Power Macintosh: Run Time Environment (3/95)

Article Created: 10 March 1994
Article Reviewed/ Updated: 6 March 1995

This article provides a technical description of the Run Time Environnment and
the switch fromthe 680x0 segnent |oader to the new Code Fragnent Manager.

DI SCUSSI ON = = = = = = = = = == = x ot ot d el

Arun-time environnent is a set of conventions that determ ne how code and data
are | oaded into nmenory and managed. The PowerPC run-tinme environnent is
significantly different fromthe one provided i n 680x0-based Maci ntosh System
Software. Fortunately, this change is for the better. The nost significant
change is the use of fragnents to organi ze code and data in nmenory. Fragnents
can be an application, inmport library (such as system software), or extension
Fragments provide the follow ng benefits:

* Fragments let software in inport libraries be easily shared w th other
prograrmns.

e Fragnments provide a sinplified neans for all software conponents to address
gl obal data. Wth 680x0 systens, it was provided only for applications.

e The use of fragnents is one of the elenents that allow future nodernization of
t he Maci ntosh operating system It lets new system features such as a
m crokernal be easily inplenented.

Fragment s

A fragnment is a nethod of organizing code and data. Fragments can | oosely be
categorized into three areas:

e An Application is a fragment |aunched by the user
* Extensions are fragnments which extend the capabilities of other fragnents.
e Inmport library -- These fragnents can be shared with other fragments. System

software is an exanple of this type of fragnent. Since this fragnent can be
shared, an inport library is also referred to as a shared library. In addition

since inport libraries are |inked dynanmically at application |aunch tinme (that
is, not when the application was created or installed), they are also referred
to as dynamically linked libraries.

At application launch tinme, the Code Fragment Manager makes sure all the
necessary fragnents are | oaded to nenory and prepared for execution. This
manager uses the Code Fragnent Loader to performthe loading into nmenory.

Fragment Storage

The physical storage for a fragment is called a container. A container can be
any logically contiguous nenory |location such as a data fork of a file,
Maci nt osh ROM or a resource.

Power PC execut abl e code is stored in the data fork of the application file. A
"cfrg'0, is added to the resource fork to indicate that this application is a
Power PC application. In contrast, 680x0 applications place executabl e code as
' CODE' resources in the resource fork.

Thi s arrangenment of code and resources allows the creation of a single
application that can run on both 680x0- and Power PC-based Maci nt osh conputers.
By conbining the two structures together, you get what is called a fat
application.

Fat Applications

If a fat application is executed on a 680x0-based Maci ntosh computer, the system
software ignores the 'cfrg' O resource because it is an unknown type and | oads
just the 680x0 ' CODE' resources. |f executed on a Power Macintosh, the system
software recogni zes the 'cfrg' 0 resource and | oads the Power PC code fromthe
data fork.

A fat application is very useful when supporting m xed 680x0 and Power PC

envi ronnents. However, it may not be desirable to have a fat application. For
exanpl e, there nmay be cases where the 680x0 performance is insufficient to run
the application. In this instance, a ' CODE' resource should be installed so when
t he Power PC-only application is run on a 680x0 system a dialog box shows up to
explain the situation.

A devel oper can distribute a single fat application. Wth Installer 4.0, the
user has the option of installing only Power PC or 680x0 executable application
or bot h.

| mport Library

An inport library (shared library or dynamcally linked |ibrary) makes
applications be snaller. Since inmport code is |oaded dynam cally at application
l aunch time, this code does not have to be part of the application. If only one
application utilizes this library, there is little advantage unless the inport

library is stored in ROM (like system software).

The big advantage of an inport library is when multiple applications utilize the
same inport library since a library is |loaded into nenory only once. Thus,
several applications can have access to the library, w thout each having to have
t he RAM overhead to support the functionality.

In addition, centralizing functionality |lets updates be nade easily. By changing
only one set of code, nmany applications are updated sinultaneously.

An inport library can be created for such sharable functions such as a spel
checker. In addition, it can be used to support infrequently used application
functions. The Code Fragnment Manager can |oad these functions on demand after
application launch. This results in smaller RAM usage and qui cker | aunchi ng.

Menory Organi zation

The organi zation of nmenory in the PowerPC run-tine environnent is reasonably
simlar to the 680x0 environnent. The system partition occupies the | ower nmenory
addresses while applications take the remai ning space starting at the higher
menory addresses. As with the 680x0 application partition, the Process Manager

al | ocates space for a stack, heap, and gl obal variabl e space.

The main difference between the Power PC and 680x0 nenory organi zation is the

| ocation of an application's code section and gl obal variables. This difference
varies dependi ng on whet her the Power Macintosh has virtual nenory turned on or
not .

In 680x0 environnent, virtual menory uses a single nonolithic file on a single
vol unme as backing store. This backing store is mapped to a virtual nenory
address space. Its size is set via the Menory Control Panel. Unused pages of
menory are witten to this backing store and | oaded into main nenory as needed.

Thi s backing store is necessary because the Resource Manager is not re-entrant.
Si nce 68K code is found in code resources in the resource fork of an
application, it is accessed by the Resource Manager. However, since it is not
re-entrant, the manager cannot be accessed at an interrupt |evel. Therefore when
a page fault occurs, the code nust be witten to the system w de backing file
because it cannot be retrieved fromits original |ocation

A backi ng store sonetines prolongs the | aunch of an application. This occurs
when an application’s code is |loaded into nain nenory only to be inmedi ately
witten out to the backing store file.

This virtual menory delay is elimnated by the use of a schene called file

mappi ng. The Virtual Menory Manager uses the data fork of the application as the
paging file. The entire code fragnent is napped to | ogical address space.
Assum ng the application code does not change (this is a guideline), it can be
presuned to be read-only. As such, only the needed portions of code are actually
| oaded i nto physical nenory.

NOTE: This file mapping only applies to native applications. These applications
have code stored in the data fork

As a result of this file paging schene, native applications have a special note
attached to their Get Info boxes. At the bottomof Get Info window, there is a
nmessage indicating that if virtual menory is turned on, the application s RAM
requi renents change.

The sane application's nenory requirenent changes when Virtual Menory is turned
on (which is indicated in the note). This change in menory requirenments i s nade
automatically by the system

If virtual nenory is not turned on, code is |oaded into the application heap
The Finder and Process Manager will autonatically expand the nenory as
necessary. This is simlar to the 680x0 run-tine environment.

Article Change History:

06 Mar 1995 - Added keyword; made multiple technical updates.
11 May 1994 - Changed Title to better reflect the article.

21 Mar 1994 - Made various corrections to the Fragment section

Support Information Services

Copyri ght 1994-95, Apple Computer, Inc.

Keywords: kppc, kal | ey

This information is fromthe Apple Technical Information Library.

19960215 11:05: 19. 00
Tech Info Library Article Number: 14865

