Short Description Of The Power PC 601 Processor (3/94)

Article Created: 8 March 1994

This is a short description of the features of the PowerPC 601 processor which
will be used for Apple Conputer's first Rl SC products.

The organization of this description follows that of the PowerPC | SA docunent.
Sone fanmiliarity with processor architectures, particularly of Rl SC processors,
is assuned in the following. Since the PowerPC 601 is close to "traditional™

Rl SC processors in nmany ways, the amount of detail in this docunment will reflect
areas which are different. 1In areas where Power PC (and/or the 601) are simlar
to normal chips, very little verbage will be spent.

Dl SCUSSI ON == - - - m e e oo e e oo oo a e

Architecture

The 601 is the first chip to inplement the new PowerPC architecture (as
described in the Version 1.01 docunents). However, since it is intended as a
bridge chip for IBM it also includes the existing PONER instruction set. It
is, therefore, the union of the two instruction sets.

There are several areas where the architectures differ in a rather fundanenta
way (for exanple, virtual address translation); in these areas, PowerPC
prevails.

Branch Processor

The Branch Processor is logically responsible for all instruction fetching of

t he Power PC architecture. 1t also decodes instructions to determ ne to which
execution unit they should be sent for execution. The 601 uses pre-fetching to
attenpt to keep ahead of the execution units. Up to 9 instructions are

contai ned within the Branch Processor, in a so-called "pre-fetch pipeline". In
the 601, the bottom stage of the pipeline is what is nornally referred to as the
"Decode" stage of traditional Rl SC pipelines.

As instructions fall out of the bottom of the pipe (that is, proceeding from
Decode to Execute, by being sent to the Fixed Point and/or Floating Point

processors), the pipeline is filled by the pre-fetch |ogic.

Branch Instruction Processing:

The Branch Processor in PowerPC (as in PONER) "executes" all branch
instructions. Note that "executing" a branch sinply nmeans to continue fetching
froma different |ocation than the current sequential streaminplies. The 601
exam nes the last 4 stages of the pre-fetch pipeline, |ooking for branches.

Uncondi tional branches cause the pipeline stages above (and, including) the
stage in which the branch is detected to be "flushed". Fetching of instructions
tore-fill the pipe are then made fromthe "target address" of the branch

(Note that a conditional branch whose condition is determned early enough is
processes the same as an unconditional branch.)

Condi ti onal branches whose condition is not yet known when processed by the
Branch Processor are "predicted". That is, instruction pre-fetching will be
attenpted along a path (taken vs. not taken) which is "guessed" by the hardware.

In the 601, this prediction is based upon the direction of the branch (that is,
the sign of its displacenent). A "backwards" branch is predicted as taken; a
"forwards" branch is predicted as not taken.

When the first instruction of a predicted path reaches the Decode stage (that

is, the bottomof the pre-fetch pipe), and the condition is not yet known, the
Branch Processor will stall, waiting for an indication of whether its prediction
was correct. Wen the condition becones known, the Branch Processor wll either
et the instruction in Decode proceed to Execute (if it predicted correctly) or
flush the entire pipeline and re-fetch fromthe correct path.

When a branch is detected early enough, the pipe can be refilled before it would

run "dry". As long as branches can be detected (and, for conditional branches,
the proper direction can be determ ned) early enough, branches "execute" in
"zero" tine. In the 601, this translates into a general rule that branches

whi ch are separated by at |east two non-branch instructions will execute w thout
branch-i nduced del ays.

In the 601, only one "predicted" conditional branch can be "outstandi ng" at any
time.

M ni - TLB.

Code fetches have to be translated |ike any other menory access. |In order to
m nimze the overhead of translating every code fetch, the Branch Processor
contains a copy of the last four page translations which were npst recently
fetched. Any fetch to one of these pages will not cause any explicit address
translation. However, when a branch is taken to a page not contained within
this mini-TLB, the branch is sent to the Fixed Point Processor, which performs
the address translation. The resulting translation will update one of the 4
entries in the mni-TLB

Accesses to addresses not contained in the mini-TLB will not be attenpted until
the branch is known to be taken. Thus, conditional branches will incur extra
delay if they are not to one of the 4 nost recently used pages.

Non- Br anches

Power PC i ncl udes a group of instructions which primarily operate upon the
Condition Register. They are described within the Branch Processor chapter
because they were processed by the Branch Processor in the original POAER
chi p-set.

However, in the 601, only branch instructions are processed by the Branch
Processor. All of the other "branch processor" instructions are actually
executed by either the Fixed Point Processor or the "Sequencer"

Fi xed Poi nt Processor

The Fi xed Point Processor is prinmarily intended to execute the Fixed Poi nt

i nstructions of PowerPC. However, as nentioned above, the 601's Fi xed Poi nt
Processor al so executes npbst of the non-branch instructions described in the
Power PC Branch Processor chapter.

The Fi xed Point Processor also perforns all address translation. Thus, al

| oads and stores (both Fixed and Floating Point) have their address generation
(that is, conputing the Effective Address) and translation (converting from

EA- >VA- >RA) executed within the Fixed Point Processor. (A conplete description
of Address Transl ation appears as a separate section in this docunent).

In general, all Fixed Point instructions execute in one clock, and the result of
the operation is i mediately avaiable to a successive instruction. The
exceptions to this rule are Loads (discussed below), Miltiplies (which take 5
clocks for short results and 9 clocks for long) and Divides (which take up to 36
clocks). Miltply and Divide instructions actually "stall" in the Execute stage
of the Fixed Point Processor, thereby preventing execution of any follow ng

Fi xed Point instructions until they conplete.

The inportant timing nunber of Loads is its "latency". For exanple, if one has
a "dependent" operation, how nmany extra clocks are required. 1In the 601
assum ng that the data is aligned and in the cache, one "extra" clock is
required to load the register with the correct data. This inplies a genera
rul e that one should have at |east one instruction between a |oad and any
dependent instruction in order to elimnate extra cl ocks.

Fl oati ng Poi nt Processor

The Floating Point Processor executes all of the Floating Point instructions of
Power PC. In general, Floating Point instructions take 3 clocks to produce a
result, with the exception being FP Divide, which takes up to 31 clocks. Thus,
sequences of dependent Floating Point conputations will execute at 1 every 3

cl ocks. However, sequences of Adds, Subtracts and Multiplys which can overlap
their conputations so that no dependencies are within the 3 clock latency will
execute at 1 per clock

A Floating Point Add or Subtract can be "issued" every clock, as long as its
sources are available. Floating Point Miultiplys can be issued every other
clock. A Floating Point Divide stalls the entire unit.

Note that all Floating Point Loads and Stores require processing by the Fixed
Poi nt Processor (for address conputation and translation). Thus, they fill a

slot in both units.

Address Transl ati on

The 601 i nplements the PowerPC translation nechanism which is different from
that of the original RS/ 6000s and the RSC. (See the Storage Control chapter in
t he Power PC Qperating Environnent Architecture docunment for details.)

The Power PC docunents define the nmenory structure which is used for address
translation (the Hash Table). Like nost processors, the 601 uses a Translation
Lookasi de Buffer (TLB) to "cache" recently used translations to mninze the
overhead of a full "table |Iookup" for translations. Addresses which translate
to "recently used" pages will be found within the TLB, thereby circumenting the
conpl ete process of tabl e wal king.

The 601's TLB is organized as a 2-way set-associative cache with 128 sets, using
LRU updating. Thus, up to 256 translations are available with no extra
processing tine required. (Note: if an operating systemuses the ful

capabilities of the PowerPC translati on mechanism no explicit "flushing" of the
TLB i s necessary.)

If atranslation is not available within the TLB, the Sequencer is invoked to
performthe actual Hash Tabl e wal ki ng.

The 601 contains a 32 KB Unified cache, organized as 8-way set-associative, with
64 sets, using LRU updating. Each cache line is 64 Bytes, divided into two
"sectors"; a sector is the unit which is processed as a single burst
transaction on the bus. (The termUnified neans that the cache is shared
bet ween Code and Data.)

The cache is normally run in "Store-1n" (CopyBack). This neans that stores are
performed by updating the cache contents and marking that cache sector as
"dirty". Subsequent re-use of the cache Iine will cause dirty sectors to be
witten to nenory.

Sequencer

In addition to the "architected" functional units described in the PowerPC
docunents, the 601 also contains a m cro-coded "Sequencer". This sequencer
perfornms any of the "hard" tasks which the hardware can't. This includes such
things as Loads and Stores to "I/ Q0" space (that is, accesses where the Segnent
Regi ster has its T-bit == 1), TLB m sses, exception processing (that is,
processing interrupts).

Note that the Sequencer is normally inactive. Wen it does becone activated
(for exanple, by a TLB miss), all processing in the Branch and Fi xed Poi nt and
Fl oati ng Point Processors is suspended. In other words, the Sequencer "takes
over" the hardware.

(The only reason for nmentioning the Sequencer is that it is referred to in
various other docunents.)

Support Information Services
Copyri ght 1994, Apple Computer, Inc.

Keywords: kppc

This information is fromthe Apple Technical Information Library.

19960215 11:05: 19. 00
Tech Info Library Article Number: 14834

