System 7: 32-Bit Addressing

Article Created: 7 March 1991
Article Reviewed/ Updated: 17 Decenber 1993

1. What is 32-bit addressing?
2. How does it work?
3. Wy do | get Type 1 errors?

DI SCUSSI ON = = = = = = = = = 2 @ xf st o et el

1. What is 32-bit addressing?

32-bit addressing neans that you can install and access nore than 8MB of
physical RAMin your Macintosh. This nmeans you can work with very |large
data files, very large applications, or many applications concurrently.
32-bit addressing is nost attractive to Maci ntosh users working with |arge
menory-intensive problens. VWhile virtually anyone can benefit fromthe

| arge anobunt of menory offered by 32-bit addressing, it will immediately
benefit database users, color-graphic users, CAD CAM users, and
programers. Wile 32-bit addressing may seemto benefit a snmall percentage
of Maci ntosh users today, users can expect to soon see powerful "genera
pur pose" tools benefit from 32-bit addressing.

More technically speaking, 32-bit addressing |lets npbst recent Macintosh
nodel s access the entire 1G nmenory range of the 68030 microprocessor. The
basi ¢ software and hardware of the Mcintosh already support the 32-bit
addr essi ng nodel, but any Macintosh using System6 is limted to using only
8MB of nenory because 32-bit addressing was not yet fully inplenented.

In System 7, 32-bit addressing is fully inplenented all owi ng nost Maci ntosh
conputers access to greater than 8MB of nenory. This expanded menory is

i mportant for high-end users working with many applications, conplex
graphi cs docunents, |arge databases, and so on

The term "addressing” refers to the nunber of binary digits (bits) that
make up each nmenory address. Addressing directly determ nes the maxi mum
amount of menory possibly avail abl e.

2. How does it work?



Bi nary nunbers

To understand what happens with addressing, it is first necessary to
under st and what address bits are. The nunber system we’re nobst accustoned
to is the decimal system otherw se known as the Base 10 system In this
system all the nunbers are relative to ten digits (0-9). Wen a nunber
val ue exceeds the tenth digit, we add one to the value in the next colum
and and start over in the first colum. Hence, when 1 is added to the
nunber 09 we get 10. Wien we add 1 to 099, we get 100, so forth and so on

Base 10 relies on there being exactly ten unique values per digit. Base 10
is not the only nunber systemaround. 1In the early days of conputers, it
was realized that it is nmuch sinpler to build data storage device such as a
vacuum tube or a transistor with two possible value states(0 or 1) than it
was to build one with 10 possible values(0 through 9). Therefore, soneone
came up with the idea of defining information in Base 2 fornmat.

Wth the Base 2 nunber system instead of counting your digits 0,1,2,.,9
and then adding a one to the next columm, you sinply count your digits 0,1
and then add a one to the next colum. Hence, in the binary systemthe
nunber zero in represented by a 0, the nunber one by a 1 and the nunber two
by a 10, so forth and so on

Here is a short table of sone nore exanples:

Base 10 Base 2

O~NO O WN P

If you expand this table out, you will see, the maxi mum nunber of val ues
you can represent with 4 binary digits(bits) is 16, with 16 bits, 65, 536,
with 24 bits, 16,777,216 and with 32 bits, 4,294,967,296. This is
identical to being able to represent 10,000 (0-9999) values with four

deci mal digits and 100, 000, 000 (0-99, 999,999)values with 8 decimal digits.

Maci nt osh address range

The origi nal Maci nt oshes shipped with the 68000 nicroprocessor. While this
CPU is capable of doing 32 bit operations, it has only 24 bit addressing
capability. Wich lints a 68000 based conputer to 16,777,216 bytes of
address range. Wien the Macintosh Il cane out with the 68020 which has
full 32 bit addressing capabilities, the possible address range was

i ncreased to 4, 294, 967, 296 bytes.

Now you’ re probably wondering why you can only access 8MB in 24 bit node.



The truth is you can access 16nb, but only 8nb is available for user data.
The other 8 is used for hardware vectors, NuBus slots, SCSI buffers etc.

The Probl em

Since the 68000 is a true 32 bit processor, it stores 32 bits of

i nfornmati on for each nmenory address, but since the 68000 physically only
has 24 address lines, only the first 24 bits actually count. This of
course neans that 8 bits are wasted.

This is where creative programmers cone in. Back when the Macintosh only
had a 128k of RAM the Operating Systemhad to go to sone extreme |engths
to ensure that application have enough nmenory to run. The Maci ntosh Menory
manager allows bl ocks of menory to nove, and/or be purged if the Systemis
having trouble fulfilling a nenmory request. The original designers of the
Maci nt osh OS decided to use the last three of the unused bits in a 32 bit
nmenory address to indicate whether a block of menory can nove, be purged or
if the block contains a resource item

When System 7 was introduced, the Menory manager portion of the Macintosh
Operating systemwas nodified extensively to support full 32 bit
addressing. The Menory Manager no | onger stores the novabl e, purgeable, or
resource flags in the last three bits of the menory bl ock’s address,

i nstead, the Menory Manager stores this information el sewhere. The exact

| ocation of these flags is not docunented, since an application should not
attenpt to mani pulate these flags directly.

Setting these three nagic bits are at the discretion of the programer.

The Maci ntosh Operating System provides the programer with the appropriate
routines to set these bits. The problemis that to set these three bits,
the Operating Systemroutines have to call other routines who have to cal
still others etc. The net result is that using the Qperating System
routines to set these bits is quite inefficient when it comes to speed.
Therefore, prior the introduction of System 7, some creative progranmers
with a need for speed, took it upon thenselves to set these bits in the
menory bl ock’s addresses directly thereby bypassing the overhead associ ated
with calling the Qperating Systemroutines. O course, the problemwth
doing this is that System 7 no | onger stores these three bits in the
address of the block of menmory. Another significant progranmng error

i nvol ves the other 5 bits of the 32 bit address. Odinarily, these bits
shoul d remain unused and therefore, insignificant. However, sone
programers, having realized that 5 bits are wasted decided to use them for
their own purposes, even though Appl e Devel oper Technical Support began
war ni ng them against this practice a full three years prior to the

i ntroduction of System 7.

The fundanental problemw th setting the upper 8 bits of the address
directly is that with System7 all 32 bits of infornmation are used for
addressing. Changing the value of any of the 8 bits changes the address of
the bl ock of menory. \When an application or an init tries to access the



bl ock of menory that now has an invalid address, the usual result is a Type
1 error. This occurs because the first 24 bits of an address are used to
access nenory | ocations between 0 and 16nb. The upper eight bits are used
to access nenory | ocations between 16nb and 4,096nmb. Since nost
Maci nt oshes have | ess than 16nmb of RAM chances are this incorrect nenmory
location is pointing to an address that does not physically exist, and this
will yield a Type 1 (Bus Error).

In the event that the nmenory |ocation does physically exists, then the
application or init will then operate on whatever information it finds at
the incorrect location. Depending on what the application or init is
attenpting to do, various errors nay result.

Article Change History

17 Decenber 1993 - Updated with techshare information from Austin reps
21 August 1993 - Revised - To include information from another article.
Copyri ght 1991-1993, Apple Computer, Inc.

This information is fromthe Apple Technical Information Library.

19960215 11:05: 19. 00
Tech Info Library Article Number: 6919



