Tech Info Library

Computer Viruses (part 2 of 4)

This article last reviewed: 15 April 1988
TECHNI CAL | SSUES
How Vi ruses Propagate

Vi ruses can propagate by a variety of methods. The nost common way for a
Maci ntosh virus to replicate itself is to have an INIT that installs a
background (VBL) task that checks for specific occurrences, such as a disk
insertion, and then copies itself sonewhere to that disk

VBL Tasks

The Maci ntosh has always had a limted form of background processing
available to it through the use of the Vertical BLanking queue. Every tine
the screen on a Maci ntosh (except for a Macintosh Il) is refreshed, any
routines installed in the queue are executed. The Macintosh Il has a dumy
VBL queue for conpatibility reasons since the advent of a variety of screens
has led to different vertical retrace periods.

VBL tasks can be installed in the queue by any program The program has to
load a routine into a section of nenory and install the routine into the VBL
gueue by calling the Vinstall ROMroutine. It is the responsibility of the
installing programto make sure the segnent of nenory containing the routine
remai ns avail abl e even after the programhas exited. Each VBL task has a
specified time period it should be left "asleep" before it is called. Every
time the routine is executed, a counter is decrenmented for that routine.
When that counter reaches zero, the routine is deleted fromthe queue unless
the routine itself resets the counter

Lengthy VBL tasks such as the one that might be used to replicate a virus
can interfere with the nornal operation of the Macintosh by interrupting
processes that shouldn't be interrupted. A perfect exanple of this is
printing to a LaserWiter over an AppleTalk network. |If a VBL task takes
too long in its execution, the printing process could term nate abnornally
and | eave the machi ne's connection to the network in an unstable state.

For the purposes of a virus, an INIT is nost likely to be the culprit
responsi ble for installing a VBL task.

INITs



INITs are routines that are run when the Macintosh is booted. For the nost
part, they have full access to all of the conmands nornmally available to a
standard Maci ntosh program The major difference is that the | ow nenory

gl obal s have not been set up yet, so any INIT needing access to structures
normally stored in | ow nenory nmust create its own.

INITs in the Systemfile:

VWhen a Maci ntosh boots, the INITs in the Systemfile in the "blessed" folder
are the first code to be executed. These INITs should generally be Apple
INITs only -- any non-Apple INITs shoul d be consi dered suspect.

The INIT 31 nechani sm

A special INNT in the Systemfile, INIT 31, was created to allow for the
execution of non-Apple INITs without having theminstalled in the System
file itself. Wen all of the other INITs in the Systemfile have been
executed, INIT 31 wal ks through the System fol der | ooking for files of types
INIT, RDEV, cdev, and executes any INIT resources it finds in these files.
The order in which the files get |oaded is al phabetical. Needless to say,

a sinple way for hiding parts of a virus is to drop INITs into legitimte
files already existing in the Systemfolder with these file types.

CDEVs

The file type cdev indicates a file containing a Control Panel device.
VWhen the Control Panel is |oaded, it walks through the directory of the

System fol der | ooking for any files of type 'cdev'. When it finds a file
of this type, it loads the ICN# of that file (assuming it has one) into the
list of icons shown on the left side of the Control Panel. Wen you click

on the icon of the cdev in the Control Panel, the code in the cdev resource
inthe file of type 'cdev' is executed. A virus could easily use this
mechanismas a way to infect a system install a VBL task, etc.

Many cdev files have INITs in themwith the cdev controlling the settings
that the INNT will use when it is installed. A good exanple of this is the
settings for a screen blanker. The INIT actually installs the VBL task,

but the cdev controls when dimm ng occurs. None of the standard Apple
system cdev files have INITs in them but there is nothing to prevent a
virus installing an INIT in these files as a way of hiding its code.

DRVRs

DRVR resources typically can have one of two functions: they can be the
code for a desk accessory, or the code for drivers necessary for the system
to perform some function such as printing. Once again, the key word here
is 'code'. \enever code is involved, the potential arises for the
perpetrator of a virus to take advantage of it.

Just as with cdevs, when a DRVR gets opened, either by the choosing of a
desk accessory or by the system code is executed at that point. This is
the stage at which a virus might fulfill its purpose.



CODE Resources

Each application has at |east two CODE resources. The first of these CCODE
resources has an id of 0 and contains what is known as the junp table.

This table provides the basic informati on necessary for various parts of a
programto call routines in other CODE segments. The current rage in
viruses is to nodify the CODE ID = 0 resource of an application so that a
CODE segnent it installs in the application gets called before the
application is actually run. This CODE segment could go out and check if
the virus has infected the current system and if it hasn't, install itself.
Al the perpetrator of a virus has to do at this point is upload a copy of
an infected application to a BBS, and it spreads across the world.

Applications that all ow external procedures:

Viruses coul d take advantage of the external procedures that are all owed by
some applications. The perfect exanple of this is HyperCard, with its
XCMDs and XFCNs. This is how the MacMag virus was transmtted.

Copyri ght 1989 Apple Conputer, Inc.

Keywords: <None>

This information is fromthe Apple Technical Information Library.

19960215 11:05: 19. 00
Tech Info Library Article Number: 2822



