New Technical Notes Macintosh ## Developer Support # **HW 22 - Cooperating with the Coprocessor** Hardware Revised by: Jim Reekes October 1990 Written by: Jim Reekes June 1989 The use of the 68881 or 68882 coprocessor is usually handled by the SANE package or by a development system's libraries. Some developers may wish to use the coprocessor during special circumstances, such as at interrupt level or installing their own hardware floating point exception handlers. In these two situations, there are special requirements that must be met. These requirements will require floating—point assembly code and are discussed in this Technical Note. Changes since June 1989: Noted that the new Sound Manager no longer uses floating-point numbers at interrupt time. ### Witnessing the Problem If you see the message "Spurious Interrupt of the Uninitialized Interrupt vector" in MacsBug or the message "Unassigned Interrupt #\$00D (format 9)" from TMON™, you should suspect a floating point protocol violation. This can be caused by improper usage of floating point instructions at interrupt level or by attempting to handle hardware floating point exceptions incorrectly. ## Interrupting the Coprocessor If you attempt to use the coprocessor at interrupt level, you may be interrupting a floating point processor. You must save the coprocessor's state before executing any floating point instructions, and, of course, restore it later during the interrupt routine. This requires assembly code since there is no convenient way to do it in a high–level language. There is a protocol that must be followed. The first floating point instruction must be an FSAVE. This instruction suspends the execution of any operation in progress and saves the internal state. The number of bytes required in this operation depends on the state it is in, and it can be up to 216 bytes. If any floating point registers are to be used, they also must be saved with the FMOVE instruction. After performing the interrupt routine, the FRESTORE instruction is used to restore the floating point state. ``` VBLProc FSAVE -(SP) ; save the FP state FMOVEM.X FPRegs,-(SP) ; save the FP regs we use ... ; your interrupt code ... ``` ``` VBLExit FMOVEM.X (SP)+,FPRegs ; replace the FP regs we used FRESTORE (SP)+ ; restore the FP state RTS ``` Note that the coprocessor may not be in a condition to be interrupted, and the FSAVE instruction will halt the main processor until such a condition can be met. To give an idea on the time required for saving the coprocessor's state, the FSAVE or FRESTORE instructions can take approximately 900 cycles to execute. This is about 50 times slower than a MOVE instruction. Considering the length of time it takes to perform this necessary protocol, it may not be desirable to use floating—point math at interrupt level. As an alternative, investigate the possibility of using the Toolbox routines for Fixed and Frac numbers. #### **Handling Floating Point Exceptions** It is possible, and sometimes desirable, for applications to install their own hardware floating—point exception handlers. The MPW '881 SANE libraries provide routines for applications to do so. If an application is going to use this mechanism to catch exceptions such as underflow, overflow, or divide by zero, then it must follow the minimal protocol as shown in the following example. ``` Handler -(SP) ; save the FP state FSAVE (SP),D0 MOVE.B ; first byte of the state frame NULL BEO ; branch if NULL state ; clear data register 1(SP),D0 ; load state frame size #3,(SP,D0) ; set bit 27 cm CLR.L MOVE.B BSET ; your exception code FRESTORE (SP)+ Mull ; restore the FP state RTE ; return from exception ``` #### Other Issues Debugging floating—point routines with MacsBug, SADE, and TMON may cause a protocol violation. MacsBug 6.1, and earlier, do not perform the FSAVE and FRESTORE surrounding floating—point instructions at interrupt level. As of TMON 2.8.4, it has not handled floating—point instructions. Hardware floating—point exception handlers and interrupt routines using floating—point instructions require assembly coding. You can witness a protocol violation in another situation. This is when using the Sound Manager in System Software 6.0.5 and earlier. This Sound Manager calls SANE at interrupt time. If an application is using the coprocessor **and** this Sound Manager is running, it is very likely to interrupt the coprocessor. This problem has been resolved in the new Sound Manager, which was originally released in System Software 6.0.6. The new Sound Manager no longer uses floating-point numbers at interrupt level; it replaces them with Fixed and Fract types. #### **Further Reference:** - Apple Numerics Manual, Second Edition - Motorola MC68881/MC68882 User's Manual - MPW reference manuals - Technical Note PT 25 Notes on MPW's -mc68881 Option - Technical Note HW 32 Speedy the Math Coprocessor TMON is a trademark of ICOM Simulations, Inc.