ABS Tech Note: AWS26 Hybrid Applications (3/95)

Article Created: 14 Novenber 1994
Article Reviewed/ Updated: 31 March 1995

This note describes sone of the deficiencies of A/UX hybrid applications, and
gi ves some suggestions as to alternative approaches that may be nore robust and
functi onal

DI SCUSSI ON = = = = = = = = = 2 @ xf st o et el

A/ UX Hybrid Applications

A/ UX supports several different types of applications, including pure UNI X
applications, pure Mac applications (which run under Mac OS as well), and hybrid
applications, which conbine both UNI X and Mac programm ng nodel s.

There are two types of hybrid applications -- UNI X COFF -- format hybrids (such
as CommandShel|) and Mac hybrids. Both of these types of hybrids have proven to
be architecturally weak and difficult to programrobustly. Specific weaknesses
wi Il be discussed bel ow

Due to these Iimtations, it is unlikely that either type of hybrid will be
supported in future Apple UNI X systems. A/UX will continue to support the
current hybrid nodels, with all their existing deficiencies. Alternative
approaches will be discussed in section 5.

UNI X COFF Hybrid Architecture
This section reviews the architecture of UNI X COFF hybrid applications to
provi de context for |ater sections.

Processes and Menory Layout:

Under A/UX, all pure Mac OS applications run within a single UNI X process called
startmac. Each UNI X COFF-format hybrid, such as ConmmandShell, runs in its own
separate UN X process.

As part of its initialization, the startmac process creates a | arge shared
menory segnent that is set up to look |like the nenory of a regul ar Macintosh.
This shared nmenory segnent contains |ow nenory globals, the system heap, and
Maci nt osh application partitions. As part of its initialization, each UN X COFF

hybrid application also binds to this shared nmenory segnent.

For pure Maci ntosh applications, the application partition in this shared nmenory
segnent contains the application's heap, its A5 world, and its stack. Thus, al
of this menmory is accessible to any other Macintosh or COFF hybrid application.

For a UNI X COFF hybrid application, though, the application partition contains
only the application's heap and its A5 world. The stack is in UNIX virtua
menory space, accessible only to that application

Cooperative Miltitasking:

The Maci ntosh uses a cooperative multitasking nodel. At any particular tine, a
single application has control of the processor (the "token of control"). That
application will keep control of the processor (fromthe Maci ntosh vi ewpoint)
until it voluntarily gives it up, by calling one of three Macintosh tool box
traps: Get Next Event, WaitNextEvent, or EventAvail.

Not e that though UNI X COFF hybrid applications are running in different UN X
processes than pure Mac OS applications, each is blocked until it receives the
single "token of control"

Under A/ UX, the user interface device driver (/dev/uinterQ) receives
notification fromthe Process Manager when the token of control should be passed
to a UNl X COFF hybrid application. The user interface device driver then directs
events to the appropriate UN X process.

Maci nt osh Hybrid Architecture

Maci nt osh hybrid applications are pure Mac OS applications that are linked with
i baux.a (supplied with the A/UX Developer's Kit) to make A/ UX systemcalls. The
AlUX Installer is an exanple of such an application. These applications run
within the startnac UNI X process |ike any other pure Mac OS application

Problems with A/ UX Hybrid Applications
This section describes sone of the problens that have been encountered with
hybrid applications.

Can't Make Blocking UNIX Calls in a Cooperative Miltitasking Environment:

A hybrid application nust not make blocking UNI X calls. Wiile waiting for the
UNI X call to return, the hybrid application will be blocked. In addition, the
entire Macintosh tool box environment will be bl ocked, because the hybrid hasn't
call ed one of the Macintosh tool box routines (WaitNextEvent, GetNextEvent, or
Event Avail) which allows control to pass to another Macintosh application

Al l ocation of Data For Asynchronous Operations:

Various Macintosh calls result in asynchronous operations that can conplete at
any time. It is quite possible that these operations may conpl ete when a

di fferent Maci ntosh application has the "token of control™. If a hybrid
application starts an asynchronous operation that conpl etes while anot her

application is active, it will conplete within a different UNI X context than the
one fromwhich it was started

If any menmory is needed to conplete the asynchronous operation, that menory nust
be accessible fromstartmac or any hybrid application process. For a COFF hybrid
application, the only suitable nmenory for this is the application heap in the
shared menory segnent.

Thus, extrene care nust be taken in a hybrid application to ensure that any data
needed to conplete an asynchronous operation is stored in the application heap
rather than on the stack or in UNI X virtual nenory heap space.

It has proven difficult to ensure this for all possible asynchronous operations.
In sone cases, Macintosh toolbox calls internally call other routines that make
asynchronous operations, and it is not always apparent that an asynchronous cal

wi || be nade.

Exanmpl es of various asynchronous operations include:

e Any routine that allows asynchronous operation, such as the File Manager or
Notification Manager. The code for the response procedure for such an operation
nust be in the application heap, rather than a hybrid application's .text COFF
segnent. ConmmandShell handles this for its Notification Manager response
procedure by copying relocatable code fromthe .text segnment into its
application heap

e File Manager routines for Appl eShare volunes. Be sure to allocate al

par aneter bl ocks in the application heap rather than on the stack of a hybrid.
This requires the use of lowlevel file nanager calls, rather than high-Ievel
calls that internally allocate the paranmeter blocks on the stack.

* Resource Manager routines for AppleShare vol unes. These routines internally
call File Manager routines, but do not ensure that the paraneter blocks are
allocated in the heap. Thus, it is possible that these routines will fail for
Appl eShare vol umes. There are no lowlevel routines for the Resource Manager to
all ow the application to force the parameter block to be in the heap. Calling
Resource Manager routines from hybrid applications has not been fully tested for
Appl eShar e vol unes.

e Any Macintosh call that internally allocates w ndow records or dialog records
on the stack, such as the Standard File package routines or PPCBrowser. The A/ UX
t ool box patches the Standard File routines for hybrid applications to nove the
stack tenporarily into the application heap. However, the PPCBrowser and ot her
such routines have not been tested from hybrid applications and may have

probl ens. As the Maci ntosh tool box evolves, it is difficult to ensure that new
tool box routines will operate correctly within the context of A/ UX hybrid
applications.

COFF Hybrid Application Devel opment Tool s:
UNI X tools are used to devel op COFF hybrid applications. This limts devel oper

options. For exanple, MacApp or the Think class libraries can't be used to
create COFF hybrid applications.

In addition, it is difficult to debug COFF hybrid applications. There are no Mac
source | evel debuggers that understand COFF formats or synbol tables. It is
possi bl e to use MacsBug, but again w thout application synbols. G ven an address
in the COFF application, it is possible to use adb to determ ne which routine
that address is in, but that's a kludge at best.

UNI X source | evel debuggers are also problematic. First, they nust be used over
a serial port or a renote |ogin, because the entire Mac environnent, including
CommandShel |, will be hung while at a break point in a hybrid application. In
addition, the UNI X source | evel debugger has no inherent know edge of Macintosh
data structures.

Maci nt osh Hybrid Applications:

The Maci ntosh hybrid application devel opnent environnent and |ibaux.a have not
undergone intensive testing, and there is not a |lot of experience with their
use. Sone probl enms which have been encountered in this domain include:

* Include file inconpatibilities. There may be a need to include both Mac and
UNI X include files, some of which conflicted (for exanple, types.h).

e Limted set of A/UX routines supported by libaux. This library supplies mainly
systemcalls. Many A/UX library routines are not systemcalls, and therefore are
not avail abl e through |ibaux. Although sone of these routines, such as the
printf famly, are available through libraries such as those provided by MPW
many other library routines are not avail able.

e Certain systemcalls are risky from Maci ntosh hybrid applications. Due to the
usage of various file descriptors, signals, stacks, and so on, fork'ing and
exec'ing new UNI X processes froma Mcintosh hybrid application running within
startmac nust be done carefully. In addition, pipes, waits, and exit statuses
are tricky.

UNI X Security Concerns:

Hybrid applications that need any special UNI X privileges are quite risky. This
is because it is quite easy to patch any Macintosh trap froman INIT. If, for
exanpl e, a hybrid application is running setuid-root, any Mcintosh traps that
it calls could be patched by any INNT to do unknown and dangerous things.

Alternatives to Hybrid Applications

Client-Server Applications:

Rat her than devel opi ng an A/ UX hybrid application, consider using a
client-server nodel instead, with a Mac client half conmunicating with a UNI X
server half. Various technol ogi es can be used for comunication, including ADSP
or TCP/IP.

Using TCP, for exanple, the UNI X server portion could be witten in a standard
UNI X nanner, such that it could be launched autonmatically by the inetd daenon
when a client tries to establish a new connection. The Mac client portion would
use MacTCP to establish the connection and comruni cate with the server.

The fact that the application is a client-server application can be hidden from
the user, so that the user perceives only a Mac user interface running in the
A/ UX Maci ntosh environnent. Alternatively, the client-server aspects can be

expl oited, by allow ng the Macintosh client application to run on any Macintosh
on the network, including renpote Macintosh conmputers connected via ARA

Advant ages of Cient-Server Applications:

This client-server nodel offers several advantages, including:

* Developnent is sinplified. In each half of the application, all the standard
programm ng rules for that type of application hold true. There are no
additional restrictions as there are with hybrids (such as not naking bl ocking
UNI X cal I's).

e Better devel opnent tools are available. Both halves of the application can be
devel oped with the best available tools. For exanple, the Mac half could be
witten with MacApp and debugged with SourceBug. The UNI X half could be witten
usi ng standard UNI X devel oprment techni ques, and debugged with a UNI X

source-1 evel debugger such as sdb

e Better application design is encouraged. The client-server progranm ng nodel
encourages a cl ean separation of the user interface fromthe underlying "engine
of an application.

 As discussed above, the client-server nodel offers additional functiona
capabilities, by allow ng the Macintosh client application to run on a different
machi ne on the network than the UNI X server application.

e The UNI X server portion may be portable to other UN X systems which do not
support the Maci ntosh environment.

Converting a Hybrid Application to a Cient-Server Application

An existing hybrid application can be converted to a client-server application
This involves identifying those portions of the application which are specific
to the Macintosh side (generally user interface code) and those which are
specific to the UNI X side (anything that directly utilizes UNIX OS facilities).
Sone functionality, such as data crunching, could occur on either the Macintosh
client side or the UNI X server side.

One way to identify UNI X-specific code in a UNIX COFF hybrid is to re-link each
object file as if it were a separate executable. This will report all unresolved
external synbols, including calls to UNIX library and systemcalls. Those files
wi th many such calls nay contain functionality which should be in the UN X
server portion, while files with few such calls may contain functionality which
shoul d be in the Mac server portion

After identifying the Mac client-side functionality and the UNI X server-side
functionality, the next step is to define the nessages which will be passed

bet ween the two sides. Then, re-code the application using Macintosh tools to
create a pure Macintosh client application and UNI X tools to create a pure UN X
server application. Try to unit test each side of the application as nuch as
possi ble, then test to ensure that the proper comunication is occurring between

the two sides. It may be hel pful to bootstrap the application, by getting
limted client-server functionality running first, and addi ng nore advanced
capabilities once the basic conmuni cation nmechanismis stable.

Article Change History:
31 Mar 1995 - Made ninor corrections.

Support Information Services
Copyri ght 1994-95, Apple Computer, Inc.

Keywords: <None>

This information is fromthe Apple Technical Information Library.

19960215 11:05: 19. 00
Tech Info Library Article Number: 16749

