
ABS Tech Note: SNA•ps08 3270 API (9/94)

Article Created: 26 April 1993
Article Reviewed/Updated: 27 September 1994

TOPIC ---

This technical note discusses Host-based File Transfer support as
implemented in the Apple 3270 API 2.0.

DISCUSSION --

Introduction

The Apple 3270 API 2.0 supports file-transfers that allow Macintosh
applications to store and retrieve data from files located on an IBM host
computer. This support allows an application to perform file transfer
without regard to the underlying host connection or subsytem.

This Technical Note describes the use of these file transfer requests for
SNA•ps Access/3270, Apple's implementation of the Apple 3270 API 2.0. The
transfer of files takes place via the 3270 Data Stream and a family of
host-based File Transfer programs collectively known as IND$FILE.

SNA•ps Access/3270

The Apple 3270 API 2.0 is a defined programming language interface between
the 3270 data stream and Macintosh client applications. SNA•ps Access/3270
is Apple's implementation of the 3270 API, allowing connectivity to IBM
hosts via the SNA•ps line of gateway products.

Host-Based File Transfer

The File Transfer between an IBM host and a Macintosh using SNA•ps
Access/3270 is controlled by the host application. This application
(IND$FILE) is initiated by SNA•ps Access/3270 sending a command to the host
to start the file transfer. SNA•ps Access/3270 sends this command in
response to a StartSend/StartReceive request from the Macintosh
application. After the file transfer begins, IND$FILE issues requests to
SNA•ps Access/3270, and waits for the response. SNA•ps Access/3270 may
issue a message to cancel a file transfer operation, but it is up to
IND$FILE as to whether/when the cancel takes effect.

Host Environments and Transport mechanisms

Tech Info Library

--
IND$FILE operates in three (3) major Host environments—TSO, CICS/VS, and
VM/CMS. Each of these environments has a specific implementation of
IND$FILE installed to support Host-based file transfer.

There are two mechanisms used to implement the transfer of file information
using the 3270 Data Stream.

• PS-based File Transfer (CUT): The Presentation Space (PS) is used to
 transfer the file data to/from the Host. The PS has several specific
 formats which differ depending upon the direction of the file transfer.
 These are:
 UPLOAD format - used when sending a file to the Host
 DOWNLOAD format - used when retrieving a file from the Host
 CONTROL format - used to pass control information to the Macintosh
 from the Host.

These formats are defined in the section "PS Screen Formats" as 'C'
language structures.

• SF File Transfer (DFT): This mechanism uses Structured Fields (SF) to
 transfer the file to/from the host. The SFs used are part of the
 Distributed Data Management (DDM) architecture, and are known
 colloquially as D0(D-ZERO) SFs. Only a small set of the D0 SFs are used;
 this subset is defined in the section "D0 Structured Fields Subset".

Since there are three (3) possible host environments, and two (2) possible
transport mechanisms for each host environment, there are a total of six
(6) possible ways to do file transfer.

SNA•ps Access/3270 Requests for File Transfer

SNA•ps Access/3270 simplifies Host-based file transfer by providing a
single set of file transfer requests which are independent of the transport
protocol used. These requests are:

• StartSend () - allows an application to initiate file transfer to the
 Host.

• StartReceive () - allows an application to initiate file transfer from
 the Host.

• DoSend () - allows an application to send data to the Host, signal the
 end of data to be transferred (i.e., End of File), and abort the file
 transfer.

• DoReceive () - allows an application to receive data from the Host,
 receive messages from the Host (i.e. End of File), and indicate that the
 application wishes to abort the file transfer.

SNA•ps Access/3270 File Transfer Requests Validation
--
SNA•ps Access/3270 will validate the parameters to the File Transfer

requests and return an error code without performing the operation, if
there is an error. If parameter validation fails, the following error
codes may be returned:

StartSend
 Return Code Reason
 --------------------- ---
 kAPIFTTypeParm TransferType not equal to kINDFILE.
 kAPIFTFileNameParm hostFileName not specified.
 kAPIFTHostEnvirParm verifyName is true and hostEnviron is not
 specified
 kAPIFTFileTypeParm fileType is not kTestFile or kBinaryFile
 kAPIFTBadFEParam fileExists is not kNewHostFile, kAppendHostFile,
 or kReplaceHostFile
 kAPIFTRTParam recordType is not kFixed, kVariable, or kUndefined
 kAPIFTNotAvailable There is not a session with the host.
 kAPINotDisplaySession The session is not a display session.
 kAPIFTRecLenParm The recordLength specified is zero(VM/CMS).
 kAPIFTInProgress There is already a File Transfer in progress.
 kCapyResErr An error occured trying to load a required
 resource.
 kAPIInputInhibit The 3270 keyboard is locked.
 kAPIKeyCodeErr There is an invalid character in the command line
 built by SNA•ps Access/3270. (If there is not a
 translation value for a character in the current
 character set, this error would be returned.)

StartReceive
 Return Code Reason
 --------------------- ---
 kAPIFTTypeParm fileTransferType not equal kINDFILE.
 kAPIFTFileNameParm hostFileName not specified.
 kAPIFTHostEnvirParm verifyName is true and hostEnviron is not
 specified. (Check the list below for errors that
 may be returned when the access method verifies
 the host file name.)
 kAPIFTFileTypeParm fileType is not kTestFile or kBinaryFile.
 kAPIFTNotAvailable There is not a session with the host.
 kAPINotDisplaySession The session is not a display session.
 kAPIFTInProgress There is already a File Transfer in progress.
 kCapyResErr An error occurred trying to load a required
 resource.
 kAPIInputInhibit The 3270 keyboard is locked.
 kAPIKeyCodeErr There is an invalid character in the command line
 built by SNA•ps Access/3270. (If there is not a
 translation value for a character in the current
 character set, this error would be returned.)

DoSend
 Return Code Reason
 --------------------- ---
 kAPIFTNotAvailable There is not a session with the host.
 kAPINotDisplaySession The session is not a display session.

 kAPIFTNotInProgress There is not a File Transfer in progress.
 kAPIFTRespParm The appResponse field is not set to kContinueFT or
 kCancelFT.
 kAPISendBufParm The sendBufPtr is zero, and the sendBufLen is not
 zero.
 kAPIFTNoSendInRcv The File Transfer in progress is a receive.
 kAPIFTCancelBad The appResponse was kCancelFT, and an error
 occurred while trying to issue the cancel.
 kAPIFTNotRdyToSend There wasn't a kDoSendEvent generated. If the File
 Transfer is being made via the PS, then errors
 associated with CopyToPS may also be encountered.
 (kAPIScrnSizeChng, kAPIInputInhibit,
 kAPIByteCountParm, kAPISrcBufParm, kAPIKeyCodeErr,
 kAPIEndOfPS, kAPIWriteProtFldErr, or
 kAPIWriteAttrErr.)

DoReceive
 Return Code Reason
 --------------------- ---
 kAPIFTNotAvailable There is not a session with the host.
 kAPINotDisplaySession The session is not a display session.
 kAPIFTRespParm The appResponse field is not set to kContinueFT or
 kCancelFT.
 kAPIReceiveBufParm The receiveBufPtr is zero, and the
 numBytesToReceive is not equal to zero, and the
 appResponse is kContinueFT.
 kAPIFTNotInProgress There is not a File Transfer in progress.
 kAPIFTNoDataToRecv There is no data to be received.

For both StartSend and StartReceive requests you can specify that the
Access Method should verify that the host name being passed is a valid name
for the specified system. To do this, in the StartSendBlk set verifyName
to True and set hostEnviron to the value matching the host environment
being used. Name validation may return the following errors:

TSO
 Return Code Reason
 --------------------- ---
 kAPIFTBadFirst Error with resource file or bad first character of
 hostFileName.
 kAPIFTTSOLong Data Set Name is too long.
 kAPIFTQualLon Qualifier too long.
 kAPIFTNoQuoteMemb Quote around member, but no parenthesis.
 kAPIFTBadChar Invalid character found in the name.
 kAPIFTMemberChar A period or quote was found in a member name.
 kAPIFTMisParen Matching parenthesis is missing.
 kAPIFTTSOSpace A space character was found in the hostFileName.
 kAPIFTMemberLong Member name is too long.
 kAPIFTMemberBad Missing quote or parenthesis.
 kAPIFTMisplacedQte Missing/misplaced quote.
 kAPIFTMismatchedQte Quotes not placed correctly.

VM/CMS

 Return Code Reason
 --------------------- ---
 kAPIFTBadFirst Error with resource file or bad first character of
 hostFileName.
 kAPIFTCMSDot A period appeared in the hostFileName.
 kAPIFTBadChar An invalid character appeared in hostFileName.
 kAPIFTNoType No "Type" appeared in the hostFileName.
 kAPIFTCMSLong The "Name" field is too long.
 kAPIFTCMSTLong The "type" field is too long.
 kAPIFTCMSMLong The "mode(format)" field is too long.
 kAPIFTCMSExtra An extra field appeared in hostFileName.

CICS/VS
 Return Code Reason
 --------------------- ---
 kAPIFTBadFirst Error with resource file or bad first character of
 hostFileName.
 kAPIFTCICSTLong hostFileName is too long.
 kAPIFTCICSDot A period appeared in the hostFileName.
 kAPIFTCICSSpace A Space appeared in the hostFileName.
 kAPIFTBadChar An invalid character appeard in hostFileName.

SNA•ps Access/3270 File Transfer Requests Usage

The SNA•ps Access/3270 File Transfer Requests may be used to send/receive a
file to/from the Host. It is assumed in the following paragraphs that the
Macintosh application/User has logged onto one of the supported host
environments (TSO, CICS, VM/CMS).

To Send a file to the Host:
• Issue the StartSend request. If an error occurs, correct the error, and
 resubmit the request.
• Issue PollSessions.
• If the event returned was a kDoSendEvent, send one block of data to the
 host using DoSend. Note that SNA•ps Access/3270 will automatically
 segment this block if it exceeds the transport mechanism's maximum size.
• If the event returned was a kDoReceiveEvent, the file transfer is not
 successful, and the DoReceive request will likely return an error message
 that was received from the Host. Issue a DoReceive request.
• If the event returned was a kPSUpdateEvent, the host application has
 written a message into the PS, which may be displayed to the user. For
 example, this will occur in TSO if you exceed the disk space allocated
 for the file. Issue GetUpdate() to allow the file transfer to continue.
 OIA updates, which also occur in this manner, will be a fairly constant
 event during the course of the file transfer.
• Repeat the above sequence (starting at PollSessions) until the end of the
 file, then issue the DoSend request with a zero-length for the data and a
 null send buffer pointer.
• Note that at any time the host application may cancel the file transfer.
 Be prepared to receive kDoReceiveEvents from the PollSessions call.
• Note that if a "Cancel" is issued, the host application may or may not
 return a message (as a kDoReceiveEvent) indicating the file transfer was
 canceled. You must receive these events or subsequent StartSend and

 StartReceive requests will fail with the error kAPIFTInProgress.

To receive a file from the Host:
• Issue the StartReceive. If an error occurs, correct the error and
 resubmit the request.
• Issue PollSessions.
• If the event returned was a kDoReceiveEvent, issue a DoReceive request.
 This request may contain an error message from the host (file not found,
 for example) or the first block of data.
• If the event returned was a kPSUpdateEvent, the host application has
 written a message into the PS, which may be displayed to the user. For
 example, this will occur in TSO if you exceed the disk space allocated
 for the file. Issue GetUpdate() to allow the file transfer to continue.
 OIA updates, which also occur in this manner, will be a fairly constant
 event during the course of the file transfer.
• Repeat the above sequence (starting at PollSessions) processing the
 kDoReceiveEvents until the host application sends a block with the host
 Reply field set to kMsgContent. The host normally sends only one (1)
 message after the end of the file. If an error occurs during the file
 transfer, the host application may send an error message.
• If a DoReceive request is issued specifying Cancel, SNA•ps Access/3270
 will return kAPINoErr after sending the appropriate cancel command to the
 host application. The host application may then send a kClose event and
 a message, or it may simply send an error message. You must receive
 these events or subsequent StartSend and StartReceive requests will fail
 with the error kAPIFTInProgress.

See the section "Sample File Transfer Flowchart for an Apple 3270 API 2.0
User Program" for a more complete description.

File Transfer Request Formats

The next two sections detail the format of the requests/responses which
flow between SNA•ps Access/3270 and the host application. These sections
are provided for your use while attempting to decode a line trace of a file
transfer request which may be failing.

PS Screen Formats

CUT-based file transfer uses three types of screens to communicate data
from the host to the Mac. Each screen may be distinguished by the first
character.

 // character Meaning
 // 'A' - This is a Download format screen
 // 'B' - This is an Upload format Screen
 // 'C' - This is a Control format screen
 #define kMAX_PSFT_DOWN 1909 // Max Data from Host
 #define kMAX_PSFT_UP 1912 // Max Data to Host
 // Types of control frames
 #define FT_Ack 'a' // Acknowledgement
 #define FT_Info 'i' // Information (Message)
 #define FT_Mesg 'm'

 #define FT_Quit 'q' // Quit/Abort/Quiesce

Control Screen Format

Definition of the Control Format of the PS:
typedef struct psft_ctlscreen{
 unsigned char psftc_control; // Screen Format indicator
 unsigned char psftc_attr1; // Unprotected Attr.
 unsigned char psftc_code1; // Code 'a'
 unsigned char psftc_code2; // Code 'a', 'q', 'i', 'm'
 unsigned char psftc_code3; // Code 'R', ' ', '\0'
} PSFT_CTLSCRN;

UPLOAD Format

Definition of the Upload Format of the PS
typedef struct psft_upscreen{
 unsigned char psftu_control; // Screen format indicator
 unsigned char psftu_attr1; // Unprotected attr.
 unsigned char psftu_code; // Data Code 'A'
 unsigned char psftu_sequence; // Block Sequence
 unsigned char psftu_chksum; // Checksum of screen
 unsigned char psftu_len1; // Length of data MSB
 unsigned char psftu_len2; // Length of screen LSB
 unsigned char psftu_data[kMAX_PSFT_UP]; // Data being uploaded
 unsigned char psftu_attr2; // Protected Attr.
} PSFT_UPSCRN;

DOWNLOAD Format

Definition of the Download Format of the PS :
typedef struct psft_dwnscreen{
 unsigned char psftd_control; // Screen format indicator
 unsigned char psftd_sequence; // Block Sequence
 unsigned char psftd_chksum; // Checksum of screen
 unsigned char psftd_len1; // Length of data MSB
 unsigned char psftd_len2; // Length of screen LSB
 unsigned char psftd_data[kMAX_PSFT_DOWN]; // Data being downloaded
 unsigned char psftd_attr1; // Unprotected Attr.
 unsigned char psftd_resp[4]; // Area for PC to respond in
 unsigned char psftd_attr2; // Protected attr.
} PSFT_DWNSCRN;

D0 Structured Fields Subset

DFT-based File Transfer uses a subset of the D0 structured fields defined
as part of DDM. These D0 structured fields flow as a Write Structured
Field (WSF) from the host (and with inbound AID of 0x88 to the host). A
structured field has the following format:

 struct SF {
 unsigned short length; /* Length of SF */
 unsigned char sf_id1; /* First/only ID byte */

 unsigned char sf_id2; /* Second byte of ID or */
 /* first byte of SF info */
 unsigned char sf_data[1] /* Contents determined by SF type */
 };

The following D0 structured fields are used by the DFT-based File Transfer
mechanism:

• 0xD000 - Open
 The Open function is used to make a logical connection between the file
 transfer and a specific file. The following is the format of the Open SF:
 00 23 // Length of this field
 D0 00 // SF Type (Open)
 12 01 06 01 01 04 03 0a 0a 00 // Fixed Information
 00 00 00 11 01 01 00 50 05 52 // Fixed Information
 03 // Fixed Information
 F0 // No Compression
 03 09 // Fixed Information
 C'FT:DATA' or C'FT:MSG' // Dummy file name

 Only two (2) file names are used in the Open request. 'FT:DATA' is used
 to generically represent the file to be up/down-loaded. The actual name
 of the file was communicated on the command line. 'FT:MSG' is used by
 the host application as the name of the file that messages from the host
 application are to be stored into. These messages come your application
 as 'kMsgContent' DoReceive events with SNA•ps Access/3270.

• 0xD041 - Close
 This request terminates the logical connection established between the
 local file and the remote (host) file. It is not always sent by all
 implementations of IND$FILE. The format of the Close request is:

 00 05 // Length
 D0 41 // SF ID (Close)
 12 // Fixed Information

• 0xD045 - Set Cursor
 This request is used by the host application to place the 'cursor' to the
 beginning of the next block to be sent. It is used for file uploads
 only. The format of the Set Cursor request is as follows:

 00 0F // Length
 D0 45 // SF ID
 11 01 05 00 06 00 09 05 01 03 // Fixed Information
 00 // Fixed Information

 The Set Cursor request is followed immediately by the Get request.

• 0xD046 - Get
 The Get request flows in both directions for file uploads. In the
 Outbound (from the host) direction, it flows immediately after the Set
 Cursor request. SNA•ps Access/3270 will send the next block of data from
 the 'file' using a Get request (which is really a response at this

 point). SNA•ps Access/3270 will check an internal queue for data to be
 sent. If no data is presently queued, a kDoSendEvent will be returned to
 the next PollSessions request issued which requests kDoSendEvents. The
 format of Get request is as follows:

 From host application:

 00 09 // Length
 D0 46 // SF ID (Get)
 11 01 04 00 80 // Fixed Information

 From SNA•ps Access/3270:

 XX XX // Length (Depends on amount of data sent and segment size)
 D0 46 // SF ID
 NN NN NN NN // Sequence number of this block
 C0 // Fixed Information
 80 // Data not compressed
 DD DD // Length of data that follows
 DATA // Data from DoSend command, possibly segmented

• 0xD047 - Insert
 This command is used by the host during file transfer to the Macintosh.
 It inserts the next block of data into the file. The block is always
 inserted at end of file. This always flows as two (2) Insert requests.
 The first is of fixed size and information. It informs SNA•ps
 Access/3270 that the insert is to be a sequential insert. The format of
 the Insert request is:

 Fixed Insert:

 00 0A // Length
 D0 47 // SF ID
 01 05 00 80 00 // Fixed Information

 Variable Insert:

 XX XX // Length
 D0 47 // SF ID
 C0 // Fixed Information
 80 // Data not compressed
 61 // Fixed Information
 YY YY // Length of data
 DATA // Data to be stored as next block of file

Article Change History:
27 Sep 1994 - Reviewed.

Support Information Services
Copyright 1993-94, Apple Computer, Inc.

Keywords: knts

==

This information is from the Apple Technical Information Library.

19960215 11:05:19.00

11694Tech Info Library Article Number:

