
AppleSingle/AppleDouble  Formats: Developer's Note (9/94)

Article Created: 21 September 1994

TOPIC -----------------------------------------------------------

This article contains the text from AppleSingle/AppleDouble Formats for Foreign
Files Developer’s Note.

DISCUSSION ------------------------------------------------------

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, mechanical,
electronic, photocopying, recording, or otherwise, without prior written
permission of Apple Computer, Inc. Printed in the United States of America.

Apple, the Apple logo, AppleTalk, Macintosh, and ProDOS are registered
trademarks of Apple Computer, Inc.
Finder is a trademark of Apple Computer, Inc.
MacWrite is a registered trademark of Claris Corporation.
MS-DOS is a registered trademark of Microsoft Corporation.
NFS is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.

Chapter 1:  Choosing AppleSingle or AppleDouble
            Terminology

Chapter 2:  AppleSingle file header
               Magic number
               Version number
               Filler
               Number of entries
               Entry descriptors
               Predefined entry IDs
            File layout
            Filename conventions
               ProDOS
               MS-DOS
               UNIX and NFS
            Usage

Chapter 3:  Filename conventions
               ProDOS
               MS-DOS

Tech Info Library



               UNIX and NFS
            Usage

Appendix

Preface
-------
This document describes version 2 of the AppleSingle/AppleDouble file formats.

To compare this version with version 1 of the AppleSingle/AppleDouble file
formats, refer to Appendix B of the A/UX Toolbox: Macintosh ROM Interface
manual.

You can also find a description of version 1 in the Apple II File Type Notes for
file types $E0.0001-AppleSingle and $E0.0002/$E0.0003-AppleDouble. These File
Type Notes are available through Apple Developer Technical Support.

Chapter 1: About AppleSingle/AppleDouble Formats
------------------------------------------------

When a file is exchanged between file systems that do not support the same file
attributes, some of the file’s attributes are lost. Apple Computer has developed
two file formats, called AppleSingle and AppleDouble, that allow files to
maintain their file attributes on foreign file systems that do not support the
same attributes.

The AppleSingle and AppleDouble formats were initially developed to store
Macintosh files on file systems that do not support the Macintosh file
structure. However, these formats can also be used to represent almost any kind
of file on almost any file system. They assume only that the file systems used
allow you to create a file as a set of contiguous bytes.

The AppleSingle/AppleDouble file format is not tied to a single home file
system. A file is stored as a heterogeneous collection of data and attributes,
which are interpreted as needed by the application reading the file.

The AppleSingle or AppleDouble format can be used

•  as a standard format for transferring files among differing, or
   heterogeneous, computers.
•  as a standard format for transferring files within a single computer.

- Choosing AppleSingle or AppleDouble -

The AppleSingle and AppleDouble formats are alike in that they use the same
components to represent a file on a foreign system:  data, resources, and
attributes. The difference between the two formats is that the AppleSingle
format stores these components in a single foreign file, and the AppleDouble
format stores these components in two foreign files—one for the data, the other
for the resources and attributes.

Applications may use either AppleSingle or AppleDouble when they create files on



foreign file systems; however, they must understand both formats.

To find out which format is appropriate for you, examine your application. If
the AppleSingle format is used, home file system data cannot be moved or deleted
inconsistently; however, the AppleSingle format is harder to update. The
AppleDouble format is easier to modify but one of the two AppleDouble files can
be moved or deleted inconsistently.

If you are building an AppleTalk Filing Protocol (AFP) server (or any other
server that supports the Macintosh computer), then you may want to use one of
these formats as your application’s internal or external file storage format.
The choice is yours. It doesn’t matter which format is used within your
application, but it is suggested that you use one of these formats as your
external storage format so that files can be shared by other applications
running on the same machine as your application.

- Terminology -

The following terms are relevant to the discussion of AppleSingle and
AppleDouble file formats.

A Macintosh file has two forks: the resource fork and the data fork. The
resource fork contains data used by an application, such as menus, fonts, and
icons. An executable file’s code is also stored in the resource fork. The data
fork contains data specific to an application.

The home file system is the primary file system for which the file’s contents
were created. The home file system is not necessarily the file system in which
the file was created. For example, if a program running on a UNIX system creates
a file that holds a MacWrite document, the file’s home file system is the
Macintosh file system —not the UNIX file system— because the file’s contents are
formatted for a Macintosh application.

In contrast to the home file system is the foreign file system, which is the
other file system that stores or processes the created file. In the previous
example, the UNIX file system is the foreign file system.

Chapter 2: The AppleSingle Format
---------------------------------

In the AppleSingle format, a file’s contents and attributes are stored in a
single file in the foreign file system. For example, both forks of a Macintosh
file, the Finder™ information, and an associated comment are arranged in a
single file with a simple structure.

An AppleSingle file consists of a header followed by one or more data entries.
The header consists of several fixed fields and a list of entry descriptors,
each pointing to a data entry. Each entry is optional and may or may not appear
in the file.

- AppleSingle file header -

Table 2-1 describes the contents of an AppleSingle file header.



Table 2-1: AppleSingle file header

Field                            Length
-----                            ------
Magic number                     4 bytes
Version number                   4 bytes
Filler                          16 bytes
Number of entries                2 bytes
Entry descriptor for each entry:
      Entry ID                   4 bytes
      Offset                     4 bytes
      Length                     4 bytes

Byte ordering in the file header fields follows MC68000 conventions, most
significant byte first. The fields in the header file follow the conventions
described in the following sections.

Magic number

This field, modeled after the UNIX magic number feature, specifies the file’s
format. Apple has defined the magic number for the AppleSingle format as
$00051600 or 0x00051600.

Version number

This field denotes the version of AppleSingle format in the event the format
evolves (more fields may be added to the header). The version described in this
developer’s note is version $00020000 or 0x00020000.

Filler

This field is all zeros ($00 or 0x00).

Number of entries

This field specifies how many different entries are included in the file. It is
an unsigned 16-bit number. If the number of entries is any number other than 0,
then that number of entry descriptors immediately follows the number of entries
field.

Entry descriptors

The entry descriptors are made up of the following three fields:

•  Entry ID, an unsigned 32-bit number, defines what the entry is. Entry
   IDs range from 1 to $FFFFFFFF. Entry ID 0 is invalid.
•  Offset, an unsigned 32-bit number, shows the offset from the beginning
   of the file to the beginning of the entry’s data.
•  Length, an unsigned 32-bit number, shows the length of the data in
   bytes. The length can be 0.

Predefined entry IDs



Apple has defined a set of entry IDs and their values as follows:

Data Fork             1  Data fork
Resource Fork         2  Resource fork
Real Name             3  File’s name as created on home file system
Comment               4  Standard Macintosh comment
Icon, B&W             5  Standard Macintosh black and white icon
Icon, Color           6  Macintosh color icon
File Dates Info       8  File creation date, modification date, and so on
Finder Info           9  Standard Macintosh Finder information
Macintosh File Info  10  Macintosh file information, attributes, and so on
ProDOS File Info     11  ProDOS file information, attributes, and so on
MS-DOS File Info     12  MS-DOS file information, attributes, and so on
Short Name           13  AFP short name
AFP File Info        14  AFP file information, attributes, and so on
Directory ID         15  AFP directory ID

Apple reserves the range of entry IDs from 1 to $7FFFFFFF. The rest of the range
is available for applications to define their own entries. Apple does not
arbitrate the use of the rest of the range.

Applications reading an AppleSingle or AppleDouble file interpret the entry IDs
that are relevant to their home file system and treat the other entries as
opaque data. For example, a Macintosh client application will understand entry
IDs 1 through 6 and 8 through 10. A ProDOS® client application reading the same
file will read entry ID 11 instead of entry IDs 9 and 10.

Entry IDs 1, 3, and 8 are typically created for all files; entry ID 2 only for
Macintosh and ProDOS files; entry IDs 4, 5, 6, 9, and 10 only for Macintosh
files; entry ID 11 only for ProDOS files; entry ID 12 only for MS-DOS files; and
entry IDs 13, 14, and 15 only by AFP servers.

Macintosh Icon entries do not appear in most files because they are typically
stored as a bundle in the application file’s resource fork.

The File Dates Info entry (ID=8) consists of the file creation, modification,
backup and access times (see Figure 2-1), stored as a signed number of seconds
before or after 12:00 a.m. (midnight), January 1, 2000 Greenwich Mean Time
(GMT). In other words, the start of the year 2000 GMT corresponds to a date-time
of 0. Applications must convert to their native date and time conventions. When
initially created, a file’s backup time and any unknown entries are set to
$80000000 or 0x80000000, the earliest reasonable time.

The Macintosh Finder Info entry (ID=9) consists of 16 bytes of Finder Info
followed by 16 bytes of extended Finder Info; that is, the field ioFlFndrInfo
followed by ioFlXFndrInfo, as returned by the Macintosh PBGetCatInfo call. (The
PBGetCatInfo and the internal structures of ioFlFndrInfo and ioFlXFndrInfo are
described in Inside Macintosh.)

Newly created files have 0s in all Finder Info subfields. If you are creating an
AppleSingle or AppleDouble file, you may assign 0 to any subfield whose value is
unknown (most subfields are undefined if the file does not reside on a valid



hierarchical file system [HFS] volume), but you may want to set the fdType and
fdCreator subfields.

One additional field must be set in the directory Finder Info entry. Whenever
the Finder encounters a new (“inited” bit clear) directory, it initializes the
frView field of the directory Finder Info to a value indicating how the contents
of the directory should be viewed when opened (by icon, by small icon, and so
on). Zero is not a legal value. This is not a problem as long as the client has
write permission for the directory.

The Finder will place a legal value into the frView field when it initializes
the directory. However, if the directory permissions deny making changes, the
initial value will remain unchanged and cause the Finder to display things
strangely. Consequently, it is appropriate to set the frView field when the
Finder Info is assigned to a new host directory. For example:

#define closedView 256   /* Normal view - icon, spatial */
/* ... */
dirFinderInfo.frView = closedView;

This results in the traditional “view by icon” display when the Finder first
opens the window for that directory.

The Macintosh File Info entry (ID=10) is 32 bits that stores the locked and
protected bit. Macintosh file times are stored in entry ID 8.

The ProDOS File Info entry (ID=11) consists of the file access, file type, and
file auxiliary type. ProDOS file times are stored in entry ID 8.

The Access word may be used directly in ProDOS 16 or GS/OS calls; only the low
byte is significant to ProDOS 8. The File Type word is the file type of the
original file; only the low byte is significant to ProDOS 8. The Auxiliary Type
long word is the auxiliary type of the original file; only the low word is
significant to ProDOS 8.

UNIX file times are stored in entry ID 8.

The MS-DOS File Info entry (ID=12) is 16 bits that stores the MS-DOS attributes.
MS-DOS file times are stored in entry ID 8.

The Short Name entry (ID=13) is the AFP short name. AFP servers must keep a
mapping of short names for all foreign files. This short name is stored in entry
ID 13.

If entry ID 13 does not exist, an AFP server derives a short name and creates
this entry. When they derive short names, AFP servers must ensure that the
derived names are unique within the directory. In order to ensure that short
names for new foreign files don’t conflict with existing short names, the
following convention is used:  AFP servers start all derived names with the
character “!” ($21 or 0x21). AFP clients are not allowed to access foreign files
that begin with this character (!). Except for this restriction on foreign AFP
servers, the short name algorithm remains flexible.



The AFP File Info entry (ID=14) is the AFP attributes word, as shown in Figure
2-5. AFP servers should set the BackupNeeded bit whenever a file is modified, or
if the AppleSingle/AppleDouble foreign file’s modification time is later than
the modification time in entry ID 8.

The Directory entry (ID=15) is the AFP directory ID. AFP servers keep the 4-byte
directory ID in this entry. This ID is assigned when a directory is created, or
when a directory AppleDouble header file without an ID entry is found. The next
unused ID is kept in the volume root info file, %RootInfo, in the volume root
directory. The %RootInfo file is an AppleDouble header file with entries 3, 4,
8, 9, and 15 (Real Name, Comment, Volume Dates, Finder Info, and Next File ID).
It must be locked when it is updated.

- File layout -

The entry data follows all of the entry descriptors. The data in each entry must
be in a single, contiguous block. You can leave holes in the file for later
expansion of data. For example, even if a file’s comment field is only 10 bytes
long, you can place the offset of the next field 200 bytes beyond the offset of
the comment field, leaving room for the comment to grow to its maximum length of
200 bytes.

The entries can appear in any order, but you can maximize the efficiency of file
access by following these conventions:

•  Put the data fork entry at the end of the file. The data fork is the
   most commonly extended entry, and it is easier to increase its length if
   it is the last entry in the file.
•  Put the entries that are most often read, such as Finder Info, File
   Dates Info, and Macintosh File Info, as close as possible to the header,
   to increase the probability that a read of the first block or two will
   retrieve these entries.
•  Allocate the resource fork entry in blocks of 4 kilobytes (K) in order
   to minimize reorganization of AppleSingle files during updates to the
   resource fork.

- Filename conventions -

AppleSingle name derivations for some of the file systems of interest are
defined in the following sections.

ProDOS

To generate the AppleSingle filename, use character substitution or deletion to
remove illegal characters, and use truncation, if necessary, to reduce the
length of the name to the maximum filename length of 15 characters.

MS-DOS

To generate the AppleSingle filename, use character substitution or deletion to
remove illegal characters, and use truncation, if necessary, to reduce the
length of the name to 8 characters. Then add the MS-DOS extension that is most
appropriate to the file (for example, .TXT for a pure text file).



UNIX and NFS

AppleSingle naming conventions for UNIX and the Network File System (NFS) are
essentially the same; they vary only according to the capabilities of the
foreign file system. The creating application must use the naming convention
that is the most complete subset of the foreign file system, and the naming
convention must be constant across a single foreign file system volume.

There are three naming conventions:

•  8-bit
•  7-bit ASCII
•  7-bit alphanumeric

With the 8-bit naming convention, the foreign file system can store at least 93
character filenames consisting of all 8-bit characters except slash ($2f or
0x2f), null ($00 or 0x00), and percent ($25 or 0x25). The slash, null, and
percent characters are replaced by a percent character, followed by the
two-character hexadecimal code of the escaped character. For example, the home
file system name Cañada return - 20% becomes Cañada return - 20%25.

With the 7-bit ASCII naming convention, the foreign file system can store at
least 93 character filenames consisting of all 7-bit ASCII characters except
slash ($2f or 0x2f), null ($00 or 0x00), and percent ($25 or 0x25). The slash,
null, and percent characters are replaced by a percent character, followed by
the two- character hexadecimal code of the escaped character. In addition, all
extended 8- bit characters ($80 – $ff or 0x80 – 0xff) are replaced by a percent
character, followed by the two-character hexadecimal code of the escaped
character. For example, the home file system name Cañada return - 20% becomes
Ca%96ada return - 20%25.

With the 7-bit alphanumeric naming convention, the foreign file system can store
at least 93 character filenames consisting of all 7-bit alphanumeric characters
except slash ($2f or 0x2f), null ($00 or 0x00), and percent ($25 or 0x25). The
slash, null, and percent characters are replaced by a percent character,
followed by the two-character hexadecimal code of the escaped character. In
addition, all nonalphanumeric characters except underscore ($5f or 0x5f) and the
last period ($2e or 0x2e) are replaced by a percent character, followed by the
two-character hexadecimal code of the escaped character. For example, the home
file system name Cañada return - 20% becomes Ca%96ada%20return%20%2d%2020%25.

Since expanding characters into “%” followed by two hexadecimal digits can
result in long filenames, some foreign systems may not be able to store complete
31-character filenames. Behavior under these conditions is not defined here.

- Usage -

AppleSingle files must be locked during access to ensure data integrity.

Applications that access AppleSingle files ignore all unknown entries, yet
preserve the unknown entries when moving or copying files.



The Real Name entry is associated with file storage. File server applications
typically use the reverse mapping of the foreign filename when they present
names to the client. Servers do not create or read a Real Name entry.

When the home file system name is renamed, the foreign filename must be renamed
according to the filename conventions described in the previous sections.

Chapter 3: The AppleDouble Format
---------------------------------

The AppleDouble format uses two files to store data, resources, and attributes.
The AppleDouble Data file contains the data fork and the AppleDouble Header file
contains the resource fork.

The AppleDouble Data file contains the standard Macintosh data fork with no
additional header. The AppleDouble Header file has exactly the same format as
the AppleSingle file, except that it does not contain a data fork entry. The
magic number in the AppleDouble Header file differs from the magic number in the
AppleSingle Header file so that an application can tell whether it needs to look
in another file for the data fork. The magic number for the AppleDouble format
is $00051607 or 0x00051607.

The entries in the AppleDouble Header file can appear in any order; however,
since the resource fork is the entry that is most commonly extended (after the
data fork), Apple recommends that the resource fork entry be placed last in the
file. The data fork is easily extended because it resides by itself in the
AppleDouble Data file.

It is possible to create a new type of entry in the AppleDouble Header file that
points to the AppleDouble Data file to make it easy to find. For example, an
application-defined entry might hold the name of the AppleDouble Data file. Some
foreign file systems might provide a feature that allows a more permanent
pointer to be created—one that would not require the pointer to be updated if
the AppleDouble Data file were renamed.

- Filename conventions -

The following sections present a standard for deriving the AppleDouble Data and
AppleDouble Header filenames from the file’s Real Name. Because filename syntax
differs in the various file systems, the standard varies by file system.

Knowing the AppleDouble name derivations for some of the file systems of
interest will allow applications running on foreign file systems and users to
see which files are AppleDouble pairs. Users who know the derivation can rename
or move the files while preserving the connection between the two. However,
there is no guaranteed way to prevent one file in the pair from being
inconsistently renamed, moved, or deleted.

ProDOS

To generate the AppleDouble Data filename, use character substitution or
deletion to remove illegal characters, and use truncation, if necessary, to
reduce the length of the name to 13 characters, two characters less than the



maximum filename length.

To generate the AppleDouble Header filename, prefix the AppleDouble Data
filename with the characters uppercase-R period (R.).

MS-DOS

To generate the AppleDouble Data filename, use character substitution or
deletion to remove illegal characters, and use truncation, if necessary, to
reduce the length of the name to eight characters. Then add the MS-DOS extension
that is most appropriate to the file (for example, .TXT for a pure text file).

To generate the AppleDouble Header filename, add the extension .ADF (for
AppleDouble file) to the eight-character filename.

UNIX and NFS

AppleSingle/AppleDouble naming conventions for UNIX and NFS are essentially the
same; they vary only according to the capabilities of the foreign file system.
The creating application must use the naming convention that is the most
complete subset of the foreign file system, and the naming convention must be
constant across a single foreign file system volume.

There are three naming conventions:

•  8-bit
•  7-bit ASCII
•  7-bit alphanumeric

With the 8-bit naming convention, the foreign file system can store at least 93
character filenames consisting of all 8-bit characters except slash ($2f or
0x2f), null ($00 or 0x00), and percent ($25 or 0x25). The slash, null, and
percent characters are replaced by a percent character, followed by the
two-character hexadecimal code of the escaped character. For example, the home
file system name Cañada return - 20% becomes Cañada return - 20%25.

With the 7-bit ASCII naming convention, the foreign file system can store at
least 93 character filenames consisting of all 7-bit ASCII characters except
slash ($2f or 0x2f), null ($00 or 0x00), and percent ($25 or 0x25). The slash,
null, and percent characters are replaced by a percent character, followed by
the two- character hexadecimal code of the escaped character. In addition, all
extended 8- bit characters ($80 – $ff or 0x80 – 0xff) are replaced by a percent
character, followed by the two-character hexadecimal code of the escaped
character. For example, the home file system name Cañada return - 20% becomes
Ca%96ada return - 20%25.

With the 7-bit alphanumeric naming convention, the foreign file system can store
at least 93 character filenames consisting of all 7-bit alphanumeric characters
except slash ($2f or 0x2f), null ($00 or 0x00), and percent ($25 or 0x25). The
slash, null, and percent characters are replaced by a percent character,
followed by the two-character hexadecimal code of the escaped character. In
addition, all nonalphanumeric characters except underscore ($5f or 0x5f) and the
last period ($2e or 0x2e) are replaced by a percent character, followed by the



two-character hexadecimal code of the escaped character. For example, the home
file system name Cañada return - 20% becomes Ca%96ada%20return%20%2d%2020%25.

To generate the AppleDouble Header filename, prefix the AppleDouble Data
filename with the percent character (%). Conflicts between AppleDouble Header
files and AppleSingle or data files that begin with “%,” are resolved by the
file’s magic number.

Since expanding characters into “%” followed by two hexadecimal digits can
result in long filenames, some foreign systems may not be able to store complete
31-character filenames. Behavior under these conditions is not defined here.

- Usage -

AppleDouble Header files must be locked during access to ensure data integrity.

Applications that access AppleDouble files ignore all unknown entries, yet
preserve them when moving or copying files.

Directories are stored as AppleDouble files if they are created by the
application.

The Real Name entry is associated with file storage. File server applications
typically use the reverse mapping of the foreign filename when they present
names to the client. Servers do not create or read a Real Name entry.

When renaming the home file system name, the foreign filename must be renamed
according to the filename conventions described in the previous sections.

Applications should not create AppleDouble Header files for preexisting foreign
directories or files unless this is necessary to store AppleDouble entries.

Appendix: Updating Version 1 AppleSingle/AppleDouble Files
----------------------------------------------------------

Applications should create AppleSingle/AppleDouble files using the version 2
format and naming conventions described in this document. Applications should
understand version 1 ($00010000 or 0x0010000) format and naming conventions but
should not create new files in the version 1 format.

You can update version 1 files to version 2 files by performing the following
steps:

•  Overwrite the version number and filler fields in the AppleSingle or
   AppleDouble file header.
•  Replace the File Info entry (ID=7) in the version 1 file with the File
   Dates Info entry (ID=8) and one of the following entry IDs:  Macintosh
   File Info (ID=10), ProDOS File Info (ID=11), or MS-DOS File Info
   (ID=12).

Support Information Services
Copyright 1994, Apple Computer, Inc



Keywords:  <None>

==================================================================

This information is from the Apple Technical Information Library.

19960215 11:05:19.00

16333Tech Info Library Article Number:


