
Disk First Aid: What Does It Do? (3/96)

Article Created: 27 March 1996

TOPIC ---

What are the meanings of all the messages that appear while Disk First Aid is
checking my hard drive? For what type of errors does Disk First Aid check?

DISCUSSION --

The information in this article is taken from the book "Inside Macintosh."

Disk First Aid ensures the integrity of individual files on a volume cataloged
by Hierarchical File Structure (HFS - the method for placing data on a hard
drive used by the Mac OS).

A disk can contain several partitions, which are treated as separate virtual
disks by the system. Each partition contains information similar to that shown
below:

Begin_Graphic

............................ |
Partition Information . |
............................ --------
 Disk Driver Partition
............................ --------
Boot Blocks . |
............................ |
Master Directory Block(MDB). Macintosh Partition
............................ |
Volume Bitmap . |
............................ |
Catalog File . |
............................ |
Extents Overflow File . |
............................ |
Files/Free Space . |
............................ |
Alternate MDB . |
............................ -------
............................ Other Partitions

Tech Info Library

............................ -------

End_Graphic

Partition Map

The first physical block (512K) contains the disk's "Partition Map". This
specifies the first and last physical blocks of each partition as well as its
type (Macintosh, A/UX, MS-DOS, etc.). It also contains the value for the size of
"Logical Blocks.” Physical blocks are always 512K. The logical block size will
vary depending upon the capacity of the drive. Whenever a file is written to the
disk, it is allocated a certain number of logical blocks or “clumps.” This slows
down the process of fragmentation, but can result in open space being left at
the end of the file allocation.

Device Driver

After the partition map is the device driver used for SCSI communications with
that device. (Note that if the device driver is updated after the drive is
initialized, HFS may move the driver to the end, depending on space
constraints).

Boot Blocks

The HFS volume begins with two boot blocks. This is where booting instructions
are stored along with directions for locating the system and Finder files.

Master Directory Block

Contains volume information such as the date and time of volume's creation and
number of files the volume contains. When the MDB is read, the volume is mounted
and an area is created in memory called the Volume Control Block (VCB).

Volume Bitmap

A record of which logical blocks in the volume are allocated to files. It
contains one bit for each allocation block on the volume. If the block is taken
then the bit is set. Otherwise, the bit is clear if the block is available.

Catalog File/Tree

Contains hierarchical information about the relationship and structure of files
and folders and their location on a volume.

Specifically, it contains the parent directory for each file. In order to
determine the full path, a directory's parent is found, and so on, until the
root level is reached. The Catalog File and Extents File are each in the form of
a "B-Tree" (and are the source for all B-Tree type errors). See below for a
discussion of B-Trees.

Extents File/Tree

An "Extent" is a contiguous range of logical blocks that are allocated to a
file. The Extents File (also called "Extents Overflow File") keeps track of the
location of records that can't be placed contiguously. This information is used
to locate pieces of a file when it's loaded. Some Extent information is
contained within the MDB and VCB. The first three file extents are always
retained in memory with the VCB.

Given the above information it is understandable why optimizing, or
"defragmenting" a disk is so effective. Not only does making files contiguous
reduce seek time, but continual accesses to the Extents File are eliminated —
all of the needed information is already in memory.

All of the items listed before the Catalog and Extents Files are contiguous. The
Catalog and Extents Files can be anywhere on the volume and are not contiguous.

The Catalog File also stores Finder information for each file. This information
consists of:

File Type - Identifier of one of several categories.
File Creator - Name of the application that created it.
Finder Flags - These are information items (bits) that can be set to on or off.

The Finder takes these into account when it reads them. The specific types of
Finder flags are:

 • isInvisible: File won't appear in dialog listings or windows.
 • hasBundle: File is associated with a custom icon.
 • nameLocked: File can't be renamed or have another icon assigned to
 it by a user.
 • isStationery: File is a stationery pad.
 • isShared: File is being shared over a network.
 • hasCustomIcon: File has it's own customized icon.

Files Location in Window - Relative position in the window when it's opened.
Directory that Contains File - The directory path of the file.

The rest of the volume contains application/data files, the Catalog File,
Extents Overflow File, and open space.

A Discussion of B-Trees
=======================

Catalog and Extents files are organized into B-Trees, a structure which allows
for optimum read speeds.

Both of these files contain only data forks — there are no resource forks. The
location of the start of the Catalog and Extents B-Tree is contained at the
beginning of the MDB and is stored in memory.

Below is a rough diagram of what the disk structure of the Catalog and Extents
Files look like:

Begin_Graphic

(Byte) Data Fork

0..............................
 Node 0 . Header Node
512............................
 Node 1 ._____________________
1024........................... |
 Node 2 . Node Substructure |
n.............................. |
 Node 3 . |
...............................
 . . Node Descriptor .

 . ---. Record 0 .
 . |
 . | . Free Space .
 . |
 . | . Offset to Free Space.
 . |
 . | . Offset to Record 0 .
 Node n/512 |
 |
 ..
 . Key | Record Key | Record Data or Pointer .
 . Length | | .
 . Value | | .
 . (255 bytes)| | .
 ..

An example of a B-Tree structure is shown below:

Header Node |Pointer1|Pointer2|Pointer3|
 |
 |
Index Nodes |Pointer26|Pointer2|Pointer41|
 |
 |
Leaf Nodes |(13) Data|(2) Data|(16) Data|

End_Graphic

This goes a long way to explain how and why errors occur. B-Tree structures are
complex. If one becomes damaged, erroneous information is read into File Manager
and the referenced files can also become damaged. This is why it's vital to run
Disk First Aid or similar utilities on a regular basis.

Typical Errors Detected by Disk First Aid

===

Below are some typical errors generated by Disk First Aid with explanations:

Keys Out of Order

B-Tree records or referenced records have become damaged.

Bad Leaf Node/Index Node

A node has been changed so it doesn't correctly refer to other nodes or
records.

B-Trees Damaged

This is obvious - the B-Trees are damaged.

Volume Bitmap Incorrect

The volume bitmap does not accurately reflect the use of allocation blocks on
the drive. Disk First Aid repairs this and the extents file by comparing the two
with each other, then comparing against the actual allocation blocks on the
drive.

Bundle Bits Need to be Reset

The Bundle Bit flag needed to reset for some of the files. (Other flags may also
need to be reset).

Copyright 1996, Apple Computer, Inc.

Keywords: supt,hts

==

This information is from the Apple Technical Information Library.

19960328 08:20:03.00

19516Tech Info Library Article Number:

