ABS Tech Note: AWS16 File Access Control on the AWS 95 (1/94)

Article Created: 23 Decenber 1993

The purpose of this tech note is to differentiate Maci ntosh (Appl eShare)
file privileges and A/VUX file perm ssions. This docunent will discuss the
concepts involved with each formof file access control and al so di scuss
how the two concepts were integrated with each other on the Apple Wrkgroup
Server (AWS) 95.

DI SCUSSI ON = - - = = = = = = = = x o m ot e f el

Appl eShare (Maci ntosh) File Access Privil eges

The Maci ntosh was originally designed as a single-user machi ne, where al
the files on the nachine were only accessible by one user. As a result
there is no support for file access control built into the file system
Wth the advent of AppleShare it was necessary to cone up with a scheme to
control access to files which were shared on a network. On a Maci ntosh
whi ch runs as an AppleShare file server there exists a special file which
stores all the necessary infornation to deternmines the accessibility of
files to network users (See the AppleShare Pro Server 1.0 Administrator's
Quide for a detail ed description of AppleShare file privileges).

A UX File Perm ssions

UNI X was originally designed as a nulti-user operating system thus a file
access control nmechani smwas designed into the file systemfromthe start.
On each UNI X systemthere is a |list of users which can log on to the
system each user has a unique name and user ID. In order to provide nore
control and flexibility when setting up file accessibility UNI X al so

mai ntains a list of groups, each group has a unique nane and group ID. A
group is defined by a list of O or nore users. Each user nust be a menber
of at |east one group, known as the user's prinary group, but nay also be a
menber of any of the other group.

For each file in a UNIX file system in addition to the data content of the
UNI X file there is also information stored which deternmines file access.
Each UNI X file has associated with it the follow ng data: An owner
(usually the user which created the file); a group (usually the prinmary
group of the user which created the file); and a set of 9 perm ssion bits.

The 9 pernission bits associated with a file can be broken down in 3 parts,
|l eaving 3 bits for each part. Each set of 3 bits defines the | evel of
access for the file depending on which user is accessing the file. The
first 3 bits (reading fromleft to right) determ nes the |evel of
accessibility for the owner of the file. The second 3 bits apply to users
who are a nenber of the group which is assigned to the file. The third 3
bits apply to any user who does not fall in either of the first two
categories. These 3 user types are ternmed "User, Group and O her"
respectively.

Now for the interpretation of the 3 bits. The first bit (read fromleft to
right) deternines whether the user has read access on the file. The second
bit determines if the user has wite access on the file. The third bit
determnes if the user has execute perm ssion on the file.

Read and wite access on a file is pretty much self-explanatory, if a user
has read permission on a file then they may read the contents of the file,
if a user has wite permission on a file then they may nodify the contents
of a file. Execute perm ssion deternmines if a user can execute a file, in
the case where the file is an executable program |In the case where the
file in question is a directory the execute bit determines if a user nay
make the directory their current working directory ("cd" into it).

Integration of both File Access System on the AWS 95

On an Appl e Wrkgroup Server 95, sonehow both file access systens apply to

sone of the files and how this is done can soneti nes be confusing. There
exists 2 separate list of users and each file has it's UN X perm ssions as
well as it's AppleShare permi ssions. |In order to explain how this

integration is achieved the concept of the "Super User" or "root" mnust be
understood. On every UN X machine there exists a special user, "root", to
which file access control does not apply. In effect the "root" user has
read, wite and execute perm ssion on every file in the file system

On the AWS 95 the Appl eShare program (the program whi ch provides file
sharing service to network users) runs as a "root" process. That is, al
file accesses nade by the Appl eShare process are made fromthe "root:"
user, which neans that the AppleShare process has unrestricted access to
all UNIX files. This provides Appl eShare users with the illusion that an
Appl eShare vol ume on an AW5 95 is the same as a volune on a regul ar

Maci nt osh.

This integration can often confuse administrators and users since one would
expect a file to be owned by the Appl eShare user, but if we go look at it
fromthe UNIX side it is owned by the "root" user.

Copyri ght 1993, Apple Computer, Inc.

Keywords: <None>

This information is fromthe Apple Technical Information Library.

19960215 11: 05: 19. 00
Tech Info Library Article Number: 14324

