Tech Info Library

Al: Some Working Definitions Of The Terminology (Part 2 of 2)

Article Created: 19 August 1988
Article Last Reviewed: 9 June 1992
Article Last Updated:

This article continued from"Wrking Definitions O Some "Al" Term nol ogy (Part
1 of 2)"

Expert Systens:

Conput er systens that address subjects previously requiring a hunan expert on
hand. An excellent exanple of this is AppleCat diagnostics from Apple. This
software can be used to isolate a Macintosh hardware problemthat previously
requi red a service person (expert).

Fl avors:

The Object Orientated Programm ng inplenmentation used by the Explorer

Gar bage Col | ecti on:

LI SP programs inherently involve frequent nmenory allocation and deal | ocation
Gar bage collection is the process of reclaimng menory that was all ocated, but
is no longer required by the application. While LISP nmachi nes address garbage
col l ection through hardware, any conventional nachine nust duplicate this
effort in software, typically forcing frequent delays while waiting for the
machine to return to the user (think of printing with and without a spooler).
This is one of the reasons for the claimthat LISP is a slow | anguage or could
never be used for real-tine processing.

LI SP Language vs. LISP environnment vs. LISP nachine:
The LI SP | anguage is the inplenmentation of LISP, the syntax of the |anguage.

Most of the industry recognizes that Conmon LISP is becom ng the standard

| anguage for LISP. Wen we talk of a LISP environnment, we are referring to the
progranm ng features offered to assist one in progranming in LISP, such as the

LISP |istener (interpreter), debugger, inspector, object-oriented progranm ng

i npl enent ati on, conpiler, tag inplenmentation, and garbage collection utilities

to name a few. These are available (in a varying degree) for whatever LISP you
are using. When we nention a LISP nmachine, we are referring to a
processor/conputer built specifically for running the LISP | anguage, with
hardware features optimzed to run LI SP.

Knowl edge Engi neeri ng:

Usi ng Al progranm ng techni ques (nethodol ogies) -- such as know edge
representation, search, or reasoning strategies -- to solve applications
requi ring symbolic processing.

Know edge Engi neer

This title gets a lot of attention these days, and often a consi derably higher
salary for the software devel oper/ programer/ analyst famliar with Al
progranmmi ng techni ques, |anguages and shells and their proper inplenentation.

LI SP Machi ne:

A computer specifically designed to run the LISP | anguage. |ncludes hardware
support for critical "LISP" functions, such as garbage collection and data type
processi ng.

hj ect Orientated Progranmm ng:

A method of programming with abstraction that allows a nore natural
representation of real world itens (or objects). An object can be defined as a
"class" that can have associated or inherited procedures, argunents, or
conponent - obj ect s.

An exanmple of this is to define a new "class" of object called "COWUTER'.

Each COMPUTER can be defined to have associated with it such itenms as a
keyboard, nmonitor and CPU. New classes can then be defined based on this class
-- a "MACI NTOSH' can be a type of "COWPUTER', and as such we can assune that
it has a keyboard and nonitor.

When we create this new cl ass MACI NTOCSH, we can al so define a default CPU type
of 68000. W could go on and define a procedure for the MACI NTOSH cal | ed

HOW TO- RUN- APPLI CATI ON whi ch has a val ue of CLICK-1CON, (whereas the procedure
for the original COVWUTER class may have an associ at ed HOW TO- RUN- APPLI CATI ON
val ue of ENTER- ARCHAI C- COWKRND). The idea is that with OGbject Orientated
Programm ng, we are able to define objects in a way that nore closely

associ ates how we naturally think of the objects. Also, once we know an obj ect
is defined, and what values it has, we don't have to worry about HOWit was
defined -- as long as it works. This leads to a "Black Box" approach, where we
do not concern ourselves with what is in the Black Box as long as we know it is
avai |l abl e and works.

Rapi d Prototyping

The process of using a short "devel op-test-nodify" cycle, with frequent
feedback, as a way to help define the final systemsolution. The ideais to
work on the conceptual |level to define a proper solution and worry about the
final inplenentation details later, as opposed to a progranmer spendi ng
significant tine in devel opment, only to arrive at a working solution that does
not address the original problemcorrectly.

Tagged Architecture:

Har dwar e support for inplenenting Data Type Processing on LISP Machines. This
all ows processing "tags" in parallel with other instructions. Any conventiona
hardware running LISP nmust duplicate this effort in software

Copyri ght 1988 Apple Computer, Inc.

Keywords: <None>

This information is fromthe Apple Technical Information Library.

19960215 11:05: 19. 00
Tech Info Library Article Number: 3203

