
.®
A/UX® Programmer's Reference
Sections 2 and 3(A-L)

030-0784

• APPLE COMPUTER, INC.

© 1990, Apple Computer, Inc., and
UniSoft Corporation. All rights
reserved.

Portions of this document have been
previously copyrighted by AT&T
Information Systems and the Regents
of the University of California, and are
reproduced with permission. Under
the copyright laws, this manual may
not be copied, in whole or part,
without the written consent of Apple
or UniSoft. The same proprietary and
copyright notices must be affIxed to
any permitted copies as were affIxed to
the original. Under the law, copying
includes translating into another
language or format.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the "keyboard" Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, NUX,
ImageWriter, LaserWriter, and
Macintosh are registered trademarks of
Apple Computer, Inc.

B-NET is a registered trademark of
UniSoft Corporation.

DEC is a trademark of Digital
Equipment Corporation.

Diablo and Ethernet are registered
trademarks of Xerox Corporation.

Hewlett-Packard 2631 is a trademark of
Hewlett-Packard.

030-0784

MaePaint is a registered trademark of
Claris Corporation.

POSTSCRIPT is a registered trademark,
and TRANSCRIPT is a trademark, of
Adobe Systems, Incorporated.

UNIX is a registered trademark of
AT&T Information Systems.

Simultaneously published in the
United States and Canada.

LIMITED WARRAN1Y ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, Apple
will replace the media or manual at
no charge to you provided you return
the item to be replaced with proof of
purchase to Apple or an authorized
Apple dealer during the 90-day period
after you purchased the software. In
addition, Apple will replace damaged
software media and manuals for as
long as the software product is
included in Apple's Media Exchange
Program. While not an upgrade or
update method, this program offers
additional protection for up to two
years or more from the date of your
original purchase. See your
authorized Apple dealer for program
coverage and details. In some
countries the replacement period
may be different, check with your
authorized Apple dealer.

All IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABIIJ1Y AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
TIllS PRODUCf.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRAN1Y OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECf TO TInS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABll.ITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, TInS MANUAL IS SOLD
"AS IS," AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALDY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
UABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANlY AND REMEDIES
SET FORm ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OmERS, ORAL
OR WRflTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

030-0784

Contents

Preface

Introduction

Section 2

Section 3

Revision C

A/UX Programmer's Reference

System Calls

Subroutines (A-L)

-v-

Preface

Conventions Used in This Manual
A/UX® manuals follow certain conventions regarding presentation of
information. Words or terms that require special emphasis appear in
specific fonts within the text of the manual. The following sections
explain the conventions used in this manual.

Significant fonts
Words that you see on the screen or that you must type exactly as
shown appear in Courier font. For example, when you begin an
A/UX work session, you see the following on the screen:

login:

The text shows login: in Courier typeface to indicate that it
appears on the screen. If the next step in the manual is

Enter start

start appears in Courier to indicate that you must type in the
word. Words that you must replace with a value appropriate to a
particular set of circumstances appear in italics. Using the example just
described, if the next step in the manual is

login: username

you type in your name-Laura, for example- so the screen shows:

login: Laura

Key presses
Certain keys are identified with names on the keyboard. These modifier
and character keys perform functions, often in combination with other
keys. In the manuals, the names of these keys appear in the format of
an Initial Capital letter followed by SMALL CAPITAL letters.

The list that follows provides the most common keynames.

RETURN

OPTION

DELETE
CAPS LOCK

For example, if you enter

Revision C

- vii -

SHIFf

CONTROL
ESCAPE

Applee

instead of

Apple

you would position the cursor to the right of the word and press the
DELETE key once to erase the additional e.

For cases in which you use two or more keys together to perform a
specific function, the keynames are shown connected with hyphens.
For example, if you see

Press CONTROL-C

you must press CONTROL and C simultaneously (CONTROL-C normally
cancels the execution of the current command).

Terminology
In NUX manuals, a certain term can represent a specific set of actions.
For example, the word Enter indicates that you type in an entry and
press the RETURN key. If you were to see

Enter the following command: whoami

you would type whoami and press the RETURN key. The system
would then respond by identifying your login name.

Here is a list of common terms and their corresponding actions.

Term
Enter

Press

Type

Click

Action
Type in the entry and press the RETURN key

Press a single letter or key without pressing the
RETURN key

Type in the letter or letters without pressing the
RETURN key

Press and then immediately release the mouse button

- viii -
Revision C

Term
Select

Drag

Choose

Action
Position the pointer on an item and click the mouse
button

Position the pointer on an icon, press and hold down
the mouse button while moving the mouse. Release
the mouse button when you reach the desired
position.

Activate a command title in the menu bar. While
holding down the mouse button, drag the pointer to a
command name in the menu and then release the
mouse button. An example is to drag the File menu
down until the command name Open appears
highlighted and then release the mouse button.

Syntax notation
NUX commands follow a specific order of entry. A typical NUX
command has this form:

command [flag-option] [argument] ...

The elements of a command have the following meanings.

Element

command

flag-option

argument

Revision C

Description
Is the command name.

Is one or more optional arguments that modify the
command. Most flag -options have the form

[-opt...]
where opt is a letter representing an option.
Commands can take one or more options.

Is a modification or specification of the command;
usually a filf'~ame or symbols representing one or
more filenames.

- ix -

Element

brackets ([])

ellipses (...)

Description

Surround an optional item-that is, an item that you
do not need to include for the command to execute.

Follow an argument that may be repeated any
number of times.

For example, the command to list the contents of a directory (Is) is
followed below by its possible flag options and the optional argument
names.

Is [-R] [-a] [-d] [-C] [-x] [-m] [-1] [-L]
[-n] [-0] [-g] [-r] [-t] [-u] [-c] [-p] [-F]

[-b] [-q] [-i] [-s] [names]

You can enter

Is -a /users

to list all entries of the directory /users, where

Is
-a
/users

Represents the command name
Indicates that all entries of the directory be listed
Names which directory is to be listed

Com mand reference notation
Reference material is organized by section numbers. The standard
NUX cross-reference notation is

cmd(sect)

where cmd is the name of the command, file, or other facility; sect is
the section number where the entry resides.

D Commands followed by section numbers (lM), (7), or (8) are listed
in A/UX System Administrator's Reference.

D Commands followed by section numbers (1), (le), (lG), (IN), and
(6) are listed in A/UX Command Reference.

D Commands followed by section numbers (2), (3), (4), and (5) are
listed in A/UX Programmer's Reference.

- x-
Revision C

For example,

cat(l)

refers to the command cat, which is described in Section 1 of AIUX
Command Reference. References can also be called up on the screen.
The man command or the apropos command displays pages from
the reference manuals directly on the screen. For example, enter the
command

man cat

In this example, the manual page for the cat command including its
description, syntax, options, and other pertinent infonnation appears on
the screen. To exit, continue pressing the space bar until you see a
command prompt, or press Q at any time to return immediately to your
command prompt. The manuals often refer to infonnation discussed in
another guide in the suite. The fonnat for this type of cross reference is
"Chapter Title," Name of Guide. For a complete description of NUX
guides, see Road Map to AIUX Documentation. This guide contains
descriptions of each NUX guide, the part numbers, and the ordering
information for all the guides in the NUX documentation suite.

- xi -
Revision C

Introduction

to the A/UX Reference Manuals

1. How to use the reference manuals

AIUX Command Reference, AIUX Programmer's Reference, and AIUX
System Administrator's Reference are reference manuals for all the pro­
grams, utilities, and standard file formats included with your NUX®
system.

The reference manuals constitute a compact encyclopedia of A/UX
information. They are not intended to be tutorials or learning guides.
If you are new to A/UX or are unfamiliar with a specific functional
area (such as the shells or the text formatting programs), you should
first read AIUX Essentials and the other NUX user guides. After you
have worked with A/UX, the reference manuals help you understand
new features or refresh your memory about command features you
already know.

2. Information contained in the reference manuals

A/UX reference manuals are divided into three volumes:

• The two-part AIUX Command Reference contains information
for the general user. It describes commands you type at the
NUX prompt that list your files, compile programs, format text,
change your shell, and so on. It also includes programs used in
scripts and command language procedures. The commands in
this manual generally reside in the directories /bin,
/usr/bin and /usr/ucb.

• The two-part AIUX Programmer's Reference contains informa­
tion for the programmer. It describes utilities for programming,
such as system calls, file formats of subroutines, and miscellane­
ous programming facilities.

• AIUX System Administrator's Reference contains infonnation for
the system administrator. It describes commands you type at the
A/UX prompt to control your machine, such as accounting

Introduction 1
Revision C

commands, backing up your system, and charting your system's
activity. These commands generally reside in the directories
fete, /usr/ete,and /usr/lib.

These areas can overlap. For example, if you are the only person using
your machine, then you are both the general user and the system
administrator.

To help direct you to the correct manual, you may refer to A/UX Refer­
ence Summary and Index, which is a separate volume. This manual
summarizes information contained in the other NUX reference manu­
als. The three parts of this manual are a classification of commands by
function, a listing of command synopses, and an index.

3. How the reference manuals are organized

All manual pages are grouped by section. The sections are grouped by
general function and are numbered according to standard conventions
as follows:

1 User commands

1M System maintenance commands

2 System calls

3 Subroutines

4 File formats

5 Miscellaneous facilities

6 Games

7 Drivers and interfaces for devices

8 NUX Startup shell commands

Manual pages are collated alphabetically by the primary name associ­
ated with each. For the individual sections, a table of contents is pro­
vided to show the sequence of manual pages. A notable exception to
the alphabetical sequence of manual pages is the first entry at the start
of each section. As a representative example, intro.1 appears at
the start of Section 1. These intro. section-number manual pages
are brought to the front of each section because they introduce the

2 NUX Programmer's Reference
Revision C

other man pages in the same section, rather than describe a command
or similar provision of A/UX.

Each of the reference manuals includes at least one complete section of
man pages. For example, the A/UX Command Reference contains sec­
tions I and 6. However, since Section I (User Commands) is so large,
this manual is divided into two volumes, the first containing Section I
commands that begin with letters A through L, and the second contain­
ing Section 6 commands and Section I commands that begin with
letters M through Z. The sections included in each volume are as fol­
lows.

A/UX Command Reference contains sections I and 6. Note that both of
these sections describe commands and programs available to the gen­
eral user .

• Section I-User Commands
The commands in Section I may also belong to a special
category. Where applicable, these categories are indicated by the
letter designation that follows the section number. For example,
the N in ypcat(IN) indicates networking as described follow­
ing.

IC Communications commands, such as cu and
tip.

IG Graphics commands, such as graph and
tplot.

IN Networking commands, such as those which help
support various networking subsystems, including
the Network File System (NFS), Remote Process
Control (RPC), and Internet subsystem .

• Section 6-User Commands
This section contains all the games, such as cribbage and
worms.

Introduction 3
Revision C

AIUX Programmer's Reference contains sections 2 through 5.

4

• Section 2-System Calls
This section describes the services provided by the NUX system
kernel, including the C language interface. It includes two spe­
cial categories. Where applicable. these categories are indicated
by the letter designation that follows the section number. For
example, the N in connect(2N) indicates networking as
described following.

2N Networking system calls

2P POSIX system calls

• Section 3-Subroutines
This section describes the available subroutines. The binary ver­
sions are in the system libraries in the /lib and /usr/lib
directories. The section includes six special categories. Where
applicable, these categories are indicated by the letter designa­
tion that follows the section number. For example, the N in
mount(3N) indicates networking as described following.

3C C and assembler library routines

3F Fortran library routines

3M Mathematical library routines

3N Networking routines

2P POSIX routines

3S Standard I/O library routines

3X Miscellaneous routines

• Section 4--File Formats
This section describes the structure of some files, but does not
include files that are used by only one command (such as the
assembler's intermediate files). The C language struct
declarations corresponding to these formats are in the
/usr/include and /usr/include/sys directories.
There is one special category in this section. Where applicable,
these categories are indicated by the letter designation that fol­
lows the section number. For example, the N in

NUX Programmer's Reference
Revision C

protocols(4N) indicates networking as described following.

4N Networking fonnats

• Section 5-Miscellaneous facilities
This section contains various character sets, macro packages, and
other miscellaneous formats. There are two special categories in
this section. Where applicable, these categories are indicated by
the letter designation that follows the section number. For exam­
ple, the P in t cp{lP) indicates a protocol as described follow­
ing. by the letter designation in parenthesis at the top of the
page:

SF Protocol families

SP Protocol descriptions

AIUX System Administrator's Reference contains sections 1M, 7 and 8.

• Section IM-System Maintenance Commands
This section contains system maintenance programs such as
fsck and mkfs.

• Section 7-Drivers and Interfaces for Devices
This section discusses the drivers and interfaces through which
devices are normally accessed. While access to one or more disk
devices is fairly transparent when you are working with files, the
provision of device files permits you more explicit modes with
which to access particular disks or disk partitions, as well as
other types of devices such as tape drives and modems. For
example, a tape device may be accessed in automatic-rewind
mode through one or more of the device file names in the
/ dev / rmt directory (see tc(7». The FILES sections of these
manual pages identify all the device files supplied with the sys­
tem as well as those that are automatically generated by certain
A/UX configuration utilities. The names of the man pages gen­
erally refer to device names or device driver names, rather than
the names of the device files themselves.

• Section 8-A/UX Startup Shell Commands
This section describes the commands that are available from
within the A/UX Startup Shell, including detailed descriptions of

Introduction 5
RevisionC

those that contribute to the boot process and those that help with
the maintenance of file systems.

4. How a manual entry is organized

The name for a manual page entry normally appears twice, once in
each upper corner of a page. Like dictionary guide words, these names
appear at the top of every physical page. After each name is the sec­
tion number and, if applicable, a category letter enclosed in
parenthesis, such as (1) or (2N).

Some entries describe several routines or commands. For example,
chown and chgrp share a page with the name chown(1) at the
upper corners. If you turn to the page chgrp(1), you find a reference
to chown(1). (These cross-reference pages are only included in AIUX
Command Reference and AIUX System Administrator's Reference.)

All of the entries have a common format, and may include any of the
following parts:

NAME
is the name or names and a brief description.

SYNOPSIS
describes the syntax for using the command or routine.

DESCRIPTION
discusses what the program does.

FLAG OPTIONS
discusses the flag options.

EXAMPLES
gives an example or examples of usage.

RETURN VALUE
describes the value returned by a function.

ERRORS
describes the possible error conditions.

FILES
lists the filenames that are used by the program.

6 NUX Programmer's Reference
RevisionC

SEE ALSO
provides pointers to related infonnation.

DIAGNOSTICS
discusses the diagnostic messages that may be produced. Self­
explanatory messages are not listed.

WARNINGS
points out potential pitfalls.

BUGS
gives known bugs and sometimes deficiencies. Occasionally, it
describes the suggested fix.

5. Locating information in the reference manuals

The directory for the reference manuals, A/UX Reference Summary and
Index, can help you locate information through its index and sum­
maries. The tables of contents within each of the reference manuals
can be used also.

5.1 Table of contents

Each reference manual contains an overall table of contents and indivi­
dual section contents. The general table of contents lists the overall
contents of each volume. The more detailed section contents lists the
manual pages contained in each section and a brief description of their
function. For the most part, entries appear in alphabetic order within
each section.

5.2 Commands by function

This summary classifies the NUX user and administration commands
by the general, or most important function they perform. The complete
descriptions of these commands are found in A/UX Command Refer­
ence and A/UX System Administrator's Reference. Each is mentioned
just once in this listing.

The summary gives you a broader view of the commands that are avail­
able and the context in which they are most often used.

Introduction 7
Revision C

5.3 Command synopses

This section is a compact collection of syntax descriptions for all the
commands in AIUX Command Reference and AIUX System
Administrator's Reference. It may help you find the syntax of com­
mands more quickly when the syntax is all you need.

5.4 Index

The index lists key terms associated with A/UX subroutines and com­
mands. These key terms allow you to locate an entry when you don't
know the command or subroutine name.

The key terms were constructed by examining the meaning and usage
of the A/UX manual pages. It is designed to be more discriminating
and easier to use than the traditional permuted index, which lists nearly
all words found in the manual page NAME sections.

Most manual pages are indexed under more than one entry; for exam­
ple, lorder(l) is included under "archive files," "sorting," and
"cross-references." This way you are more likely to find the reference
you are looking for on the first try.

5.5 Online documentation

Besides the paper documentation in the reference manuals, A/UX pro­
vides several ways to search and read the contents of each reference
from your A/UX system.

To see a manual page displayed on your screen, enter the man(l)
command followed by the name of the entry you want to see. For
example,

man passwd

To see the description phrase from the NAME section of any manual
page, enter the whatis command followed by the name of the entry
you want to see. For example,

whatis apropos

8 AlUX Programmer's Reference
Revision C

To see a list of all manual pages whose descriptions contain a given
keyword or string, enter the apropos command followed by the
word or string. For example,

apropos remove

These online documentation commands are described more fully in the
manual pages man(1), whatis(1), and apropos(1) in AIUX Com­
mand Reference.

Introduction 9
Revision C

Table of Contents

Section 2: System Calls

intro(2) introduction to system calls and error numbers
accept(2N) .. accept a connection on a socket
access(2) .. determine accessibility of a file
acct(2) enable or disable process accounting
adjtime(2) .. correct the system time
alarm(2) ... set a process's alarm clock
async _ daemon(2) .. see nfssvc(2)
bind(2N) ... bind a name to a socket
brk(2) .. change data segment space allocation
chdir(2) ... change working directory
chmod(2) ., , change mode of file
chown(2) .. change owner and group of a file
chroot(2) .. change root directory
close(2) .. close a file descriptor
connect(2N) initiate a connection on a socket
crea t(2) create a new file or rewrite an existing one
dup(2) ... duplicate a descriptor
exec(2) ... execute a file
execl(2) .. see exec(2)
execle(2) ... see exec(2)
execlp(2) " ... see exec(2)
execv(2) .. see exec(2)
execve(2) ... see exec(2)
execvp(2) ... see exec(2)
exi t(2) .. terminate process
fchown(2) ... see chown(2)
fcntl(2) .. file control
flock(2) apply or remove an advisory lock on an open file
fork(2) ... create a new process
fsmount(2) mount a network file system (NFS)
fstat(2) .. see stat(2)
fsync(2) synchronize a file's in-core state with that on disk
ftruncate(2) .. see truncate(2)
getcompat(2) .. see setcompat(2)
getdirentries(2) ... get directory entries
getdomainname(2N) get/set name of current network domain
getdtablesize(2N) get descriptor table size

Section 2
Revision C

getegid(2) ... see getuid(2)
geteuid(2) ... see getuid(2)
getgid(2) ... see getuid(2)
getgroups(2) .. get group access list
gethostid(2N) get/set unique identifier of current host
getho stname(2N) get/set name of current host
get it imer(2) get/set value of interval timer
getpeername(2N) get name of connected peer
getpgrp(2) ... see getpid(2)
getpid(2) get process, process group, or parent process IDs
getppid(2) ... see getpid(2)
get sockname(2N) ... get socket name
getsockopt(2N) get and set options on sockets
gettimeofday(2) .. get/set date and time
getuid(2) get real and effective user IDs and group IDs
ioct1(2) .. control device
ki 11(2) send a signal to a process or a group of processes
1ink(2) ... link to a file
1isten(2N) listen for connections on a socket
locking(2) provide exclusive file regions for reading or writing
1 seek(2) .. move read/write file pointer
1 stat(2) .. see stat(2)
mkdir(2) ... make a directory file
mknod(2) make a directory, or a special or ordinary file
msgct 1(2) ... message control operations
msgget(2) ... get message queue
msgop(2) .. message operations
msgrcv(2) ... see msgop(2)
msgsnd(2) ... see msgop(2)
nfssvc(2) ... NFS daemons
nfs_getfh(2) ... get a file handle
nice(2) .. change priority of a process
open(2) ... open for reading or writing
pause(2) .. suspend process until signal
phys(2) allow a process to access physical addresses
pipe(2) ... create an interprocess channel
p1ock(2) lock process, text, or data in memory
profi1(2) ... execution time profile
ptrace(2) .. process trace
read(2) , read from file
read1ink(2) ... read value of a symbolic link
readv(2) .. see read(2)
reboot(2) .. reboot system or halt processor

ii System Calls
RevisionC

recv(2N) .. receive a message from a socket
recvfrom(2N) ... see recv(2N)
recvmsg(2N) .. see recv(2N)
rename(2) ... , change the name of a file
rmdir(2) .. remove a directory file
sbrk(2) .. see brk(2)
select(2N) .. synchronous I/O mUltiplexing
semctl(2) .. semaphore control operations
semget(2) .. get set of semaphores
semop(2) ... semaphore operations
send(2N) .. send a message from a socket
sendmsg(2N) .. see send(2N)
sendto(2N) .. see send(2N)
setcompat(2) set or get process compatibility mode
setdomainname(2N) .. " see getdomainname(2N)
setgid(2) ... see setuid(2)
setgroups(2) .. set group access list
sethostid(2N) .. see gethostid(2N)
sethostname(2N) see gethostname(2N)
seti timer(2) .. see geti timer(2)
setpgid(2P) set process group ID for job control
setpgrp(2) ... set process group ID
setregid(2) .. set real and effective group ID
setreuid(2) .. set real and effective user ID
setsid(2P) create session and set process group ID
setsockopt(2N) .. see getsockopt(2N)
settimeofday(2) see gettimeofday(2)
setuid(2) .. set user and group ID
shma t(2) ... see shmop(2)
shmctl(2) shared memory control operations
shmdt(2) ... see shmop(2)
shmget(2) .. get shared memory segment
shmop(2) .. shared memory operations
shutdown(2N) shut down part of a full-duplex connection
sigblock(2) .. block signals
sigmask(2) .. see sigblock(2)
sigpause(2) release blocked signals and wait for interrupt
sigpending(2P) ... examine pending signals
sigsetmask(2) ... set current signal mask
sigstack(2) ... set or get signal stack context
sigvec(2) optional BSD-compatible software signal facilities
socket(2N) create an endpoint for communication
stat(2) ... get file status

Section 2
Revision C

iii

sta tf s(2) ... get file-system statistics
stime(2) .. set time
symlink(2) .. make symbolic link to a file
sync(2) ... update superblock
t ime(2) .. get time
times(2) get process and child process times
truncate(2) truncate a file to a specified length
ulimit(2) .. get and set user limits
umask(2) .. set and get file creation mask
urnount(2) ... unmount a file system
uname(2) ... get name of current system
unlink(2) .. remove directory entry
unmount(2) ... remove a file system
ustat(2) ... get file system statistics
u t ime(2) set file access and modification times
uvar(2) return system-specific configuration information
w ai t(2) wait for child process to stop or terminate
wait3(2N) wait for child process to stop or terminate
write(2) ... write on a file
writev(2) ... see write(2)
_ exi t(2) .. see exi t(2)

iv System Calls
RevisionC

intro(2) intro(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
This section describes all of the AjUX® system calls. The system
calls identified with the letter "P" following the section number
are part of the NUX POSIX environment. The NUX POSIX
programming environment is described in the AIUX Guide to PO­
SIX and A/UX Programming Languages and Tools, Volume 1.
Most of these calls have one or more error returns. An error con­
dition is indicated by a returned value that is otherwise impossible,
which is almost always -1. The individual descriptions specify
the details. An error number is also made available in the external
variable errno, which is not cleared on successful calls. So
errno, should be tested only after an error has been indicated.

There is a table of messages associated with each error and a rou­
tine for printing the message (see perror(3C). Each system­
call description attempts to list all possible error numbers.

ERRORS
The following is a complete list of AjUX error numbers and their
names as defined in <errno. h>. Also given is a description of
the most likely cause of the error.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in
some way forbidden except to its owner or the superuser. It
is also returned when ordinary users attempt modifications
reserved for the superuser.

2 ENOENT No such file or directory
This error occurs when a filename is specified and the file
should exist but doesn't, or when one of the directories in a
path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by
pid in kill or ptrace.

4 EINTR Interrupted system call
An asynchronous signal, such as an interrupt or quit, which
the user program elected to catch, occurred during a system
call. If execution is resumed after processing the signal, it

February, 1990
Revision C

1

intro(2) intro(2)

2

will appear as if the interrupted system call returned this error
condition.

S EIO I/O error
Some physical I/O error has occurred. This error may in
some cases occur on a call following the one to which it actu­
ally applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice that does not exist
or is beyond the limits of the device. It may also occur when,
for example, a tape drive is not online or if a disk pack is not
loaded on a drive.

7 E2BIG Argument list too long
An argument list longer than ARG MAX is presented to a
member of the exec family. -

8 ENOEXEC exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic
number (see a. out(4)).

9 EBADF Bad file number
Either a file descriptor does not refer to an open file, or a
read/write request is made to a file that is open only for
writing/reading.

10 ECHILD No children
A wai t was executed by a process that did not have existing
child processes waiting for it.

11 EAGAIN No more processes
The system is out of a resource that may be available later. A
for k failed because the system's process table is full or the
user is not allowed to create any more processes. A system
call that requires memory may also fail with this error if the
system is out of memory or swap space, but the request is
less than the system-imposed per process limit (see
ulimit(2)).

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more
space than the system is able to supply. This is not a tem­
porary condition; the maximum space size is a system param­
eter. The error may also occur if the arrangement of text,
data, and stack segments requires too many segmentation re-

February, 1990
Revision C

intro(2) intro(2)

gisters or if there is not enough swap space during a fork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by
the protection system.

14 EFAULT Badaddress
The system encountered a hardware fault when attempting to
use an argument of a system call.

15 ENOTBLK Block device required
A nonblock file was mentioned where a block device was re­
quired, for example, in mount.

16 EBUSY Mount device busy
The device or resource is currently unavailable. An attempt
was made to mount a device that was already mounted or to
dismount a device on which there is an active file (open file,
current directory, mounted-on file, or active text segment).
This error also occurs if an attempt is made to enable ac­
counting that is already enabled.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context,
for example, link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to
a device, for example, to read a write-only device.

20 ENOTDIR Not a directory
A nondirectory was specified where a directory is required,
for example, in a path prefix or as an argument to chdir(2).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINVAL Invalid argument
An invalid argument was implemented-for example,
dismounting a nonmounted device, mentioning an undefined
signal in signal or kill, reading or writing a file for
which lseek has generated a negative pointer. This error is
also generated by the math functions described in the (3M)
entries of this manual.

February, 1990 3
Revision C

intro(2) intro(2)

4

23 ENFILE File table overflow
The system file table is full and temporarily cannot accept
another open.

24 EMFILE Too many open files
A process may not have more than the maximum number of
file descriptors (OPEN MAX) open at a time. When a record
lock is being created wIth fentl, too many files have record
locks on them.

25 ENOTTY Not a typewriter
An attempt was made to ioetl(2) a file that is not a charac­
ter device file.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program
that is currently open for writing, or an attempt was made to
open for writing a pure-procedure program currently being
executed.

Note: If you are running a network file system (NFS)
and you are accessing a shared binary remotely, it is
possible that you will not get this errno.

27 EFBIG File too large
The size of a file exceeded the maximum file size given in
ULIMIT (see ulimit(2)).

28 ENOSPC No space left on device
During a wri te to an ordinary file, no free space is left on
the device. In fentl, the setting or removing of record
locks on a file cannot be accomplished because no more
record entries are left on the system.

29 ESP I P E Illegal seek
An lseek was issued to a pipe. This error should also be is­
sued for other nonseekable devices.

30 EROF S Read-only file system
An attempt to modify a file or directory was made on a de­
vice mounted read-only.

31 EMLINK Too many links
An attempt was made to create more than the maximum
number of links (LINK_MAX) to a file.

32 EPIPE Broken pipe
A write was attempted to a pipe on which there is no process

February, 1990
RevisionC

intro(2) intro(2)

to read the data. This condition normally generates a signal;
the error is returned if the signal is ignored.

33 EDOM Argument out of domain of function
The argument of a function in the math package (3M) is
beyond the domain of the function.

34 ERANGE Math result not representable
The value of a function in the math package (3M) is not
representable within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that
does not exist on the specified message queue (see
msgop(2».

36 EIDRM Identifier removed
This error is returned to processes that resume execution due
to the removal of an identifier from the name space of the file
system (see msgctl(2), semctl(2), and shmctl(2».

37 ECHRNG Channel number out of range
This errno is included for compatibility with AT&T.

38 EL2NSYNC Level 2 not synchronized
This errno is included for compatibility with AT&T.

39 EL3HLT Level 3 halted
This errno is included for compatibility with AT&T.

40 EL3RST Level 3 reset
This errno is included for compatibility with AT&T.

41 ELNRNG Link number out of range
This errno is included for compatibility with AT&T.

42 EUNATCH Protocol driver not attached
This errno is included for compatibility with AT&T.

43 ENOCS I No CSI structure available
This errno is included for compatibility with AT&T.

44 EL2HLT Level 2 halted
This errno is included for compatibility with AT&T.

45 EDEADLK Deadlock
A deadlock situation was detected and avoided.

55 EWOULDBLOCK Operation would block
An operation that would cause a process to block was at­
tempted on an object in nonblocking mode (see socket(2N)

February, 1990
Revision C

5

intro(2) intro(2)

6

and setcompat(2».

56 EINPROGRESS Operation now in progress
An operation that takes a long time to complete, such as
connect(2N), was started on a nonblocking object (see
socket(2N».

57 EALREADY Operation already in progress
An operation was attempted on a nonblocking object that al­
ready had an operation in progress.

58 ENOT SOCK Socket operation on non socket
A socket operation was attempted on an object that is not a
socket.

59 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a sock­
et.

60 EMSGSIZE Message too long
A message sent on a socket was larger than the internal mes­
sage buffer.

61 EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the semantics
of the socket type requested. For example, you cannot use
the internet UDP protocol with type SOCK_STREAM.

62 ENOPROTOOPT Bad protocol option
A bad option was specified in getsockopt(2) or
set s oCkopt(2).

63 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system, or
there is no implementation for it.

64 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into
the system, or there is no implementation for it.

65 EOPNOTSUPP Operation not supported on socket
The support for the operation on the selected socket type has
not been configured, or there is no implementation for it­
for example, trying to establish a connection on a datagram
socket.

66 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system,
or there is no implementation for it.

February, 1990
RevisionC

intro(2) intro(2)

67 EAFNOSUPPORT Address not supported by protocol family
An address incompatible with the requested protocol was
used. For example, PUP Internet addresses cannot necessari­
ly be used with ARPANET protocols.

68 EADDRlNUSE Address already in use
Only one usage of each address is nonnally pennitted.

69 EADDRNOTAVAIL Can't assign requested address
Nonnally results from an attempt to create a socket with an
address not on this machine.

70 ENETDOWN Network is down
A socket operation encountered a dead network.

71 ENE TUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

72 ENETRESET Network dropped connection on reset
The connected host crashed and rebooted.

73 ECONNABORTED Software caused connection abort
A connection abort was caused that was internal to the host
machine.

74 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This nonnally
results from the peer executing shutdown(2).

75 ENOBUFS No buffer space available
An operation on a socket or pipe was not perfonned because
the system lacked sufficient buffer space.

76 EISCONN Socket is already connected
A connect request was made on an already connected
socket; or a sendto or sendmsg request on a connected
socket specified a destination other than the connected party.

77 ENOTCONN Socket is not connected
A request to send or receive data was disallowed because the
socket had already been shut down with a previous shut­
down(2).

78 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket had
already been shut down with a previous shutdown(2).

80 ETIMEDOUT Connection timed out
A connect request failed because the connected party did

February, 1990
Revision C

7

intro(2) intro(2)

8

not properly respond after a period of time. (fhe timeout
period is dependent on the communications protocol.)

81 ECONNREFUSED Connection refused
No connection could be made because the target machine ac­
tively refused it This usually results from trying to connect
to a service that is inactive on the foreign host.

82 ELOOP Too many levels of symbolic links
A pathname lookup involved more than eight symbolic links.

83 ENAMETOOLONG Filename too long
A component of a pathname exceeded NAME _MAX charac­
ters, or an entire pathname exceeded PATH_MAX characters.

84 EHOS TDOWN Host is down
A socket operation encountered a defunct host.

85 EHOSTUNREACH No route to host
A socket operation was attempted to an unreachable host.

86 ENOTE SMP TY Directory not empty
A directory with entries other than . and.. was supplied to a
remove directory or rename call.

87 ENOSTR Device not a stream
A stream operation was attempted on a file descriptor that is
not a streams device.

88 ENODATA No data (for no delay I/O)
Reading from a stream and the O_NEDELAY flag is set (from
open(2) or fcntl(2», but no data is ready to be read.

89 ETIME Stream ioctl timeout
The timer set for a streams ioctl(2) system call has ex­
pired. The cause of this error is device specific and could in­
dicate either a hardware or software failure, or perhaps a
timeout value that is too short for the specific operation. The
status of the ioctl(2) operation is indeterminate.

90 ENOSR Out of stream resources
During a streams open(2), either no streams queues or no
streams-head data structures were available.

95 ESTALE Stale NFS file handle
A client referenced an open file after the file was deleted.

96 EREMOTE Too many levels of remote in path
An attempt was made to remotely mount a file system into a

February, 1990
RevisionC

intro(2) intro(2)

path that already has a remotely mounted component.

97 EPROCLIM Too many processes

98 EUSERS Too many users

100 EDEADLOCK Locking deadlock error
This error is returned by locking(2) if deadlock would oc­
cur or when the lock table overflows.

101 ENOLCK No locks available
If either FLCKREC or FLCKFIL is reached, the lock is not
allowed.

102 ENOSYS Funcnot implemented

DEFINITIONS
System Constants
The following are the default implementation-specific constants
defined in <limits. h> for the A/UX system that is used on the
Macintosh II®:

ARG MAX

CHAR BIT

CHAR MAX

CHILD MAX

INT MAX

LINK MAX

LONG MAX

MAXDOUBLE

NAME MAX

OPEN MAX

February, 1990
RevisionC

Maximum length of argument to exec
(5120).

Number of bits in a datum of type cha r
(8).

Maximum integer value of a char (255).

Maximum number of processes per user ID
(25).

Maximum decimal value of an int
(2,147,483,64 7).

Maximum number of links to a single file
(1000)

Maximum decimal value of along
(2,147,483,647).

Maximum decimal value of a double
(1.797693134862314 70e+ 308).

Maximum number of characters in a
filename (255). On System V file systems,
names are limited to 14 characters.

Maximum number of files a process can
have open (32).

9

intro(2) intro(2)

10

PATH MAX

PID MAX

PIPE MAX

PRoe MAX

SHRT MAX

SYS NMLN

UID MAX

USI MAX

INT MIN

LONG MIN

SHRT MIN

ULIMIT

Process ID

Maximum number of characters in a path­
name (1024).

Maximum value for a process ID (30,001).

Maximum number of bytes written to a
pipe in a write (5120).

Maximum number of simultaneous system
wide processes (50).

Maximum decimal value of a short
(65,535).

Number of characters in a string returned
by uname (9).

Maximum value for a user ID or group ID
(60,001).

Maximum decimal value of an unsigned
(4,294,967,295).

Minimum decimal value for an int
(-2,147,483,648).

Minimum decimal value for a long
(-2,147,483,648).

Minimum decimal value for a short
(-32,768).

Maximum number of 512-byte blocks in a
file (16,777,216).

Each active process in the system is uniquely identified by a posi­
tive integer called a process ID. The range of this ID is from 1 to
PID MAX.

Parent Process ID
A new process is created by a currently active process (see
fork(2)). The parent process ID of a process is the process ID of
its creator.

Process Group
Each active process is a member of a process group that is
identified by a positive integer called the process group ID. This
ID is the process ID of the group leader. This grouping permits
the signaling of related processes (see kill(2)).

February, 1990
Revision C

intro(2) intro(2)

Tty Group ID
Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This
grouping is used to terminate a group of related processes upon
termination of one of the processes in the group (see exi t(2) and
signal(3».

Session
Each process group is a member of a session. A process is con­
sidered to be a member of the session of which its process group is
a member. A newly created process joins the session membership
(see setsid(3P». Multiple process groups may be in the same
session (see setpgid(3P».

Session Leader
A process that has created a session (see set sid(3P».

Controlling Terminal
A terminal that is associated with a session. Each session may
have at most one controlling terminal associated with it, and a
controlling terminal is associated with exactly one session (see
termio(7P».

Controlling Process
The session leader that established the connection to the control­
ling terminal.

Foreground Process Group
Each session that has established a connection with a controlling
terminal has exactly one process group of the session as the fore­
ground process group of that controlling terminal. The foreground
process group has priveleges, when accessing its controlling ter­
minal, that are denied to background process groups (see
termios(7P».

Background Process Group
Any process group that is a member of a session that has esta­
blished a connection with a controlling terminal that is not in the
foreground process group.

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer
called a real user ID.

Each user is also a member of a group. The group is identified by
a positive integer called the real group ID.

February, 1990
Revision C

11

intro(2) intro(2)

12

An active process has a real user ID and real group ID that are set
to the real user ID and real group ID, respectively, by the user
responsible for the creation of the process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group
ID that are used to determine file-access permissions (described
later in this section). The effective user ID and effective group ID
are equal to the process's real user ID and real group ID respec­
tively, unless the process or one of its ancestors originated from a
file that had the set-user-ID bit or set-group-ID bit set (see
exec(2)).

Superuser
A process is recognized as a "superuser" process and is granted
special privileges if its effective user ID is o.

Special Processes
The processes with a process ID of 0 and a process ID of 1 are
special processes and are referred to as procO and prod.

The process procO is the scheduler, and prod is the initialization
process (init). The process prod is the ancestor of every other
process in the system and is used to control the process structure.

File Descriptor
A file descriptor is a small integer used to do I/O on a file. The
value of a file descriptor is from 0 to OPEN MAX-I. A process
may not have more than OPEN MAX file descriptors open simul­
taneously. A file descriptor is returned by system calls such as
open(2) or pipe(2). The file descriptor is used as an argument
by calls such as read(2), wri te(2), ioctl(2), and close(2).

File Pointer
A file with associated stdio buffering is called a stream. A
stream is a pointer to a type FILE defined by the <stdio. h>
header file: The f open(3S) routine creates descriptive data for a
stream and returns a pointer that identifies the stream in all further
transactions with other stdio routines.

Most stdio routines manipulate either a stream created by the
f open(3S) function or one of the three streams that are associat­
ed with three files that are expected to be open in the base system
(see termio(7). These three streams are declared in the
<stdio. h> header file.

February, 1990
Revision C

intro(2)

stdin

stdout

stderr

the standard input file

the standard output file

the standard error file

intro(2)

Output streams, with the exception of the standard error stream
stderr, are, by default, buffered if the output refers to a file and
line-buffered if the output refers to a terminal. The standard error
output stream stderr is, by default, unbuffered. When an out­
put stream is unbuffered, information is queued for writing on the
destination file or terminal as soon as written; when it is buffered,
many characters are saved up and written as a block. When an
output stream is line-buffered, each line of output is queued for
writing on the destination terminal as soon as the line is complet­
ed, that is, as soon as a newline character is written or terminal in­
put is requested. The setbuf(3S) routines may be used to
change the buffering strategy of the stream.

Filename
Names consisting of 1 to 14 characters may be used to name an
ordinary file, special file, or directory.

These characters may be selected from the set of all character
values excluding \Q (null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of
filenames because of the special meaning attached to these charac­
ters by the shell (see sh(I». Although permitted, it is advisable to
avoid the use of unprintable characters in filenames.

Pathname and Path Prefix
A pathname is a null-terminated character string starting with an
optional slash (I), followed by zero or more directory names
separated by slashes, then optionally followed by a filename.

Unless specifically stated otherwise, the null path name is treated
as if it named a nonexistent file.

More precisely, a pathname is a null-terminated character string
constructed as follows:

<path-name>::=<file>kpath-prefix><file>l/
<path-prefix>: :=<rtprefix>1 / <rtprefix>
<rtprefi:x>::=<dirname> / I <rtprefi:x><dirname> /

where <file> is a string of 1 to 14 characters other than the ASCII
slash and null, and <dirname> is a string of 1 to 14 characters
(other than the ASCII slash and null) that names a directory.

February, 1990 13
Revision C

intro(2) intro(2)

If a pathname begins with a slash, the path search begins at the
root directory. Otherwise, the search begins from the current
working directory.

A slash by itself names the root directory.

Directory
Directory entries are called links. By convention, a directory con­
tains at least two links, . and .. , referred to as "dot" and "dot­
dot." Dot refers to the directory itself, and dot-dot refers to its
parent directory.

Root Directory and Current Working Directory
Each process has associated with it a root directory and a current
working directory for the purpose of resolving pathname searches.
The root directory of a process need not be the root directory of
the root file system.

File-Access Permissions
Read, write, and execute/search permissions on a file are granted
to a process if one or more of the following are true:

The effective user ID of the process is the superuser.

The effective user ID of the process matches the user ID of
the owner of the file, the appropriate access bit of the "own­
er" portion (0700) of the file mode is set.

The effective user ID of the process does not match the user
ID of the owner of the file, the effective group ID of the pro­
cess matches the group of the file, and the appropriate access
bit of the "group" portion (070) of the file mode is set.

The effective user ID of the process does not match the user
ID of the owner of the file, the effective group ID of the pro­
cess does not match the group ID of the file, and the ap­
propriate access bit of the "other" portion (07) of the file
mode is set.

Otherwise, the corresponding permissions are denied.

INTERPROCESS COMMUNICATION

14

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer
created by a msgget(2) system call. Each msqid has a message
queue and a data structure associated with it. The data structure is
referred to as msqid _ ds and contains the following members:
struct ipc_perm msg_perm; /* operation permission

February, 1990
RevisionC

intro(2) intro(2)

struct */
ushort msg_ qnum; /* number of msgs on q */
ushort msg_qbytes; /* max number of bytes on q */
ushort msg_lspid; /* pid of last msgsnd

operation */
ushort msg_lrpid: /* pid of last msgrcv

operation */
time t msg_stime: /* last msgsnd time */
time t msg_rtime: /* last msgrcv time */ -
time - t msg_ctime: /* last change time */

/* times measured in secs
since 00:00:00 GMT, 1/1/70 */

msgyerm is an ipcyerm structure that specifies the message
operation permission (described later). This structure includes the
following members:
ushort cuid: /* creator user 10 */
ushort cgid: /* creator group 10 */
ushort uid: /* user 10 */
ushort gid: /* group 10 */
ushort mode: /* r/w permission */

msg qnum is the number of messages currently on the queue.
msg - qbytes is the maximum number of bytes allowed on the
queue. msg lspid is the process ID of the last process that per­
formed a msgsnd operation. msg lrpid is the process ID of
the last process that performed a msgrcv operation.
msg_stime is the time of the last msgsnd operation,
msg rtime is the time of the last msgrcv operation, and
msg - ctime is the time of the last msgctl(2) operation that
changed a member of the msgyerm structure.

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created
by a semget(2) system call. Each semid has a set of semaphores
and a data structure associated with it. The data structure is re­
ferred to as semid _ ds and contains the following members:

struct ipc_perm sem_perm: /* operation permission

ushort sem_nsems;
time t sem otime:
time-t sem=ctime:

struct */
/* number of sems in set */
/* last operation time */
/* last change time */
/* times measured in sees since

00:00:00 GMT, 1/1/1970 */

semyerm is an ipc_perm structure that specifies the sema­
phore operation permission (described later in this section). This

February, 1990 15
Revision C

intro(2) intro(2)

16

structure includes the following members:
ushort cuid; /* creator user ID */
ushort cgid; /* creator group ID */
ushort uid; /* user ID */
ushort gid; /* group ID */
ushort mode; /* ria permission */

The value of sern nserns is equal to the number of semaphores
in the set Each semaphore in the set is referenced by a positive
integer referred to as a sern num. sern num values run sequen­
tially from 0 to the value ofsern nserns minus 1. sern otirne
is the time of the last sernop(2) operation, and sern ctirne is
the time of the last sernctl(2) operation that changed a member
of the structure described earlier.

A semaphore is a data structure that contains the following
members:
ushort semval; /* semaphore value */
short sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzcnt; /* # awaiting semval = 0 */

sernval is a non-negative integer. sernpid is equal to the pro­
cess ID of the last process that performed a semaphore operation
on this semaphore. sernncnt is a count of the number of
processes that are currently suspended and awaiting this
semaphore's sernval to become greater than its current value.
sernzcnt is a count of the number of processes that are currently
suspended awaiting this semaphore's sernval to become O.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer
created by a shrnget(2) system call. Each shmid has a segment
of memory (referred to as a shared memory segment) and a data
structure associated with it. The data structure referred to as
shrnid _ ds contains the following members:
struct ipc_perm shm_perm; /* operation permission struct
int shm_segsz; /* size of segment */
ushort shm_cpid; /* creator pid */
ushort shm lpid; /* pid of last operation */
short shm=nattch; /* number of current attaches
time t shm atime; /* last attach time */ -
time t shm=dtime; /* last detach time */ -
time - t shm ctime; /* last change time */

/* Times measured in secs
since 00:00:00 GMT, 1/1/70

shrn_perrn is an ipcyerrn structure that specifies the shared-

February, 1990
RevisionC

*/

*/

*/

intro(2) intro(2)

memory-operation pennlsslon (described later in this section).
This structure includes the following members:
ushort cuid;
ushort cgid;
ushort uid;
ushort gid;
ushort mode;

/* creator user IO */
/* creator group IO */
/* user IO */
/* group IO */
/* r/w permission */

shm_segsz specifies the size of the shared memory segment.
shm _ cpid is the process ID of the process that created the
shared memory identifier. shm Ipid is the process ID of the last
process that performed a shmop(2) operation. shm nattch is
the number of processes that currently have this segment attached.
shm atime is the time of the last shmat operation,
shm=dtime is the time of the last shmdt operation, and
shm ctime is the time of the last shmctl(2) operation that
changed one of the members of the structure outlined earlier.

IPC PERMISSIONS
In the msgop(2) and msgctl(2) system-call descriptions, the
pennission required for an operation is interpreted as follows:

00400 Read by user.
00200 Write by user.
00060 Read/write by group.
00006 Read/write by others.

Message Operation Permissions
Read and write permissions on a msqid are granted to a process if
one or more of the following are true.

The effective user ID of the process is the superuser.

The effective user ID of the process matches
msg perm. [c]uid in the data structure associated with
msqid, and the appropriate bit of the "user" portion (0600)
ofmsg_perm.modeisset

The effective user ID of the process does not match
msgyerm. [c]uid, the effective group ID of the process
matches msgyerm. [c]gid, and the appropriate bit of the
"group" portion (060) ofmsgyerm.mode is set.

The effective user ID of the process does not match
msgyerm. [c]uid, the effective group ID of the process
does not match msgyerm. [c]gid, and the appropriate bit
of the "other" portion (06) ofmsgyerm.mode is set

February, 1990
Revision C

17

intro(2) intro(2)

18

Otherwise, the corresponding permissions are denied.

Semaphore Operation Permissions
Read and alter pennissions on a semid are granted to a process if
one or more of the following are true.

The effective user ID of the process is the superuser.

The effective user ID of the process matches
semyerm. [c]uid in the data structure associated with
semid, and the appropriate bit of the "user" portion (0600)
of semyerm.mode is set.

The effective user ID of the process does not match
semyerm. [c]uid, the effective group ID of the process
matches sem yermo [c]gid, and the appropriate bit of the
"group" portion (060) of semyerm.mode is set.

The effective user ID of the process does not match
semyerm. [c]uid, the effective group ID of the process
does not match semyerm. [c]gid, and the appropriate
bit of the "other" portion (06) of semyerm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared-Memory-Operation Permissions
Read and write pennissions on a shmid are granted to a process if
one or more of the following are true:

The effective user ID of the process is superuser.

The effective user ID of the process matches
shmyerm. [c]uid in the data structure associated with
shmid, and the appropriate bit of the "user" portion (0600)
of shmyerm.mode is set.

The effective user ID of the process does not match
shmyerm. [c]uid, the effective group ID of the process
matches shm yermo [c]gid, and the appropriate bit of the
"group" portion (060) of shm_perm.mode is set.

The effective user ID of the process does not match
shm yermo [c]uid, the effective group ID of the process
does not match shmyerm. [c]gid, and the appropriate
bit of the "other" portion (06) of shm _pe rm. mode is set.

Otherwise, the corresponding permissions are denied.

February, 1990
Revision C

intro(2) intro(2)

SEE ALSO
close(2), ioctl(2), open(2), pipe(2), read(2), wri te(2),
intro(3), perror(3).

"Overview of the NUX Programming Environment" in AIUX
Programming Languages and Tools. Volume 1.

February, 1990
Revision C

19

accept (2N) accept (2N)

NAME
accept - accept a connection on a socket

SYNOPSIS
*include <sys/types.h>
*include <sys/socket.h>

int accept (s, addr, addrlen)
int S;
struct sockaddr *addr;
int *addrlen;

DESCRIPTION
The argument s is a socket which has been created with
socket(2N), bound to an address with bind(2N), and is listen­
ing for connections after a listen(2N). accept extracts the
first connection on the queue of pending connections, creates a
new socket with the same properties of s and allocates a new file
descriptor for the socket. If no pending connections are present on
the queue, and the socket is not marked as nonblocking, accept
blocks the caller until a connection is present. If the socket is
marked nonblocking and no pending connections are present on
the queue, accept returns an error as described below. The ac­
cepted socket may not be used to accept more connections. The
original socket s remains open.

The argument addr is a result parameter which is filled in with the
address of the connecting entity, as known to the communications
layer. The exact format of the addr parameter is determined by
the domain in which the communication is occurring. The ad­
drlen is a value-result parameter; it should initially contain the
amount of space pointed to by addr; on return it will contain the
actual length (in bytes) of the address returned. This call is used
with connection-based socket types, currently with
SOCK STREAM.

It is possible to select(2N) a socket for the purposes of doing
an accept by selecting it for read.

RETURN VALUE

1

The call returns -Ion error. If it succeeds it returns a non­
negative integer which is a descriptor for the accepted socket.

February, 1990
Revision C

accept(2N)

ERRORS
accept will fail if:

[EBADF]

[ENOTSOCK]

[EOPNOTSUPP]

[EFAULT]

[EWOULDBLOCK]

SEE ALSO

accept(2N)

The descriptor is invalid.

The descriptor references a file, not a
socket.

The referenced socket is not of type
SOCK STREAM.

The addr parameter is not in a writable
part of the user address space.

The socket is marked nonblocking and no
connections are present to be accepted.

bind(2N), connect(2N), listen(2N), select(2N),
socket(2N).

February, 1990 2
Revision C

access(2) access(2)

NAME
a c ce s s - determine accessibility of a file

SYNOPSIS
=if:incl ude<unistd.h>
int access (path, amode)
char *path;
int amode;

DESCRIPTION
access is used to determine the accessibility of a file. The path
points to a pathname naming a file. access checks the named
file for accessibility according to. the bit pattern contained in
amode, by using the real user ID in place of the effective user ID
and the real group ID in place of the effective group ID. The bit
pattern contained in amode is constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

For the POSIX environment, the following values are defined for
passing amode as the value of <unistd. h>:

R_OK 04 read
W _OK 02 write
X_OK 01 executable file or searchable directory
F _OK 00 check existence of file

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Oth­
erwise, a value of -1 is returned and errno is set to indicate the
error.

ERRORS

1

a c ce s s will fail if one or more of the following are true:

[ENAMETOOLONG] A component of a path name exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

[ELOOP]

[ENOTDIR]

Too many symbolic links were encoun­
tered in translating a pathname.

A component of the path prefix is not a
directory.

February, 1990
Revision C

access(2)

[ENOENT]

[ENOENT]

[EACCES]

[EROFS]

[ETXTBSY]

[EACCESS]

[EFAULT]

[EINVAL]

access(2)

Read, write, or execute (search) permis­
sion is requested for a null pathname.

The named file does not exist.

Search permission is denied on a com­
ponent of the path prefix.

Write access is requested for a file on a
read-only file system.

Write access is requested for a pure pro­
cedure (shared text) file that is being exe­
cuted.

Note: If you are running network
file system (NFS) and you are ac­
cessing a shared binary remotely,
it is possible that you will not get
this errno.

Permission bits of the file mode do not
permit the requested access.

The path points outside the allocated ad­
dress space for the process.

Value of amode is invalid.

The owner of a file has permission checked with respect to the
"owner" read, write, and execute mode bits. Members of the
file's group, other than the owner, have permissions checked with
respect to the "group" mode bits, and all others have permissions
checked with respect to the "other" mode bits.

The superuser is always granted execute permission even though
execute permission is meaningful only for directories and regular
files and even though exec requires that at least one execute
mode bit is set for the regular file to be executable.

Notice that only access bits are checked. A directory may be an­
nounced as writable by access, but an attempt to open it for
writing will fail because writing into the directory structure itself
is not allowed, even though files may be created there. A file may
look executable, but exec will fail unless it is in the proper for­
mat.

February, 1990 2
Revision C

access(2}

SEE ALSO
chmod(2}, stat(2}.

3

access(2}

February, 1990
RevisionC

acct(2) acct(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acct (path)
char *pathi

DESCRIPTION
acct is used to enable or disable the system process accounting
routine. If the routine is enabled, an accounting record will be
written on an accounting file for each process that terminates.
Tennination can be caused by one of two things: an exi t call or
a signal; see exi t(2) and signal(3). The effective user ID of
the calling process must be superuser to use this call.

path points to a path name naming the accounting file. The ac­
counting file format is given in acct(4).

The accounting routine is enabled if path is nonzero and no errors
occur during the system call. It is disabled if path is zero and no
errors occur during the system call.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
acct will fail if one or more of the following are true:

[EPERM]

[EPERM]

[ENAMETOOLONG]

[ELOOP]

[EBUSY]

[ENOTDIR]

[ENOENT]

February, 1990
Revision C

A pathname contains a character with the
high-order bit set.

The effective user ID of the calling pro­
cess is not superuser.

A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

Too many symbolic links were encoun­
tered in translating a pathname.

An attempt is being made to enable ac­
counting when it is already enabled.

A component of the path prefix is not a
directory.

One or more components of the account­
ing file path name do not exist.

1

acct(2)

[EACCES]

[EACCES]

[EACCES]

[EROFS]

[EFAULT]

SEE ALSO

acct(2)

A component of the path prefix denies
search permission.

The file named by path is not an ordinary
file.

mode permission is denied for the named
accounting file.

The named file resides on a read-only file
system.

path points to an illegal address.

acct(lM), exi t(2), signal(3), acct(4).

2 February, 1990
Revision C

adjtime(2)

NAME
adjtime - correct the system time

SYNOPSIS
#include <sys/time.h>

adjtime (delta, olddelta)
struct timeval *deltai
struct timeval *olddeltai

DESCRIPTION

adjtime(2)

adjtime makes small adjustments to the system time, as re­
turned by get timeofday(2), advancing or retarding it by the
time specified by the timeval delta. If delta is negative, the
clock is slowed down by incrementing it more slowly than normal
until the correction is complete. If delta is positive, a larger incre­
ment than normal is used. The skew used to perform the correc­
tion is generally a fraction of one percent. Thus, the time is al­
ways a monotonically increasing function. A time correction from
an earlier call to adjtime may not be finished when adjtime
is called again. If olddelta is nonzero, then the structure poinled
to will contain, upon return, the number of microseconds still to be
corrected from the earlier call.

This call may be used by time servers that synchronize the clocks
of computers in a local area network. Such time servers would
slow down the clocks of some machines and speed up the clocks
of others to bring them to the average network time.

The call adjtime(2) is restricted to the superuser.

RETURN VALUE
A return value of 0 indicates that the call succeeded. A return
value of -1 indicates that an error occurred, and in this case an er­
ror code is stored in the global variable errno.

ERRORS
adjtime will fail if:

[EFAULT] An argument points outside the process's allo­
cated address space.

[EPERM]

February, 1990
Revision C

The process's effective user ID is not that of
the superuser.

1

adjtime(2)

SEE ALSO
date(I).

2

adjtime(2)

February, 1990
Revision C

alarm(2)

NAME
alarm- set a process's alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION

alarm(2)

alarm instructs the calling process's alann clock to send the sig­
nal SIGALRM to the calling process after the number of real time
seconds specified by sec have elapsed; see signal(3).

alarm requests are not stacked; successive calls reset the calling
process's alarm clock. If the argument is 0, any alarm request is
canceled. Because the clock has a I-second resolution, the signal
may occur up to one second early; because of scheduling delays,
resumption of execution of when the signal is caught may be de­
layed an arbitrary amount. The longest specifiable delay time is
4,294,967,295 (2**32-1) seconds, or 136 years.

RETURN VALUE
alarm returns the amount of time previously remaining in the
calling process's alarm clock.

SEE ALSO
pause(2), seti timer(2), signal(3).

February, 1990
Revision C

1

bind(2N)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION

bind(2N)

bind assigns a name to an unnamed socket. When a socket is
created with socket(2N), it exists in a name space (address fam­
ily) but has no name assigned. bind requests that the name be
assigned to the socket.

NOTES
The rules used in name binding vary between communication
domains. Consult the manual entries in Section 5 (specifically
inet(5F» for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of
-1 indicates an error, which is further specified in the global
errno.

ERRORS
bind will fail if

[EBADF] s is not a valid descriptor.

[ENOTSOCK] s is not a socket.

[EADDRNOTAVAIL] The specified address is not available
from the local machine.

[EADDRINUSE] The specified address is already in use.

[EINVAL] The socket is already bound to an ad­
dress.

[EACCES] The requested address is protected, and
the current user has inadequate permis­
sion to access it.

[EFAULT] The name parameter is not in a valid part
of the user address space.

1 February, 1990
Revision C

bind(2N)

SEE ALSO
connect(2N), getsockname(2N), listen(2N),
socket(2N).

February, 1990
Revision C

bind(2N)

2

brk(2) brk(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char * sbrk (incr)
int incr;

DESCRIPTION
brk and sbrk are used to change dynamically the amount of
space allocated for the calling process's data segment; see
exec(2). The change is made by resetting the process's break
value and allocating the appropriate amount of space. The break
value is the address of the first location beyond the end of the data
segment. The amount of allocated space increases as the break
value increases. The newly allocated space is set to zero.

brk sets the break value to endds and changes the allocated space
accordingly.

sbrk adds incr bytes to the break value and changes the allocated
space accordingly. incr can be negative, in which case the amount
of allocated space is decreased.

RETURN VALUE
Upon successful completion, brk returns a value of 0 and sbrk
returns the old break value. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS

1

brk and sbrk will fail without making any change in the allocat­
ed space if the following is true:

[ENOMEM] Not enough space. Program asks for more space
than the system is able to supply.

[EAGAIN] The system has temporarily exhausted its avail-
able memory or swap space.

Such a change would result in more space being allocated than is
allowed by a system-imposed maximum (see ulimi t(2». Such
a change would result in the break value being greater than or
equal to the start address of any attached shared memory segment
(see shmop(2».

February, 1990
RevisionC

brk(2) brk(2)

SEE ALSO
exec(2), shmop(2), ulimi t(2).

February, 1990 2
Revision C

chdir(2) chdir(2)

NAME
chdi r - change working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION
chdi r causes the named directory to become the current working
directory, the starting point for path searches for path names not
beginning with /. path points to the path name of a directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -I is returned and errno is set to indicate the error.

ERRORS
chdi r will fail and the current working directory will be un­
changed if one or more of the following are true:

[EPERM] A pathname contains a character with the
high-order bit set.

[ENAMETOOLONG]

[ELOOP]

[ENOTDIR]

[ENOENT]

[EACCES]

[EFAULT]

A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

Too many symbolic links were encoun­
tered in translating a pathname.

A component of the path name is not a
directory.

The named directory does not exist.

Search permission is denied for any com­
ponent of the path name.

path points outside the allocated address
space of the process.

SEE ALSO
csh(I), ksh(l), sh(I), chroot(2).

I February, 1990
Revision C

chmod(2) chmod(2)

NAME
chmod - change mode of file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h> int chmod(path, mode)
char *pathi
mode _ t mode;

DESCRIPTION
chmod sets the access pennission portion of the named file's
mode according to the bit pattern contained in mode. The path
points to a pathname naming a file.

Access pennission bits are interpreted as follows:

04000 Set effective user ID on execution.

02000

01000

00400

00200

00100

00070

00007

Set effective group ID on execution.

Save text image after execution.

Read by owner.

Write by owner.

Execute (search if a directory) by owner.

Read, write, execute (search) by group.

Read, write, execute (search) by others.

The effective user ID of the calling process must match the owner
of the file or be the superuser to change the mode of a file.

If the effective user ID of the process is not the superuser, mode
bit 01000 (save text image after execution) is cleared.

If the effective user ID of the process is not the superuser and the
effective group ID of the process does not match the group ID of
the file, mode bit 02000 (set the effective group ID on execution)
is cleared.

If an executable file is prepared for sharing (see the cc -n op­
tion), then mode bit 01000 prevents the system from abandoning
the swap-space image of the program-text portion of the file when
its last user tenninates. Thus, when the next user of the file exe­
cutes it, the text need not be read from the file system but can sim­
ply be swapped in, saving time.

February,1990
Revision C

1

chmod(2) chmod(2)

Changing the owner of a file turns off the mode bit 04000 (set user
ID), unless the superuser does it This makes the system some­
what more secure at the expense of a degree of compatibility.

RETURN VALUE
On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

ERRORS
chmod will fail and the file mode will be unchanged if one or
more of the following are true:

[ENOTDIR] A component of the path prefix is not a
directory.

[ENAMETOOLONG]

[ELOOP]

[ENOENT]

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

Too many symbolic links were encoun­
tered in translating a pathname.

The named file does not exist

Search permission is denied on a com­
ponent of the path prefix.

The effective user ID does not match the
owner of the file, and the effective user
ID is not the superuser.

The named file resides on a read-only file
system.

The path points outside the allocated ad­
dress space of the process.

SEE ALSO
chmod(1), chown(2), open(2), stat(2), mknod(2), umask(2).

2 February, 1990
RevisionC

chown(2)

NAME
chown, fchown - change owner and group of a file

SYNOPSIS
*include <sys/types.h>

int chown (path, owner, group)
char *path;
'uid _towner: gid _t group;

int fchown lfd, owner, group)
int fd, owner, group;

DESCRIPTION

chown(2)

The file that is named by path or referenced by fd has its owner
and group changed as specified. Only the superuser or the owner
of the file may execute this call.

chown clears the set-user-ID and set-group-ID bits on the file to
prevent accidental creation of set-user-ID and set-group-ID pro­
grams owned by the superuser.

If chown is invoked successfully by users other than the su­
peruser, the set-user-ID and set-group-ID bits of the file mode,
04000 and 02000 respectively, will be cleared. This prevents or­
dinary users from effectively making themselves other users or
members of a group to which they don't belong.

Only one of the owner and group IDs may be set by specifying the
other as -1.

If the compatibility flag COMPAT BSDCHOWN is set, chown is
restricted to processes with superuser privileges. This compatibil­
ity flag also limits a process that has an effective user ID equal to
the user ID of the file, but otherwise without appropriate
privileges, from changing the file's group ID to the effective
group ID of the process only, or to its supplementary group IDs.

For the POSIX environment, the routine posix crtO. 0 does
set the COMPAT_BSDCHOWN flag to support these added restric­
tions.

RETURN VALUE
A value of 0 is returned if the operation was successful; A value
of -1 is returned if an error occurs, and a more specific error code
is placed in the global variable errno.

February, 1990
Revision C

1

chown(2) chown(2)

ERRORS
chown will fail and the file will be unchanged if one or more of
the following are true:

[EINVAL] The argument path does not refer to a
file.

[ENOTDIR]

[ENOENT]

[ENOENT]

[EACCES]

[EPERM]

[ENAMETOOLONG]

[ELOOP]

[EPERM]

[EROFS]

[EFAULT]

[ELOOP]

A component of the path prefix is not a
directory.

The argument pathname is too long.

The named file does not exist.

Search permission is denied on a com­
ponent of the path prefix.

A pathname contains a character with the
high-order bit set.

A component of a pathname exceeded
NAME MAX characters, or an entire path-
name exceeded PATH MAX.

Too many symbolic links were encoun­
tered in translating a pathname.

The effective user ID does not match the
owner of the file and the effective user
ID is not the superuser.

The named file resides on a read-only file
system.

The argument path points outside the al­
located address space of the process.

Too many symbolic links were encoun­
tered in translating the pathname.

fchown will fail if one or both of the following are true:

[EBADF] The fd does not refer to a valid descrip­
tor.

[EINVAL] The fd refers to a socket, not a file.

SEE ALSO
chown(1), chgrp(2), chmod(2).

2 February, 1990
Revision C

chroot(2) chroot(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char *path;

DESCRIPTION
chroot causes the named directory to become the root directory,
the starting point for path searches for path names beginning with
/. The user's working directory is unaffected by the chroot
system call. path points to a path name naming a directory.

The effective user ID of the process must be the superuser to
change the root directory.

The . . entry in the root directory is interpreted to mean the root
directory itself. Thus, . . cannot be used to access files outside
the subtree rooted at the root directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
chroot will fail and the root directory will remain unchanged if
one or more of the following are true:

[ENOTDIR] Any component of the path name is not a
directory.

[ENAMETOOLONG]

[ELOOP]

[ENOENT]

[EPERM]

[EPERM]

[EFAULT]

February, 1990
Revision C

A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

Too many symbolic links were encoun­
tered in translating a pathname.

The named directory does not exist.

A pathname contains a character with the
high-order bit set.

The effective user ID is not the superuser.

path points outside the allocated address
space of the process.

1

chroot(2)

SEE ALSO
chroot(IM), chdi r(2).

2

chroot(2)

February, 1990
RevisionC

close(2) close(2)

NAME
close - close a file descriptor

SYNOPSIS
int close (ftldes)
int fildes;

DESCRIPTION
close closes the file descriptor indicated by fildes. Alloutstand­
ing record locks owned by the process (on the file indicated by
fildes) are removed.

The argument fildes is a file descriptor obtained from acre at,
open, dup, fcntl, pipe, or socket system call. A close
system call is automatically performed on all open files are part of
exi t . There is a small, finite limit on the number of open files
per process (OPEN MAX), so close is necessary for programs
that deal with many flIes.

When all file descriptors associated with a pipe or FIFO special
file have been closed, any data remaining in the pipe or FIFO is
discarded. When all file descriptors associated with an open file
description have been closed, the file description is freed. If the
link count of the file is 0 when all the file descriptors associated
with the file have been closed, the space occupied by the file is
freed and the file is no longer accessible.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
close will fail if one or both of the following are true:

[EBADF] The argument fildes is not a valid open file descrip­
tor.

[EINTR] close was interrupted by a signal.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2),
socket(2N).

February, 1990
Revision C

1

connect(2N) connect (2N)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int connect (s, name, namelen)
int S;
struct sockaddr *name;
int namelen;

DESCRIPTION
connect is used to initiate a connection on a socket. The param­
eter s is a socket. If it is of type SOCK _DGRAM, then this call per­
manently specifies the peer to which datagrams are to be sent; if it
is of type SOCK STREAM, then this call attempts to make a con­
nection to another socket. The other socket is specified by name
which is an address in the communications space of the socket.
Each communications space interprets the name parameter in its
own way.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned. Other­
wise a -1 is returned, and a more specific error code is stored in
errno.

ERRORS

1

connect fails if:

[EBADF]

[ENOTSOCK]

[EADDRNOTAVAIL]

[EAFNOSUPPORT]

[EISCONN]

[ETIMEDOUT]

[ECONNREFUSED]

[ENETUNREACH]

s is not a valid descriptor.

s is a descriptor for a file, not a socket.

The specified address is not available on
this machine.

Addresses in the specified address family
cannot be used with this socket.

The socket is already connected.

Connection establishment timed out
without establishing a connection.

The attempt to connect was forcefully re­
jected.

The network isn't reachable from this
host.

February, 1990
RevisionC

connect(2N)

[EADDRlNUSE]

[EFAULT]

[EWOULDBLOCK]

SEE ALSO

connect (2N)

The address is already in use.

The name parameter specifies an area
outside the process address space.

The socket is nonblocking and the and
the connection cannot be completed im­
mediately. It is possible to select(2N)
the socket while it is connecting by
selecting it for writing.

accept(2N), getsockname(2N), select(2N),
socket(2N).

February, 1990
Revision C

2

creat(2) creat(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/fcntl.h>
int creat (path, mode)
char *path;
mode mode;

DESCRIYfION

1

creat creates a new ordinary file or prepares to rewrite an exist­
ing file named by the pathname pointed to by path.

If the file exists, the length is truncated to 0, and the mode and
owner are unchanged. Otherwise, the owner ID of the file is set to
the effective user ID of the process, the group ID of the process is
set to the effective group ID of the process, and the low-order 12
bits of the file mode are set to the value of mode modified as fol­
lows:

All bits set in the file-mode-creation mask of the process are
cleared. See umask(2).

Mode bit 01000 (save text image after execution bit) is
cleared. See chmod(2).

For the POSIX environment the following constants for mode are
defined in <sys/ stat. h> :

S IRUSR read permission, owner

S IWUSR

S IXUSR

S IRGRP

S IWGRP

S IXGRP

S IRUSR

write pennission, owner

execute/search permission, owner

read permission, group

write pennission, group

execute/search permission, group

read permission, others

S IWUSR write pennission, others

S IXUSR execute/search permission, others

On successful completion, the file descriptor is returned and the
file is open for writing, even if the mode does not permit writing.
The file pointer is set to the beginning of the file. The file descrip-

February, 1990
Revision C

creat(2) creat(2)

tor is set to remain open across exec system calls. see fcntl(2).
No process may have more than the maximum number of files.
OPEN~X. open simultaneously.

The mode given is arbitrary; it need not allow writing. This
feature is used by programs that deal with temporary files of fixed
names. The creation is done with a mode that forbids writing.
Then if a second instance of the program attempts acre at. an
error is returned. and the program knows that the name is unusable
for the moment.

RETURN VALUE
On successful completion. a non-negative integer. namely the file
descriptor. is returned. Otherwise. a value of -1 is returned and
errno is set to indicate the error.

ERRORS
creat will fail if one or more of the following are true:

[ENOTD I R] A component of the path prefix is not a
directory.

[ENAMETOOLONG] A component of a pathname exceeded
NAME MAX characters. or an entire path­
name exceeded PATH MAX.

[ELOOP] Too many symbolic links were encoun­
tered in translating a pathname.

[ENOENT] A component of the path prefix does not
exist.

[EACCES] Search permission is denied on a com­
ponent of the path prefix.

[ENOENT] The pathname is null.

[EACCE S] The file does not exist. and the directory in
which the file is to be created does not per­
mit writing.

[EROF S] The named file resides or would reside on
a read-only file system.

[ETXTBSY] The file is a pure-procedure (shared text)

February. 1990
Revision C

file that is being executed.

Note: If you are running a network
file system (NFS) and you are ac­
cessing a shared binary remotely. it

2

creat(2) creat(2)

[EACCES]

[EISDIR]

[EMFILE]

[EFAULT]

[ENFILE]

is possible that you will not get this
errno.

The file exists, and write permission is
denied.

The named file is an existing directory.

The maximum number of file descriptors
are currently open.

The path points outside the allocated ad­
dress space of the process.

The system file table is full.

BUGS
The system-scheduling algorithm does not make this a true unin­
terruptible operation, and a race condition may develop if creat
is done at precisely the same time by two different processes.

SEE ALSO

3

chmod(2), close(2), dup(2), fcntl(2), lseek(2), open(2),
read(2), umask(2), wri te(2).

February, 1990
Revision C

dup(2) dup(2)

NAME
dup - duplicate a descriptor

SYNOPSIS
int dup (oldd)
int olddi

DESCRIYfION
dup duplicates an existing object descriptor. The argument oldd
is a small non-negative integer index in the per-process descriptor
table. The value must be less than the size of the table, which is
returned by getdtablesize(2N). The new descriptor returned
by the call is the lowest numbered descriptor which is not current­
ly in use by the process.

The object referenced by the descriptor does not distinguish
between references using the old and new descriptor in any way.
Thus if the old and new descriptor are duplicate references to an
open file, read(2), wri te(2), and lseek(2) calls all move a
single pointer into the file. If a separate pointer into the file is
desired, a different object reference to the file must be obtained by
issuing an additional open(2) call.

RETURN VALUE
The value -1 is returned if an error occurs in either call and
errno is set to indicate the error.

ERRORS
dup fails if:

[EBADF] The old descriptor is not a valid active descrip­
tor

[EMFILE] Too many descriptors are active.

SEE ALSO
accept(2N), open(2), close(2), getdtablesi ze(2N),
pipe(2), socket(2N), dup2(3N).

February, 1990
RevisionC

1

exec(2) exec(2)

NAME
execl, execv, execle, execve, execlp, execvp­
execute a file

SYNOPSIS
int execl (path, argO, argl, ... , argn, 0);
char *path, *argO, *argl, ... , *argn;

int execv (path, argv)
char *path, *argv [] ;

int execle (path, argO, argl, ... , argn, 0, envp)
char *path, *argO, *argl, ... , *argn, *envp [] ;

int execve (path, argv, envp)
char *path, *argv [], *envp [] ;

int execlp (file, argO, argl, ... , argn, 0)
char *file, *argO, *argl, ... , *argn;

int execvp (file, argv)
char *file, *argv [] ;
extern char * * environ;

DESCRIPTION

1

exec in all its forms transforms the calling process into a new
process. The new process is constructed from an ordinary, exe­
cutable file called the "new process file." There can be no return
from a successful exec because the calling process is overlaid by
the new process.

path points to a pathname that identifies the new process file.

file points to the new process file. The path prefix for this file is
obtained by a search of the directories passed as the environment
variable PATH (see environ(5».

The shell is invoked if a command file is found by execlp or
execvp.

argO, argl, ... , argn are pointers to null-terminated character
strings. These strings constitute the argument list that is available
to the new process. By convention, at least argO must be present
and point to a string that is the same as path (or its last com­
ponent).

argv is an array of character pointers to null-terminated strings.
These strings constitute the argument list that is available to the
new process. By convention, argv must have at least one member,

February, 1990
Revision C

exec(2) exec(2)

and it must point to a string that is the same as path (or its last
component). argv is tenninated by a null pointer and is directly
usable in another execv because argv[argc] is O.

envp is an array of character pointers to null-terminated strings.
These strings constitute the environment for the new process.
envp is terminated by a null pointer. For execl, execv,
execlp, and execvp, the C run-time startoff routine places a
pointer to the environment of the calling process in the global cell

extern char **environi

and it is used to pass the environment of the calling process to the
new process.

File descriptors that open during the calling process remain open
in the new process, except for those whose close-on-exec flag is
set (see fcntl(2». For those file descriptors that remain open,
the file pointer is unchanged.

By default, a new process automatically has the system default
compatibility flag (see setcompat(2». However, if the
COMPAT_EXEC flag is set in the calling process, the new pro­
cess inherits the compatibility flag of the calling process. In the
A/UX® POSIX environment, the compatibility flag always in­
cludes COMPAT_EXEC (see setposix(3P».

Signals set to the default action in the calling process are set to the
default action in the new process. Signals set to be ignored by the
calling process are set to be ignored by the new process. Signals
set to be caught by the calling process are set to the default action
in the new process.

If the set-user-ID mode bit of the new process file is set (see
chmod(2», exec sets the effective user ID of the new process to
the owner ID of the new process file. Similarly, if the set-group­
ID mode bit of the new process file is set, the effective group ID
of the new process is set to the group ID of the new process file.
The real user ID and real group ID of the new process remain the
same as those of the calling process.

The shared-memory segments attached to the calling process are
not attached to the new process (see shmop(2».

Profiling is disabled for the new process (see profil(2».

February, 1990
Revision C

2

exec(2) exec(2)

3

Regions of physical memory mapped into the virtual address
space of the calling process are detached from the address space
of the new process (see phys(2».

The new process also inherits the following attributes from the
calling process:

access groups (see getgroups(2»
nice value (see nice(2»
process ID
parent process ID
process group ID
semadj values (see semop(2»
tty group ID (see exi t(2) and signal(3»
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see alarm(2»
current working directory
root directory
file-mode-creation mask (see umask(2»
file size limit (see ulimi t(2»
utime, stime, cutime, and cstime (see times(2»

execl is useful when a known file with known arguments is be­
ing called. The arguments to execl are the character strings con­
stituting the file and the associated arguments. The first argument
is conventionally the same as the filename (or its last component).
A 0 argument must end the argument list.

When a C program is executed, it is called by

main (argc, argv, envp)
int argCi
char **argv, **envpi

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. As indicated, argc is con­
ventionally at least 1, and the first member of the array points to a
string containing the name of the file.

envp is a pointer to an array of strings that constitute the environ­
ment of the process. Each string consists of a name, an =, and a
null-terminated value. The array of pointers is terminated by a
null pointer. The shell sh(l) passes an environment entry for
each global shell variable defined when the program is called. See
environ(5) for some conventionally used names. The C run­
time startoff routine places a copy of envp in the global cell

February, 1990
RevisionC

exec(2) exec(2)

environ, which is used by execv and execl to pass the
environment to any subprograms executed by the current program.
The exec routines use lower-level routines, as follows, to pass an
environment explicitly:

execve <file, argv, environ);
exe c1 e <file, argO, arg 1, ••• , argn, 0 , environ);

execlp and execvp are called with the same arguments as
execl and execv; however, they duplicate the actions of the
shell in searching for an executable file in a list of directories. The
directory list is obtained from the environment.

RETURN VALUE
If exec returns to the calling process, an error has occurred; the
return value is -1 and errno is set to indicate the error.

ERRORS
exec will fail and return to the calling process if one or more of
the following are true:

[ENOENT] One or more components of the pathname
of the new process file do not exist.

[ENAMETOOLONG]

[ELOOP]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[EAGAIN]

[ENOEXEC]

February, 1990
RevisionC

A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

Too many symbolic links were encoun­
tered in translating a pathname.

A component of the path prefix of the new
process file prefix is not a directory.

Search permission is denied for a directory
listed in the path prefix of the new process
file.

The new process file is not an ordinary file.

The new-process-file mode denies execu­
tion permission.

The system has temporarily exhausted its
available memory or swap space.

The exec is not an execl p or execvp,
and the new process file has the appropri­
ate access permission but an invalid magic
number in its header.

4

exec(2) exec(2)

[ETXTBSY]

[ENOMEM]

[E2BIG]

[EFAULT]

[EFAULT]

The new process file is a pure-procedure
(shared text) file that is currently open for
writing by some process.

Note: If you are running a network
file system (NFS) and you are ac­
cessing a shared binary remotely~ it
is possible that you will not get this
errno.

The new process requires more memory
than is allowed by the system-imposed
maximum (MAXMEM).

The number of bytes in the argument list of
the new process is greater than the
system-imposed limit of ARG _MAX.

The new process file is not as long as indi­
cated by the size values in its header.

The pointers path~ argv~ or envp indicate
an illegal address.

SEE ALSO

5

csh(I)~ ksh(I)~ sh(l)~ alarm(2)~ exi t(2)~ fork(2)~ nice(2)~
phys(2)~ ptrace(2)~ semop(2)~ setcompat(2)~ times(2)~
signal(3).

February ~ 1990
RevisionC

exit(2) exit(2)

NAME
exit, _exit - tenninate process

SYNOPSIS
void exit (status)
int status;

void _ exi t (status)
int status;

DESCRIPTION
exi t terminates the calling process with the following conse­
quences:

All of the file descriptors open in the calling process are
closed.

If the parent process of the calling process is executing a
wai t(2), it is notified of the termination of the calling pro­
cess and the low-order 8 bits (bits 0377) of status are made
available to it (see wait(2)). A SIGCHLD signal is sent to
the parent process of the calling process.

If the parent process of the calling process is not executing a
wai t, the calling process is transformed into a zombie pro­
cess, and the exit status is saved for return to the parent
should the parent subsequently execute a wai t(2). A "zom­
bie process" is a process that only occupies a slot in the pro­
cess table. It has no other space allocated either in user or
kernel space. The process-table slot that it occupies is par­
tially overlaid with time-accounting information (see
<sys/proc. h» to be used by times.

The parent process ID of all existing child processes and
zombie processes of the calling process is set to 1. This
means the initialization process (see intro(2)) inherits each
of these processes.

Each attached shared-memory segment is detached, and the
value of shm nattach in the data structure associated with
its shared memory identifier is decremented by 1.

For each semaphore for which the calling process has set a
semadj value (see semop(2)), that semadj value is added
to the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock is
performed (see plock(2)).

February, 1990
Revision C

1

exit(2) exit(2)

An accounting record is written on the accounting file if the
system's accounting routine is enabled (see acct(2)).

If the process ID, tty group ID, and process group ID of the
calling process are equal, the SIGHUP signal is sent to each
process that has a process group ID equal to that of the call­
ing process.

All open file descriptors and directory streams of the calling
process are closed. If the process is a controlling process, a
S I GHUP signal is sent to each process in the foreground pro­
cess group of the controlling terminal belonging to the calling
process. The controlling terminal associated with the session
is disassociated from the session.

If the tennination of the calling process causes a process
group to be orphaned and if any member of this process
group is stopped, a S I GHUP, followed by a S I GCONT signal
is sent to each process in the process group.

The C function exi t may cause cleanup actions before the pro­
cess exits. The function _ exi t circumvents all cleanup.

SEE ALSO
acct(2), fork(2), intro(2), plock(2), semop(2), wait(2),
signal(3).

WARNINGS
See the warning section in signal(3).

2 February, 1990
RevisionC

fcntl(2) fcntl(2)

NAME
fcntl- file control

SYNOPSIS
*include <sys/types.h>
*inelude <fentl.h>

int fentl (fildes, cmd, arg)
intfildes, cmd, arg;

DESCRIPTION
fentl provides for control over open files. The file descriptor
fildes is an open file descriptor obtained from a creat, open,
dup, fcntl, socket, or pipe system call.

The cmd values are:

F DUPFD

F GETFD

F SETFD

F GETFL

F SETFL

F GETLK

Pebruary,1990
Revision C

Return a new file descriptor as follows:

Lowest-numbered file descriptor available,
greater than or equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (that is, both
file descriptors share one file pointer).

Same access mode (read, write, or read/write).

Same file status flags (that is, both file descrip­
tors share the same file status flags).

The close-on-exec flag associated with the new
file descriptor is set to remain open across
exec(2) system calls.

Get the file descriptor flags that are associated
with the file descriptor fildes.

Set the file descriptor flags associated with ftldes
to arg, which is interpreted as type int.

Get file status flags and file-access modes of
fildes file.

Set file status flags to arg for ftldes file. Only
certain flags can be set (see fcntl(5».

Get the first lock that blocks the lock description
given by the variable of type struct flock
pointed to by argo The information retrieved
overwrites the information passed to f cn t 1 in

1

fcntl(2) fcntl(2)

2

F SETLK

F SETLKW

F GETOWN

F SETOWN

the flock structure. If no lock is found that
would prevent this lock from being created, then
the structure is passed back unchanged except
for the lock type, which will be set to
F UNLCK.

Set or clear a file segment lock according to the
variable of type struct flock pointed to by
arg (see fcntl(5)). The cmd F SETLK is
used to establish read (F RDLCK) and write
(F WRLCK) locks as well-as to remove either
type of lock (F UNLCK). If a read or write lock
cannot be set, f cn t 1 will return immediately
with an error value of -1.

Does the same as F SET LK except that if a read
or write lock is blocked by other locks, the pro­
cess will sleep until the segment is free to be
locked.

Get the process ID or process group currently
receiving SIGIO and SIGURG signals. Process
groups are returned as negative values.

Set the process or process group to receive
SIGlO and SIGURG signals. Process groups
are specified by supplying arg as a negative
value; otherwise, arg is interpreted as a process
ID.

File descriptor flags, file status flags, and file-access modes are as­
sociated with one file descriptor and do not affect other file
descriptors that refer to the same file.

A read lock prevents any process from write-locking the protected
area. More than one read lock may exist for a given segment of a
file at a given time. The file descriptor on which a read lock is be­
ing placed must have been opened with read access.

A write lock prevents any process from read-locking or write­
locking the protected area. Only one write lock may exist for a
given segment of a file at a given time. The file descriptor on
which a write lock is being placed must have been opened with
write access.

February, 1990
RevisionC

fcntl(2) fcntl(2)

The structure flock describes the type (1 type), starting offset
(1 whence), relative offset (1 start), size (1 len), and pro­
ceSS ID (1 yid) of the segment of the file to be affected. The
process ID field is only used with the cmd F GETLK to return the
value for a block that is locked. Locks may start and extend
beyond the current end of a file, but may not be negative relative
to the beginning of the file. A lock may be set to extend always to
the end of a file by setting I_len to O. If such a lock also has
1 start set to 0, the whole file is locked. Changing or unlock­
ing a segment from the middle of a larger locked segment leaves
two smaller segments for either end. Locking a segment that is al­
ready locked by the calling process causes the old lock type to be
removed and the new lock type to take affect. All locks associat­
ed with a file for a given process are removed when a file descrip­
tor for that file is closed by that process or the process holding that
file descriptor terminates. Locks are not inherited by a child pro­
cess in a for k(2) system call.

RETURN VALUE
On successful completion, the value returned depends on cmd as
follows:

F DUPFD A new file descriptor.

F GETFD Value of flag (only the low-order bit is
defined).

F SETFD Value other than -1.

F GETFL Value of file flags.

F SETFL Value other than -1.

F GETLK Value other than -1.

F SETLK Value other than -1.

F SETLKW Value other than -1.

F GETOWN Value other than -1.

F SETOWN Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate
the error.

ERRORS
fcntl will fail if one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.

February, 1990
Revision C

3

fcntl(2)

[EMFILE]

[ENFILE]

[EINVAL]

[EACCESS]

[ENOLCK]

[EDEADLK]

[ENOTSOCK]

[EINVAL]

SEE ALSO

fcntl(2)

cmd is F DUPFD, and the maximum number
of file descriptors are currently open.

cmd is F DUPFD, and arg is negative or
greater tJlan the maximum number of file
descriptors currently open.

cmd is F GETLK, F SETLK, or SETLKW,
and arg, or the data it Points to is not valid.

cmd is F SETLK, and the type of lock
(1 type)-is a read (F RDLCK) or write
(F = WRLCK) lock. Also the segment of a file
to be locked is already write-locked by
another process, or the type is a write lock
and the segment of a file to be locked is al­
ready read-locked or write-locked by another
process.

cmd is F SETLK or F SETLKW, and the
type of lock is a read or write lock. Also, no
more file-locking headers are available (too
many files have segments locked), or no
more record locks are available (too many
files have segments locked).

cmd is F SETLK. When the lock is blocked
by some lock from another process and
sleeping (waiting) until that lock becomes
free, this causes a deadlock situation.

cmd is F GETOWN or F SETOWN, andfildes
is not a file descriptor for a socket

The value of I-whence in the flock
structure is invalid.

close(2), creat(2), dup(2), exec(2), ioctl(2), open(2),
pipe(2), socket(2N), lockf(3C), fcntl(5).

4 February, 1990
Revision C

flock(2) flock(2)

NAME
flock - apply or remove an advisory lock on an open file

SYNOPSIS
#include <sys/file.h>

flock (fd, operation)
int fd, operation;

DESCRIYfION
flock applies or removes an advisory lock on the file associated
with the file descriptor fd. A lock is applied by specifying an
operation parameter that is the inclusive OR of LOCK SH or
LOCK EX and, possibly, LOCK NB. To unlock an existmg lock,
the operation should be LOCK UN. The values for these opera-
tions are defined as follows: -

idefine LOCK SH 1 /* shared lock */
idefine LOCK EX 2 /* exclusive lock */
idefine LOCK NB 4 /* nonblocking lock */
idefine LOCK UN 8 /* unlock */

Advisory locks allow cooperating processes to perfonn consistent
operations on files, but do not guarantee exclusive access (that is,
processes may still access files without using advisory locks, pos­
sibly resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks
and exclusive locks. More than one process may hold a shared
lock for a file at any given time, but multiple exclusive, or both
shared and exclusive, locks may not exist simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice
versa, simply by specifying the appropriate lock type; the previous
lock will be released and the new lock applied (possibly after oth­
er processes have gained and released the lock).

Requesting a lock on an object that is already locked normally
causes the caller to block until the lock may be acquired. If
LOCK _ NB is included in operation, then this will not happen; in­
stead the call will fail and the error EWOULDBLOCK will be re­
turned.

NOTES
Locks are on files, not file descriptors. That is, file descriptors du­
plicated through dup(2) or fork(2) do not result in multiple in­
stances of a lock, but rather multiple references to a single lock. If
a process holding a lock on a file forks and the child explicitly un-

February, 1990
Revision C

1

flock(2) flock(2)

locks the file, the parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE
Zero is returned on success, -Ion error, with an error code stored
in errno.

ERRORS
The flock call fails if:

[EWOULDBLOCK] The file is locked and the LOCK NB op-
tion was specified. -

[EBADF] The argumentfd is an invalid descriptor.

[EOPNOTSUPP] The argumentfd refers to an object other
than a file.

SEE ALSO
close(2), dup(2), execve(2), fcntl(2), fork(2), open(2),
lockf(3).

BUGS

2

Locks obtained through the flock mechanism are known only
within the system on which they were placed. Thus, multiple
clients may successfully acquire exclusive locks on the same re­
mote file. If this behavior is not explicitly desired, the fcntl(2)
or lockf(3) system calls should be used instead.

February, 1990
RevisionC

fork(2) fork(2)

NAME
for k - create a new process

SYNOPSIS
*include <sys/types.h>
pid_t fork ()

DESCRIPTION
for k causes creation of a new process. The new process, or
child process, is an exact copy of the calling process or parent pro­
cess. The child process inherits the following attributes from the
parent process:

environment
close-on-exec flag (see exec(2»
signal-handling settings (such as SIG_DFL, SIG_IGN,
function address)
set-user-ID mode bit
set-group-ID mode bit
process compatibility flags (see setcompat(2»
profiling on/off status
access groups (see getgroups(2»
nice value (see nice(2»
all attached shared-memory segments (see shmop(2»
process group ID
tty group ID (see exi t(2) and signal(3»
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see alarm(2»
current working directory
root directory
file-mode-creation mask (see umask(2»
file size limit (see ulimi t(2»
phys regions (see phys(2».

The child process differs from the parent process in the following
ways:

The child process has a unique process ID.

The child process has a different parent process ID (that is,
the process ID of the parent process).

The child process has its own copy of the parent's file
descriptors. Each of the child's file descriptors shares a com­
mon file pointer with the corresponding file descriptor of the
parent. The child process also has its own copy of the

February, 1990
Revision C

1

fork(2) fork(2)

parent's open directory streams. The child and parent share
directory stream positioning.

The set of signals pending for the child process is cleared.

All semadj values are cleared (see semop(2)).

Process locks, text locks, and data locks are not inherited by
the child (see plock(2)).

The child process's utime, stime, cutime, and
cstime are set to 0 (see times(2)). The time left until an
alarm clock signal is reset to O.

RETURN VALUE
On successful completion, for k returns a value of 0 to the child
process and returns the process ID of the child process to the
parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and errno is set to indicate
the error.

ERRORS
for k will fail and no child process will be created if one or more
of the following are true:

[EAGAIN]

[EAGAIN]

[EAGAIN]

The system-imposed limit on the total number
of processes under execution was exceeded.

The system-imposed limit on the total number
of processes under execution by a single user
was exceeded.

The system has temporarily exhausted its avail­
able memory or swap space.

SEE ALSO

2

exec(2), nice(2), phys(2), plock(2), ptrace(2),
semop(2), setcompat(2), shmop(2), times(2), wai t(2),
wait3(2N), signal(3).

February, 1990
RevisionC

fsmount(2) fsmount(2)

NAME
fsmount - mount a network file system (NFS)

SYNOPSIS
*include <sys/mount.h>
int fsmount (type, dir, flags, data)
int type;
char *dir;
int flags;
caddr_t data;

DESCRIPTION
fsmount attaches a file system to a directory. Mter a successful
return, references to directory dir refer to the root directory on the
newly mounted file system. dir is a pointer to a null-terminated
string containing a pathname. dir must exist already and it must
be a directory. Its old contents are inaccessible while the file sys­
tem is mounted.

The argument flags determines if the file system can be written on
and if set-user-ID execution is allowed. Physically write­
protected and magnetic-tape file systems must be mounted read­
only or errors will occur when access times are Updated, whether
or not any explicit write is attempted.

type indicates the type of the file system. It must be one of the
types defined in mount. h. data is a pointer to a structure that
contains the type-specific arguments to mount. Below is a list of
the file-system types supported and the type-specific arguments to
each:

MOUNT UFS

struct ufs_args

char *fspec;

} ;

MOUNT NFS

#include <nfs/nfs.h>

#include <netinet/in.h>

struct nfs_args {

/* block special file

1* to mount */

struct sockaddr in *addr; /* file server address */

fhandle_t *fh;

int flags;

February, 1990
Revision C

/* file handle to be

/* mounted */

/* flags * /

1

fsmount(2) fsmount(2)

int wsize;

int rsize;

int timeo;

int retrans;

} ;

1* write size in bytes *1
1* read size in bytes *1
1* initial timeout in

1* .1 sees *1
1* times to retry send *1

RETURN VALUE
f smount returns 0 if the action occurred and returns -1 if special
is inaccessible or not an appropriate file, if name does not exist, if
special is already mounted, if name is in use, or if too many file
systems are already mounted.

ERRORS

2

f smount will fail if one or more of the following are true:

[EPERM] The caller is not the superuser.

[ENOTBLK]

[ENXIO]

[EBUSY]

[EBUSY]

[EBUSY]

[EBUSY]

[ENOTDIR]

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EFAULT]

special is not a block device.

The major device number of special is out
of range, indicating no device driver exists
for the associated hardware.

dir is not a directory, or another process
currently holds a reference to it.

No space remains in the mount table.

The super block for the file system had a
bad magic number or an out of range block
size.

Not enough memory was available to read
the cylinder group information for the file
system.

A component of the path prefix in special or
name is not a directory.

The path name of special or name was too
long.

special or name does not exist.

Search permission is denied for a com­
ponent of the path prefix of special or name.

special or name points outside of the allo­
cated address space of the process.

February, 1990
RevisionC

fsmount(2)

[ELOOP]

[EIO]

[ENOMEM]

[EINVAL]

SEE ALSO

fsmount(2)

Too many symbolic links were encountered
in translating the pathname of special or
name.

An I/O error occurred while reading from
or writing to the file system.

Memory could not be allocated for cylinder
group information.

Bad magic number or block size exceeds
MAXBSIZE.

unmount(2), umount(2), mount(3).

BUGS
Too many errors appear to the caller as one value.

February, 1990
Revision C

3

fsync(2) fsync(2)

NAME
f sync - synchronize a file's in-core state with that on disk

SYNOPSIS
int fsync (fd)
int fdi

DESCRIPTION
fsync causes all modified data and attributes of fd to be moved
to a penn anent storage device. This normally results in all in-core
modified copies of buffers for the associated file to be written to a
disk.

f sync should be used by programs which require a file to be in a
known state; for example in building a simple transaction facility.

RETURN VALUE
A 0 value is returned on success. A -1 value indicates an error.

ERRORS
f sync fails if:

[EBADF] fd is not a valid descriptor.

[EINVAL] fd refers to a socket, not to a file.

SEE ALSO
sync(I), sync(2).

BUGS
The current implementation of this call is expensive for large files.

1 February, 1990
RevisionC

getdirentries(2) getdirentries (2)

NAME
getdirentries - get directory entries

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>

int getdirentries (d, buf, nbytes, basep)
int d;
char *buf;
int nbytes;
long *basepi

DESCRIPTION
getdirentries attempts to put directory entries from the
directory referenced by the descriptor d into the buffer pointed to
by buf, in a file system independent format. Up to nbytes of data
will be transferred. nbytes must be greater than or equal to the
block size associated with the file, see stat(2). Sizes less than
this may cause errors on certain file systems.

The data in the buffer is a series of direct structures. The
direct structure is defined as

struct direct {

} ;

unsigned long
unsigned short
unsigned short
char

d_fileno;
d_reclen;
d_namlen;
d_name[MAXNAMELEN + 1];

The d fileno entry is a number which is unique for each dis­
tinct file in the file system. Files that are linked by hard links (see
link(2)) have the same d fileno. The d reclen entry is
the length, in bytes, of the-directory record. The d name and
d _ namelen entries specify the actual file name and its length.

Upon return, the actual number of bytes transferred is returned.
The current position pointer associated with d is set to point to the
next block of entries. The pointer is not necessarily incremented
by the number of bytes returned by getdirentries. If the
value returned is zero, the end of the directory has been reached.
The current position pointer may be set and retrieved by
lseek(2). The basep entry is a pointer to a location into which
the current position of the buffer just transferred is placed. It is
not safe to set the current position pointer to any value other than a
value previously returned by lseek(2) or a value previously re-

February, 1990
Revision C

1

getdirentries(2) getdirentries(2)

turned in basep or zero.

RETURN VALUE
If successful, the number of bytes actually transferred is returned.
Otherwise, a -1 is returned and the global variable errno is set
to indicate the error.

SEE ALSO

2

link(2), lseek(2), open(2), stat(2), directory(3).

February, 1990
RevisionC

getdomainname(2N) getdomainname(2N)

NAME
getdomainname, setdomainname - get/set name of
current network domain

SYNOPSIS
int getdomainname (name, namelen)
char *name;
int namelen;

int setdomainname (name, namelen)
char *name;
int namelen;

DESCRIPTION
getdomainname returns the name of the network domain for
the current processor, as previously set by setdomainname.
The parameter namelen specifies the size of the name array. The
returned name is null-terminated unless insufficient space is pro­
vided.

setdomainname sets the domain of the host machine to be
name, which has length namelen. This call is restricted to the su­
peruser and is normall y used only when the system is
bootstrapped.

The purpose of domains is to enable two distinct networks that
may have host names in common to merge. Each network would
be distinguished by having a different domain name. At the
current time, only the yellow pages service makes use of domains.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a
value of -1 is returned and an error code is placed in the global 10-
cation errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or name len parameter gave an in­
valid address.

[EPERM]

BUGS

The caller was not the superuser.

Domain names are limited to 255 characters.

February, 1990
Revision C

1

getdtablesize(2N) getdtablesize(2N)

NAME
getdtablesi ze - get descriptor table size

SYNOPSIS
int getdtablesize()

DESCRIPTION
Each process has a fixed size descriptor table which is guaranteed
to have at least the maximum number of open slots OPEN MAX.
The entries in the descriptor table are numbered with slllall in­
tegers starting at O. getdtablesi ze returns the size of this
table.

SEE ALSO
close(2), dup(2), open(2).

1 February, 1990
RevisionC

getgroups(2)

NAME
getgroups - get group access list

SYNOPSIS
iinclude <sys/param.h>

int getgroups (gidsetlen, gidset)
int gidsetlen, * gidset;

DESCRIPTION

getgroups (2)

getgroups gets the current group access list of the user process
and stores it in the array gidset. The parameter gidsetlen indicates
the number of entries that may be placed in gidset.

getgroups returns the actual number of groups returned in gid­
set. No more than NGROUPS, as defined in <sys/param. h>,
will ever be returned.

RETURN VALUE
A successful call returns the number of groups in the group set. A
value of -1 indicates that an error occurred and the error code is
stored in the global variable errno.

ERRORS
The possible errors for getgroups are

[EINVAL] The argument gidsetlen is smaller than the
number of groups in the group set.

[EFAULT]

SEE ALSO

The argument gidset specifies an invalid ad­
dress.

setgroups(2), ini tgroups(3X).

BUGS
The gidset array should be of type gid t, but remains integer for
compatibility with earlier systems. -

February, 1990
Revision C

1

gethostid(2N) gethostid(2N)

NAME
gethostid, sethostid - get/set unique identifier of current
host

SYNOPSIS
int gethostid ()

int sethostid (hostid)
int hostid;

DESCRIPTION
sethostid establishes a 32-bit identifier for the current proces­
sor. This identifier is intended to be unique among all systems in
existence and is normally a DARPA Internet address for the local
machine. This call is allowed only to the superuser and is normal­
ly performed at boot time.

RETURN VALUE
gethostid returns the 32-bit identifier for the current processor.

sethostid returns zero upon successful completion and -1
upon error.

SEE ALSO
hostid(1N), gethostname(2N).

BUGS
32 bits for the identifier is too small.

1 February, 1990
RevisionC

gethostname(2N) gethostname(2N)

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
int gethostname (name, namelen)
char *name;
int namelen;

int sethostname (name, namelen)
char *name;
int namelen;

DESCRIPTION
gethostname returns the standard host name for the current
processor, as previously set by sethostname. The parameter
namelen specifies the size of the name array. The returned name
is null-terminated unless insufficient space is provided.

sethostname sets the name of the host machine to be name,
which has length namelen. This call is restricted to the superuser
and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a
value of -1 is returned and an error code is placed in the global 10-
cation errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or namelen parameter gave an in­
valid address.

[EPERM] The caller was not the superuser.

SEE ALSO
gethostid(2N).

BUGS
Host names are limited to 255 characters.

February, 1990
Revision C

1

geti timer(2) geti timer(2)

NAME
geti timer, seti timer - get/set value of interval timer

SYNOPSIS
#include <sys/time.h>

geti timer (which, value)
int which;
struct itimerval *value;

seti timer (which, value, ovalue)
int which;
struct itimerval *value, *ovalue;

DESCRIPfION

1

The system provides each process with three interval timers,
defined in <sys/time. h>. The getitimer call returns the
current value for the timer specified in which in the structure at
value. The setitimer call sets a timer to the specified value
(returning the previous value of the timer if ovalue is nonzero).

A timer value is defined by the it ime rv a 1 structure:

struct itimerval {

struct timeval it_interval; /* timer interval */

struct timeval it_value; /* current value */
} ;

If it value is nonzero, it indicates the time to the next timer
expiration. If it interval is nonzero, it specifies a value to be
used in reloading it value when the timer expires. Setting
it value to 0 disables a timer. Setting it interval to 0
causes a timer to be disabled after its next eXPIration (assuming
it_value is nonzero).

Time values smaller than the resolution of the system clock are
rounded up to this resolution (16 milliseconds on this system, 10
milliseconds on the V AX).

The ITIMER REAL timer decrements in real time. A SIGALRM
signal is delivered when this timer expires.

The ITIMER VIRTUAL timer decrements in process virtual
time. It runs only when the process is executing. A SIGVTALRM
signal is delivered when it expires.

February, 1990
Revision C

geti timer(2) geti timer(2)

The ITIMER_PROF timer decrements both in process virtual time
and when the system is running on behalf of the process. It is
designed to be used by interpreters in statistically profiling the ex­
ecution of interpreted programs. Each time the ITIMER PROF
timer expires, the SIGPROF signal is delivered. Because this sig­
nal may interrupt in-progress system calls, programs using this ti­
mer must be prepared to restart interrupted system calls.

NOTES
Three macros for manipulating time values are defined in
<sys/time. h>. timerclear sets a time value to zero,
timerisset tests if a time value is nonzero, and timercmp
compares two time values (beware that >= and <= do not work
with this macro).

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs,
the value -1 is returned, and a more precise error code is placed in
the global variable errno.

ERRORS
The possible errors are:

[EFAULT] The value parameter specified a bad address.

[EINVAL] A value parameter specified a time was too
large to be handled.

SEE ALSO
sigvec(2), get timeofday(2).

February, 1990
Revision C

2

getpeername(2N) getpeername(2N)

NAME
getpeername - get name of connected peer

SYNOPSIS
int getpeername (s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPfION
getpeername returns the name of the peer connected to socket
s. The namelen parameter should be initialized to indicate the
amount of space pointed to by name. On return it contains the ac­
tual size of the name returned (in bytes).

RETURN VALUES
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
getpeername fails if:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOTCONN]

[ENOBUFS]

[EFAULT]

The socket is not connected.

Insufficient resources were available in the sys­
tem to perform the operation.

The name parameter points to memory not in a
valid part of the process address space.

SEE ALSO
bind(2N), getsockname(2N), socket(2N).

1 February, 1990
RevisionC

getpid(2) getpid(2)

NAME
getpid, getpgrp, getppid - get process, process group,
or parent process IDs

SYNOPSIS
iinclude <sys/types.h>

pid _ t getpid ()

pid _ t getpgrp ()

pid_t getppid()

DESCRIPTION
getpid returns the process ID of the calling process. Each ac­
tive process in the system is uniquely identified by a positive in­
teger. The range of this integer is from 1 to the system-imposed
limit, or prD _MAX.

getpgrp returns the process group ID of the calling process.
Each active process is a member of a process group that is
identified by a positive integer. This grouping permits the signal­
ing of related processes.

getppid returns the parent process ID of the calling process.
The parent process ID is the process ID of its creator.

RETURN VALUE
getpid

getpgrp

getppid

Returns the process ID of the calling process.

Returns the process group ID of the calling process.

Returns the parent process ID of the calling process.

These system calls are useful for generating uniquely named tem­
porary files.

SEE ALSO
exec(2), fork(2), gethostid(2N), intro(2), setpgrp(2),
signal(3).

February, 1990
Revision C

1

getsockname(2N) getsockname(2N)

NAME
getsockname - get socket name

SYNOPSIS
int getsockname (s, name, namelen)
int Si
struct sockaddr *name;
int *nameleni

DESCRIPTION
getsockname returns the current name for the specified socket.
The name len parameter should be initialized to indicate the
amount of space pointed to by name. On return it contains the ac­
tual size of the name returned (in bytes).

RETURN VALUES
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
getsockname fails if:

[EBADF] The argument S is not a valid descriptor.

[ENOTSOCK]

[ENOBUFS]

[EFAULT]

The argument s is a file, not a socket.

Insufficient resources were available in the sys­
tem to perform the operation.

The name parameter points to memory not in a
valid part of the process address space.

SEE ALSO

1

bind(2N), getpeername(2N), getsockopt(2N),
socket(2N).

February, 1990
RevisionC

getsockopt(2N) getsockopt(2N)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int getsockopt (s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int *optlen;

int setsockopt (s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int *optlen;

DESCRIPTION
getsockopt and setsockopt manipulate options associated
with a socket. Options may exist at multiple protocol levels; they
are always present at the uppermost "socket" level.

When manipulating socket options the level at which the option
resides and the name of the option must be specified. To manipu­
late options at the "socket" level, level is specified as
SOL_SOCKET. To manipulate options at any other level the pro­
tocol number of the appropriate protocol controlling the option is
supplied. For example, to indicate an option is to be interpreted
by the TCP protocol, level should be set to the protocol number of
TCP; see getprotoent(3N).

The parameters optval and opt len are used to access option values
for setsockopt. For getsockopt they identify a buffer in
which the value of the requested options(s) are to be returned. For
getsockopt, optlen is a value-result parameter, initially con­
taining the size of the buffer pointed to by optval, and modified on
return to indicate the actual size of the value returned. If no op­
tion value is to be supplied or returned, optval may be supplied as
o.
optname and any specified options are passed uninterpreted to the
appropriate protocol module for interpretation. The include file
<sys / socket. h> contains definitions for "socket" level op­
tions; see socket(2N). Options at other protocol levels vary in
format and name; consult the appropriate entries in Section 5 of
this manual (appropriate entries are marked (5P».

February, 1990 1
Revision C

getsockopt(2N) getsockopt(2N)

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The callls fail if:

[EBADF]

[ENOTSOCK]

[ENOPROTOOPT]

[EFAULT]

SEE ALSO

The argument s is not a valid descrip­
tor.

The argument s is a file, not a socket.

The option is unknown.

The options are not in a valid part of
the process address space.

getsockname(2N), socket(2N), getprotoent(3N).

2 February, 1990
RevisionC

get timeofday(2) gettimeofday(2)

NAME
gettimeofday, set timeofday - get/set date and time

SYNOPSIS
#include <sys/time.h>

int gettimeofday(~, tzp)
struct timeval *~i
struct timezone *tzPi

int settimeofday (tp, tzp)
struct timeval *~i
struct time zone *tzPi

DESCRIPTION
The system's notion of the current Greenwich time and the current
time zone is obtained with the get timeofday call and set with
the settimeofday call. The time is expressed in seconds and
microseconds since midnight (0 hour), January 1, 1970. The reso­
lution of the system clock is hardware dependent, and the time
may be updated continuously or in "ticks." If tzp is zero, the
time zone information will not be returned or set.

The structures referenced by tp and tzp are defined in
<sys/time. h> as:
struct timeval {

long tv_sec;
long tv_usec;

} ;

struct timezone {

/* seconds since Jan. 1, 1970 */
/* and microseconds */

int tz_minuteswest;
int tz_dsttime;

/* of Greenwich */
/* type of dst correction

to apply */
} ;

The timezone structure indicates the local time zone (measured
in minutes of time westward from Greenwich), and a flag that, if
nonzero, indicates that Daylight Saving Time applies locally only
when Daylight Savings Time is in effect.

Only the superuser may set the time of day or time zone. Changes
to the time zone structure are effective for the current process
only.

February, 1990
Revision C

1

gettimeofday(2) gettimeofday(2)

RETURN VALUE
A 0 return value indicates that the call succeeded. A -I return
value indicates an error occurred, and in this case an error code is
stored into the global variable errno.

ERRORS
The calls fail if:

[EFAULT]

[EPERM]

SEE ALSO

An argument address referenced invalid
memory.

A user other than the superuser attempted to set
the time.

date(I), adjtime(2), time(2), stime(2), ctime(3).

2 February, 1990
RevisionC

getuid(2) getuid(2)

NAME
get uid, geteuid, getgid, getegid - get real and
effective user IDs and group IDs

SYNOPSIS
#include <sys/types.h>

uid t getuid ()

uid t geteuid ()

uid t getgid ()

uid t getegid ()

DESCRIPTION
get uid returns the real user ID of the calling process The real
user ID is a positive integer by which each user allowed on the
system is identified.

geteuid returns the effective user ID of the calling process.
Each active process has an effective user ID that is equal to the
process's real user ID unless the process of one of its ancestors
evolved from a fail that had the set-user-ID bit set (see exec(2».

getgid returns the real group ID of the calling process. A real
group ID is a positive integer that identifies each user as a member
ofagroup.

getegid returns the effective group ID of the calling process.
Each active process has an effective group ID that is equal to the
process's real group ID unless the process of one of its ancestors
evolved from a fail that had the set-group-ID bit set (see
exec(2».

RETURN VALUE
getuid

geteuid

getgid

getegid

February, 1990
Revision C

Returns the real user ID of the calling process.

Returns the effective user ID of the calling pro­
cess.

Returns the real group ID of the calling process.

Returns the effective group ID of the calling
process.

1

getuid(2)

SEE ALSO
intro(2), setreuid(2), setuid(2).

2

getuid(2)

February, 1990
RevisionC

ioctl(2)

NAME
i 0 c t 1 - control device

SYNOPSIS
int ioctl (fildes, request, arg)
in t fildes, request;

DESCRIPTION

ioctl(2)

ioctl performs a variety of functions on character special files
(devices). Section 7 of the A/UX System Administrator's Refer­
ence describes the ioctl requests that apply to the given device.

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is
set to indicate the error.

ERRORS
ioctl will fail if one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.

[ENOTTY] fildes is not associated with a character special
device.

[EINVAL] request or arg is not valid. See Section 7 of the
A/UX System Administrator's Reference.

[EINTR] A signal was caught during the ioctl system
call.

SEE ALSO
intro(2), fcntl(2), intro(7). termio(7).

February, 1990
Revision C

1

kill(2) kill(2)

NAME
kill- send a signal to a process or a group of processes

SYNOPSIS
int kill (pid, sig)
int pid, sig;

DESCRIPTION
kill sends a signal to a process or a group of processes. The
process or group of processes to which the signal is sent is
specified by pid. The signal that is to be sent is specified by sig
and is either one from the list given in signal(3), or O. If sig is
o (the null signal), error checking is performed but no signal is ac­
tually sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match
the real or saved effective user ID of the receiving process, unless
the effective user ID of the sending process is the superuser.

The processes with a process ID of 0 and a process ID of 1 are
special processes (see intro(2)) and will be referred to later as
procO and proc1 respectively.

If pid is greater than zero, sig will be sent to the process whose
process ID is equal to pid; pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and
procl whose process group ID is equal to the process group ID of
the sender.

If pid is -1 and the effective user ID of the sender is not the su­
peruser, sig will be sent to all processes excluding procO and
procl and to the sender whose real user ID is equal to the saved
effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is the superuser,
sig will be sent to the sender and to all processes excluding procO
andprocl.

If pid is negative but not -1, sig will be sent to all processes
whose process group ID is equal to the absolute value of pid.

RETURN VALUE

1

Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

February, 1990
Revision C

kill(2) kill(2)

ERRORS
kill will fail and no signal will be sent if one or more of the fol­
lowing is true.

[EINVAL]

[EINVAL]

[ESRCH]

[EPERM]

SEE ALSO

sig is not a valid signal number.

sig is SIGKILL andpid is 1 (procl).

No process can be found corresponding to that
specified by pid.

The sending process is not sending to itself, its
effective user ID is not the superuser, and its
real or effective user ID does not match the real
or effective user ID of the receiving process.

kill(l), getpid(2), setpgrp(2), sigvec(2), signal(3).

February, 1990
Revision C

2

link(2)

NAME
link -link to a file

SYNOPSIS
int link (path1, path2)
char *path1, *path2;

DESCRIPTION

link(2)

link creates a new link (directory entry) for an existing file.
path1 points to a path name naming an existing file. path2 points
to a path name naming the new directory entry to be created.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
link will fail and no link will be created if one or more of the
following are true:

[ENOTDIR] A component of either path prefix is not a
directory.

[EPERM] A pathname contains a character with the
high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

[ELOOP] Too many symbolic links were encoun­
tered in translating a pathname.

[ENOENT] A component of either path prefix does not
exist.

[EACCE S] A component of either path prefix denies
search permission.

[ENOENT] The file named by path1 does not exist.

[EEXIST] The link named by path2 exists.

[EPERM] The file named by path1 is a directory and
the effective user ID is not the superuser.

[EXD EV] The link named by path2 and the file
named by path1 are on different logical
devices (file systems).

1 February, 1990
Revision C

link(2)

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

[EMLINK]

SEE ALSO

link(2)

path2 points to a null path name.

The requested link requires writing in a
directory with a mode that denies write
permission.

The requested link requires writing in a
directory on a read-only file system.

path points outside the allocated address
space of the process.

The maximum number of links to a file
would be exceeded.

symlink(2), unlink(2).

February, 1990
Revision C

2

listen(2N) listen(2N)

NAME
listen -listen for connections on a socket

SYNOPSIS
listen (s, backlog)
int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with socket(2N),
a backlog for incoming connections is specified with
listen(2N) and then the connections are accepted with
accept(2N). The listen call applies only to sockets of type
SOCK STREAMorSOCK PKTSTREAM.

The backlog parameter defines the maximum length the queue of
pending connections may grow to.

RETURN VALUE
A 0 return value indicates success; -1 indicates an error.

ERRORS
listen will fail if:

[EBADF]

[ENOTSOCK]

[EOPNOTSUPP]

The argument s is not a valid descriptor.

The argument s is not a socket.

The operation is not supported on a sock-
et.

If a connection request arrives with the queue full the client will
receive an error with an indication of ECONNREFUSED. The
socket is not of a type that supports the operation 1 is ten.

SEE ALSO
accept(2N), connect(2N), socket(2N}.

BUGS
The backlog is currently limited (silently) to 5.

1 February, 1990
RevisionC

locking(2) locking(2)

NAME
locking - provide exclusive file regions for reading or writing

SYNOPSIS
int locking <fildes, mode, size)
int fildes;
int mode;
int size;

DESCRIPTION
locking will allow a specified number of bytes to be accessed
only by the locking process (mandatory locking). Other processes
which attempt to lock, read, or write the locked area will sleep un­
til the area becomes unlocked. (Advisory locking is available via
lockf(3C».

fildes is the word returned from a successful open, creat, dup,
or pipe system call.

mode is zero to unlock the area. mode is one or two for making
the area locked. If the mode is one and the area has some other
lock on it, then the process will sleep until the entire area is avail­
able. If the mode is two and the area is locked, an error will be re­
turned.

size is the number of contiguous bytes to be locked or unlocked.
The area to be locked starts at the current offset in the file. If size
is zero, the area to the end of file is locked.

The potential for a deadlock occurs when a process controlling a
locked area is put to sleep by accessing another process's locked
area. Thus calls to locking, read, or write scan for a
deadlock prior to sleeping on a locked area. An error return is
made if sleeping on the locked area would cause a deadlock.

Lock requests may, in whole or part, contain or be contained by a
previously locked area for the same process. When this or adja­
cent areas occur, the areas are combined into a single area. If the
request requires a new lock element with the lock table full, an er­
ror is returned, and the area is not locked.

Unlock requests may, in whole or part, release one or more locked
regions controlled by the process. When regions are not fully
released, the remaining areas are still locked by the process.
Release of the center section of a locked area requires an addition­
allock element to hold the cut off section. If the lock table is full,
an error is returned, and the requested area is not released.

February, 1990
Revision C

1

locking(2) locking(2)

While locks may be applied to special files or pipes, read/write
operations will not be blocked. Locks may not be applied to a
directory.

Note that close(2) automatically removes any locks that were
associated with the closed file descriptor.

RETURN VALUE
The value -1 is returned if the file does not exist, or if a deadlock
using file locks would occur.

ERRORS
locking will fail if the following are true:

[EACCES] The area is already locked by another process.

[EDEADLOCK] Returned by read, write, or locking if a
deadlock would occur.

[EDEADLOCK] Locktable overflow.

[EREMOTE] fildes is a file descriptor that refers to file on a
remotely mounted file system.

SEE ALSO

2

close(2), creat(2), dup(2), open(2), read(2), wri te(2),
lockf(3C).

February, 1990
RevisionC

lseek(2) lseek(2)

NAME
lseek - move read/write file pointer

SYNOPSIS
*inelude <sys/types.h>

*inelude <unistd.h>

off t lseek <fildes, offset, whence)
int-fildes;
off t offset;
int -whence;

DESCRIPTION
The file descriptor fildes is returned from a ereat, open, dup,
or fentl system call. lseek sets the file pointer associated with
fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is I, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

In the POSIX environment, the following values are defined in
<uni s td. h> for passing as the value of whence:

SEEK SET 0

SEEK CUR 1

SEEK END 2

On successful completion, the resulting pointer location, as meas­
ured in bytes from the beginning of the file, is returned.

RETURN VALUE
On successful completion, a non-negative integer indicating the
file pointer value is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
lseek will fail and the file pointer will remain unchanged if one
or more of the following are true:

[EBADF] fildes is not an open file descriptor.

[ESPIPE]

[EINVAL]

[EINVAL]

February, 1990
Revision C

fildes is associated with a pipe or FIFO.

whence is not 0, 1, or 2.

The resulting file pointer would be negative.

1

lseek(2) lseek(2)

Some devices are incapable of seeking. The value of the file
pointer associated with such a device is undefined.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

2 February, 1990
RevisionC

mkdir(2)

NAME
mkdi r - make a directory file

SYNOPSIS
int mkdir (path, mode)
char *path;
int mode;

DESCRIPTION

mkdir(2)

mkdi r creates a new directory file with name path. The mode of
the new file is initialized from mode. (The protection part of the
mode is modified by the process's mode mask; see umask(2)).

The directory's owner ID is set to the process's effective user ID.
The directory's group ID is set to that of the parent directory in
which it is created.

The newly-created directory will contain entries for. and ...

The low-order 9 bits of mode are modified by the process's file
mode creation mask; all bits set in the process's file mode creation
mask are cleared. (See umask(2).)

RETURN VALUE
A 0 return value indicates success. A -1 return value indicates an
error, and an error code is stored in errno.

ERRORS
mkdi r will fail and no directory will be created if:

[EEXI S T] The named file exists.

[EFAULT] path points outside the process's allocated
address space.

[E I 0] An I/O error occurred while writing to the
file system.

[ELOOP] Too many symbolic links were encoun­
tered in translating a pathname.

[ENAMETOOLONG] A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

[ENOENT] A component of the path prefix does not
exist.

[ENOTDIR] A component of the path prefix is not a
directory.

February, 1990 1
Revision C

mkdir(2)

[EPERM]

[EROFS]

SEE ALSO

mkdir(2)

The path argument contains a byte with the
high-order bit set

The named file resides on a read-only file
system.

mkdir(1), chmod(2), rmdir(2), stat(2), umask(2).

2 February, 1990
RevisionC

mknod(2) mknod(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod(path, mode, dey)
char *path;
int mode, dev;

DESCRIPTION
mknod creates a new file named by the path name pointed to by
path. The mode of the new file is initialized from mode, where the
value of mode is interpreted as follows:

o 17()()()() file type mask; one of the following:

00 1 0000 FIFO special
0020000 character special
0040000 directory
006000O block special
0100000 or 0000000 ordinary file
0120000 symbolic link
0140000 socket
0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution

0000777 access permissions; constructed from the following

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the pro­
cess. The group ID of the file is set to the effective group ID of
the process.

Values of mode other than those above are undefined and should
not be used. The low-order 9 bits of mode are modified by the
process's file mode creation mask: all bits set in the process's file
mode creation mask are cleared. See umask(2). If mode indi­
cates a block or character special file, dey is a configuration­
dependent specification of a character or block I/O device. If
mode does not indicate a block special or character special device,
dey is ignored.

February,1990
Revision C

1

mknod(2) mknod(2)

mknod may be invoked only by the superuser for file types other
than FIFO special.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

ERRORS
mknod will fail and the new file will not be created if one or more
of the following is true.

[EPERM] The effective user ID of the process is not
superuser.

[EPERM] A pathname contains a character with the
high-order bit set

[ENAMETOOLONG]

[ELOOP]

[ENOTDIR]

[ENOENT]

[EROFS]

[EEXIST]

[EFAULT]

A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

Too many symbolic links were encoun­
tered in translating a pathname.

A component of the path prefix is not a
directory.

A component of the path prefix does not
exist.

The directory in which the file is to be
created is located on a read-only file sys­
tem.

The named file exists.

path points outside the allocated address
space of the process.

SEE ALSO

2

mkdir(1), mknod(l), chmod(2), exec(2), stat(2), umask(2),
fs(4), stat(5).

February, 1990
RevisionC

msgctl(2) msgctl(2)

NAME
msgctl- message control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (id, cmd, buf>
int id, cmd;
struct msqid_ds *bu/;

DESCRIPTION
msgctl provides a variety of message control operations as
specified by cmd. The following cmds are available:

IPC STAT

IPC SET

IPC RMID

February, 1990
Revision C

Place the current value of each member of the
data structure associated with id into the struc­
ture referenced by buj. The contents of this
structure are defined in intro(2).

Set the value of the following members of the
data structure associated with id to the
corresponding value found in the structure
referenced by but

msgyerm.uid
msgyerm.gid
msg_perm. mode (only low 9 bits)
msg_qbytes

This cmd can only be executed by a process
that has an effective user ID equal to either that
of superuser or to the value of
msg perm. uid in the data structure associat­
ed With id. Only the superuser can raise the
value ofmsg_qbytes.

Remove the message queue identifier specified
by id from the system and destroy the message
queue and data structure associated with it.
This cmd can only be executed by a process
that has an effective user ID equal to either that
of super user or to the value of
msgyerm. uid in the data structure associat­
ed with id. The identifier and its associated
data structure are not actually removed until

1

msgctl(2) msgctl(2)

there are no more referencing processes. See
ipcrm(l), and ipcs(I).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
msgctl will fail if one or more of the following is true.

[EINVAL] id is not a valid message queue identifier.

[EINVAL] cmd is not a valid command.

[EACCES] cmd is equal to IPC STAT and operation per­
mission is denied to the calling process (see
intro(2».

[EPERM]

[EPERM]

cmd is equal to IPC RMID or IPC SET. The
effective user ID of-the calling process is not
equal to that of superuser and it is not equal to
the value ofmsgyerm. uid in the data struc­
ture associated with id.

cmd is equal to IPC_SET, an attempt is being
made to increase to the value of
msg qbytes, and the effective user ID of
the calling process is not equal to that of su­
peruser.

[EFAULT] btifpoints to an illegal address.

SEE ALSO
intro(2), msgget(2), msgop(2).

2 February, 1990
Revision C

msgget(2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgfig)
key t key;
int - msgfig;

DESCRIPTION

msgget(2)

msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and
data structure (see intro(2)) are created for key if one of the fol­
lowing is true:

key is equal to IPC_PRIVATE.

key does not already have a message queue identifier associ­
ated with it, and (msgfig & IPC_CREAT) is "true".

The key IPC PRIVATE will create an identifier and associated
data structure that is unique to the calling process and its children.

Upon creation, the data structure associated with the new message
queue identifier is initialized as follows:

msg-Ferm.cuid, msg-Ferm.uid, msg-Ferm.cgid,
and msg-Ferm. gid are set equal to the effective user ID
and effective group ID, respectively, of the calling process.

The low-order 9 bits of msg-Ferm. mode are set equal to
the low-order 9 bits of msgfig.

rnsg qnum, msg lspid, rnsg lrpid, msg_stime,
and msg_ rtime are set equal to 0:-
rnsg_ ctime is set equal to the current time.

msg_ qbytes is set equal to the system limit.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a
message queue identifier, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

February, 1990
Revision C

1

msgget(2) msgget(2)

ERRORS
msgget will fail if one or more of the following are true:

[EACCES] A message queue identifier exists for key, but
operation permission (see intro(2» as
specified by the low-order 9 bits of msgfig
would not be granted.

[ENOENT]

[ENOSPC]

[EEXIST]

A message queue identifier does not exist for
key and (msgfig & IPC CREAT) is
"false". -

A message queue identifier is to be created but
the system-imposed limit on the maximum
number of allowed message queue identifiers
system wide would be exceeded.

A message queue identifier exists for key but
((msgfig & IPC CREAT) && (msgfig &

IPC_EXCL)) is "true".
SEE ALSO

intro(2), msgctl(2), msgop(2).

2 February, 1990
RevisionC

msgop(2) msgop(2)

NAME
msgop, msgsnd, msgrcv - message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgfig)
int msqidi
struct msgbuf *msgp;
int msgsz,msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqidi
struct msgbuf *msgp;
int msgsz;
long msgtypi
int msgflgi

DESCRIPTION
msgsnd is used to send a message to the queue associated with
the message queue identifier specified by msqid. msgp points to a
structure containing the message. This structure is composed of
the following members:

long mtypei /* message type */
char mtext[]i /* message text */

mtype is a positive integer that can be used by the receiving pro­
cess for message selection (see msgrcv below). mtext is any text
of length msgsz bytes. msgsz can range from 0 to a system­
imposed maximum.

msgfig specifies the action to be taken if one or more of the fol­
lowing are true:

The number of bytes already on the queue is equal to
msg_qbytes (see intro(2)).

The total number of messages on all queues systemwide is
equal to the system-imposed limit.

These actions are as follows:

If (msgfig & IPC NOWAIT) is "true", the message will
not be sent and the calling process will return immediately.

February, 1990
Revision C

1

msgop(2) msgop(2)

2

If (msgfig & IPC NOWAIT) is "false", the calling pro­
cess will suspend execution until one of the following oc­
curs:

The condition responsible for the suspension no longer
exists, in which case the message is sent.

msqid is removed from the system (see msgctl(2».
When this occurs, errno is set equal to EIDRM, and a
value of -1 is returned.

The calling process receives a signal that is to be
caught. In this case the message is not sent and the cal­
ling process resumes execution in the manner
prescribed in sigvec(2».

Upon successful completion, the following actions are taken with
respect to the data structure associated with msqid (see in­
tro(2».

msg_ qnum is incremented by 1.

msg_l spid is set equal to the process ID of the calling pro­
cess.

msg_ stime is set equal to the current time.

msgrcv reads a message from the queue associated with the mes­
sage queue identifier specified by msqid and places it in the struc­
ture pointed to by msgp. This structure is composed of the follow­
ing members:

long mrypei /* message type */
char mtext[]i /* message text */

mtype is the received message's type as specified by the sending
process. mtext is the text of the message. msgsz specifies the size
in bytes of mtext. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgfig & MSG_NOERROR)
is "true". The truncated part of the message is lost and no indica­
tion of the truncation is given to the calling process.

msgtyp specifies the type of message requested as follows:

If msgryp is equal to 0, the first message on the queue is re­
ceived.

If msgryp is greater than 0, the first message of type msgryp
is received.

February, 1990
RevisionC

msgop(2) msgop(2)

If msgtyp is less than 0, the first message of the lowest type
that is less than or equal to the absolute value of msgtyp is re­
ceived.

msgfig specifies the action to be taken if a message of the desired
type is not on the queue. These are as follows:

If (msgfig & IPC NOWAIT) is "true", the calling pro­
cess will return immediately with a return value of -1 and
errno is set to ENOMSG.

If (msgfig & IPC NOWAIT) is "false", the calling pro­
cess will suspend execution until one of the following oc­
curs:

A message of the desired type is placed on the queue.

msqid is removed from the system. When this occurs,
errno is set equal to EIDRM, and a value of -1 is re­
turned.

The calling process receives a signal that is to be
caught. In this case a message is not received and the
calling process resumes execution in the manner
prescribed in sigvec(2».

Upon successful completion, the following actions are taken with
respect to the data structure associated with msqid (see in­
tro(2».

msg_ qnum is decremented by 1.

msg_lrpid is set equal to the process ID of the calling pro­
cess.

msg_ rtime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a
value of -1 is returned to the calling process and errno is set to
E I NTR. If they return due to removal of msqid from the system, a
value of -1 is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:

msgsnd returns a value of O.

msgrcv returns a value equal to the number of bytes actual­
ly placed into mtext.

February, 1990
Revision C

3

msgop(2) msgop(2)

Otherwise, a value of -1 is returned and errno is set to indicate
the error.

ERRORS
msgsnd will fail and no message will be sent if one or more of
the following are true:

[EINVAL] msqid is not a valid message queue identifier.

[EACCES] Operation permission is denied to the calling
process (see int ro(2».

[EINVAL]

[EAGAIN]

[EINVAL]

[EFAULT]

mtype is less than 1.

The message cannot be sent for one of the rea­
sons cited above and (msgfig &

IPC_NOWAIT) is "true".

msgsz is less than zero or greater than the
system-imposed limit.

msgp points to an illegal address.

msgrcv will fail and no message will be received if one or more
of the following are true:

[EINVAL] msqid is not a valid message queue identifier.

[EACCES]

[EINVAL]

[E2BIG]

[ENOMSG]

Operation permission is denied to the calling
process.

msgsz is less than O.

mtext is greater than msgsz and (msgfig &

MSG_NOERROR) is "false".

The queue does not contain a message of the
desired type and (msgtyp & IPC_NOWAIT)
is "true".

[EFAULT] msgp points to an illegal address.

SEE ALSO

4

intro(2), msgctl(2), msgget(2), sigvec(2), signal(3).

February, 1990
RevisionC

nfssvc(2)

NAME
nfssvc, a sync_daemon - NFS daemons

SYNOPSIS
int nfssvc (sock)
int sock;

async_daemon ()

DESCRIPTION

nfssvc(2)

nfssvc starts an NFS daemon listening on socket sock. The
socket must be AF INET, and SOCK DGRAM (protocol UDP/lP).
The system call will return only if the process is killed.

async _daemon implements the NFS daemon that handles asyn­
chronous I/O for an NFS client. The system call never returns.

BUGS
These two system calls allow kernel processes to have user con­
text.

SEE ALSO
mountd(lM), nfsd(IM).

February, 1990
Revision C

1

nfs_getfh(2)

NAME
nf s _get fh - get a file handle

SYNOPSIS
#include <rpc/types.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <nfs/nfs.h>

int nfs_getfh (fildes, fhp)
int fildes;
fhandle t *fhp;

DESCRIPTION
nfs getfh returns the file handle associated with the file
descnptor Id. This call is restricted to the superuser.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a
value of -1 is returned and an error code is placed into the global
location errno.

ERRORS

1

The following errors may be returned by these calls:

[EPERM] The caller was not the superuser.

[EBADF] Id is not a valid open file descriptor.

[EFAULT] The fhp parameter gave an invalid address.

February, 1990
RevisionC

nice(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION

nice(2)

nice adds the value of incr to the value of the calling process. A
process's nice value is a positive number for which a higher value
results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are
imposed by the system. Requests for values above or below these
limits result in the nice value being set to the corresponding limit.

RETURN VALUE
Upon successful completion, nice returns the new nice value
minus 20. Otherwise, a value of -1 is returned and errno is set
to indicate the error. If a value of -1 is a valid return value on
successful completion (i.e., if your new nice value is 19), errno
is not changed.

ERRORS
ni ce will fail if:

[EPERM]

SEE ALSO

nice will fail and not change the nice value if
incr is negative or greater than 40 and the effec­
tive user ID of the calling process is not su­
peruser.

nice(1), exec(2).

February, 1990 1
Revision C

open(2) open(2)

NAME
open - open for reading or writing

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open (path, oflag[, mode])
char *path;
int oflag, mode;

DESCRIPTION

1

open opens a file descriptor for the named file and sets the file
status flags according to the value of oflag. The argument path
points to a pathname naming a file. The oflag values are con­
structed by OR-ing flags from the following list (only one of the
first three flags below may be used):

o RDONLY

o WRONLY

o RDWR

Open for reading only.

Open for writing only.

Open for reading and writing.

o NDELAY or 0 NONBLOCK
- Either flag may affect subsequent reads and

writes. See read(2) and write(2).

When opening a FIFO with 0 RDONLY 01
o WRONLY set and -

if 0 NDELAY or 0 NONBLOCK is set, an
open for reading-only returns without de­
lay. An open for writing-only returns an
error if no process currently has the file
open for reading.

if 0 NDELAY and 0 NONBLOCK are clear,
an open for reading-only blocks until a
process opens the file for writing. An
open for writing-only blocks until a pro­
cess opens the file for reading. When
opening a file associated with a communi­
cation line and

if 0 NDELAY or 0 NONBLOCK is set, the
open returns without waiting for a carrier.

February, 1990
Revision C

open(2)

o APPEND

o CREAT

o TRUNC

o EXCL

o NOCTTY

open(2)

if 0 NDELAY and 0 NONBLOCK are clear,
an open blocks until a carrier is present.

If set, the file pointer is set to the end of the file
prior to each write.

If the file exists, this flag has no effect. Other­
wise, the owner ID of the file is set to the effec-
tive user ID of the process, the group ID of the
file is set to the effective group ID of the pro­
cess, and the low-order 12 bits of the file mode
are set to the value of mode modified as follows
(see creat(2)):

All bits set in the file-mode-creation mask
of the process are cleared. See umask(2).

Mode bit 01000 (save text image after exe­
cution bit) is cleared. See chmod(2).

If the file exists, its length is truncated to 0, and
the mode and owner are unchanged.

If 0 EXCL and 0 CREAT are set, open fails if
the IDe exists. -

If set, and path identifies a terminal device, the
open does not cause the terminal device to be-
come the controlling terminal for the process.
o NOCTTY has been added for compliance with
roSIX.

The file pointer used to mark the current position within the file is
set to the beginning of the file.

The new file descriptor is set to remain open across exec system
calls. See fcntl(2).

RETURN VALUE
On successful completion, the file descriptor is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the er­
ror.

ERRORS
The named file is opened unless one or more of the following are
true:

[ENOTDIR]

February,1990
Revision C

A component of the path prefix is not a
directory.

2

open(2) open(2)

[ENAMETOOLONG] A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

[ELOOP] Too many symbolic links were encoun­
tered in translating a pathname.

[ENOENT] 0 CREA T is not set, and the named file
does not exist.

[EACCE S] A component of the path prefix denies
search permission.

[EACCES] An oflag permission is denied for the
named file.

[EISDIR] The named file is a directory, and oflag is
write or read/write.

[EROF S] The named file resides on a read-only file
system, and oflag is write or read/write.

[EMFILE] The per-process open file limit would be
exceeded.

[ENXIO] The named file is a character-special or
block-special file, and the device associat­
ed with this special file does not exist.

[ETXTBSY] The file is a pure-procedure (shared text)
file that is being executed, and oflag is
write or read/write.

Note: If you are running an net­
work file system (NFS) and you are
accessing a shared binary remotely,
it is possible that you will not get
this errno.

[EFAULT] path points outside the allocated address
space of the process.

[EEXIST] 0 CREAT and 0 EXCL are set, and the
named file exists. -

[ENXIO] 0 NDELAY is set, the named file is a
FIFO, 0 WRONLY is set, and no process
has the file open for reading.

3 February, 1990
Revision C

open(2)

[EINTR]

[ENFILE]

[ENOSPC]

SEE ALSO

open(2)

A signal was caught during the open sys­
tem call.

The system file table is full.

The directory or file system that would
contain the new file cannot be extended.

chmod(2), close(2), creat(2), dup(2), fcntl(2), lseek(2),
read(2), umask(2), write(2), fopen(3), ferror(3).

February,1990 4
Revision C

pause(2) pause(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
pause suspends the calling process until it receives a signal. The
signal must be one that is not currently set to be ignored by the
calling process.

If the signal causes termination of the calling process, pause will
not return.

When a signal is caught by the calling process, the behavior of
pause will vary according to flags set by setcompa t(2) or
set42sig(3). If the COMPAT SYSCALLS flag is set when con­
trol is returned from the signal catching function, then the process
will once again pause; otherwise, the calling process will resume
as described below.

ERRORS
If the signal is caught by the calling process and control is re­
turned from the signal-catching function (see signal(3)), the
calling process resumes execution from the point of suspension;
the return value of pause will be set to -1 and errno will be set
to EINTR.

SEE ALSO
alarm(2), kill(2), wait(2), signal(3).

1 February, 1990
RevisionC

phys(2)

NAME
phys - allow a process to access physical addresses

SYNOPSIS
int phys (physnum, virtaddr, size, physaddr)
int physnum;
char *virtaddr;
unsigned int size;
char *physaddr;

DESCRIPTION

phys(2)

The phys system call allows the superuser to map a region of
physical memory into a process's virtual address space.

The calling process chooses physnum to specify the phys region
this call references. The maximum number of regions per process
is defined by the v yhys field in the var structure returned by
uvar(2). physnum must be between zero and vyhys-l, and is
only used to identify a particular phys region to the kernel during
a phys system call.

virtaddr is the base virtual address for the region in the process's
virtual address space, and size is the length in bytes of the desired
region. The virtual address range of the region must not overlap
any of the existing address space of the process, including text,
data, stack, shared memory regions (see shmget(2», and any
other active phys regions. All addresses in this range must be
valid user virtual addresses (see the example below). Care should
also be taken to avoid placing a phys region at a virtual address
that the data or stack segments might grow to encompass.

If size is zero, any previous phys mapping is cleared for the re­
gion specified by physnum.

A phys region's virtaddr and size are dependent on the imple­
mentation decisions for the memory management unit. In particu­
lar, the base virtaddr must be on a kernel segment boundary and
the size will be rounded up to an integral multiple of the page size.
These values may be computed from the v _segshift and
v yageshift fields returned by uvar(2); that is, the segment
size is

1 « v_segshift

and the page size is

1 « vyageshift

February, 1990
Revision C

1

phys(2) phys(2)

2

The physaddr argument is the base physical address for the re­
gion. physaddr is rounded down to the previous page boundary.
Also, physaddr to physaddr+size should be inside the range of
physical addresses supported by the hardware. phys regions are
inherited across fork(2) system calls and disowned across ex­
ecs.

phys may only be executed by a process with an effective user
10 of root

As an example, suppose a process wishes to map a piece of
memory-mapped hardware into its address space. This hardware
has Ox8800 bytes of memory and control registers located at phy­
sical address OxFAOOOOOO. By calling uvar(2), the process finds
that v yageshift is 12 and v _segshift is 20; thus, the page
size is Oxl000 and the segment size is Oxl00000. Also, v yhys
is found to be 32, so any number from zero to 31 may be used for
physnum.

The var structure also contains v ustart and v uend, the
starting and ending virtual addresses for user processes. For this
example, assume v ustart is zero and v uend is Ox20000000.
The first few segments are used for the rumllng program's text and
data and the last are used for the user stack. The process might
decide it is unlikely that its data and text segment will exceed
Ox4000000, which is an integral multiple of Oxl00000 (the seg­
ment size).

The call:

phys(O, Ox4000000, Ox8800, OxFAOOOOOO);

will allow the process access to physical locations from
OxF AOOOOO to OxF AOO9000 by referencing virtual addresses
Ox4000000 to Ox4009000. The range has been adjusted to Ox9000
bytes because that is the next page boundary.

In this example, referencing Ox4008804 (an address in the phys
region, but outside of the known hardware memory) will result in
unpredictable failures. A useless value may be read off the
hardware lines, a write may appear to succeed without affecting
anything, the program may get a SIGSEGV (see signal(3», the
hardware may react randomly, or the entire system may crash.
There may be other possibilities depending on system
configuration.

February, 1990
RevisionC

phys(2) phys(2)

IT the process wished to add another phys region without deleting
the first region, the next available virtaddr would be Ox4100000
(the next segment boundary) and physnum could be any number
from one to 31.

RETURN VALUES
The value zero is returned if the call was successful; otherwise -1
is returned. phys will fail if the effective user ID of the calling
process is not root, if virtaddr or physaddr is not in the proper
range, or if the range of virtual addresses overlaps a portion of the
user's virtual address space that is already in use.

NOTES
phys is hardware and implementation dependent and must be
used with extreme caution. The intention is to give the superuser
complete access to the physical hardware. To insure maximum
portability, virtaddr and size should be calculated as described in
the example.

Different hardware may respond differently to mistakes in ad­
dressing. Sometimes all the bits of a physical address are not
decoded, making (for example) OxFD100000 the same as
0xFD000000. If physaddr or size is wrong it is possible to crash
the system.

Most versions of UNIX do not support this system call.

SEE ALSO
uvar(2), shmget(2), signal(3).

February, 1990
Revision C

3

pipe(2) pipe(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes[2];

DESCRIPTION
pipe creates an I/O mechanism called a pipe and returns two file
descriptors, fildes [0] and fildes [1]. fildes [0] is opened for
reading andfildes [1] is opened for writing.

Up to PIPE MAX bytes of data are buffered by the pipe before
the writing process is blocked. A read only file descriptor
fildes [0] accesses the data written to fildes [1] on a first-in-first­
out (FIFO) basis.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
pipe will fail if one or more of the following is true.

[EMFILE] pipe will fail if the per-process open file limit
would be exceeded.

[ENF I LE] The system file table is full.

SEE ALSO
read(2), wri te(2).

1 February, 1990
RevisionC

plock(2) plock(2)

NAME
plock -lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>

int plock (op)
int op;

DESCRIPTION
plock allows the calling process to lock its text segment (text
lock), its data segment (data lock), or both its text and data seg­
ments (process lock) into memory. Locked segments are immune
to all routine swapping. plock also allows these segments to be
unlocked. The effective user ID of the calling process must be su­
peruser to use this call. op specifies the following:

PROCLOCK lock text and data segments into memory (pro­
cess lock)

TXT LOCK

DATLOCK

UNLOCK

RETURN VALUE

lock text segment into memory (text lock)

lock data segment into memory (data lock)

remove locks

Upon successful completion, a value of 0 is returned to the calling
process. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

ERRORS
plock will fail and not perform the requested operation if one or
more of the following is true.

[EPERM] The effective user ID of the calling process is
not superuser.

[EAGAIN]

[EINVAL]

[EINVAL]

February,1990
Revision C

The system has temporarily exhausted its avail­
able memory or swap space.

op is equal to PROCLOCK and a process lock, a
text lock, or a data lock already exists on the
calling process.

op is equal to TXT LOCK and a text lock, or a
process lock already exists on the calling pro­
cess.

1

plock(2)

[EINVAL]

[EINVAL]

SEE ALSO

plock(2)

op is equal to DATLOCK and a data lock, or a
process lock already exists on the calling pro­
cess.

op is equal to UNLOCK and no type of lock ex­
ists on the calling process.

exec(2), exit(2), fork(2).

2 February, 1990
Revision C

profil(2)

NAME
profil- execution time profile

SYNOPSIS
profil (buff, buj'siz, offset, scale)
char * buff;
in t buJsiz, offset, scale;

DESCRIPTION

profil(2)

profil is used to report performance analysis of an application.
buff points to an area of core whose length (in bytes) is given by
buJsiz. After the call, the user's program counter (PC) is examined
for each clock tick; offset is subtracted from it, and the result mul­
tiplied by scale. If the resulting number corresponds to a word in­
side buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with
16 bits of fraction: Oxl0000 gives a 1-1 mapping of pc's to words
in buff; Ox8000 maps each pair of instruction words together; 2
maps all instructions onto the beginning of buf f (producing a
noninterrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered
ineffective by giving a buJsiz of O. Profiling is turned off when an
exec is executed, but remains on in child and parent both after a
fork. Profiling will be turned off if an update in buff would
cause a memory fault.

RETURN VALUE
Not defined.

SEE ALSO
prof(l), moni tor(3C).

February, 1990
Revision C

1

ptrace(2) ptrace(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data)
in t request, pid, addr, data;

DESCRIPTION
ptrace provides a means by which a parent process may control
the execution of a child process. Its primary use is for the imple­
mentation of breakpoint debugging. The child process behaves
normally until it encounters a signal (see sigvec(2) for the list),
at which time it enters a stopped state and its parent is notified via
wai t(2). When the child is in the stopped state, its parent can ex­
amine and modify its "core image" using ptrace. Also, the
parent can cause the child either to terminate or continue, with the
possibility of ignoring the signal that caused it to stop.

The request argument determines the precise action to be taken by
ptrace and is one of the following:

o This request must be issued by the child process if it is to
be traced by its parent It turns on the child's trace flag that
stipulates that the child should be left in a stopped state
upon receipt of a signal rather than the state specified by
June; see sigvec(2). The pid, addr, and data arguments
are ignored, and a return value is not defined for this re­
quest. Peculiar results will ensue if the parent does not ex­
pect to trace the child.

The remainder of the requests can only be used by the parent pro­
cess. For each, pid is the process ID of the child. The child must
be in a stopped state before these requests are made.

1, 2
With these requests, the word at location addr in the address
space of the child is returned to the parent process. Either re­
quest 1 or request 2 may be used with equal results. The
data argument is ignored. These two requests will fail if
addr is not the start address of a word, in which case a value
of -1 is returned to the parent process and the parent's
errno is set to EIO.

3 With this request, the word at location addr in the child's
USER area in the system's address space (see
<sys/user. h» is returned to the parent process. Ad-

1 February, 1990
Revision C

ptrace(2) ptrace(2)

4, 5

dresses are system dependent. The data argument is ignored.
This request will fail if addr is not the start address of a word
or is outside the USER area, in which case a value of -1 is re­
turned to the parent process and the parent's errno is set to
EIO.

With these requests, the value given by the data argument is
written into the address space of the child at location addr.
Either request 4 or request 5 may be used with equal results.
Upon successful completion, the value written into the ad­
dress space of the child is returned to the parent. These two
requests will fail if addr is a location in a pure procedure
space and another process is executing in that space, or addr
is not the start address of a word. Upon failure, a value of -1
is returned to the parent process and the parent's errno is
set to EIO.

6 With this request, a few entries in the child's USER area can
be written. data gives the value that is to be written and addr
is the location of the entry. The few entries that can be writ­
ten are:

the general registers
the condition codes
certain bits of the Processor Status Word

7 This request causes the child to resume execution. If the data
argument is 0, all pending signals including the one that
caused the child to stop are canceled before it resumes execu­
tion. If the data argument is a valid signal number, the child
resumes execution as if it had incurred that signal, and any
other pending signals are canceled. The addr argument must
be equal to 1 for this request. Upon successful completion,
the value of data is returned to the parent. This request will
fail if data is not ° or a valid signal number, in which case a
value of -1 is returned to the parent process and the parent's
errno is set to EIO.

8 This request causes the child to terminate with the same
consequences as exi t(2).

9 This request sets the trace bit in the Processor Status Word of
the child and then executes the same steps as listed above for
request 7. The trace bit causes an interrupt upon completion
of one machine instruction. This effectively allows single

February, 1990
Revision C

2

ptrace(2) ptrace(2)

stepping of the child.

Note: The trace bit remains set after an interrupt.

10 Read user register; pill = child process ID; addr = register
number; data is ignored; returns value of child's register.

11 Write user register; pid = child process ID; addr = register
number; data = integer value to be written into named regis­
ter.

Note: For both requests 10 and 11, the register
numbers are as shown below for the 68000-family
(these numbers are system dependent).

Register Register # Register Register #
dO 0 al 9
dl 1 a2 10
d2 2 a3 11
d3 3 a4 12
d4 4 a5 13
d5 5 a6 14
d6 6 SP 15
d7 7 PC 16
aO 8 PS 17

To forestall possible fraud, ptrace inhibits the set-user-ID facili­
ty on subsequent exec(2) calls. If a traced process calls exec, it
will stop before executing the first instruction of the new image
showing signal S I GTRAP .

ERRORS
ptrace will in general fail if one or more of the following are
true:

[EIO]

[ESRCH]

request is an illegal number.

pid identifies a child that does not exist or has
not executed a ptrace with request o.

NOTES

3

Request 11 largely supercedes request 6, and request 10 largely
supercedes request 3 (request 3 can read any part of the child's
user area while request 10 can only read register values of the
child).

February, 1990
RevisionC

ptrace(2)

SEE ALSO
exec(2), sigvec(2), wai t(2), signal(3).

February, 1990
Revision C

ptrace(2)

4

read(2) read(2)

NAME
read, readv - read from file

SYNOPSIS
int read (fildes, buf, nbytes)
int fildes;
char *buf;
unsigned nbytes;

#include <sys/types.h>
#include <sys/uio.h>

int readv (fildes, iov, iovcnt)
int fildes;
struct iovec *iov;
int iovcnt;

DESCRIPTION

1

read attempts to read nbytes bytes from the file associated with
fildes into the buffer pointed to by buf. readv performs the same
action but scatters the input data into the iovcnt buffers specified
by the members of the iovec array:

iov [0], iov [1] , ... , iov [iovcnt-1]

The file descriptor fildes is obtained from a creat, open, dup,
fcntl, pipe, or socket system call.

For readv, the iovec structure is defined as

struct iovec {
caddr t iov_base;

} ;

Each iovec entry specifies the base address and length of an area
in memory where data should be placed. readv always fills an
area completely before proceeding to the next.

On devices capable of seeking, the reading starts at a position in
the file given by the file pointer associated with fildes. On return
from read, the file pointer is incremented by the number of bytes
actually read.

On devices incapable of seeking, reading always starts from the
current position. The value of a file pointer associated with such a
file is undefined.

February, 1990
Revision C

read(2) read(2)

On successful completion, read and readv return the number of
bytes actually read and placed in the buffer, this number may be
less than nbytes if the file is associated with a communication line
(see ioctl(2), socket(2N), and termio(7» or if the number
of bytes left in the file is less than nbytes. A value of 0 is returned
when an end-of-file has been reached. If nbyte is 0, read returns
o and has no other result.

When attempting to read from an empty pipe (or FIFO) and

if 0_ NDELAY is set, the read returns O.

if 0 NDELAY is clear, the read blocks until data is written to
the file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no
data currently available and

if 0_ NDELAY is set, the read returns O.

if 0 ND E LAY is clear, the read blocks until data becomes
available.

When attempting to read from an empty pipe (or FIFO) and

if O_NONBLOCK is set, the read returns -1 and sets errno
to EAGAIN.

if 0 NONBLOCK is clear, the read blocks until some data is
written or the pipe is closed by all processes that had the pipe
open for writing.

if no process has the pipe open for writing, the read returns 0
to indicate end-of-file.

When attempting to read a file associated with a terminal that has
no data currently available and

if O_NONBLOCK is set, the read returns -1 and set errno to
EAGAIN.

if 0 NONBLOCK is clear, the read blocks until data becomes
available.

RETURN VALUE
On successful completion, a non-negative integer is returned indi­
cating the number of bytes actually read. If the process compati­
bility flag COMPAT_SYSCALLS is set (see setcompat(2», as
in the POSIX environment, and read is interrupted by a signal
after successfully reading some data, it returns the number of
bytes read. Otherwise, a -1 is returned and errno is set to

February, 1990
Revision C

2

read(2) read(2)

EINTR to indicate the error.

ERRORS

3

When attempting to read from a stream that has no data currently
available and if 0 NDELAY is set, read returns -1 and errno is
set to ENODATA.lf 0 NDELAY is clear, read blocks until data
becomes available. -

read and readv will fail if one or more of the following are
true:
[EIO]

[ENXIO]

[EWOULDBLOCK]

[EBADF]

[EFAULT]

[EINTR]

A physical I/O error has occurred or the
process is in a background process group
and is attempting to read from its control­
ling terminal and the process is ignoring or
blocking SIGTTIN or the process group of
the process is orphaned.

The device associated with the file descrip­
tor is a block-special or character-special
file and the value of the file pointer is out
of range.

The file was marked for nonblocking I/O,
and no data was ready to be read.

The file descriptor fildes is not valid and
open for reading.

buj points outside the allocated address
space.

A signal was caught during the read sys­
tem call.

[ENODATA] A read from a stream was attempted
when no data was available and
o NDELAY was set.

In addition, readv may return one of the following errors:

[EINVAL] iovcnt was less than or equal to 0, or greater
than 16.

[EINVAL]

[EINVAL]

One of the iov len values in the iov ar­
ray was negative.

The sum of the iov len values in the iov
array overflowed a 32-bit integer.

February, 1990
RevisionC

read(2)

SEE ALSO
creat(2), fcntl(2), ioctl(2), open(2), pipe(2),
socket(2N), setcornpat(2), termio(7).

February, 1990
Revision C

read(2)

4

readlink(2)

NAME
readlink - read value of a symbolic link

SYNOPSIS
int readlink (path, buf, bufsiz)
char *path, *buf;
int bUfsiz;

DESCRIPTION

readlink(2)

readlink places the contents of the symbolic link name in the
buffer buf which has size bufsiz. The contents of the link are not
null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it
succeeds, or a -1 if an error occurs, placing the error code in the
global variable errno.

ERRORS
readlink will fail and the file mode will be unchanged if:

[EPERM] The path argument contained a byte with
the high-order bit set.

[EPERM] A pathname contains a character with the
high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

[ELOOP] Too many symbolic links were encoun­
tered in translating a pathname.

[ENOENT] The pathname was too long.

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] The named file does not exist.

[ENXI 0] The named file is not a symbolic link.

[EACCES] Search permission is denied on a com­
ponent of the path prefix.

[EPERM] The effective user ID does not match the
owner of the file and the effective user ID
is not the superuser.

1 February, 1990
RevisionC

readlink(2)

[EINVAL]

[EFAULT]

[ELOOP]

SEE ALSO

readlink(2)

The named file is not a symbolic link.

buf extends outside the process's allocated
address space.

Too many symbolic links were encoun­
tered in translating the pathname.

stat(2), lstat(2), symlink(2).

February, 1990
Revision C

2

reboot(2) reboot(2)

NAME
reboot - reboot system or halt processor

SYNOPSIS
#include <sys/reboot.h>

int reboot(howto)
int howto;

DESCRIPTION
reboot halts and restarts the processor and reloads the operating
system from the disk file "unix" on the root file system of the de­
fault boot device. By default. in-core data for mounted file sys­
tems is flushed. as in sync(2). Only the superuser may reboot a
machine.

howto is a mask of options passed to the operating system. One
of the following bits must be set in howt 0:

RB AUTOBOOT
Restart the processor and reload the operating system.

RB HALT
Halt the processor. No reboot takes place.

RB BUSYLOOP
Hang the processor an infinite loop.

The following optional behavior may be requested by setting these
bits in howto:

RB NOSYNC
Do not flush the system buffers to disk.

RB KILLALL
Terminate all running processes before halting the system.

RB UNMOUNT
Un mount all mounted file systems before halting the system.

RETURN VALUES
If successful. this call never returns. Otherwise. a -1 is returned
and an error is returned in the global variable errno.

ERRORS
The following error condition could occur:

[EPERM] The caller is not the superuser.

1 February. 1990
Revision C

reboot(2)

SEE ALSO
reboot(1M), shutdown(1M), sync(2).

February, 1990
Revision C

reboot(2)

2

recv(2N) recv(2N)

NAME
recv, recvfrom, recvmsg - receive a message from a
socket

SYNOPSIS
*include <sys/types.h>
*include <sys/socket.h>

int recv (s, buf, len, flags)
int Si
char *buf;
int len, flags;

int recvfrom (s, buf, len, flags, from, fromlen)
int Si

char *buf;
int len, flags;
struct sockaddr *fromi
int *fromleni

int recvmsg (s, msg, flags)
int Si
struct msghdr msg[];
int flags;

DESCRIPTION

1

recv, recvfrom, and recvmsg are used to receive messages
from a socket.

The recv call may be used only on a connected socket (that is,
when connect(2N) has been used), while recvf rom and
recvmsg may be used to receive data on a socket whether it is in
a connected state or not.

If from is nonzero, the source address of the message is filled in.
fromlen is a value-result parameter, initialized to the size of the
buffer associated withfrom, and modified on return to indicate the
actual size of the address stored there. The length of the message
is returned. If a message is too long to fit in the supplied buffer,
excess bytes may be discarded depending on the type of socket the
message is received from; see socket(2N).

If no messages are available at the socket, the receive call waits
for a message to arrive, unless the socket is nonblocking (see
ioctl(2» in which case a -1 is returned with the external vari­
able errno set to EWOULDBLOCK.

February, 1990
RevisionC

recv(2N) recv(2N)

The select(2N) call may be used to determine when more data
arrives.

The flags argument to a send call is formed by ~Ring one or
more of the values,

#define MSG PEEK Oxl /* peek at incoming message */
#define MSG-OOB Ox2 /* process out-of-band data */

The recvmsg call uses a msghdr structure to minimize the
number of directly supplied parameters. This structure has the
following form, as defined in <sys/ socket. h>:
struct msghdr {

caddr t msg_name; /* optional address */
int msg namelen; /* size of address */
struct iov-*msg_iov; /* scatter/gather array */
int msg iovlen; /* # elements in msg iov */
caddr t msg=accrights; /* access rights sent/received */
int msg_accrightslen;

} ;

Here msg name and msg namelen specify the destination ad­
dress if the socket is unconnected; msg name may be given as a
null pointer if no names are desired orrequired. The msg iov
and msg iovlen describe the scatter gather locations. Access
rights to- be sent along with the message are specified in
msg_accrights, which has length msg_accrightslen.

RETURN VALUE
These calls return the number of bytes received, or -1 if an error
occurred.

ERRORS
The calls fail if:

[EBADF]

[ENOTSOCK]

[EWOULDBLOCK]

[EINTR]

[EFAULT]

February, 1990
Revision C

The argument s is an invalid descriptor.

The argument s is not a socket.

The socket is marked nonblocking and
the receive operation would block.

The receive was interrupted by delivery
of a signal before any data was available
for the receive.

The data was specified to be received into
a nonexistent or protected part of the pro­
cess address space.

2

recv(2N) recv(2N)

SEE ALSO
connect(2N), read(2), send(2N), socket(2N).

3 February, 1990
RevisionC

rename(2)

NAME
rename - change the name of a file

SYNOPSIS
int rename (from, to)
char *from, *to;

DESCRIPTION

rename (2)

rename causes the link named from to be renamed as to. If to
exists, then it is first removed. Both from and to must be of the
same type (that is, both directories or both nondirectories), and
must reside on the same file system.

rename guarantees that an instance of the file will always exist,
even if the system should crash in the middle of the operation.

CAVEAT
The system can deadlock if a loop in the file system graph is
present. This loop takes the form of an entry in directory "a" say
a/foo, being a hard link to directory "b", and an entry in direc­
tory "b", say b/bar, being a hard link to directory "a". When
such a loop exists and two separate processes attempt to perform

rename a/foo b/bar

and

rename b/bar a/foo

respectively, the system may deadlock attempting to lock both
directories for modification. Hard links to directories should be
replaced by symbolic links by the system administrator.

RETURN VALUE
A 0 value is returned if the operation succeeds, otherwise
rename returns -1 and the global variable errno indicates the
reason for the failure.

ERRORS
rename will fail and neither of the files named as arguments will
be affected if any of the following are true:

[ENOTDIR] A component of either path prefix is not a
directory.

[EPERM] A pathname contains a character with the
high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded
NAME _MAX characters, or an entire path-

February, 1990 1
Revision C

rename (2)

[ELOOP]

[ENOENT]

[EACCES]

[ENOENT]

[EPERM]

[EXDEV]

[EACCES]

[EROFS]

[EFAULT]

[EINVAL]

SEE ALSO
mv(I),open(2).

2

rename(2)

name exceeded PATH MAX.

Too many symbolic links were encoun­
tered in translating a pathname.

A component of either path prefix does not
exist.

A component of either path prefix denies
search permission.

The file named by from does not exist.

The file named by from is a directory and
the effective user ID is not superuser.

The link named by to and the file named by
from are on different logical devices (file
systems).

The requested link requires writing in a
directory with a mode that denies write
permission.

The requested link requires writing in a
directory on a read-only file system.

path points outside the process's allocated
address space.

from is a parent directory of to.

February, 1990
Revision C

rmdir(2) rmdir(2)

NAME
rmdi r - remove a directory file

SYNOPSIS
int rmdir (path)
char *path;

DESCRIPTION
rmdi r removes a directory file whose name is given by path.
The directory must not have any entries other than . and ...

RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a -1 is returned
and an error code is stored in the global location errno.

ERRORS
The named file is removed unless one or more of the following are
true:

[ENOTESMPTY]

[EPERM]

[ENAMETOOLONG]

[ELOOP]

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

February, 1990
Revision C

The named directory contains files other
than . and . . in it.

A pathname contains a character with the
high-order bit set.

A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

Too many symbolic links were encoun­
tered in translating a pathname.

A component of the path prefix is not a
directory.

The named file does not exist.

A component of the path prefix denies
search permission.

Write permission is denied on the directory
containing the link to be removed.

The directory to be removed is the mount
point for a mounted file system.

The directory entry to be removed resides
on a read-only file system.

path points outside the process's allocated
address space.

1

rmdir(2)

SEE ALSO
rmdir(I), mkdir(2), unlink(2).

2

rmdir(2)

February, 1990
RevisionC

select(2N) select(2N)

NAME
select - synchronous I/O multiplexing

SYNOPSIS
#include <sys/time.h>

int select (nfds, readfds, writefds, execptfds, timeout)
int nfds, *readfds, *writefds, *execptfdsi
struct timeval * timeout i

DESCRIPTION
select examines the I/O descriptors specified by the bit masks
readfds, writefds, and execptfds to see if they are ready for read­
ing, writing, or have an exceptional condition pending, respective­
ly. File descriptor f is represented by the bit 1 < <f in the mask.
nfds descriptors are checked, that is, the bits from 0 through
nfds-l in the masks are examined. select returns, in place, a
mask of those descriptors which are ready. The total number of
ready descriptors is returned.

If timeout is a nonzero pointer, it specifies a maximum interval to
wait for the selection to complete. If timeout is a zero pointer, the
select blocks indefinitely. To affect a poll, the timeout argument
should be nonzero, pointing to a zero valued time val structure.

Any of readjds, writefds, and execptfds may be given as 0 if no
descriptors are of interest.

RETURN VALUE
select returns the number of descriptors which are contained in
the bit masks, or -1 if an error occurred. If the time limit expires
then select returns O.

ERRORS
An error return from select indicates:

[EBADF]

[EINTR]

SEE ALSO

One of the bit masks specified an invalid
descriptor.

A signal was delivered before any of the select­
ed for events occurred or the time limit expired.

accept(2N), connect(2N), recv(2N), readv(2), send(2N),
writev(2).

February, 1990
Revision C

1

select (2N) select(2N)

BUGS
The descriptor masks are always modified on return, even if the
call returns as the result of the timeout.

2 February, 1990
RevisionC

semctl(2)

NAME
semctl- semaphore control operations

SYNOPSIS
*include <sys/types.h>
*include <sys/ipc.h>
*include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {

int val;
struct semid ds *buh
ushort *array;

arg;

DESCRIPTION

semctl(2)

semctl provides a variety of semaphore control operations as
specified by cmd.

The following cmds are executed with respect to the semaphore
specified by semid and semnum (see intro(2) for required per­
missions and structure declarations):

GETVAL Return the value of semval (see intro(2».

SETVAL Set the value of semval to arg.val. When this
command is successfully executed, the semadj
value corresponding to the specified semaphore in
all processes is cleared.

GETPID Return the value of sempid.

GETNCNT Return the value of semncnt.

GETZCNT Return the value of semzcnt.

The following cmds return and set, respectively, every semval in
the set of semaphores.

GETALL Place semvals into array pointed to by arg.array.

SETALL Set semvals according to the array pointed to by
arg.array. When this command is successfully exe­
cuted, the semadj values corresponding to each
specified semaphore in all processes are cleared.

February, 1990 1
Revision C

semctl(2) semetl(2)

The following cmds are also available:

IPC STAT Place the current value of each member of the data
structure associated with semid into the structure
pointed to by arg .buf. The contents of this structure
are defined in int ro(2).

IPC SET Set the value of the following members of the data
structure associated with semid to the corresponding
value found in the structure pointed to by arg.buf.
semyerm.uid
semyerm.gid
semyerm.mode /* only low 9 bits */

This command can only be executed by a process
that has an effective user ID equal to either that of
superuser or to the value of semyerm. uid in the
data structure associated with semid.

IPC RMID Remove the semaphore identifier specified by semid
from the system and destroy the set of semaphores
and data structure associated with it. This command
can only be executed by a process that has an effec­
tive user ID equal to either that of superuser or to the
value of sem perm. uid in the data structure asso­
ciated with semid. The identifier and its associated
data structure are not actually removed until there
are no more referencing processes. See iperm(I),
and ipes(I).

RETURN VALUE

2

Upon successful completion, the value returned depends on cmd
as follows:

GETVAL

GETPID

GETNCNT

GETZCNT

All others

The value of semval.

The value of sempid.

The value of semnent.

The value of semz en t.

A value ofO.

Otherwise, a value of -1 is returned and e r rno is set to indicate
the error.

February, 1990
RevisionC

semctl(2) semctl(2)

ERRORS
semctl will fail if one or more of the following are true:

[EINVAL] semid is not a valid semaphore identifier.

[EINVAL] semnum is less than zero or greater than
sem nsems.

[EINVAL]

[EACCES]

[ERANGE]

[EPERM]

[EFAULT]

SEE ALSO

cmd is not a valid command.

Operation permission is denied to the calling
process (see intro(2».

cmd is SETVAL or SETALL and the value to
which semval is to be set is greater than the
system imposed maximum.

cmd is equal to IPC RMID or IPC SET and
the effective user ID -of the calling process is
not equal to that of superuser and it is not equal
to the value of semyerm. uid in the data
structure associated with semid.

arg.bufpoints to an illegal address.

intro(2), semget(2), semop(2).

February, 1990
Revision C

3

semget(2) semget(2)

NAME
semget - get set of semaphores

SYNOPSIS
*include <sys/types.h>
*include <sys/ipc.h>
*include <sys/sem.h>

int semget (key, nsems, semflg)
key t key;
int - nsems, semflg;

DESCRIPTION
semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set con­
taining nsems semaphores (see intro(2») are created for key if
one of the following are true:

key is equal to IPC_PRIVATE.

key does not already have a semaphore identifier associated
with it, and (semflg & IPC_CREAT) is "true".

The key IPC PRIVATE will create an identifier and associated
data structure that is unique to the calling process and its children.

Upon creation, the data structure associated with the new sema­
phore identifier is initialized as follows:

semyerm. cuid, sem_perm. uid, sem_perm. cgid,
and semyerm. gid are set equal to the effective user ID
and effective group ID, respectively, of the calling process.

The low-order 9 bits of sem perm. mode are set equal to
the low-order 9 bits of semflg.-

sem_nsems is set equal to the value of nsems.

sem_otime is set equal to 0 and sem_ctime is set equal
to the current time.

RETURN VALUE

1

Upon successful completion, a non-negative integer, namely a
semaphore identifier, is returned. Otherwise, a value of -1 is re­
turned and errno is set to indicate the error.

February, 1990
Revision C

semget(2) semget(2)

ERRORS
semget will fail if one or more of the following are true:

[EINVAL] nsems is either less than or equal to zero or
greater than the system-imposed limit.

[EACCES]

[EINVAL]

[ENOENT]

[ENOSPC]

[EEXIST]

SEE ALSO

A semaphore identifier exists for key, but
operation permission (see intro(2» as
specified by the low-order 9 bits of semjig
would not be granted.

A semaphore identifier exists for key, but the
number of semaphores in the set associated
with it is less than nsems and nsems is not equal
to zero.

A semaphore identifier does not exist for key
and (semjig & IPC_CREAT) is "false".

A semaphore identifier is to be created but the
system-imposed limit on the maximum number
of allowed semaphore identifiers system wide
would be exceeded.

A semaphore identifier exists for key but
({semjig & IPC_CREAT) && (semjig &

IPC_EXCL)) is "true".

intro(2), semctl(2), semop(2).

February, 1990
Revision C

2

semop(2) semop(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf **sops;
int nsops;

DESCRIPTION

1

semop is used to automatically perform an array of semaphore
operations on the set of semaphores associated with the sema­
phore identifier specified by semid. sops is a pointer to the array
of semaphore-operation structures. nsops is the number of such
structures in the array. The contents of each structure includes the
following members:

short sem_numi /* semaphore number */
short sem_opi /* semaphore operation */
short sem_flgi /* operation flags */

Each semaphore operation specified by sem op is performed on
the corresponding semaphore specified by semidand sem _ num.

sem _ op specifies one of three semaphore operations as follows
(see intro(2) for permissions and structure declarations:

If sem _ op is a negative integer, one of the following will occur:

If semval (see intro(2)) is greater than or equal to the ab­
solute value of sem op, the absolute value of sem op is
subtracted from semva 1. Also, if (s em fig &
SEM UNDO) is "true", the absolute value of sem-op is ad­
ded to the calling process's semadj value (see exi t(2)) for
the specified semaphore.

If semval is less than the absolute value of sem op and
(sem fIg & IPC NOWAIT) is "true", semop-willre-

tum immediately. -

If semval is less than the absolute value of sem op and
(sem fIg & IPC NOWAIT) is "false", semop will in­

crement the semncnt associated with the specified semaphore
and suspend execution of the calling process until one of the

February, 1990
RevisionC

semop(2) semop(2)

following conditions occur:

semval becomes greater than or equal to the absolute
value of sem op. When this occurs, the value of
semncnt associated with the specified semaphore is
decremented, the absolute value of sem op is subtract­
ed from semval and, if (sem flg &" SEM UNDO)
is "true", the absolute value ofsem op is added to the
calling process's semadj value for the specified sema­
phore.

The semid for which the calling process is awaiting ac­
tion is removed from the system (see sernctl(2».
When this occurs, errno is set equal to EIDRM, and a
value of -1 is returned.

The calling process receives a signal that is to be caught
When this occurs, the value of semncnt associated with
the specified semaphore is decremented, and the calling
process resumes execution in the manner prescribed in
signal(3).

If sem op is a positive integer, the value of sem op is added to
semval and, if (sem flg & SEM UNDO) IS "true", the
value of sem _ op is subtracted from the calling process's
semadj value for the specified semaphore.

If sem _ op is zero, one of the following will occur:

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem flg &

IPC _ NOWAI T) is "true", semop will return imme<liately.

If semval is not equal to zero and (sem fIg &

IPC NOWAIT) is "false", semop will increment the
sem~cnt associated with the specified semaphore and
suspend execution of the calling process until one of the fol­
lowing occurs:

semval becomes zero, at which time the value of
semzcnt associated with the specified semaphore is de­
cremented.

The semid for which the calling process is awaiting ac­
tion is removed from the system. When this occurs,
errno is set equal to EIDRM, and a value of -1 is re­
turned.

February, 1990
Revision C

2

semop(2) semop(2)

The calling process receives a signal that is to be caught.
When this occurs, the value of semzcnt associated
with the specified semaphore is decremented, and the
calling process resumes execution in the manner
prescribed in signal(3).

RETURN VALUE
If semop returns due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If it
returns due to the removal of a semid from the system, a value of
-1 is returned and errno is set to EIDRM.

Upon successful completion, the value of semval at the time of
the call for the last operation in the array pointed to by sops is re­
turned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

ERRORS

3

semop will fail if one or more of the following are true for any of
the semaphore operations specified by sops:

[EINVAL] semid is not a valid semaphore identifier.

[EFBIG]

[E2BIG]

[EACCES]

[EAGAIN]

[ENOSPC]

[EINVAL]

[ERANGE]

[ERANGE]

sem num is less than zero or greater than or
equal to the number of semaphores in the set
associated with semid.

nsops is greater than the system-imposed max­
imum.

Operation permission is denied to the calling
process (see intro(2)).

The operation would result in suspension of the
calling process but (sem_flg &
IPC_NOWAIT) is "true".

The limit on the number of individual processes
requesting an SEM _UNDO would be exceeded.

The number of individual semaphores for
which the calling process requests a
SEM UNDO would exceed the limit.

An operation would cause a semval to
overflow the system-imposed limit.

An operation would cause a serna d j value to
overflow the system-imposed limit.

February, 1990
RevisionC

semop(2) semop(2)

[EFAULT] sops points to an illegal address.

Upon successful completion, the value of semid for each sema­
phore specified in the array pointed to by sops is set equal to the
process ID of the calling process.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semctl(2),
semget(2).

February, 1990
Revision C

4

send(2N) send(2N)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
*include <sys/types.h>
*include <sys/socket.h>

int send (s, msg, len, flags)
int Si

char *msgi
int len, flags;

int sendto (s, msg, len, flags, to, tolen)
int s;
char *msgi
int len, flagsi
struct sockaddr *to;
int tolen;

int sendmsg(s, msg, flags)
int s;
struct msghdr msg[];
int flags;

DESCRIPTION

1

send, sendto, and sendmsg are used to transmit a message to
another socket. send may be used only when the socket is in a
connected state (Le., when connect(2N) has been used), while
sendto and sendmsg may be used at any time.

The address of the target is given by to with tolen specifying its
size. The length of the message is given by len. If the message is
too long to pass atomically through the underlying protocol, then
the error EMSGSIZE is returned, and the message is not transmit­
ted.

lf no message space is available at the socket to hold the message
to be transmitted, then send normally blocks, unless the socket
has been placed in nonblocking I/O mode. The select(2N) call
may be used to determine when it is possible to send more data.

The flags parameter may be set to MSG OOB to send "out-of­
band" data on sockets which support this notion (e.g.
SOCK _STREAM).

February, 1990
RevisionC

send(2N) send(2N)

See recv(2N) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or -1 if an error
occurred.

No indication of failure to deliver is implicit in a send. Return
values of -1 indicate some locally detected errors.

ERRORS
[EBADF]

[ENOTSOCK]

[EFAULT]

[EMSGSIZE]

[EWOULDBLOCK]

SEE ALSO

An invalid descriptor was specified.

The argument s is not a socket.

An invalid user space address was
specified for a parameter.

The socket requires that message be sent
atomically, and the size of the message to
be sent made this impossible.

The socket is marked nonblocking and
the requested operation would block.

connect(2N), recv(2N), socket(2N).

February, 1990
Revision C

2

setcompat(2) setcompat(2)

NAME
setcompat, getcompat - set or get process compatibility
mode

SYNOPSIS
#include <compat.h>

int setcompat (flags)
int flags;

int getcompat();

DESCRIPTION

1

setcompat sets a process's compatibility mode according to the
flags argument. The argument governs the type of compatibility
enforced. flags may be COMPAT SVID for strictest adherence to
the System V interface definition~ COMPAT POSIX to enable all
POSIX functionality, or the bitwise OR of one or more of the fol­
lowing symbolic constants. If set, other flags always take pre­
cedence over COMPAT SVID.

COMPAT BSDNBIO Changes the error handling in 4.2
BSD nonblocking I/O code. read
and w r i t e system calls on slow
devices, that is, terminals, which are
marked for non-blocking may return
-1 with errno set to EWOULD­
BLOCK instead of returning O.
(Operations which may block, that
is, connect, accept, and recv
on sockets which are marked for
nonblocking always return an error
and set errno to EWOULDBLOCK.)

COMPAT BSDGROUPS Enables the use of the 4.2 BSD
groups code which permits users to
be members of more than one group
simultaneously and creates files
whose group is determined by the
group of the directory in which the
file is created.

COMPAT BSDSETUGID When selected, changes the behavior
of the set uid and setgid calls to
be BSD-compatible; that is, no han­
dling of the saved set-user (group)

February, 1990
RevisionC

setcompat(2) setcompat(2)

ID from exec. When cleared, the
setreuid and setregid calls
behave as set uid and setgid,
respectively.

COMPAT BSDSIGNALS Allows a process to use 4.2 BSD­
compatible signals. The state of this
flag may not be changed unless no
signals are pending, caught, or held.
This option enables reliable signal
delivery. Caught signals will be held
while a signal handler is invoked and
reset upon exit from the signal
hander.

COMPAT BSDTTY Enables 4.2 BSD job control. When
first set, this process and its descen­
dants will be identified as 4.2
processes via a bit in the flag word
of the kernel proc data structure.
Membership in a 4.2 process group
persists across exec system calls.
Jobs that are 4.2 process group
members are effected by job control
signals. When COMPAT_BSDTTY is
set the setpgrp system call may
be used to manipulate the process
group of other processes. This flag
may only be used in conjunction
with the COMPAT BSDSIGNALS
flag. Normally, COMPAT _ BSDTTY
is set by a login shell.

COMPAT CLRPGROUP Disables 4.2 BSD job control.
Resets the 4.2 process group bit in
the flag word of the kernel proc
data structure. It may be used by a
V.2 process which wants to sever
any job control associations with an
invoking shell (for itself and its des­
cendants). This bit provides a "one
shot" clear. When read by
getcompat, this bit is always zero.

February, 1990 2
Revision C

setcompat(2) setcompat(2)

COMPAT EXEC If this flag is set, compatibility flags
are inherited across exec system
calls. To provide child process with
a System V interface environment,
both the COMPAT SVID and the
COMP AT EXEC flags must be set by
ORing the flags.

COMPAT SYSCALLS If selected, read, write, ioctl,
or wai t calls which are interrupted
by a signal handler will not return an
EINTR error, but will instead
resume at the point they were inter­
rupted. This flag may only be used
in conjunction with the
COMPAT_BSDSIGNALS flag.

COMPAT BSDCHOWN If selected, chown(2) is restricted to
processes with superuser privileges.
However, a process with effective
user ID equal to the user ID of the
file, but without superuser privileges,
can change the group ID of the file
to the effective group ID of the pro­
cess or to one of the process's sup­
plementary group IDs.

COMPAT BSDNOTRUNC If selected, pathname components
longer than NAME_MAX generate an
error.

getcompat returns the current process compatibility flags. By
default, compatibility flags are preserved across for ks and are
reset by execs (see COMPAT _ EXEC above).

The default process compatibility flags are COMPAT BSDPROT
and COMPAT BSDNBIO. -

RETURN VALUE

3

Upon successful completion, setcompat returns the previous
compatibility mask and getcompat returns the current compati­
bility mask. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

February, 1990
RevisionC

setcompat(2) setcompa t (2)

ERRORS
setcompat will return the following error code.

[EINVAL]

[EINVAL]

SEE ALSO

flag results in a change in the state of the
COMPAT BSDSIGNALS bit and a signal is
currently Pending, caught, or held.

flag is either COMPAT BSDTTY or
COMPAT SYSCALLS and the
COMPAT - BSDSIGNALS are also not set

exec(2), fork(2), sigvec(2), set42sig(3), signal(3),
setuid(3), termio(7).

February, 1990
Revision C

4

setgroups(2) set groups (2)

NAME
setgroups - set group access list

SYNOPSIS
#include <sys/param.h>

int setgroups (ngroups, gidset)
int ngroups, *gidset;

DESCRIPTION
set groups sets the group access list of the current user process
according to the array gidset. The parameter ngroups indicates
the number of entries in the array and must be no more than
NGROUPS, as defined in <sys/param. h>.

Only the superuser may set new groups.

RETURN VALUE
A 0 value is returned on success, -Ion error, with a error code
stored in errno.

ERRORS
The setgroups call will fail if

[EINVAL] The value of ngroups is greater than NGROUPS.

[EPERM] The caller is not the superuser.

[EFAULT] The address specified for gidset is outside the
process address space.

SEE ALSO
getgroups(2), ini tgroups(3X).

1 February, 1990
Revision C

setpgid(2P) setpgid(2P)

NAME
setpgid - set process group ID for job control

SYNOPSIS
int setpgid (pid,pgid)
pid_t pid,pgid;

DESCRIPTION
setpgid is used to join an existing process group or to create a
new process group within the session of the calling process. The
process group ID of a session group leader cannot be changed.
The process group ID of the process specified by pid is set to pgid.
If pid or pgid is 0, the process ID of the calling process is used.

RETURN VALUE
On successful completion, setpgid returns a value of 0. Other­
wise, a value of -1 is returned and errno is set to indicate the er­
ror.

ERRORS
If any of the following conditions occur, set pgid returns -1 and
sets errno to the corresponding value:

[EACCE S S] pid matches the process ID of a child
process of the calling process and the
child has successfully executed one of
the exec functions.

[EINVAL]

[EPERM]

[ESRCH]

February, 1990
Revision C

The value of pgid is less than 0 or
exceeds {PID _MAX}.

The process indicated by pid is a session
group leader.

The value of pid is valid but matches the
process ID of a child of the calling pro­
cess and the child process is not in the
same session as the calling process. The
value of pgid does not match the process
ID of the process indicated by pid and
there is no process with a process group
ID that matches the value of pgid in the
same session as the calling process.

pid does not match the process ID of the
calling process or of a child process of
the calling process.

1

setpgid(2P) setpgid(2P)

SEE ALSO
exec(2), getpgrp(2), setsid(2P), tcsetpgrp(3P).

2 February, 1990
RevisionC

setpgrp(2) setpgrp(2)

NAME
setpgrp - set process group ID

SYNOPSIS
int setpgrp ()

int setpgrp (pid, pgrp)
int pid, pgrp;

DESCRIPTION
The first fonn of setpgrp sets the process group ID of the cal­
ling process to the process ID of the calling process and returns
the new process group ID.

The second fonn of setpgrp is available when the process has
requested 4.2 BSD compatibility. setpgrp will then set the pro­
cess group of the specified process pid to the specified pgrp. If
pid is zero, then the call applies to the current process.

If the user is not superuser, then the affected process must have
the same effective user ID as the invoking user or be a descendant
of the invoking process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
The setpgrp call fails if:

[ESRCH] the process is not found.

[EPERM] The caller is not superuser.

SEE ALSO
exec(2), fork(2), getpid(2), intro(2), kill(2), setcom­
pat(2), signal(3).

February,1990
Revision C

1

setregid(2) setregid(2)

NAME
setregid - set real and effective group ID

SYNOPSIS
int setregid (rgid, egid)
int rgid, egid;

DESCRIYITON
The real and effective group ID's of the current process are set to
the arguments. Only the superuser may change the real group ID
of a process. Unprivileged users may change the effective group
ID to the real group ID, but to no other.

Supplying a value of -1 for either the real or effective group ID
forces the system to substitute the current ID in place of the -1
parameter.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
[EPERM]

NOTES

The current process is not the superuser and a
change other than changing the effective group ID to
the real group ID was specified.

This call only works in COMPAT _ BSDPROT compatibility mode.

SEE ALSO
getgid(2), setcompat(2), setreuid(2), setgid(3).

1 February, 1990
RevisionC

set reuid(2) setreuid(2)

NAME
setreuid- set real and effective user ID

SYNOPSIS
int setreuid (ruid, euid)
int ruid, euidi

DESCRIYTION
The real and effective user ID's of the current process are set ac­
cording to the arguments. If ruid or euid is -1, the current uid is
filled in by the system. Only the superuser may modify the real
uid of a process. Users other than the superuser may change the
effective uid of a process only to the real user ID.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
[EPERM]

NOTES

The current process is not the superuser and a
change other than changing the effective user
ID to the real user ID was specified.

This call only works in COMPAT_BSDPROT compatibility mode.

SEE ALSO
getuid(2), setcompat(2), setregid(2), setuid(2).

February, 1990
Revision C

1

setsid(2P) setsid(2P)

NAME
setsid - create session and set process group ID

SYNOPSIS
#include <sys/types.h>

pid_t setsid ()

DESCRIPTION
setsid creates a new session if the calling process is not a pro­
cess group leader. The calling process becomes the session leader
of this new session, the process group leader of a new process
group, and does not have a controlling terminal. The process
group ID of the calling process is set to the process ID of the cal­
ling process.

RETURN VALUE
On successful completion, setsid returns the value of the pro­
cess group ID of the calling process.

ERRORS
If any of the following conditions occur, set sid returns -1 and
sets errno to the corresponding value:

[EPERM] The calling process is already a process
group leader or the process group ID of a
process other than the calling process
matches the process ID of the calling
process.

SEE ALSO

1

exec(2), exi t(2), fork(2), getpid(2), kill(2),
setpgid(2P), sigaction(3P).

February, 1990
RevisionC

setuid(2)

NAME
set uid, setgid - set user and group ID

SYNOPSIS
*include <sys/types.h>

uid t setuid (uid)
int -uid;

int setgid (gid)
gid_t gid;

DESCRIPTION

setuid(2)

set uid sets the real user ID, effective user ID, and saved set­
user-ID of the calling process. If the effective user ID of the call­
ing process is superuser, the real user ID, effective user ID, and
saved set-user-ID are set to uid. If the effective user ID of the
calling process is not the superuser, but its real user ID is equal to
uid, the effective user ID is set to uid.

If the effective user ID of the calling process is not the superuser,
but the saved set-user-ID from exec(2) is equal to uid, the effec­
tive user ID is set to uid.

setgid sets the real group ID, effective group ID, and saved
set-group-ID of the calling process.

If the effective user ID of the calling process is the superuser, the
real group ID, effective group ID, and saved set-group-ID are set
to gid.

If the effective user ID of the calling process is not the superuser,
but its real group ID is equal to gid, the effective group ID is set to
gid.

If the effective user ID of the calling process is not the superuser,
but the saved set-group-ID from exec(2) is equal to gid, the ef­
fective group ID is set to gid.

RETURN VALUE
On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

ERRORS
set uid or setgid will fail if one or more of the following are
true:

[EPERM]

February, 1990
Revision C

The real user or group ID of the calling process
is not equal to uid or gid and its effective user

1

setuid(2) setuid(2)

ID is not the superuser.

[EINVAL] uid is out of range.

SEE ALSO
getuid(2), setregid(2), setreuid(2), intro(2).

2 February, 1990
RevisionC

shmctl(2) shmctl(2)

NAME
shmctl ~ shared memory control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
struct shmid_ds *bu/;

DESCRIPTION
shmctl provides a variety of shared memory control operations
as specified by cmd. (Structure definitions and permissions are
described in intro(2).) The following cmds are available:

IPC STAT

IPC SET

IPC RMID

February, 1990
Revision C

Place the current value of each member of the
data structure associated with shmid into the
structure pointed to by but.

Set the value of the following members of the
data structure associated with shmid to the
corresponding value found in the structure point­
ed to by but:

shm_perm.uid
shm_perm.gid
shm-perm.mode /*only low 9 bits*/

This cmd can only be executed by a process that
has an effective user ID equal to either that of su­
peruser or to the value of shm yermo uid in the
data structure associated with shmid.

Remove the shared memory identifier specified by
shmid from the system and destroy the shared
memory segment and data structure associated
with it. This cmd can only be executed by a pro­
cess that has an effective user ID equal to either
that of superuser or to the value of
shm perm. uid in the data structure associated
with shmid. The identifier and its associated data
structure are not actually removed until there are
no more referencing processes. See ipcrm(1),
and ipcs(1).

1

shmctl(2) shmctl(2)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
shmctl will fail if one or more of the following is true.

[EINVAL] shmid is not a valid shared memory identifier.

[EINVAL]

[EACCES]

[EAGAIN]

[EPERM]

[EFAULT]

SEE ALSO

cmd is not a valid command.

cmd is equal to IPC STAT and READ opera­
tion permission is denied to the calling process
(see intro(2».

The system has temporarily exhausted its avail­
able memory or swap space.

cmd is equal to IPC RMID or IPC SET and
the effective user ID-of the calling process is
not equal to that of superuser and it is not equal
to the value of shmyerm. uid in the data
structure associated with shmid.

bufpoints to an illegal address.

intro(2), shmget(2), shmop(2).

2 February, 1990
RevisionC

shmget(2) shmget(2)

NAME
shmget - get shared memory segment

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key t key;
int -[size, shmflg;

DESCRIPTION
shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and
shared memory segment of at least size size bytes are created for
key if one of the following are true (see intro(2»:

key is equal to IPC_PRIVATE.

key does not already have a shared memory identifier associ­
ated with it, and (shmflg & IPC_CREAT) is "true".

Note: A shared memory segment of size is always round­
ed up to the nearest whole page.

The key IPC PRIVATE will create an identifier and associated
data structure that is unique to the calling process and its children.

Upon creation, the data structure associated with the new shared
memory identifier is initialized as follows:

shm-perm.cuid, shm-perm.uid, shm-perm.cgid,
and shm perm. gid are set equal to the effective user ID
and effective group ID, respectively, of the calling process.

The low-order 9 bits of shm-perm.mode are set equal to
the low-order 9 bits of shmflg. shm segs z is set equal to
the value of size. -

shm Ipid,shm nattch,shm atime,andshm dtime
are set equal to 0.- - -

shm_ctime is set equal to the current time.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a
shared memory identifier is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

February, 1990
Revision C

1

shmget(2) shmget(2)

ERRORS
shmget will fail if one or more of the following are true:

[EINVAL] size is less than the system-imposed minimum
or greater than the system-imposed maximum.

[EACCES] A shared memory identifier exists for key but
operation permission (see intro(2» as
specified by the low-order 9 bits of shmflg
would not be granted.

[EAGAIN]

[EINVAL]

[ENOENT]

[ENOSPC]

[ENOMEM]

[EEXIST]

The system has temporarily exhausted its avail­
able memory or swap space.

A shared memory identifier exists for key but
the size of the segment associated with it is less
than size and size is not equal to zero.

A shared memory identifier does not exist for
key and (shmflg & IPC_CREAT) is "false".

A shared memory identifier is to be created but
the system-imposed limit on the maximum
number of allowed shared memory identifiers
system wide would be exceeded.

A shared memory identifier and associated
shared memory segment are to be created but
the amount of available physical memory is not
sufficient to fill the request.

A shared memory identifier exists for key but
({shmflg & IPC_CREAT) && (shmflg &

IPC_EXCL)) is "true".

SEE ALSO
intro(2), shmctl(2), shmop(2).

2 February, 1990
RevisionC

shmop(2) shmop(2)

NAME
shmop, shmat, shmdt - shared memory operations

SYNOPSIS
iinclude <sys/types.h>
iinclude <sys/ipc.h>
iinclude <sys/shm.h>

char * shmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr;
int shmflg;

int shmdt (shmaddr)
char *shmaddr;

DESCRIPTION
shmat attaches the shared memory segment associated with the
shared memory identifier specified by shmid to the data segment
of the calling process. The segment is attached at the address
specified by one of the following criteria:

If shmaddr is equal to zero, the segment is attached at the
first available address as selected by the system.

If shmaddr is not equal to zero and (shmflg & SHM _ RND) is
"true", the segment is attached at the address given by
(shmaddr - (shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmflg & SHM_RND) is
"false," the segment is attached at the address given by
shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONLY)
is "true", otherwise it is attached for reading and writing.

RETURN VALUES
Upon successful completion, the return value is as follows:

shmat returns the data segment start address of the attached
shared memory segment.

shmdt returns a value of O.

Otherwise, a value of -1 is returned and errno is set to indicate
the error.

February, 1990
RevisionC

1

shmop(2} shmop(2}

ERRORS
shmat will fail and not attach the shared memory segment if one
or more of the following is true.

[EINVAL] shmid is not a valid shared memory identifier.

[EACCE S] Operation pennission is denied to the calling
process (see intro(2)}.

[EAGAIN]

[ENOMEM]

[EINVAL]

[EINVAL]

[EMFILE]

[EINVAL]

[EINVAL]

The system has temporarily exhausted its avail­
able memory or swap space.

The available data space is not large enough to
accommodate the shared memory segment.

shmaddr is not equal to zero, and the value of
{shmaddr - (shmaddr modulus SHMLBA»
is an illegal address.

shmaddr is not equal to zero, (shmflg &

S HM RND) is "false" , and the value of
shmaddr is an illegal address.

The number of shared memory segments at­
tached to the calling process would exceed the
system-imposed limit.

shmdt detaches from the calling process's data
segment the shared memory segment located at
the address specified by shmaddr.

shmdt will fail and not detach the shared
memory segment if shmaddr is not the data seg­
ment start address of a shared memory seg­
ment.

SEE ALSO

2

exec(2}, exit(2}, fork(2}, intro(2}, shmctl(2},
shmget(2}.

February, 1990
Revision C

shutdown(2N) shutdown(2N)

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
int shutdown(s, how)
int s, how;

DESCRIPTION
The shutdown call causes all or part of a full-duplex connection
on the socket associated with s to be shut down. If how is Ot then
further receives will be disallowed. If how is 1 t then further sends
will be disallowed. If how is 2t then further sends and receives
will be disallowed.

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF]

[ENOTSOCK]

s is not a valid descriptor.

s is a filet not a socket.

[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect(2N), socket(2N).

February, 1990
Revision C

1

sigblock(2) sigblock(2)

NAME
sigblock, sigmask - block signals

SYNOPSIS
*include <signal.h>

int sigblock (mask) ;
int mask;

sigmask (signum)
int signum;

DESCRIPTION
sigblock causes the signals specified in mask to be added to the
set of signals currently being blocked from delivery. Signals are
blocked if the corresponding bit in mask is a 1; the macro sig­
mask is provided to construct the mask for a given signum.

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT;
this restriction is silently imposed by the system.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigsetmask(2), signal(3).

1 February, 1990
RevisionC

sigpause(2) sigpause(2)

NAME
sigpause - release blocked signals and wait for interrupt

SYNOPSIS
int sigpause(mask)
int mask;

DESCRIPTION
sigpause assigns mask to the set of blocked signals and then
waits for a signal to arrive; on return the set of masked signals is
restored. mask is usually 0 to indicate that no signals are now to
be blocked.

In normal usage, a signal is blocked using sigblock(2). To be­
gin a critical section, variables modified on the occurrence of the
signal are examined to determine that there is no work to be done,
and the process pauses, awaiting work, by using sigpause with
the mask returned by sigblock.

RETURN VALUE
sigpause always terminates by being interrupted, returning-I.

ERRORS
sigpause always terminates by being interrupted with errno
set to EINTR.

SEE ALSO
sigblock(2), sigvec(2), signal(3).

February, 1990
Revision C

1

sigpending(2P)

NAME
s igpending - examine pending signals

SYNOPSIS
*include <signal.h>

int sigpending (set)
sigset_t *seti

DESCRIJYI10N

sigpending(2P)

sigpending stores the set of signals that are blocked from
delivery and are pending for the calling process at the location
referenced by set.

RETURN VALUE
Upon successful completion, zero is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

ERRORS
If set points to an invalid address, sigpending will return -1
and set errno to EFAULT.

SEE ALSO
sigsetops(3P), sigprocmask(3P).

1 February, 1990
Revision C

sigsetmask(2) sigsetmask(2)

NAME
sigsetmask - set current signal mask

SYNOPSIS
#include <signal.h>

int sigsetmask (mask) ;
int mask;

sigmask (signum)
int signum;

DESCRIYITON
sigsetmask sets the current signal mask (those signals that are
blocked from delivery). Signals are blocked if the corresponding
bit in mask is a 1; the macro sigmask is provided to construct
the mask for a given signum.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT
to be blocked.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigblock(2), sigpause(2), sig­
nal(3).

February, 1990
Revision C

1

sigstack(2) sigstack(2)

NAME
sigstack - set or get signal stack context

SYNOPSIS
#include <signal.h>

struct sigstack {
caddr_t ss_sp;
int ss_onstack;

} ;

int sigstack (ss, oss);
struct sigstack *ss, *oss;

DESCRIPTION
sigstack allows users to define an alternate stack on which sig­
nals are to be processed. If ss is nonzero, it specifies a signal stack
on which to deliver signals and tells the system if the process is
currently executing on that stack. When a signal's action indi­
cates its handler should execute on the signal stack (specified with
a sigvec(2) call), the system checks to see if the process is
currently executing on that stack. If the process is not currently
executing on the signal stack, the system arranges a switch to the
signal stack for the duration of the signal handler's execution. If
oss is nonzero, the current signal stack state is returned.

NOTES
Signal stacks are not "grown" automatically, as is done for the
normal stack. If the stack overflows, unpredictable results may
occur.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
sigstack will fail and the signal stack context will remain un­
changed if one of the following occurs.

[EFAULT] Either ss or oss points to memory that is not a
valid part of the process address space.

SEE ALSO
sigvec(2), set jrnp(3), signal(3).

1 February, 1990
RevisionC

sigvec(2) sigvec(2)

NAME
sigvec - optional BSD-compatible software signal facilities

SYNOPSIS
#include <signal.h>

struct sigvec {

} ;

int (*sv_handler) ();
int sv mask;
int sv=flags;

int sigvec (sig, vec, ovec)
int sig;
struct sigvec *vec, *ovec;

DESCRIPTION
The system defines a set of signals that may be delivered to a pro­
cess. Signal delivery resembles the occurrence of a hardware in­
terrupt: the signal is blocked from further occurrence, the current
process context is saved, and a new process context is built. A
process may specify a handler to which a signal is delivered or
specify that a signal is to be blocked or ignored. A process may
also specify that a default action is to be taken by the system when
a signal occurs. Normally, signal handlers execute on the current
stack of the process. This can be changed on a per-handler basis,
so that signals are taken on a special "signal stack."

All signals have the same priority. Signal routines execute with
the signal that caused their invocation to be blocked, but other sig­
nals may yet occur. A global "signal mask" defines the set of
signals currently blocked from being delivered to a process. The
signal mask for a process is initialized from the signal mask of its
parent (normally 0). It may be changed with a sigblock(2) or
sigsetmask(2) call, or by a signal being delivered to the pro­
cess.

When a signal condition arises for a process, the signal is added to
a set of signals pending for the process. If the signal is not
currently blocked by the process, then it is delivered. When a sig­
nal is delivered, the current state of the process is saved, a new
signal mask is calculated (as described later), and the signal
handler is invoked. The call to the handler is arranged so that if
the signal handling routine returns normally, the process will
resume execution in the same context as before the signal's
delivery. If the process wishes to resume in a different context,

February, 1990
Revision C

1

sigvec(2) sigvec(2)

2

then it must arrange to restore the previous context.

When a signal is delivered to a process, a new signal mask is in­
stalled for the same duration as the process's signal handler (or
until a sigblock or sigsetmask call is made). This mask is
formed by taking the current signal mask, adding the signal to be
delivered, and DRing in the signal mask associated with the
handler to be invoked.

sigvec assigns a handler for a specific signal. If vee is nonzero,
it specifies a handler routine and mask to be used when delivering
the specified signal. If the sv _ ONSTACK bit is set in sv _flags,
the system will deliver the signal to the process on a signal stack,
specified by sigstack(2). If the SV INTERRUPT bit is set in
sv flags, system calls interrupted by a signal will not be res­
tarted. If the SV NOCLDSTOP bit is set in sv flags,
SIGCHLD will not be generated if a child process stops. If ovee is
nonzero, the previous handling information for the signal is re­
turned to the user.

The following is a list of the NUX signals with the corresponding
names of the include file <signal. h>.

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction
SIGTRAP 5* trace trap
S I G I OT 6* lOT instruction
SIGEMT 7* EMT instruction
SIGFPE 8* floating point exception
SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10*
SIGSEGV 11*
SIGSYS 12*
SIGPIPE 13
SIGALRM 14
SIGTERM 15
SIGUSRl 16
SIGUSR2 17
SIGCLD 18.
SIGPWR 19
SIGTSTP 20t
SIGTTIN 21t
SIGTTOU 22t
SIGSTOP 23t
SIGXCPU 24

bus error
segmentation violation
bad argument to system call
write on a pipe with no one to read it
alarmc10ck
software termination signal
user defined signal 1
user defined signal 2
child status has changed
power-fail restart
stop signal generated from keyboard
background read attempted from control terminal
background write attempted to control terminal
stop (cannot be caught, blocked, or ignored)
cpu time limit exceeded

February, 1990
RevisionC

sigvec(2) sigvec(2)

S I GXF S Z 25 file size limit exceeded
SIGVTALRM 26 virtual time alarm (see setitimer(2»
SIGPROF 27 profiling timer alarm (see setitimer(2»
SIGWINCH 28. window size change
SIGCONT 29. continue after stop (cannot be blocked)
SIGURG 30. urgent condition present on socket
SIGIO 31. I/O is possible on a descriptor (see fcntl(2»

The signals marked with an asterisk (*) in the list above cause a
core image to be dumped if not caught or ignored.

Once a signal handler is installed, it remains installed until another
sigvec call is made or an execve(2) is performed. The default
action for a signal may be reinstated by setting sv handler to
SIG DFL; this default is termination (with a core image for
starred signals) except for signals marked with. or t. Signals
marked with. are discarded if the action is SIG DFL; signals
marked with t cause the process to stop if the process is part of a
4.2 job control group. They are ignored when using 5.2 signals.
If sv handler is SIG IGN, the signal is subsequently ignored,
and pending instances oftbe signal are discarded.

If a caught signal occurs during certain system calls, the call is
normally restarted. The affected system calls are read(2) or
wri te(2) on a slow device (such as a terminal, but not a file) and
during a wai t(2). This behavior may be modified by options
supplied to the setcompat(2) system call.

After a fork(2), the child inherits all signals, the signal mask,
and the signal stack.

execve(2) resets all caught signals to the default action and
resets all signals to be caught on the user stack. Ignored signals
remain ignored; the signal mask remains the same; the signal
handler reverts to the 5.2 signal mechanism.

NOTES
The mask specified in vee is not allowed to block S I GKI LL,
SIGSTOP, or SIGCONT. This is done silently by the system.

RETURN VALUE
A 0 value indicates that the call succeeded. A -1 return value in­
dicates that an error occurred and errno is set to indicate the rea­
son.

February, 1990
Revision C

3

sigvec(2) sigvec(2)

ERRORS
sigvec will fail and no new signal handler will be installed if
one of the following occurs.

[EFAULT] Either vee or ovec points to memory that is not
a valid part of the process address space.

[EINVAL]

[EINVAL]

[EINVAL]

sig is not a valid signal number.

An attempt is made to ignore or to supply a
handler for SIGKILL or SIGSTOP.

An attempt is made to ignore S I GCONT (by de­
fault S I GCONT is ignored).

SEE ALSO

4

kill(1), ptrace(2), kill(2), sigblock(2), setcompat(2),
sigsetmask(2), sigpause(2), sigstack(2),
set42sig(3), signal(3), termio(7).

February, 1990
Revision C

socket(2N) socket(2N)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socket (af, type, protocol)
int af, type, protocol;

DESCRIPTION
socket creates an endpoint for communication and returns a
descriptor.

The a/parameter specifies an address format with which addresses
specified in later operations using the socket should be interpreted.
These formats are defined in the include file <sys/ socket. h>.
The currently understood formats are:

AF UNIX (UNIX path names)
AF INET (ARPA Internet addresses)
AF PUP (Xerox PUP-I Internet addresses)
AF IMPLINK (IMP "host at IMP" addresses)

Note: The only address format currently supported on this
implementation is AF _ INE T.

The socket has the indicated type which specifies the semantics of
communication. Currently defined types are:

SOCK STREAM
SOCK DGRAM
SOCK RAW
SOCK_SEQPACKET
SOCK ROM

A SOCK STREAM type provides sequenced, reliable, two-way
connection based byte streams with an out-of-band data transmis­
sion mechanism. A SOCK _DGRAM socket supports datagrams
(connectionless, unreliable messages of a fixed (typically small)
maximum length). SOCK RAW sockets provide access to internal
network interfaces. The types SOCK RAW, which is available
only to the superuser, and SOCK SEQPACKET and SOCK ROM,
which are planned, but not yet Implemented, are not described
here.

February, 1990
Revision C

1

socket(2N) socket(2N)

2

The protocol specifies a particular protocol to be used with the
socket. Normally only a single protocol exists to support a partic­
ular socket type using a given address format However, it is pos­
sible that many protocols may exist in which case a particular pro­
tocol must be specified in this manner. The protocol number to
use is particular to the "communication domain" in which com­
munication is to take place; see services(4N) and
protocols(4N).

Sockets of type SOCK STREAM are full-duplex byte streams,
similar to pipes. A stream socket must be in a connected state be­
fore any data may be sent or received on it A connection to
another socket is created with a connect(2N) call. Once con­
nected, data may be transferred using read(2) and wri te(2)
calls or some variant of the send(2N) and recv(2N) calls.
When a session has been completed a close(2) may be per­
formed. Out-of-band data may also be transmitted as described in
send(2N) and received as described in recv(2N}.

The communications protocols used to implement a
SOCK_STREAM insure that data is not lost or duplicated. If a
piece of data for which the peer protocol has buffer space cannot
be successfully transmitted within a reasonable length of time,
then the connection is considered broken and calls will indicate an
error with -1 returns and with ETIMEDOUT as the specific code in
the global variable ermo. The protocols optionally keep sockets
"warm" by forcing transmissions roughly every minute in the ab­
sence of other activity. An error is then indicated if no response
can be elicited on an otherwise idle connection for a extended
period (e.g. 5 minutes). A SIGPIPE signal is raised if a process
sends on a broken stream; this causes naive processes, which do
not handle the signal, to exit.

SOCK DGRAM and SOCK RAW sockets allow sending of da­
tagrams to correspondents named in send(2N) calls. It is also
possible to receive datagrams at such a socket with recv(2N).

An fcntl(2) call can be used to specify a process group to re­
ceive a SIGURG signal when the out-of-band data arrives.

The operation of sockets is controlled by socket level options.
These options are defined in the file <sys/socket.h> and ex­
plained below. setsockopt and getsockopt(2N) are used to
set and get options, respectively.

February, 1990
RevisionC

socket(2N)

SO DEBUG

SO REUSEADDR

SO KEEPALIVE

SO DONTROUTE

SO LINGER

socket(2N)

turn on recording of debugging in­
formation

allow local address reuse

keep connections alive

do no apply routing on outgoing
messages

linger on close if data present

SO DONTLINGER do not linger on close

SO_DEBUG enables debugging in the underlying protocol
modules. SO REUSEADDR indicates that the rules used in vali­
dating addresses supplied in a bind(2N) call should allow reuse
of local addresses. so KEEPALIVE enables the periodic
transmission of messages On a connected socket. Should the con­
nected party fail to respond to these messages, the connection is
considered broken and processes using the socket are notified via
a SIGPIPE signal. so DONTROUTE indicates that outgoing mes­
sages should bypass the standard routing facilities. Instead, mes­
sages are directed to the appropriate network interface according
to the network portion of the destination address. SO_LINGER
and SO DONTLINGER control the actions taken when unsent
messages are queued on socket and a close(2) is performed. If
the socket promises reliable delivery of data and SO_LINGER is
set, the system will block the process on the close attempt until
it is able to transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger inter­
val, is specified in the setsockopt call when SO LINGER is
requested). If SO DONTLINGER is specified and a close is is­
sued, the system will process the close in a manner which allows
the process to continue as quickly as possible.

RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a
descriptor referencing the socket.

ERRORS
The socket call fails if:

[EAFNOSUPPORT]

February, 1990
Revision C

The specified address family is not
supported in this version of the sys­
tem.

3

socket(2N) socket (2N)

[ESOCKTNOSUPPORT]

[EPROTONOSUPPORT]

[EMFILE]

[ENOBUFS]

The specified socket type is not
supported in this address family.

The specified protocol is not sup­
ported.

The per-process descriptor table is
full.

No buffer space is available. The
socket cannot be created.

SEE ALSO
accept(2N), bind(2N), connect(2N),
getsockname(2N), getsockopt(2N), ioctl(2),
listen(2N), recv(2N), select(2N), send(2N),
shutdown(2N).

BUGS

4

The use of keepalives is a questionable feature for this layer.

February, 1990
RevisionC

stat(2) stat(2)

NAME
stat, fstat, lstat - get file status

SYNOPSIS
*include <sys/types.h>
*include <sys/stat.h>

int stat (path, buf>
char *path;
struct stat *buf;

int fstat (fildes, buj)
int fildes;
struct stat *buf;

int lstat (path, buj)
char *path;
struct stat *buf;

DESCRIPTION
s tat obtains information about the named file. path points to a
path name naming a file. Read, write, or execute permission of
the named file is not required, but all directories listed in the path
name leading to the file must be searchable.

1 s tat is like s tat except in the case where the named file is a
symbolic link, in which case 1 s tat returns information about the
link, while stat returns information about the file the link refer­
ences.

Similarly, fstat obtains information about an open file known
by the file descriptor fildes, obtained from a successful open,
creat, dup, fcntl, or pipe system call.

buf is a pointer to a s tat structure into which information is
placed concerning the file.

The contents of the structure referenced by buf include the follow­
ing members:

ushort st_mode;

ina t st_ino;

dev t st_dev;

dev t st_rdev;

February, 1990
Revision C

File mode; see stat(5)

Inode number

ID of device containing a directory
entry for this file

ID of device. This entry is defined
only for character special or block
special files

1

stat(2)

short st_nlinki

ushort st_uidi

ushort st_gidi

off_t st_sizei

time t st_atimei

time t st_mtimei

time t st_ctimei

long st_blksizei

long st_blocksi

RETURN VALUE

stat(2)

Number of links

User ID of the file's owner

Group ID of the file's group

File size in bytes

Time when file data was last ac­
cessed (times measured in seconds
since 00:00:00 GMT, Jan. 1,
1970). Changed by the following
system calls: creat(2),
mkn 0 d(2) , pipe(2), utime(2),
and read(2).

Time when data was last modified
(times measured in seconds since
00:00:00 GMT, Jan. 1, 1970).
Changed by the following system
calls: creat(2), mknod(2),
pipe(2), utime(2), and
write(2).

Time wehn file status last changed
(times measured in seconds since
00:00:00 GMT, Jan. 1, 1970)
Changed by the following system
calls: chmod(2), chown(2),
creat(2), link(2), mknod(2),
pipe(2), unlink(2), utime(2),
and wri te(2).

optimal blocksize for I/O ops

actual number of blocks allocated

Upon successful completion a value of 0 is returned. Otherwise, a
value of -I is returned and errno is set to indicate the error.

ERRORS

2

s tat and 1 s tat will fail if one or more of the following are
true:

[ENOTDIR] A component of the path prefix is not a
directory.

February, 1990
RevisionC

stat(2)

[EPERM]

[ENAMETOOLONG]

[ELOOP]

[ENOENT]

[EACCES]

[EFAULT]

stat(2)

A pathname contains a character with the
high-order bit set.

A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

Too many symbolic links were encoun­
tered in translating a pathname.

The named file does not exist.

Search permission is denied for a com­
ponent of the path prefix.

buf or path points to an invalid address.

f s tat will fail if one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.

[EFAULT] bufpoints to an invalid address.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2),
read(2), readlink(2), statfs(2), time(2), unlink(2),
ustat(2), utime(2), wri te(2), stateS).

February, 1990
Revision C

3

statfs(2) statfs(2)

NAME
s tat f s - get file-system statistics

SYNOPSIS
finclude <sys/types.h>
finclude <sys/vfs.h>

int statfs (path, buj)
char *path;
struct statfs *buf;

int fstatfs (fildes, buj)
int fildes;
struct statfs *buf;

DESCRIJYfION

1

s tat f s returns information about a mounted file system. Re­
place path with the pathname of any file within the mounted file
system and replace buf with a pointer to a statfs structure
defined as follows:

typedef long fsid_t[2];

struct statfs {
long f_type;

} ;

long

long
long

f_bfree;
f_bavail;

long f ffree;
fsid t f_fsid;
long f_spare[7];

/* type of info, zero
for now */

/* fundamental file system
block size */

/* total blocks in file
system */

/* free blocks */
/* free blocks available to

nonsuperuser */
/* total file nodes in

file system */
/* free file nodes in fs */
/* file system ID */
/* spare for later */

Fields that are undefined for a particular file system are set to -1.
fstatfs returns the same information about an open file refer­
enced by the descriptor fildes.

February, 1990
Revision C

statfs(2) statfs(2)

RETURN VALUE
On successful completion, a value of 0 is returned. Otherwise,-1
is returned and the global variable errno is set to indicate the er­
ror.

SEE ALSO
stat(2), ustat(2}.

February, 1990
Revision C

2

stime(2) stime(2)

NAME
s time - set time

SYNOPSIS
int stime (tp)
long *tp;

DESCRIPTION
stime sets the the time and date. tp points to the value of time as
measured in seconds from 00:00:00 GMT January 1, 1970.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
s time will fail if:

[EPERM]

SEE ALSO

the effective user ID of the calling process is
not superuser.

date(l), gettimeofday(2), settimeofday(2), time(2).

1 February, 1990
Revision C

symlink(2) symlink(2)

NAME
symlink - make symbolic link to a file

SYNOPSIS
int symlink (name), name2)
cha r * name}, * name2 ;

DESCRIPTION
A symbolic link name2 is created to name} (name2 is the name of
the file created, name) is the string used in creating the symbolic
link). Either name may be an arbitrary path name; the files need
not be on the same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error
occurs, the error code is stored in errno and a -1 value is re­
turned.

ERRORS
The symbolic link is made unless on or more of the following are
true:

[EPERM]

[EPERM]

[ENAMETOOLONG]

[ELOOP]

[ENOENT]

[ENOTDIR]

[EEXIST]

[EACCES]

[EROFS]

February, 1990
Revision C

Either name} or name2 contains a char­
acter with the high-order bit set.

A pathname contains a character with the
high-order bit set.

A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

Too many symbolic links were encoun­
tered in translating a pathname.

One of the pathnames specified was too
long.

A component of the name2 prefix is not a
directory.

name2 already exists.

A component of the name2 path prefix
denies search pennission.

The file name2 would reside on a read­
only file system.

1

symlink(2)

[EFAULT]

SEE ALSO

symlink(2)

name} or name2 points outside the
process's allocated address space.

In(1), link(2), readlink(2), unlink(2).

2 February, 1990
RevisionC

sync(2) sync(2)

NAME
sync - update superblock

SYNOPSIS
void sync ()

DESCRIPTION
The sync system call causes all information in memory that
should be on disk to be written out. This includes modified super­
blocks, modified inodes, and delayed block I/O.

It should be used by programs which examine a file system, for
example fsck, df, etc. It is mandatory before a reboot or a sys­
tem shutdown.

The writing, although scheduled, is not necessarily complete upon
return from sync.

SEE ALSO
sync(l), fsync(2).

February,1990
Revision C

1

time (2) time(2)

NAME
time - get time

SYNOPSIS
finclude <time.h>

time_t time ((/ong*) 0)

time t time (tloc)
time=t *tloci

DESCRIPTION
time returns the value of time in seconds since 00:00:00 GMT,
January 1, 1970.

If tloc (taken as an integer) is nonzero, the return value is also
stored in the location to which tloc points.

RETURN VALUE
On successful completion, time returns the value of time. Other­
wise, a value of -1 is returned and errno is set to indicate the er­
ror.

ERRORS
time will fail if the following is true

[EFAULT] tloc points to an illegal address.

SEE ALSO
date(I), gettimeofday(2), stime(2), ctime(3).

1 February, 1990
Revision C

times(2) times (2)

NAME
time s - get process and child process times

SYNOPSIS
*include <sys/types.h>
*include <sys/times.h>

clock t times (buffer)
struct tms *buffer;

DESCRIPTION
times fills the structure pointed to by buffer with time­
accounting information. The following are the contents of this
structure:

struct tms {
clock t tms_utime;

tms_stime;
tms_cutime;
tms_cstime;

clock t
clock t
clock t

} ;

This information comes from the calling process and each of its
terminated child processes for which it has executed a wai t. All
times are in 60ths of a second.

tms utime

tms stime

tms cutime

tms cstime

RETURN VALUE

CPU time used while executing instructions in
the user space of the calling process.

CPU time used by the system on behalf of the
calling process.

sum of the tms utimes and tms cutimes
of the child processes. -

sum of the tms stimes and tms cstimes
of the child processes. -

Upon successful completion t time s returns the elapsed real time,
in 60ths of a second, since an arbitrary point in the past (e.g., sys­
tem start-up time). This point does not change from one invoca­
tion of times to another. If times fails, a -1 is returned and
errno is set to indicate the error.

ERRORS
time s will fail if

February, 1990
Revision C

1

times(2)

[EFAULT] buffer points to an illegal address.

SEE ALSO
exec(2), fork(2), time(2), wai t(2).

2

times(2)

February, 1990
Revision C

truncate(2) truncate(2)

NAME
truncate, ftruncate - truncate a file to a specified length

SYNOPSIS
int truncate (path, length)
char *path;
int length;

int ftruncate (jd, length)
int fd, length;

DESCRIPTION
truncate causes the file named by path or referenced by fd to
be truncated to at most length bytes in size. If the file previously
was larger than this size, the extra data is lost. With ftruncate,
the file must be open for writing.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a -1
is returned and the global variable errno specifies the error.

ERRORS
truncate will fail if:

[EPERM]

[ENOENT]

[ENOTDIR]

[EPERM]

[ENAMETOOLONG]

[ELOOP]

[ENOENT]

[EACCES]

[EISDIR]

[EROFS]

February, 1990
Revision C

The pathname contains a character with the
high-order bit set.

The pathname was too long.

A component of the path prefix of path is
not a directory.

A pathname contains a character with the
high-order bit set.

A component of a pathname exceeded
NAME_MAX characters, or an entire path­
name exceeded PATH MAX.

Too many symbolic links were encoun­
tered in translating a pathname.

The named file does not exist.

A component of the path prefix denies
search permission.

The named file is a directory.

The named file resides on a read-only file
system.

1

truncate(2) truncate(2)

[ETXTBSY]

[EFAULT]

The file is a pure procedure (shared text)
file that is being executed.

Note: If you are running an NFS
system and you are accessing a
shared binary remotely, it is possi­
ble that you will not get this
errno.

name points outside the process's allocated
address space.

ftruncate will fail if:

[EBADF] Thefd is not a valid descriptor.

[EINVAL]

SEE ALSO

The fd references a socket, not a file.

open(2).

BUGS

2

Partial blocks discarded as the result of truncation are not zero
filled; this can result in holes in files which do not read as zero.

These calls should be generalized to allow ranges of bytes in a file
to be discarded.

February, 1990
RevisionC

ulimit(2)

NAME
ulimi t - get and set user limits

SYNOPSIS
long ulimi t (cmd, newlimit)
int cmd;
long newlimit;

DESCRIYfION

ulimit(2)

This function provides for control over process limits. The cmd
values available are:

1 Get the file size limit of the process. The limit is in units of
512-byte blocks and is inherited by child processes. Files of
any size can be read.

2 Set the file size limit of the process to the value of newlimit.
Any process may decrease this limit, but only a process with
an effective user ID of superuser may increase the limit

3 Get the maximum possible break value. See brk(2).

RETURN VALUE
Upon successful completion, a non-negative value is returned.
Otherwise, a value of -1 is returned and errno is set to indicate
the error.

ERRORS
ul imi t will fail and the limit will be unchanged if the following
is true:

[EPERM]

SEE ALSO

a process with an effective user ID other than
superuser attempts to increase its file size limit.

brk(2), wri te(2).

February, 1990
RevisionC

1

umask(2) umask(2)

NAME
uma s k - set and get file creation mask

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
mode t umask(cmask)
mode = t cmask;

DESCRIPTION

1

umask sets the file-mode-creation mask of the calling process to
cmask and returns the previous value of the mask. Only the low­
order 9 bits of cmask and the file-mode-creation mask are used.

The file-mode-creation mask is used whenever a file is created by
creat(2), mknod(2) or open(2). The actual mode (see
chmod(2)) of the newly created file is the difference between the
given mode and cmask. In other words, cmask shows the bits to
be turned off when a new file is created.

For the POSIX environment, the following constants for cmask
are defined in <sys/ stat. h>:

S IRUSR read permission, owner

S IWUSR

S IXUSR

S IRGRP

S IWGRP

S IXGRP

S IRUSR

S IWUSR

S IXUSR

write permission, owner

execute/search permission, owner

read permission, group

write permission, group

execute/search permission, group

read permission, others

write permission, others

execute/search permission, others

The previous value of cmask is returned by the call. The value is
initially 022, which is an octal "mask" number representing the
complement of the desired mode. The value 022 here means that
no permissions are withheld from the owner, but write permission
is forbidden to the group and to others. Its complement, the mode
of the file, would be 0755. The file-mode-creation mask is inherit­
ed by child processes.

February, 1990
RevisionC

umask(2) umask(2)

RETURN VALUE
The previous value of the file-mode-creation mask is returned.

SEE ALSO
csh(I), ksh(I), chmod(I), mkdir(1), sh(1), chmodl(2),
creat(2), mknod(2), open(2).

February, 1990
Revision C

2

umount(2) umount(2)

NAME
umount .,-- unmount a file system

SYNOPSIS
int umount (spec)
char *spec;

DESCRIPTION
umount is used to unmount System V file systems only. un­
mount is used to unmount all others (see unmount(2)).

umount requests that a previously mounted file system contained
on the block special device identified by spec be unmounted. spec
is a pointer to a path name. After unmounting the file system, the
directory upon which the file system was mounted reverts to its or­
dinary interpretation.

umoun t may be invoked only by the superuser.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

ERRORS
umount will fail if one or more of the following is true.

[EPERM] The process's effective user ID is not su­
peruser.

[ENXIO]

[ENOTBLK]

[EINVAL]

[EBUSY]

spec does not exist.

spec is not a block special device.

spec is not mounted.

A file on spec is busy.

[EFAULT]

SEE ALSO

spec points to an illegal address.

unmount(2), mount(3).

1 February, 1990
RevisionC

uname(2) uname(2)

NAME
uname - get name of current system

SYNOPSIS
#include <sys/utsname.h>

int uname (name)
struct utsname *name;

DESCRIPTION
uname stores information identifying the current system in the
structure referenced by name.

uname uses the structure defined in <sys/utsname. h>:

struct
char
char
char
char
char

} ;

utsname {
sysname[9];
nodename[9];
release[9];
version[9];
machine[9];

extern struct utsname utsname;

uname returns a null-terminated character string naming the
current system in the character array sysname. Similarly, no­
dename contains the name by which the system is known on a
communications network. release and version further iden­
tify the operating system. machine contains a standard name
that identifies the hardware that the system is running on.

RETURN VALUE
Upon successful completion, a non-negative value is returned.
Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS
uname will fail if the following is true:

[EFAULT] name points to an invalid address.

SEE ALSO
uname(l).

February, 1990
Revision C

1

unlink(2) unlink(2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char *path;

DESCRIPTION
unlink removes the directory entry named by the path name
referenced by path.

When all links to a file have been removed and·no process has the
file open, the space occupied by the file is freed and the file ceases
to exist. If one or more processes have the file open when the last
link is removed, the removal is postponed until all references to
the file have been closed.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and e r rno is set to indicate the error.

ERRORS

1

The named file is unlinked unless one or more of the following are
true:

[ENOTDIR]

[EPERM]

[ENAMETOOLONG]

[ELOOP]

[ENOENT]

[EACCES]

[EACCES]

[EISDIR]

[EBUSY]

A component of the path prefix is not a
directory.

A pathname contains a character with the
high-order bit set

A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

Too many symbolic links were encoun­
tered in translating a pathname.

The named file does not exist.

Search permission is denied for a com­
ponent of the path prefix.

Write permission is denied on the directory
containing the link to be removed.

The named file is a directory.

The entry to be unlinked is the mount point
for a mounted file system.

February, 1990
Revision C

unlink(2)

[ETXTBSY]

[EROFS]

[EFAULT]

SEE ALSO

unlink(2)

The entry to be unlinked is the last link to a
pure procedure (shared text) file that is be­
ing executed.

Note: If you are running an NFS
system and you are accessing a
shared binary remotelYt it is possi­
ble that you will not get this
errno.

The directory entry to be unlinked is part
of a read-only file system.

path points outside the process t s allocated
address space.

rm(1)t rmdir(1)t close(2)t link(2)t open(2)t rmdir(2).

February t 1990
Revision C

2

unmount(2} unmount(2}

NAME
unmount -remove a file system

SYNOPSIS
unmount(name)
char *name;

DESCRIPTION
unmount is used to unmount all non-System V file systems.
umount is used to un mount System V file systems only (see
umount(2)}.

unmount announces to the system that the directory name is no
longer to refer to the root of a mounted file system. The directory
name reverts to its ordinary interpretation.

RETURN VALUE
unmount returns 0 if the action occurred; -1 if if the directory is
inaccessible or does not have a mounted file system, or if there are
active files in the mounted file system.

ERRORS
unmount may fail with one of the following errors:

[EINVAL] The caller is not the superuser.

[EINVAL]

[EBUSY]

name is not the root of a mounted file system.

A process is holding a reference to a file locat­
ed on the file system.

SEE ALSO
fsmount(2), mount(3), umount(2}.

BUGS

1

The error codes are in a state of disarray; too many errors appear
to the caller as one value.

February, 1990
RevisionC

ustat(2) ustat(2)

NAME
ustat - get file system statistics

SYNOPSIS
*include <sys/types.h>
*include <ustat.h>

int ustat (dev, buj)
int dey;
struct ustat *buf;

DESCRIPTION
ustat returns information about a mounted file system. dey is a
device number identifying a device containing a mounted file sys­
tem. bufis a pointer to a ustat structure that includes to follow­
ing elements:

daddr_t f_tfree;
ino t f_tinode;
char f_fname[6];
char f_fpack [6];

RETURN VALUE

/* Total free blocks */
/* Number of free inodes */
/* Filsys name */
/* Filsys pack name */

Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
us tat will fail if one or more of the following are true:

[EINVAL] dey is not the device number of a device con­
taining a mounted file system.

[EFAULT] bUf points outside the process's allocated ad­
dress space.

SEE ALSO
stat(2), statfs(2), fs(4).

February, 1990
Revision C

1

utime(2)

NAME
u time - set file access and modification times

SYNOPSIS
#include <sys/types.h>
#include <utime.h>
int utime (path, times)
char *path;
struct utimbuf * times;

DESCRIPTION

utime(2)

utime sets the access and modification times of the named file.
The pointer path points to a pathname for naming a file.

If times is NULL, the access and modification times of the file are
set to the current time. A process must be the owner of the file or
have write permission to use utime in this manner.

If time s is not NULL, times is interpreted as a pointer to a
utimbuf structure and the access and modification times are set
to the values contained in the designated structure. Only the own­
er of the file or the superuser may use u time this way.

The times in the following structure, defined in <utime. h> are
measured in seconds since 00:00:00 GMT, January 1, 1970.

struct utimbuf {
/* access time */ time t actime;

time t modtime; /* modification time */
} ;

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
u time will fail if one or more of the following is true.

[ENOENT] The named file does not exist.

[EPERM] A pathname contains a character with the
high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

[ELOOP] Too many symbolic links were encoun­
tered in translating a pathname.

1 February, 1990
Revision C

utime(2}

[ENOTDIR]

[EACCES]

[EPERM]

[EACCES]

[EROFS]

[EFAULT]

[EFAULT]

SEE ALSO
stat(2}.

February, 1990
Revision C

utime(2}

A component of the path prefix is not a
directory.

Search permission is denied by a com­
ponent of the path prefix.

The effective user ID is not superuser and
not the owner of the file and time s is not
NULL.

The effective user ID is not superuser and
not the owner of the file, time s is NULL,
and write access is denied.

The file system containing the file is
mounted read-only.

times is not NULL and points outside the
process's allocated address space.

path points outside the process's allocated
address space.

2

uvar(2) uvar(2)

NAME
uvar - return system-specific configuration information

SYNOPSIS
#include <sys/var.h>

int uvar (v)
struct var *v;

DESCRIPTION

1

uvar returns system-specific configuration information contained
in the kernel. The information returned contains table sizes, mask
words, and other system-specific information for programs such as
ps(l).

Presently, a maximum of 512 bytes of information is returned.
The structure variable v points to the var structure.
struct var {

int
int

int

char* ve_inode;

int

char* ve_file;

char* ve_mount;

char* ve_proc;

int

char* ve_text;

int v clist;
int v:=sabuf;

int v_cmap;

int v_smap;

/* Number of system buffers */
/* Maximum number of

simultaneous callouts */
/* Maximum number of incore

inodes */
/* Pointer to last incore

inode table */
/* Maximum number of open

files * /
/* Pointer to last open

file table * /
/* Maximum number of file

systems mountable */
/* Pointer to last mounted

file system table */
/* Maximum number of

processes */
/* Pointer to last process

table */
/* Maximum number of shared

text segments */
/* Pointer to last shared

text segment table */
/* Maximum number of clists */
/* Maximum number of system

activity buffers */
/* Maximum number of user

processes */
/* Size of core memory

allocation map */
/* Size of swap memory

allocation map */

February, 1990
RevisionC

uvar(2)

int

int

int v flock;
int v_phys;

int v_clsizei
int v txtrnd;
int v_bsize;
int v cxmap;
int v-clktick

int v_usize;
int v-pageshift;
int v_pagemask;
int v_segshift;
int v_segmask;
int v_ustart;

int v_uend;

char* ve call;
int v_stkgap;
int v_cputype;
int v_cpuver;

int v_doffset;
int v_kvoffset;
int v_svtext;

char* ve_svtext;

int

int

int
int
int
int

int
int
int
int

int

v_pbufi

v_nscatload;

v_udot;
v_region;
v_sptmap;
v_vhndfrac;

v_maxpmem;
v_nmbufs;
v_npty;
v_maxcore;

v_maxheader;

February, 1990
Revision C

uvar(2)

/* Maximum number of buffer
headers */

/* Maximum number of buffer
headers - 1 */

/* Maximum number of file locks */
/* Maximum number of simultaneous

phys calls */
/* Click size * /
/* Number of clicks per segment */
/* Block size */
/* Context map size */
/* Clock tick */
/* Hz */
/* Size of user structure */
/* Page shift */
/* Page mask */
/* Segment shift */
/* Segment mask */
/* Starting virtual address for

user program */
/* Ending virtual address for

user program */
/* Pointer to last callout table */
/* Obsolete */
/* CPU type (1=68000) */
/* CPU version 10

(1=68000, 2=68010, 3=68020) */
/* MMU type

(l=none, 2=SUN, 3=68451) */
/* Data offset */
/* Kernel virtual offset */
/* Maximum number of text

loitering segments */
/* Pointer to last text

loitering segment
in table */

/* Maximum number of buffers
for physio */

/* Maximum number of entries
in scatter map */

/* Address of user structure */
/* Number of memory regions */
/* Size of system virtual space */
/* Fraction of MAXMEM to set a

limit for running vehand */
/* Maximum physical memory to use */
/* Buffers for networking */
/* Number of pseudo tty's */
/* Space used by kernel's heap

(... /GEN/sys/heap kmem.c) */
/* Headers used by kernel's heap

(... /GEN/sys/heap_kmem.c) */

2

uvar(2) uvar(2)

int v_nstream; /* Number of stream heads */
int v nqueue; /* Number of stream queues */
int v-nblk4096 /* Number of of 4K stream blocks */
int v-nblk204B /* Number of of 2K stream blocks */
int v nblk1024 /* Number of 1K stream blocks */
int v=nblk512; /* Number of 512K stream blocks */
int v nblk256; /* Number of 256K stream blocks */
int v=nblk64; /* Number of 64K stream blocks */
int v nblk16; /* Number of 16 byte stream blocks */
int v=nblk4; /* Number of 4 byte stream blocks */
char *ve proctab /* &proc[O] */
int v slice /* a process's time slice */
int v sbufsz /* system buffer's sizes */
int v=fill[12B-67]/* sized to make var 512 bytes */

} ;

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
uvar will fail if

[EFAULT]

SEE ALSO
ps(1).

3

v points to an illegal address.

February, 1990
Revision C

wait(2) wait(2)

NAME
wai t - wait for child process to stop or terminate

SYNOPSIS
int wait (stat loc)
int *stat_loci-

in twa i t ((int*) 0)

DESCRIPTION
wai t suspends the calling process until one of the immediate
children terminates or until a child that is being traced stops, be­
cause it has hit a break point. The wait system call will return
prematurely if a signal is received and if a child process stopped
or terminated prior to the call on wai t, return is immediate.

If stat loc (taken as an integer) is nonzero, 16 bits of information
called-status are stored in the low order 16 bits of the location
pointed to by stat Joc. status can be used to differentiate between
stopped and terminated child processes and if the child process
terminated, status identifies the cause of termination and passes
useful information to the parent. This is accomplished in the fol­
lowing manner:

If the child process stopped, the high order 8 bits of status
will contain the number of the signal that caused the process
to stop and the low order 8 bits will be set equal to 0177.

If the child process terminated due to an exi t call, the low
order 8 bits of status will be zero and the high order 8 bits
will contain the low order 8 bits of the argument that the
child process passed to exi t; see exi t(2).

If the child process terminated due to a signal, the high order
8 bits of status will be zero and the low order 8 bits will con­
tain the number of the signal that caused the termination. In
addition, if the low order seventh bit (Le., bit 2(0) is set, a
"core image" will have been produced; see signal(3).

If a parent process terminates without waiting for its child
processes to terminate, the parent process ID of each child process
is set to 1. This means the initialization process inherits the child
processes; see intro(2).

February, 1990
Revision C

1

wait(2) wait(2)

RETURN VALUE
If wai t returns due to the receipt of a signal, a value of -1 is re­
turned to the calling process and errno is set to EINTR. If
wa i t returns due to a stopped or terminated child process, the
process ID of the child is returned to the calling process. Other­
wise, a value of -1 is returned and errno is set to indicate the er­
ror.

ERRORS
wai t will fail and return immediately if one or more of the fol­
lowing are true:

[ECHILD] The calling process has no existing unwaited­
for child processes.

SEE ALSO
exec(2), exi t(2), fork(2), intro(2), pause(2),
ptrace(2), wai t3(2N), signal(3).

WARNINGS
See WARNINGS in signal(3).

2 February, 1990
RevisionC

wait3(2N)

NAME
wai t3 - wait for child process to stop or terminate

SYNOPSIS
#include <sys/wait.h>

int wait3 (status, options, 0)

union wait *statusi
int optionsi

DESCRIPTION

wait3(2N)

wait3 provides an interface for programs which must not block
when collecting the status of child processes. The status parame­
ter is defined as above. The options parameter is used to indicate
the call should not block if there are no processes which wish to
report status (WNOHANG), and/or that children of the current pro­
cess that are stopped due to a SIGTTIN, SIGTTOU, SIGTSTP,
or SIGSTOP signal should also have their status reported (WUN­
TRACED).

When the WNOHANG option is specified and no processes wish to
report status, wait3 returns apid ofO. The WNOHANG and WUN­
TRACED options may be combined by oRing the two values.

The declaration of union wai t" is found in
<sys/wait. h>. The third argument, 0, is a placeholder. The
"normal case" is the same as wai t(2).

RETURN VALUE
wai t3 returns -1 if there are no children not previously waited
for; 0 is returned if WNOHANG is specified and there are no
stopped or exited children.

SEE ALSO
exi t(2), wai t(2).

February, 1990
Revision C

1

write(2) write(2)

NAME
write, writev - write on a file

SYNOPSIS
int write <fildes, buf, nbytes}
int fildes;
ehar *buf;
unsigned nbytes;

#inelude <sys/types.h>
#inelude <sys/uio.h>

int writev <fildes, iov, ioveclen}
int fildes;
struet iovee *iov;
int ioveclen;

DESCRIPTION

1

wri te attempts to write nbytes bytes from the buffer pointed to
by but to the file associated with fildes. wri tev performs the
same action, but gathers the output data from the iovlen buffers
specified by the members of the iovee ¥Tay: iov [0],
iov [1], and so on. "

The file descriptor fildes is obtained from a ereat, open, dup,
fentl, pipe, or socket system call.

On devices capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file pointer. On return
from write, the file pointer is incremented by the number of
bytes actually written.

On devices incapable of seeking, writing always starts at the
current position. The value of a file pointer associated with such a
device is undefined.

If the a APPEND flag of the file status flags is set, the file pointer
is set to the end of the file prior to each write.

When writing to a pipe (or FIFO), write requests of PIPE_BUF
bytes or less are not interleaved with data from other processes
writing to the same pipe. Writes of greater than PIPE_BUF bytes
may have data interleaved, on arbitrary boundaries, with writes by
other processes.

February, 1990
Revision C

write(2) write(2)

RETURN VALUE
On successful completion, the number of bytes actually written is
returned. If the process compatibility flag COMPAT SYSCALL is
set (see setcompat(2», as in the POSIX envlfonment, and
write-interrupted by a signal after successfully writing some data,
it returns the number of bytes written. If nybytes is 0, write re­
turns 0 and have no other result. Otherwise, -1 is returned and
errno is set to indicate the error.

ERRORS
When attempting to write to a stream when buffer space is not
currently available and if O_NDELAY or O_NONBLOCK is set, the
write returns the number of bytes written before there were no
buffers available. If 0 NDELAY and 0 NONBLOCK are clear, the
write blocks until buffers become available.

wri te fails and the file pointer remains unchanged if one or more
of the following are true:

[EIO] A physical I/O error has occurred or the process is in
a background process group and is attempting to write
to its controlling terminal (see termio(7P».
TOSTOP is set, the process is not blocking or ignoring
SIGTTOU. The process group of the processes is or­
phaned or the wri te was to an open device after a
modem disconnect or hangup occurred.

[ENXIO] The device associated with the file descriptor is a
block device file or character device file and the value
of the file pointer is out of range.

[EBADF] The file descriptor, fildes, is not valid and open for
writing.

[EPIPE] and SIGPIPE signal
An attempt is made to write to a pipe that is not open
for reading by any process.

[EFBIG] An attempt was made to write a file that exceeds the
process's file size limit or the maximum file size. See
ulimit(2).

[EFAULT]

[EFAULT]

February, 1990
Revision C

Part of iov or data to be written to the file points out­
side the allocated address space of the process.

buf points outside the allocated address space of the

2

write(2) write(2)

process.

[EINTR] A signal was caught during the wri te system call.

[ENOSPC]
Not enough space was left on the device containing
the file.

If the number of bytes specified in a write request exceeds the
available space limit, that is, the per-process file size (see ul im­
i t(2)), or exceeds the size of the physical media, only as many
bytes for which there is room will be written. For example, sup­
pose there is space in a file for an additional 20 bytes before
reaching a limit A write of 512 bytes returns 20. The next write
of a nonzero number of bytes gives a failure return with the fol­
lowing exceptions:

If the file being written is a pipe (or FIFO) and

if the 0 NDELAY flag of the file-flag word is set, then writing
to a fullpipe (or FIFO) returns a count of O.

if 0 NDELAY is clear, writes to a full pipe (or FIFO) blocks
untilspace becomes available.

If the file being written is a pipe (or FIFO) and

if 0 NONBLOCK is set, write requests for PIPE BUF or
fewer bytes either succeed completely or return - f and set
errno to EAGAIN.

if 0 NONBLOCK is clear, a write request may block until
space is available.

When writing to a file descriptor (other than a pipe or FIFO) that
supports nonblocking writes and cannot accept data immediately
and if 0 NONBLOCK is set, write writes what data it can, re­
turning -=-1 and setting errno to EAGAIN. If O_NONBLOCK is
clear, wri te blocks until the data is accepted.

SEE ALSO

3

creat(2), dup(2), fcntl(2), lseek(2), open(2), pipe(2),
select(2N), socket(2N), ulimi t(2).

February, 1990
Revision C

Table of Contents

Section 3: Subroutines (A-L)

intro(3) introduction to subroutines and libraries
a 6 4l(3C) convert between long integer and base-64 ASCII string
abort(3C) .. generate an lOT fault
abort(3F) .. terminate Fortran program
abs(3C) ... return integer absolute value
abs(3F) ... Fortran absolute value
acos(3F) Fortran arccosine intrinsic function
acos(3M) ... see trig(3M)
addmntent(3) .. see getmntent(3)
addptabent(3) ... see getptabent(3)
aimag(3F) Fortran imaginary part of complex argument
aint(3F) Fortran integer part intrinsic function
alog(3F) ... see log(3F)
aloglO(3F) ... see loglO(3F)
amaxO(3F) ... see max(3F)
amaxl(3F) ... '" see max(3F)
aminO(3F) ... see min(3F)
aminl(3F) ... see min(3F)
amod(3F) ... see mod(3F)
and(3F) ... see bool(3F)
anint(3F) ... see round(3F)
asctime(3) ... see ctime(3)
asin(3F) .. Fortran arcsine intrinsic function
asin(3M) ... see trig(3M)
as sert(3X) .. verify program assertion
atan(3F) Fortran arctangent intrinsic function
atan(3M) ... see trig(3M)
atan2(3F) Fortran arctangent intrinsic function
atan2(3M) ... see trig(3M)
atof(3C) convert ASCn string to floating-point number
atoi(3C) ... see strtol(3C)
atol(3C) ... see strtol(3C)
atp(3N) AppleTalk Transaction Protocol (ATP) interface
atp_asynch_kind(3N) .. see atp(3N)
atp_close(3N) ... see atp(3N)
atp_getreq(3N) ... see atp(3N)
atp_getresp(3N) ... see atp(3N)

Section 3

atp_open(3N) .. see atp(3N)
atp_sendreq(3N) ... see atp(3N)
atp_sendrsp(3N) ... see atp(3N)
bcmp(3) ... see bstring(3)
bcopy(3) ... see bstring(3)
bessel(3M) ... Bessel functions
bl t(3C) ... block transfer data
blt512(3C) .. see blt(3C)
bool(3F) ... Fortran bitwise boolean functions
bsearch(3C) ... binary search a sorted table
bstring(3) ... bit and byte string operations
byteorder(3N) convert values between host and network byte order
bzero(3) ... see bstring(3)
cabs(3F) ... see abs(3F)
calloc(3C) ... see rnalloc(3C)
calloc(3X) ... see rnalloc(3X)
ccos(3F) ... see cos(3F)
ceil(3M) ... see floor(3M)
cexp(3F) ... see exp(3F)
cfgetispeed(3P) .. see cfgetospeed(3P)
cfgetospeed(3P) get or set the value of the output and input baud rate
cfree(3C) ... see rnalloc(3C)
cfsetispeed(3P) .. see cfgetospeed(3P)
cfsetospeed(3P) .. see cfgetospeed(3P)
char(3F) ... see ftype(3F)
charcvt(3C) convert the character code to another encoding scheme
clearerr(3S) .. see ferror(3S)
clock(3C) ... report CPU time used
clog(3F) ... see log(3F)
closedir(3) .. see directory(3)
closedir(3P) ... see directory(3P)
cmplx(3F) ... see ftype(3F)
conjg(3F) Fortran complex conjugate intrinsic function
conv(3C) .. translate characters
cos(3F) ... Fortran cosine intrinsic function
cos(3M) ... see trig(3M)
cosh(3F) Fortran hyperbolic cosine intrinsic function
cosh(3M) ... see sinh(3M)
crypt(3C) ... generate DES encryption
csin(3F) ... see sin(3F)
csqrt(3F) ... see sqrt(3F)
ctermid(3S) .. generate filename for terminal
ctime(3) .. convert date and time to ASCII

ii Subroutines (A-L)

ct ype(3C) ... classify characters
curses(3X) CRT screen handling and optimization package
curses5.0(3X) BSD-style screen functions with optimal cursor motion
cuserid(3P) get character login name of the user
cuserid(3S) get character login name of the user
dabs(3F) ... see abs(3F)
dacos(3F) ... see acos(3F)
dasin(3F) '" ... see asin(3F)
datan(3F) ... see atan(3F)
datan2(3F) ... see atan2(3F)
dble(3F) ... see ft ype(3F)
dbm(3X) .. database subroutines
dbmini t(3X) .. see dbm(3X)
dcmplx(3F) ... see ft ype(3F)
dconjg(3F) ... see conjg(3F)
dcos(3F) " .. see cos(3F)
dcosh(3F) ... see cosh(3F)
ddim(3F) ... see dim(3F)
ddp(3N) AppleTalk: Datagram Delivery Protocol (DDP) interface
ddp_close(3N) ... see ddp(3N)
ddp _ open(3N) .. see ddp(3N)
delete(3X) .. see dbm(3X)
dexp(3F) '" see exp(3F)
dial(3C) establish an out-going terminal line connection
difftime(3) ... see ctime(3)
dim(3F) Fortran positive difference intrinsic functions
dimag(3F) ... see aimag(3F)
dint(3F) ... see aint(3F)
directory(3) .. directory operations
directory(3P) ... directory operations
dlog(3F) ... see log(3F)
dloglO(3F) ... see loglO(3F)
dmaxl(3F) ... see max(3F)
dminl(3F) ... see min(3F)
dmod(3F) '" ... see mod(3F)
dnint(3F) ... see round(3F)
dn _ comp(3N) ... see resol ver(3N)
dn _ expand(3N) .. see resol ver(3N)
dprod(3F) Fortran double precision product intrinsic fWlction
drand48(3C) generate uniformly distributed pseudo-random numbers
dsign(3F) ... see sign(3F)
dsin(3F) see sin(3F)
dsinh(3F) ... see sinh(3F)

Section 3 iii

dsqrt(3F) ... see sqrt(3F)
dtan(3F) ... see tan(3F)
dtanh(3F) ... see tanh(3F)
dup2(3N) ... duplicate a descriptor
ecvt(3C) convert floating-point number to string
eda ta(3C) .. see end(3C)
encrypt(3C) ... see crypt(3C)
end(3C) ... last locations in program
endgrent(3C) .. see getgrent(3C)
endmntent(3) .. see getmntent(3)
endnetent(3N) .. see getnetent(3N)
endnetgrent(3N) see getnetgrent(3N)
endprotoent(3N) see getprotoent(3N)
endptabent(3) ... see getptabent(3)
endpwent(3C) .. see getpwent(3C)
endrpcent(3N) .. see getrpcent(3N)
endservent(3N) .. see getservent(3N)
endutent(3C) ... see getut(3C)
erand48(3C) ... see drand48(3C)
erf(3M) error flDlction and complementary error function
erfc(3M) ... see erf(3M)
errno(3C) ... see perror(3C)
etext(3C) .. see end(3C)
ethers(3N) Ethernet address mapping operations
ether_aton(3N) ... see ethers(3N)
ether_hostton(3N) .. see ethers(3N)
ether_line(3N) ... see ethers(3N)
ether_ntoa(3N) ... see ethers(3N)
ether_ntohost(3N) .. see ethers(3N)
exp(3F) Fortran exponential intrinsic function
exp(3M) exponential, logarithm, power, and square root functions
fabs(3M) ... see floor(3M)
f close(3S) ... close or flush a stream
f cvt(3C) .. see ecvt(3C)
fdopen(3S) ... see fopen(3S)
feof(3S) ... see ferror(3S)
ferror(3S) ... stream status inquiries
f et ch(3X) .. see dbm(3X)
fflush(3S) .. see fclose(3S)
fgetc(3S) ., ... see getc(3S)
fgetgrent(3C) .. see getgrent(3C)
fgetpwent(3C) .. see getpwent(3C)
fgets(3S) ... see gets(3S)

iv Subroutines (A-L)

fileno(3S) .. see ferror(3S)
firstkey(3X) .. see dbm(3X)
float(3F) ... see ftype(3F)
floor(3M) floor, ceiling, remainder, absolute value functions
frnod(3M) ... see f loor(3M)
fopen(3S) ... open a stream
fpathconf(3P) ... see pathconf(3P)
fprintf(3S) .. see printf(3S)
fputc(3S) ... see putc(3S)
fput s(3S) ... see put s(3S)
fread(3S) ... binary input/output
free(3C) ... see rnalloc(3C)
free(3X) .. see rnalloc(3X)
freopen(3S) ... '" see fopen(3S)
frexp(3C) manipulate parts of floating-point numbers
fscanf(3S) ... see scanf(3S)
f seek(3S) reposition a file pointer in a stream
fstyp(3) .. determine the file-system type
fstypent(3P) .. get file-system-type entry
ftell(3S) ... see fseek(3S)
ftok(3C) standard interprocess communication package
ft w(3C) ... walk a file tree
ftype(3F) ... explicit Fortran type conversion
fwrite(3S) ... see fread(3S)
garnrna(3M) ... log gamma function
gcvt(3C) .. see ecvt(3C)
getarg(3F) return Fortran command-line argument
getc(3S) get character or word from a stream
getchar(3S) ... see getc(3S)
getcwd(3C) get the patlmame of the current working directory
getenv(3C) return value for environment name
getenv(3F) return Fortran environment variable
getgrent(3C) obtain group file entry from a group file
getgrgid(3C) .. see getgrent(3C)
getgrnarn(3C) .. see getgrent(3C)
getgroups(3P) .. get the group access list
gethostbyaddr(3N) get network host entry
gethostbynarne(3N) see gethostbyaddr(3N)
getlogin(3C) '" ... get login name
getrnntent(3) get file system descriptor file entry
getnetbyaddr(3N) .. see getnetent(3N)
getnetbynarne(3N) .. see getnetent(3N)
getnetent(3N) ... get network entry

Section 3 v

getnetgrent(3N) .. get network group entry
getopt(3C) get option letter from argument vector
get pa s s(3C) , ... read a password
getprotobyname(3N) see getprotoent(3N)
getprotobynumber(3N) see getprotoent(3N)
getprotoent(3N) ... get protocol entry
getptabent(3) .. get partition table file entry
get pw(3C) .. get name from UID
getpwent(3C) .. get the password file entry
getpwnam(3C) .. see getpwent(3C)
getpwuid(3C) .. see getpwent(3C)
getrpcbyname(3N) .. see getrpcent(3N)
getrpcbynumber(3N) see getrpcent(3N)
get rpcent(3N) ... get RPC entry
getrpcport(3N) ... get RPC port number
gets(3S) ... get a string from a stream
getservbyname(3N) see getservent(3N)
getservbyport(3N) see getservent(3N)
get servent(3N) ... get service entry
get ut(3C) .. access utmp file entry
get utent(3C) ... see get ut(3C)
getutid(3C) ... see getut(3C)
getutline(3C) ... see getut(3C)
getw(3S) ... see getc(3S)
get wd(3) get current working directory pathname
gmtime(3) ... see ctime(3)
gsignal(3C) ... see ssignal(3C)
hasmntopt(3) .. see getmntent(3)
hcreate(3C) ... see hsearch(3C)
hdestroy(3C) .. see hsearch(3C)
hsearch(3C) .. manage hash search tables
htonl(3N) ... see byteorder(3N)
htons(3N) ... see byteorder(3N)
hypot(3M) .. Euclidean distance function
iabs(3F) ... see abs(3F)
iargc(3F) .. return command line arguments
ichar(3F) ... see ftype(3F)
idim(3F) ... see dim(3F)
idint(3F) ... see ftype(3F)
idnint(3F) ... see round(3F)
ifix(3F) ... see ftype(3F)
index(3F) return location of Fortran substring
inet(3N) Internet address manipUlation routines

vi Subroutines (A-L)

inet _ addr(3N) ... see inet(3N)
inet _lnaof(3N) ... see inet(3N)
inet _makeaddr(3N) .. see inet(3N)
inet _ netof(3N) ... see inet(3N)
inet_network(3N) ... see inet(3N)
inet_ntoa(3N) ... see inet(3N)
initgroups(3) .. initialize group access list
innetgr(3N) .. see getnetgrent(3N)
insque(3N) insert/remove element from a queue
int(3F) ... see ftype(3F)
irand{3F) ... see rand(3F)
isalnurr(3C) ... see ctype(3C)
isalpha(3C) ... see ctype(3C)
isascii(3C) ... see ctype(3C)
isatty(3C) ... see ttyname(3C)
iscntrl(3C) ... see ctype(3C)
isdigit(3C) ... see ctype(3C)
isgraph(3C) ... see ctype(3C)
isign(3F) ... see sign(3F)
islower(3C) ... see ctype(3C)
isprint(3C) ... see ctype(3C)
ispunct(3C) ... see ctype(3C)
isspace(3C) ... see ctype(3C)
isupper(3C) ... see ctype(3C)
isxdigit(3C) ... see ctype(3C)
jO(3M) ... see bessel(3M)
jl(3M) ... see bessel(3M)
jn(3M) ... see bessel(3M)
jrand48(3C) ... see drand48(3C)
killpg(3N) .. send signal to a process group
13tol(3C) convert between 3-byte integers and long integers
164a(3C) .. see a64l(3C)
lap(3N) AppleTalk Link Access Protocol (LLAP/ELAP) interface
lap _ defaul t(3N) ... see lap(3N)
lcong48(3C) ... see drand4 8(3C)
ldaclose(3X) ... see ldclose(3X)
ldahread(3X) read the archive header of a member of an archive file
ldaopen(3X) ... see ldopen(3X)
Idclose(3X) ... close a common object file
ldexp(3C) ... see frexp(3C)
Idfcn(3X) common object file access routines
ldfhread(3X) read the file header of a common object file
ldgetname(3X) retrieve symbol name for object file symbol table entry

Section 3 vii

ldlinit(3X) ... see ldlread(3X)
ldlitem(3X) ... see ldlread(3X)
ldlread(3X) manipulate line number entries of a common object file

function
ldlseek(3X) seek to line number entries of a section of a common

object file
ldnlseek(3X) ... see ldlseek(3X)
ldnrseek(3X) ... see ldrseek(3X)
ldnshread(3X) .. see ldshread(3X)
ldnsseek(3X) ... see ldsseek(3X)
ldohseek(3X) seek to the optional file header of a common object file
ldopen(3X) open a common object file for reading
ldrseek(3X) .. seek to relocation entries of a section of a common object file
ldshread(3X) read an indexed/named section header of a common

object file
ldsseek(3X) seek to an indexed/named section of a common object file
ldtbindex(3X) compute index of a symbol table entry of a common

object file
ldtbread(3X) ... read an indexed symbol table entry of a common object file
ldtbseek(3X) seek to the symbol table of a common object file
len(3F) .. return length of Fortran string
lfind(3C) ... see lsearch(3C)
1ge(3F) string comparision intrinsic functions
19t(3F) .. see 1ge(3F)
line_push(3) routine used to push streams line disciplines
lle(3F) .. see 1ge(3F)
llt(3F) .. see 1ge(3F)
local time(3) ... see ctime(3)
lockf(3C) .. record locking on files
log(3F) Fortran natural logarithm intrinsic function
log(3M) .. see exp(3M)
loglO(3F) Fortran common logarithm intrinsic function
loglO(3M) ... see exp(3M)
logname(3X) ... return login name of user
longjmp(3C) ... see setjmp(3C)
1 rand4 8(3C) ... see drand4 8(3C)
lsearch(3C) ... linear search and update
1 shift(3F) ... see bool(3F)
1 to13(3C) ... see l3tol(3C)

viii Subroutines (A-L)

intro(3)

NAME
intro - introduction to subroutines and libraries

SYNOPSIS
*include <stdio.h>

FILE *stdin, *stdout, *stderr

*include <math.h>

DESCRIPTION

intro(3)

This section describes functions found in various libraries, other
than those functions that directly invoke system primitives
(described in Section 2 of this volume). Major collections are
identified by a letter after the section number:

(3C) These functions, together with those of Section 2 and
those marked (3S), constitute the Standard C Library
libc, which is automatically loaded by the C compiler
cc(I). The link editor Id(l) searches this library under
the -1 c flag option. Some functions require declarations
that can be included in the program being compiled by
adding the line

*include <header-filename>

The appropriate header file is indicated in the synopsis of
a function description.

(3F) These functions constitute the Fortran intrinsic function
library libF77 and are automatically available to the
Fortran programmer. They require no special invocation
of the compiler. These functions are flagged with the
(3F) suffix on the associated manual page entries and ap­
pear in their own alphabetically organized subsection at
the end of this section.

(3M) These functions constitute the Math Library libm. They
are automatically loaded as needed by the Fortran com­
piler f 77 (1). They are not automatically loaded by the C
compiler cc(1); however, the link editor searches this li­
brary under the -1m flag option. Declarations for these
functions may be obtained from the header file
<math.h>.

(3N) These functions are networking routines and, unless oth­
erwise noted, are found in the Standard C Library
libc. a.

February, 1990
Revision C

1

intro(3) intro(3)

(3P) These functions provide POSIX functionality and are
found in libposix. a. The POSIX environment is
described in the A/UK Guide to POSlX and A/UK Pro­
gramming Languages and Tools, Volume 1.

(3X) These functions pertain to various specialized libraries.
The files in which these libraries are found are given on
the appropriate pages.

(3S) These functions constitute the standard 1/0 package. An
introduction to this package follows under the heading
"STANDARD I/O." The functions are in the Standard
C Library libc. Declarations should be obtained from
the include file <stdio. h>.

DEFINITIONS
A character is any bit pattern able to fit into a byte on the
machine. The null character is a character with value 0,
represented in the C language as \ O. A character array is a se­
quence of characters. A null-terminated character array is a se­
quence of characters, the last of which is the null character. A
string is a designation for a null-terminated character array. The
null string is a character array containing only the null character.
A null pointer is the value that is obtained by casting 0 into a
pointer. The C language guarantees that this value will not match
that of any legitimate pointer, so many functions that return
pointers return it to indicate an error. NULL is defined as 0 in
<stdio. h>; the user can include an original definition if
<stdio. h> is not being used.

Many groups of Fortran intrinsic functions have "generic" func­
tion names that do not require explicit or implicit type declara­
tions. The type of the function is determined by the type of its
argument(s). For example, the generic function max returns an
integer value if given integer arguments (maxO), a real value if
given real arguments (amaxl), or a double-precision value if
given double-precision arguments (dmaxl).

STANDARD I/O

2

The functions described in the entries of subclass (3S) in this
manual provide an efficient, user-level I/O buffering scheme. The
functions are in the library 1 ibc and declarations should be ob­
tained from the header file <stdio. h>.

February, 1990
RevisionC

intro(3) intro(3)

The I/O function may be grouped into the following categories:
file access, file status, input, output, and miscellaneous. For lists
of the functions in each category, refer to the library sections of
AIUX Programming Languages and Tools, Volume 1. The inline
macros getc(3S) and putc(3S) handle characters quickly. The
macros getchar and putchar, and the higher-level routines
fgetc, fgets, fprintf, fputc, fputs, fread, fscanf,
fwrite, gets, getw, printf, puts, putw, and scanf all
use getc and putc; these macros and routinges can be freely in­
termixed.

A file with associated buffering is called a stream and is declared
to be a pointer to a defined type FILE. fopen(3S) creates cer­
tain descriptive data for a stream and returns a pointer to designate
the stream in all further transactions. Normally, there are three
open streams with constant pointers declared in the <stdio. h>
header file and associated with the standard open files:

s t di n standard input file
stdout standard output file
s t de r r standard error file

Note: Invalid stream pointers cause serious errors, includ­
ing possible program termination. Individual function
descriptions describe the possible error conditions.

A constant NULL (0) designates a nonexistent pointer.

An integer constant EOF (-1) is returned upon an end-of-file or er­
ror by most integer functions that deal with streams (see the indi­
vidual descriptions for details).

An integer constant BUF S I z specifies the size of the buffers used
by the particular implementation.

Any program that uses this package must include the header file of
pertinent macro definitions, as follows:

*include <stdio.h>

The functions and constants mentioned in the (3S) entries are de­
clared in the header file <stdio. h> and need no further declara­
tion. The constants and the following functions are implemented
as macros: getc, getchar, putc, putchar, feof, ferror,
clearerr, and fileno. Redeclaration of these names is per­
ilous.

February, 1990
Revision C

3

intro(3) intro(3)

For descriptions and examples of header files, refer to "The Stan­
dard C Library (libc)," "The C Math Library," and "The C
Object Library," in A/UX Programming Languages and Tools,
Volume 1.

RPC SERVICE LmRARY
These functions are part of the Remote Process Control (RPC) ser­
vice library librpcsvc. To have the link editor load this li­
brary, use the -lrpcsvc option of cc. Declarations for these
functions may be obtained from various include files within
<rpcsvc/* . h>.

RETURN VALUE
Functions in the C and Math Libraries (3C and 3M) may return
the conventional values 0 or ±HUGE (the largest-magnitude,
double-precision floating-point numbers; HUGE is defined in the
<math. h> header file) when the function is undefined for the
given arguments or when the value is not representable. In these
cases, the external variable errno (see intro(2» is set to the
value EDOM or ERANGE. Because many of the Fortran intrinsic
functions use the routines found in the Math Library, the same
conventions apply.

FILES
/lib/libc.a
/usr/lib/libF77.a
/lib/libm.a

SEE ALSO
ar(1), cc(l), f77(l), Id(l), lint(1), nm(I), open(2),
close(2), lseek(2), pipe(2), read(2), wri te(2),
ctermid(3S), cuserid(3S), fclose(3S), ferror(3S),
fopen(3S), fread(3S), fseek(3S), getc(3S), gets(3S),
popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S),
setbuf(3S), system(3S), tmpfile(3S), tmpnam(3S),
ungetc(3S), math(5).

A/UX Programming Languages and Tools, Volume 1.

WARNINGS

4

Many of the functions in the libraries call or refer to other func­
tions and external variables described in this section and in Sec­
tion 2 (System Calls). If a program inadvertently defines a func­
tion or external variable with the same name, the presumed library
version of the function or external variable may not be loaded.
The 1 i n t (1) program checker reports name conflicts of this kind

February, 1990
RevisionC

intro(3) intro(3)

as "multiple declarations" of the names in question. Definitions
for sections 2, 3C, and 3S are checked automatically. Other
definitions can be included by using the -1 option. (For example,
-1m includes definitions for 1 ibm, the Math Library, section
3M). The use of lint is highly recommended.

February, 1990
Revision C

5

a641(3C) a641(3C)

NAME
a 6 41, 164 a - convert between long integer and base-64 ASCII
string

SYNOPSIS
long a64l (s)

char *s;

char * l64a (/)
long I;

DESCRIPTION
These functions are used to maintain numbers stored in base-64
ASCII characters. This is a notation by which long integers can
be represented by up to 6 characters; each character represents a
"digit" in a radix-64 notation.

The characters used to represent "digits" are . for 0, / for 1, 0
through 9 for 2-11, A through z for 12-37, and a through z for
38-63.

a 6 41 takes a pointer to a null-terminated base-64 representation
and returns a corresponding long value. If the string pointed to
by s contains more than 6 characters, uses the first 6.

l64a takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is 0, 164 a
returns a pointer to a null string.

BUGS

1

The value returned by 164 a is a pointer into a static buffer, the
contents of which are overwritten by each call.

February, 1990
RevisionC

abort(3C) abort(3C)

NAME
abort - generate an lOT fault

SYNOPSIS
int abort ()

DESCRIPTION
abort first closes all open files if possible, then causes an lOT
signal to be sent to the process. This usually results in tennination
with a core dump.

It is possible for abort to return control if SIGIOT is caught or
ignored, in which case the value returned is that of the kill(2)
system call.

DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current directory
is writable, a core dump is produced and the message

abort - core dumped

is written by the shell.

SEE ALSO
sdb(I), exi t(2), kill(2), signal(3).

February, 1990
Revision C

1

abort(3F) abort(3F)

NAME
abort - terminate Fortran program

SYNOPSIS
call abort ()

DESCRIPTION
abo rt terminates the program which calls it, closing all open
files truncated to the current position of the file pointer.

DIAGNOSTICS
When invoked, abo rt prints

Fortran abort routine called

on the standard error output.

SEE ALSO
abort(3C).

1 February, 1990
RevisionC

abs(3C)

NAME
abs - return integer absolute value

SYNOPSIS
int abs (i)
int i;

DESCRIPTION
abs returns the absolute value of its integer operand.

BUGS

abs(3C)

In two's-complement representation, the absolute value of the
negative integer with largest magnitude is returned.

Some implementations trap this error, but others simply ignore it.

SEE ALSO
floor(3M).

February, 1990
Revision C

1

abs(3F) abs(3F)

NAME
abs, iabs, dabs, cabs, zabs - Fortran absolute value

SYNOPSIS
integer i1, i2
real rl, r2
double precision dpl, dp2
complex exl, ex2
double complex dxl, dx2

r2=abs (rl)

i2=iabs (1)
i2=abs (il)

dp2=dabs (dpl)
dp2=abs (dpl)

ex2=cabs (exl)
ex2=abs (exl)

dx2=zabs (dxl)
dx2=abs (dxl)

DESCRIYfION
abs is the family of absolute value functions. iabs returns the
integer absolute value of its integer argument. dabs returns the
double-precision absolute value of its double-precision argument.
cabs returns the complex absolute value of its complex argu­
ment. zabs returns the double-complex absolute value of its
double-complex argument. The generic form abs returns the
type of its argument.

SEE ALSO
floor(3M).

1 February, 1990
RevisiohC

acos(3F) acos(3F)

NAME
acos, dacos - Fortran arccosine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2=acos (r1)

dp2=dacos (dp1)
dp2=acos (dp1)

DESCRIPTION
acos returns the real arccosine of its real argument. dacos re­
turns the double-precision arccosine of its double-precision argu­
ment. The generic form acos may be used with impunity be··
cause its argument determines the type of the returned value.

SEE ALSO
trig(3M).

February, 1990
Revision C

1

aimag(3F) aimag(3F)

NAME
aimag, dimag - Fortran imaginary part of complex argument

SYNOPSIS
real r
complex cxr
double precision dp
double complex cxd

r=aimag (cxr)

dp=dimag (cxd)

DESCRIPTION

1

aimag returns the imaginary part of its single-precision complex
argument. dimag returns the double-precision imaginary part of
its double-complex argument.

February, 1990
RevisionC

aint(3F) aint(3F)

NAME
aint, dint - Fortran integer part intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2=aint (r1)

dp2=dint (dp1)
dp2=aint (dp1)

DESCRIYTION
aint returns the truncated value of its real argument in a real.
dint returns the truncated value of its double-precision argument
as a double-precision value. aint may be used as a generic func­
tion name, returning either a real or double-precision value
depending on the type of its argument.

February, 1990
Revision C

1

asin(3F) asin(3F)

NAME
asin, dasin - Fortran arcsine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2=asin (r1)

dp2=dasin (dp1)
dp2=asin (dp1)

DESCRIPTION
asin returns the real arcsine of its real argument. dasin returns
the double-precision arcsine of its double-precision argument.
The generic form asin may be used with impunity as it derives
its type from that of its argument.

SEE ALSO
trig(3M).

1 February, 1990
Revision C

assert(3X) assert(3X)

NAME
assert - verify program assertion

SYNOPSIS
#include <assert.h>

assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. If ex­
pression is false (zero) when assert is executed, assert prints

Assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz
is the name of the source file and nnn is the source line number of
the assert statement.

Compiling with the preprocessor option -DNDEBUG (see cpp(l))
or with the preprocessor control statement #define NDEBUG
ahead of the #include <assert. h> statement, stops asser­
tions from being compiled into the program.

NOTES
assert cannot be used in an expression since it turns into an if
statement.

SEE ALSO
cpp(1), abort(3C).

February, 1990
Revision C

1

atan(3F) atan(3F)

NAME
atan, datan - Fortran arctangent intrinsic function

SYNOPSIS
real rl, r2
double precision dp1, dp2

r2=atan (r1)

dp2=datan (dp1)
dp2=atan (dp1)

DESCRIPTION
atan returns the real arctangent of its real argument. datan re­
turns the double-precision arctangent of its double-precision argu­
ment. The generic form atan may be used with a double­
precision argument returning a double-precision value.

SEE ALSO
trig(3M).

1 February, 1990
RevisionC

atan2(3F) atan2(3F)

NAME
atan2, datan2 - Fortran arctangent intrinsic function

SYNOPSIS
real r1, r2, r3
double precision dp1, dp2, dp3

r3=atan2 (r1, r2)

dp3=datan2 (dp1, dp2)
dp3=atan2 (dp1, dp2)

DESCRIPTION
atan2 returns the arctangent of arg1/arg2 as a real value. da­
t an2 returns the double-precision arctangent of its double­
precision arguments. The generic form atan2 may be used with
impunity with double-precision arguments.

SEE ALSO
trig(3M).

February, 1990
Revision C

1

atof(3C) atof(3C)

NAME
atof - convert ASCII string to floating-point number

SYNOPSIS
double atof (nptr)
char *nptr;

DESCRIPTION
at 0 f converts a character string pointed to by nptr to a double­
precision floating point number. The first unrecognized character
ends the conversion. at 0 f recognizes an optional string of white
space characters (blanks or tabs), then an optional sign, then a
string of digits optionally containing a decimal point, then an op­
tional e or E followed by an optionally signed integer. If the
string begins with an unrecognized character, atof returns the
value zero.

atof (str)

is equivalent to

strtod(str, (char **)NULL)

ERRORS
When the correct value would overflow, atof returns HUGE, and
sets errno to ERANGE. Zero is returned on underflow.

SEE ALSO
scanf(3S), strtod(3C), strtol(3C).

1 February, 1990
RevisionC

atp(3N) atp(3N)

NAME
atp_open, atp_close, atp_sendreq, atp_getreq,
atp sendrsp, atp getresp, atp asynch kind
AppkTalk Transaction Protocol (A TP) interface -

SYNOPSIS
#include <at/appletalk.h>
#include <at/atp.h>
cc [flags]files -lat [libraries]

int atp open (socket)
at_socket *socket;

int atp_close lfd)
int fd;

int atp_sendreq lfd, dest, buf, len, userdata, xo,
xo _relt, tid, resp, retry, asyneh) ;
int fd;
at inet t *dest;
char *biij;
int len, userdata, xo, xo relt;
u_short * tid; -
at_resp_t *resp;
at_retry_t *retry;
int asyneh;

int atp_getreq lfd, sre, buf, len, userdata, xo, tid,
bitmap, asyneh) ;
int fd;
at inet t *sre;
char *biij;
int *len, *userdata, *xo;
u short * tid;
u - cha r bitmap;
int asyneh;

int atp sendrsp (fd, dest, xo, tid, resp) ;
int fd; -
at_inet_t *dest;
int xo;
u_short tid;
at_resp_t *resp;

February,1990
Revision C

1

atp(3N)

int atp getresp (fd, tid, resp) i
int fdi -
u_short tid;
at_resp_t *respi

int atp asynch kind (fd, tid) ;
int fd; - -
u_short *tidi

DESCRIPTION

atp(3N)

The ATP interface provides applications with access to the ser­
vices of the AppleTalk Transaction Protocol, a transport layer pro­
tocol.

These routines use the following structures, defined in
<at/appletalk.h>.

The at inet t structure specifies the AppleTalk internet ad­
dress ora Datagram Delivery Protocol (DDP) AppleTalk socket
endpoint:

typedef struct at_inet {
u short net;
at node
at socket

} at_inet_t;

node;
socket;

The at retry t structure specifies the retry interval and max­
imum count for a transaction:

typedef struct at_retry {
short interval;
short retries;
u char backoff;

} at_retry_t;

The members of this structure are

interval

retries

The interval in seconds before A TP retries a request.

The maximum number of retries for this A TP request.
If retries is AT INF RETRY, the request will be re-
peated infinitelY. -

backoff The value by which the interval is multiplied on each
retry, to a maximum interval of 16 seconds.

The at resp t, defined in <at/ atp. h>, specifies buffers to
be used for response data:

typedef struct at_resp {

2 February, 1990
RevisionC

atp(3N)

u char
struct iovec
int

} at_resp_t;

The members of this structure are

atp(3N)

bitmap;
resp[ATP_TRESP_MAX];
userdata[ATP_TRESP_MAX];

bitmap The bitmap of responses expected and for which
buffers are allocated.

resp An iovec structure describing the response buffers
and their lengths.

userdata An array of 32-bit words holding the user bytes for
each A TP response.

The atp_open routine opens an ATP AppleTalk socket and re­
turns a file descriptor for use with the remaining A TP calls.

socket A pointer to the DDP socket number to open. If the
AppleTalk socket number is 0, or if socket is NULL,
a DDP socket is dynamically assigned. If non­
NULL, the socket number is returned in socket.

The atp close routine closes the ATP AppleTalk socket
identified by the file descriptor Id.
The atp sendreq routine sends an ATP request to another
socket. This call blocks until a response is received. The parame­
ters are

fd The ATP file descriptor to use in sending the request

dest The AppleTalk internet address of the AppleTalk
socket to which the request should be sent.

buf The request data buffer.

len The size of request data buffer size.

userdata The user bytes for the ATP request header.

Xl) Is true (nonzero) if the request is to be an exactly­
once (XO) transaction.

Xl) relt Is ignored if xo is not set to true. Otherwise, it may
be used to set the release timer value on the remote
end. The default value is
A TP _XC _DEF _REL_ TIME. The other permissible
values are: ATP_XO_30SEC, ATP_XO_IMIN,
ATP_XO_2MIN, ATP_XO_4MIN, and
ATP _XO_8MIN. These are declared in the file

February, 1990 3
Revision C

atp(3N) atp(3N)

4

<at/ atp. h>. All other values are illegal.

tid On return, the transaction identifier for this transac­
tion. Can be NULL if the caller is not interested in
the transaction identifier.

The atp_sendreq routine requires a pointer to an at_resp_t
structure containing two arrays for the response data: resp, an
eight-entry iovec array, and userdata, an eight-entry array. The
field iov base in each iovec entry points to a buffer that will
contain response data. The field iov len specifies the length of the
buffer. The field bitmap indicates the responses expected; on re­
turn it indicates the responses received.

On return each iov len entry indicates the length of the actual
response data. If the number of responses is lower than expected,
either an end-of-message was received or the retry count was ex­
ceeded. In the latter case, an error is returned. Each userdata en­
try in resp contains the user data for the respective ATP response
packet. The retry pointer specifies the A TP request retry timeout
in seconds and the maximum retry count. If retry is NULL, the
default timeout, ATP DEF INTERVAL; the default retries,
ATP DEF RETRIES; and a backoffvalue of 1 are used. The re­
triesparameter of retry can be set to AT INF RETRY, in which
case the transaction will be repeated infinItely. -

The atp getreq routine receives an incoming ATP request. It
is completed when a request is received. The parameters are

fd The A TP file descriptor to use in receiving the re­
quest.

src The AppleTalk internet address of the AppleTalk:
socket from which the request was sent.

buf The data buffer in which to store the incoming re­
quest.

len The data buffer size.

userdata On return the user bytes from the ATP request header.

xo

tid

Can be NULL if the caller is not interested in the
userdata.

Is true (nonzero) if the request is an exactly once
(XO) transaction.

The transaction identifier for this transaction.

February, 1990
RevisionC

atp(3N) atp(3N)

bitmap The responses expected by the requester.

Because the transaction may require a response. the xo. tid. and
bitmap parameters are always returned.

The atp sendrsp routine sends an AlP response to another
AppleTalk socket. All response data is passed in one
atp sendrsp call. In the case of an XO transaction, the call
does not return until a release is received from the requester or the
release timer expires. In the latter case an error is returned. The
parameters are

fd The A TP file descriptor to use in sending the
response.

dest The AppleTalk internet address of the AppleTalk
socket to which the response should be sent.

tid The transaction identifier for this transaction.

xo Is true (nonzero) if the response is an exactly once
(XO) transaction.

The atp sendrsp routine requires a pointer to an at resp t
structure containing two arrays for the response data: resp, an
eight-entry iovec array, and userdata, an eight-entry array. The
field iov base in each iovec entry points to a buffer containing
response data. The field iov _len specifies the length of the
response data. Each userdata entry in resp contains the user data
to be sent with the respective A TP response packet. The bitmap
field indicates the responses to be sent.

ERRORS
All routines return -Ion error with a detailed error code in
errno. For additional errors returned by the underlying DDP
module, see ddp(3N). The error messages are

[EAGAIN] The request failed due to a temporary resource
limitation; try again. When this error occurs,
no XO transaction is initiated.

[EINVAL] The dest, len, resp, or retry parameter was in­
valid.

[ENOENT] The request was an attempt to send a response
to a nonexistent transaction.

[ETIMEDOUT] The request exceeded the maximum retry
count.

February, 1990 5
Revision C

atp(3N) atp(3N)

[EMSGSIZE] The response was larger than the buffer, or
more responses were received than expected;
truncated to available buffer space
(atp sendreq).
The request buffer is too small for request data;
truncated (atp getreq).
The response -is too large; maximum is
ATP_DATA_SIZE bytes (atp_sendrsp).

WARNINGS
The parameter asynch and the routines atp getresp and
atp asynch kind allow asynchronous sending and receiving
of ATP requeSts. Asynchronous requests are not currently sup­
ported, so set asynch to 0 to indicate synchronous operation.

The length of each response buffer, specified in iov len, is
overwritten by the actual response length when atp se-ndreq
returns.

SEE ALSO

6

ddp(3N), nbp(3N), pap(3N), rtmp(3N); Inside AppleTalk;
"AppleTalk Programming Guide," inAIUX Network Applications
Programming.

February, 1990
RevisionC

bessel(3M)

NAME
j 0, jl, jn, yO, yl, yn - Bessel functions

SYNOPSIS
*include <math.h>

double j 0 (x)

double x;

double j 1 (x)

double x;

double jn (n, x)
int n;
double x;

double yO (x)

double x;

double yl (x)

double x;

double yn (n, x)

int n;
double x;

DESCRIPTION

bessel(3M)

j 0 and j 1 return Bessel functions of x of the first kind of orders 0
and 1 respectively. j n returns the Bessel function of x of the first
kind of order n.

yO and y 1 return the Bessel functions of x of the second kind of
orders 0 and 1 respectively. yn returns the Bessel function of x of
the second kind of order n. The value of x must be positive.

ERRORS
Nonpositive arguments cause yO, yl, and yn to return the value
-HUGE and to set errno to EDaM. In addition, a message indi­
cating DOMAIN error is printed on the standard error output.

Arguments too large in magnitude cause j 0, j 1, yO and yl to re­
turn zero and set errno to ERANGE. In addition, a message in­
dicating TLOSS error is printed on the standard error output.

NOTES
These error-handling procedures may be changed with the func­
tion matherr(3M).

February,1990
Revision C

1

bessel(3M)

SEE ALSO
matherr(3M).

2

bessel(3M)

February, 1990
RevisionC

bIt(3C)

NAME
bIt, bIt512 - block transfer data

SYNOPSIS
int bIt (to, from, count)
char *to;
char *from;
int count;

int bIt512 (to, from, count)
char *to;
char *fromi
int count;

DESCRIPTION

bIt(3C)

bl t does a fast copy of count bytes of data starting at address
from to address to.

bIt512 does a fast copy of count number of consecutive 512
byte units starting at address from to address to.

SEE ALSO
memory(3).

February, 1990
Revision C

1

bool(3F) bool(3F)

NAME
and, or, xor, not, lshift, rshift - Fortran bitwise
boolean functions

SYNOPSIS
integer i, j, k
real a, b, c
double precision dpJ, dp2, dp3
k=and(i, j)
c=or (a, b)
j=xor (i, a)
j=not (i)
k=lshift (i, j)
k=rshift (i, j)

DESCRIPTION
The generic intrinsic boolean functions and, or, and xor return
the value of the binary operations on their arguments. not is a
unary operator returning the one's complement of its argument.
lshift and rshift return the value of the first argument shift­
ed left or right, respectively, the number of times specified by the
second (integer) argument.

The boolean functions are generic, i.e., defined for all data types
as arguments and return values. Where required, the compiler
generates appropriate type conversions.

NOTES
Although defined for all data types, use of boolean functions on
non-integer data is not productive.

BUGS

1

The implementation of the shift functions may cause large shift
values to deliver unexpected results.

February, 1990
RevisionC

bsearch(3C) bsearch(3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
*include <search.h>

char *bsearch (key, base, nel, width, compar)
char *keYi
char *base;
unsigned nel, width;
int (*compar) () ;

DESCRIPTION
bsearch is a binary search routine generalized from Knuth
(6.2.1) Algorithm B. It returns a pointer to a table indicating
where a datum may be found. The table must be previously sorted
in increasing order according to a provided comparison function.
The pointer key points to a datum instance to be sought in the
table; base points to the element at the base of the table; nel is the
number of elements in the table; width is the width of an element
in bytes (the sizeof (*key) should be used for width); compar
is the name of the comparison function which is called with two
arguments that point to the elements being compared. The func­
tion must return an integer less than, equal to, or greater than 0,
depending on whether or not the first argument is to be considered
less than, equal to, or greater than the second.

EXAMPLES
The example following searches a table that contains pointers to
nodes consisting of a string and its length. The table is ordered al­
phabetically on the string in the node pointed to by each entry.

This code fragment reads in strings and either finds the
corresponding node and prints out the string and its length, or
prints an error message.
#include <stdio.h>
#include <search.h>

#define TABSIZE 1000

struct node { /* these are stored in the table */
char *string;
int length;

} ;
struct node table[TABSIZE]; /* table to be searched */

February, 1990 1
Revision C

bsearch(3C) bsearch(3C)

1*

*/
int

struct node I*node ptr, node;
int node_compare(); 1* routine to compare 2 nodes *1
char str_space[20]; 1* space to read string into *1

node. string = str space;
while (scanf("%s"~ node. string) != EOF) {

node_ptr = (struct node *)bsearch((char *) (&node),
(char *)table, TABSIZE,
sizeof(struct node), node compare);

if (node_ptr != NULL) { -
(void)printf("string = %20s, length = %d\n",

node ptr->string, node ptr->length);
else { - -

(void)printf("not found: %s\n", node. string);

This routine compares two nodes based on an
alphabetical ordering of the string field.

node_compare (nodel, node2)
struct node *nodel, *node2;
{

return strcmp(nodel->string, node2->string);

NOTES
The pointers to the key and the element at the base of the table
should be of type pointer-to-element, and cast to type pointer-to­
character.

The comparison function need not compare every byte, so arbi­
trary data may be contained in the elements in addition to the
values being compared.

Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

RETURN VALUE

2

A NULL pointer is returned if the key cannot be found in the
table.

February, 1990
RevisionC

bsearch(3C) bsearch(3C)

SEE ALSO
hsearch(3C). lsearch(3C). qsort(3C). tsearch(3C).
Donald Knuth. The Art o!Computer Programming: Volume 3,
Sorting and Searching.

February. 1990
RevisionC

3

bstring(3) bstring(3)

NAME
beopy, bemp, bzero - bit and byte string operations

SYNOPSIS
iinelude <sys/param.h>

int beopy (bl, b2, length)
char *bl, *b2;
int length;

int bemp (bl, b2, length)
char *bl, *b2;
int length;

int bzero (b, length)
char *b;
int length;

DESCRIPfION
The macro beopy, and the functions bemp and bzero operate
on variable length stri~gs of bytes. They do not check for null
bytes as the routines in'string(3C) do.

beopy copies length bytes from string bl to the string b2.

bemp compares byte string bl against byte string b2, returning
zero if they are identical, nonzero otherwise. Both strings are as­
sumed to be length bytes long.

bzero places length 0 bytes in the string bl.

FILES
/usr/inelude/sys/param.h

BUGS
The bemp and beopy routines take parameters backwards from
stremp and strcpy.

SEE ALSO
memory(3C), string(3).

1 February, 1990
Revision C

byteorder(3N) byteorder(3N)

NAME
htonl, htons, ntohl, ntohs - convert values between
host and network byte order

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>

u long htonl (lwstlong) ;
u = long host long ;

u short htons (hostshort) ;
u=short hostshort;

u long ntohl (netlong) ;
u=long netlong;

u short ntohs (netshort) ;
u=short netshort;

DESCRIPTION
These macros convert 16 and 32 bit quantities between network
byte order and host byte order. On machines in the Motorola
68000-family such as the Macintosh II, these routines are defined
as null macros in the include file <netinet/ in. h>.

These routines are most often used in conjunction with Internet
addresses and ports as returned by getservent(3N).

SEE ALSO
getservent(3N).

February, 1990
Revision C

1

cfgetospeed(3P) cfgetospeed(3P)

NAME
cfgetospeed,cfgetispeed,cfsetospeed,cfsetispeed-­
get or set the value of the output and input baud rate

SYNOPSIS
*include <termios.h>

speed_t cfgetospeed (termioy)
struct termios *termioy;

speed_t cfgetispeed (termioy)
struct termios *termioy;

cf setospeed (termio y, speed)
struct termios *termioy;
speed _ t speed;

cfsetispeed (termioy, speed)
struct termios *termioy;
speed _ t speed;

DESCRIPTION

1

These routines are used for getting and setting the input and output
baud rate. A/UX® does not support different values for the input
and output baud rate; cfsetispeed and cfsetospeed
change both the input and output baud rate.

cfgetospeed returns the output baud rate stored in the c cflag
that is referenced by termio y. -

cfgetispeed returns the input baud rate stored in the c cflag
that is referenced by termio y. -

The following baud- rate values are supported for the value of
speed:

BO
B50
B75
B110
B134
B150
B200
B300
B600
B1200
B1800
B2400

Hang up
50 baud
75 baud
110 baud
134 baud
150 baud
200 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud

February, 1990
Revision C

cfgetospeed(3P)

B4800
B9600
B19200
B38400

4800 baud
9600 baud
19200 baud
38400 baud

cfgetospeed(3P)

cfsetospeed sets the baud rate stored in c cfiag that is refer­
enced by termio y to speed. BO is used to terminate the connec­
tion. If BOis specified, the modem control lines are no longer as­
serted.

cfsetispeed sets the baud rate stored in c cflag that is refer­
enced by termio y to speed. If speed is 0, the baud-rate is not
changed.

For any particular hardware, unsupported baud rate changes are
ignored.

cfsetispeed and cfsetospeed only modify the termios
structure. For the baud rate changes to take place,
tcsetattr(3P) must be called with the modified structure as an
argument.

RETURN VALUE
cfgetispeed and cfgetospeed return the appropriate baud
rate. On successful completion, cfsetispeed and
cfsetospeed return O. If an error is detected, cfsetospeed
and cfsetispeed return -1 and set errno to indicate the er­
ror.

ERRORS
If the following condition occurs, cfsetispeed and
cfsetospeed return -1 and set errno to the corresponding
value:

[EINVAL] speed specifies an invalid baud rate.

SEE ALSO
termios(7P), tcgetattr(3P).

February, 1990
Revision C

2

charcvt(3C) charcvt(3C)

NAME
charcvt - convert the character code to another encoding
scheme

SYNOPSIS
*include <intl.h>

charcvt(c, cony)
int c;
int cony;

DESCRIPTION
cha rcvt returns a character code that has been conve .. ted from
the given character code represented in c. The value of cony con­
tains a value defining how c is to be converted from one
character-set encoding scheme to another. The current values of
cony are:

I TOM Convert from ISO encoding to Macintosh® encoding.
MTO I Convert from Macintosh encoding to ISO encoding.

RETURN VALUE
cha rcvt returns -1 if there is no equivalent character in the other
character set.

SEE ALSO
mactoiso(1)t maccodes(5)t isocodes(5).

1 February t 1990
RevisionC

clock(3C) clock(3C)

NAME
clock -report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
clock returns the amount of CPU time (in microseconds) used
since the first call to clock. The time reported is the sum of the
user and system times of the calling process and its terminated
child processes for which it has executed wai t(2) or
system(3S).

SEE ALSO
times(2), wai t(2), system(3S).

BUGS
The value returned by clock is defined in microseconds for com­
patibility with systems that have CPU clocks with much higher
resolution. Because of this, the value returned wraps around after
accumulating only 2,147 seconds of CPU time (about 36 minutes).

February, 1990
Revision C

1

conjg(3F) conjg(3F)

NAME
conjg, dconjg - Fortran complex conjugate intrinsic
function

SYNOPSIS
complex exl, ex2
double complex dxl, dx2

ex2=eonjg(cxl}

dx2=deonjg(dxl}

DESCRIPTION

1

conjg returns the complex conjugate of its complex argument.
dcon j g returns the double-complex conjugate of its double­
complex argument.

February, 1990
Revision C

conv(3C) conv(3C)

NAME
toupper. tolower, toupper. _tolower, toascii
- translate characters -

SYNOPSIS
#include <ctype.h>

int toupper (c)

int Ci

int tolower (c)

int Ci

int _toupper (c)

int Ci

int _tolower (c)
int Ci

int toascii (c)
int Ci

DESCRIPTION
toupper and tolower have as domain the range of getc(3S):
the integers from -1 through 255. If the argument of toupper
represents a lowercase letter. the result is the corresponding up­
percase letter. If the argument of tolower represents an upper­
case letter. the result is the corresponding lowercase letter. All
other arguments in the domain are returned unchanged.

The macros toupper and tolower accomplish the same
thing as toupper and tOlower but have restricted domains and
are faster. toupper requires a lowercase letter as its argument;
its result is-the corresponding uppercase letter. The macro _to­
lowe r requires an uppercase letter as its argument; its result is
the corresponding lowercase letter. Arguments outside the
domain cause undefined results.

The toascii macro yields its argument with all bits turned off
that are not part of a standard ASCII character; it is intended for
compatibility with other systems.

SEE ALSO
ctype(3C), getc(3S).

February, 1990
RevisionC

1

cos(3F) cos(3F)

NAME
cos, dcos, ccos - Fortran cosine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex exl, fx2

r2=cos (rl)

dp2=dcos (dpl)
dp2=cos (dpl)

ex2=ccos (exl)
ex2=cos (exl)

DESCRIYfION
cos returns the real cosine of its real argument. dcos returns the
double-precision cosine of its double-precision argument. ccos
returns the complex cosine of its complex argument. The generic
form cos may be used with impunity because its returned type is
determined by that of its argument.

SEE ALSO
trig(3M).

1 February, 1990
RevisionC

cosh(3F) cosh(3F)

NAME
cosh, dcosh - Fortran hyperbolic cosine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2=cosh (r1)

dp2 =dcosh (dp1)
dp2=cosh (dp1)

DESCRIPTION
cosh returns the real hyperbolic cosine of its real argument.
dcosh returns the double-precision hyperbolic cosine of its
double-precision argument. The generic form cosh may be used
to return the hyperbolic cosine in the type of its argument.

SEE ALSO
sinh(3M).

February, 1990
Revision C

1

crypt (3C) crypt (3C)

NAME
crypt, encrypt - generate DES encryption

SYNOPSIS
char *crypt (key, salt)
char *key, *salt;

void encrypt (block, edflag)
cha r * block;
int edflag;

DESCRIPTION
crypt is the password encryption function. It is based on the
NBS Data Encryption Standard (DES), with variations intended to
frustrate the use of DES hardware implementations for key search.

key is a user's typed password. salt is a 2-character string chosen
from the set [a - zA - Z 0 - 9 . /]; this string is used to perturb the
DES algorithm in one of 4,096 different ways, after which the
password is used as the key to encrypt repeatedly a constant
string. The returned value points to the encrypted password. The
first 2 characters are the salt itself.

The encrypt entry provides (rather primitive) access to the actu­
al DES algorithm.

The argument to the encrypt entry is a character array of length
64, containing only the characters with numerical value 0 and 1.
The argument array is changed in place to a similar array
representing the bits of the argument after having been subjected
to the DES algorithm. If edflag is zero, the argument is encrypted;
if nonzero, it is decrypted.

SEE ALSO
crypt(l), login(l), passwd(l), getpass(3C), passwd(4).

BUGS

1

The return value points to static data that is overwritten by each
call.

February, 1990
RevisionC

ctermid(3S)

NAME
ctermid - generate filename for terminal

SYNOPSIS
iinclude <stdio.h>

char *ctermid (s)

char *s;

DESCRIPTION

ctermid(3S)

ctermid generates the pathname of the controlling terminal for
the current process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static
area, the contents of which are overwritten at the next call to
ctermid, and the address of which is returned. Otherwise, s is
assumed to point to a character array of at least l_ctermid ele­
ments; the pathname is placed in this array and the value of s is re­
turned. The constant 1 ctermid is defined in the <stdio. h>
header file. -

NOTES
The difference between ctermid and ttyname(3C) is that
ttyname must be handed a file descriptor and returns the actual
name of the terminal associated with that file descriptor, while
ctermid returns a string U dev /tty) that refers to the terminal
if used as a filename. For this reason, t t yname is useful only if
the process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

February, 1990
Revision C

1

ctime(3) ctime(3)

NAME
asctime, ctime, difftime, gmtime, localtime,
mktime, tzset, tzsetwall - convert date and time to
ASCII

SYNOPSIS
extern char *tzname[2];

void tzset ()

void tzsetwall()

#include <sys/types.h>

char *ctime (clock)
time_t * clock;

double difftime (timel , timeO)
time t time} ;
time=t timeO;

#include <time.h>

char *asctime(tm)
struct tm *tm;

struct tm *localtime (clock)
long * clock;

struct tm *gmtime (clock)
long *clocki

time t mktime (tm)
struct tm *tm;

extern long time zone;
extern int daylight;

DESCRIPTION

1

tzset uses the value of the environment variable TZ to set time
conversion information used by local time. If TZ does not ap­
pear in the environment, the best available approximation to local
wall-clock time, as specified by the file local time in the sys­
tem time-conversion information directory, is used by the
local time function. If TZ appears in the environment but its
value is a null string, Coordinated Universal Time (UTC) is used
(without leap-second correction). If TZ appears in the environ­
ment and its value is not a null string, TZ is used in one of the fol­
lowing ways:

February, 1990
RevisionC

ctime(3) ctime(3)

If the value begins with a colon (:), it is used as a pathname
of a file from which to read the time-conversion information.

If the value does not begin with a colon, it is first used as the
pathname of a file from which to read the time conversion in­
formation, and if that file cannot be read, it is used directly as
a specification of the time-conversion information.

If it begins with a slash (j), it is used as an absolute pathname
when T z is used as a pathname; otherwise, it is used as a path­
name relative to a system time-conversion infonnation directory.
The file must be in the format specified in tzfile(5).

When T z is used directly as a specification of the time-conversion
information, it must have the following syntax (spaces are inserted
for clarity):

std offset[dst[offset] [,rule]]

The placeholders mean the following:

std and dst Specify three or more bytes that are the
designation for the standard (std) or sum­
mer (dst) time zone. Only std is required.
If dst is missing, then summer time does
not apply in this locale. Uppercase and
lowercase letters are explicitly allowed.
Any characters except a leading colon (:),
digits, a comma (,), a minus sign (-), a
plus sign (+), and ASCII NUL are al­
lowed.

offset

February, 1990
RevisionC

Add the value one of offset to the local
time to arrive at UTC. The format of
offset is:

hh[:mm[:ss]]

The minutes (mm) and seconds (ss) are op­
tional. The hour (hh) is required and may
be a single digit. The value of offset fol­
lowing std is required. If no offset follows
dst, summer time is assumed to be one
hour ahead of standard time. One or more
digits may be used; the value is always in­
terpreted as a decimal number. The hour
must be between 0 and 24, and the minutes
and seconds, if present, between 0 and 59.

2

ctime(3)

rule

3

ctime(3)

If preceded by a - (minus sign), the time
zone is east of the prime meridian; other­
wise, it is west, which may be indicated by
an optional preceding + (plus sign).

Specify when to change to and back from
summer time. The format of rule is:

dateltime,dateltime

where the first date describes when the
change from standard to summer time oc­
curs and the second date describes when
the change back happens. Each time field
describes when, in current local time, the
change to the other time is made.

The format of date is one of the following:

In The Julian day n
(1 ~ n ~ 365). Leap days are
not counted so that in all
years, including leap years,
February 28 is day 59, and
March 1 is day 60. It is im­
possible to explicitly refer to
the occasional February 29.

n The zero-based Julian day
(0 ~ n ~ 365). Leap days are
counted, and it is possible to
refer to February 29.

MIn • n . d The d'th day (0 ~ d ~ 6) of
week n of month m of the year
(1 ~ n ~ 5, 1 ~ m ~ 12, where
week 5 means "the last d day
in month m" which may oc­
cur in either the fourth or the
fifth week). Week 1 is the
first week in which the d'th
day occurs. Day 0 is Sunday.

The time has the same format as offset ex­
cept that no leading - or + (minus or plus
sign) is allowed. The default, if time is not
given, is 02 : 0 0 : 0 O.

February, 1990
RevisionC

ctime(3) ctime(3)

If no rule is present in TZ, the rules specified by the tzfile(5)­
format file posixrules in the system time-conversion informa­
tion directory are used, with the standard and summer time offsets
from UTC replaced by those specified by the values of offset in
TZ.

For compatibility with System V Release 3.1, a semicolon (;)
may be used to separate rule from the rest of the specification.
For compatibility with applications that expect the environment
variable TZ to be in the format of System V Release 2, the value
of TZ should not include rule.

If the TZ environment variable does not specify a tzfile(5)­
format and cannot be interpreted as a direct specification, UTC is
used with the standard time abbreviation set to the value of the T Z
environment variable (or to the leading characters of its value if it
is lengthy).

In most installations TZ is set by default, when the user logs on, to
the value in the file /etc/TIMEZONE.

Tzsetwall arranges for the system's best approximation to lo­
cal wall-clock time to be delivered by subsequent calls to
localtime.

Ctime converts a long integer, pointed to by clock, representing
the time in seconds since 00:00:00 UTC, January 1, 1970, and re­
turns a pointer to a 26-character string of the form

Thu Nov 24 18:22:48 1986

All the fields have a constant width.

local time and gmtime return pointers to tm structures,
described below. local time corrects for the time zone and any
time-zone adjustments, such as daylight-saving time (DSn in the
United States. Before doing so, local time calls tzset, if
tzset has not been called in the current process. After filling in
the tm structure, local time sets the tm isdst'th element of
t zname to a pointer to an ASCII string that's the time-zone ab­
breviation to be used with the return value of local time.

Gmtime converts to UTC.

Asctime converts the time value tm to a 26-character string, as
shown in the above example, and returns a pointer to the string.

February, 1990
Revision C

4

ctime(3) ctime(3)

5

mktime converts the broken-down time, expressed as local time,
in the structure pointed to by tm into a calendar time value with
the same encoding as that of the values returned by the time
function. The original values of the tm_wday and tmJday
components of the structure are ignored, and the original values of
the other components are not restricted to their normal ranges. (A
positive or zero value for tm_isdst causes mktime to presume
initially that summer time (for example, daylight-saving time in
the United States) respectively, is or is not in effect for the
specified time. A negative value for tm isdst causes the
mktime function to attempt to divine whether summer time is in
effect for the specified time.) On successful completion, the
values of the tm _ wday and tm Jday components of the struc­
ture are set appropriately, and the other components are set to
represent the specified calendar time, but with their values forced
to their normal ranges. The final value of tm mday is not set un­
til tm_mon and tmJear are determined. Mktime returns the
specified calendar time; if the calendar time cannot be represent­
ed, it returns -1.

D iff time returns the difference between two calendar times,
time} - timeO, expressed in seconds.

Declarations of all the functions and externals, and the tm struc­
ture, are in the <time. h> header file. The structure (of type)
struct tm includes the following fields:

int tm_sec; /* seconds (0 - 60) */
int tm_min; /* minutes (0 - 59) */
int tm_hour; /* hours (0 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tmJear; /* year-1900 */
int tm _ wday; /* day of week (Sunday = 0) */
int tmJday; /* day of year (0 - 365) */
int tm_isdst; /* is DST ("summer" time) in effect? */

Tm _ isdst is nonzero if a timezone adjustment such as daylight­
savings time or summer time is in effect

The external variable timezone contains the difference, in
seconds, between UTe and local standard time (in Pacific Stan­
dard Time, time zone is 5*60*60). The external variable day­
light is nonzero if a timezone adjustment such as DST or sum­
mer time is in effect

February, 1990
RevisionC

ctime(3) ctime(3)

FILES
/ etc/ zoneinfo Time-zone information directory
/etc/zoneinfo/localtime Local time zone file
/etc/zoneinfo/posixrules Used with POSIX-style 1Z's
/etc/zoneinfo/GMT ForUTC leap seconds

If /etc/zoneinfo/GMT is absent, UTC leap seconds are load­
ed from /etc/zoneinfo/posixrules.

SEE ALSO
tzfile(4), getenv(3), time(2), environ(5)

NOTES
The return values point to static data whose content is overwritten
by each call.

February, 1990
RevisionC

6

ctype(3C) ctype(3C)

NAME
isalpha, isupper, islower, isdigit, isxdigit,
isalnurn, isspace, ispunct, isprint, isgraph,
iscntrl, isascii - classify characters

SYNOPSIS
finclude <ctype.h>

int isalpha (c)

int c;

DESCRIPTION

1

These macros classify character-coded integer values by table
lookup. Each is a predicate returning nonzero for true, zero for
false. isascii is defined on all integer values; the rest are
defined only where isascii is true and on the single non-ASCII
value EOF (-1); see intro(3)).

isalpha

isupper

islower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

isascii

c is a letter.

c is an upper-case letter.

c is a lower -case letter.

c is a digit [0-9].

c is a hexadecimal digit [0-9], [A-F] or [a­
fJ.
c is an alphanumeric (letter or digit).

c is a· space, tab, carriage return, newline,
vertical tab, or form-feed.

c is a punctuation character (neither control
nor alphanumeric).

c is a printing character, code 040 (space)
through 0176 (tilde).

c is a printing character, similar to is­
p r i n t except false for space.

c is a delete character (0177) or an ordinary
control character (less than 040).

c is an ASCII character, code less than
0200.

February, 1990
RevisionC

ctype(3C) ctype(3C)

RETURN VALUE
If the argument to any of these macros is not in the domain of the
function, the result is undefined.

SEE ALSO
intro(3), ascii(5).

February, 1990
Revision C

2

curses(3X) curses(3X)

NAME
curses - CRT screen handling and optimization package

SYNOPSIS
#inc1ude <curses.h>
cc [flags] files -1 curses [libraries]

DESCRIPTION

1

These routines give the user a method of updating screens with
reasonable optimization. In order to initialize the routines, the
routine initscr () must be called before any of the other rou­
tines that deal with windows and screens are used. The routine
endwin () should be called before exiting. To get character-at­
a-time input without echoing (most interactive, screen oriented­
programs want this) after calling ini tscr () ,you should call

non1(); cbreak(); noecho();

The full curses interface permits manipulation of data structures
called "windows," which can be thought of as two dimensional
arrays of characters representing all or part of a terminal screen.
A default window called stdscr is supplied, and others can be
created with newwin. Windows are referred to by variables de­
clared WINDOW *; the type WINDOW is defined in curses. has
a C structure. These data structures are manipulated with func­
tions described later, among which the most basic are move and
addch. (More general versions of these functions are included
with names beginning with w, allowing you to specify a window.
The routines not beginning with w, affect stdscr.) Eventually
refresh () must be called, telling the routines to make the users
CRT screen look like stdscr.

"Mini-Curses" is a subset of curses which does not allow
manipulation of more than one window. To invoke this subset,
use -DMINICURSES as a cc option. This level is smaller and
faster than full cu r s e s .

If the environment variable TERMINFO is defined, any program
using curses will check for a local terminal definition before
checking in the standard place. For example, if the standard place
is /usr/1ib/terminfo, and TERM is set to vt100, then nor­
mally the compiled file is found in the file
/usr/1ib/terminfo/v/vt100. (The v is copied from the
first letter of vt 1 0 0 to avoid creation of huge directories.) How­
ever, if TERMINFO is set to /usr/pau1/myterms, curses

February, 1990
Revision C

curses(3X) curses(3X)

will first check /usr/paul/myterms/v/vtlOO, and if that
fails, will then check /usr/lib/terminfo/v /vtlOO. This
is useful for developing experimental definitions or when write
permission in /usr/ lib/terminfo is not available.

FUNCfIONS
Routines listed here may be called when using the full curses.
Those marked with a plus (+) are macros. Those marked with an
asterisk (*) may be called when using Mini-Curses.

addch (ch) *+
Add a character to stdscr (like putchar) (wraps to next
line at end of line).

addstr (str) *+
Calls addch with each character in str.

attroff (aUrs) *+
Turn off attributes named in attrs.

attron (attrs) *+
Turn on attributes named in attrs.

attrset (attrs) *+
Set current attributes to aUrs.

baudrate () *
Current terminal speed.

beep () *
Sound beep on terminal.

box (win, vert, hor)
Draw a box around edges of win. vert and hor are characters
to use for vertical and horizontal edges of box.

clear () +
Clear stdscr.

clearok (win, hI>
Clear screen before next redraw of win.

clrtobot () +
Clear to bottom of s t ds cr.

clrtoeol () +
Clear to end-of-line on stdscr.

cbreak () *
Set cbreak mode.

February, 1990 2
Revision C

curses(3X)

delay output(ms)*
Insert ms millisecond pause in output.

delch () +
Delete a character.

deleteln () +
Delete a line.

delwin (win)
Delete win.

doupdate ()
Update screen from all wnooutrefresh.

echo () *
Set echo mode.

endwin () *
End window modes.

erase () +
Erase stdscr.

erasechar ()
Return user's erase character.

fixterm()
Restore tty to "in cur s e s" state.

flash ()
Flash screen or sound beep.

flushinp () *
Throwaway any typeahead.

getch () *+
Get a character from tty.

getstr (str)
Get a string through stdscr.

gettmode ()
Establish current tty modes.

getyx (win, y, x) +
Get (y,x) coordinates.

has ic ()
True if terminal can do insert character.

3

curses(3X)

February, 1990
RevisionC

curses(3X) curses(3X)

has il ()
True if tenninal can do insert line.

idlok (win, bl> *
Use tenninal's insert/delete line if bf!= O.

inch () +
Get character at current (y~) coordinates.

initscr () *
Initialize screens.

insch (c)
Insert a character.

insertln () +
Insert a line.

intrflush (win, bl>
Interrupts flush output if bl is TRUE.

keypad (win, bl>
Enable keypad input.

killchar ()
Return current user's kill character.

leaveok (win,jlag) +
OK to leave cursor anywhere after refresh ifjlag!=O for win;
otherwise cursor must be remain at current position.

longname ()
Return verbose name of tenninal.

meta (win,jlag) *
Allow metacharacters on input ifjlag!=O.

move (y,x)*+
Move to (y~) on stdscr.

mvaddch(y,x,eh)+
move (y, x) , then addch (eh) •

mvaddstr (y, x, str) +
move (y,x), then addstr (str) .

mvcur (oldrow, o Ideo 1 , newrow, neweol)
Low level cursor motion.

mvdelch (y,x) +
Like delch, but move (y, x) first.

February, 1990
Revision C

4

curses(3X)

5

mvgetch(y,x)+
Like getch, but move (y, x) first.

mvgetstr (y,x) +
Like getstr, but move (y,x) first.

mvinch(y,x)+
Like inch, but move (y, x) first.

mvinsch (y ,x, c)
Like insch, but move (y, x) first.

mvprintw (y,x,jmt, args) +
Like printw, but move (y,x) first.

mvscanw (y, x,jmt, args)
Like scanw, but move (y,x) first.

mvwaddch (win,y,x, ch) +
Like addch, but move (y, x) first.

mvwaddstr (win, y, x, str) +
Like waddstr, but move (y, x) first.

mvwdelch (win, y, x) +
Like wdelch, but move (y,x) first.

mvwgetch (win, y, x) +
Like wgetch, but move (y, x) first.

mvwgetstr (win, y, x) +
Likewgetstr, but move (y,x).

mvwin (win, by, bx)
Like win, but move (y,x).

mvwinch (win, y, x) +
Like winch, but move (y,x).

mvwinsch (win, y, x, c) +
Like winsch. but move (y, x) .

mvwprintw (win, y ,x,jmt,args) +
Likewprintw, but move (y,x).

mvwscanw (win, y, x,jmt, args) +
Like wscanw, but move (y ,x) .

newpad (nlines, ncols)
Create a new pad with given dimensions.

curses(3X)

February, 1990
RevisionC

curses(3X) curses(3X)

newterm (type ,id)
Set up new terminal of a given type to output on/d.

newin (lines, cols, begin y, begin_x)
Create a new window.

nl () *
Set newline mapping.

nocbreak () *
Unset cbreak mode.

nodelay (win, bj)
Enable nodelay input mode through getch.

noecho()*
Unset echo mode.

nonl () *
Unset newline mapping.

noraw () *
Unset raw mode.

overlay (win} ,win2)
Overlay win} on win2.

overwrite (win}, win2)
Overwrite win} on top of win2.

pnoutrefresh (pad, pminrow, pmincol, sminrow, smincol,
smaxrow, smaxcol)
Like prefresh but with no output until doupdate is
called.

pre f re s h (pad, pminrow , pmincol, sminrow, smincol,
smaxrow, smaxcol)
Refresh from pad, starting from given upper left comer of
pad, with output to the given portion of screen.

printw (fmt, arg} , arg2, ...)
printf on stdscr.

raw () *
Set raw mode.

refresh()*+
Make current screen look like stdscr.

reset term () *
Set tty modes to "out of curses " state.

February, 1990
Revision C

6

curses(3X)

7

resetty () *
Reset tty flags to stored value.

saveterm () *
Save current modes as "in curses" state.

savetty()*
Store current tty flags.

scanw ([mt, argl I arg2 I •••)

scanf through stdscr.

scroll (win)
Scroll win one line.

scrollok (win,jlag)
Allow terminal to scroll ifjlag!=O.

set term (new)
Now talk to terminal new.

setscrreg (t, b) +
Set user scrolling region to lines t through b.

setterm (type)
Establish terminal with given type.

standend () *+
Clear standout mode attribute.

standout ()*+
Set standout mode attribute.

subwin (win, lines, cols, begin y, begin_x)
Create a subwindow.

touchwindow (win)
Change all of win.

traceoff ()
Turn off debugging trace output.

traceon ()
Turn on debugging trace output.

typeahead ([d)
Use file descriptor fd to check typeahead.

unctrl (ch) *
Printable version of c h.

curses(3X)

February, 1990
RevisionC

curses(3X)

waddch (win, ch)
Add character to win.

waddstr (win, str)
Add string to win.

wattroff (win, attrs)
Turn off aUrs in win.

watt ron (win, attrs)
Turn on attrs in win.

wattrst (win, attrs)
Set attributes in win to aUrs.

wclear (win)
Clear win.

wclrtobot (win)
Clear to bottom of win.

wclrtoeol (win)
Clear to end-of-line on win.

wdelch (win, c)

Delete character from win.

wdeleteln (win)
Delete line from win.

werase (win)
Erase win.

wgetch (win)
Get a character through win.

wgetstr (win, str)
Get a string through win.

winch (win) +
Get character at current (y~) in win.

winsch (win, c)

Insert character into win.

winsertln (win)
Insert line into win.

wmove (win, y, x)
Set current (y,x) coordinates on win.

February, 1990
Revision C

curses(3X)

8

curses(3X) curses(3X)

wnoutrefresh (win)
Refresh but no screen output

wprintw (win,fmt, argl , arg2, ...)
printf on win.

wrefresh (win)
Make screen look like win.

wscanw (win,fmt, argl , arg2, ...)
scanf through win.

wsetscrreg (win, t, b)
Set scrolling region of win.

wstandend (win)
Clear standout attribute in win.

wstandout (win)
Set standout attribute in win.

THE terminfo LEVEL ROUTINES

9

These routines should be called by programs wishing to deal
directly with the terminfo database; however, due to the low
level of this interface, it is discouraged. Initially, setupterm
should be called, which will define the set of terminal dependent
variables defined in terminfo(4). The include files
<curses. h> and <term. h> should be included to get the
definitions for these strings, numbers, and flags. Parameterized
strings should be passed through t pa rm to instantiate them. All
terminfo strings (including the output of tparm) should be
printed with tputs or putp. Before exiting, reset term
should be called to restore the tty modes. (Programs desiring shell
escapes or suspention with CONTROL-Z can call reset term be­
fore the shell is called and fixterm after returning from the
shell.)

fixterm 0
Restore tty modes for terminfo use (called by setup­
term).

resettermO
Reset tty modes to state before program entry.

setupterm (term,fd, rc)
Read in database. Terminal type is the character string term
and all output is to file descriptor fd. A status value is re­
turned in the integer pointed to by rc: 1 is normal. The sim-

February, 1990
RevisionC

curses(3X)

plest call would be

setupterm(O, 1, 0)

which uses all defaults.

tparm (str, pJ ,p2, ... , p9)
Instantiate string str with parameters pi.

tputs (str, affcnt, putc)

curses(3X)

Apply padding info to string str. The argument affent is the
number of lines affected, or 1 if not applicable. putc is a
putchar-like function to which the characters are passed,
one at a time.

putp (str)
Handy function that calls tputs (str, 1,putchar).

vidputs (attrs, pute)
Output the string to put the terminal in video attribute mode
aUrs, which is any combination of the attributes listed later.
Characters are passed to putchar-like function, putc.

vidattr (attrs)
Like vidputs but outputs through putchar.

THE termcap COMPATIBIUTY ROUTINES
These routines were included as a conversion aid for programs
that use termcap. Their parameters are the same as for
termcap, and they are emulated using the terminfo database.
They may be dispensed with at a later date.

tgetent (bp, name)
Look up te rmca p entry for name.

tgetflag (id)
Get boolean entry for ide

tgetnum (id)
Get numeric entry for ide

tgetstr (id, area)
Get string entry for ide

tgoto (cap, col, row)
Apply parameters to given cap.

tputs (cap, affcnt,jn)
Apply padding to cap callingfn as putchar.

February, 1990
Revision C

10

curses(3X) curses(3X)

ATIRIBUTES
The following video attributes can be passed to the functions at­
tron, attroff, attrset.

A STANDOUT

A UNDERLINE

A REVERSE

A BLINK

A DIM

A BOLD

A BLANK

A PROTECT

A ALTCHARSET

Terminal's best highlighting mode

Underlining

Reverse video

Blinking

Half bright

Extra bright or bold

Blanking (invisible)

Protected

Alternate character set

FUNCflON KEYS

11

The following function keys might be returned by getch if
keypad has been enabled. Note that not all of these are currently
supported due to lack of definitions in terminfo or the terminal
not transmitting a unique code when the key is pressed.

NAME VALUE

KEY BREAK 0401
KEY DOWN 0402
KEY UP 0403
KEY LEFT 0404
KEY RIGHT 0405
KEY HOME 0406
KEY BACKSPACE 0407
KEY-FO 0410
KE() (n)+ (KEY_FO+(n»
KEY DL 0510
KEY IL 0511
KEY DC 0512
KEY IC 0513
KEY EIC 0514
KEY CLEAR 0515
KEY EOS 0516
KEY EOL 0517
KEY SF 0520
KEY SR 0521
KEY NPAGE 0522
KEY PPAGE 0523
KEY STAB 0524
KEY CTAB 0525

KEY NAME

Break key (unreliable)
Arrow key down
Arrow key up
Arrow key left
Arrow key right
Home key (upward+left arrow)
Backspace (unreliable)
Function keys (space for 64 is reserved)
Formula for In
Delete line
Insert line
Delete character
Insert character or enter insert mode
Exit insert character mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backward (reverse)
Next page
Previous page
Set tab
Clear tab

February, 1990
RevisionC

curses(3X) curses(3X)

KEY CATAB 0526 Qear all tabs
KEY ENTER 0527 Enter or send (unreliable)
KEY SRESET 0530 Soft (partial) reset (unreliable)
KEY RESET 0531 Reset or hard reset (unreliable)
KEY PRINT 0532 Print or copy
KEY LL 0533 Home down or bottom (lower left)

SEE ALSO
cursesS. O(3X), terminfo(4).

WARNINGS
The plotting library plot(3X) and the curses library
curses(3X) both use the names erase () and move (). The
curses versions are macros. If you need both libraries, put the
plot(3X) code in a different source file than the curses(3X)
code or :/f:undef move () and erase () in the plot(3X»
code. Similarly, move is also a macro in <sys/pcl. h>.

February, 1990
Revision C

12

cursesS. 0 (3X) cursesS. 0 (3X)

NAME
cursesS.O - BSD-style screen functions with optimal cursor
motion

SYNOPSIS
cc rJiags]files -lcursesS. 0 -ltermcap [libraries]

DESCRIPTION
These routines are a subset of the routines provided in the new
curses library and are provided for compatibility with programs
that use the old curses and termcap libraries. These routines
give the user a method for updating screens with reasonable op­
timization. They maintain an image of the current screen while
the user sets up an image of a new one. Then the refresh ()
tells the routines to make the current screen look like the new one.
In order to initialize the routines, the routine ini tscr () must be
called before any of the other routines that deal with windows and
screens are used. The routine endw in () should be called before
exiting.

FUNCfIONS

1

Routines marked with a plus (+) are macros.

addch (ch) + Add a character to stdscr.
addstr (str) + Add a string to stdscr.
box (win, vert, hor) Draw a box around a window.
clear () + Clear stdscr.
clearok (ser, boolf) + Set clear flag for sere
clrtobot () + Clear to bottom on stdscr.
clrtoeol () + Clear to end-of-line on stdscr.
crmode () Set cbreak mode.
delch () + Delete a character.
deleteln () + Delete a line.
delwin (win) Delete win.
echo () Set echo mode.
endwin () End window modes.
erase () + Erase stdscr.
getcap (name) Get terminal capability name.
getch () + Get a character through stdscr.
getstr (str) + Get a string through stdscr.
get tmode () Get tty modes.
getyx (win, y, x) + Get (y,x) coordinates.
inch () + Get character at current (y,x) coordi­

nates.

February, 1990
RevisionC

curses5.0(3X) curses5.0(3X)

ini tscr () Initialize screens.
insch (c) + Insert a character.
insertln () + Insert a line.
leaveok (win, boolf> + Set leave flag for win.
longname (termbu/, name)

Get long name from termbuf.
move (y,x) + Move to (y,x) on stdscr.
mvcur (lasty, lastx, newy, newx)

Actually move cursor.
neww i n (lines, cols, begin y, begin _x)

Create a new window.
nl () Set newline mapping.
nocrmode () Unset cbreak mode.
noecho () Unset echo mode.
nonl () Unset newline mapping.
noraw () Unset raw mode.
overlay (win}, win2) Overlay win} on win2.
overwri te (win} , win2)

Overwrite win} on top of win2.
printw ([mt, arg} , arg2, ...)

printf on stdscr.
raw () Set raw mode.
re f re s h () + Make current screen look like

stdscr.
resetty () Reset tty flags to stored value.
savetty () Stored current tty flags.
scanw ([mt, arg}, arg2, ...)

scanf through stdscr.
scroll (win) Scroll win one line.
scrollok (win, boolf> +

Set scroll flag.
setterm (name) Set term variables for name.
standend () + End standout mode.
standout () + Start standout mode.
subwin (win, lines, cols, beginy, begin_x)

touchwin (win)
unctrl (ch)
waddch (win, ch)
waddstr (win, str)
wclear (win)

February. 1990
Revision C

Create a subwindow.
Change all of win.
Printable version of ch.
Add character ch to win.
Add string to win.
Clear win.

2

cursesS.O(3X) cursesS.O(3X)

wclrtobot (win) Clear to bottom of win.
wclrtoeol (win) Clear to end-of-line on win.
wdelch (win, c) Delete character from win.
wdeleteln (win) Delete line from win.
werase (win) Erase win.
wgetch (win) Get a character through win.
wgetstr (win, str) Get a string through win.
winch (win) + Get character at current (y,x) in win.
winsch (win, c) Insert character into win.
winsertln (win) Insert line into win.
wmove (win,y,x) Set current (y,x) coordinates on win.
wprintw (win,fmt, argl , arg2, ...)

printf on win.
wrefresh (win) Make screen look like win.
wscanw (win,fmt, argl, arg2, ...)

scanf through win.
wstandend (win)
wstandout (win)

SEE ALSO

End standout mode on win.
Start standout mode on win.

3

ioctl(2), curses(3X), getenv(3), termcap(4), termin­
fo(4), tty(4).

February, 1990
RevisionC

cuserid(3P) cuserid(3P)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include <stdio.h>

char *cuserid (s)
char *s;

DESCRIPTION
cuserid generates a character string representation of the effec­
tive user 10 of the current process. If s is a NULL pointer, this
representation is generated in an internal static area, the address of
which is returned. Otherwise, s is assumed to point to an array of
at least L cuserid characters; the representation is left in this
array. The constant L cuserid is defined in the <stdio. h>
header file. -

If multiple character strings are associated with a user 10, the first
one encountered in / etc/passwd will be returned.

RETURN VALUE
If the character string representing the login name associated with
the effective user 10 of the current process cannot be found,
cuserid returns a NULL pointer; if s is not a NULL pointer, a
null character (\ 0) is placed at s [0] .

FILES
/etc/passwd

SEE ALSO
geteuid within getuid(2). cuserid(3S). getlogin(3C).
getpwent(3C).

BUGS
cuserid uses getpwnam(3C); thus the results of a user's call to
the latter will be obliterated by a subsequent call to the former.

The name cuserid is rather a misnomer.

February, 1990
RevisionC

1

cuserid(3S) cuserid(3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include <stdio.h>

char *cuserid (s)
char *s;

DESCRIPTION
cuserid generates a character string representation of the login
name of the owner of the current process. If s is a NULL pointer,
this representation is generated in an internal static area, the ad­
dress of which is returned. Otherwise, s is assumed to point to an
array of at least L cuserid characters; the representation
remains in this array. -The constant L cuserid is defined in the
<stdio. h> header file. -

RETURN VALUE
If the login name cannot be found, cuserid returns a NULL
pointer; if s is not a NULL pointer, a null character (\ 0) is placed
at s [0] •

SEE ALSO
getuid(2), cuserid(3P), getlogin(3C), getpwent(3C).

BUGS

1

cuserid uses getpwnam(3C); therefore, the results of a user's
call to the latter will be obliterated by a subsequent call to the
former.

The name cuserid is rather a misnomer.

February, 1990
RevisionC

dbm(3X)

NAME
dbminit, fetch, store, delete, firstkey,
next key - database subroutines

SYNOPSIS
typedef struct

char *dptr;
int dsize;

datum;

dbmini t (file)
char *file;

datum *fetch (key)
datum key;

store (key, content)
datum key, content;

delete (key)
datum key;

datum firstkey ()

datum next key (key)
datum key;

DESCRIPTION

dbm(3X)

These functions maintain key/content pairs in a data base. The
functions will handle very large (a billion blocks) databases and
will access a keyed item in one or two file system accesses. The
functions are obtained with the loader option -ldbm.

keys and contents are described by the datum typedef. A da­
tum specifies a string of dsize bytes pointed to by dptr. Arbi­
trary binary data, as well as normal ASCII strings, are allowed.
The data base is stored in two files. One file is a directory contain­
ing a bit map and has . di r as its suffix. The second file contains
all data and has . pag as its suffix.

Before a database can be accessed, it must be opened by dbmin­
it. At the time of this call, the files file. di r and file. pa g must
exist. (An empty database is created by creating zero-length
. di r and . pag files.)

Once open, the data stored under a key is accessed by fetch and
data is placed under a key by store. A key (and its associated
contents) is deleted by delete. A linear pass through all keys in
a database may be made, in an (apparently) random order, by use

February, 1990
Revision C

1

dbm(3X) dbrn(3X)

of firstkey and next key. firstkey will return the first
key in the database. With any key next key will return the next
key in the database. This code will traverse the data base:
for (key = firstkey (); key. dptr ! = NULL; key = next key (key))

RETURN VALUE
All functions that return an int indicate errors with negative
values. A zero return indicates okay. Routines that return a da­
t urn indicate errors with a null (0) dpt r .

BUGS

2

The . pag file will contain holes so that its apparent size is about
four times its actual content. Older UNIX systems may create real
file blocks for these holes when touched. These files cannot be
copied by normal means (cp, cat, tp, tar, ar) without filling
in the holes.

dpt r pointers returned by these subroutines point into static
storage that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the
internal block size (currently 1024 bytes). Moreover all
key/content pairs that hash together must fit on a single block.
s tore will return an error in the event that a disk block fills with
inseparable data.

delete does not physically reclaim file space, although it does
make it available for reuse.

The order of keys presented by firstkey and nextkey
depends on a hashing function, not on anything interesting.

February, 1990
RevisionC

ddp(3N) ddp(3N)

NAME
ddp open, ddp close - AppleTalk Datagram Delivery
Protocol (DDP) interrace

SYNOPSIS
iinclude <at/appletalk.h>
iinclude <at/ddp.h>
cc [flags]files -lat [libraries]

int ddp open (socket)
at_socket *socket;

int ddp close (jd)
int fd; -

DESCRIPTION
The DDP interface provides applications with access to the Ap­
pleTalk DDP operations.

The ddp open routine opens a static or dynamic DDP socket
and retunlS an AppleTalk socket file descriptor that can be used to
read and write DDP datagrams. The parameters are

socket A pointer to the DDP socket number to open. If the Ap­
pleTalk socket number is 0, or if socket is NULL, a
DDP socket is dynamically assigned. If socket is non­
NULL, the socket number is returned in socket.

An error condition results if there are no more dynamic
DDP sockets available, if the maximum number of open
files has been exceeded at a process or system level, or
if the network is offline.

Only the superuser can open a static DDP socket.

fd The AppleTalk file descriptor of the DDP socket to be
closed by the ddp_close routine.

Datagrams are always read and written with the long DDP header
format, using standard NUX read(2) and wri te(2) system
calls. The long header DDP datagram is defined by this structure
in <at/ddp. h>:

typedef struct {
u short

February, 1990
Revision C

u short

unused : 2,
hopcount : 4,
length : 10;
checksum;

1

ddp(3N) ddp(3N)

at net
at net
at node
at node
at socket
at socket
u char
u char

at_ddp_t;

dst_net;
src_net;
dst_node;
src_node;
dst_socket;
src_socket;
type;
data[DDP_DATA_SIZE];

When a datagram is written, only the fields checksum,
dst net, dst node, dst socket, type, and data need to
be set The rest of the fields may be left uninitialized, because
DDP sets them.

The length field is the DDP packet length. The checksum
field contains the DDP checksum. When datagrams are sent, a
checksum is computed only if this field is nonzero.

Datagrams can be sent and received asynchronously using stan­
dard A/UX facilities: select(2N) or O_NDELAY fcntl(2).

ERRORS
All routines return -Ion error with detailed error code in errno:

[EACCES]

[EADDRINUSE]

[EINVAL]

[EMSGSIZE]

[ENETDOWN]

[ENOBUFS]

A nonsuperuser attempted to open a stat­
ic AppleTalk socket

The static socket is in use, or all dynamic
sockets are in use.

An attempt was made to open an invalid
AppleTalk socket number.

A datagram is too large or too small.

The network interface is down.

DDP is out of buffers.

Routines also return any additional error codes returned by stan­
dard NUX open(2), close(2), read(2), and write(2) sys­
tem calls.

FILES
/dev/appletalk/ddp/*

2 February, 1990
RevisionC

ddp(3N) ddp(3N)

SEE ALSO
close(2), fcntl(2), open(2), read(2), select(2N),
write(2), atp(3N), ddp(3N), nbp(3N), pap(3N), rmtp(3N),
fcntl(5), termio(7), Inside AppleTalk; "AppleTalk Program­
ming Guide," in AIUX Network Applications Programming.

February, 1990
Revision C

3

dial(3C) dial(3C)

NAME
dial- establish an out-going tenninalline connection

SYNOPSIS
#include <dial.h>

int dial (cali)
CALL call;

void undial (fd)
int fd;

DESCRIYfION

1

dial returns a file descriptor for a tenninal line open for
read/write. The argument to dial is a CALL structure (defined in
the <dial. h> header file).

When finished with the terminal line, the calling program must in­
voke undial to release the semaphore that has been set during
the allocation of the tenninal device.

The CALL typedef in the <dial. h> header file is:
typedef struct {

struct termio *attr; /* pointer to termio
attribute struct */

int
int

char

char

int

char

int

CALL;

baud; /* transmission data rate */
speed; /* 212A modem: low=300,

high=1200 */
line; / device name for

out-going line */
telno / pointer to tel-no digits

string */
modem; /* specify modem control for

direct lines */
device; / Will hold the name of the

device used to make a
connection */

dev len /* The length of the device
used to make connection */

The CALL element speed is intended only for use with an outgo­
ing dialed call, in which case its value should be either 300 or
1200 to identify the lI3A modem, or the high-speed or low-speed
setting on the 212A modem. Note that the 113A modem or the
low-speed setting of the 2I2A modem will transmit at any rate
between 0 and 300 bits per second. However, the high-speed set­
ting of the 2121 modem transmits and receives at 1200 bits per
second only. The CALL element baud is for the desired transmis-

February, 1990
Revision C

dial(3C) dial(3C)

sion baud rate. For example, one might set baud to 110 and
speed to 300 (or 12(0). However, if speed is set to 1200 baud
must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its
device name should be placed in the line element in the CALL
structure. Legal values for such terminal device names are kept in
the L-devices file. In this case, the value of the baud element
need not be specified as it will be determined from the L­
devices file.

The telno element is for a pointer to a character string
representing the telephone number to be dialed. The termination
symbol will be supplied by the dial function, and should not be
included in the telno string passed to dial in the CALL struc­
ture.

The CALL element modem is used to specify modem control for
direct lines. This element should be nonzero if modem control is
required. The CALL element attr is a pointer to a termio struc­
ture, as defined in the <termio. h> header file. A NULL value
for this pointer element may be passed to the dial function, but
if such a structure is included, the elements specified in it will be
set for the outgoing terminal line before the connection is esta­
blished. This is important for attributes such as parity and baud
rate.

The CALL element dev ice is used to hold the device name
(cuI..) that establishes the connection.

The CALL element dev _len is the length of the device name
that is copied into the array device.

ERRORS
On failure, a negative value indicating the reason for the failure is
returned. Mnemonics for these negative indices as listed here are
defined in the <dial. h> header file.
INTRPT -1
D HUNG -2
NO ANS -3
ILL BD -4
A PROB -5
L PROB -6
NO Ldv -7
DV NT A -8
DV NT K -9
NO BD A -10

February, 1990
Revision C

/* interrupt occurred */
/* dialer hung (no return from write) */
/* no answer within 10 seconds */
/* illegal baud-rate */
/* acu problem (open() failure) */
/* line problem (open() failure) */
/* can't open LDEVS file */
/* requested device not available */
/* requested device not known */
/* no device available at requested baud */

2

dial(3C) dial(3C)

NO_BD_K -11 1* no device known at requested baud *1

FILES
/usr/lib/uucp/L-devices
/usr / spool/uucp/LCK .. tty-device

SEE ALSO
uucp(lC), alarm(2), read(2), write(2), termio(7).

WARNINGS
Including the <dial. h> header file automatically includes the
<termio. h> header file.

Because the above routine uses <stdio. h>, the size of pro­
grams not otherwise using standard I/O is increased more than
might be expected.

BUGS

3

An alarm(2) system call for 3,600 seconds is made (and caught)
within the dial module for the purpose of "touching" the
LCK. . file and constitutes the device allocation semaphore for the
terminal device. Otherwise, uucp(1C) may simply delete the
LCK. . entry on its 9O-minute clean-up rounds. The alarm may
go off while the user program is in a read(2) or wri te(2) sys­
tem call, causing an apparent error return. If the user program is
to run for an hour or more, error returns from reads should be
checked for (errno==EINTR), and the read possibly reis­
sued.

February, 1990
RevisionC

dim(3F) dim(3F)

NAME
dim, ddim, i dim - Fortran positive difference intrinsic
functions

SYNOPSIS
integer al, a2, a3
a3=idim (al, a2)

real al, a2, a3
a3=dim (al, a2)

double precision al, a2, a3
a3=ddim (al, a2)

DESCRIPTION
These functions return:

al-a2
o

February, 1990
Revision C

ifal>a2
if al <= a2

1

directory(3) directory(3)

NAME
opendir, readdir, telldir, seekdir, rewinddir,
closedir -directory operations

SYNOPSIS
*include <sys/types.h>
*include <direct.h>

DIR *opendir (filename)
cha r *filename;

struct direct *readdir(dirp)
DIR *dirpi

void rewinddir (dirp)
DIR *dirp;

int closedir (dirp)
DIR *dirp;

DESCRIPTION

1

opendi r opens the directory named by filename and associates a
directory stream with it. opendi r returns a pointer to be used to
identify the directory stream in subsequent operations. The
pointer NULL is returned if filename cannot be accessed, or if it
cannot allocate enough memory to hold the whole thing.

readdir returns a pointer to the next directory entry. It returns
NULL upon reaching the end of the directory or detecting an in­
valid seekdir operation.

The rewinddir macro resets the position of the named directo­
ry stream to the beginning of the directory. It also causes the
directory stream to refer to the current state of the directory.

closedir closes the named directory stream and frees the struc­
ture associated with the DIR pointer.

Sample code that searches a directory for an entry name is:
len = strlen(name);
dirp = opendir(".");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp))

if (dp->d_namlen == len && !strcmp(dp->d_name, name))
closedir(dirp);
return FOUND;

closedir(dirp);
return NOT_FOUND;

February, 1990
RevisionC

directory(3) directory(3)

The result of using a directory stream after an exec(2) is
undefined. After a fork(2), either the parent or the child (but
not both) may continue processing the directory stream by using
readdir or rewinddir, or both.

SEE ALSO
Is(1), open(2), close(2), getdirentries(2), read(2),
Iseek(2), dir(4).

February, 1990
Revision C

2

directory(3P) directory(3P)

NAME
opendir, readdir, telldir, seekdir, rewinddir,
closedir - directory operations

SYNOPSIS
#include <sys/types.h>
#include <direct.h>

DIR *opendir (filename)
char *filename i

struct direct *readdir (dirp)
DIR *dirpi

void rewinddir (dirp)
DIR *dirpi

int closedir (dirp)
DIR *dirpi

DESCRIPTION

1

opendi r opens the directory named by filename and associates a
directory stream with it. opendi r returns a pointer to be used to
identify the directory stream in subsequent operations. The
pointer NULL is returned if filename cannot be accessed, or if it
cannot malloc(3) enough memory to hold the whole thing.

readdir returns a pointer to the next directory entry. It returns
NULL upon reaching the end of the directory or detecting an in­
valid seekdi r operation.

The rewinddir macro resets the position of the named directo­
ry stream to the beginning of the directory. It also causes the
directory stream to refer to the current state of the directory.

closedir closes the named directory stream and frees the struc­
ture associated with the D I R pointer.

Sample code which searchs a directory for entry name is:
len = strlen(name);
dirp = opendir(".");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp))

if (dp->d_namlen == len && !strcmp(dp->d_name, name))
closedir(dirp);
return FOUND;

closedir(dirp);
return NOT_FOUND;

February, 1990
RevisionC

directory(3P) directory(3P)

The result of using a directory stream after an exec(2) is
undefined. After a for k(2), either the parent of the child (but
not both) may continue processing the directory stream using
readdiranMorrewinddir .

SEE ALSO
ls(l), open(2), c1ose(2), getdirentries(2), read(2),
lseek(2), dir(4).

February,1990
Revision C

2

dprod(3F) dprod(3F)

NAME
dprod - Fortran double precision product intrinsic function

SYNOPSIS
real al, a2
double precision a3
a3=dprod (al, a2)

DESCRIPTION
dprod returns the double precision product of its real arguments.

1 February, 1990
RevisionC

drand48(3C) drand48(3C)

NAME
drand48, erand48, lrand48, nrand48, mrand48,
jrand48, srand48, seed48, lcong48 - generate
unifonnly distributed pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3] i

long lrand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3] i

long mrand48 ()

long j rand4 8 (xsubi)
unsigned short xsubi [3] i

void srand48 (seedva/)
long seedvali

unsigned short * seed4 8 (seed16v)
unsigned short seed16v [3] i

void lcong48 (param)
unsigned short param [7] i

DESCRIPTION
This family of functions generates pseudo-random numbers using
the well-known linear congruential algorithm and 48-bit integer
arithmetic.

Functions drand48 and erand48 return non-negative double­
precision floating-point values unifonnly distributed over the in­
terval [0.0, 1.0).

Functions lrand48 and nrand48 return non-negative long in­
tegers uniformly distributed over the interval [0,231).
Functions mrand48 and j rand4 8 return sirned long integers
unifonnly distributed over the interval [-23 , 231). Functions
srand48,seed48, and lcong48 are initialization entry points,
one of which should be invoked before drand4 8,lrand4 8, or
mrand48 is called. (Although it is not recommended practice,
constant default initializer values are supplied automatically if
drand48,lrand48, or mrand48 is called without a prior call
to an initialization entry point.) Functions erand4 8, nrand48,

February, 1990
Revision C

1

drand48 (3C) drand48(3C)

2

and j rand4 8 do not require an initialization entry point to be
called first.

All the routines work by generating a sequence of 48-bit integer
values, Xi' according to the linear congruential formula

X 1 = (aX + c) od ~ n+ n m m

The parameter m = 248
; hence 48-bit integer arithmetic is per­

formed. Unless lcong48 has been invoked, the multiplier value
a and the addend value c are given by

a = 5DEECE66D16 =-2736731631558
c = B16 = 138.

The value returned by any of the functions drand4 8, erand4 8,
lrand48, nrand48, mrand48, or jrand48 is computed by
first generating the next 48-bit X. in the sequence. Then the ap­
propriate number of bits, accordi~g to the type of data item to be
returned, are copied from the high-order (leftmost) bits of X. and
transformed into the returned value. '

The functions drand48, lrand48, and mrand48 store the last
48-bit X. generated in an internal buffer; that is why they must be ,
initialized prior to being invoked. The functions erand48 ,
nrand48, and jrand48 require the calling program to provide
storage for the successive x. values in the array specified as an ar­
gument when the functions' are invoked. That is why these rou­
tines do not have to be initialized; the calling program merely has
to place the desired initial value of Xi into the array and pass it as
an argument. By using different arguments, functions erand48,
nrand48, and jrand48 allow separate modules of a large pro­
gram to generate several independent streams of pseudo-random
numbers, i.e., the sequence of numbers in each stream does not
depend upon how many times the routines have been called to
generate numbers for the other streams.

The initializer function s rand 48 sets the high-order 32 bits of X.
to the 32 bits contained in its argument. The low-order 16 bits of
Xi are set to the arbitrary value 330E16•

The initializer function seed48 sets the value of X. to the 48-bit
value specified in the argument array. The previous 'value of X. is
copied into a 48-bit internal buffer, used only by seed4 8. ' A
pointer to this buffer is the value returned by seed48 . The re­
turned pointer, which can be ignored if not needed, is useful if a
program is to be restarted from a given point at some future time.

February, 1990
RevisionC

drand4 8 (3C) drand4 8 (3C)

Use the pointer to get and store the last X. value; then use this
value to reinitialize via seed4 8 when the p~gram is restarted.

The initialization function lcong48 allows the user to specify
the initial X., the multiplier value a, and the addend value c. Ar­
gument array elements param[0-2] specify X., elements param[3-
5] specify the multiplier a, and param[6] s~ifies the 16-bit ad­
dend c. After lcong48 has been called, a subsequent call to ei­
ther srand48 or seed48 will restore the "standard" multiplier
and addend values, a and c, specified on the previous page.

NOTES
The routines are coded in portable C. The source code for the
portable version can even be used on computers which do not
have floating-point arithmetic. In such a situation, functions
drand48 and erand48 do not exist; instead, they are replaced
by the following two functions:

long irand48 (m)
unsigned short m;

long krand48 (xsubi, m)
unsigned short xsubi [3] ,m;

Functions irand48 and krand48 return non-negative long in­
tegers uniformly distributed over the interval [0, m-l].

SEE ALSO
rand(3C).

February, 1990
RevisionC

3

dup2(3N) dup2(3N)

NAME
dup2 - duplicate a descriptor

SYNOPSIS
dup2 (oldd, newd)
int oldd, newd;

DESCRIPTION
dup2 causes newd to become a duplicate of oldd. If newd is al­
ready in use, the descriptor is first deallocated as if a close(2)
call had been done first.

The object referenced by the descriptor does not distinguish
between references using oldd and newd in any way. Thus, if
newd and oldd are duplicate references to an open file, read(2),
write(2), and lseek(2) calls all move a single pointer into the
file. If a separate pointer into the file is desired, a different object
reference to the file must be obtained by issuing an additional
open(2) call.

RETURN VALUE
The value -1 is returned if an error occurs in either call. The
external variable errno indicates the cause of the error.

ERRORS
dup2 fails if:

[EBADF]

[EMFILE]

oldd or newd is not a valid active descrip­
tor

Too many descriptors are active.

SEE ALSO

1

accept(2N), close(2), dup(2), fcntl(2),
getdtablesi ze(2N), open(2), pipe(2), socket(2N).

February, 1990
RevisionC

ecvt(3C) ecvt(3C)

NAME
ecvt, fcvt, gcvt - convert floating-point number to string

SYNOPSIS
char *ecvt <value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt <value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt <value, ndigit, but>
double value;
int ndigit;
char *buf;

DESCRIPTION
ecvt converts value to a null-terminated string of ndigit digits
and returns a pointer to this string. The high-order digit is non­
zero, unless the value is zero. The low-order digit is rounded.
The position of the decimal point relative to the beginning of the
string is stored indirectly through decpt (negative means to the left
of the returned digits). The decimal point is not included in the re­
turned string. If the sign of the result is negative. the word pointed
to by sign is non-zero; otherwise it is zero.

fcvt is identical to ecvt, except that the correct digit has been
rounded for printf %f (Fortran F-format) output of the number
of digits specified by ndigit.

gcvt converts the value to a null-tenninated string in the array
pointed to by buf and returns buf. It attempts to produce ndigit
significant digits in Fortran F-format, ready for printing; E-format
is produced when F-format is not possible. A minus sign, if there
is one, or a decimal point is included as part of the returned string.
Trailing zeros are suppressed.

SEE ALSO
printf(3S).

BUGS
The values returned by ecvt and fcvt point to a single static
data array.

February, 1990
Revision C

1

end(3C) end(3C)

NAME
end, etext, edata -last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with in­
teresting contents. The address of etext is the first address
above the program text, eda t a above the initialized data region,
and end above the uninitialized data region.

When execution begins, the program break (the first location
beyond the data) coincides with end, but the program break may
be reset by the routines of brk(2), malloc(3C), standard
input/output, the profile (-p) option of cc(I), and so on. Thus,
the current value of the program break should be determined by
sbrk (0) (see brk(2)).

SEE ALSO
cc(1), brk(2), intro(3), malloc(3C).

1 February, 1990
RevisionC

erf(3M) erf(3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
#include <math.h>

double erf (x)

double Xi

double erfc (x)

double Xi

DESCRIPTION
The erf function returns the error function of x (the precise for­
mula is available in at standard calculus text).

erfc, which returns 1.0 - erf (x) , is provided because of the
extreme loss of relative accuracy if erf (x) is called for large x

and the result subtracted from 1.0 (e.g. for x = 5, 12 places are
lost).

SEE ALSO
exp(3M).

February, 1990
Revision C

1

ethers(3N) ethers (3N)

NAME
ethers, ether_ntoa, ether aton, ether ntohost,
ether_hostton, ether_line - Ethernet address mapping
operations

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>

char *ether_ntoa(e)
struct ether addr *ei

struct ether_addr *ether_aton(s)
char *s;

ether ntohost (hostname, e)
char *hostnamei
struct ether_addr *ei

ether host ton (hostname, e)
char *hostnamei
struct ether_addr *ei

ether line (l, e, hostname)
char *li
struct ether addr *ei
char *hostname;

DESCRIPTION

1

These routines are useful for mapping 48-bit Ethernet numbers to
their ASCII representations or their corresponding host names,
and vice versa.

The function ether ntoa converts a 48-bit Ethernet number
pointed to by e to itsstandard ACSII representation; it returns a
pointer to the ASCII string. The representation is of the form:

x:x:x:x:x:x:
where x is a hexadecimal number between 0 and 255. The func­
tion ether aton converts an ASCn string in the standard
representation back to a 48-bit Ethernet number; the function re­
turns NULL if the string cannot be scanned successfully.

February, 1990
RevisionC

ethers(3N) ethers(3N)

The function ether ntohost maps an Ethernet number (point­
ed to bye) to its associated hostname. The string pointed to by
hostname must be long enough to hold the hostname and a null
character. The function returns zero upon success and non-zero
upon failure. Inversely, the function ether_hostton maps a
hostname string to its corresponding Ethernet number; the func­
tion modifies the Ethernet number pointed to bye. The function
also returns zero upon success and non-zero upon failure.

The function ether line scans a line (pointed to by l) and sets
the hostname and the Ethernet number (pointed to bye). The
string pointed to by hostname must be long enough to hold the
hostname and a null character. The function returns zero upon
success and non-zero upon failure. The format of the scanned line
is described by ethers(4).

FILES
Jete/ethers
/ete/ethers.byaddr
/ete/ethers.byname

SEE ALSO
ethers(4).

February, 1990
Revision C

Yellow Pages control file
Yellow Pages control file

2

exp(3F) exp(3F)

NAME
exp, dexp, cexp - Fortran exponential intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex ex1, ex2

r2=exp (r1)

dp2=dexp (dp1)
dp2=exp (dp1)

cx2=cexp (ex1)
cx2=exp (ex1)

DESCRIPTION
exp returns the real exponential function eX of its real argument
dexp returns the double-precision exponential function of its
double-precision argument. cexp returns the complex exponen­
tial function of its complex argument. The generic function exp
becomes a call to dexp or cexp, as required, depending on the
type of its argument.

SEE ALSO
exp(3M).

1 February, 1990
RevisionC

exp(3M) exp(3M)

NAME
exp, log, loglO, pow, sqrt - exponential, logarithm,
power, and square root functions

SYNOPSIS
#include <math.h>

double exp (x)

double Xi

double log (x)

double Xi

double loglO (x)

double Xi

double pow (x, y)

double x, Yi

double sqrt (x)

double Xi

DESCRIPTION
The exp function returns e raised to the power of x.

log returns the natural logarithm of x. The value of x must be po­
sitive.

loglO returns the logarithm base ten of x. The value of x must
be positive.

The pow function returns x raised to the power of y. If x is zero, y
must be positive. If x is negative, y must be an integer.

sqrt returns the nonnegative square root of x. The value of x
may not be negative.

RETURN VALUE
exp returns HUGE when the correct value would overflow, or 0
when the correct value would underflow, and sets errno to
ERANGE.

log and leglO return -HUGE and set errno to EDaM when x is
nonpositive. A message indicating DOMAIN error (or SING error
when x is 0) is printed on the standard error output.

pow returns 0 and sets errno to EDaM when x is 0 and y is non­
positive, or when x is negative and y is not an integer. In these
cases a message indicating DOMAIN error is printed on the stan­
dard error output. When the correct value for pow would
overflow or underflow, pow returns ±HUGE or 0 respectively, and

February, 1990
Revision C

1

exp(3M) exp(3M)

sets errno to ERANGE.

sqrt returns 0 and sets e r rno to EDaM when x is negative. A
message indicating DOMAIN error is printed on the standard error
output.

These error-handling procedures may be changed with the func­
tion matherr(3M).

SEE ALSO

2

intro(2), hypot(3M), matherr(3M), sinh(3M).

February, 1990
RevisionC

fclose(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (stream)
FILE *stream;

int fflush(s~eam)
FILE *stream;

DESCRIYfION

fclose(3S)

fclose causes any buffered data for the named stream to be
written out and the stream to be closed.

fclose is performed automatically for all open files upon calling
exit(2).

fflush causes any buffered data for the named stream to be
written to that file. The stream remains open.

RETURN VALUE
These functions return 0 for success, and EOF if any error (such
as trying to write to a file that has not been opened for writing)
was detected.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S).

February, 1990
Revision C

1

ferror(3S) ferror(3S)

NAME
ferror, feof, clearerr, fileno - stream status
inquiries

SYNOPSIS
#include <stdio.h>

int feof (stream)
FILE *streami

int ferror (stream)
FILE *stream;

void clearerr (stream)
FILE *stream;

int fileno (stream)
FILE *stream;

DESCRIPI10N
feof returns nonzero when EOF has previously been detected
reading the named input stream; otherwise, it returns zero.

ferror returns nonzero when an I/O error has previously oc­
curred reading from or writing to the named stream; otherwise, it
returns zero.

clearerr resets the error indicator and EOF indicator to zero
on the named stream.

fileno returns the integer file descriptor associated with the
named stream; see open(2).

NOTES
All these functions are implemented as macros; they cannot be de­
clared or redeclared.

SEE ALSO
open(2), fopen(3S).

1 February, 1990
RevisionC

floor(3M) floor(3M)

NAME
floor, ceil, fmed, fabs - floor, ceiling, remainder,
absolute value functions

SYNOPSIS
*include <math.h>

double floor (x)

double x;

double ceil (x)

double x;

double fmod (x, y)
double x, y;

double fabs (x)

double x;

DESCRIPTION
floor returns the largest integer (as a double-precision number)
not greater than x.

ceil returns the smallest integer not less than x.

fmod returns the floating-point remainder of the division of x by
y: x if y is zero or if xly would overflow; otherwise the number isf
with the same sign as x, such that x = iy + f for some integer i, and
If I < Iyl.

f abs returns the absolute value of I x I .

SEE ALSO
abs(3C).

February, 1990
RevisionC

1

fopen(3S) fopen(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen <filename, type)
char *filename, *typei

FILE * f reopen <filename, type, stream)
char *filename, *typei
FILE *streami

FILE *fdopen <fildes, type)
int fildesi
char * type;

DESCRIYfION

1

f open opens the file named by filename and associates a stream
with it. fopen returns a pointer to the FILE structure associated
with the stream.

filename points to a character string that contains the name of the
file to be opened.

type is a character string having one of the following values:

r open for reading

w truncate or create for writing

a append; open for writing at end of file, or create
for writing

r+ open for update (reading and writing)

w+ truncate or create for update

a + append; open or create for update at end-of-file

f reopen substitutes the named file in place of the open stream.
The original stream is closed, regardless of whether the open ulti­
mately succeeds. freopen returns a pointer to the FILE struc­
ture associated with stream.

freopen is typically used to attach the preopened streams asso­
ciated with stdin, stdout, and stderr to other files.

f dopen associates a stream with a file descriptor by formatting a
file structure from the file descriptor. Thus, fdopen can be used
to access the file descriptors returned by open(2), dup(2),
creat(2), or pipe(2). (These calls open files but do not return

February, 1990
RevisionC

fopen(3S) fopen(3S)

pointers to a FILE structure.) The type of stream must agree with
the mode of the open file.

When a file is opened for update, both input and output may be
done on the resulting stream. However, output may not be direct­
ly followed by input without an intervening fseek or rewind,
and input may not be directly followed by output without an inter­
vening fseek, rewind, or an input operation which encounters
end-of -file.

When a file is opened for append (i.e., when type is a or a+), it is
impossible to overwrite information already in the file. fseek
may be used to reposition the file pointer to any position in the
file, but when output is written to the file the current file pointer is
disregarded. All output is written at the end of the file and causes
the file pointer to be repositioned at the end of the output. If two
separate processes open the same file for append, each process
may write freely to the file without fear of destroying output being
written by the other. The output from the two processes will be
intermixed in the file in the order in which it is written.

RETURN VALUE
fopen and freopen return a NULL pointer on failure.

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S),
fseek(3S).

February,1990
RevisionC

2

fread(3S) fread(3S)

NAME
fread, fwrite - binary input/output

SYNOPSIS
*include <stdio.h>

int fread (ptr, size, nitems, stream)
char *ptr;
in t size, nitems;
FILE *stream;

int fwrite (ptr, size, nitems, stream)
char *ptr;
in t size, nitems;
FILE *stream;

DESCRIPTION
f read copies nitems items of data from the named input stream
into an array beginning at ptr. An item of data is a sequence of
bytes (not necessarily terminated by a null byte) of length size.
f read stops appending bytes if an end-of-file or error condition
is encountered while reading stream or if nitems items have been
read. fread leaves the file pointer in stream, if defined, pointing
to the byte following the last byte read if there is one. fread
does not change the contents of stream.

fwri te appends at most nitems items of data from the the array
pointed to by ptr to the named output stream. fwri te stops ap­
pending when it has appended nitems items of data or if an error
condition is encountered on stream. fwri te does not change the
contents of the array pointed to by ptr.

The variable size is typically sizeof (*ptr) where the pseudo­
function sizeof specifies the length of an item pointed to by ptr.
If ptr points to a data type other than char it should be cast into a
pointer to char.

RETURN VALUE
fread and fwrite return the number of items read or written.
If size or nitems is non-positive, no characters are read or written
and 0 is returned by both fread and fwri tee

SEE ALSO

1

read(2), wri te(2), fopen(3S), getc(3S), gets(3S),
printf(3S), putc(3S), puts(3S), scanf(3S).

February, 1990
RevisionC

frexp(3C) frexp(3C)

NAME
f rexp, ldexp, modf - manipulate parts of floating-point
numbers

SYNOPSIS
double frexp (value, eptr)
double value i
int *eptri

double ldexp (value, exp)
double value i
int expi

double modf (value, iptr)
double value, *iptri

DESCRIPTION
Every nonzero number can be written uniquely as x*
pow (2, n) , where the "mantissa" (fraction) x is in the range 0.5
~ Ixl < 1.0, and the "exponent" n is an integer. frexp returns
the mantissa of a double value, and stores the exponent indirectly
in the location pointed to by eptr. If value is zero, both results re­
turned by frexp are zero.

ldexp returns the quantity value* pow (2, exp) .

modf returns the signed fractional part of value and stores the in­
tegral part indirectly in the location pointed to by iptr.

ERRORS
If ldexp would cause overflow, ± HUGE is returned (according
to the sign of value), and errno is set to ERANGE.

If ldexp would cause underflow, zero is returned and errno is
set to ERRANGE.

SEE ALSO
exp(3M).

February, 1990
Revision C

1

fseek(3S) fseek(3S)

NAME
f seek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
in t ptrname;

void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *stream;

DESCRIPTION
f seek sets the position of the next input or output operation on
the stream. The new position is at the signed distance offset bytes
from the beginning, the current position, or the end of the file,
when the value of ptrname is 0, 1, or 2, respectively.

rewind (stream) is equivalent to fseek (stream, OL, 0) , ex­
cept that no value is returned.

fseek and rewind undo any effects ofungetc(3S).

After fseek or rewind, the next operation on a file opened for
update may be either input or output.

ftell returns the offset of the current byte relative to the begin­
ning of the file associated with the named stream.

RETURN VALUE
fseek returns non-zero for improper seeks; otherwise it returns
zero.

An improper seek can be, for example, an fseek done on a file
that has not been opened via fopen; in particular, fseek may
not be used on a terminal or on a file opened via popen(3S).

SEE ALSO

1

lseek(2), fopen(3S), popen(3S), ungetc(3S).

February, 1990
RevisionC

fseek(3S) fseek(3S)

WARNINGS
On NUX an offset returned by ftell is measwed in bytes, and
it is permissible to seek to positions relative to that offset; howev­
er, portability to systems other than NUX requires that an offset
be used by fseek directly. Arithmetic may not meaningfully be
performed on such an offset, which is not necessarily measured in
bytes.

February, 1990
RevisionC

2

fstyp(3) fstyp(3)

NAME
f s t yp - determine the file-system type

SYNOPSIS
#include <sys/fstypent.h>

struct fstypent *fstype(name)
char * name;

DESCRIPTION
f s t yp determines the type of the file system associated with the
file name. The file-system types supported on NUX® are listed
in /etc/fstypes. See fstypes(4).

If the file name is a block or character device and is readable by
the calling process, f s t yp attempts to determine the file-system
type by executing (through exec(2» the file-system-dependent
versions of the fstyp(I) command. These commands read the
file-sytem superblocks and perform consistency checks on the
file-system data. See fs(4). Otherwise, fstyp uses the informa­
tion returned by statfs(2).

RETURN VALUE
The return value is a pointer to a fstypent structure. If the
file-system type cannot be determined, a NULL pointer is re­
turned.

FILES
/etc/fstab
/etc/fstypes
/etc/mtab
/etc/fs/*/fstyp

NOTES
NUX currently supports System V file systems (SVFS) and
Berkeley Fast File Systems (UFS) as local systems.

SEE ALSO

1

stat(2), statfs(2), fstypent(3), getmntent(3), fs(4),
fstab(4), fstypes(4), mtab(4).

February, 1990
RevisionC

fstypent(3P)

NAME
fstypent - get file-system-type entry

SYNOPSIS
#include <stdio.h>
#include <sys/fstypent.h>

struct fstypent *fstypent~/ep)
FILE * fi/ep;

DESCRIPTION

fstypent(3P)

fstypent reads the next line from the file indicated by fi/ep and
returns a pointer to a struct fstypent containing this infor­
mation.

The fstypent structure is defined in <sys/fstypent. h>:

struct fstypent {
int fstypei

} ;

char **typelisti
char *pathlisti

In the above structure, f s type indicates the file-system type, and
this value is used by fsmount(2).

typelist is a null-terminated list of pointers; each one points to
a character string describing a file-system type. At least one of
these types is defined in <mntent. h>.

pathlist is a colon-separated list of pathnames. The path­
names indicate the directories where file-system-dependent utili­
ties may be found. This entry in / et c / f s types is not required.
pathlist is a NULL pointer if the entry is missing.

The data in this structure and referenced static data are overwrit­
ten by a subsequent call to f s t ypen t or type f s.

RETURN VALUE
fstypent returns a pointer of type struct fstypent. See
fstyp(3). A NULL pointer is returned on end-of-file or error.

FILES
/etc/fstypes

February, 1990
Revision C

1

fstypent(3P) fstypent(3P)

SEE ALSO
getmntent(3), typefs(3), fs(4), fstab(4), fstypes(4),
ufs(4).

2 February, 1990
RevisionC

ftok(3C)

NAME
ft 0 k - standard interprocess communication package

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>

key t ftok (path, id)
cha~ *pathi
char idi

DESCRIPTION

ftok(3C)

All interprocess communication facilities require the user to sup­
ply a key to be used by the msgget(2), semget(2), and
shmget(2) system calls to obtain interprocess communication
identifiers. One method for forming a key is to use the ftok sub­
routine described below. Another way to compose keys is to in­
clude the project ID in the most significant byte and to use the
remaining portion as a sequence number. There are many other
ways to form keys, but it is necessary for each system to define
standards for forming them. If a standard is not adhered to, unre­
lated processes may interfere with each other's operation. There­
fore, it is strongly suggested that the most significant byte of a key
in some sense refer to a project so that keys do not conflict across
a given system.

f to k returns a key based on path and id that is usable in subse­
quent msgget, semget, and shmget system calls. path must
be the pathname of an existing file that is accessible to the process.
id is a character that uniquely identifies a project. ftok returns
the same key for linked files when called with the same id; it re­
turns different keys when called with the same filename but dif­
ferent ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS
ftok returns (key t) -1 if path does not exist or if it is not ac­
cessible to the process.

WARNINGS
If the file whose path is passed to f to k is removed when keys
still refer to the file, future calls to ftok with the same path and
id will return an error. If the same file is recreated, ftok is likely
to return a different key than it did the original time it was called.

February, 1990
RevisionC

1

ftw(3C) ftw(3C)

NAME
f t w - walk a file tree

SYNOPSIS
finclude <ftw.h>

int ftw (path, In, depth)
char *path;
int (*In) () ;
int depth;

DESCRIPTION
ftw recursively descends the directory hierarchy rooted in path.
For each object in the hierarchy, ftw callsln, passing it a pointer
to a nullterminated character string containing the name of the ob­
ject, a pointer to a stat structure (see stat(2» containing infor­
mation about the object, and an integer. Possible values of the in­
teger, defined in the <ftw. h> header file, are FTW_F for a file,
FTW D for a directory, FTW DNR for a directory that cannot be
read:3nd FTW' NS for an object for which stat could not be ex­
ecuted successfully. If the integer is FTW_DNR, descendants of
that directory will not be processed. If the integer is FTW _ NS,
the s tat structure will contain garbage. An example of an object
that would cause FTW NS to be passed toln is a file in a directory
with read permission bUt not execute (search) permission.

f t w visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invoca­
tion of In returns a nonzero value, or an error is detected within
ftw (such as an I/O error). If the tree is exhausted, ftw returns
zero. Ifln returns a nonzero value, ftw stops its tree traversal and
returns whatever value was returned by In. If ftw detects an er­
ror, it returns -1, and sets the error type in errno.

ftw uses one file descriptor for each level in the tree. The depth
argument limits the number of file descriptors so used. If depth is
zero or negative, the effect is the same as if it were 1. depth must
not be greater than the number of file descriptors currently avail­
able for use. ft w runs more quickly if depth is at least as large as
the number of levels in the tree.

RETURN VALUE

1

The tree traversal continues until the tree is exhausted, and invo­
cation of In returns a nonzero value or some error is detected
within ftw (such as an I/O error). If the tree is exahusted, ftw

February, 1990
RevisionC

ftw(3C) ftw(3C)

returns O. If In returns a nonzero value, ftw stops its tree traver­
sal and returns whatever value was returned by In.
If ftw encounters an error other than EACCESS, it returns -1 and
errno is set to indicate the error. The external variable errno
may contain the error values that are possible when a directory is
opened or when stat(2) is executed on a directory or file.

SEE ALSO
stat(2), malloc(3C).

BUGS
Because ftw is recursive, it is possible for it to terminate with a
memory fault when applied to very deep file structures.
f t w could be made to run faster and use less storage on deep
structures at the cost of considerable complexity.
ftw uses malloc(3C) to allocate dynamic storage during its
operation. If ftw is forcibly terminated, such as by longjmp
being executed by In or an interrupt routine, ftw does not have a
chance to free that storage, so it remains permanently allocated. A
safe way to handle interrupts is to store the fact that an interrupt
has occurred, and arrange to have In return a nonzero value at its
next invocation.

February, 1990
Revision C

2

ftype(3F) ftype(3F)

NAME
int, ifix, idint, real, float, sngl, dble, cmplx,
dcmplx, i cha r, cha r - explicit Fortran type conversion

SYNOPSIS
integer i, j
real r, s

1

double precision dp, dq
complex ex
double complex dex
character *1 eh
i=int (r)
i=int (dp)
i=int (ex)
i=int (dex)
i=ifix (r)
i=idint (dp)

r=real (i)
r=real (dp)
r=real (ex)
r=real (dex)
r=float (0
r=sngl (dp)

dp=dble (i)
dp=dble (r)
dp=dble (ex)
dp=dble (dex)

ex=cmplx (0
ex=cmplx (i, j)
ex=cmplx (r)
ex=cmplx (r, s)
ex=cmplx (dp)
ex=cmplx (dp, dq)
ex=cmplx (dex)

dex=dcmplx (i)
dex=dcmplx (i, j)
dex=dcmplx (r)
dex=dcmplx (r, s)
dex=dcmplx (dp)
dex=dcmplx (dp, dq)
dex=dcmplx (ex)

February, 1990
RevisionC

ftype(3F)

i=ichar (ch)
ch=char (i)

DESCRIPTION

ftype(3F)

These functions perfonn conversion from one data type to anoth­
er.

int converts to integer form its real, double preci­
sian, complex, or double complex argument. If the ar­
gument is real or double precision, int returns the in­
teger whose magnitude is the largest integer that does not exceed
the magnitude of the argument and whose sign is the same as the
sign of the argument (i.e., truncation). For complex types, the
above rule is applied to the real part. ifix and idint convert
only real and double precision arguments respectively.

real converts to real form an integer, double preci­
sion, complex, or double complex argument. If the ar­
gument is double precision or double complex, as much precision
is kept as is possible. If the argument is one of the complex types,
the real part is returned. float and sngl convert only in­
teger and double precision arguments, respectively.

dble converts any integer, real, complex, or double
complex argument to double precision form. If the ar­
gument is of a c.omplex type, the real part is returned.

cmplx converts its integer, real, double precision,
or double complex argument(s) to complex form.

dcmplx converts its integer, real, double preci­
sion, or complex argument(s) to double complex form.

Either one or two arguments may be supplied to cmplx and
dcmplx. If there is only one argument, it is taken as the real part
of the complex type and a imaginary part of zero is supplied. If
two arguments are supplied, the first is taken as the real part and
the second as the imaginary part.

ichar converts from a character to an integer depending on the
character's position in the collating sequence.

char returns the character in the ith position in the processor col­
lating sequence, where i is the supplied argument.

For a processor capable of representing n characters,

February, 1990
Revision C

2

ftype(3F) ftype(3F)

ichar (char (i)) = i for 0 <= i < n, and

char(ichar(ch» = ch for any representable character ch.

3 February, 1990
RevisionC

gamma (3M) gamma (3M)

NAME
gamma -log gamma function

SYNOPSIS
#include <math.h>

extern int signgam;

doublegamma(x)
double X;

DESCRIPTION
gamma returns the natural log of gamma as a function of the abso­
lute value of a given value. gamma returns In(I r(x) I), where
r(x) is defined as

J e -t t%-1 dt.
o

The sign of r(x) is returned in the external integer signgam.
The argument X may not be a nonpositive integer.

The following C program fragment might be used to calculate r:
if «y = gamma(x)) > LN_MAXDOUBLE)

error () ;
y = signgam * exp(y)i

where LN MAXDOUBLE is the least value that causes exp(3M) to
return a range error, and is defined in the <values. h> header
file.

RETURN VALUE
For non-negative integer arguments HUGE is returned, and e r rno
is set to EDOM. A message indicating SING error is printed on the
standard error output.

If the correct value would overflow, gamma returns HUGE and
sets errno to ERANGE.

These error-handling procedures may be changed with the func­
tion matherr(3M).

SEE ALSO
exp(3M), matherr(3M), values(5).

February, 1990
RevisionC

1

getarg(3F) getarg(3F)

NAME
getarg - return Fortran command-line argument

SYNOPSIS
character *N c
integer i

getarg (i, c)

DESCRIPTION
getarg returns the ith command-line argument of the current
process. Thus, if a program were invoked with:

foo argl arg2 arg3

then the call

getarg(2, c)

would return the string arg2 in the character variable c.

SEE ALSO
getopt(3C).

1 February, 1990
RevisionC

getc(3S) getc(3S)

NAME
getc, getchar, fgetc, getw - get character or word
from a stream

SYNOPSIS
#include <stdio.h>

int getc (stream)
FILE *stream;

int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

DESCRIPTION
The getc macro returns the next character (Le., byte) from the
named input stream, as an integer. It also moves the file pointer,
if defined, ahead one character in stream. The getchar macro is
defined as getc (stdin) .

fgetc behaves like getc, but is a function rather than a macro.
fgetc runs more slowly than getc, but takes less space per in­
vocation and its name can be passed as an argument to a function.

get w returns the next word (32-bit integer on a Macintosh II)
from the named input stream. getw increments the associated file
pointer, if defined, to point to the next word. getw assumes no
special alignment in the file.

RETURN VALUE
These functions return the constant EOF at end-of-file or upon an
error. Because EOF is a valid integer, ferror(3S) should be
used to detect getw errors.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S),
gets(3S), putc(3S), scanf(3S), ungetc(3S).

WARNINGS
If the integer value returned by getc, getchar, or fgetc is
stored into a character variable and then compared against the in­
teger constant EOF, the comparison may never succeed, because
sign-extension of a character on widening to integer is machine­
dependent.

February, 1990
Revision C

1

getc(3S) getc(3S)

BUGS

2

Because it is implemented as a macro, getc treats incorrectly a
stream argument with side effects. In particular, getc (*f++)
does not work sensibly. fgetc should be used instead.
Because of possible differences in word length and byte ordering,
files written using put w are machine-dependent, and may not be
read using getw on a different processor.

February, 1990
RevisionC

getcwd(3C) getcwd(3C)

NAME
getcwd- get the pathname of the current working directory

SYNOPSIS
char *getcwd <buf, size)
char *buf;
int size;

DESCRIYfION
get cwd returns a pointer to the current directory pathname. The
value of size must be at least two greater than the length of the
pathname to be returned.

If bufis a NULL pointer t getcwd obtains size bytes of space by
using malloc(3C). In this caset the pointer returned by getcwd
may be used as the argument in a subsequent call to free.

The function is implemented by using popen(3S) to pipe the out­
put of the pwd(l) command into the specified string space.

EXAMPLES
iinclude <limits.h>
char *cwd, *getcwd(};

if «cwd=getcwd«char *}NULL, PATH-MAX}}==NULL) {
perror("pwd"};
exit(l);

printf ("%s\n", cwd);

RETURN VALUE
If any of the following conditions occurt getcwd returns NULL
and sets errno to the corresponding value:

[EINVAL] The size is less than or equal to O.

[ERANGE] The size is not large enough to contain the path­
name.

[EACCES]

ERRORS

The read or search permission was denied for a
component of the pathname.

getcwd will fail if one or more of the following are true:

[EINVAL] The size is less than or equal to O.

February, 1990
Revision C

1

getcwd(3C)

[ERANGE]

[EACCES]

SEE ALSO

getcwd(3C)

The size is not large enough to contain the path­
name.

The read or search permission was denied for a
component of the pathname.

pwd{l), malloc(3C), popen(3S).

2 February, 1990
RevisionC

getenv(3C)

NAME
getenv - return value for environment name

SYNOPSIS
char *getenv (name)
char *name;

DESCRIPTION

getenv(3C)

getenv searches the environment list (see environ(5)) for a
string of the form name=value. and returns a pointer to the value
in the current environment if such a string is present; otherwise a
NULL pointer is returned.

SEE ALSO
exec(2), putenv(3C), environ(5).

February, 1990
Revision C

1

getenv(3F) getenv(3F)

NAME
geten v - return Fortran environment variable

SYNOPSIS
character *N c

getenv (tmpdir, c)

DESCRIPTION
getenv returns the character-string value of the environment
variable represented by its first argument into the character vari­
able of its second argument. If no such environment variable ex­
ists' all blanks are returned.

SEE ALSO
getenv(3C), envi ron(5).

1 February, 1990
RevisionC

getgrent(3C) getgrent(3C)

NAME
getgrent, getgrgi~ getgrnam, setgrent,
endgrent, fgetgrent - obtain group file entry from a
group file

SYNOPSIS
iinclude <grp.h>

struct group *getgrent()

struct group *getgrgid (gid)
gid_t gid;

struct group *getgrnam(name)
char *name;

void setgrent ()

struct group *fgetgrent (j)
FILE *f;

void endgrent ()

DESCRIPTION
getgrent, getgrgid, and getgrnam return pointers to an
object with the following structure containing the broken-out
fields of a line in the /etc/group file. Each line contains a
group structure, defined in the <grp . h> header file:
struct group {

} ;

char *gr_name; /* the name of the group */
char *gr_passwd; /* the encrypted group

password */
int gr_gid; /* the numeric group ID */
char **gr_mem; /* vector of pointers to

member names */

When first called, getgrent returns a pointer to the first group
structure in the file. Thereafter, it returns a pointer to the next
group structure in the file; therefore, successive calls may be used
to search the entire file. getgrgid searches from the beginning
of the file until a numeric group ID matching gid is found; it re­
turns a pointer to the particular structure in which the match was
found. getgrnam searches from the beginning of the file until a
group name matching name is found; it returns a pointer to the
particular structure in which the match was found. If an end-of­
file or an error is encountered on reading, these functions return a
NULL pointer.

February, 1990
Revision C

1

getgrent(3C) getgrent(3C)

A call to setgrent has the effect of rewinding the group file to
allow repeated searches. endgrent may be called to close the
group file when processing is complete.

fgetgrent returns a pointer to the next group structure in the
stream!, which matches the fonnat of fete/group.

RETURN VALUE
If an end-of-file or an error is encountered, a NULL pointer is re­
turned.

FILES
Jete/group

SEE ALSO
getlogin(3C), getpwent(3C), group(4).

WARNINGS
The routines use <stdio. h>. Therefore, the size of programs
not otherwise using standard I/O is increased more than might be
expected.

BUGS

2

All information is contained in a static area, so it must be copied if
it is to be saved.

February, 1990
RevisionC

getgroups(3P)

NAME
getgroups - get the group access list

SYNOPSIS
#include <sys/types.h>

int getgroups (gidsetlen, gidset)
int gidsetlen;
gid_t *gidset;

DESCRIPTION

getgroups (3P)

getgroups gets the current group access list of the user process
and stores it in the array gidset. The parameter gidsetlen indicates
the number of entries that may be placed in gidset.

getgroups returns the actual number of groups returned in gid­
set. No more than NGROUPS MAX, as defined in <limits. h>,
are ever returned. If gidseizen is 0, get groups returns the
number of supplementary group IDs associated with the calling
process without modifying the array pointed to by gidset.

RETURN VALUE
A successful call returns the number of groups in the group set. If
an error is detected, -1 is returned and the error code is stored in
the global variable errno.

ERRORS
The possible error values for getgroups are:

[EINVAL] The argument gidsetlen is smaller than the
number of groups in the group set.

[EFAULT]

SEE ALSO

The argument gidset specifies an invalid ad­
dress.

setgroups(2), ini tgroups(3X).

February, 1990
Revision C

1

gethostbyaddr(3N) gethostbyaddr(3N)

NAME
gethostbyaddr, gethostbyname - get network host
entry

SYNOPSIS
#include <netdb.h>

struct hostent *gethostbyname(name)
char *name;

struct hostent *gethostbyaddr (addr, len, type)
char *addr;
int len, type;

DESCRIPTION

1

gethostbyaddr and gethostbyname each return a pointer
to an object with the following structure containing the broken-out
fields of a line in the network host data base, / etc/hosts.
struct hostent {

} ;

char *h_name;
char **h_aliases;
int h_addrtype;
int h length;
char **h_addr_list;

/*official name of host*/
/*alias list*/
/*address type*/
/*length of address*/
/*address list*/

#define h_addr h_addr_list[OJ /* backward compatibility */

The members of this structure are

h name

h aliases

h addr

official name of the host.

A zero terminated array of alternate names
for the host.

The type of address being returned;
currently always AF _ INET.

The length, in bytes, of the address.

A pointer to the network address for the
host. Host addresses are returned in net-
work byte order.

gethostbyname and gethostbyaddr sequentially search
from the beginning of the file until a matching host name or host
address is found, or until EOF is encountered. Host addresses are
supplied in network order.

February, 1990
RevisionC

gethostbyaddr(3N) gethostbyaddr(3N)

RETURN VALUE
NULL pointer (0) returned on EOF or error.

FILES
Jete/hosts

SEE ALSO
hosts(4N).

BUGS
All information is contained in a static area, so it must be copied if
it is to be saved. Only the Internet address format is currently un­
derstood.

February, 1990
Revision C

2

getlogin(3C) getlogin(3C)

NAME
getlogin - get login name

SYNOPSIS
char *getlogin();

DESCRIPTION
getlogin returns a pointer to the login name as found in
/ etc/utmp. It may be used in conjunction with getpwnam to
locate the correct password file entry when the same user ID is
shared by several login names.

If getlogin is called within a process that is not attached to a
terminal, it returns a NULL pointer. The correct procedure for
determining the login name is to call cuserid or getlogin.
If getlogin fails, call getpwuid.

RETURN VALUE
getlogin returns the NULL pointer if name is not found.

FILES
/etc/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

BUGS

1

The return values point to static data whose content is overwritten
by each call.

February, 1990
RevisionC

getmntent(3) getmntent(3)

NAME
setmntent, getmntent, addmntent, endmntent,
hasmntopt - get file system descriptor file entry

SYNOPSIS
*include <stdio.h>
*include <mntent.h>

FILE *setmntent (filep, type)
char *filepi
char *typei

struct mntent *getmntent(filep)
FILE *filepi

int addmntent (fiiep, mnt)
FILE *filepi
struct mntent *mnti

char *hasmntopt (mnt, opt)
struct mntent *mnti
char *Opti

int endmntent (filep)
FILE *filepi

DESCRIPTION
These routines replace the getfsent(3) routines for accessing
the file system description file /etc/fstab, and the mounted
file system description file / et c / rot abo

setmntent opens a file system description file and returns a file
pointer for use with getmntent, addmntent, or endmntent.
The type argument is the same as in fopen(3). getmntent
reads the next line from filep and returns a pointer to an object
with the following structure containing broken-out fields of a line
in the file system description file, <mntent. h>. The fields have
meanings described in fstab(4).

struct mntent {

char

char

char

char

int

int

I;

February, 1990
Revision C

*mnt fsname; -
*mnt dir; -
*mnt type; -
*mnt opts; -
mnt freq; -
mnt _passno;

/*

/*

/*

/*

/*

/*

file system name */

file system path prefix */

4.2, 5.2, nfs, swap, or ignore */

ro, rw, quota, noquota, hard, soft

dump frequency, in days */

pass number on parallel fsck */

I

*/

getmntent(3) getmntent(3)

addmntent adds the mntent structure mnt to the end of the
open file filep. Note that filep has to be opened for writing if this
is to work. hasmntopt scans the mnt opts field of the
mntent structure mnt for a substring that matches opt. It returns
the address of the substring if a match is found, 0 otherwise.
endmntent closes the file.

RETURN VALUE
NULL pointer (0) returned on EOF or error.

FILES
/etc/fstab
/etc/mtab

SEE ALSO
fstab(4), mtab(4).

BUGS
The returned mntent structure points to static information that is
overwritten in each call.

2 February, 1990
RevisionC

getnetent(3N) getnetent(3N)

NAME
getnetent, getnetbyaddr, getnetbynarne,
setnetent, endnetent - get network entry

SYNOPSIS
#inelude <netdb.h>

struet netent *getnetent()

struet netent *getnetbyname(name)
ehar *name;

struet netent *getnetbyaddr (net)
long net;

setnetent (stayopen)
int stayopen;

endnetent ()

DESCRIPTION
getnetent, getnetbyname, and getnetbyaddr each re­
turn a pointer to an object with the following structure, containing
the broken-out fields of a line in the network data base,
Jete/networks.
struct netent

char *n name; /* official name of net */
char **n aliases; /* alias list */
int n_addrtype; /* net number type */
long n net; /* net number */

-
} ;

The members of this structure are:

n name The official name of the network.

n aliases A zero terminated list of alternate names for the
network.

n _ addrt ype The type of the network number returned;
currently only AF _ INET.

n net The network number. Network numbers are re-
turned in machine byte order.

getnetent reads the next line of the file, opening the file if
necessary.

setnetent opens and rewinds the file. If the stayopen flag is
nonzero, the net data base will not be closed after each call to
getnetent (either directly, or indirectly through one of the oth-

February, 1990
RevisionC

1

getnetent(3N) getnetent (3N)

er "getnet" calls).

endnetent closes the file.

getnetbyname and getnetbyaddr sequentially search from
the beginning of the file until a matching net name or net address
is found, or until EOF is encountered. Network numbers are sup­
plied in host order.

RETURN VALUE
NULL pointer (0) returned on EOF or error.

FILES
fete/networks

SEE ALSO
net wo r ks(4N).

BUGS

2

All information is contained in a static area, so it must be copied if
it is to be saved. Only Internet network numbers are currently un­
derstood. Expecting network numbers to fit in no more than 32
bits is probably naive.

February, 1990
RevisionC

getnetgren t (3N) getnetgrent(3N)

NAME
getnetgrent, setnetgrent, endnetgrent, innetgr
- get network group entry

SYNOPSIS
innetgr (netgroup, machine, user, domain)
char *netgroup, *machine, *user, *domaini

int setnetgrent (netgroup)
char *netgroup

int endnetgrent()

getnetgrent (machinep, userp, domainp)
char **machinep, **userp, **domainpi

DESCRIPTION
inngetgr returns 1 or 0, depending on whether net group
contains the machine, user, domain triple as a member. Any of
the three strings machine, user, or domain can be NULL, in which
case it signifies a wild card.

getnetgrent returns the next member of a network group.
After the call, machinep will contain a pointer to a string contain­
ing the name of the machine part of the network group member,
and similarly for userp and domainp. getnetgrent will mal­
loc space for the name. This space is released when a endnet­
grent call is made. getnetgrent returns 1 if it succeeding
in obtaining another member of the network group, ° if it has
reached the end of the group.

setnetgrent establishes the network group from which get­
netgrent will obtain members, and also restarts calls to get­
netgrent from the beginning of the list. If the previous set­
netgrent call was to a different network group, a endnet­
grent call is implied. endnetgrent frees the space allocated
during the getnetgrent calls.

FILES
/etc/netgroup

February, 1990
Revision C

1

getopt(3C) getopt(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char * * argv , *optstring;

extern char *optarg;
extern int optind, opterr;

DESCRIPfION
getopt returns the next option letter in argv that matches a letter
in optstring. optstring is a string of recognized option letters;
if a letter is followed by a colon, the option is expected to have an
argument that mayor may not be separated from it by white
space. optarg is set to point to the start of the option argument
on return from getopt.

getopt places in optind the argv index of the next argument
to be processed. Because optind is external, it is normally ini­
tialized to zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first non­
option argument), getopt returns EOP. The special option -­
may be used to delimit the end of the options; EOP will be re­
turned, and - - will be skipped.

DIAGNOSTICS
getopt prints an error message on stderr and returns a ques­
tion mark (?) when it encounters an option letter not included in
optstring. This error message may be disabled by setting opterr
toO.

EXAMPLES

1

The following code fragment shows how one might process the
arguments for a command that can take the mutually exclusive op­
tions a and b, and the options f and 0, both of which require ar­
guments:
main (argc, argv)
int argc;
char **argv;
{

int c;
extern int optind;
extern char *optarg;

February, 1990
RevisionC

getopt(3C) getopt(3C)

while «c = getopt (argc, argv, tlabf:o:tI» != EOF)
switch (c) {
case 'a':

if (bflg)
errflg++;

else
aflg++;

break;
case 'b':

if (aflg)
errflg++;

else
bproc ();

break;
case 'f':

ifile = optarg;
break;

case '0':
ofile = optarg;
break;

case '?':
errflg++;

}
if (errflg) {

fprintf (stderr, tlusage: .. f1. tI);
exit (2);

for (optind < argc; optind++)
if (access (argv[optind], 4»

SEE ALSO
getopt(1).

February, 1990
Revision C

2

getpass(3C) getpass(3C)

NAME
getpass - read a password

SYNOPSIS
char *getpass (prompt)
cha r * prompt;

DESCRIPTION
getpass reads up to a newline or EOF from the file /dev /tty,
after prompting on the standard error output with the null­
terminated string prompt and disabling echo. A pointer is returned
to a null-terminated string of at most 8 characters. If / dev / tty
cannot be opened, a NULL pointer is returned. An interrupt ter­
minates input and sends an interrupt signal to the calling program
before returning.

FILES
/dev/tty

SEE ALSO
crypt(3C).

WARNINGS
The above routine uses <stdio. h>. This causes the size of pro­
grams not otherwise using standard I/O to increase more than
might be expected.

BUGS

1

The return value points to static data whose content is overwritten
by each call.

February, 1990
RevisionC

getprotoent(3N) getprotoent(3N)

NAME
getprotoent, getprotobynumber, getprotobyname,
setprotoent, endprotoent - get protocol entry

SYNOPSIS
#include <netdb.h>

struct protoent *getprotoent()

struct protoent *getprotobynarne(name)
char *name;

struct protoent *getprotobynurnber (proto)
int proto;

int setprotoent (stayopen)
int stayopen

int endprotoent()

DESCRIPTION
getprotoent, getprotobyname, and getproto­
bynumber each return a pointer to an object with the following
structure containing the broken-out fields of a line in the network
protocol data base, / etc/protocols.

struct protoent {

char *p_name;

char **p_aliases;

long p_proto;

1* official name of protocol *1
1* alias list * /

/* protocol number */

} ;

The members of this structure are:

p _name The official name of the protocol.

p_aliases A zero terminated list of alternate names for the
protocol.

p yroto The protocol number.

getprotoent reads the next line of the file, opening the file if
necessary.

setprotoent opens and rewinds the file. If the stayopen flag is
nonzero, the net data base will not be closed after each call to
getprotoent (either directly, or indirectly through one of the
other "getproto" calls).

February, 1990
RevisionC

1

getprotoent(3N) getprotoent (3N)

endprotoent closes the file.

getprotobyname and getprotobynumber sequentially
search from the beginning of the file until a matching protocol
name or protocol number is found, or until EOF is encountered.

RETURN VALUE
NULL pointer (0) returned on EOF or error.

FILES
/etc/protocols

SEE ALSO
protocols(4N).

BUGS
All information is contained in a static area so it must be copied if
it is to be saved. Only the Internet protocols are currently under­
stood.

2 February, 1990
RevisionC

getptabent(3) getptabent (3)

NAME
getptabent, addptabent, endptabent, setptabent,
numbptabent - get partition table file entry

SYNOPSIS
*include <stdio.h>
*include <apple/ptabent.h>

struct ptabent *getptabent <filep)
FILE *filepi

int addptabent <filep, ptab)
FILE *filepi
struct ptabent *pWbi

int endptabent <filep)
FILE *filep;

FILE *setptabent ([name, type)
char *fname i
char *typei

int numptabent <filep)
FILE *filep i

cc rJlags]files -lptab [libraries]

DESCRIPTION
setptabent opens a partition table file and returns a file pointer
which can then be used with getptabent or addptabent.
The type argument is the same as in fopen(3). getptabent
returns a pointer to an object with the following structure contain­
ing the broken-out fields of a line in the partition table file. The
fields have meanings described in ptab(4).
struct ptabent {

} ;

char *ptab_name;
char *ptab type;
int ptab_~trl;
int ptab disk;
int ptab:=part;

/* partition name */
/* partition type */
/* controller number */
/* disk number */
/* partition number */

addptabent adds the ptabent structure ptab to the end of
the open file filep. numptabent returns the number of partition
table file entries and has the effect of rewinding the partition table
file to allow repeated searches. endptabtent closes the file.

February, 1990
Revision C

1

getptabent(3)

FILES
/etc/ptab

RETURN VALUE

getptabent(3)

A NULL pointer (0) is returned on EOP or error by setpta­
bent and getptabent. addptabent, endptabent, and
numbptabent return EOF on error.

BUGS
The returned pt aben t structure points to static information that
is overwritten in each call.

SEE ALSO
pname(1M), ptab(4).

2 February, 1990
RevisionC

getpw(3C)

NAME
getpw - get name from UID

SYNOPSIS
int getpw(wd, b~
int Wdi
char *bu/i

DESCRIPTION

getpw(3C)

getpw searches the password file for a user ID number that
equals uid, copies the line of the password file in which uid was
found into the array pointed to by but, and returns O. The line is
null terminated. getpw returns nonzero if uid cannot be found.

This routine is included only for compatibility with prior systems
and should not be used; see getpwent(3C) for routines to use in­
stead.

RETURN VALUE
getpw returns nonzero on error.

FILES
/etc/passwd

SEE ALSO
getpwent(3C), passwd(4).

WARNINGS
The above routine uses <stdio. h>. Therefore, the size of pro­
grams not otherwise using standard I/O is increased more than
might be expected.

February, 1990
Revision C

1

getpwent(3C) getpwent(3C)

NAME
getpwent, getpwui~ getpwnam, setpwent,
endpwent, fgetpwent - get the password file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent()

struct passwd *getpwuid (uid)
uid_t uid;

struct passwd *getpwnam(name)
char *name;

void setpwent()

void endpwent ()

struct passwd *fgetpwent if>
FILE */;

DESCRIPTION

1

getpwent, getpwuid, and getpwnam return a pointer to an
object with the following structure containing the broken-out
fields of a line in the / etc / pas s w d file. Each line in the file
contains a passwd structure, declared in the <pwd. h> header
file:

struct passwd {

} ;

char *pw_name;
char *pw-passwd;
int pw uid;
int pw=gid;
char *pw_age;
char *pw_comment;
char *pw_gecos;
char *pw_dir;
char *pw_shell;

Because this structure is declared in <pwd. h>, it is not necessary
to redeclare it.

The pw comment field is unused; the others have meanings
described in passwd(4).

February, 1990
RevisionC

getpwent(3C) getpwent (3C)

When first called, getpwent returns a pointer to the first
passwd structure in the file. Thereafter, it returns a pointer to the
next passwd structure in the file; therefore, successive calls can
be used to search the entire file. getpwuid searches from the
beginning of the file until a numeric user ID matching uid is
found; it returns a pointer to the particular structure in which the
match was found. getpwnam searches from the beginning of the
file until a login name matching name is found; it returns a pointer
to the particular structure in which the match was found. If an
end-of-file or an error is encountered on reading, these functions
return a NULL pointer.

A call to setpwent has the effect of rewinding the password file
to allow repeated searches. endpwent may be called to close
the password file when processing is complete.

fgetpwent returns a pointer to the next passwd structure in
the streamf, which matches the format of / etc/passwd.

RETURN VALUE
If an end-of-file or an error is encountered, a NULL pointer is re­
turned.

FILES
/etc/passwd

SEE ALSO
cuserid(3S), getlogin(3C), getgrent(3C),
putpwent(3C), passwd(4).

WARNINGS
The routines use <stdio. h>. Therefore the size of programs
not otherwise using standard I/O is increased more than might be
expected.

BUGS
All information is contained in a static area, so it must be copied if
it is to be saved.

February, 1990 2
Revision C

getrpcent(3N) getrpcent(3N)

NAME
endrpcent, getrpcent, getrpcbyname,
getrpcbynumber, setrpcent - get RPC entry

SYNOPSIS
#include <netdb.h>

struct rpcent *getrpcent()

struct rpcent *getrpcbyname(name)
char *name;

struct rpcent *getrpcbynumber (number)
int number;

setrpcent (stayopen)
int stayopen;

int endrpcent()

DESCRIPTION

1

getrpcent, getrpcbyname, and getrpcbynumber ~ch
return a pointer to an object with the following structure contain­
ing the broken-out fields of a line in the RPC program number
data base, / etc/ rpc.

struct rpcent {
char *r_name; /* name of server */
char **r_aliases; /* alias list */
long r_numberi /* rpc program number */

} i

The members of this structure are

r name The name of the server for this RPC program.

r ali a s e s A zero terminated list of alternate names for the
RPC program.

r number The RPC program number for this service.

getrpcent reads the next line of the file, opening the file if
necessary.

setrpcent opens and rewinds the file. If the stayopen flag is
nonzero, the net data base will not be closed after ~ch call to
getrpcent (neither directly nor indirectly through one of the
other get rpc calls).

February, 1990
RevisionC

getrpcent (3N) get rpcen t (3N)

endrpcent closes the file.

getrpcbyname and getrpcbynumber sequentially search
from the beginning of the file until a matching RPC program name
or program number is found or until EOF is encountered.

FILES
/etc/rpc
/ etc/yp/ domainname / rpc. bynumber

SEE ALSO
rpcinfo(1M).

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area, so it must be copied if
it is to be saved.

February, 1990
Revision C

2

getrpcport(3N) getrpcport(3N)

NAME
getrpcport - get RPC port number

SYNOPSIS
int getrpcport (host, prognum, versnum, proto)
char * host;
int prognum, versnum, proto;

DESCRIPTION

1

getrpcport returns the port number for version versnum of the
RPC program prognum running on host and using protocol proto.
It returns 0 if it cannot contact the portmapper, or if prognum is
not registered. If prognum is registered but not with version vers­
num, it will return that port number.

February, 1990
RevisionC

gets(3S) gets(3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
iinclude <stdio.h>

char *gets (s)

char *s;

char *fgets (s, n, stream)
char *s;
int ni
FILE *streami

DESCRIPTION
gets reads characters from the standard input stream, stdin,
into the array pointed to by s, until a newline character is read or
an end-of-file condition is encountered. The newline character is
discarded and the string is terminated with a null character.

fgets reads characters from the stream into the array pointed to
by s until n-l characters are read, or a newline character is read
and transferred to s, or an end-of-file condition is encountered.
The string is then terminated with a null character.

RETURN VALUE
If end-of-file is encountered and no characters have been read, no
characters are transferred to s and a NULL pointer is returned. If
a read error (for example, trying to use these functions on a file
that has not been opened for reading) occurs, a NULL pointer is
returned. Otherwise s is returned.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

NOTES
gets deletes the newline ending its input, but fgets keeps it

February, 1990
Revision C

1

get servent (3N) getservent (3N)

NAME
getservent, getservbyport, getservbyname,
setservent, endservent - get service entry

SYNOPSIS
#include <netdb.h>

struct servent *getservent()

struct servent *getservbyname (name, proto)
char *name, *proto;

struct servent *getservbyport (port, proto)
int port;
char *proto;

int setservent (stayopen)
int stayopen;

int endservent()

DESCRIPTION

1

getservent, getservbyname, and getservbyport each
return a pointer to an object with the following structure contain­
ing the broken-out fields of a line in the network services data
base, / etc/ services.
struct servent {

char *s_name;
char **s_aliases;
long s_port;
char *s_proto;

} ;

/* official name of service */
/* alias list */
/* port service resides at */
/* protocol to use */

The members of this structure are:

s name The official name of the service.

s aliases A zero tenninated list of alternate names for the
service.

syort The port number at which the service resides.
Port numbers are returned in network byte order.

syroto The name of the protocol to use when contacting
the service.

getservent reads the next line of the file, opening the file if
necessary.

February, 1990
RevisionC

getservent(3N) getservent(3N)

setservent opens and rewinds the file. If the stayopen flag is
non-zero, the net data base will not be closed after each call to
getservent (either directly, or indirectly through one of the
other getserv calls).

endservent closes the file.

getservbyname and getservbyport sequentially search
from the beginning of the file until a matching protocol name or
port number is found, or until EOF is encountered. If a protocol
name is also supplied (non-NULL), searches must also match the
protocol.

RETURN VALUE
NULL pointer (0) returned on EOF or error.

FILES
/etc/services

SEE ALSO
getprotoent(3N), services(4N).

BUGS
All information is contained in a static area, so it must be copied if
it is to be saved. Expecting port numbers to fit in a 32 bit quantity
is probably naive.

February, 1990
RevisionC

2

getut(3C) getut(3C)

NAME
getutent, getutid, getutline, pututline,
setutent, endutent, utmpname -access utmp file entry

SYNOPSIS
#include <sys/types.h>
#include <utmp.h>

struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp *id;

struct utmp *getutline (line)

struct utmp * line ;
void pututline (utmp)
struct utmp *utmp;

void setutent ()

void endutent ()

void utmpname (file)
char *.file;

DESCRIPTION

1

getutent, getutid, and getutline each return a pointer to
a structure of the following type:
struct utmp {

} ;

char ut_user[8];
char ut_id[4];

char ut line[12];
short ut=pid;
short ut type;
struct exit status

/* User login name */
/* /etc/inittab ID

(usually line#) */
/* device name (console, lnxx) */
/* process ID */
/* type of entry */

short e termination; /* Process termination status */
Process exit status */ short e=exit; /*

} ut_exit; /*

time t
char

ut time;
u<)ost [16] ;

/*
/*
/*

Exit status of a process
marked as DEAD_PROCESS */
time entry was made */
host name, if remote */

getutent reads in the next entry from a utmp-like file. If the
file is not already open, it opens it. If it reaches the end of the file,
it fails.

February, 1990
Revision C

getut(3C) getut(3C)

getutid searches forward from the current point in the utmp
file until it finds an entry with a ut type matching id­
>ut type if the type specified is RUN LVL, BOOT TIME,
OLD= TIME, or NEW_TIME. If the type specified iil id is
INIT PROCESS, LOGIN PROCESS, USER PROCESS, or
DEAD =PROCESS, getutid will return a pointerto the first entry
whose type is one of these four and whose ut id field matches
id->ut id. getutid fails if the end of file Is reached without
amatch.-

getutline searches forward from the current point in the utmp
file until it finds an entry of the type LOGIN PROCESS or
USER_PROCESS which also has a ut_line string matching the
line->ut line string. If the end of file is reached without a
match, it fails.

pututline writes out the supplied utmp structure into the
utmp file. It uses getutid to search forward for the proper
place if it finds that it is not already at the proper place. It is as­
sumed that the user of put utline has searched for the proper
entry using one of the getut routines. If this has been done,
pututline will not search. If pututline does not find a
matching slot for the new entry, it will add a new entry to the end
of the file.

setutent resets the input stream to the beginning of the file.
This should be done before each search for a new entry if it is
desired that the entire file be examined.

endutent closes the currently open file.

utmpname allows the user to change the name of the file exam­
ined from /etc/utmp to any other filename. It is expected that
most often this other file will be / etc/wtmp. If the file doesn't
exist, this will not be apparent until the first attempt to reference
the file is made. u tmpname does not open the file. It just closes
the old file, if it is currently open, and saves the new filename.

RETURN VALUE
A NULL pointer is returned upon failure to read or write. Failure
to read may be due to permissions or because end-of-file has been
reached.

February, 1990
Revision C

2

getut(3C) getut(3C)

FILES
/etc/utrnp
/etc/wtrnp

SEE ALSO
t tyslot(3C), utrnp(4).

COMMENTS

3

The most current entry is saved in a static structure. Multiple
accesses require that it be copied before further accesses are
made. Each call to either getutid or getutline sees the rou­
tine examine the static structure before performing more I/O. If
the search of the static structure results in a match, no further
search is performed. To use getutline to search for multiple
occurences, zero out the static structure after each success; other­
wise getutline will just return the same pointer over and over
again. There is one exception to the rule about removing the
structure before further reads are done. If the implicit read done
by pututline finds that it isn't already at the correct place in
the file, the contents of the static structure returned by the get u­
tent, getutid, or getutline routines are not harmed, if the
user has just modified those contents and passed the pointer back
to pututline.

These routines use buffered standard I/O for input, but put u t -
1 ine uses an unbuffered non-standard write to avoid race condi­
tions between processes trying to modify the u trnp and wtrnp
files.

February, 1990
RevisionC

getwd(3)

NAME
get wd - get current working directory pathname

SYNOPSIS
char *getwd (pathnarne)
char *pathnarne;

DESCRIPTION

getwd(3)

getwd copies the absolute pathname of the current working
directory to pathname and returns a pointer to the result.

Maximum pathname length is PATH MAX characters (see in-
tro(2)). -

DIAGNOSTICS
getwd returns zero and places a message in palhnarne if an error
occurs.

February, 1990
Revision C

1

hsearch(3C) hsearch(3C)

NAME
hsearch, hcreate, hdestroy - manage hash search
tables

SYNOPSIS
finclude <search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION
hsearch is a hash-table search routine generalized from Knuth
(6.4) Algorithm D. It returns a pointer into a hash table indicating
the location at which an entry can be found. item is a structure of
type ENTRY (defined in the <search. h> header file) containing
two pointers: item. key points to the comparison key, and
item. data points to any other data to be associated with that key.
(pointers to types other than character should be cast to pointer­
to-character.) action is a member of an enumeration type AC­
T I ON indicating the disposition of the entry if it cannot be found
in the table. ENTER indicates that the item should be inserted in
the table at an appropriate point. FIND indicates that no entry
should be made. Unsuccessful resolution is indicated by the re­
turn of a NULL pointer.

hcreate allocates sufficient space for the table and must be
called before hsearch is used. nel is an estimate of the max­
imum number of entries that the table will contain. This number
may be adjusted upward by the algorithm in order to obtain certain
mathematically favorable circumstances.

hde s t roy destroys the search table, and may be followed by
another call to hcreate.

NOTES
hsearch uses "open addressing" with a "multiplicative" hash
function. However, its source code has many other options avail­
able which the user may select by compiling the hsearch source
with the following symbols defined to the preprocessor:

February, 1990
Revision C

1

hseareh(3C) hseareh(3C)

DIV Use the remainder modulo table size as the hash
function instead of the multiplicative algorithm.

USCR Use a User Supplied Comparison Routine for ascer­
taining table membership. The routine should be
named heompar and should behave in a manner
similar to stremp (see string(3C».

CHAINED Use a linked list to resolve collisions. If this option
is selected, the following other options become
available.

START Place new entries at the beginning of
the linked list (default is at the end).

SORTUP Keep the linked list sorted by key in
ascending order.

SORTDOWN Keep the linked list sorted by key in
descending order.

Additionally, there are preprocessor flags for obtain­
ing debugging printout (-DDEBUG) and for includ­
ing a test driver in the calling routine (-DDRIVER).
The source code should be consulted for further de­
tails.

RETURN VALUE
hseareh returns a NULL pointer if either the action is FIND and
the item could not be found or the action is ENTER and the table is
full.

he rea te returns zero if it cannot allocate sufficient space for the
table.

EXAMPLES

2

The following example will read in strings followed by two
numbers and store them in a hash table, discarding duplicates. It
will then read in strings and find the matching entry in the hash
table and print it out.
#include <stdio.h>
#include <search.h>

struct info { /* this is the info stored in
int age, room; the table other than the key */

} ;
#define NUM_EMPL 5000 /* # of elements in search

table */

February, 1990
RevisionC

hsearch(3C) hsearch(3C)

main ()
{

/* space to store strings */
char string_space[NUM_EMPL*20);

/* space to store employee info */
struct info info_space[NUM_EMPL);

/* next avail space in string_space */
char *str_ptr = string_space;

/* next avail space in info_space */
struct info *info ptr = info space;
ENTRY item, * found_item, *hsearch();

/* name to look for in table */
char name to find[30);
int i = 0; -

/* create table */
(void) hcreate(NUM EMPL);
while (scanf(lI%s%d%d ll

, str ptr, &info ptr->age,
&info_ptr->room) != EOF && i++ < NUM_EMPL)

/* put info in structure,
and structure in item */

item. key = str ptr;
item.data = (char *)info_ptr;
str ptr += strlen(str ptr) + 1;
inf~_ptr++; -

/* put item into table */
(void) hsearch(item, ENTER);

/* access table */
item. key = name to find;
while (scanf("%i",-item.key) != EOF) {

}
}

if «found_item = hsearch(item, FIND)) != NULL) {

/* if item is in the table */
(void)printf(lIfound %5, age = %d, room = %d\n",

found item->key,
«struct info *)found_item->data)->age,
«struct info *)found item->data)->room);

else { -
(void) printf ("no such employee %s\n",

name_to_find)

February, 1990
Revision C

3

hsearch(3C) hsearch(3C)

SEE ALSO
bsearch(3C), lsearch(3C), malloc(3C), malloc(3X),
string(3C), tsearch(3C).

WARNINGS
hsearch and hcreate use malloc(3C) to allocate space.

BUGS
Only one hash search table may be active at any given time.

4 February, 1990
RevisionC

hypot(3M)

NAME
hypot - Euclidean distance function

SYNOPSIS
*include <math.h>

double hypot(x, y)
double x, Yi

DESCRIPTION

hypot(3M)

hypot returns the following, taking precautions against unwar­
ranted overflows:

sqrt (x * x + Y * y)

RETURN VALUE
When the correct value would overflow, hypot returns HUGE and
sets errno to ERANGE.

These error-handling procedures may be changed with the func­
tion matherr(3M).

SEE ALSO
matherr(3M).

February, 1990
Revision C

1

iargc(3F) iargc(3F)

NAME
iargc - return command line arguments

SYNOPSIS
integer i
i=iargc ()

DESCRIPTION
The iargc function returns the number of command line argu­
ments passed to the program. Thus. if a program were invoked
via

foo argl arg2 arg3

iargc () would return "3".

SEE ALSO
get a rg(3F).

1 February. 1990
RevisionC

index(3F)

NAME
index - return location of Fortran substring

SYNOPSIS
character *Nl chI
character *N2 ch2
integer i

i=index (chI, ch2)

DESCRIPTION

index(3F)

index returns the location of substring ch2 in string chl. The
value returned is either the position at which substring ch2 starts
or 0 if ch2 is not present in string chI.

February, 1990
Revision C

1

inet(3N) inet(3N)

NAME
inet_addr, inet_network, inet_ntoa,
inet makeaddr, inet lnaof, inet netof - Internet
address manipulation routines

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_addr (cp)
char *cp;

unsigned long inet_network(cp)
char *cp;

char *inet_ntoa (in)
struct in_addr in;

struct in addr inet_makeaddr (net, Ina)
int net, Ina;

int inet lnaof(~)
struct in_addr in;

int inet_netof (in)
struct in_addr in;

DESCRIPTION

1

The routines inet addr and inet network each interpret
character strings representing numbers expressed in the Internet
standard . notation, returning numbers suitable for use as Internet
addresses and Internet network numbers, respectively. The rou­
tine inet ntoa takes an Internet address and returns an ASCII
string representing the address in . notation. The routine
inet makeaddr takes an Internet network number and a local
network address and constructs an Internet address from it. The
routines inet_netof and inet_lnaof break apart Internet
host addresses, returning the network number and local network
address part, respecti vel y.

All Internet address are returned in network order (bytes ordered
from left to right). All network numbers and local address parts
are returned as machine format integer values.

February, 1990
RevisionC

inet(3N) inet(3N)

INTERNET ADDRESSES
Values specified using the . notation take one of the following
forms.

a.h.c.d
a.h.c
a.h
a

When four parts are specified, each is interpreted as a byte of data
and assigned, from left to right, to the four bytes of an Internet ad­
dress.

When a three part address is specified, the last part is interpreted
as a 16-bit quantity and placed in the right-most two bytes of the
network address. This makes the three part address format con­
venient for specifying Class B network addresses as
128. net. host.

When a two part address is supplied, the last part is interpreted as
a 24-bit quantity and placed in the right-most three bytes of the
network address. This makes the two part address format con­
venient for specifying Class A network addresses as net. host.

When only one part is given, the value is stored directly in the net­
work address without any byte rearrangement.

All numbers supplied as "parts" in a . notation may be decimal,
octal, or hexadecimal, as specified in the C language (that is, a
leading Ox. or OX implies hexadecimal; a leading 0 implies octal;
otherwise, the number is interpreted as decimal).

RETURN VALUE
The value -1 is returned by inet addr and inet network
for malformed requests. - -

SEE ALSO
getnetent(3N), hosts(4N), networks(4N).

BUGS
The problem of host byte ordering versus network byte ordering is
confusing. A simple way to specify Class C network addresses in
a manner similar to Class B and Class A is needed. The string re­
turned by inet_ntoa resides in a static memory area.

February, 1990
Revision C

2

ini tgroups (3)

NAME
ini tgroups - initialize group access list

SYNOPSIS
ini tgroups (name, basegid)
ehar * name;
int basegid;

DESCRIPTION

ini tgroups (3)

ini tgroups reads through the group file and sets up, using the
setgroups(2) call, the group access list for the user specified in
name. The basegid is automatically included .in the groups list.
Typically this value is given as the group number from the pass­
word file.

RETURN VALUE
ini tgroups returns -1 if it was not invoked by the superuser.

FILES
fete/group
/ete/passwd

SEE ALSO
setgroups(2).

BUGS
ini tgroups uses the routines based on getgrent(3). If the
invoking program uses any of these routines, the group structure
will be overwritten in the call to ini tgroups.

1 February, 1990
RevisionC

insque(3N) insque(3N)

NAME
insque, remque - insert/remove element from a queue

SYNOPSIS
#include <vax/vaxque.h>

int insque (elem,pred)
struct qelem *elem, *pred;

int remque (elem)
struct qelem *elem;

DESCRIPTION
The insque and remque macros manipulate queues built from
doubly-linked lists. Each element in the queue must be in the
form of struct qelem.

struct qelem {

} ;

struct
struct
char

qelem *~forw;
qelem *~back;
~data[];

insque inserts elem in a queue immediately after pred; remque
removes an entry elem from a queue.

FILES
/usr/include/vax/vaxque.h

February, 1990
Revision C

I

kil1pg(3N) killpg(3N)

NAME
ki 11 pg - send signal to a process group

SYNOPSIS
int killpg (pgrp, sig)
int pgrp , sig;

DESCRIPTION
killpg sends the signal sig to the process group pgrp.

The sending process and members of the process group must have
the same effective user ID, otherwise this call is restricted to the
superuser. As a single special case the continue signal SIGCONT
may be sent to any process which is a descendant of the current
process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and the global variable errno is set to
indicate the error.

ERRORS
killpg will fail and no signal will be sent if any of the following
occur:

[EINVAL]

[ESRCH]

[EPERM]

sig is not a valid signal number.

No process can be found corresponding to
that specified by pgrp.

The sending process is not the superuser
and one or more of the target processes has
an effective user ID different from that of
the sending process.

SEE ALSO
kill(2), getpid(2).

1 February, 1990
RevisionC

l3tol(3C) l3tol(3C)

NAME
l3tol, 1 to13 - convert between 3-byte integers and long
integers

SYNOPSIS
void l3tol ap, cp, n)
long *lpi
char *CPi
int ni

void lto13 (cp, lp, n)
char *cp;
long *lpi
int n;

DESCRIYfION
l3tol converts a list of n 3-byte integers (packed into a character
string pointed to by cp) into a list of long integers pointed to by
lp.

1 to13 performs the reverse conversion from long integers (lp) to
3-byte integers (cp).

These functions are useful for file system maintenance where the
block numbers are 3 bytes long.

SEE ALSO
fs(4).

BUGS
Because of possible differences in byte ordering, the numerical
values of the long integers are machine-dependent.

February, 1990
RevisionC

1

lap(3N) lap(3N)

NAME
lap default AppleTalk Link Access Protocol
(LLAP/ELAP) interface

SYNOPSIS
char *lap_default()

DESCRIPTION
The lap_default routine returns a character pointer to the
LAP interface name of the default interface as defined in
/ etc/ appletalkrc. It returns NULL on error.

ERRORS
If an error occurs, lap default returns NULL, with a detailed
error code in errno. -

[ENOENT] No AppleTalk interface exists.

FILES
/dev/appletalk/lap/*/ ...
/etc/appletalkrc

SEE ALSO

1

atp(3N), ddp(3N), nbp(3N), pap(3N), rtmp(3N), ap­
pletalkrc(4), appletalk(7); Inside AppleTalk; "AppleTalk
Programming Guide," in AIUX Network Applications Program­
ming.

February, 1990
RevisionC

Idahread(3X) Idahread(3X)

NAME
ldahread - read the archive header of a member of an archive
file

SYNOPSIS
iinclude <stdio.h>
iinclude <ar.h>
iinclude <filehdr.h>
iinclude <ldfcn.h>

int ldahread (ldptr, arhead)
LDFILE *ldptr;
ARCHDR *arhead;

DESCRIPTION
If TYPE (ldptr) is the archive file magic number, ldahread
reads the archive header of the common object file currently asso­
ciated with ldptr into the area of memory beginning at arhead.

Programs using this routine should be loaded with the object file
access library libld. a.

RETURN VALUE
ldahread returns SUCCESS or FAILURE. ldahread fails if
TYPE (ldptr) does not represent an archive file or if it cannot read
the archive header.

SEE ALSO
Idclose(3X), Idopen(3X), Idfcn(3X), ar(4).

February, 1990
RevisionC

1

IdcIose(3X) IdcIose(3X)

NAME
Idclose, Idaclose - close a common object file

SYNOPSIS
#include <stdio.h>
#include <fiIehdr.h>
#include <Idfcn.h>

int Idclose (ldptr)
LDFILE *ldptri

int Idaclose (ldptr)
LDFILE *ldptri

DESCRIPfION
Idopen(3X) and ldclose are designed to provide uniform ac­
cess to both simple object files and object files that are members
of archive files. Thus an archive of common object files can be
processed as if it were a series of simple common object files.

If TYPE (ldptr) does not represent an archive file, Idclose
closes the file and frees the memory allocated to the LDFILE
structure associated with ldptr. If TYPE (ldptr) is the magic
number of an archive file, and if there are any more files in the ar­
chive, ldclose reinitializes OFFSET (ldptr) to the file address of
the next archive member and returns FAILURE. The LDFILE
structure is prepared for a subsequent Idopen(3X). In all other
cases, ldclose returns SUCCESS.

ldaclose closes the file and frees the memory allocated to the
LDFILE structure associated with ldptr regardless of the value of
TYPE(ldptr). Idaclose always returns SUCCESS. The function
is often used in conjunction with ldaopen.

Programs using this routine must be loaded with the object file ac­
cess library libld. a.

SEE ALSO
fclose(3S), ldfcn(3X), ldopen(3X).

1 February, 1990
RevisionC

Idfen(3X)

NAME
Idf en - common object file access routines

SYNOPSIS
#inelude <stdio.h>
#inelude <filehdr.h>
#inelude <ldfen.h>

DESCRIPTION

Idfen(3X)

The common object file access routines are a collection of func­
tions for reading an object file that is in common object file form.
Although the calling program must know the detailed structure of
the parts of the object file that it processes, the routines effectively
insulate the calling program from knowledge of the overall struc­
ture of the object file.

The interface between the calling program and the object file ac­
cess routines is based on the defined type LD FILE (defined as
struet Idfile), which is declared in the header file
<ldfen. h>. The primary purpose of this structure is to provide
uniform access to both simple object files and object files that are
members of an archive file.

The function Idopen(3X) allocates and initializes the LDFILE
structure and returns a pointer to the structure to the calling pro­
gram. The fields of the LDFILE structure may be accessed indi­
vidually through macros defined in <ldfen. h> and contain the
following information:

LDFILE *ldptr;

TYPE (ldptr) The file magic number, used to distinguish
between archive members and simple object
files.

IOPTR (ldptr) The file pointer returned by fopen(3S) and
used by the standard input/output functions.

OFFSET (ldptr) The file address of the beginning of the object
file; the offset is nonzero if the object file is a
member of an archive file.

HEADER (ldptr) The file header structure of the object file.

The object file access functions may be divided into four
categories:

February, 1990
RevisionC

1

Idfcn(3X) Idfcn(3X)

2

(1) functions that open or close an object file

Idopen(3X) and Idaopen
open a common object file

Idclose(3X) and Idaclose
close a common object file

(2) functions that read header or symbol table information

Idahread(3X) read the archive header of a member
of an archive file

Idfhread(3X) read the file header of a common ob­
ject file

Idshread(3X) and Idnshread

Idtbread(3X)

Idgetname(3X)

read a section header of a common
object file

read a symbol table entry of a com­
mon object file

retrieve a symbol name from a sym­
bol table entry or from the string table

(3) functions that position an object file at (seek to) the start
of the section, relocation, or line number information for a
particular section.

Idohseek(3X) seek to the optional file header of a
common object file

Idsseek(3X) and Idnsseek
seek to a section of a common object
file

Idrseek(3X) and Idnrseek
seek to the relocation information for
a section of a common object file

Idlseek(3X) and Idnlseek
seek to the line number information
for a section of a common object file

Idtbseek(3X) seek to the symbol table of a common
object file

(4) the function Idtbindex(3X) which returns the index of
a particular common object file symbol table entry

February, 1990
RevisionC

Idfcn(3X) Idfcn(3X)

These functions are described in detail in the manual pages
identified for each function.

All the functions except ldopen, Idgetname(3X), ldaopen,
and ldtbindex return either SUCCESS or FAILURE, which
are constants defined in <ldfcn. h>. ldopen and ldaopen
both return pointers to a LDFILE structure.

Programs using this routine must be loaded with the object file ac­
cess library libld. a.

MACROS
Additional access to an object file is provided through a set of
macros defined in <ldfcn. h>. These macros parallel the stan­
dard input/output file reading and manipulating functions, translat­
ing a reference of the LDFILE structure into a reference to its file
descriptor field.

The following macros are provided:

GE TC (ldptr)
FGETC (ldptr)
GE TW (ldptr)
UNGETC (c, ldptr)
FGETS (s, n, Idptr)
FREAD (ptr, size, nitems, ldptr)
FSEEK (ldptr, offset, ptrname)
FTELL (ldptr)
REWIND (ldptr)
FEOF (ldptr)
FERROR (ldptr)
FILENO (ldptr)
SETBUF (ldptr, buf>
STROFFSET (ldptr)

The STROFFSET macro calculates the address of the string table
in an object file. See the manual entries for the corresponding
standard input/output library functions for details on the use of
these macros. (The functions are identified as 3S in this manual.)

WARNINGS
The macro FSEEK defined in the header file <ldfcn. h>
translates into a call to the standard input/output function
fseek(3S). FSEEK should not be used to seek from the end of
an archive file since the end of an archive file may not be the same
as the end of one of its object file members.

February, 1990
RevisionC

3

Idfcn(3X) Idfcn(3X)

SEE ALSO

4

fopen(3S), fseek(3S), Idahread(3X), Idclose(3X),
ldfhread(3X), Idgetname(3X), Idlread(3X),
ldlseek(3X), Idohseek(3X), Idopen(3X),
ldrseek(3X), Idlseek(3X), Idshread(3X),
ldtbindex(3X), Idtbread(3X), Idtbseek(3X).
"COFF Reference" and "C Object Library" A/UX Programming
Languages and Tools, Volume 1.

February, 1990
RevisionC

Idfhread(3X) Idfhread(3X)

NAME
ldfhread - read the file header of a common object file

SYNOPSIS
*include <stdio.h>
*include <filehdr.h>
*include <ldfcn.h>

int ldfhread (ldptr, filehead)
LDFILE *ldptr;
FILHDR *filehead;

DESCRIPTION
ldfhread reads the file header of the common object file
currently associated with ldptr into the area of memory beginning
atfilehead.

ldfhread returns SUCCESS or FAILURE. ldfhread fails if it
cannot read the file header.

In most cases the use of ldfhread can be avoided by using the
macro HEADER (ldptr) defined in <ldfcn. h> (see Idfcn(3)).
The information in any field of the file header may be accessed by
applying the dot operator to the value returned by the HEADER
macro; for example:

HEADER (ldptr) . f_timdat

The program using this routine must be loaded with the object file
access library libld. a.

SEE ALSO
Idclose(3X), Idfcn(3X), Idopen(3X), filehdr(4).

February, 1990
Revision C

1

Idgetname(3X) ldgetname (3X)

NAME
ldgetname - retrieve symbol name for object file symbol table
entry

SYNOPSIS
#include <stdio.h>#include <filehdr.h>
#include <syms.h>#include <ldfcn.h>

char *ldgetname (/dptr, symbol)
LDFILE *ldptr;
SYMENT * symbol;

DESCRIPTION
ldgetname returns a pointer to the name associated with symbol
as a string. The string is contained in a static buffer local to
ldgetname. Because the buffer is overwritten by each call to
ldgetname, it must be copied by the caller if the name is to be
saved.

The common object file format has been extended to handle arbi­
trary length symbol names with the addition of a "string table."
ldgetname returns the symbol name associated with a symbol
table entry for either an object file or a preobject file. Thus,
ldgetname can be used to retrieve names from object files
without any backward compatibility problems.

Typically, ldgetname is called immediately after a successful
call to ldtbread to retrieve the name associated with the sym­
bol table entry filled by ldtbread.

Programs using this routine should be loaded with the object file
access library libld. a.

ERRORS

1

ldgetname returns NULL (defined in <stdio. h» for an ob­
ject file if the name cannot be retrieved. This occurs when:

the string table cannot be found.

not enough memory can be allocated for the string table.

the string table appears not to be a string table (e.g., if an
auxiliary entry is handed to ldgetname that looks like a
reference to a name in a nonexistent string table).

the name's offset into the string table is beyond the end of the
string table.

February, 1990
RevisionC

Idgetname(3X) Idgetname(3X)

SEE ALSO
Idclose(3X), Idfcn(3X), Idopen(3X), Idtbseek(3X),
Idtbread(3X).

February, 1990
Revision C

2

Idlread(3X) Idlread(3X)

NAME
Idlread, Idlinit, Idlitern - manipulate line number
entries of a common object file function

SYNOPSIS
iinclude <stdio.h>
iinclude <filehdr.h>
iinclude <linenurn.h>
iinclude <ldfcn.h>

int Idlread (/dptr, fcnindx, linenum, linent)
LDFILE *ldptr;
long fcnindx;
unsigned short linenum;
LINENO linent;

int Idlini t (/dptr, fcnindx)
LDFILE *ldptr;
long fcnindx;

int ldli tern (/dptr, linenum, linent)
LDFILE *ldptr;
unsigned short linenum;
LINENO linent;

DESCRIPTION

1

ldl read searches the line number entries of the common object
file currently associated with ldptr. Idlread begins its search
with the line number entry for the beginning of a function and
confines its search to the line numbers associated with a single
function. The function is identified by fcnindx, the index of its en­
try in the object file symbol table. ldlread reads the entry with
the smallest line number equal to or greater than linenum into
linent.

ldlini t and Idli tern together perform exactly the same func­
tion as ldlread. After an initial call to ldlread or Idlini t,
ldlitern may be used to retrieve a series of line number entries
associated with a single function. Idlini t simply locates the
line number entries for the function identified by fcnindx . Idli­
tern finds and reads the entry with the smallest line number equal
to or greater than linenum into linent.

Programs using this routine should be loaded with the object file
access library libld. a.

February, 1990
RevisionC

Idlread(3X) Idlread(3X)

ERRORS
Idlread, Idlinit, and Idlitern each return either suc­
CESS or FAILURE. Idlread fails if there are no line number
entries in the object file, if fcnindx does not index a function entry
in the symbol table, or if it finds no line number equal to or greater
than linenum.

Idlini t fails if there are no line number entries in the object file
or if fcnindx does not index a function entry in the symbol table.
Idli tern fails if it finds no line number equal to or greater than
linenum.

SEE ALSO
Idclose(3X), Idfcn(3X), Idopen(3X), Idthindex(3X).

February, 1990
Revision C

2

Idlseek(3X) Idlseek(3X)

NAME
Idlseek, Idnlseek - seek to line number entries of a
section of a common object file

SYNOPSIS
*include <stdio.h>
*include <filehdr.h>
*include <ldfcn.h>

int Idlseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int Idnlseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;

DESCRIPTION
Idlseek seeks to the line number entries of the section specified
by sectindx of the common object file currently associated with
Idptr.

Idnlseek seeks to the line number entries of the section
specified by sectname.

Idlseek and Idnlseek return SUCCESS or FAILURE.
Idlseek fails if sectindx is greater than the number of sections
in the object file; Idnlseek fails if there is no section name
corresponding to *sectname. Either function fails if the specified
section has no line number entries or if it cannot seek to the
specified line number entries.

Note that the first section has an index of one.

Programs using this routine must be loaded with the object file ac­
cess library libld. a.

SEE ALSO

1

Idclose(3X), Idfcn(3X), Idopen(3X), Idshread(3X).

February, 1990
RevisionC

Idohseek(3X) Idohseek(3X)

NAME
ldohseek - seek to the optional file header of a common
object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldohseek (/dptr)
LDFILE *ldptr;

DESCRIPTION
ldohseek seeks to the optional file header of the common object
file currently associated with ldptr.

ldohseek returns SUCCESS or FAILURE. ldohseek fails
if the object file has no optional header or if it cannot seek to the
optional header.

Programs using this routine should be loaded with the object file
access routine library libld. a.

SEE ALSO
Idclose(3X), Idfcn(3X), Idopen(3X), Idfhread(3X).

February, 1990
RevisionC

1

Idopen(3X) Idopen(3X)

NAME
Idopen, Idaopen - open a common object file for reading

SYNOPSIS
#include <stdio.h>#include <filehdr.h>
#include <ldfcn.h>

LDFILE *ldopen <filename, ldptr)
char *filename;
LDFILE *ldptri

LDFILE *ldaopen <filename, oldptr)
char *filename;
LDFILE *oldptri

DESCRIPTION

1

Idopen and Idclose(3X) are designed to provide uniform ac­
cess to both simple object files and object files that are members
of archive files. Thus, an archive of common object files can be
processed as if it were a series of simple common object files.

If ldptr has the value NULL, Idopen opens filename, allocates
and initializes the LDFILE structure, and returns a pointer to the
structure to the calling program.

If ldptr is valid and TYPE (ldptr) is the archive magic number,
Idopen reinitializes the LDFILE structure for the next archive
member offilename.

Idopen and Idclose are designed to work in concert.
Idclose returns FAILURE only when TYPE (ldptr) is the ar­
chive magic number and there is another file in the archive to be
processed. Only then should Idopen be called with the current
value of ldptr. In all other cases, in particular whenever a new
filename is opened, Idopen should be called with a NULL ldptr
argument.

The following is a prototype for the use of Idopen and
Idclose.

/* for each filename to be processed */

ldptr = NULL;
do

if «ldptr ldopen(filename, ldptr» != NULL)

/* check magic number */

February, 1990
RevisionC

Idopen(3X) Idopen(3X)

/* process the file */

while (ldclose(ldptr) == FAILURE);

If the value of oldptr is not NULL, Ida open opens filename anew
and allocates and initializes a new LD FILE structure, copying the
TYPE, OFF SET, and HEADER fields from oldptr. ldaopen re­
turns a pointer to the new LDFILE structure. This new pointer is
independent of the old pointer, oldptr. The two pointers may be
used concurrently to read separate parts of the object file. For ex­
ample, one pointer may be used to step sequentially through the
relocation information, while the other is used to read indexed
symbol table entries.

Both ldopen and ldaopen open filename for reading. Both
functions return NULL if filename cannot be opened or if memory
for the LDFILE structure cannot be allocated. A successful open
does not insure that the given file is a common object file or an ar­
chived object file.

Programs using this routine must be loaded with the object file ac­
cess library libld. a.

SEE ALSO
fopen(3S), Idclose(3X), Idfcn(3X).

February, 1990
Revision C

2

Idrseek(3X) Idrseek(3X)

NAME
Idrseek, Idnrseek - seek to relocation entries of a section
of a common object file

SYNOPSIS
iinclude <stdio.h>
iinclude <filehdr.h>
iinclude <ldfcn.h>

int Idrseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int Idnrseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;

DESCRIYfION
Idrseek seeks to the relocation entries of the section specified
by sectindx of the common object file currently associated with
ldptr.

Idnrseek seeks to the relocation entries of the section specified
by sectname.

The routines Idrseek and Idnrseek return SUCCESS or
FAILURE. Idrseek fails if sectindx is greater than the number
of sections in the object file; Idnrseek fails if there is no section
name corresponding with sectname. Either function fails if the
specified section has no relocation entries or if it cannot seek to
the specified relocation entries.

Note that the first section has an index of one.

Programs using this routine should be loaded with the object file
access library libld. a.

SEE ALSO

1

Idclose(3X), Idfcn(3X), Idopen(3X), Idshread(3X).

February, 1990
RevisionC

Idshread(3X) Idshread(3X)

NAME
ldshread, ldnshread - read an indexed/named section
header of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <scnhdr.h>
#include <ldfcn.h>

int ldshread (/dptr, sectindx, secthead)
LDFILE *ldptr;
unsigned short sectindx;
SCNHDR *sectheadi

int ldnshread (ldptr, sectname, secthead)
LDFILE *ldptri
char *sectname;
SCNHDR * secthead i

DESCRIPTION
ldshread reads the section header specified by sectindx of the
common object file currently associated with ldptr into the area of
memory beginning at secthead.

ldnshread reads the section header specified by sectname into
the area of memory beginning at secthead.

ldshread and ldnshread return SUCCESS or FAILURE.
ldshread fails if sectindx is greater than the number of sec­
tions in the object file; ldnshread fails if there is no section
name corresponding with sectname. Either function fails if it can­
not read the specified section header.

Note that the first section header has an index of one.

Programs using this routine must be loaded with the object file ac­
cess library libld. a.

SEE ALSO
Idclose(3X), Idfcn(3X), Idopen(3X).

February, 1990
RevisionC

1

Idsseek(3X) Idsseek(3X)

NAME
Ids seek, Idnsseek - seek to an indexed/named section of a
common object file

SYNOPSIS
#include <stdio.h>
#include <fiIehdr.h>
#include <Idfcn.h>

int Idsseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int Idnsseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;

DESCRIPTION
Ids seek seeks to the section specified by sectindx of the com­
mon object file currently associated with ldptr.

Idnsseek seeks to the section specified by sectname.

Idsseek and Idnsseek return SUCCESS or FAILURE.
Ids seek fails if sectindx is greater than the number of sections
in the object file; Idnsseek fails if there is no section name
corresponding with sectname. Either function fails if there is no
section data for the specified section or if it cannot seek to the
specified section.

Note that the first section has an index of one.

Programs using this routine should be loaded with the object file
access library I ibId. a.

SEE ALSO

1

IdcIose(3X), Idfcn(3X), Idopen(3X), Idshread(3X).

February, 1990
RevisionC

ldtbindex(3X) ldtbindex(3X)

NAME
ldtbindex - compute index of a symbol table entry of a
common object file

SYNOPSIS
*include <stdio.h>
*include <filehdr.h>
*include <syms.h>
*include <ldfcn.h>

long ldtbindex (ldptr)
LDFILE *ldptr;

DESCRIPTION
ldtbindex returns the (long) index of the symbol table entry
at the current position of the common object file associated with
'ldptr.

The index returned by ldtbindex may be used in subsequent
calls to ldtbread(3X). However, since ldtbindex returns
the index of the symbol table entry that begins at the current posi­
tion of the object file, if ldtbindex is called immediately after a
particular symbol table entry has been read, it returns the the index
of the next entry.

ldtbindex fails if there are no symbols in the object file or if
the object file is not positioned at the beginning of a symbol table
entry.

Note that the first symbol in the symbol table has an index of zero.

Programs using this routine should be loaded with the object file
access library libld. a.

SEE ALSO
ldclose(3X), ldf cn(3X), ldopen(3X), ldtbread(3X),
ldtbseek(3X).

February, 1990
Revision C

1

Idtbread(3X) Idtbread(3X)

NAME
ldtbread - read an indexed symbol table entry of a common
object file

SYNOPSIS
iinclude <stdio.h>
iinclude <filehdr.h>
iinclude <syms.h>
iinclude <ldfcn.h>

int Idtbread (ldptr, symindex, symbol)
LDFILE *ldptri
long symindexi
SYMENT * symbol i

DESCRIPTION
ldtbread reads the symbol table entry specified by symindex of
the common object file currently associated with ldptr into the
area of memory beginning at symbol.

ldtbread returns SUCCESS or FAILURE. ldtbread fails if
symindex is greater than the number of symbols in the object file
or if it cannot read the specified symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

Programs using this routine must be loaded with the object file ac­
cess library libld. a.

SEE ALSO

1

Idclose(3X), Idfcn(3X), Idgetname(3X), Idopen(3X),
Idtbseek(3X).

February, 1990
Revision C

Idtbseek(3X) Idtbseek(3X)

NAME
Idtbseek - seek to the symbol table of a common object file

SYNOPSIS
*include <stdio.h>
*include <filehdr.h>
*include <ldfcn.h>

int Idtbseek (ldptr)
LDFILE *ldptr;

DESCRIPTION
Idtbseek seeks to the symbol table of the common object file
currently associated with ldptr.

Idtbseek returns SUCCESS or FAILURE. Idtbseek fails
if the symbol table has been stripped from the object file or if it
cannot seek to the symbol table.

Programs using this routine must be loaded with the object file ac­
cess library libld. a.

SEE ALSO
Idclose(3X), Idfcn(3X), ldopen(3X), Idtbread(3X).

February, 1990
RevisionC

1

len(3F)

NAME
len - return length of Fortran string

SYNOPSIS
character *N ch
integer i

i=len (ch)

DESCRIPTION
len returns the length of string ch.

1

len(3F)

February, 1990
Revision C

1ge(3F) 1ge(3F)

NAME
1ge, 19t, lIe, lIt - string comparision intrinsic functions

SYNOPSIS
character *N al, a2
logical I

I=lge (al, a2)
l=lgt (al, a2)
l=lle (al, a2)
1=11 t (al, a2)

DESCRIPTION
These functions return TRUE if the inequality holds and FALSE
otherwise.

February, 1990
Revision C

1

lineyush(3) lineyush(3)

NAME
lineyush - routine used to push streams line disciplines

SYNOPSIS
line yush (ftldes)
int fildes;

DESCRIPTION
line yush will push the streams line discipline "line" onto the
stream referenced by the file descriptor fildes. If fildes does not
reference a stream or it references a stream that already has a line
discipline pushed onto it nothing will happen.

SEE ALSO
line_sane(IM), streams(7).

1 February, 1990
RevisionC

lockf(3C) lockf(3C)

NAME
lockf - record locking on files

SYNOPSIS
finclude <unistd.h>

int lockf <fildes, function, size)
long size;
in t fildes, function;

DESCRIPTION
The lockf call will allow sections of a file to be locked (advisory
write locks). (Mandatory locking is available via locking(2)).
Locking calls from other processes which attempt to lock the
locked file section will either return an error value or be put to
sleep until the resource becomes unlocked. All the locks for a
process are removed when the process terminates. (See
fcntl(2) for more information about record locking.)

fildes is an open file descriptor. The file descriptor must have
o WRONLY or 0 RDWR permission in order to establish lock with
thTs function call:-

function is a control value which specifies the action to be taken.
The permissible values for function are defined in <unistd. h>
as follows:

#define F_ULOCK a /* Unlock a previously

locked section */
#define FLOCK 1 /* Lock a section for

exclusive use */
#define F_TLOCK 2 /* Test and lock a section

for exclusive use */

#define F_TEST 3 /* Test section for other

processes locks */

All other values of function are reserved for future extensions and
will result in an error return if not implemented.

F _ TE S T is used to detect if a lock by another process is present
on the specified section. F LOCK and F TLOCK both lock a sec­
tion of a file if the section is available. F ULOCK removes locks
from a section of the file. -

February, 1990
Revision C

1

lockf(3C) lockf(3C)

size is the number of contiguous bytes to be locked or unlocked.
The resource to be locked starts at the current offset in the file and
extends forward for a positive size and backward for a negative
size. If size is zero, the section from the current offset through the
largest file offset is locked (i.e., from the current offset through the
present or any future end-of-file). An area need not be allocated
to the file in order to be locked, as such locks may exist past the
end-of -file.

The sections locked with F LOCK or F TLOCK may, in whole or
in part, contain or be conta'fried by a previously locked section for
the same process. When this occurs, or if adjacent sections occur,
the sections are combined into a single section. If the request re­
quires that a new element be added to the table of active locks and
this table is already full, an error is returned, and the new section
is not locked.

F _LOCK and F _ TLOCK requests differ only by the action taken if
the resource is not available. F LOCK will cause the calling pro­
cess to sleep until the resource IS available. F TLOCK will cause
the function to return a -1 and set errno to [EACCES] error if
the section is already locked by another process.

F _ ULOCK requests may, in whole or in part, release one or more
locked sections controlled by the process. When sections are not
fully released, the remaining sections are still locked by the pro­
cess. Releasing the center section of a locked section requires an
additional element in the table of active locks. If this table is full,
an [EDEADLK] error is returned and the requested section is not
released.

A potential for deadlock occurs if a process controlling a locked
resource is put to sleep by accessing another process's locked
resource. Thus calls to lock or fcntl scan for a deadlock prior
to sleeping on a locked resource. An error return is made if sleep­
ing on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The
alarm(2) command may be used to provide a timeout facility in
applications which require this facility.

RETURN VALUE

2

Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

February, 1990
RevisionC

lockf(3C) lockf(3C)

ERRORS
The lockf utility will fail if one or more of the following are
true:

[EBADF]

[EACCES]

[EDEADLK]

[EREMOTE]

CAVEATS

fildes is not a valid open descriptor.

function is F TLOCK or F TEST and
the section is already locked by another pro­
cess.

function is F LOCK or F TLOCK and a
deadlock would-occur. Also the func­
tion is either of the above or F ULOCK
and the number of entries in the lock table
would exceed the number allocated on the
system.

fildes is a file descriptor referring to a file on
a remotely mounted file system.

Unexpected results may occur in processes that do buffering in the
user address space. The process may later read/write data which
is/was locked. The standard I/O package is the most common
source of unexpected buffering.

SEE ALSO
close(2), creat(2), fcntl(2), intro(2), locking(2),
open(2), read(2), wri te(2).

February,1990
RevisionC

3

log(3F) log(3F)

NAME
log, alog, dlog, clog - Fortran natural logarithm intrinsic
function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex exl, ex2

r2=alog (rl)
r2=log (rl)

dp2=dlog (dpl)
dp2=log (dpl)

ex2=clog (exl)
ex2=log (exl)

DESCRIPfION
alog returns the real natural logarithm of its real argument.
dlog returns the double-precision natural logarithm of its
double-precision argument. clog returns the complex logarithm
of its complex argument. The generic function log becomes a
call to alog, dlog, or clog depending on the type of its argu­
ment.

SEE ALSO
exp(3M).

1 February, 1990
RevisionC

loglO(3F) loglO(3F)

NAME
loglO. aloglO. dloglO - Fortran common logarithm
intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2=aloglO (rl)
r2=loglO (r1)

dp2=dloglO (dp1)
dp2=loglO (dpl)

DESCRIPTION
aloglO returns the real common logarithm of its real argument
dloglO returns the double-precision common logarithm of its
double-precision argument. The generic function loglO be­
comes a call to aloglO or dlogl 0 depending on the type of its
argument.

SEE ALSO
exp(3M).

February. 1990
Revision C

1

logname(3X) logname(3X)

NAME
logname - return login name of user

SYNOPSIS
ehar *logname ()

DESCRIPTION
logname returns a pointer to the null-terminated login name; it
extracts the $ LOGNAME variable from the user's environment

This routine is kept in / lib/ libPW. a.

FILES
fete/profile

SEE ALSO
env(1), login(l), profile(4), environ(5).

BUGS
The return values point to static data whose content is overwritten
by each call.

1

This method of determining a login name is subject to forgery.

February, 1990
RevisionC

lsearch(3C) lsearch(3C)

NAME
lsearch. Ifind -linear search and update

SYNOPSIS
iinclude <stdio.h>
iinclude <search.h>

char *lsearch (key, base, nelp, width, compar)
char *key;
char *base;
unsigned *nelp;
unsigned *width;
int (*compar) () ;

char *lfind(key, base, neip, width, compar)
char *key;
char *base;
unsigned *neip;
unsigned *width;
int (*compar) () ;

DESCRIPTION
lsearch is a linear search routine generalized from Knuth (6.1)
Algorithm S. It returns a pointer into a table indicating where a
datum may be found. If the datum does not occur. it is added at
the end of the table. key points to the datum to be sought in the
table. base points to the first element in the table. nelp points to
an integer containing the current number of elements in the table.
The integer at * nelp is incremented if the datum is added to the
table. width is the width of an element in bytes. compar is the
name of the comparison function which the user must supply
(strcmp. for example). It is called with two arguments that point
to the elements being compared. The function must return zero if
the elements are equal and non-zero otherwise.

Ifind is the same as lsearch except that if the datum is not
found. it is not added to the table. Instead. a -1 pointer is returned.

RETURN VALUE
If the searched for datum is found. both lsearch and Ifind re­
turn a pointer to it. Otherwise. Ifind returns NULL and
lsearch returns a pointer to the newly added element

February, 1990
Revision C

1

lsearch(3C) lsearch(3C)

NOTES
The pointers to the key and the element at the base of the table
should be of type pointer-to-element, and cast to type pointer-to­
character.
The comparison function need not compare every byte, so arbi­
trary data may be contained in the elements in addition to the
values being compared.
Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

EXAMPLES
This fragment will read in ~ TAB S I Z E strings of length ~ EL­

S1 ZE and store them in a table, eliminating duplicates.

#include <stdio. h>

#include <search.h>

#define TABSIZE 50

#define ELSIZE 120

char line [ELSIZE], tab [TABSIZE] [ELSIZE], *lsearch ();

unsigned nel = 0;

int strcmp ();

while (fgets (line, ELSIZE, stdin) ! = NULL &&

nel < TABSIZE)

(void) lsearch (line, (char *) tab, &nel,

ELSIZE, strcmp);

SEE ALSO
bsearch(3C), hsearch(3C), tsearch(3C).

BUGS

2

Undefined results can occur if there is not enough room in the
table to add a new item.

February, 1990
RevisionC

THE ApPLE PUBUSHING SYSTEM

This Apple manual was written, edited, and composed
on a desktop publishing system using Apple
Macintosh® computers and troff running on A/UX.
Proof and fmal pages were created on Apple
LaserWriter® printers. POSTSCRIPT®, the page­
description language for the LaserWriter, was
developed by Adobe Systems Incorporated.

Text type and display type are Times and Helvetica.
Bullets are ITC Zapf Dingbats®. Some elements, such
as program listings, are set in Apple Courier.

Writers: J. Eric Akin, Mike Elola, George Towner, and
Kathy Wallace

Editor: George Truett
Production Supervisor: Josephine Manuele
Acknowledgments: Lori Falls and Michael Hinkson

Special thanks to Lorraine Aochi, Vicki Brown,
Sharon Everson, Pete Ferrante, Kristi Fredrickson,
Don Gentner, Tim Monroe, Dave Payne, Henry Seltzer,
and John Sovereign

030-0784

\ 0

