ABS Tech Note: DAL17 INGRES Locking Issues (6/92)

Article Created: 30 June 1992

This technical note describes special |ocking considerations when using DAL
wi th | NGRES.

DI SCUSSI ON = = = = = = = = = 2 @ xf st o et el

By default, INGRES provides "repeatable read" transactions. This nmeans
that during a single transaction, your application can repeat a DAL query
two or nore tines and is guaranteed that the query results will be
identical. Thus, no database changes made by ot her users during your
transactions will be visible to your program | NGRES provides this high

| evel of transaction integrity by locking the sections of the database that
your query has accessed until your transaction ends with a COM T or
ROLLBACK statenment. During your transaction, no other user may update the
| ocked portions of the database.

This default | NGRES | ocking can reduce the amobunt of concurrent access to
an | NGRES dat abase, especially when a transaction includes "think tine"
during which your programis waiting for user input. To increase
concurrency, |NGRES provides several |ocking paranmeters which can be set
programmatically through the | NGRES SET LOCKMODE st at enent . These
excerpts fromthe | NGRES SQ reference nmanual, pages 2-56 and 2-57,
descri be these paraneters.

Description of |ock nopdes:

SET LOCKMODE provides four different paraneters to govern the nature of
I ocking in an | NGRES sessi on

e Level: This refers to the level of granularity desired when the table is
accessed. You can specify any of the follow ng | ocking | evels:

page Specifies locking at the level of the data page (subject to
escal ation criteria; see bel ow)

tabl e Specifies table-level |locking in the database

session Specifies the current default for your |INGRES session

system Specifies that INGRES will start with page-Ievel [ocking,

unless it estimates that nore than Maxl ocks pages will be
referenced, in which case table-level |locking will be used.

 Readl ock: This refers to locking in situations where table access is
required for reading data only (as opposed to updating data). You can
specify any of the followi ng Readl ock nodes:

nol ock Speci fies no | ocking when readi ng data

shar ed Specifies the default node of |ocki ng when readi ng data

excl usive Specifies exclusive |ocking when reading data (useful in
"sel ect-for-update" processing within a multi-statenent
transacti on)

system Specifies the general Readl ock default for the | NGRES system

+ Maxl ocks: This refers to an escalation factor, or number of |ocks on data
pages, at which | ocking escal ates from page-level to table-level. The
nunber of |ocks available to you is dependent upon your system
configuration. You can specify the foll owi ng Maxl ocks escal ati on factors:

n A specific (integer) nunber of page |ocks to allow before
escal ating to table-level |ocking. The default "n" is 10,

and "n" nmust be greater than O.

sessi on Specifies the current Maxl ocks default for your |NGRES
session

system Specifies the general Mxlocks default for the | NGRES system

Note: If you specify page-level |ocking, and the number of |ocks granted
during a query exceeds the systemw de lock limt, or if the operating
system s | ocking resources are depleted, |ocking escalates to

tabl e-level. This escal ation occurs automatically and is independent of
t he user.

e Tineout: This refers to atine limt, expressed in seconds, for which a
| ock request should remain pending. If INGRES cannot grant the | ock
request within the specified tine, then the query that requested the |ock
aborts. You can specify the follow ng tineout characteristics:

n A specific (integer) nunber of seconds to wait for a |ock
(setting "n" to O requires INGRES to wait indefinitely for
t he | ock)

sessi on Specifies the current timeout default for your | NGRES
session (which is also the | NGRES default)

system Specifies the general tinmeout default for the | NGRES system

Agai nst the backdrop of these SET LOCKMODE paraneters and options are the
| NGRES system defaults for each of the paraneters:

Level dynam cal |l y determ ned by | NGRES
Readl ock shar ed
Max| ocks 10

Ti meout 0 (no tinmeout)

If you select the systemoption for any of the SET LOCKMODE paraneters, the
val ues above are automatically supplied. Wien you begin your | NGRES
session, the I NGRES systemdefaults are in effect. If you override them

wi th other values using the SET LOCKMODE command, you can revert to the
system defaults easily.

Simlarly, if you set session paraneters (such as |ocking behavior for al
user tables accessed by queries in your | NGRES session), you can further
set paraneters for individual tables on an ad hoc basis. After setting the
ad hoc | ocking behavior, you can return it to either the session defaults
or to the I NGRES system defaults.

INGRES tries to place a lock on every page it touches in a transaction
Dependi ng on the Locknode, this will |ead to an exclusive, shared, or no

I ock condition on the page. |INGRES al so escalates |locks (as with nore than
"Maxl ocks, ™ the whole table will be | ocked to prevent deadl ocks). The
default Locknode in INGRES is shared. This neans that several users can
share the same page for "selects," but updates or inserts cannot take place
until the page is held only by the updating user. |If a user perforns a
"select * from xxx" type of query, then every physical page in the table is
marked and the | ocks are not renoved until the transaction is finished.
This prevents other users from maki ng updates to the sane table.
Concurrency will therefore be reduced.

However, concurrency is only an issue when there are wite operations
perfornmed on the database on-line (as with updates or inserts). If no
updates are going to take place in your application, you should use the
"nol ock"™ node.

If you know i n advance that your application will not be updating data in a
transaction, it can use the "nol ock" node to elininate the need for |NGRES
to lock parts of the database accessed by a query. Here is an exanple of a
DAL sequence that uses this technique:

/* Open INGRES for "select" and non-updating operations only: */
open | NGRES dbns;

open | NGRES dat abase "cl 1dem";

execute in I NGRES "set | ocknbde session where readl ock = nol ock"
select * from offices;

[continue with session]

If you do not want to turn off |ocking, you can still inprove concurrency
in a query-only application by nmaking sure that a COWM T statenent is
executed as soon as you have finished processing each set of query results.
Do not performtwo or nore queries in sequence w thout an intervening
COMW T statenent unless your application absolutely depends on there being
no changes to the database between the queries.

Finally, if your application nmust update the database, it should avoid
"think" periods during a transaction that |ocks the database whenever
possi ble. For exanple, this statenent sequence will work correctly when
the | ockmode is shared or exclusive, but may |ock |arge parts of the

dat abase during the "think time:"

sel ect (nmy_columms) where bool _expr
/* think and nake changes */

update (my_col ums) where bool _expr;
comm t;

An alternative approach that will inprove concurrency is:

/* Do the query the first time without |ocking */

execute in | NGRES "set | ocknmpde session where | evel = system
readl ock = nol ock";

sel ect (my_colums) where bool _expr

printall;

/* application puts data in buffer #1 */

/* think and make changes and store updates in a buffer #3 */

/* Turn on | ocking and do the query a second tine */

execute in | NGRES "set | ocknmode session where | evel = page,
readl ock = excl usive";

sel ect (ny_col ums) where uni que_i d;

printall;

/* application puts data in buffer #2 */

/* 1f data remains unchanged fromfirst query, do the update */
if buffer2 == bufferl {

update (my_colums) where unique_id; /* using contents of buffer

#3 */

commt;
}
el se
{

/* warn the user that the data has changed since | ast select */
}
/* Turn | ocking back off again */
execute in I NGRES "set |ocknbde session where | evel = system readlock =
nol ock";

The "uni que_i d" can be, for exanple, the enployee nunber or another
identifier that uniquely identifies the rows to be updated. The objective
in an update process is to "touch" as few pages as possible, since al
touched pages will be locked until the transaction conmits. The reason for
goi ng through this Iengthy process is to avoid having a page | ocked up for
a long tine.

Copyri ght 1993, Apple Computer, Inc.

Keywords: <None>

This information is fromthe Apple Technical Information Library.

19960215 11:05: 19. 00
Tech Info Library Article Number: 11644

