
HyperCard: How It Does Math (7/92)

Article Created: 24 March 1992
Article Reviewed/Updated: 23 July 1992

TOPIC ---

This article has four sections:
• HyperCard Uses SANE
• Floating-point Numbers
• NaNs and INFs
• Mixing Reals and Integers

(A related Tech Info Library article deals with HyperCard's round, trunc,
and random functions.)

DISCUSSION --

HyperCard Uses SANE

HyperCard uses SANE (Standard Apple Numerics Environment) routines for
doing math in HyperTalk. See Apple Numerics Manual, Second Edition, for any
details.

Floating-point Numbers

Any floating-point (or real) number used by HyperCard is stored as an
extended type. Each number is represented in 80 bits (10 bytes) and has a
precision of roughly 19-20 decimal places. Because an extended type is
allotted a fixed amount of memory, only a finite number of values can be
represented exactly.

Example: type "100000000000000000000+1" into the message box. HyperCard
evaluates this expression to 100000000000000000000.

NaNs and INFs

Calculations via SANE can produce infinities and NaNs (Not-a-Number). Such
results may be passed back in HyperTalk. Consult the Apple Numerics Manual
for the specifics.

Examples in HyperCard:
sqrt(-1)-> "NAN(001)"
ln(0)-> "INF"

Tech Info Library

ln(-1)-> "NAN(036)"
-1/0-> "-INF"
(-1)^(-.5)-> "NAN(037)"
1/ln(0)-> 0

Mixing Reals and Integers

HyperTalk, being an untyped language, lets scripters mix real and integer
values. Sometimes this can produce unexpected results.

Examples:
(.3 * 10) DIV 1-> 2
(.3 * 10) MOD 1-> 1
trunc(.59*100) < 59-> true

The reason behind the unexpected result is that, internally, HyperCard is
applying the math operations to extended type numbers. For example, ".3*10"
is not equal to 3 (because .3 cannot be represented exactly by an extended
type). The solution to such problems is to have HyperCard evaluate
expressions first. This can be accomplished by putting the value into a
field or by taking the value of the expression. Evaluating an expression
converts it to a "practical" precision (using the numberFormat property).

Example:
value(.3*10) DIV 1-> 3

This behavior is exactly what one would expect if doing math in any
high-level language. Both of the following, the first in Pascal and the
second in HyperTalk, produce the same results:

program Math;

var
 x:extended;
 factor, truncX, K: integer;

begin
 ShowText;{ for THINK Pascal }
 factor := 1000;
 x := 0.0;
 for K := 1 to factor do
 begin
 x := K / factor;
 truncX := trunc(factor * x);
 if (truncX <> K) then
 writeln(K);
 end;
end.

on mouseUp
 set cursor to watch
 put 1000 into factor
 put EMPTY into cd field "Table"

 put EMPTY into theTable
 repeat with K = 1 to 1000
 put K/factor into x
 if (trunc(factor*x) <> K) then
 put K & return after theTable
 end if
 end repeat
 put theTable into cd field "Table"
end mouseUp

Both of these produce the list:
1
2
4
8
16
32
63
64
126
128
252
256
504
507
512

This article is adapted from the Claris Tech Info database.
Copyright 1993, Apple Computer, Inc.

Keywords: <None>

==

This information is from the Apple Technical Information Library.

19960215 11:05:19.00

14252Tech Info Library Article Number:

