New Technical Notes

Macintosh ®
Developer Support

HW 16 - NuBus Interrupt Latency (I Was a Teenage

DMA Junkie)

Hardware

Revised by: Cameron Birse October 1989

Writtenby: Cameron Birse, Mark Baumwell, & Rich Collyer December 1988

This Technical Note discusses NuBus™ interrupt latency, and why, contrary to popular belief,
the Macintosh isnot area-time machine.

Changes since December 1988: Changed sample code to defer cursor rendering to a
deferred task rather than a“ pseudo-VBL” task.

The Macintosh isnot areal-time machine. The Macintosh doesnot support DMA. There are
many variables in the Macintosh that make it impossible to deterministically figure out exactly
when things are going to happen. Despite these facts, there are those who must push the
envelope. For these courageous adventurers, we provide the following information in the hope
that it speeds your journey.

According to empirical evidence gathered by Apple engineering, typical NuBus to Macintosh
transaction times fall in the 800 nanosecond to 1 microsecond range. Although the NuBus
specification points to faster accesses, you should consider these times realistic since thereis
always some overhead. Synchronizing the NuBus and Macintosh clocks, for example, can
cost aNuBus cycle.

One technique that can help optimize NuBus transfers is implementing bus locking. The bus
can be locked for a small set of transactions (we recommend a maximum of four transfers),
then unlocked for rearbitration. In order to allow fairness, it isimportant to lock the bus for as
short atime as possible.

All processor interrupts and slot interrupts may be held off for various amounts of time by
different parts of the system, so you must never count on instant interrupt response. To help
deal with these delays, you should consider your data rate and include ample buffering on your
card for your data. The following are just a few of the many system variables which affect
interrupt latency:

» Floppy disk accesses turn off interrupts for “significant” (read milliseconds)
amounts of time. For instance, some disk accesses (i.e., block reads) can
disable interrupts for as much as 15 milliseconds. Inserting a blank floppy disk
turns off interrupts for up to 25 milliseconds.

» Formatting afloppy disk turns off interrupts for up to 300 milliseconds.

» LocaTak accesses can disable interrupts for up to 22 milliseconds.

* Assuming your interrupt handler is going to want to access your card
immediately, there is also the arbitration for mastership of the bus, which could

HW 16 - NuBus Interrupt Latency (I Was a Teenage DMA Junkie) lof 4

Hardware

Macintosh Technical Notes

be in use at the time, and in the worst case, lock the bus, keeping you from
accessing your card.

» All dlot interrupts, including slot VBL interrupts, hold off other slot interrupts.
This means another card’ sinterrupt routine (installed via_SI nt I nstal |) or a
slot VBL interrupt routine (installed via__SI ot VI nst al |) runsto completion
with interrupts of the slot level and below disabled. VBL tasks may be of
varying length, since applications, as well as drivers, can and do, install VBL
tasks.

» Cursor updating (performed during slot VBL time) time ranges from around 700
pSec - 900 puSec for one-hit to eight-bit depth. Since thisis done at slot VBL
time, it holds off al other dot interrupts until it is finished.

Warning: The performance figures cited in this Note are based on current
Macintosh models; they are not guaranteed to remain the same in
future machines.

The following code lets you defer the cursor updating routine by having it run asa
deferred task. This change means that the actual cursor rendering is performed
with interrupts enabled, which allows the occurrence of other interrupts. It
should be noted that thereis adightly visible flickering of the cursor as aresult of
using this technique.

kkhhkkhkhhkkhhhkdhhhhkkhhhdhhhhdhhdhhddhhdhhdhhdhdhhdhddhdhddhhdhdhdxdhdddxdhxdhrdxx

* k%

*okk Def er Qursor

*okok This programdefers the cursor updating that normal |y happens
* ok during slot VBL time. Since the cursor updating can take as
*okk I ong as 900uSec, and holds off other slot interrupts, it is
*okk handy to be able to defer the updating to a nore civilized tine.
* ok This programrepl aces the nornmal jOsrTask with a routine that
*okk installs the real jOsrTask routine as a deferred task.

* k%

*okk Bui | d commands:

* k%

*okk asmDeferOsr.a -1o DeferGsr.a.lst -I

*okk link DeferOrsr.a.o -o DeferQsr

k

R o R ok R S T S R R R R Rk S U Rk Rk ok S R o R R kR R R S R

STRING ASI S

PRNT CFF

I NCLUDE ' Traps. a'
I NCLUDE ' SysEqu. a'
PRINT N

EEEEEE S S S EEEEEEEEEEEEEEEEEEEEEESET Ent ry R EEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
Entry MNAI N
bra.s Entry2

kkhkkkkhkkhkkhkkhkhkkkhhkkkhhkkkhkkhhkkhhkkkhk*x*% '\/y[bf Task khkkkhkkkkhhkkhkhkkhhkkkhhkkkhhkkkhkkhkkhkx*%

TaskBegi n
My Def Task

20f 4 HW 16 - NuBus Interrupt Latency (I Was a Teenage DMA Junkie)

Hardware

Developer Support Center October 1989

DC L 0 ;qLink (handl ed by CB)

DCW O ;qType (equ 7, find this value i n MPW Al ncl udes)

DCW 0 ;dtFlags (reserved, don't nmess with 'en)

DCL O ; dt Addr (pointer to actual routine to be performed)

DC L 0 ;dt Parm (optional parameter, this exanpl e doesn't use
it)

DCL O ; dt Reserved (shoul d be zero, DC. L O takes care of that)
SysCr sr Task

DCL O

* k% * % * % 1 * % * % * % *
*kkkkk *kkkkk *kkkkkhkkx * k% W]OsrTask *kkkkhkk *kkkkhkk *kkkkhkk

M/j O sr Task
novem | a0/ do, - (sp)
|l ea M Def Task, a0 ;point to our deferred task
el ement
nove. | SysCr sr Task, dt Addr (a0) ;set up pointer to routine
nove. w #dt Qlype, dt Type(a0) ; set queue type
_Drlnstall cinstall the task
novem | (sp)+, a0/ do
rts
TaskEnd

kkhkkkkhkkhkkhkkhkhkkkhhkkkhhkkhkkhkkhhkkhhkkkhkrkx*% Ent ry2 khkkkhkhkkkhhkkkhhkkhkhhkkhhkkkhhkkkhhkkhkkhkkk*x

TaskSi ze EQU TaskEnd- TaskBegi n
Entry2

nove. | #TaskSi ze, dO ; TaskSi ze = Deferred task el ement, room
for

; a pointer (to original jQsrTask), and
;our j OrsrTask

_NewpPt r , SYS, CLEAR ;make a block in the system heap
bne. s Abor t ;no roomat the Inn, head for the manger
nove. | a0, a2 ;got a good pointer, keep a copy
nove. | a0, al ;a0 = source, al = destination for
;. Bl ockMove
|l ea M/DEFTask, a0 ;copy the task, etc. into the system heap
nove. w #TaskSi ze, dO
_Bl ockMove
|l ea dt (Bl Si ze(a2), a0 ;move original jQOsrTask pointer into our
nove. | j O srTask, (a0) ; poi nter hol der
|l ea dt Bl Si ze+4(a2), a0 ;replace jOrsrTask pointer with a pointer
nove. | a0, j OrsrTask ; to our jOsrTask
abort rts ;all's well that ends...
END

* Note, as an aside, that while using MacsBug, interrupts are disabled.

In summary, you cannot depend on real-time performance when transferring data between
NuBus and the Macintosh. It isimportant to provide sufficient buffering on the card to allow
for the variance in interrupt latency. Driver calls can be used to determine the amount of data
available to be transferred, and transfers can be made on a periodic basis.

Remember too, since the entire system is so heavily interrupt-driven, it is very unfriendly for
anyone to disable interrupts and take over the machine for long periods of time. Doing so

HW 16 - NuBus Interrupt Latency (I Was a Teenage DMA Junkie) 3of 4

Hardware

Macintosh Technical Notes

almost aways results in a sluggish user interface, something which is usually not well received
by the user.

Further Reference:
* InsdeMacintosn, VolumeV, The Device Manager
* InsdeMacintosh, VolumeV, The Vertical Retrace Manager
» Macintosh Family Hardware Reference
* Desgning Cards and Driversfor the Macintosh |1 and Macintosh SE

NuBus is atrademark of Texas Instruments

40f 4 HW 16 - NuBus Interrupt Latency (I Was a Teenage DMA Junkie)

Hardware

