
Open Transport and Compatibility Mode (9/95)

Article Created: 20 June 1995
Article Reviewed/Updated: 19 September 1995

TOPIC ---

This article describes how the new Open Transport (OT) networking architecture
maintains compatibility with older networking schemes.

DISCUSSION --

In addition to its standards-based APIs (XTI, TPI, and DLPI), Open Transport
includes support for many of the existing ("classic") networking and
communications APIs to provide backwards-compatibility for existing AppleTalk
and MacTCP applications, and for select other networking software.

AppleTalk backwards compatibility

AppleTalk backwards compatibility is accomplished by trapping all networking
calls at the ".ddp" driver level. Above the DDP protocol, applications written
to the classic AppleTalk APIs are actually running the classic implementations
of AppleTalk. When the packets reach the DDP protocol layer, calls to the .ddp
driver are intercepted, translated to the corresponding XTI calls, and are
passed to Open Transport for processing. The process is reversed for incoming
packets (OT receives the packet, native DDP handles the packet, the data is
repackaged into an AppleTalk parameter block API, and control is passed back to
the upper layer as if it had come from the .ddp driver).

The primary advantage of this approach is that backwards compatibility is very
robust. Since the classic implementations of ADSP, ASP, ATP, NBP, ZIP, and so on
are all used, we didn't have to attempt a "warts and all" emulation layer. It
also turns out that this decreases our overall footprint, as compared to an
implementation strategy where we would have tried to trap all packets at the top
of the protocol and remap to their OT native counterparts -- that is, there is
only the one DDP emulation shim, rather than an ADSP shim, an ASP shim, an ATP
shim, a ZIP shim, an NBP shim, a PAP shim, and so on.

The primary disadvantage of this approach is that backwards compatibility,
especially on the Power Macintosh, does not gain any meaningful performance
increase for applications running in backward compatibility. Afterall, most of
the stack is still running in emulation - only DDP is actually native. And add

Tech Info Library

on top of that the increased cost of the mixed mode context switch from 680x0 to
native (or native to 680x0) for each packet handled.

TCP/IP backwards compatibility

TCP/IP backwards compatibility is accomplished by trapping all networking calls
at the ".ipp" driver level. Since MacTCP was implemented essentially as a single
monolithic driver, this means that there was only one place where networking
calls could be intercepted and emulated. Calls to .ipp are trapped, mapped to
appropriate XTI calls, and the OT/TCP stack handles the rest. The process is
reversed on incoming packets.

The primary advantage of this approach (not that there really was any technical
alternative) is performance. The entire handling of the packet happens in the
new OT implementation. Especially on Power Macintosh, that means networking goes
native as soon as the application makes the call to the driver (well,
technically as soon as the emulation shim maps the driver call to the XTI call.
The emulation shim still runs as 680x0 code).

The primary disadvantage of this approach is that backward compatibility is
potentially less robust. It is a completely new code base for TCP and developers
may be depending on idiosyncrasies of MacTCP -- if so, they will probably
break.

Other networking compatibility

• DLPI to .enet conversion. Current NuBus Macintosh computers (680x0 and DLPI)
have ethernet implementations that rely on the '.enet' driver architecture and
API specification. Open Transport, however, expects to communicate only with
DLPI drivers. To allow OT to run on NuBus Macintosh computers without requiring
the creation of new drivers (that is, to allow existing cards and drivers to be
used with OT), we've created an adapter that accepts DLPI calls (from the 'top)
and converts them to .enet calls (out the bottom). This is believed to be quite
robust (or will be when the next version of OT ships).

• .enet to DLPI conversion. Certain other networking products, including
protocols like MacIPX and PATHWORKS DECnet, and certain applications software
products, such as Insignia SoftWindows, have been written to bypass AppleTalk
and MacTCP, and talk directly to the .enet driver. This is a problem, because
early PCI-based Power Macintosh computers will have ONLY DLPI drivers for
networking -- no .enet will exist on the Power Macintosh 9500 with the first
release of Open Transport.

Later versions of Open Transport will allow these protocols and applications to
run on early PCI-based Power Macintosh computers, a special adapter has been
created that accepts .enet calls (from the 'top') and converts them to DLPI
calls (out the bottom). This software is designed as a stop-gap compatibility
measure until new versions of such software can be created for early PCI-based
Power Macintosh computers. Because of this, it has two key limitations: it only

supports the built-in ethernet adapter (which means that you can't run the
current versions of SoftWindows or MacIPX or PATHWORKS on a PCI based networking
card); and it does not support promiscuous mode (which means that you can't use
an early PCI-based Power Macintosh with the current version of NetMinder or
EtherPeek).

There are no other API changes or backward compatibility issues in OT v1.0.

Article Change History:
19 Sep 1995 - Changed access privileges to Everyone.
07 Sep 1995 - Made editing corrections.
14 Jul 1995 - Clarified version numbers mentioned.

Support Information Services
Copyright 1995, Apple Computer, Inc.

Keywords: supt,cnfg,kcompat,sys75

==

This information is from the Apple Technical Information Library.

19960215 11:05:19.00

17989Tech Info Library Article Number:

