A/UX: Bourne Shell Metacharacters (6/93)

Article Created: 21 Cctober 1988
Article Reviewed/ Updated: 24 June 1993

This article discusses Bourne shell netacharacters.
DI SCUSSI ON == - - s s s s e o i o e o m e i i e e i e ie i e e

A netacharacter is a character that perforns a special function in the
shell, like expanding a file name or redirecting output. |In fact, the
nmet acharacters in this article fall into two categories: wldcard
characters for file nane expansion and redirection of input/output and
process.

Fil e nane expansi on characters include

* Asterisk *

 Brackets []

* Brackets-Hyphen [-]
e Question mark ?

| nput/ out put and process redirection characters include

e Anmpersand &

e Back quote °

» Backsl ash \

e Braces { }

e Double greater than > >
e Geater than >
e Less than <

» Parent heses ()
* Senicol on ;

e Slash /
 Vertical bar

The article is divided into two sections (one for each type of character).

Al'l netacharacters are listed al phabetically within their sections.

FI LE NAME EXPANSI ON METACHARACTERS

The Asteri sk

The asterisk (*) substitutes in a file or directory nanme for zero or nore
characters, except a leading period (like ".ash").

Exanpl e: The conmand

I's *ash
returns file nanes ending with the letters "ash"” |ike "ash", "bash"
"cash", "mash", and "splash". However, it won't return strings that have
characters after the "ash" like "bash.tnmp" or "bashful
Brackets

Brackets ([]) cause the shell to ook for a match for each character
bet ween the brackets, one at a tine. It does not match the period
character.

Example: |s [bmash returns file names "bash" and "mash", but not "cash" or
"bash. t np".

A variation is brackets with a hyphen separating two characters. |t causes
the shell to match any character within the range of these characters in a
file or directory nane.

Exanple: |s [a-c]ash returns file nanes that have letters in the range from
"a" through "c" as the first character of their name and that are foll owed
by the letters "ash". Thus, "ash", "bash", and "cash" match, but not

"dash" or "mash".

You can place a bracket netasequence anywhere in a string.

Question Mark

The question mark (?) substitutes for any ONE character in the sane
position in a file or directory name. The question mark does not expand
file nanmes, nor does not match a | eadi ng peri od.

Exampl e: "lIs ?ash” returns only file nanes that have one character foll owed
by the characters "ash". Thus, "bash", and "cash" match, but not "ash" or
"spl ash".

REDI RECTI ON METACHARACTERS

The anpersand (&), placed at the end of a line, causes the task it follows
to run in the background. Wen using the anpersand, the shell returns the
task's PID (Process I D Nunber). Note: In the Bourne shell, you cannot
retrieve a task fromthe background.

Exanpl e: cat /etc/passwd &

Back Quotes

The back quotes (° °) contain any UNI X conmand. When the shell executes
the Iine containing the back-quoted command, it replaces the command and
with the conmand's output in the string. Wthout the back quotes, the
shell would treat a conmand |i ke an ordinary string.

For exanpl e,
echo today is date
returns "echo today is date", whereas

echo today is “date’

returns "today is foll owed by the system date.

Backsl ash

The backslash (\), preceding a netacharacter, causes the shell to interpret
the character as a regular character rather than as a netacharacter
Typically, this can stop a variable fromreturning its val ue.

For exanple, type in the following three lines of code. And notice that the
third Iine does not return the variable's val ue.

x=hi
echo $x
echo \ $x

Dol Il ar Sign

The dollar sign ($) causes the shell to evaluate or display the val ue of
the variable the dollar sign precedes. The following to lines output "hi"
the contents of variable x.

x=hi
echo $x

Doubl e Quotes

The doubl e quotes (" ") serve three purposes. First, it lets you put tabs
and spaces in a string as you assign the string to a variable. Second,
when you di splay the contents of a variable, surrounding the variable nane
i n doubl e quotes preserves tabs and nultiple contiguous spaces and tabs.
Try this exanple:

y=nme and you

The shell refuses the conmmand when it hits the first space. Try this
(including multiple spaces after "and"):

y="nme and you
echo $y
echo " $y"

The third purpose for double quotes is that they can "seal in" conmand
characters, so that these characters appear as literals. For exanple,

typi ng
echo today's

causes the systemto display a greater than sign. I1t's waiting for further
i nput, input that rmust conclude with a single quote. The conmmand

echo "today's"
just prints the word.

Greater Than and Doubl e- Great er - Than

Both these commands take data froma source command and send that data to
the target file as if it were standard output. |If the file doesn't exist
the conmand creates one. The difference is that greater-than al ways
wites to the target file, thus erasing any data already in the file.
The doubl e-greater-than character always *appends* the data to the file.

To see these characters at work, try this comand-1|ine sequence:

First, check to see if you have a file naned "doc." If you do, use a
different file nane.

I s doc

date > doc

cat doc

who ami >> doc
cat doc

cal 11 1993 > doc
cat doc

Less Than

The less than (<) causes a file to be treated as a standard input for the
command. The exanple wites the file names in the current directory into
doc, It then hands the contents of doc to the sort comuand for a reverse
sort to the screen

| s > doc
sort -r < doc

Par ent heses

The parentheses -- () -- group several commands for execution in a
subshell with command output passed as standard input to the next comand

on a pipeline. Notice the difference when you use parentheses and when you
don't in this exanple:

date; who ami > doc
cat doc

(date; who ami) > doc
cat doc

Wt hout parentheses, the shell executes the date command wit hout sending
its output to doc. The shell pipes the who ami output, because it is
i medi ately adj acent to the greater than.

Seni col on

The sem colon (;) causes conmands on the current line to be executed
sequentially. Note the exanple for parentheses and the exanpl e bel ow

date ; Is

Si ngl e Quotes
Put single quotes (') around special characters when you do not want the
shell to interpret them

Note: if a back quote occurs within the command, it nust be escaped with a
"\'" (backslash). Oherw se, the usual quoting conventions apply within the
comand.

Vertical Bar

The vertical bar (|) causes the standard output for the first conmand and
to be treated as the standard i nput for the second conmand. That is, the
vertical bar conmbi nes conmands into a pipeline, passing data from one
conmmand to another without an intervening file. The exanple passes the
listing for the current directory directly to the sort command for a
reverse sort printed to the screen

Is | sort -r
Article Change History:

24 Jun 1993 - Revised for technical accuracy.
Copyri ght 1988-93, Apple Computer, Inc.

Keywords: <None>

This information is fromthe Apple Technical Information Library.

19960215 11:05: 19. 00
Tech Info Library Article Number: 3373

