definitions, see Chapter 4, “Commands,”
of the AppleScript Language Guide.

Activate

The Activate command brings an application to the front (that is, its window
becomes the frontmost window on the desktop). If the application is on the
local computer, AppleScript opens the application if it is not already running. If
the application is on a remote computer, it must be running already.

Unlike most other scripting additions, the Activate command is built into
the AppleScript extension. It does not have a separate file in the Scripting
Additions folder.

8 Command Definitions

SYNTAX

PARAMETER

RESULT

EXAMPLES

NOTES

CHAPTER 2

Scripting Addition Commands

acti vat e referenceToApplication

referenceToApplication
A reference of the form appl i cat i on nameString (see “Notes”).
Class: Reference

None

set x to application "Scriptable Text Editor"
activate x

activate application -
"Mac HD: Applications: Scriptable Text Editor"

tell application "Scriptable Text Editor"
activate
end tell

tell application "Scriptable Text Editor" to activate

The way you specify the name (nameString) of the application you want to
activate depends on whether the application is on a local or remote computer.

To specify an application on the local computer, use a string of the form

with only an application name (" ApplicationName"). In this case, AppleScript
attempts to find the application in the current directory.

Command Definitions

CHAPTER 2

Scripting Addition Commands

To specify an application on a remote computer, you must use a string that
consists of the name of the application as it would be listed in the Application
menu (" ApplicationName"), and you must also specify the name of the
computer and if necessary the zone in which the computer is located.

The application must be running. The Activate command does not launch
applications on remote machines.

For more information about references to applications, see Chapter 5, “Objects
and References,” of the AppleScript Language Guide.

ERRORS
Error
number Error message
-600 Application isn't running.
-606 Application is background-only.
ASCII Character
The ASCII Character command returns the ASCII character associated with a
specified number. It is one of several commands provided by the String
Commands scripting addition.
SYNTAX
ASCI | character integer
PARAMETER
integer An expression that evaluates to an integer between 1 and 255.
Class: Integer
RESULT

10

The character that corresponds to the specified ASCII number.

Command Definitions

CHAPTER 2

Scripting Addition Commands

EXAMPLES
ASCl | character 100
--result: "d"
ASCI| character 101
--result: "e"
ERRORS
Error
number Error message
-108 Out of memory.
-1700 Can't make some data into the expected type.
-1701 Some parameter is missing for <commandName>.
-1704 Some parameter was invalid.
-1705 Operation involving a list item failed.
-1718 Reply has not yet arrived.
-1720 Invalid range.
ASCII Number
The ASCII Number command returns the ASCII number associated with a
specified character. It is one of several commands provided by the String
Commands scripting addition.
SYNTAX

ASCl |

nunber string

Command Definitions 11

PARAMETER

RESULT

EXAMPLES

ERRORS

12

CHAPTER 2

Scripting Addition Commands

string An ASCII character.
Class: String

The ASCII number that corresponds to the specified character.

ASClI | nunber "d"
--result: 100

ASCI | number "e"

--result: 101

Error

number Error message

-108 Out of memory.

-1700 Can't make some data into the expected type.
-1701 Some parameter is missing for <commandName>.
-1704 Some parameter was invalid.

-1705 Operation involving a list item failed.

-1715 Some parameter wasn't understood.

-1718 Reply has not yet arrived.

-1720 Invalid range.

Command Definitions

CHAPTER 2

Scripting Addition Commands

Beep
The Beep command plays the alert sound for the Macintosh. It is the only
command provided by the Beep scripting addition.
SYNTAX
beep [numberOfBeeps]
PARAMETER
numberOfBeeps
The number of times to play the alert sound. If you omit
numberOfBeeps, the alert sound is played once.
Class: Integer
Default Value: 1
RESULT
None
EXAMPLES
beep
beep 3
NOTES

The user can cancel a Beep command—for example, if the value of the
numberOfBeeps parameter is large—by typing Command-period or pressing
the Esc key.

Command Definitions

13

CHAPTER 2

Scripting Addition Commands

Choose Application

The Choose Application command allows the user to choose a running
application from a dialog box like the one shown in Figure 2-1.

Figure 2-1 A Choose Application dialog box

Please choose an application:
Macintoshes Programs
Capture]
Finder

Barbara's Quadra
Contractor's Mac
ODTP 2
Geaorge's ci
Judy's Mac
Source

AppleTalk Zones

Corporate

Developer

Engineering

Finance

Marketing []

=
RE&D Cancel 0K

The dialog box displays applications on the current computer and on any
computer connected to the same network.

Choose Application is the only command provided by the Choose Application
scripting addition.

SYNTAX
choose application [with pronpt promptString] -
[application | abel appListLabel]

14 Command Definitions

PARAMETERS

RESULT

EXAMPLES

NOTES

CHAPTER 2

Scripting Addition Commands

promptString The prompt to be displayed in the dialog box. The prompt can
be up to 255 characters long, but the standard dialog box has
room for only about 50 characters. If you omit the wi t h
pronpt parameter, the string " Choose a programto
link to:" isdisplayed.
Class: String
Default Value: " Choose a programto link to:"

appListLabel ~ The label above the list of applications displayed in the dialog
box. The label can be up to 255 characters long, but the standard
dialog box has room for only about 25 characters. If you omit
the application | abel parameter, the string " Pr ogr ans"
is displayed.
Class: String
Default Value: " Pr ogr ans"

A reference to the application specified by the user.

choose application with pronpt "Choose a spelling checker:"

tell (choose application with pronpt -
"Choose a scriptable text editor:")
--other statements
end tell

If the user chooses the Cancel button, Display Dialog returns error —128. If you
want your script to continue after the user clicks Cancel, you must include an
error handler. For information about Tell statements and error handlers, see
Chapter 8, “Handlers,” of the AppleScript Language Guide.

Command Definitions 15

CHAPTER 2

Scripting Addition Commands

ERRORS
Error
number Error message
-108 Out of memory.
-128 User canceled.
Choose File
The Choose File command displays a dialog box like the one in Figure 2-2 to
allow the user to choose a file.
Figure 2-2 A Choose File dialog box
Please choose a file:
|=5! AppleScript LG V| & RITT Raff
).1 Title E
0.2 Copyright
O 0.5 Preface 5
O o1 Introducing B
O 01 Introducing TOC
00 02 AppleScript Tools
[0 02 AppleScript Tools TOC
O 03 Overview of AppleScript & l[Open]]
The Choose File command is one of two commands provided by the Choose
File scripting addition.
SYNTAX
choose file [with pronmpt promptString 1 [of type listOfTypes]
16 Command Definitions

PARAMETERS

RESULT

EXAMPLE

NOTES

ERRORS

CHAPTER 2

Scripting Addition Commands

promptString The prompt to be displayed in the dialog box. The prompt can
be up to 255 characters long, but the standard dialog box has
room for only about 40 characters. If you omit the wi t h
pronpt parameter, no prompt is displayed.
Class: String
Default Value: (no prompt)

listOfTypes Alist of the file types of the files to be displayed in the dialog
box. Each string is a four-character code for the file type, such as
"TEXT","APPL"," PI CT", or " PNTG'. If you omit the of
t ype parameter, all files are displayed.
Class: List of strings; each string is a four-letter code
Default Value: (all file types displayed)

specified by the user, if any.

choose file with pronpt "Please choose a file:" of type =
{"TEXT", "APPL"}
open result

If the user clicks Cancel in the Choose File dialog box, AppleScript returns error
number —128. If you want your script to continue after the user clicks Cancel,
you must include an error handler. For information about Try statements

and error handlers, see Chapter 7, “Control Statements,” of the AppleScript
Language Guide.

Error

number Error message
-108 Out of memory.
-128 User canceled.

Command Definitions 17

CHAPTER 2

Scripting Addition Commands

Choose Folder

The Choose Folder command displays a dialog box like the one in Figure 2-3 to
allow the user to choose a directory (that is, a folder, a volume, or the desktop).

Figure 2-3 A Choose Folder dialog box

Choose a folder:

= Hard Disk
O Marketing
O Production Desktop

O Proposals

Choose

Cancel

=
] Open

—
O
—

[Choose “Projects”

The Choose Folder command is one of two commands provided by the Choose
File scripting addition.

SYNTAX
choose folder [with pronpt promptString]

PARAMETERS

promptString The prompt that appears in the dialog box. The prompt can be
up to 255 characters long, but the standard dialog box has room
for only about 80 characters. If you omit the wi t h pr onpt
parameter, the string " Choose a fol der:" is displayed.
Class: String
Default Value: " Choose a fol der:"

18 Command Definitions

RESULT

EXAMPLE

NOTES

ERRORS

Close Access

CHAPTER 2

Scripting Addition Commands

directory specified by the user, if any.

choose folder with pronpt "Choose a folder or volune:"

If the user clicks Cancel in the Choose Folder dialog box, AppleScript returns
error number —128. If you want your script to continue after the user clicks
Cancel, you must include an error handler. For information about Try
statements and error handlers, see Chapter 7, “Control Statements,” in the
AppleScript Language Guide.

Error

number Error message
-108 Out of memory.
-128 User canceled.

SYNTAX

The Close Access command closes a file opened with the Open for Access
command. It is one of several commands provided by the Read /Write
Commands scripting addition. For more information about these commands,
see “Using Read /Write Commands,” which begins on page 71.

cl ose access referenceToFile

Command Definitions

PARAMETER

RESULT

EXAMPLES

NOTES

20

CHAPTER 2

Scripting Addition Commands

referenceToFile A reference of the form f i | e nameString or al i as nameString,
or a file reference number returned by a previous call to the
Open for Access command (see “Notes”).
Class: Reference or integer

None

This example closes the file named To Donald in the specified location if it was
previously opened with the Open for Access command.

tell application "Scriptable Text Editor"
cl ose access file "Hard Di sk: Letters: To Donal d"
end tell

The next example closes the file associated with the file reference number if the
value of nyFi | eRef Nunber is a file reference number previously obtained
with the Open for Access command.

tell application "Scriptable Text Editor"
cl ose access nyFi | eRef Nunber
end tell

To specify the name (nameString) of a file, use a string of the form " Disk: Folder1:
of the AppleScript Language Guide. If you specify only the name of the file

(Filename) instead of its entire pathname, AppleScript attempts to find the file in
the current directory.

Command Definitions

ERRORS

Current Date

CHAPTER 2

Scripting Addition Commands

If you specify a reference to a file or an alias, the Close Access command
attempts to match the reference with a file previously opened with the Open
for Access command. If a match is found, Close Access closes the file. If no
match is found, Close Access returns error number —43.

If you specify a file reference number previously obtained with the Open for
Access command, Close Access closes the file immediately.

Error

number Error message

-35 Disk <name> wasn't found.
-38 File <name> wasn't open.
—43 File <name> wasn't found.
=50 Parameter error.

SYNTAX

RESULT

The Current Date command returns a date value that represents the current
time, day, and date. It is the only command provided by the Current Date
scripting addition.

current date

A date value.

Command Definitions

21

CHAPTER 2

Scripting Addition Commands

EXAMPLES
set timeOTransfer to current date
get tinmed Transfer

if (current date) = -
date "Saturday, January 23, 1993 12:00: 00 AM' then
print the front w ndow
el se
return "The date is not " & =
"Sat urday, January 23, 1993 12:00:00 AM
end if

ERRORS

Error
number Error message

-108 Out of memory.

-1700 Can't make some data into the expected type.
-1701 Some parameter is missing for <commandName>.
-1704 Some parameter was invalid.

-1705 Operation involving a list item failed.

-1718 Reply has not yet arrived.

Display Dialog

The Display Dialog command displays a dialog box like the one shown in
Figure 2-4. The dialog box contains a string and one or more buttons, such as
Yes and No, or OK and Cancel. The dialog box may also contain an icon and a
field in which the user can enter text.

The Display Dialog command is the only command provided by the Display
Dialog scripting addition.

22 Command Definitions

CHAPTER 2

Scripting Addition Commands

Figure 2-4

SYNTAX

PARAMETERS

A Display Dialog dialog box

What is your name?

di spl ay di al og questionString -
[default answer answerString | -
[buttons buttonList] =
[default button buttonNumberOrName] -

[with icon iconNumberOrName]

questionString

answerString

buttonList

The string displayed in the dialog box. The string can be up to
255 characters long.
Class: String

The default string provided in a text field that the user can edit.
The string can be up to 255 characters long. If you omit the

def aul t answer parameter, the dialog box does not include an
editable text field. If you specify an empty string (" "), the dialog
box has an editable text field with no default answer.

Class: String

The list of buttons that appear in the dialog box. Each item in
the list is a string containing the text that appears in the button.
The first string in the list is the string for the leftmost button, the
second string is the string for the next button, and so on. You
can specify up to three buttons. If you omit the but t ons
parameter, the dialog contains two buttons: Cancel and OK.
Class: List of strings

Command Definitions 23

RESULT

EXAMPLE

24

CHAPTER 2

Scripting Addition Commands

buttonNumberOrName
The default button. You can specify the default button with a
string (the string provided for the button in buttonList) or with
an integer (which specifies the position of the button in the
buttonList list; 1 specifies the first button from the left, 2 specifies
the second button from the left, and so on).
Class: String or integer

iconNumberOrName
The icon to be included in the dialog box. This can be either a
string that specifies the name of an' | CON' resource or an
integer that specifies the number of the resource (see “Notes”).
Class: String

A record of object class Reply (defined by the Display Dialog scripting
addition) that contains the following properties:

button returned
The text of the button the user pressed to close the dialog box.
Class: String

text returned
The text from the editable text field in the dialog box. If the
dialog does not include an editable text field, no string is
returned. If there is no text in the field, the value is the empty
string (" ").
Class: String

The following example uses the Display Dialog command to prompt the user
for a password.

Command Definitions

NOTES

CHAPTER 2

Scripting Addition Commands

set pronpt to "Please enter password:”
repeat with i from1l to 4
set dialogResult to display dialog pronpt =
buttons {"lI give up", "OK'} default button 2 =
default answer "Joe User" with icon 1

if button returned of dialogResult = "I give up" then
error nunber -128 --user cancel ed
el se
if text returned of dialogResult = "nmagic" then
exit
el se

if i <3 then
set pronpt to "Password was incorrect. Try " =
&i +1
el se
set pronpt to -
"Password was incorrect. Last Chance!"
end if
end if
end if
end repeat

The size of the dialog box is determined by the lengths of the question and
answer strings.

As an alternative to the Cancel button, the user can press Command-period or
the Esc key to cancel a dialog box displayed by the Display Dialog command.

A dialog box can include an icon stored in the script file, the current application
(as specified by a Tell statement), or the System file. If there is an icon with the
specified name or number in the script file, it is used; otherwise, AppleScript
checks the current application; finally, if the specified icon is not found in either
the script file or the current application, AppleScript checks the System file. If
you are using a system that provides Color QuickDraw and the specified icon
is available as a color icon, the color icon is displayed. To add icons to a script
or application file, use a resource tool such as ResEdit.

Command Definitions 25

CHAPTER 2

Scripting Addition Commands

The System file provides three standard icons to warn the user about problems.
These icons, illustrated in Figure 2-5, have the following meanings:

= Stop (icon number 0). Use this icon to call attention to a serious problem that
requires the user to choose from alternative courses of action.

= Note (icon number 1). Use this icon to provide information about a situation
that has no drastic effects. The user usually responds by pressing the
OK button.

= Caution (icon number 2). Use this icon to call attention to an operation that
may have undesirable results if allowed to continue. You normally give the
user a choice to continue or not.

Figure 2-5 Alert icons
] 1 2

To use these icons, refer to them by number. For example, this script displays
the caution icon, the string, and the default OK and Cancel buttons.

di splay dialog "Your fuselage is nelting. E ect now?" -
with icon 2

ERRORS
Error
number Error message
-108 Out of memory.
-128 User canceled.
-192 A resource wasn't found.
-1712 AppleEvent timed out.

26 Command Definitions

CHAPTER 2

Scripting Addition Commands

Get EOF
The Get EOF command returns an integer that indicates the offset, in bytes, of
the end of a specified file from the beginning of the file. It is one of several
commands provided by the Read /Write Commands scripting addition. For
more information about these commands, see “Using Read /Write
Commands,” which begins on page 71.
SYNTAX
get eof referenceToFile
PARAMETER
referenceToFile
A reference of the form f i | e nameString or al i as nameString,
or a file reference number returned by a previous call to the
Open for Access command (see “Notes”).
Class: Reference or integer
RESULT
If the command is successful, it returns an integer indicating the offset of the
end of the specified file.
EXAMPLE
get eof file "Hard Di sk: Status Reports: Wekly Report"
NOTES

To specify the name (nameString) of a file, use a string of the form " Disk: Folder1:
Folder2: . . . : Filename" as described in Chapter 5, “Objects and References,”

of the AppleScript Language Guide. If you specify only the name of the file
(Filename) instead of its entire pathname, AppleScript attempts to find the file in
the current directory.

Command Definitions 27

CHAPTER 2

Scripting Addition Commands

If you specify a reference to a file or an alias, the Get EOF command attempts to
match the reference with a file previously opened with the Open for Access
command. (It doesn’t matter whether the file was opened with read-only
permission or with write permission.) If a match is found, Get EOF returns an
integer indicating the offset of the end of the file. If no match is found, Get EOF
opens the file, gets the end of the file, then closes the file.

If you specify a file reference number previously obtained with the Open for
Access command, the Get EOF command returns a result immediately.

ERRORS
Error
number Error message
-38 File <<name>> wasn't open.
-50 Parameter error.
-51 File reference number error.
Info For
The Info For command returns a record that contains information about a
specified file or folder. The Info For command is one of several commands
provided by the File Commands scripting addition.
SYNTAX
info for referenceToFile
PARAMETER

referenceToFile
A reference of the form f i | e nameString or al i as nameString.
Class: Reference

28 Command Definitions

RESULT

CHAPTER 2

Scripting Addition Commands

A record of object class File Info (defined by the File Commands scripting
addition) that contains the following properties:

name Name of file or folder.
Class: String

creation date
Date and time the file or folder was first created.
Class: Date

nmodi fication date
Date and time the file or folder was last modified.
Class: Date

i con position
Location of the upper-left corner of the file or folder’s icon.
Class: Point (defined by the QuickDraw suite as a two-item list
of integers for horizontal and vertical coordinates)

vi si bl e A value that indicates whether the file or folder’s icon is visible
on the desktop (t r ue) or not (f al se).
Class: Boolean

Modifiable? No
si ze The size of the file or folder in bytes.
Class: Integer
Modifiable? No
fol der A value that indicates whether the object described by the File

Info record is a folder (t r ue) or a file (f al se).

Class: Boolean
Modifiable? No

alias Indicates whether the file is an alias (t r ue) or not (f al se).
Class: Boolean
Modifiable? No

fol der w ndow
Four integers that specify the bounding rectangle of the folder
window. Returned for folders only.
Class: Bounding rectangle (a list of four integers)
Modifiable? No

Command Definitions

29

CHAPTER 2

Scripting Addition Commands

| ocked Indicates whether the file or folder is locked (t r ue) or unlocked
(fal se).
Class: Boolean
Modifiable? No

file creator
Four-character creator code of the file. Returned for files only.
Class: String
Modifiable? No

file type Four-character code for the file type of the file. Returned for files
only.
Class: String
Modifiable? No

short version
The file’s short version, if any. Returned for files only.
Class: String
Modifiable? No

| ong version
The file’s long version, if any. Returned for files only.
Class: String
Modifiable? No

default application
The default application for a nonapplication file (for example,
TeachText). Used with nonapplication files only.
Class: Alias
Modifiable? No

EXAMPLES
This example returns the entire File Info record for Scriptable Text Editor.

info for file "Hard Disk: Scriptable Text Editor"
--result: {name:"Scriptable Text Editor", creation
dat e: date "Tuesday, April 6, 1993 11:30: 00 AM
nodi fi cati on date: date "Tuesday, April 6, 1993 11:30:00
AM', icon position: {20, 349}, visible:true, size: 88988,
folder:false, alias:false, |ocked:false, file

creator:"quil", file type:"APPL", short version:"1.1",
I ong version:"1.1, Copyright © Apple Conputer, Inc.
1991-93"}

30 Command Definitions

NOTES

ERRORS

CHAPTER 2

Scripting Addition Commands

This example returns just the file type for Scriptable Text Editor.

set x to info for -

file "Turing’ s Wrld: Scriptable Text Editor"
x's file type
--result: "APPL"

This example displays a dialog box if the Scriptable Text Editor isn’t locked.

if locked of =
(info for file "Hard Disk: Scriptable Text Editor") -
is false then
di splay dialog "Scriptable Text Editor is not |ocked."
end if

To specify the name (nameString) of a file, use a string of the form " Disk: Folder1:

of the AppleScript Language Guide. If you specify only the name of the file
(Filename) instead of its entire pathname, AppleScript attempts to find the file in
the current directory.

Error

number Error message

-35 Disk <name> wasn't found.

-37 Bad name for file.

—43 File <name> wasn't found.

=50 Parameter error.

-108 Out of memory.

-120 Folder <name> wasn't found.

-1700 Can't make some data into the expected type.
-1701 Some parameter is missing for <commandName>.
-1704 Some parameter was invalid.

-1705 Operation involving a list item failed.

-1718 Reply has not yet arrived.

Command Definitions 31

CHAPTER 2

Scripting Addition Commands

List Disks
The List Disks command returns a list containing the names of every mounted
volume, including CD-ROMs, floppy disks, AppleShare volumes, and so on.
List Disks is one of several commands provided by the File Commands
scripting addition.
SYNTAX
l'i st disks
RESULT
The result is a list of strings.
EXAMPLE
l'ist disks
--result: {"My Disk", "Qur Server", "Joe's Floppy"}
ERROR

32

Error

number Error message

-35 Disk <name> wasn't found.

=50 Parameter error.

-108 Out of memory.

-1703 Some data was the wrong type.
-1704 Some parameter was invalid.

-1705 Operation involving a list item failed.
-1719 Can't get <reference>. Invalid index.

Command Definitions

List Folder

CHAPTER 2

Scripting Addition Commands

SYNTAX

PARAMETER

RESULT

EXAMPLE

NOTES

The List Folder command returns a list of every file and folder in a specified
folder or volume. List Folder is one of several commands provided by the File
Commands scripting addition.

l'ist fol der referenceToFolder

referenceToFolder
A reference of the form f i | e nameString, al i as nameString, o
f ol der nameString (see “Notes”).
Class: Reference or string

A list of strings.

list folder "My Disk:"
--result: {"Letters", "Current", "Projects", "Aliases"}

To specify the name (nameString) of a folder, use a string of the form
and References,” of the AppleScript Language Guide. If you specify only the

name of the folder (FolderName) instead of its entire pathname, AppleScript
attempts to find the folder in the current directory.

Command Definitions

T

33

CHAPTER 2

Scripting Addition Commands

ERRORS
Error
number Error message
-35 Disk <name> wasn't found.
=37 Bad name for file.
—43 File <name> wasn't found.
-50 Parameter error.
-108 Out of memory.
-120 Folder <name> wasn't found.
-1700 Can't make some data into the expected type.
-1701 Some parameter is missing for <commandName>.
-1703 Some data was the wrong type.
-1704 Some parameter was invalid.
-1705 Operation involving a list item failed.
-1718 Reply has not yet arrived.
-1719 Can't get <reference>. Invalid index.
Load Script
The Load Script command loads a compiled script into the current script as a
script object. A script object is a user-defined object that is treated as a value
by AppleScript. Script objects are described in Chapter 9, “Script Objects,”
of the AppleScript Language Guide.
Load Script is the only command provided by the Load Script scripting
addition.
SYNTAX

34

| oad scri pt referenceToFile

Command Definitions

PARAMETER

RESULT

EXAMPLES

NOTES

CHAPTER 2

Scripting Addition Commands

referenceToFile A reference of the form fi | e nameString or al i as nameString
(see “Notes”). The file must be a compiled script file or a script
application file. It cannot be a text file.
Class: Reference

A script object.

The following example loads a compiled script called Numeric Operations and
stores the resulting script object in the variable Numer i cLi b. The Tell
statement shows how to call a subroutine contained in the script object.

| oad script file "MacHD: Scripts: Numeri c CQperations"
set NunericlLib to result

tell NurericLib
factorial (10)
end tell

To specify the name (nameString) of a file, use a string of the form " Disk: Folder1:

of the AppleScript Language Guide. If you specify only the name of the file
(Filename) instead of its entire pathname, AppleScript attempts to find the file in
the current directory.

For more information about using Load Script to save and load libraries of
subroutines for use in multiple scripts, see Chapter 8, “Handlers,” of the
AppleScript Language Guide.

Command Definitions 35

CHAPTER 2

Scripting Addition Commands

ERRORS
Error
number Error message
-108 Out of memory.
-192 Bad name for file.
-1700 Can't make some data into the expected type.
-1701 Some parameter is missing for <commandName>.
-1703 Some data was the wrong type.
-1704 Some parameter was invalid.
-1705 Operation involving a list item failed.
-1718 Reply has not yet arrived.
Log
The Log command displays a specified string between comment characters
(* and *) in the Script Editor’s Event Log window. For more information about
the Log Events window, see page 61.
Unlike most other scripting additions, the Log command is built into the
AppleScript extension. It does not have a separate file in the Scripting
Additions folder.
SYNTAX
| og stringToLog
PARAMETER

36

stringToLog

An expression that evaluates to a string or to a value that can be
coerced to a string. The resulting string is displayed in the Event
Log window.

Class: String

Command Definitions

RESULT

EXAMPLE

NOTES

ERROR

New File

CHAPTER 2

Scripting Addition Commands

None

log "This string appears in the Log Events w ndow'
After running the preceding script, this text appears in the Log Events window:

(* This string appears in the Log Events wi ndow' *)

The Log command works even if logging has not been turned on with the Start
Log command or has been turned off with the Stop Log command. If logging is
turned off before the Log command is sent, it will still be turned off after the
Log command is sent.

Error
number Error message
-1700 Can't make some data into the expected type.

The New File command displays a dialog box like the one in Figure 2-6 to
allow the user to specify a filename and a location. New File does not create a
new file; rather, it returns a reference to a file with the name and location
specified by the user. You can store the reference in a variable and pass it to
Open for Access (which in turn creates the file in the specified location) or to
any other command for which you want to specify a file that doesn’t yet exist.

New File is the only command provided by the New File scripting addition.

Command Definitions 37

CHAPTER 2

Scripting Addition Commands

Figure 2-6 A New File dialog box

|=51 Current Projects « | — Turing’s Worid
[0 Financial [Eject
O Marketing
[Production Desktop

O Proposals

<

New File Name: Cancel

SYNTAX
new file [with prompt promptString] [default nanme defaultName]

PARAMETERS
promptString The prompt that appears in the dialog box. The string you
specify can be up to 255 characters long. If you omit the
wi th pronpt parameter, the prompt"” New Fi | e Nane"
is displayed.
Class: String
Default Value: " New Fi | e Nane"

defaultName The default filename that appears in the dialog box. The string
you specify can be up to 255 characters long. If you omit the
def aul t name parameter, no default filename is displayed.
Class: String
Default Value: (no default name)

RESULT

filename and location specified by the user.

38 Command Definitions

CHAPTER 2

Scripting Addition Commands

EXAMPLES
set x to new file
open for access X

NOTES
If the user chooses the Cancel button, New File returns error —128. If you
want your script to continue after the user clicks Cancel, you must include
an error handler. For information about Tell statements and error handlers,
see Chapter 8, “Handlers,” of the AppleScript Language Guide.

ERRORS
Error
number Error message
-108 Out of memory.
-128 User canceled.

Offset
The Offset command returns the offset of a string within a string. For example,
the offset of " f r eedom now' contained in " Yes, freedom now' is 6,
because the contained string begins with the sixth character of the container.
The offset of " Yes" in the string " Yes, freedom now' is 1, because it begins
with the first character of the container string. The Offset command is
case-sensitive.
Offset is one of several commands provided by the String Commands
scripting addition.

SYNTAX

of fset of stringToFind in stringToSearch

Command Definitions 39

CHAPTER 2

Scripting Addition Commands

PARAMETERS
stringToFind
The string to find in stringToSearch.
Class: String
stringToSearch
A string containing stringToFind.
Class: String
RESULT
The result is an integer that indicates the offset, in number of characters, of
the first character of stringToFind from the beginning of stringToSearch. If
stringToFind is not contained within stringToSearch, AppleScript returns the
value 0.
EXAMPLES
of fset of "yours" in "yours, mne, and ours"
--result: 1
offset of "mne" in "yours, mne, and ours"
--result: 8
of fset of "this" in "yours, mine, and ours"
--result: O
offset of "Mne" in "yours, mne, and ours”
--result: 0, due to case sensitivity
NOTES

The Offset command compares strings character by character, as the Equals
operator does, except that the Offset command is always case-sensitive, always
considers diacritical marks, and is not affected by Considering or Ignoring
statements.

40 Command Definitions

ERRORS

CHAPTER 2

Scripting Addition Commands

Error
number

-108

-1700
-1701
-1704
-1705
-1708
-1718

Open for Access

Error message

Parameter error.

Out of memory.

Can't make some data into the expected type.
Some parameter is missing for <commandName>.
Some parameter was invalid.

Operation involving a list item failed.

<reference> doesn't understand the <commandName> message.

Reply has not yet arrived.

SYNTAX

The Open for Access command opens access to a file for reading or writing
using the Read and Write commands. Opening a file for reading and writing is
not the same as opening it with the Open command. The file is open only in the

sense that AppleScript has access to it for reading and writing data; it doesn’t
appear in one of the target application’s windows, and it doesn’t even have to

be one of the target application’s files.

Open for Access is one of several commands provided by the Read /Write

Commands scripting addition. For more information about these commands,

see “Using Read/Write Commands,” which begins on page 71.

open for access referenceToFile [write perm ssion Boolean]

Command Definitions

41

PARAMETERS

RESULT

EXAMPLE

42

CHAPTER 2

Scripting Addition Commands

referenceToFile
A reference of the form f i | € nameString or al i as nameString. If
you specify an alias, the file must already exist, because
AppleScript must locate the file before running the script. If you
specify a file that doesn’t exist using the form f i | e nameString,
Open for Access creates a TeachText document of that name at
the specified location and opens it for access.
Class: Reference

Boolean An expression that evaluates tot r ue or f al se. If it evaluates to
t r ue, AppleScript opens the file with read and write
permission. If it evaluates to f al se or if this parameter is
omitted entirely, AppleScript opens the file with read
permission only. Note that the phrasewi th write
per m ssi on is equivalent to the phrasewr i t @ perm ssi on
tr ue; similarly, wi t hout write perm ssionisequivalent
towite perm ssion fal se.

Class: Boolean

File reference number.

This example opens the file named To Donald in the specified location for
subsequent access with the Read command.

tell application "Scriptable Text Editor"
open for access file "Hard Disk: Letters: To Donal d"
end tell

The next example opens the file associated with the file reference number for
subsequent access with the Read or Write command.

Command Definitions

NOTES

ERRORS

Path To

CHAPTER 2

Scripting Addition Commands

tell application "Scriptable Text Editor"
open for access alias "Hard Disk: Ali ases: To Donal d" -
with wite pernission
end tell

To specify the name (nameString) of a file, use a string of the form " Disk: Folder1:

of the AppleScript Language Guide. If you specify only the name of the file
(Filename) instead of its entire pathname, AppleScript attempts to find the file in
the current directory.

Error

number Error message

=35 Disk <name> wasn't found.

=37 Bad name for file.

—42 Too many files open.

—43 File <name> wasn't found.

—44 Disk <name> is write protected.
—-49 File <name> is already open.
=50 Parameter error.

The Path To command allows you to get the pathname, in the form of either an
alias or a string, of some of the standard folders on a startup disk. It also allows
you to get the location on disk of the frontmost application.

Path To is one of several commands provided by the File Commands
scripting addition.

Command Definitions 43

CHAPTER 2

Scripting Addition Commands

SYNTAX
path to folderOrApplication [as className]

PARAMETERS

folderOrApplication
One of these constants:
appl e nenu
appl e nenu itens
control panels
deskt op
ext ensi ons
pref erences
print noni tor
printnonitor docunents
trash
startup itemns
system f ol der
tenporary itens
startup disk
frontmost application

className The class identifier st r i ng. If you omit this parameter, the
pathname is returned as an alias.

RESULT

An alias by default, or a string if you include the optional as stri ng
parameter.

EXAMPLES

path to control panels
--result: alias "Hard Di sk: System Fol der: Control Panels:"

tell application "Scriptable Text Editor"
set x to path to it as string

end tell

--result: "Hard Disk: Scriptable Text Editor"

44 Command Definitions

NOTES

ERRORS

CHAPTER 2

Scripting Addition Commands

tell application "Scriptable Text Editor"
activate
tell application "HyperCard" to activate
set x to path to frontnost application
end tell
return x
--result: alias "Hard Di sk: Applications: Hyper Card"

The optional as parameter is useful if you send the Path To command to an
application on a remote computer. If the pathname is returned as a string, you
can use the form f i | @ nameString to identify the folder or application across
the network, and Path To won't actually attempt to locate it until you run the
script. If the pathname is returned as an alias and you use it to refer to the
folder or application elsewhere in the script, Path To also attempts to locate
the file whenever you modify the script and then attempt to check its syntax
or save it, requiring appropriate access privileges and possibly a password
each time.

Error

number Error message

-50 Parameter error.

-108 Out of memory.

-1700 Can't make some data into the expected type.

-1701 Some parameter is missing for <commandName>.

-1704 Some parameter was invalid.

-1705 Operation involving a list item failed.

-1708 <reference> doesn't understand the <commandName> message.
-1718 Reply has not yet arrived.

Command Definitions 45

CHAPTER 2

Scripting Addition Commands

Random Number

SYNTAX

PARAMETERS

46

The Random Number command generates a random number. It is one of two
commands provided by the Numerics scripting addition.

random nunber -
[numberToRandomize | =
[from beginningNumber t o endNumber] -

[with s

eed seedNumber]

numberToRandomize

A number that specifies the upper limit of the range within
which you want to generate a random number. If this number is
a real value, the value returned is a real value; if this number is
an integer value, the value returned is an integer.

Class: Real or integer

beginningNumber

endNumber

seedNumber

A number that indicates the beginning of the range within
which you want to generate a random number. If this number
and endNumber are both integers, the value returned is an
integer. If either this number or endNumber is a real value, the
value returned is a real value.

Class: Real or integer

A number that indicates the end of the range within which you
want to generate a random number. If this number and
beginningNumber are both integers, the value returned is an
integer. If either this number or beginningNumber is a real value,
the value returned is a real value.

Class: Real or integer

A number that specifies the number to use as the seed in
generating a random number.
Class: Real or integer

Command Definitions

RESULT

EXAMPLES

CHAPTER 2

Scripting Addition Commands

A random number within the specified limits. If no parameters are included,
Random Number returns a real value between 0.0 and 1.0.

di splay dialog "A random nunber between 0 and 1. " & =
(random number)

di splay dialog =
"A randominteger between 1 and 10: " & =
(random nunmber from1l to 10)

di splay dialog =
"A randomreal value between 1 and 10.0 : " & =
(random nunber from1 to 10.0)

di splay dialog =
"A randomreal value between -10.0 and 10 : " & -
(random number from-10.0 to 10)

di splay dialog =
"A randominteger between 1 and 10, 12 as seed: " & -
(random nunmber from1l to 10 with seed 12)

After the seed is set, subsequent numbers generated by the Random Number
command in the same script can be determined.

di splay dialog "This should be 9: " & =
(random nunber from1l to 10)

display dialog "This should be 1. " & =
(random nunmber from1l to 10)

Command Definitions

CHAPTER 2

Scripting Addition Commands

Reseeding with the value 0 causes the seed to be reset to a random value each
time the command is called.

di splay dialog -
"After reseeding with 0, a truly random nunber: " & -
(random nunber from1l to 10 with seed 0)

ERRORS
Error
number Error message
-50 Parameter error.
-108 Out of memory.
-1700 Can't make some data into the expected type.
-1701 Some parameter is missing for <commandName>.
-1704 Some parameter was invalid.
-1705 Operation involving a list item failed.
-1708 <reference> doesn't understand the <commandName> message.
-1718 Reply has not yet arrived.
Read

The Read command reads data from a file, starting from the file mark and
continuing to the end of the file.

Read is one of several commands provided by the Read /Write Commands
scripting addition. For more information about using these commands and
sample scripts, see “Using Read /Write Commands,” which begins on page 71.

48 Command Definitions

SYNTAX

PARAMETERS

CHAPTER 2

Scripting Addition Commands

read referenceToFile

[fro
[for

[as

referenceToFile

startingByte

bytesToRead

byteToReadTo

m startingByte | =
bytesToRead | to byteToReadTo =
unti | delimiterIncluded | bef ore delimiterExcluded] -

className [using delimter[s] delimiters |]

A reference of the form f i | e nameString or al i as nameString,
or a file reference number previously obtained with the Open
for Access command (see “Notes”).

Class: Reference or integer

The offset of the byte from which to begin reading. A positive
integer indicates the offset from the beginning of the file, and a
negative integer indicates the offset from the end of the file.
Class: Integer

The number of bytes to read. If the f r omstartingByte parameter
is included, the Read command reads bytesToRead bytes starting
at the specified starting point; otherwise, the Read command
begins reading at the file mark. If the value of this parameter is
negative, an error occurs.

Class: Integer

The offset of the byte to read to. If the f r omstartingByte
parameter is included, the Read command reads from the
specified starting point to byteToReadTo; otherwise, the Read
command begins reading at the file mark. A positive integer
indicates the offset from the beginning of the file, and a negative
integer indicates the offset from the end of the file.

Class: Integer

delimiterIncluded

A delimiter (such as a tab or return character) to read to. The
specified delimiter is included in the read (unless it is an
end-of-file delimiter, which is not included). If the f r om
startingByte parameter is included, the Read command reads

Command Definitions 49

RESULT

EXAMPLES

50

CHAPTER 2

Scripting Addition Commands

from the specified starting point to the specified delimiter;
otherwise, the Read command begins reading at the file mark.
Class: String

delimiterExcluded
A delimiter (such as a tab or return character) to which to read.
The specified delimiter is not included in the read. If the f r om
startingByte parameter is included, the Read command reads
from the specified starting point to the specified delimiter;
otherwise, the Read command begins reading at the file mark.
Class: String

className The class of the data to be read. The Read command reads the
number of bytes appropriate for a value of the class specified by
this parameter. (For details, see “Notes” later in this definition.)
Class: Class

delimiters If the data being read is text-based, you can use this parameter
to specify the delimiters the Read command should use when
interpreting the data as values of the class specified by className.
(For details, see “Notes” later in this definition.)
Class: String or constant, or a two-item list of strings or constants

If the Read command is successful, it returns the data read from the file as text
(unless specified otherwise by the as parameter).

This example reads MyFile from the 12th byte and to the end of the file.
read file "Hard Disk: MyFile" from 12

The next example reads MyFile from the 12th byte before the end of the file to
the end of the file.

read file "Hard Disk: MyFile" from-12

The next example reads 24 bytes of MyFile starting at the 12th byte. If the end
of the file is reached before 24 bytes have been read, an error is returned.

read file "Hard Di sk: My/File" from 12 for 24

Command Definitions

NOTES

CHAPTER 2

Scripting Addition Commands

The next example reads MyFile starting at the end of the file and reading
backward until the third byte from the end.

read file "Hard Di sk: MyFile" from-1to -3

If the last characters of file MyFile were "123456", the preceding example would
return " 654" .

The file mark is a marker used by the File Manager that indicates the byte at
which the Read command expects to begin reading data. By default, the file
mark is the first byte of the file. However, running a script like this causes the
file mark for MyFile to be moved:

read file "Hard D sk: My/File" from1l to 4

The file mark for MyFile is now at byte 5, so the next Read command in the
same script begins at byte 5. For example, the command

read file "Hard D sk: MyFile" for 4

reads bytes 5 through 8.

To specify the name (nameString) of a file, use a string of the form

References,” of the AppleScript Language Guide. If you specify only the name of
the file (Filename) instead of its entire pathname, AppleScript attempts to find
the file in the current directory.

If you specify a reference to a file or an alias, the Read command attempts to
match the reference with a file previously opened with the Open for Access
command. If a match is found, it simply reads the specified data. If no match is
found, the Read command opens the file, reads the specified data, then closes
the file. The file mark for a file opened in this fashion is always at the beginning
of the file.

If you specify a file reference number previously obtained with the Open for
Access command, the Read command reads the specified data immediately.

Command Definitions 51

52

CHAPTER 2

Scripting Addition Commands

You can use the as className parameter to specify how the Read command
should interpret the data it reads. If data to be read is not a valid value for the
specified value class, the Read command returns an error. The rest of this
section describes some of the value classes you can specify and the nature of
the data returned if the Read command reads the data successfully.

as |ist The Read command returns a list only if the data to be read was
written to disk as an AppleScript list. If the data to be read is
delimited text, you can specify the delimiters used in the data
with the usi ng del i mi t er parameter, and the Read
command creates an AppleScript list based on those delimiters.

For example, this script returns a list of items from MyFile using
both tab and return characters in MyFile to separate each item in
the list:

read file "Hard D sk: MyFile" as {text} =
using delinmters {return, tab}

The resulting list, like any other AppleScript list, is comma-
delimited. You can’t specify more than two delimiters; if you do,
Read returns the error -50.

as record Read returns a record only if the data being read was written to
disk as an AppleScript record. Read can’t coerce other values
to records.

as integer Ifthe data consists of a single integer, Read returns the integer. If
the data consists of more than one integer, Read returns a list
of integers.

as text Read returns the data as a string. This is the default behavior if
the as className parameter is omitted.

as real If the data consists of a single real number, Read returns the real
number. If the data consists of more than one real number, Read
returns a list of real numbers.

as short The short value is defined by the Read /Write Commands
scripting addition as 2 bytes long. This can be is useful if you are
reading data from a file that uses short integers rather than the
4-byte integers defined by AppleScript. Read interprets the data
as one or more discrete 2-byte values. If the data consists of

Command Definitions

ERRORS

CHAPTER 2

Scripting Addition Commands

more than one short value, Read returns a list of shorts. If the
data is text, you can specify the delimiters used in the data with
theusi ng del i m t er parameter, and the Read command
attempts to coerce each item between delimiters to a short.

as bool ean
If the data consists of a 1-byte Boolean value, Read returns the
Boolean value. If the data consists of more than one Boolean
value, Read returns a list of Boolean values.

as data Read returns the data as an uninterpreted stream of hexa-
decimal bytes.

You can also specify other types by enclosing the appropriate four-character

code in quotation marks. Here’s an example.

read file "Hard Disk:myFile" as "PICT"
--returns data as type 'PICT

Error

number Error message

-38 File <<name>> wasn't open.

-39 End of file error.

=50 Parameter error.

=51 File reference number error.

-108 Out of memory.

-1700 Can't make some data into the expected type.
-1701 Some parameter is missing for <commandName>.
-1704 Some parameter was invalid.

-1705 Operation involving a list item failed.

-1715 Some parameter wasn't understood.

-1718 Reply has not yet arrived.

Command Definitions 53

CHAPTER 2

Scripting Addition Commands

Round
The Round command rounds or truncates a number to an integer. It is one of
two commands provided by the Numerics scripting addition.
By default, Round rounds to the nearest number. You may also include an
optional parameter to specify rounding up, down, toward zero, or to the
nearest number.
SYNTAX
round number -
[rounding (up | down | toward zero | to nearest)]
PARAMETER
number The number to round.
Class: Number
See the examples that follow for demonstrations of the possible values of the
roundi ng parameter.
RESULT
The result is an integer: the rounded value.
EXAMPLES

54

display dialog "round -3.67: " & (round -3.67) & return & -
"round 3.67: " & (round 3.67)

di splay dialog "round -3.67 up: " & -~
(round -3.67 rounding up) & return & =
& (round 3. 67 roundi ng up)

"round 3. 67 up:

di splay dialog "round -3.67 down: " & =
(round -3.67 rounding dowmn) & return & =

"round 3.67 down:

Command Definitions

& (round 3.6 roundi ng down)

CHAPTER 2

Scripting Addition Commands

di splay dialog "round -3.67 toward zero: " & -
(round -3.67 rounding toward zero) & return & -
“round 3.67 toward zero: " & -

(round 3.67 rounding toward zero)

display dialog "round -3.67 to nearest: " & =
(round -3.67 rounding to nearest) & return & =
"round 3.67 to nearest: " & -

(round 3.67 rounding to nearest)

ERRORS
Error
number Error message
-50 Parameter error.
-108 Out of memory.
-1700 Can't make some data into the expected type.
-1701 Some parameter is missing for <commandName>.
-1704 Some parameter was invalid.
-1705 Operation involving a list item failed.
-1708 <reference> doesn't understand the <commandName> message.
-1718 Reply has not yet arrived.
Run Script
The Run Script command runs a specified script or script file. It is the only
command provided by the Run Script scripting addition.
SYNTAX

run script referenceOrString -
[with paraneters listOfParameters | -
[in scriptingComponent]

Command Definitions

55

PARAMETERS

RESULT

EXAMPLES

56

CHAPTER 2

Scripting Addition Commands

referenceOrString
A reference of the form f i | € nameString or al i as nameString
that specifies a script file, or a string that consists of a valid
script.
Class: Reference or string

listOfParameters
Alist of parameters to be passed to the Run handler of the target.
Class: List

scriptingComponent
The name of the scripting component to use when running
the script.
Class: String

Value returned by script that is run.

This example runs the script beep 3, causing the alert sound to sound
three times.

run script "beep 3"

This example ensures that the script beep 3 is run by the AppleScript
scripting component.

run script "beep 3" in "AppleScript”
This example runs Run handler in the script file called MyScript.

run script file "MyVol une: MyDi rectory: MyScri pt"

Command Definitions

NOTES

ERRORS

CHAPTER 2

Scripting Addition Commands

To specify the name (nameString) of a script file, use a string of the form

and References,” of the AppleScript Language Guide. If you specify only the
name of the file (Filename) instead of its entire pathname, AppleScript
attempts to find the file in the current directory.

Error

number Error message

-50 Parameter error.

-108 Out of memory.

-192 Bad name for file.

-1700 Can't make some data into the expected type.
-1701 Some parameter is missing for <commandName>.
-1704 Some parameter was invalid.

-1705 Operation involving a list item failed.

-1708 <reference> doesn't understand the <commandName> message.
-1718 Reply has not yet arrived.

-1750 Scripting component error.

-1751 Invalid script id.

-1753 Script error.

Scripting Components

SYNTAX

The Scripting Components command returns a list of the names of the scripting
components currently available to the target application. It is the only
command provided by the Scripting Components scripting addition.

scri pting conponents

Command Definitions 57

RESULT

EXAMPLES

NOTES

ERROR

Set EOF

CHAPTER 2

Scripting Addition Commands

A list of strings.

scripting conponents
--result: {"AppleScript"}

A scripting component is a software component, such as AppleScript, that
supports the Open Scripting Architecture (OSA). The OSA provides a
mechanism, based on Apple events, that allows users to control multiple
applications by means of scripts written in a variety of scripting languages.
Each scripting language corresponds to a single scripting component. A
single scripting language may include several dialects.

Error
number Error message

-108 Out of memory.

SYNTAX

58

The Set EOF sets the end of a specified file. It is one of several commands
provided by the Read /Write Commands scripting addition. For more
information about these commands, see “Using Read /Write Commands,”
which begins on page 71.

set eof referenceToFile t o integer

Command Definitions

PARAMETERS

RESULT

EXAMPLE

NOTES

CHAPTER 2

Scripting Addition Commands

referenceToFile
A reference of the form f i | € nameString or al i as nameString,
or a file reference number returned by a previous call to the
Open for Access command.
Class: Reference or integer

integer The number of bytes to which to set the offset of the end of
the file.
Class: Integer

None

set eof file "Hard Di sk: Status Reports: Wekly Report” to 10

To specify the name (nameString) of a file, use a string of the form " Disk: Folder1:

of the AppleScript Language Guide. If you specify only the name of the file
(Filename) instead of its entire pathname, AppleScript attempts to find the file in
the current directory.

If you specify a reference to a file or an alias, the Set EOF command attempts to
match the reference with a file previously opened (with write permission) with
the Open for Access command. If the file was previously opened with read
permission only, Set EOF returns the error code —61. If a match is found, Set
EOF sets the end of the file as specified. If no match is found, Set EOF opens the
file, sets the end of the file, then closes the file.

If you specify a file reference number previously obtained (with write
permission) with the Open for Access command, Set EOF sets the end of
the file immediately.

Command Definitions 59

ERRORS

Start Log

CHAPTER 2

Scripting Addition Commands

IMPORTANT

If the file is longer than the end of file set by Set EOF, it is
truncated to the specified size and any additional data is
lost. If the file is shorter than the end of file set by Set EOF,
it is extended to the new length, but the additional data in
the new part of the file is meaningless. a

Error

number Error message

-34 Disk <name> is full.

-38 File <name> wasn't open.

—44 Disk <name> is write protected.

—45 File <name> is locked.

-46 Disk <name> is locked.

=50 Parameter error.

=51 File reference number error.

-61 File not open with write permission.

60

The Start Log command turns on logging in the Script Editor’s Event Log
window, which is shown in Figure 2-7.

If the checkboxes Show Events and Show Event Results are both selected, as
shown in Figure 2-7, subsequent commands sent by the Script Editor and the
results returned for each event are displayed in this window. You can choose to
display either the events or their results by selecting just one of the checkboxes.
You can also save a copy of the text in the Event Log window by choosing Save
As from the File menu.

Unlike most other scripting additions, the Start Log command is built into
the AppleScript extension. It doesn’t have a separate file in the Scripting
Additions folder.

Command Definitions

CHAPTER 2

Scripting Addition Commands

Figure 2-7 The Script Editor's Event Log window

SYNTAX

RESULT

EXAMPLE

S[=——— Event Lug S==———=pa=
E Show Events E Show Event Results
tell current application i

display dialog "Hella”
- - {button returned:"0K"}
end tell

< [

]

start | og

None

The example that follows demonstrates how to start logging and demonstrates
how logging works. To see descriptions in AppleScript of the logged events
generated by this example, open the Event Log window in the Script Editor
application by choosing Open Event Log from the Controls menu. Make sure
that both the Show Events and Show Event Results checkboxes are selected, as
shown in Figure 2-7.

start | og
di splay dialog "Hello"

After you run the preceding script, the record of the events sent and the result
returned appear in the Event Log window. Because the Display Dialog
command in this script is not enclosed in a Tell statement, Script Editor sends
the command to the current application—that is, to itself. The event log for
the script shows both this implicit Tell statement and the result returned

by the Display Dialog command.

Command Definitions 61

CHAPTER 2

Scripting Addition Commands

ERRORS
Error
number Error message
-50 Parameter error.
-108 Out of memory.
-1700 Can't make some data into the expected type.
-1701 Some parameter is missing for <commandName>.
-1704 Some parameter was invalid.
-1705 Operation involving a list item failed.
-1708 <reference> doesn't understand the <commandName> message.
-1718 Reply has not yet arrived.
Stop Log
The Stop Log command turns off logging in the Script Editor’s Event Log
window. Unlike most other scripting additions, the Stop Log command is built
into the AppleScript extension. It does not have a separate file in the Scripting
Additions folder.
For more information about the Event Log window, see page 61.
SYNTAX
stop | og
RESULT
None
EXAMPLE
stop | og

62 Command Definitions

CHAPTER 2

Scripting Addition Commands

NOTES
The Log command works even if logging has been turned off with the Stop Log
command. If the Stop Log command is sent before the Log command, logging
will still be turned off after the Log command is sent.
ERRORS
Error
number Error message
-50 Parameter error.
-108 Out of memory.
-1700 Can't make some data into the expected type.
-1701 Some parameter is missing for <commandName>.
-1704 Some parameter was invalid.
-1705 Operation involving a list item failed.
-1708 <reference> doesn't understand the <commandName> message.
-1718 Reply has not yet arrived.

Store Script

The Store Script command stores a specified script object in a specified file. It is
the only command provided by the Store Script scripting addition.

SYNTAX

store script scriptObjectVariable -
[in referenceToFile] -
[replacing replacementOption]

Command Definitions 63

PARAMETERS

RESULT

EXAMPLES

64

CHAPTER 2

Scripting Addition Commands

scriptObject Variable
The name of a script object declared previously in the
same script.
Class: Script

referenceToFile
A reference of the form f i | e nameString or al i as nameString
(see “Notes™). If this parameter is omitted, Store Script displays
a directory dialog box and requests that the user choose a file in
which to store the script.
Class: Reference

replacementOption
One of the constants ask, yes, or no. The constant ask causes
the Store Script command to display a dialog box asking the user
whether to overwrite the file specified by scriptObject Variable,
rename it, or cancel the operation. (Displaying this dialog box is
the default if the r epl aci ng parameter is omitted.) The constant
yes indicates that you want Store Script to replace the file, and
the constant no indicates that you do not want Store Script to
replace the file if it already exists.
Class: String

None

This script object is used in the examples that follow:

script DenoStore
property Red: 127
property Geen : 128
property Blue : 127
on returnRGB()
return Red & Green & Bl ue
end return
end script

Command Definitions

NOTES

ERRORS

CHAPTER 2

Scripting Addition Commands

This example stores the script object DenoSt or e in a file called Store My RGB:

store script DempbStore in file =
"My HD: Sone Fol der: Store My RGB" replacing yes

Ther epl aci ng yes parameter indicates that Store Script should overwrite
the existing file.

Later statements in the same script like the following load the stored script
object DenpbSt or e, change one of its properties, and store it to disk again:

set objRef to |oad script =

file "My HD: Sone Fol der: Store My RGB"
set objRef's Red to 250
store script objRef =

infile "My HD: Sone Fol der: Store My RGB"

In this case the r epl aci ng parameter is omitted, so Store Script displays a
dialog box asking the user whether to overwrite the file, rename it, or cancel
the operation.

To specify the name (nameString) of a file, use a string of the form " Disk: Folder1:
Folder2: . . . : Filename" as described in Chapter 5, “Objects and References,”

of the AppleScript Language Guide. If you specify only the name of the file
(Filename) instead of its entire pathname, AppleScript attempts to find the file in
the current directory.

Error

number Error message

-108 Out of memory.

-128 User canceled.

-192 Bad name for file.

-1700 Can't make some data into the expected type.
-1701 Some parameter is missing for <commandName>.

Command Definitions 65

CHAPTER 2

Scripting Addition Commands

Error
number Error message
-1704 Some parameter was invalid.
-1705 Operation involving a list item failed.
-1708 <reference> doesn't understand the <commandName> message.
-1718 Reply has not yet arrived.
Time to GMT

The Time to GMT command returns the difference, in seconds, between the
current time and Greenwich mean time (GMT). It is the only command
provided by the Time to GMT scripting addition.

SYNTAX
time to GV
PARAMETERS
None.
RESULT
An integer indicating the difference in seconds between the current time
and GMT.
EXAMPLES

Time to GMT returns the difference in seconds between the time of your
computer’s clock and GMT. For example, if you are in Cupertino, California,
and your computer is set to Pacific Standard Time, Time to GMT returns

this result:

66 Command Definitions

CHAPTER 2

Scripting Addition Commands

time to GVl
--result: -28800

You can then use this value to write a script that tells you the time difference
between the time in any other time zone and the current time in Cupertino:

property of fset FromCupertino : -28800

set x to ((time to GVIN + 60) + 60
set y to x - (((offsetFronCupertino) + 60) + 60)

if y=20 then
display dialog ("Sane tinme zone as Cupertino") as string
el se

if y>0 then
display dialog (y & " Hours Ahead of Cupertino") as
string
el se
display dialog (-y & " Hours Behind Cupertino") as
string
end if
end if

To see the effect this script has for different time zones, try setting the time
from the Map control panel to various locations, for example, Tokyo, London,

and Atlanta.
ERRORS
Error
number Error message
-108 Out of memory.
-1700 Can't make some data into the expected type.
-1701 Some parameter is missing for <commandName>.
-1704 Some parameter was invalid.

Command Definitions 67

Write

CHAPTER 2

Scripting Addition Commands

Error

number Error message

-1705 Operation involving a list item failed.

-1708 <reference> doesn't understand the <commandName> message.
-1718 Reply has not yet arrived.

SYNTAX

PARAMETERS

68

The Write command writes data to a specified file, beginning at the file mark. It
is one of several commands provided by the Read/Write Commands scripting
addition. For more information about these commands, see “Using Read /Write
Commands,” which begins on page 71.

write dataToWrite t o referenceToFile
[for bytesToWrite | -
[starting at startingByte]

dataToWrite The data to be written. The format of the data should match the
file type.
Class: (varies among applications)

referenceToFile
A reference of the form f i | @ nameString or al i as nameString,
or a file reference number previously obtained with the Open
for Access command (see “Notes”).
Class: Reference or integer

bytesToWrite The number of bytes to write. The Write command returns an
error if you pass a negative number in this parameter.
Class: Integer

Command Definitions

RESULT

EXAMPLES

NOTES

CHAPTER 2

Scripting Addition Commands

startingByte Specifies the offset of the byte at which to begin writing. A
positive integer indicates the offset from the beginning of the
file, and a negative integer indicates the offset from the end of
the file.

Class: Integer

None

This example writes “abcde” to the file MyFile.
wite "abcde" to file "Hard Di sk: WFil e"

The next example returns an error because fewer bytes are specified for the
dataToWrite parameter than are specified for the f or bytesToWrite parameter:

wite "abcde" to file "Hard Di sk: My/File" for 8

If the data to write is longer than the bytes specified by the bytesToWrite
parameter, the Write command truncates the data. For example, this Write
command writes the number 5 to the file MyFile as a short integer (2 bytes)
rather than an integer (4 bytes):

wite 5to file "Hard Disk: WFile" for 2

The next example specifies a negative value for the startingByte parameter. It

writes the number 5 as a short integer starting at the 8th byte before the end of

the file.

wite 5to file "Hard Di sk: WFile" starting at -8 for 2

The file mark is a marker used by the File Manager that indicates the byte at
which the Read command expects to begin reading data. By default, the file
mark is the first byte of the file. The Write command begins writing at the
current file mark and sets the file mark to the byte after the last byte written.
The Read command can also reset the file mark.

Command Definitions

69

70

CHAPTER 2

Scripting Addition Commands

To set the file mark without reading or writing data, write a string of zero
length to the byte to which you want to set the mark. For example, this script
sets the file mark for the file specified by f i | eRef Numto the fourth byte in
the file:

wite to fileRefNum starting at 4

To specify the name (nameString) of a file, use a string of the form " Disk: Folder1:

of the AppleScript Language Guide. If you specify only the name of the file
(Filename) instead of its entire pathname, AppleScript attempts to find the file in
the current directory

The Write command attempts to match a reference to a file or an alias with a
file previously opened with the Open for Access command. If a match is found,
it simply writes the specified data. If no match is found but the file can be
located on disk, the Write command opens the file, writes the specified data,
then closes the file. The file mark for a file opened in this fashion is always

at the beginning of the file. If the file cannot be found at all, the Write command
returns an error.

If you specify a file reference number previously obtained with the Open for
Access command, the Write command writes the specified data immediately.

Command Definitions

ERRORS

CHAPTER 2

Scripting Addition Commands

Error

number Error message

-34 Disk <name> is full.

-38 File <name> wasn't open.

—44 Disk <name> is write protected.
—45 File <name> is locked.

-49 File <name> is already open.
=50 Parameter error.

-51 File reference number error.

-61 File not open with write permission.
-108 Out of memory.

Using Read /Write Commands

The commands provided by the Read /Write Commands scripting addition
allow you to open a file for access, get and set its length, read data from the file,
insert new data in the file, and close access to the file. These commands allow
you to make use, from within a script, of some capabilities of the File Manager,
the part of the Macintosh Operating System that controls files.

WARNING

The Read /Write Commands scripting addition is intended
for use by experienced programmers. If you are not
familiar with the File Manager as described in Inside
Macintosh: Files, proceed with caution. Using these
commands incorrectly may cause loss of data. a

Most of the Read /Write Commands allow you to specify a file reference
number instead of a reference to a file. A file reference number is an integer,
assigned by the File Manager, that uniquely identifies a file. You can obtain a
file reference number with the Open for Access command, then use the number
returned to refer to the same file until you use the Close Access command to
close the file. It is usually preferable to specify a file reference number rather
than a reference to a file because it takes the Read /Write Commands scripting
addition less time to locate the file.

Using Read/Write Commands 71

CHAPTER 2

Scripting Addition Commands

You can use the Read /Write commands with either text-based data or binary
data. Most databases can export data as text, with fields and records separated
by delimiters, and some store their data as text files. The examples in this
section demonstrate how to use the Read/Write commands with text-based
data. These examples assume that you have basic information about the way
the data is stored in a text file, such as the delimiters used to separate fields and
records. You can use similar techniques to read and write binary data if you
know how the data is organized within a file. For example, if you know the
header format for a file of type ' PI CT" , you can write scripts that read and
write to' Pl CT" files.

Both the Read command and the Write command make use of the file mark, a
marker used by the File Manager that indicates the byte at which the Read and
Write commands begin operating. By default, the file mark is the first byte of
the file. After the Read command reads a range of bytes or the Write command
writes over a range of bytes, the file mark is set to byte just after the end of that
range. The next Read or Write command begins operating at the new file mark.

For example, suppose you want to extract a particular record from a text-based
database of names and addresses. To do so, you need to know the number of
fields in each record, the position of the desired record in the database, and the
delimiters used to separate the records in the database. You can then use the
Open for Access command to get a file reference number for the file that
contains the desired record and a Read command within a repeat loop to read
each successive record. After reading each record, the Read command sets the
file mark to the beginning of the next record. When the repeat loop determines
that the desired record has been reached, it returns the data for that record.
Listing 2-1 shows one way to do this.

Listing 2-1 Reading a specific record from a text-based database file

--first choose data file to work with
set pathToUse to choose file

try
set x to open for access pathToUse
set z to ReadRecord(10, 1, tab, return, x)
cl ose access x
z --display requested record
on error errString nunber errNum

72 Using Read/Write Commands

di s
clo
end tr

CHAPTER 2

Scripting Addition Commands

play dialog errString
se access X
y

on ReadRecor d(number O Fi el ds, whi chRecord, fieldDelimter

try

on

end

recordDelimter, fileRefNun)

(* if there's a record delimter, read all fields except for
last using field deliniter, then read last field using record

delimter *)
if recordDelimter is t hen
set readxTinmes to nunber O Fi el ds
el se
set readxTinmes to nunberOfFields - 1
end if
repeat whi chRecord tines
set recordData to {}
repeat (readxTines) tines
set recordData to recordData & -
{(read fil eRef Num before fieldDelinmiter)}
end repeat
if readxTinmes is not nunberOf Fi el ds then
set recordData to recordData & -
{(read fileRef Num before recordDelimter)}
end if
end repeat
return recordDat a
error errString nunber errNum
di splay dialog errString
return errString
try

end ReadRecord

The script in Listing 2-1 begins by using the Choose File command to allow

-

the user to choose the text file that contains the desired record. After initializing

the variable into which the record will be read, the script uses the Open
for Access command to open the file and the ReadRecor d handler to read a

specific record.

Using Read/Write Commands

73

CHAPTER 2

Scripting Addition Commands

The ReadRecor d handler shown in Listing 2-1 takes five parameters:

nunber O Fi el ds
The number of fields in the record.

whi chRecor d
An integer that identifies the position of the desired record.

fieldDelinmter
The delimiter used in the file to separate fields.

recordbelimter
The delimiter (if any) used to separate records. If the file doesn’t
use a different delimiter to separate records, this parameter

mustbesetto"".

fil eRef Num A file reference number obtained with the Open for Access
command.

IfrecordDelimter issetto"", the ReadRecor d handler reads the specified
number of fields for each record. If r ecor dDel i mi t er is set to a delimiter,
ReadRecor d reads all the fields in a record but the last, then reads the last field
up to the record delimiter. This is necessary to ensure that the last field of one
record is not combined with the first field of the next.

The ReadRecor d handler reads each new record into the variable

r ecor dDat a. If the record is the one requested, ReadRecor d returns
that record. If the record is not the requested record, ReadRecor d sets
r ecor dDat a to an empty list and reads the next record.

You can use similar techniques to locate the exact position of a record you want
to delete from a text file. In addition to locating the record to be deleted, you
need to store all the records after that record in a variable and write the
contents of the variable starting at the beginning of the record to be deleted.
You can then use the Get EOF and Set EOF commands to get the initial size of
the file and reset its size after deleting the record. Listing 2-2 demonstrates how
to do this.

Listing 2-2 Deleting a record from a text-based database file

--choose data file to use
set pathToUse to choose file

74

Using Read/Write Commands

try

CHAPTER 2

Scripting Addition Commands

set x to open for access pathToUse with wite perm ssion
Del et eRecord(10, 1, tab, return, x)
cl ose access x
on error errString number errNum
di splay dialog errString
cl ose access x

end tr

y

on Del et eRecord(nunmber O Fi el ds, whi chRecord, -

try

fieldDelimter, recordDelimter, fileRefNum

--initialize variables
set startSize to get eof fileRefNum--current size
set idx to 1 --counter
set preRecordSize to 1 --offset of record to delete
set accurnul atedSize to 0 --total size of records read
if recordDelinmiter is "" then

set readxTines to nunber O Fi el ds
el se

set readxTinmes to nunberOFields - 1
end if

repeat with idx from1l to whichRecord

repeat (readxTines) tines

set gqtoread fileRefNumuntil fieldDelimter

set accunul at edSi ze to accunul at edSi ze + (length of Q)
end repeat

if readxTimes is not nunberOf Fields then

set g toread fileRefNumuntil recordDelimter

set accunul at edSi ze to accunul at edSi ze + (length of q)
end if

Using Read/Write Commands

75

CHAPTER 2

Scripting Addition Commands

(* if record to delete is the first record in file or the
next record that will be read, set preRecordSize *)
i f whichRecord is 1 or idx is whichRecord - 1 then
i f whichRecord is 1 then
set preRecordSize to 1
el se
set preRecordSize to accunul at edSi ze
end if
end if
end repeat

(* now that preRecordSize is determ ned, read the record to be
deleted so file mark is set to beginning of next record *)
set fileBuffer to read fileRef Num from accumnul atedSi ze + 1

--next, overwite record to be deleted with renainder of file
if (startSize - accunul atedSize) is not 0 then
wite fileBuffer to fileRef Numstarting at preRecordSi ze
set eof fileRefNumto (startSize - accunul atedSi ze)
el se
(* if the file contains only the record to be
del eted, set the end of the file to 0 *)
i f whichRecord is 1 then
set eof fileRefNumto O
(* if record to be deleted is last record in file,
just shrink the file *)
el se
set eof fileRefNumto preRecordSize
end if
end if
on error errString number errNum
di splay dialog errString
end try
end Del et eRecord

76 Using Read/Write Commands

CHAPTER 2

Scripting Addition Commands

The Del et eRecor d handler shown in Listing 2-2 takes five parameters:

nunber O Fi el ds
The number of fields in each record.

whi chRecor d
An integer that identifies the position of the record you want
to delete.

fieldDelimter
The delimiter used in the file to separate fields.

recordbelimter
The delimiter (if any) used to separate records. If the file doesn’t
use a different delimiter to separate records, this parameter

mustbesetto"".

fil eRef Num
A file reference number obtained with the Open for Access
command.

Like the ReadRecor d handler in Listing 2-1, the Del et eRecor d handler reads
the specified number of fields for each record if r ecor dDel i mi t er is set to

"" IfrecordDel i mter issettoa delimiter, Del et eRecor d reads all the
fields in a record but the last, then reads the last field up to the record delimiter.
The size of each successive record is added to the accunul at edSi ze variable,
which contains the total size of the previously read records.

When it reaches the record to be deleted, Del et eRecor d stores the contents of
accurul at edSi ze in the pr eRecor dSi ze variable, reads through the record
to set the file mark, reads from the file mark to the end of the file, and stores
that portion of the file in the f i | eBuf f er variable. Finally, Del et eRecor d
writes the contents of f i | eBuf f er starting at the beginning of the record to
be deleted.

Listing 2-3 demonstrates how you can use similar techniques to insert a record
into a text-based database file.

Listing 2-3 Inserting a record in a database file

--choose file to work with
set pathToUse to choose file

Using Read/Write Commands 77

CHAPTER 2

Scripting Addition Commands

try
(* first put the record to be added into a variable; in this case
the record to be added is actually an AppleScript |ist because
the file on disk doesn't include |abel data *)
set newRecord to -
{"Ganny", "Smth", "123 Potato Chip Lane", =
"Palo M nnow', "CA", "98761", "Snackable Conputer", =
"888-987-0987", "978 -234-5432", "123-985-1122"}
set x to open for access pathToUse with wite perm ssion
AddRecor d(newRecord, 5, tab, return, x)
cl ose access Xx

on error errString nunber errNum
di splay dialog errString
cl ose access Xx

end try

on AddRecord(recordToAdd, addWhere, fieldDelimter, =
recordDelimter, fileRefNum
try
--initialize variables
set idx to 1 --counter
set preRecordSize to 1 --offset of byte at which to add file
set accunul atedSize to O --total size of records read
set nunberOFields to count of recordToAdd
if recordDelimter is "" then
set readxTinmes to nunber O Fi el ds
el se
set readxTines to nunberOfFields - 1
end if

(* if the record is to be added at the beginning of the file,
this If statenent adds the record *)
if addWhere is 1 then

--read from beginning of file and store in postBuffer

78 Using Read/Write Commands

CHAPTER 2

Scripting Addition Commands

set postBuffer to read fileRefNumfrom1
(* before witing new record, file mark nmust be reset to
beginning of file; to do this, wite an enpty string to the
begi nning of file *)
wite "" to fileRefNumstarting at O
WiteNewRecord(recordToAdd, fieldDelinmter, -
recordDelinmiter, fileRefNum
--now add back the rest of the record
wite postBuffer to fil eRef Num
return
end if
(* if the record is to be added sonewhere other than at the
beginning of the file, the rest of the AddRecord handler is
executed *)

repeat with idx from1l to addWwere - 1
repeat (readxTines) tines
set gtoread fileRefNumuntil fieldDelimter
set accunul at edSi ze to accunul at edSi ze + (length of q)
end repeat
if readxTimes is not nunberOFFields then
set g to read fileRefNumuntil recordDelimnter
set accunul at edSi ze to accunul at edSi ze + (length of Q)
end if
end repeat
(* read frombeginning of file to the byte at which the new
record is to be added *)
set postBuffer to read fileRef Numfrom accunul atedSi ze + 1

(* before witing newrecord, set file mark to byte at which
new record is to be added; to do this, wite an enpty
string to that byte *)

wite "" to fileRefNumstarting at accunul atedSize + 1
WiteNewRecord(recordToAdd, fieldDelimter, recordDelimter, =
fileRef Num

Using Read/Write Commands 79

CHAPTER 2

Scripting Addition Commands

--now add back the rest of the record
wite postBuffer to fil eRef Num

on error errString nunber errNum
di splay dialog errString
end try
end AddRecord

on WiteNewRecord(recordToAdd, fieldDelimter, recordDelimter, -
fileRef Num
try

set nunberOFields to count of recordToAdd

if recordDelinmiter is "" then
set readxTines to nunber O Fi el ds

el se
set readxTinmes to nunberOFields - 1

end if

repeat with idx from1l to nunberOf Fi el ds
if idx < readxTines then
wite itemidx of recordToAdd & fieldDelimter to -
fil eRef Num

el se
(* if file uses a record delimter, wite delimter
after the last field in the record *)
wite itemidx of recordToAdd & recordDelinmter to =

fil eRef Num
end if
end repeat
on error errString nunber errNum

80 Using Read/Write Commands

CHAPTER 2

Scripting Addition Commands

di splay dialog errString

end try

end WiteNewRecord

The AddRecor d handler shown in Listing 2-3 takes five parameters:

recor dToAdd
A list of the fields for the record to be added.

whi chRecor d
An integer that identifies the offset of the record you want
to add.

fieldDelimter
The delimiter used in the file to separate fields.

recordDel imter
The delimiter (if any) used to separate records. If the file doesn’t
use a different delimiter to separate records, this parameter

mustbesetto"".

fil eRef Num
A file reference number obtained with the Open for Access
command.

If the new record is to be added at the beginning of the file, AddRecord reads
all the records in the file and stores them in the post Buf f er variable, then
resets the file mark to the beginning of the file by writing an empty string to
that location. This is a useful technique whenever you want to set the file mark
without reading or writing any data.

Next, AddRecor d uses the Wi t eNewRecor d handler to write the record at
the beginning of the file and writes the contents of the post Buf f er variable
after the new record. Note that the Write Command sets the end of file, so this
example doesn’t need to use the Get EOF and Set EOF commands.

If the new record is to be added somewhere other than at the beginning of the
file, AddRecor d uses a repeat loop to read through all the records that precede
the new record’s location. If recordDel i mi t er issetto"", AddRecor d reads
the specified number of fields for each record. If recor dDel i mi t er is set to a
delimiter, AddRecor d reads all the fields in a record but the last, then reads the
last field up to the record delimiter. The size of each successive record is added
to the accunul at edSi ze variable, which contains the total size of the
previously read records.

Using Read/Write Commands 81

CHAPTER 2

Scripting Addition Commands

After it has stored, in the accunul at edSi ze variable, the total size of the
records preceding the point at which the new record is to be added, AddRecor d
reads the remainder of the file and stores it in the post Buf f er variable. It then
resets the file mark to the byte at which the new record is to be added by writing
an empty string to that location. After using the Wi t eNewRecor d handler to
write the record, AddRecor d writes the contents of the post Buf f er variable
after the new record.

The Wi t eNewRecor d handler shown in Listing 2-3 takes four parameters:

recor dToAdd
A list of the fields for the record to be added.

fieldDelimter
The delimiter used in the file to separate fields.

recordDel imter
The delimiter (if any) used to separate records. If the file doesn’t
use a different delimiter to separate records, this parameter

mustbesetto"".

fil eRef Num A file reference number obtained with the Open for Access
command.

IfrecordDelimter issetto"", Wit eNewRecor d includes a field delimiter
after each field it writes. If r ecor dDel i mi t er is set to a delimiter,

Wit eNewRecor d includes a field delimiter after each field in a record but

the last and includes a record delimiter after the last field.

Listing 2-4 demonstrates one way to take advantage of the fact that the Open
for Access command can create a file with a specified name in a specified
location if the file doesn’t already exist at that location.

Listing 2-4 Opening a file for write access and creating one if the file doesn’t exist

on OpenFilelfltExists(theFile, witePerm ssion)

82

(* if theFile doesn’'t exist, Info For returns error -43 *)
set x to info for file theFile
if witePerm ssion is true then
return (open for access file theFile with wite perm ssion)

Using Read/Write Commands

CHAPTER 2

Scripting Addition Commands

return (open for access file theFile)
end if
on error theErrMsg nunber error Num
try
--if error is -43, the user can choose to create the file
display dialog "The file: " & theFile & " does not exist"
buttons {"Create It For Me", "Cancel", "k"} =
default button 2
if button returned of the result is "Ck" then
return errorNum

el se
--create the file
if witePermission is true then
return open for access file theFile =
with wite pernission
el se
return open for access file theFile
end if
end if
on error theErrMsg nunber theErrNunber
return theErrNunber
end try
end try
end OpenFilelfltExists

--set a variable to the file you want to open or create
set fileToOpenOrCreate to "Hard Di sk: Test File One”
set z to OpenFilelfltExists(fileToOpenOrCreate, true)
if z <0 then

--QpenFilelfltExists returned an error

di splay dialog the result

el se

Using Read/Write Commands

--QpenFilelfltExists returned a file reference nunber
--do your work with the open file here
cl ose access z

end if

The QpenFi | el f I t Exi st's handler shown in Listing 2-4 takes two
parameters:

theFile A string that consists of the full pathname for the file to open
or create.

wri t ePermi ssion
A Boolean value that indicates whether to open the file with
(t r ue) or without (f al se) write permission.

To determine whether the file exists or not, OQpenFi | el f | t Exi st's uses the
Info For command. If the file doesn’t exist, the Info For command returns
error —43, “File wasn’t found,” and QpenFi | el f | t Exi st s displays a dialog
box that allows the user to choose whether to create the new file. If the file
exists or if it is successfully created, OpenFi | el f | t Exi st s opens it with or
without write permission, depending on the value of the wr i t ePer mi ssi on
parameter.

CHAPTER 3

Writing Scripting Additions

This chapter is intended for experienced Macintosh programmers. Before
reading this chapter, you should have a thorough understanding of the Apple
Event Manager, Apple event terminology resources, and the C or Pascal
programming language. For information about the Apple Event Manager
and Apple event terminology resources, see Inside Macintosh: Interapplication
Communication.

This chapter describes

= types of scripting additions

= the scripting addition size resource

= how to use other resources with scripting additions

= a trick for using records as scripting addition reply values
= scripting addition limitations

It also includes code written in C for a sample scripting addition.

Types of Scripting Additions

There are two types of scripting additions:
= Apple event handler scripting additions (language extensions)
= Apple event coercion scripting additions (data coercions)

Both types are loaded by the AppleScript extension when needed if the
scripting addition files are installed in the Scripting Additions folder. Each
type of scripting addition consists of a file of type ' 0sax’ and a creator of
type' ascr' . The name of the ' osax’ resource tells the scripting addition
loading mechanism what type of scripting addition it is.

Types of Scripting Additions

CHAPTER 3

Writing Scripting Additions

A scripting addition resource file may contain up to four kinds of resource:

(1) a code resource of type ' 0sax' that contains the executable code for the
scripting addition, (2) an"' aet ' resource that describes the terminology
provided by the scripting addition, (3) a resource of type ' 0si z' that informs
AppleScript whether the scripting addition has any owned resources and
whether it responds to commands sent from other computers on a network,
and (4) any owned resources for the scripting addition, such as dialog
definitions, strings, and sounds.

The next two sections describe the differences between ' 0sax' resources

for Apple event handlers and ' osax' resources for Apple event coercions.
For information about writing an ' aet &' resource, see Inside Macintosh:
Interapplication Communication. “The Scripting Addition Size Resource,” which
begins on page 89, describes the format of the ' 0si z' resource.

Apple Event Handler Scripting Addition

86

The ' osax' resource for an Apple event handler follows the following
convention:

Resource type ' osax'
Resource ID An identifier (for example, 6991)
Resource name " AEVTcl ssidi d’

The letters AEVT in the resource name indicate that the scripting addition uses
the event handler interface. The next eight characters represent the event’s class
and ID.

The ' osax' code resource for a scripting addition handler is in the form of
an Apple event handler. The entry point for the code resource must follow the
Apple event handler function interface as follows:

InC,

pascal OSErr MyAEHandl er Functi on (Appl eEvent theEvent,
Appl eEvent t heReply,
| ong theRef Con);

Types of Scripting Additions

CHAPTER 3

Writing Scripting Additions

In Pascal,

FUNCTI ON MyAEHandl er Funct i on
(theEvent, theReply: Appl eEvent;
t heRef Con: Longint): OSErr;

The scripting addition handler is an extension to the AppleScript language. It
needs an' aet e' resource that describes the human-language terms defined
by the scripting addition for use in scripts, such as the names of commands,
objects, and properties. The high word of the resource ID for the ' aete' isa
script code that indicates the script system (that is, writing system) for which
the' aet e' is written, and the low word is a language code that indicates the
human language for which the ' aet e' is written. For example, the resource ID
of the ' aete' resource of the sample scripting addition shown in Listing 3-3
(beginning on page 94) is 0; thus both the high word and low word are also 0,
indicating that the resource is intended for use with the Roman script system
and English terminology.

Apple Event Coercions Scripting Addition

The ' osax' resource for an Apple event coercion scripting addition follows
the following convention:

Resource type ' osax’
Resource ID An identifier (for example, 3069)
Resource name ' CSDSf ront ot o' or' CSPTfront ot o

The letters CSDS or CSPT at the beginning of the resource name indicate that
the scripting addition provides an Apple event coercion. CSDS indicates an
Apple event coercion that uses the “from descriptor” interface. CSPT indicates
an Apple event coercion that uses the “coerce from pointer” interface. The next
eight characters of the resource name represent the “from” and “to” types.

The ' osax' code resource for scripting addition coercions is in the form
of Apple event coercion handler. The entry point for the code resource
must follow the Apple event coercion function interface for the particular
coercion form.

Types of Scripting Additions 87

88

CHAPTER 3

Writing Scripting Additions

In C, the “coerce from pointer” coercion form (CSPT) is

pascal OSErr MyCoercePtr (DescType fronmlype,
Ptr dataPtr,
Si ze dat aSi ze,
DescType toType,
| ong t heRef Con,
AEDesc *t heResult);

In Pascal, the “coerce from pointer” coercion form (CSPT) is

FUNCTI ON MyCoer cePtr (typeCode: DescType;
dataPtr: Ptr;
dat aSi ze: Size;
toType: DescType;
refcon: Longlnt;
VAR addressDesc: AEDesc):

In C, the “coerce from descriptor” coercion form (CSDS) is

pascal OSErr MyCoerceDesc (AEDesc theFronmDesc,
DescType toType,
| ong t heRef Con,
AEDesc *theResult);

In Pascal, the “coerce from descriptor” coercion form (CSDS) is

FUNCTI ON MyCoer ceDesc (t heFronDesc: AEDesc;
toType: DescType;
t heRef Con: Longl nt;
VAR addr essDesc: AEDesc):

Types of Scripting Additions

CSErr;

CSErr;

CHAPTER 3

Writing Scripting Additions

The Scripting Addition Size Resource

If your scripting addition doesn’t include any owned resources, you can
improve its performance by providing a scripting addition size resource. A
scripting addition size resource is a resource of type ' 0si z' that allows you to
specify whether your scripting addition has any owned resources and whether
to limit the events it can receive to events sent from the local computer.

An' osi z' resource must have resource ID 0. Listing 3-1 shows the resource
type declaration in Rez format for the ' 0si z' resource.

Listing 3-1 Resource type declaration for the ' 0Si z' resource

type 'osiz' {
bool ean openResourceFil e,
dont OpenResour ceFi | €;
bool ean accept Renot eEvent s,
dont Accept Renot eEvent s;

bool ean reserved;

bool ean reserved,

bool ean reserved;

bool ean reserved;

bool ean reserved,

bool ean reserved;

bool ean reserved;

bool ean reserved,

bool ean reserved;

bool ean reserved;

bool ean reserved,

bool ean reserved;

bool ean reserved;

bool ean reserved,

bool ean reserved;

The Scripting Addition Size Resource 89

90

CHAPTER 3

Writing Scripting Additions

H

bool ean reserved,
bool ean reserved;
bool ean reserved;
bool ean reserved,
bool ean reserved;
bool ean reserved;
bool ean reserved,
bool ean reserved;
bool ean reserved;
bool ean reserved,
bool ean reserved;
bool ean reserved;
bool ean reserved,
bool ean reserved;
bool ean reserved;

The data for an' 0si z' resource consists of flags that specify Boolean values:

The first flag specifies whether AppleScript should (openResour ceFi | e)
or should not (dont QpenResour ceFi | e) open the scripting addition’s
resource fork each time one of its commands is invoked from a script. You
should set this flag to dont QpenResour ceFi | e if your scripting addition
doesn’t include any owned resources.

The second flag specifies whether the scripting addition accepts

(accept Renot eEvent s) or doesn’t accept (dont Accept Renpt eEvent s)
events sent to it from a remote computer. If you don’t want users of remote
computers to be able to use your scripting addition, set this flag to

dont Accept Renpt eEvent s. This might be desirable, for example, if you
don’t want users of remote computers to use the scripting addition to
modify data on the local machine or if the scripting addition requires
interaction with the user.

The following 30 bits are reserved for future use. Their values must be set to
reserved.

The Scripting Addition Size Resource

CHAPTER 3

Writing Scripting Additions

Using Other Resources With Scripting Additions

The scripting addition loading mechanism adds the invoked scripting
addition’s resource file to the top of the target application’s resource chain.
This guarantees that resources in the scripting addition’s resource file will

be found before resources with the same name or ID in the application or
system resource files. For example, in the following script, the resource chain is:
Beep scripting addition -> MyApplication -> System file (assuming
MyApplication hasn’t added anything else to the chain).

tell application "MApplication"
beep 3
end tell

If a scripting addition is called outside of a Tell statement, the resource chain is

the same as just described, except that the application is the application
running the script (for example, Script Editor).

Using Records for Scripting Addition Reply Values

Some scripting additions return more than one piece of data in their replies. If a
scripting addition returns a list, it can refer to the elements of the list by index.
But if a scripting addition returns a record with named fields, it cannot refer to
the items in the record by their names, because although an' aet e' resource
allows you to specify the type of a return value, it does not provide any
additional information about it, such as the names of its fields if it is a record.

If you need that additional information, you can create a new class that has
properties for each of the fields in the record, and you can then declare the
return type of the reply to be the ID of this new class.

Listing 3-2 shows an ' aet ' code excerpt that defines a class with the ID
" hack' . This code is placed in the return type field of the event’s reply. The
property IDs are the keywords for the record’s fields.

Using Other Resources With Scripting Additions 91

CHAPTER 3

Writing Scripting Additions

Listing 3-2

{ [/* array C asses:
[* [1] */
"my record names",
" hack',
"A deno cl ass used for
{ [/* array Properties:

[* [1] */

"button returned",
‘rone',

" hack',

1 elements */

record | abel s",
2 elenments */

"The button returned",

reserved,
singleltem
not Enuner at ed,

readOnly,
reserved, reserved,
reserved, reserved,
[* 12] */
"text returned",
‘rtwo',
" hack'
"The text returned",
reserved,
singleltem
not Enuner at ed,
readOnly,
reserved, reserved,
reserved, reserved,
1
}
92

reserved, reserved,
reserved, reserved,
reserved, reserved,
reserved, reserved,

Using Records for Scripting Addition Reply Values

reserved,
reserved,

reserved,
reserved,

Classes array for a scripting addition that returns a record

reserved,
reserved,

reserved,
reserved

CHAPTER 3

Writing Scripting Additions

For an example of this technique in action, see the reply returned by the
Display Dialog scripting addition.

Scripting Addition Limitations

Scripting additions are stand-alone code resources. As such they cannot have
global variables. Solutions are available to circumvent this limitation in code
resources. Check your compiler documentation for these solutions or see the
appropriate technical notes from Apple Computer.

Scripting additions cannot use the Object Support Library (OSL). The OSL is
designed to be linked into an application and initialized once. This means that
a scripting addition that has to resolve object specifier records must do so
internally without the use of the OSL.

Scripting additions are not chained. If two or more scripting additions in
the Scripting Additions folder have the same class and ID, only the first one
found (that is, the first one in alphabetical order by name) will be installed.

Sample Scripting Addition

Listing 3-3 demonstrates the basic structure of a scripting addition handler and
its associated ' aet e' resource. It is called “Play Sound Scripting Addition”
and is written in MPW C.

Scripting Addition Limitations 93

CHAPTER 3

Writing Scripting Additions

Listing 3-3 Play Sound scripting addition

LEEEEEEEErrr bbb bbb bbb b b rn bbb rrr b rrr b rrrirrn
11

/1 PlaySnd.c

11

/1 The Play Sound Scripting Addition

/1 Copyright ®.993 Apple Conputer Inc.

/1 Al rights reserved.

11

/'l Witten by: Donald O son

11

/1 To build:

/1 C-b "PlaySnd.c" -d SystentSevenO Lat er

/] Rez -a -0 "Play Sound" -t osax -c ascr 'PlaySnd.r

/1 Link -p -w -t osax -c¢ ascr -rt 0sax=1000 - m PLAYSNDENTRY -sg 0@

/1 "AEVTaevt pl sn" -ra "AEVTaevtpl sn"=resSysHeap, resLocked 0
/1 "PlaySnd.c.o" 0

/1 "{CLibraries}"StdCLib.o 0

/1 "{Libraries}"Runtine.o d

/1 "{Libraries}"Interface.o 0

/1 -0 "Play Sound"

11

NNy

#i ncl ude <Resources. h>
#i ncl ude <Sound. h>
#i ncl ude <Appl eEvents. h>

#def i ne kAsync true /'l asynchronous pl ay
#defi ne kQui et Now true /1 quiet channel now
#defi ne kSndType "snd ' /1 resource type we're

/11 ooking for
#defi ne typel ntl Text itxt' /] defined in AERegistry.r
#defi ne typeStyl edText ' STXT /1 defined in AERegistry.r

94 Sample Scripting Addition

CHAPTER 3

Writing Scripting Additions

PEOETEEL bbb bbb rrirriirrnd
11

[l PlaySndEntry ()

/1

/1 The direct paranmeter is either a name or an ID of the 'snd '

/'l resource to play.

/1

PEPTTIIE bbb r bbb rrrnnnn

pascal OCSErr Pl aySndEntry(Appl eEvent *theAEEvent,

Appl eEvent *theReply,
| ong t heRef Con)

/* Function Prototypes */
OSErr Pl aySound(Handl e t heSoundHdl) ;

[* variables */

OSErr theErr = noErr;
DescType t ypeCode;
Size si zeOr Par am
actual Si ze;
Handl e theSndHandl e = nil; /[/*just clear our */

/* sound handl e*/
SndChannel Ptr theSndChan = NULL; /*NULL pointer to */
/* a sound channel */

short our Rezl D = 0;

Str 255 our RezNane;

FSSpec our SoundFi | e;

short our Fi | eRef, curResFil e;
/*

Get the data type fromdirect object by using AESi zeO Param
We use this call instead of AEGet ParanDesc or AEGet ParanPtr
because we are | ooking for one of several types. In this

Sample Scripting Addition

95

CHAPTER 3

Writing Scripting Additions

way we can determ ne the type and nove its data directly
into a variable instead of an AEDesc. Now we don't have to
worry about disposing of the AEDesc | ater.

*/

theErr = AESi zeO!f Par an{ t heAEEvent,
keyDi rect Obj ect ,
&t ypeCode,
&si zeOf Par an ;
if(theErr !'= noErr){
/*
If we fail here, just return the error. W don't need to
do any cl eanup, because we've allocated nothing on the
heap yet. The Apple Event Manager autonatically adds the
error nunber to the reply as keyErrorNunber for nonzero
handl er returns.
*/

return thekErr;
}
el se{
i f((typeCode == typeChar) || (typeCode == typeStyledText) ||
(typeCode == typelntl Text)) {
/*
If one of these types match, we've been passed a nane
of a resource. Use AECet ParanPtr to nove it into our
string and transformit into a Pascal type string
that we can pass to Get NamedResource. |If we get an
error in AEGetParanPtr, just let it fall through to
the bottom of this handler.
*/

96 Sample Scripting Addition

CHAPTER 3

Writing Scripting Additions

theErr = AEGet ParanPtr (t heAEEvent, keyDirect (bject,
typeChar, &typeCode, (Ptr)&ourRezNane,
si zeof (our RezNane), &actual Size);

if(theErr == noErr) {
[* 'C string has a null as last char */
our RezNane[actual Si ze] = '\0';
/* convert to Pascal string */
c2pstr((char*) ourRezNane);
/* now grab the 'snd ' resource by nane*/
t heSndHandl e = Get NanedResour ce(kSndType,
(Const St r 255Par am) our RezNane) ;
/* check the error */
theErr = ResError();
i f(theErr == noErr)
theErr = Pl aySound(t heSndHandl e) ; [*call our */
/* sound code*/

}
}

el se {
i f(typeCode == typelLongl nteger) {

/*
If we get a typelLonglnteger, the user wants us to
play a sound by its resource |ID.

Appl eScript will send us a I ong here and the
Resource Manager wants us to pass in a short, so
let's have the Apple Event Manager coerce it to a
short for us.

*/

theErr = AEGet ParanPtr (t heAEEvent, keyDirect Cbject,
typeShort | nteger, &typeCode,
(Ptr)&ourRezl D, sizeof (ourRezl D),
&act ual Si ze) ;

Sample Scripting Addition

97

98

CHAPTER 3

Writing Scripting Additions

if(theErr == noErr) {
/* now grab the 'snd resource by 1D */
t heSndHandl e = Get Resource (kSndType, our Rezl D);
/* check the error */
theErr = ResError();
i f(theErr == noErr)
theErr = Pl aySound(theSndHandl e); /*call our */
/* sound code*/

}

el se {
i f(typeCode == typeAlias) {

/*
If we receive a typeAlias, the user is asking us
to play a sound file. W want to use a FSSpec to
open the resource file, so once again we ask the
Appl e Event Manager to coerce data to the type
we need.

*/

theErr = AEGet ParanPtr (t heAEEvent, keyDirect (bject,
typeFSS, &typeCode
(Ptr) &our SoundFi | e,
si zeof (our SoundFi | e),
&act ual Si ze) ;
if(theErr != noErr)
return thekErr;
/* save off our current resource file */
curResFile = CurResFile();

/* open our resource file for reading */

our Fi | eRef = FSpOpenResFi | e(&ur SoundFi | e,
f sRdPerm ;

Sample Scripting Addition

CHAPTER 3

Writing Scripting Additions

/* check the error */

theErr = ResError();

i f(theErr != noErr)
return thekErr;

/* make our files resource fork top in the chain */
UseResFi | e(our Fi | eRef);

/*
Since we don't know for sure the resource id of
the targeted files '"snd ' resource, let's just
get the first (and supposedly only) one.

*/

t heSndHandl e = Get 11 ndResour ce(kSndType, 1);

/* check the error */
theErr = ResError();
i f(theErr == noErr)
theErr = Pl aySound(t heSndHandl e) ;

/* restore resource chain and close our file */
UseResFi |l e(cur ResFil e);
Cl oseResFi |l e(ourFi |l eRef);

}

else /* wasn't a string, alias, or nunber so exit */
return err AEEvent Not Handl ed;

}

/* di spose 'snd handl e if necessary */
i f(theSndHandl e !'= nil) Rel easeResource(theSndHandl e);

return theErr;

Sample Scripting Addition

99

CHAPTER 3

Writing Scripting Additions

PEOETEEL bbb bbb rrirriirrnd
11

/1 Pl aySound(Handl e t heSoundHdl)

/1

/[l This is the code to play a 'snd '

/1

PEEEEIELE i

OSErr Pl aySound(Handl e t heSoundHdl)
{
/[* our variables */
OSEr r theErr = noErr;
SndChannel Ptr theSndChan = NULL; /*NULL pointer to a */
/* sound channel */

/* open a channel so we can do synchronous play */
theErr = SndNewChannel (&t heSndChan, sanpl edSynth,
i nitMono, NULL);

if (theBrr == noErr) /* play that sound */
theErr = SndPl ay (theSndChan, theSoundHdl, !kAsync);

/* di spose of the channel, if the sound channel was allocated */
i f (theSndChan != NULL)
SndDi sposeChannel (t heSndChan, ! kQui et Now) ;

return theErr;

100 Sample Scripting Addition

CHAPTER 3

Writing Scripting Additions

/**

Resource file for PlaySnd.c

Copyri ght ®1993 Apple Conputer Inc.
Al'l rights reserved.

Witten by Donald O son

***/

#i ncl ude "Types.r"
#i ncl ude "SysTypes.r"
#i ncl ude " AEUser Ter nTypes.r"

/* our version 1 and 2 resources */
resource 'vers' (1) {

0Ox1,

0x0,

final,

0x0,

ver US,

"1.0",

"1.0, Copyright ® 1993 Appl e Comput™

"er, Inc. Al rights reserved."

H

resource 'vers' (2) {

0x1,

0x0,

final,

0x0,

ver US,

"1.0",

"(by Donald d son)"

Sample Scripting Addition

101

/*

*/

CHAPTER 3

Writing Scripting Additions

This string is used when the user double-clicks on a scripting
addition file. Since it contains nothing that can be opened or
printed, the user gets this in a dialog box (thanks to the
system for making this happen).

resource 'STR ' (-16397) {

/*

*/

"Thi s docunent can not be opened or printed."”

" It extends the functionality of AppleScript™"
"and shoul d be placed in the Scripting Additions"
"folder found in the Extensions folder of your"

" System Fol der. "

Qur 'aete' resource. It's here that we describe to

Appl eScript the syntax of our scripting addition. Notice that
the conmment field contains information about the event and
its paranmeters. These comments can be displayed by the

Script Editor if the user selects this scripting addition in
the term nol ogy browser invoked when the user chooses the
Open Dictionary nmenu

resource 'aete' (0, "Play Sound scripting addition") {

102

0x0,
- 0x70,
engli sh,
roman,
{ [/* array Suites: 1 elements */
[* 1] */
"System (bj ect Suite"
'syso',
Sample Scripting Addition

CHAPTER 3

Writing Scripting Additions

[* array Events: 1 elenents */
[* [1] */

"play sound",

" This is the syntax for invoking this scripting”
addition from Appl eScript ™",
"aevt',

"plsn',

noRepl y,

"The reply is not required",
repl yOpti onal ,

singleltem

not Enurrer at ed,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

'Rk ok k!
1

"id or nane of 'snd

resource to play"
or path to a sound file",

di r ect Par anRequi r ed,

singleltem

not Enuner at ed,

doesnt ChangeSt at e,

reserved,

Sample Scripting Addition

103

104

CHAPTER 3

Writing Scripting Additions

reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,
reserved,

{
}

[* array O herParans: 0 elenents */

/* array Classes: 0 elenents */

/* array ConparisonOps: 0 elenents */

[* array Enumerations: 0 elenents */

Sample Scripting Addition

A PPENDTIX

Scripting Additions at a Glance

This appendix summarizes the commands described in this guide and the
placeholders used in syntax descriptions. For more detailed information about
these commands, see Chapter 2, “Scripting Addition Commands.”

Scripting Addition Commands

Table A-1 beginning on page 106 summarizes the scripting addition commands
described in this guide and their syntax.

Scripting Addition Commands 105

APPENDIX

Scripting Additions at a Glance

ponuuod

areq

9p0d 10117

9OURIDJY

90UBIDJY

Q0URIJY
QUON
QUON

1280y
Suing

SQUON
unsay

SurysSojurp
SuriygSopip 1duoid yim

SuriygSowip

91ep 1ualind

114020124234 SS8I9€ 3SO0 |2

SurysSomp 1duoid y1m Jap |0} 3sooyd

1ap |0} asooyd
sadizfosy adAK1 Jo

v SurygSop 1duoid yim a1} asooyd
sadfifjoisy adAk1 Jo a1 asooyod
SuryygSojmp 1duoad yim 8|1} asooyo

9 |1] asooyd

|2ge | uo 11ed | |dde

uo 11e9 | |dde asooyd

|2ge | uo 11ed | |dde
uo 11eo | |dde asooyd

SuryygSopp 1duoad Y1 m

uo 11eo | |dde asooyo
uo 11eo | |[dde asooyd
1282jur daaq

deaq

Surygs Jagunu | IDSY

1a8qu1 1919 feys | IDSY

U0y ddyoaouaiafa4 3 1en 119e

xejuAs

9]ep 1ual1iInd

§S99J®k 9S0 |J

18p |0} asooyd

911} asooyd

uo 11ed | |dde asooys

deaq
laqunu | [IOSV
la1oeJieys | DSy

9]eA |10
puewwo)

suonippe bunduios 1dioss|ddy prepuels 1o) XejuAs puewiwo)

T-v 9|qelL

Scripting Addition Commands

106

APPENDIX

Scripting Additions at a Glance

ponu1juod

uins 10 sery

I9qUINU 9JUSIJ3I J[T]

1289y

QOURIDJY
QUON]

303lqo 3drdg
s3urns jo 3817
s3urns Jo 3817
10231 Oju] 914
12801

(Buins e)
pauIniay

1Xa], pue (3urns e)
pauIniay

uopng ‘sarprodoxd
OM} JJIM PIODAY

unsay

JUDNSSY]D Se

uoyvoyddyi0Q4ap10f 01 y1ed
uoyvonyddyiQ4ap10f 01 y1ed

uvajoog uo Iss wiad a11m
a1o120ua4224 ssadoe 1o} uado

a1o120ua42f24 ssadoe 1o) uado
Surigs u | Suwiys Jo 13S))0

Surgs8opip aueu 1 |ne Jap
Surags8opp 1duoid yi1m |11 mau

Sur43s8opip aueu 1 nejap o | 1] mau

SuragsSopp 1duoid yi1wmwm a9 1] mau

911 mau

Suriys 6o |

a1Jo1aoua4afa4 1d 119s peo |

1ap]0J0120U243f24 18P [0} 1S 1|

SHSIp 1s1]
1409024234 10} O JU |

1401 aoua242f24 J0a 130

[Surygdoip | 408311 uod 1 yi1m]

o [Suriyg8oipp | 42823u1 uo1Ing 1 e jap |

=

=

[

[#srquoyng suoiing |

[Surygdoip 1amsue 1 |nejsp |
SuriysSomp Bo e 1p Ae |ds Ip

xejuAs

01 yled

Ssao20e 0] uado

18s}jo

914 mau
Bo |

1d 119s peo |
3p o} 1s 1]
SASIp 1s ||
o} ojul

joa 186

6o e Ip Ae |ds Ip
puewwo)

(panunuod) suonippe Bunduoas 1duoss|ddy plepuels 1o} XeljuAs puewwod

T-v 9|qelL

107

Scripting Addition Commands

APPENDIX

Scripting Additions at a Glance

panu1juod
UON]
UON]
UON]

s3uLns jo 3sr]

uni st yeys

3duos Aq pauiniaz anjep

1803y

ejep paysonbay

anjea [ear 10 19833u]

unsay

rrrrr

r

r

fo| dois

Bo| 1Je1s

1a82jur 01 3140 [a0Ua43fa1 JO3 13S
s juauoduod Bu1id 1ios

Juanoduwo)Suiydiios U |
S4ajouvIvJO1s1] S telaueted yi1m
Suriygi0aouaiafos 1d 119s un

Juanoduwo)Suiydiios U |
Suri3gi0aouaiajos 1d 119s un |

siajouvIvgJOIs1] s lelaueted yi1m
Su143§40a0ua42f24 1d 119S Un i

Su143§40a0ua42f24 1d 119s un i

}jsalJeau 01 | 049z plewo]
| umop | dn) Buipuno.
Aoquinu puno I

Aoquinu puno I

[[sto3mmpop [s]1o1 w1 9p Buisn]

AUYNSSO se |

[Sutyys @10 40q | Surys |run |

128qur 01 | 498231 104]
[408a3u1 wo 1)]
3J140[ouUa42fa4 pes |

[4oqunu paas yim |
[oquunu 01 4oqunu wo 1} |
[doqunu]

Jagqunu wopue J

xejuAs

Bo | dois
Bo| 1Je1s
J09 18S

s juauoduod Bu 11d 140s

1d 110s un

puno I

pes .l

laqunu wopue I
puewwo)

(panunuod) suonippe Bunduoas 1duoss|ddy plepuels 1o} XeljuAs puewwod

T-v 9|qelL

Scripting Addition Commands

108

APPENDIX

Scripting Additions at a Glance

1a82ur e Bulliels
. 1a32qur 10)
s J1{0 024224 01 LMOLVIVY 81 1M

1a8ur 1e Bulllels
- [1{020U24224 01 LIMOLVIVY 81 1M

1a82qu1 10]
- [1{0J20U242f34 O) HLIMOLUIVY 81 1M

QUON J1{0120U242f34 O) HLIMOLUIVY 81 1M 91llm
1933u] D 01 au 1 IO 01 au)

(ou | saA | yse) Buioe |dal
. J1{0[0U42fa4 U |
1quLivA3lqO1drios 1d 119s 9101S

r

(ou | sahk | yse) Buioe |dal

- 21quLivA393lq01drios 1d 119Ss 2101s
J1J00U242f34 U |
- 21quLiv A$93[q03draos 1d 119S 8101s
QUON a1quIiv A192lqO3dios 1d 110s 9101S 1d 140s @1J01S
ynsay xeluhs puewwo)

(panunuod) suonippe Bunduoas 1duoss|ddy plepuels 1o} XeljuAs puewwod T-V 9|qel

109

Scripting Addition Commands

APPENDIX

Scripting Additions at a Glance

Placeholders

110

Table A-2 explains the placeholders used in the syntax descriptions in

this appendix.

Table A-2 Placeholders used in syntax descriptions

Placeholder Explanation

Boolean An expression that evaluates tot rue or f al se.

buttonList A list of strings, each of which represents a button in
a dialog box. The maximum number of characters
in each string is 255. You can specify up to three
buttons.

className A class identifier or an expression that evaluates to
an object class identifier.

dataToWrite Data of an appropriate type to be written to a
specified file.

delimiters String or constant specifying a delimiter, or a
two-item list of strings or constants.

dialogString A string of up to 255 characters.

folderOrApplication One of these constants: appl e nenu, appl e nenu
items,control panel s,desktop, extensi ons,
pref erences, print nonitor, printnonitor
docunents,trash,startup itemnms,system
fol der,tenporary itens,startup disk,
frontnost application.

integer An expression that evaluates to an integer.

listOfParameters A list of parameters to be passed to the target’s
Run handler.

listOfTypes A list of strings, each of which is a four-character file

Placeholders

type code that identifies a particular type, such as
"TEXT","APPL"," PI CT", or " PNTG'.

continued

APPENDIX

Scripting Additions at a Glance

Table A-2 Placeholders used in syntax descriptions (continued)
Placeholder Explanation
nameString A string of the form
" Disk: Folder1: Folder2: . . . : Filename" .
number An expression that evaluates to an integer or
real number.
referenceOrString A reference of the form f i | e nameString or al i as
nameString, or a string that consists of a valid script.
referenceToApplication A reference of the form appl i cati on
" Disk: Folder1: Folder2: ApplicationName" .
referenceToFile A reference of the form f i | e nameString or

al i as nameString.

referenceToFolder A reference of the form f i | e nameString, al i as
nameString, or f ol der nameString that specifies a
folder or an alias to a folder.

scriptObject Variable A variable whose value is a script object.

scriptingComponent A string that consists of the name of a scripting
component.

string An expression that evaluates to a string.

Placeholders 111

Index

Symbols

() in syntax descriptions xi
[]in syntax descriptions xi
| in syntax descriptions xii

A

Activate command 8-10

AddRecor d handler 77-81

' aete' resource type 86-92, 102

alert icons, displayed by Display Dialog 26
alert sound 13

Apple event coercion scripting additions 87-88
Apple event handler scripting additions 86-87
ASCII Character command 10-11

ASCII Number command 11-12

‘ascr' creator type 85

B

Beep command 13
brackets, in syntax descriptions xi

C

Caution icon, displayed by Display Dialog 26
Choose Application command 14-16

Choose File command 16-17

Choose Folder command 18-19

Close Access command 19-21

command definitions 8-70, 106-111

Activate 8-10

ASCII Character 10-11
ASCII Number 11-12
Beep 13

Choose Application 14-16
Choose File 16-17
Choose Folder 18-19
Close Access 19-21
Current Date 21-22
Display Dialog 22-26
Get EOF 27-28

Info For 28-31

List Disks 32

List Folder 33-34
Load Script 34-36
Log 36-37

New File 37-39

Offset 3941

Open for Access 4143
Path To 4345
Random Number 46-48
Read 48-53

Round 54-55

Run Script 55-57
Scripting Components 57-58
Set EOF 58-60

Start Log 60-62

Stop Log 62-63

Store Script 63-66
Time to GMT 66-67
Write 68-70

Command-period

to cancel a dialog box 25
to cancel Beep command 13

Continue statements 4

113

INDEX

CSDS coercion form 88 G
CSPT coercion form 88
Current Date command 21-22 Get EOF command 27-28

Greenwich mean time 66

D
H
Del et eRecor d handler 74-77
dialects xi handlers in scripting additions
dictionary, scripting addition 3 Apple event 86-87
Display Dialog command 3, 22-26 coercion 87-88
E l,J, K
Esc key icons
to cancel a dialog box 25 displayed by Display Dialog command 25
to cancel Beep command 13 scripting addition 1
Info For command 28-31
installing scripting additions 1-2
F
File Commands L, M
Info For 28-31
List Disks 32 List Disks command 32
List Folder 33-34 List Folder command 33-34
Path To 43-45 Load Script command 34-36
File Info object class, defined by Info For Log command 36-37
command 29-30
file mark
defined 71
and Read command 51 N
setting without reading or writing data 69, 78,]
79, 80 New File command 37-39

Note icon, displayed by Display Dialog 26
Numerics commands

Random Number 46-48

Read 54-55

and Write command 69
file reference number, defined 71
file types, displayed by Choose File 17

114

INDEX

O

object class definitions
File Info, returned by Info For 29-31
Reply, returned by Display Dialog 24
Object Support Library 93
Offset command 3941
and Scriptable Text Editor’s Offset property 4
QpenFi | el fItExi sts handler 82-83
Open for Access command 41-43
' osax' resource type 85-104
' 0si z' resource 89-90
owned resources, for scripting additions 89, 91

PQ

parentheses, in syntax descriptions xi

Path To command 43-45

placeholders, in syntax descriptions xi, 110-111
Play Sound scripting addition 93-104

R

Random Number command 46-48
Read command 48-53
ReadRecor d handler 71-73
Read /Write Commands
Close Access 19-21
deleting a record with 73-77
extracting a record with 71-73
Get EOF 27-28
inserting a record with 77-81
Open for Access 41-43
opening or creating a file with 81-83
Read 48-53
Set EOF 58-60
using 70-83
Write 68-70
records, used for reply values 91-93

Reply object class 24

reserved words 3

resource chain, and scripting additions 91

resource type declaration, for ' osi z'
resource 89-90

Round command 54-55

Run Script command 55-57

S

Scriptable Text Editor x
scripting additions
Apple event coercion 87-88
Apple event handler 86-87
commands 5-83
defined 1
dictionaries 3,5
example in C 93-104
files for standard 5-8
installing 1-2
listed 6-8
owned resources 89, 91
resource chain and 91
sending 24
types of 85-88
using records for reply values 91-93
writing 85-104
Scripting Additions folder 2
scripting addition size resource 89-90
Scripting Components command 57-58
Set EOF command 58-60
Start Log command 60-62
Stop icon, displayed by Display Dialog 26
Stop Log command 62-63
Store Script command 63-66
String Commands
ASCII Character 10-11
ASCII Number 11-12
Offset 3941

115

INDEX

T

Tell statements 24
Time to GMT command 66-67
typographic conventions xi-xii

U

undefined commands 2

Vv

vertical bars, in syntax descriptions xii

W, XY, Z

Write command 68-70
Wit eNewRecor d handler 79-81

116

T H E A PPLE PUBLISHTING

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from
the text and graphic files. Line art was
created using Adobe " Tllustrator.
PostScript' ", the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type
is Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as

program listings, are set in Apple Courier.

WRITERS
Sean Cotter and Pegi Wheeler

DEVELOPMENTAL EDITOR
Jeanne Woodward

ILLUSTRATOR
Deborah Dennis

PRODUCTION EDITOR
Rex Wolf

Special thanks to Donald Olson.

Acknowledgments to Scott Bongiorno,
Ron Karr, Yuji Hachiya, Jon Pugh,
Brett Sher, and the entire AppleScript
team.

	AppleScript Scripting Additions Guide
	Contents
	Figures, Tables, and Listings
	About This Guide
	Audience
	Organization of This Guide
	Sample Applications and Scripts
	For More Information
	Getting Started
	AppleScript Language
	Other AppleScript Dialects
	Information for Programmers

	Conventions Used in This Guide

	Introduction to Scripting Additions
	Installing Scripting Additions
	Sending Scripting Addition Commands

	Scripting Addition Commands
	Scripting Addition Files
	Command Definitions
	Using Read/Write Commands

	Writing Scripting Additions
	Types of Scripting Additions
	Apple Event Handler Scripting Addition
	Apple Event Coercions Scripting Addition

	The Scripting Addition Size Resource
	Using Other Resources With Scripting Additions
	Using Records for Scripting Addition Reply Values
	Scripting Addition Limitations
	Sample Scripting Addition

	Scripting Additions at a Glance
	Scripting Addition Commands
	Placeholders

	Index

