
HW 23 - FPU Operations on Macintosh Quadra Computers 1 of 13

Hardware

New Technical Notes

Developer Support

ð
®Macintosh

HW 23 - FPU Operations on Macintosh Quadra
Computers
Hardware

Revised by: Tim Dierks September 1992
Written by: Jon Okada, SANEitation Engineer, DTE June 1992

This Technical Note discusses floating-point unit (FPU) instruction support on Macintosh
Quadra platforms with special emphasis given to compatibility and performance concerns.
Changes since June 1992: Added warning to check for an FPU before attempting to
execute FPU instructions.

Introduction

The Macintosh Quadra computers are the first Apple products to use the Motorola 68040
microprocessor, which has an on-chip floating-point unit (FPU). This feature enables the
Quadra to perform basic floating-point operations much faster than a Macintosh platform that
employs an MC68881/2 floating-point coprocessor working in conjunction with an
MC68020/030 microprocessor. This Note addresses compatibility and performance issues for
Quadra computers executing FPU instructions either programmed explicitly in assembly
language or generated by compilers (-mc68881 and -elems881 modes for MPW
compilers).

While all currently available 68040 processors have an onboard FPU, it is important to use
Gestalt to verify the existence of a floating-point coprocessor before attempting to use any FPU
instructions. Motorola has announced a variant of the 68040 without an FPU unit; this chip has
most of the caching characteristics of the current 68040, but does not support the 68881/2
opcode set.

Unfortunately, the FPU circuitry in the 68040 does not by itself support the full functionality of
the MC68881/2. Motorola has provided a floating-point software package (FPSP) which
emulates all of the MC68881/2 functionality that is not provided by the 68040. This package
resides in the operating system of the Quadra. When the 68040 requires emulation services in
the course of executing an FPU instruction, it traps to the FPSP via one of several exception
vectors, depending on the type of emulation that is needed. The combination of the 68040 and
FPSP enables Quadra computers to run old user code without modification unless the code
uses floating-point exception handlers.

If user code includes floating-point exception handlers, the handlers must be modified to reflect
the FSAVE state frames of the 68040, which differ from those of the MC68881/2. In addition,
vectoring to such handlers for the 68040 must be done with care in order that entry to the FPSP
not be compromised.

Macintosh Technical Notes

2 of 13 HW 23 - FPU Operations on Macintosh Quadras

Hardware

Whenever the 68040 in a Quadra invokes the FPSP, performance inevitably will suffer relative
to an MC68881/2 platform because the software emulation of complex algorithms involving
floating-point calculations and exception state simply cannot outperform dedicated hardware
and microcode. In addition, the instruction cache must cope with many instructions of
emulation code to accomplish what the MC68881/2 does in a single FPU instruction. Finally,
FPSP intervention flushes the FPU pipeline, thus negating any performance enhancements
achievable through overlapping execution of FPU instructions.

FPU Instructions Provided by the 68040

The following FPU instructions are supported by the 68040:

FABS Absolute value
FDABS* Absolute value rounded to double precision
FSABS* Absolute value rounded to single precision
FADD Addition
FDADD* Addition rounded to double precision
FSADD* Addition rounded to single precision
FBcc* Branch on FP condition
FCMP Comparison (sets FP condition codes)
FDBcc Test FP condition, decrement D register, and branch
FDIV Division
FDDIV* Division rounded to double precision
FSDIV* Division rounded to single precision
FMOVE Move FP data or system control register
FDMOVE* Move to FP data register rounded to double precision
FSMOVE* Move to FP data register rounded to single precision
FMOVEM Move multiple FP data registers
FMUL Multiplication
FDMUL* Multiplication rounded to double precision
FSMUL* Multiplication rounded to single precision
FNEG Negation
FDNEG* Negation rounded to double precision
FSNEG* Negation rounded to single precision
FNOP No operation (flushes FPU pipelines and forces pending

FP exceptions)
FRESTORE† Restore internal FPU state saved by FSAVE
FSAVE† Save internal FPU state
FScc Set byte integer according to FP condition
FSGLDIV Single precision division
FSGLMUL Single precision multiply
FSQRT Square root
FDSQRT* Square root rounded to double precision
FSSQRT* Square root rounded to single precision
FSUB Subtraction
FDSUB* Subtraction rounded to double precision
FSSUB* Subtraction rounded to single precision
FTRAPcc Trap on FP condition
FTST Test FP operand and set FP condition codes

Developer Support Center September 1992

HW 23 - FPU Operations on Macintosh Quadra Computers 3 of 13

Hardware

* Precision-constraining operation is not provided by MC68881/2;
precision of instruction supersedes that set in the FP control register
(FPCR).

† Privileged instruction.

Processing of these FPU instructions is usually handled entirely by the 68040. The FPSP is
invoked if an unsupported data type or format is involved or if an exceptional condition is
generated that requires fix-up of FPU state by emulation.

FPSP Overview

The FPSP provides three basic emulation services for the 68040. First, it emulates many
MC68881/2 instructions, including all transcendental functions and some arithmetic
instructions. Second, the FPSP handles instructions that involve certain data classes
(unnormalized and denormal floating-point numbers) or the packed decimal data format, which
are not supported by the 68040 hardware. Finally, the FPSP provides exception handlers for
certain floating-point exception conditions in order to emulate MC68881/2 behavior when user
traps are either disabled or enabled. In the latter case, after completing its exception processing,
the FPSP passes control to the user-provided handler.

On Macintosh Quadra platforms executing MC68881/2 instructions, entry to the FPSP occurs
automatically by trapping via one of several low-memory exception vectors, depending on
which emulation service is required. The system installs the exception vector entries to the
FPSP at boot time, and applications should not tamper with these vectors. Because
the FPSP preempts the exception vectors for certain user-provided handlers in the MC68881/2
model, compatibility is a problem for old user code that contains floating-point exception
handlers. Later sections will address the issues of compatibility in more detail.

Emulation of Unimplemented FPU Instructions

The following MC68881/2 arithmetic instructions are emulated by the FPSP, which produces
results and exceptions identical to MC68881/2 platforms:

FGETEXP Extract binary exponent of source
FGETMAN Extract mantissa (significand) of source
FINT Round source to integral value, using rounding mode in the

FPCR
FINTRZ Round source to integral value, using round-to-zero mode
FMOD Modulo remainder of destination ÷ source with sign and lowest

seven bits of quotient delivered in FP status register (FPSR)
quotient byte

FMOVECR Move constant ROM to FP data register
FREM IEEE remainder of destination ÷ source with sign and lowest

seven bits of quotient delivered in FPSR quotient byte
FSCALE Scale (multiply) destination by 2^((int) source).

The following MC68881/2 transcendental functions are emulated by the FPSP:

Macintosh Technical Notes

4 of 13 HW 23 - FPU Operations on Macintosh Quadras

Hardware

FACOS Inverse (arc) cosine (radians)
FASIN Inverse (arc) sine (radians)
FATAN Inverse (arc) tangent (radians)
FATANH Inverse (arc) hyperbolic tangent
FCOS Cosine of source in radians
FCOSH Hyperbolic cosine
FETOX Base e power (e^source)
FETOXM1 e^source - 1.0
FLOG10 Base 10 logarithm
FLOG2 Base 2 logarithm
FLOGN Base e (natural) logarithm
FLOGNP1 Base e (natural) logarithm of (source + 1.0)
FSIN Sine of source in radians
FSINCOS Simultaneous sine and cosine (two destination registers)
FSINH Hyperbolic sine
FTAN Tangent of source in radians
FTANH Hyperbolic tangent
FTENTOX 10.0^source
FTWOTOX 2.0^source

The algorithms used by the FPSP to calculate transcendental functions are both accurate and
fast. Results will not always agree with those of the MC68881/2. When they disagree, the
FPSP is generally more precise. The performance of the 68040 FPSP on transcendental
functions is roughly equivalent to that of a similarly clocked MC68030/MC68882 combination.

When the 68040 in a Quadra attempts to execute any of the unimplemented MC68881/2
instructions, it traps, via vector number 11, the unimplemented F-Line opcode exception vector
stored at vector offset (low-memory address) $002C to the FPSP. The corresponding
exception handler in the FPSP saves the FPU state, decodes the instruction, fetches the
operand(s), emulates the unimplemented instruction, and restores the appropriate state to the
FPU. Operands involving unsupported data types or format are processed appropriately by this
exception handler. To the user, the emulated instructions appear as atomic operations that
produce valid results and that signal the proper floating-point exceptions. If an emulated
instruction raises an enabled floating-point exception, program flow will vector to the
appropriate user exception handler.

If the code executing in a Quadra contains an F-Line opcode that is undefined by the instruction
sets of both the 68040 and MC68881/2, trapping to the FPSP via vector 11 also applies. In this
case, the handler recognizes that no emulation is necessary, and it passes control to the system
F-Line exception handler via a secondary vector stored in low memory.

Compatibility Note

If an application, such as a development or debugging environment, needs to install its own F-
Line exception handler on Quadra platforms, it must not overwrite vector 11 at offset $002C.
If it does, emulation of the unimplemented MC68881/2 instructions will be lost with disastrous
effects to the executing program. Instead, the secondary F-Line exception vector, located at
address $1FC8, should be used on Quadra platforms. As is the case on MC68881/2 platforms,
the application should save the inherited F-Line exception vector (secondary vector in the case
of Quadra platforms) and restore it upon termination or context switch.

Developer Support Center September 1992

HW 23 - FPU Operations on Macintosh Quadra Computers 5 of 13

Hardware

Unimplemented Data Type/Format Support in the FPSP

The FPU in the 68040 does not support all of the floating-point data types and formats of the
MC68881/2. The following data types require FPSP support:

denormalized single (S), double (D), or extended (X) precision operand to an FPU
instruction; and unnormalized X operand to an FPU instruction.

The following data format requires FPSP support:

packed decimal real (P) format as source or destination for an FPU instruction.

When the 68040 encounters an unimplemented data type or format in the course of executing a
hardware-supported FPU instruction, it traps, via exception vector 55, the FP unimplemented
data type exception vector stored at vector offset (low-memory address) $00DC to the FPSP.
Prior to the release of the 68040, this address was unassigned but reserved by Motorola. The
unimplemented data type exception handler in the FPSP takes the appropriate action for the
instruction and the exceptional operand or format.

For denormal S, denormal D, and all P format source operands, the FPSP converts the values
to the normalized X equivalents, restores FPU state, and restarts the operation. If a source
operand is an unnormalized X that can be converted to a normalized X, the instruction is also
completed as described. If the instruction is a move out to P format in memory (FMOVE.P
FPn,<ea>), the FPSP emulates the conversion from the extended source format to P format
and writes the result to the effective address.

For denormal X operands or unnormalized X operands that reduce to denormal X values, the
FPSP converts such operands to an internal normalized format that contains an extra exponent
bit, restores state to the FPU, and restarts the operation if no exponent wrap condition will
occur (for example, division of a denormal value by another denormal value). Otherwise, the
FPSP emulates the entire instruction.

Denormalized values resulting from instructions executed by the 68040 hardware do not
generate the unimplemented data type exception. Instead, a non-maskable underflow exception
occurs which invokes a handler in the FPSP. This handler rounds the internal result
appropriately according to the specified rounding precision and direction and delivers the result.

In the case of instructions that are emulated by the FPSP, the processing of unimplemented data
type/format operands is handled within the confines of the emulation process. That is, the
68040 traps to the FPSP’s unimplemented instruction handler, which is capable of recognizing
and dealing with such operands.

Instructions, whether emulated or not, that use the P format as either source or destination have
relatively poor performance because they require emulation of binary-to-decimal or decimal-to-
binary conversions.

Macintosh Technical Notes

6 of 13 HW 23 - FPU Operations on Macintosh Quadras

Hardware

Idiosyncrasies

Binary operations (source and destination operands are both inputs) with P format source
operands should avoid using FP1 as the destination operand because a bug in the FPSP causes
spurious results in this case. If an unimplemented data type or format occurs as input to an
operation, the exception is posted by the 68040 when the next FPU instruction is attempted.
This deferred exception handling may appear not to deliver the correct result in a debugging
environment that installs a breakpoint prior to the second FPU instruction.

FPSP Exception Handlers

Certain floating-point exception conditions on the 68040 require intervention by the FPSP in
order to fix up results or other state. Some of the FPSP exception handlers are non-maskable in
the sense that they are executed regardless of whether or not the exception is trap-enabled by
the user. All of the FPSP floating-point exception handlers, whether non-maskable or not, are
vectored via Motorola-designated locations in low-memory supervisor address space. If a
user-enabled exception occurs, the FPSP exception handler is executed first before vectoring
occurs to the user handler via a secondary vector maintained by the Macintosh Quadra system.
The user code must not modify the primary floating-point exception vectors to FPSP exception
handlers. A later section will describe installation of user exception handlers.

The following is a brief description of FPSP exception handlers:

Branch/Set on Unordered (BSUN)

This maskable handler is invoked only if the user has enabled the BSUN exception. Entry to
this handler is via vector number 48 stored at location $00C0. This handler updates the
floating-point instruction address register (FPIAR) to contain the address of the floating-point
branch/set instruction that generated the exception. It then invokes the user’s handler via a
secondary BSUN vector.

Inexact Result (INEX1/INEX2)

No FPSP handler is required. When enabled, INEX1 or INEX2 exceptions invoke the user’s
handler via vector number 49 at location $00C4.

Divide by Zero (DZ)

No FPSP handler is required. When enabled, the user’s DZ handler is invoked via vector
number 50 at location $00C8.

Underflow (UNFL)

This non-maskable handler is entered via vector number 51 at location $00CC. It determines
and stores the properly rounded underflow result based upon the value of the intermediate
result and the rounding precision/direction modes stored in the FPCR. If underflow is enabled
in the FPCR, the user’s handler is invoked via a secondary UNFL vector.

Developer Support Center September 1992

HW 23 - FPU Operations on Macintosh Quadra Computers 7 of 13

Hardware

Operand Error (OPERR)

This non-maskable handler is entered via vector number 52 at location $00D0. It provides
compatibility of results with the MC68881/2 for B, W, and L destination formats when the
source operand is a NaN (Not-a-Number), infinity, or value too large for the integer format. If
the OPERR exception is user-enabled, the FPSP handler invokes the user’s handler via a
secondary OPERR vector.

Overflow (OVFL)

This non-maskable handler is entered via vector number 53 at location $00D4. It determines
and stores the properly rounded overflow result based on the value of the intermediate result
and the rounding modes stored in the FPCR. If overflow is enabled in the FPCR, the user’s
handler is invoked via a secondary OVFL vector.

Signaling Not-a-Number (SNAN)

This non-maskable handler is entered via vector number 54 at location $00D8. It provides
compatibility of results with the MC68881/2 for B, W, and L destination formats. If the SNAN
exception is user-enabled, program flow is directed to the user’s handler via a secondary
vector.

If a program enables no floating-point exceptions in the FPCR, compatibility is not an issue. In
this case, no user exception handlers need be installed. The program traps to non-maskable
FPSP handlers as required for any fix-up of exceptional results or FPU state and then resumes
execution.

Performance degradation by non-maskable FPSP floating-point exception handling is minimal
in most cases because such intervention is rarely needed. The most common exception,
INEX2, requires no FPSP support. Underflows and overflows are infrequent when the
default extended rounding precision is employed. OPERR occurrences are also rare, unless
many out-of-range conversions occur from floating-point to integer formats.

User Floating-Point Exception Handlers

Users who require floating-point exception handlers in their applications running on Macintosh
Quadra platforms must exercise some care in both the writing and the installation of such
handlers. Moreover, if an application also targets Macintosh computers with MC68881/2
coprocessors and intends to resume processing via an RTE in an exception handler, its
exception handlers must query which kind of FPU (MC68881/2 or 68040) is present and then
execute hardware-specific code based on the query result. The reader is urged to consult the
user manuals for the 68040 and MC68881/2 for details not covered by this Note.

Each floating-point exception on the 68040 is reported by either the conversion unit (CU) or
normalization unit (NU) pipeline stage of the FPU. Exceptions reported by the CU are called
E1 exceptions; they are detected relatively early in the execution of an FPU instruction.
Exceptions reported by the NU are called E3 exceptions; they are detected late in the execution
of FPU instructions as the NU attempts to normalize and round the intermediate result for
storage in a destination FP register. E1 exceptions include all floating-point exception types.
The only E3 exceptions are OVFL, UNFL, and INEX2 occurring on opclass 0 (register-to-

Macintosh Technical Notes

8 of 13 HW 23 - FPU Operations on Macintosh Quadras

Hardware

register) and opclass 2 (memory-to-register) instructions. If both E3 and E1 exceptions exist at
the same time, the E3 exception should be handled first, allowing the 68040 to subsequently
trap to handle the pending E1 exception.

There are two FSAVE stack frames for floating-point exceptions on the 68040. E1 exceptions
produce the unimplemented instruction FPU state frame, and E3 exceptions produce the busy
FPU state frame. Both of these frames begin with a 1-byte version number followed by a 1-
byte frame length. The version number for Quadra 68040s is $41. For this version of the
68040, the frame length for E1 exceptions is $30, making the unimplemented instruction FPU
state frame 52 bytes in size (counting the 4-byte header). The busy frame for E3 exceptions has
a frame length of $60 and total size of 100 bytes.

Both 68040 floating-point exception FSAVE stack frames contain information that may be of
use to the user’s exception handler. There are two 12-byte fields containing the source and
destination operands in extended precision. There are two 3-bit tag fields which classify the
source and destination operands as to whether they are normalized, denormalized, zero,
infinite, or NaN.There are two bits (E1 and E3) which, if set, indicate which pipeline stage of
the FPU (CU or NU) detected the pending exception(s). Both FSAVE frames encode the
command word of the exceptional floating-point instruction, albeit in different fields.

As a minimum, user floating-point exception handlers on 68040 platforms must issue an
FSAVE instruction as the first FPU operation, clear the exception state of the FPU, and resume
processing via the RTE instruction. For E3 exceptions, the E3 bit in the FSAVE stack frame
must be cleared and the FRESTORE instruction must be issued prior to the RTE instruction. For
E1 exceptions, the minimum requirement is to throw away the FSAVE stack frame and to
resume processing via RTE. Another method of clearing the exception state for E1 exceptions is
to clear the E1 bit in the FSAVE stack frame and issue the FRESTORE prior to the RTE. The E1
and E3 bits are bits 2 and 1 (bit position 0 representing the least significant bit), respectively, of
the byte which is located 28 bytes below the high-address end of either FSAVE frame.

Minimum Floating-Point Exception Handler for the MC68881/2 and Quadra

The following code sequence serves as a minimum handler for all enabled floating-point
exceptions except BSUN on both with MC68881/2 platforms and Quadra computers. This
handler simply clears the exceptional condition in the FPU and resumes execution without
attempting to modify any other FPU state. A minimal BSUN handler would require additional
intervention (via one of four methods outlined in the user manuals for the 68040 and the
MC68881/2) to prevent infinite looping on the BSUN trap.

; **
; Minimum user handler for enabled INEX, DZ, UNFL, OPERR, OVFL,
; or SNAN floating-point exception on either MC68881/2 or
; Macintosh Quadra platforms.
;
; NOTE: For enabled DZ, OPERR, and SNAN exceptions for instructions
; with FP register destinations, no result is delivered at all to the
; destination register.
; **
HANDLER:

FSAVE -(SP) ; save internal FPU state
MOVE.L D0,-(SP) ; save D0, STACK: D0 save < FSAVE frame
MOVEQ #0,D0 ; zero D0
MOVE.B 4(SP),D0 ; NULL frame?

Developer Support Center September 1992

HW 23 - FPU Operations on Macintosh Quadra Computers 9 of 13

Hardware

BEQ.B @NULL ; yes, restore D0 and FPU state

CMPI.B #$41,D0 ; Quadra (68040) ID?

BNE.B @COPROC ; no, assume MC68881/2

; Quadra FSAVE frame
MOVE.B 5(SP),D0 ; D0 <- frame size

BEQ.B @NULL ; restore state if 68040 IDLE frame

; Quadra UNIMPLEMENTED INSTRUCTION or BUSY FSAVE frame
SUBI.B #20,D0 ; D0 <- offset of E1/E3 byte from (SP)
BCLR.B #1,(SP,D0) ; test and clear E3 byte
BNE.B @NULL ; restore state if E3 was set

BCLR.B #2,(SP,D0) ; E1 exception, clear E1 byte

; Restore state and resume execution
@NULL: MOVE.L (SP)+,D0 ; restore D0, STACK: FSAVE frame

FRESTORE (SP)+ ; restore FPU state
RTE ; resume processing

; MC68881/2 IDLE FSAVE frame
@COPROC: MOVE.B 5(SP),D0 ; D0 <- IDLE frame size

ADDQ.B #4,D0 ; compensate for D0 save value on stack
BSET.B #3,(SP,D0) ; set bit 27 of BIU
BRA.B @NULL ; restore state

Installation of User Floating-Point Exception Handlers

Current MPW language libraries (MPW 2.0.2 or later releases and Language Systems
FORTRAN version 3.0) provide for the vectoring of user floating-point exception handlers in a
consistent and portable fashion for both Quadra and MC68881/2 Macintosh platforms. The C
functions settrapvector and gettrapvector , the Pascal procedures
SetTrapVector and GetTrapVector, and the Language Systems FORTRAN
subroutines SetTrapVector and GetTrapVector allow users to install and read vectors
to their floating-point exception handlers via the use of the TrapVector structure. The
relevant interface files for these operations are {CIncludes}SANE.h ,
{PInterfaces}SANE.p, and {FIncludes}SANE.f.

A TrapVector structure is composed of seven 4-byte fields that represent the entry-point
addresses of the user’s BSUN, INEX, DZ, UNFL, OPERR, OVFL, and SNAN exception
handlers, respectively. GetTrapVector routines read the current floating-point exception
vectors into a TrapVector structure. In order to install their own exception handlers, users
must first initialize a TrapVector structure with entry points of their handler routines and
then invoke a SetTrapVector routine with that structure as the operand.

GetTrapVector and SetTrapVector routines involve privileged operations because they
access Motorola low-memory vector table locations. For Quadra platforms, the situation is
further complicated by the fact that five of the seven user floating-point exception vectors are
stored by the system in secondary locations because the FPSP has preempted the original
vector table locations. GetTrapVector and SetTrapVector implementations circumvent
these difficulties by calling a system utility, PrivTrap, which does all of the work of
querying or installing the user’s vectors.

Macintosh Technical Notes

10 of 13 HW 23 - FPU Operations on Macintosh Quadras

Hardware

The PrivTrap Mechanism

PrivTrap is implemented as a system trap, $A097. Upon entry, it expects a selector value in
register D0.W and a TrapVector structure address in address register A0 . The
GetTrapVector operation requires a selector value of 1; in this case, PrivTrap reads the
current floating-point exception vectors into the TrapVector structure at (A0). The selector
value of 2 invokes the SetTrapVector operation; the user’s exception vectors in the
TrapVector structure at (A0) are installed appropriately in the system. In either case,
registers A0 and A1 are modified upon exit.

As of the drafting of this Note, only the Quadra and PowerBook 170 platforms running system
software version 7.0.1 have the PrivTrap mechanism built into their systems. Individual
MPW library functions that require PrivTrap functionality first query if PrivTrap is
installed. If it is not, the library routines will install and call a version of the trap appropriate for
an MC68881/2 platform.

Implementation Notes

Since MultiFinder under system software version 6.0.x and Finder under current versions of
System 7 do not include user exception vectors among the FPU state that is saved and restored
at context switch, it is the responsibility of an application that enables floating-point exceptions
to save inherited user exception vectors and to restore them upon termination or context switch.
The inherited vectors may be read using the GetTrapVector operation. The application
installs its floating-point exception handlers via the SetTrapVector operation. At context
switch or program termination, SetTrapVector should be used to restore the appropriate
exception vectors. If the above regimen is followed, the application’s TrapVector structure
may contain arbitrary values for vectors corresponding to disabled exceptions.

Performance Issues

In order to extract the maximum floating-point performance on a Macintosh Quadra, an
application should avoid invoking emulation by the FPSP whenever possible. Unfortunately,
FPU instruction sequences that optimize Quadra performance often degrade performance to
some extent on MC68881/2 platforms. Programmers must always weigh the performance
requirements of their various target platforms when writing floating-point code.

Transcendental Functions

Although all FPU transcendental function instructions are emulated by the FPSP on Quadra
platforms, performance is comparable to a similarly clocked platform using the MC68882.

Unimplemented Arithmetic Functions

If deemed desirable for performance reasons on Quadra platforms, workarounds can readily be
devised for most of the arithmetic FPU instructions that are emulated by the FPSP. The FMOD
and FREM instructions are the notable exceptions since they involve an iterative algorithm in
their most general cases. The functionality of the remaining unimplemented arithmetic
instructions can be emulated as follows:

Developer Support Center September 1992

HW 23 - FPU Operations on Macintosh Quadra Computers 11 of 13

Hardware

FGETEXP If the argument is a NaN or zero, return the argument. If the argument is infinite,
return a NaN and signal OPERR. Otherwise, write the floating-point argument to stack,
extract, and unbias the exponent using integer operations, and deliver the result to FPn using
FMOVE.L <ea>,FPn.

FGETMAN If the argument is a NaN or zero, return the argument. If the argument is infinite,
return a NaN and signal OPERR. Otherwise, write the floating-point argument to the stack in
extended format, normalize the significand (mantissa) if necessary, set the exponent bits to
$3FFF, retain the original sign bit, and deliver the result to FPn using FMOVE.X <ea>,FPn.

FINT If the argument is zero or if the exponent of the argument is greater than 62, return the
argument. If the exponent of the argument is less than 31, round the argument to integral value
by conversion to integer format via FMOVE.L FPn,<ea> followed by conversion back to X
format via FMOVE.L <ea>,FPm. Otherwise, decompose the argument into an integral part
(via integer operations on the X format on the stack) and a fractional part (via subtraction of
the integral part from the argument), convert the fractional part to an integer via FMOVE.L
FPn,<ea>, and add the integer to the integral part.

FINTRZ Using integer operations on the argument stored in extended format on the stack,
test and zero out the fractional part. Set INEX2 if any fraction bits were nonzero. The test for
inexactness may be omitted if the application is indifferent to INEX2 being signaled by this
rounding operation.

FMOVECR Store desired constant in extended format in the code segment of program and
load it via FMOVE.X <ea>,FPn.

FSCALE Convert the integral source operand n to a floating-point factor 2.0^n on the stack.
Obtain the scale result via multiplication of that factor with the destination operand.

FINTRZ and Floating-Point → Integer Conversions

The most common compiler-generated unimplemented arithmetic FPU instruction is FINTRZ
during conversions of floating-point values to various signed integer formats in C or
FORTRAN source code. For example, to convert the value in FPn to 32-bit integer value at
<ea>, a compiler will generate the following code sequence:

FINTRZ FPn,FPm ; truncate to integral value
FMOVE.L FPm,<ea> ; convert to integral format

If the application is running in (IEEE 754) default mode (FPCR = $00000000: no exceptions
are enabled, rounding precision is extended, rounding direction is round-to-nearest), the
following code sequence will accomplish the same conversion with optimal performance on a
Quadra and with minimal performance degradation on an MC68881/2 platform:

FMOVE.L #$00000010,FPCR ; set round-to-zero mode
FMOVE.L FPn,<ea> ; truncate to integral format
FMOVE.L #$00000000,FPCR ; restore default modes

If the user’s FPCR setting is not the default, the last sequence must be modified to save and
restore the user’s FPCR setting at the cost of several instructions and some temporary storage.
Throughput for these conversions may be enhanced if the application requires an array of
floating-point values to be converted, because the FPCR needs to be modified only once before

Macintosh Technical Notes

12 of 13 HW 23 - FPU Operations on Macintosh Quadras

Hardware

and once after all conversions are done via the FMOVE.L FPn,<ea> step. Out-of-range
source values result in degraded performance on Quadra computers due to nonmaskable
vectoring to the OPERR handler in the FPSP.

Workarounds for conversions from floating-point values to the unsigned integer formats of C
are more complicated and of necessity slower than those to signed integer formats.

Miscellaneous Performance Tips for Quadra Applications

In order to minimize trapping to the FPSP for handling of exceptional conditions, data types, or
data formats, the following hints may prove useful:

 Applications should run with extended rounding precision set in the FPCR.

 Temporary storage for intermediate floating-point results should be in extended format and
 preferably in FP registers.

 Applications should avoid the generation of unnormalized extended format values via
 integer operations with subsequent reliance on the FPU to normalize the results.

 Applications should avoid the extensive use of the Motorola packed decimal (P) data format.

MPW QR6 Libraries

The MPW QR6 folder in the E.T.O. #6 Developers CD contains C and Pascal libraries that
have been performance-tuned. In particular, some of the -mc68881 mode implementations
have been modified to obtain better performance on Quadra platforms. Included among the new
implementations are conversions from floating-point to the unsigned integer formats of C.
Unfortunately, conversions to signed integer formats are generated in-line by the C compiler
and thus still include the FINTRZ instruction, which is emulated by the FPSP in Quadra
platforms.

Summary

FPU operations on Macintosh Quadra platforms are performed by a combination of circuitry in
the 68040 microprocessor and emulation code in the FPSP. The 68040 provides very fast
implementations of most of the basic floating-point arithmetic functions in the MC68881/2
instruction set. The FPSP emulates all transcendental functions and some arithmetic functions.
In addition, the FPSP handles instructions that involve certain data types/formats that are
unsupported by the 68040 hardware and fixes up state when certain exceptional conditions
arise during processing.

Compatibility of results relative to MC68881/2 platforms holds for all FPU arithmetic
instructions, whether or not they are emulated on Quadra computers. Results for transcendental
FPU instructions may differ, and they are generally more precise on the Quadra.

FPU applications that run with no floating-point exceptions enabled in the FPCR and that do
not install an unimplemented F-Line Opcode handler will run without modification on both
MC68881/2 and Quadra platforms. User unimplemented F-Line exception handlers are
installed via vector 11 at address $002C on MC68881/2 platforms and via a secondary vector
at address $1FC8 on Quadra platforms. Similarly, installation of user floating-point exception

Developer Support Center September 1992

HW 23 - FPU Operations on Macintosh Quadra Computers 13 of 13

Hardware

handlers for enabled exceptions must take care not to overwrite entry points to the FPSP on
Quadra platforms. MPW libraries provide high-level installation procedures for user floating-
point exception handlers. If such handlers are to run on all FPU platforms, they must take into
account the differences in FSAVE state frames for Quadra and MC68881/2 platforms.

Optimizing FPU performance on Quadra computers is largely a matter of understanding the
conditions under which the FPSP is invoked and then avoiding such conditions via
workarounds whenever possible. Code sequences thus optimized for Quadra computers will
often provide less than optimal performance on MC68881/2 platforms.

Further Reference:
 • MC68881/MC68882 Floating-Point Coprocessor User’s Manual
 • MC68040 32-Bit Microprocessor User’s Manual
 • MC68040 Designer’s Manual, Section 3: Floating-Point Emulation
 • M68000 Family Programmer’s Reference Manual
 • IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)

	Introduction
	FPU Instructions Provided by the 68040
	FPSP Overview
	Emulation of Unimplemented FPU Instructions
	Unimplemented Data Type/ Format Support in the FPSP
	FPSP Exception Handlers
	User Floating- Point Exception Handlers
	Installation of User Floating- Point Exception Handlers
	Performance Issues
	Summary

