
Developer Note

Developer Press
© Apple Computer, Inc. 1994

Developer Note

Display Device Driver Guide
Device support for the Display Manager

Draft. Preliminary, ©1994 Apple Computer, Inc. 11/16/94

Apple Computer, Inc.
© 1994 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and Macintosh
are trademarks of Apple Computer,
Inc., registered in the United States and
other countries.
Adobe Illustrator and Adobe
Photoshop are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a registered service
mark of America Online, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
Internet is a trademark of Digital
Equipment Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the United
States and Canada.
Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

iii

 Draft. Preliminary.



1995 Apple Computer, Inc. 3/2/95

Contents

Figures v

Preface

About This Developer Note

vii

Supplementary Documents vii
Conventions and Abbreviations viii

Typographical Conventions viii

Chapter 1

Device Support for the Display Manager

1

About the Display Manager 2
Supporting the Display Manager With Your Device Driver 5

Supporting Type 6 Extended Sense Codes for
Multiple-Scan Displays 5

Enabling and Disabling Functional sResources 7
Responding to Control and Status Requests 8
Reporting Scan Timings 9

Device Support for the Display Manager Reference 10
Summary of Device Support for the Display Manager 25

Glossary

31

Thi d t t d ith F M k 4 0 4

iv

 Draft. Preliminary.



1995 Apple Computer, Inc. 3/2/95

v

Draft. Preliminary.



1995 Apple Computer, Inc. 3/2/95

Figures

Chapter 1 Device Support for the Display Manager 1

Figure 1-1 Sense line connections for type 6 sense codes 6

Table 1-1 Characteristics of the display modes for Apple displays 4

Thi d t t d ith F M k 4 0 4

vi

Draft. Preliminary.



1995 Apple Computer, Inc. 3/2/95

vii

Draft. Preliminary,



1995 Apple Computer, Inc. 3/2/95

P R E F A C E

About This Developer Note

This document describes how the Display Manager communicates with
display devices. It is written primarily for experienced Macintosh hardware
and software developers who want to create video device drivers that are
compatible with the Macintosh computer. If you are unfamiliar with
Macintosh computers or would simply like more technical information, you
may want to read the related technical manuals listed in “Supplementary
Documents.”

Supplementary Documents 0

To supplement the information in this document, you might wish to obtain
related documentation such as

Guide to the Macintosh Family Hardware,

 second
edition;

Designing Cards and Drivers for the Macintosh Family,

 third edition;
and

Inside Macintosh

. These documents are available through APDA.

APDA is Apple’s worldwide source for hundreds of development tools,
technical resources, training products, and information for anyone interested
in developing applications on Apple platforms. Customers receive the

APDA
Tools Catalog

featuring all current versions of Apple development tools and
the most popular third-party development tools. APDA offers convenient
payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the

APDA Tools
Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Thi d t t d ith F M k 4 0 4

viii

Draft. Preliminary,



1995 Apple Computer, Inc. 3/2/95

P R E F A C E

Conventions and Abbreviations 0

This developer note uses typographical conventions and abbreviations that
are standard in Apple publications.

Typographical Conventions 0

Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in

Courier

 font.

Hexadecimal numbers are preceded by a dollar sign ($). For example, the
hexadecimal equivalent of decimal 16 is written as $10.

Draft. Preliminary.



1995 Apple Computer, Inc. 3/2/95

C H A P T E R 1

Device Support for the

Display Manager 1

Figure 1-0
Listing 1-0
Table 1-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1

Device Support for the Display Manager

1-2

About the Display Manager

Draft. Preliminary.



1995 Apple Computer, Inc. 3/2/95

This chapter explains how the Display Manager communicates with a video device
driver to change display modes for displays that support multiple screen resolutions.
(This book uses the term

displays

 to represent output devices—such as video monitors
and flat-panel displays—on which applications can show interactive visual information
to the user.) A

display mode

 is a combination of several interrelated capabilities that can
be altered using the Display Manager to affect the display. A display mode is
characterized by

■

the

screen resolution, which determines the number of pixels that appear on the
display screen

■

the pixel depth, which determines the number of colors available on the display

■

the horizontal and vertical scan timings in use by the display

■

the display’s refresh rate

Some multiple-resolution displays, such as some flat-panel displays on PowerBook
computers, support display modes that change only the screen resolution and the pixel
depth. For example, by choosing a lower screen resolution, a color PowerBook user with
limited RAM can set the display to show a greater number of colors.

Multiple-scan
displays,

 however, are also capable of operating at multiple horizontal and vertical scan
timings and at different refresh rates.

If you create video devices—such as plug-in video cards or built-in video interfaces—or
write video device drivers, read this chapter to learn how the Display Manager
communicates with your devices.

To use this chapter, you must be familiar with building devices for Macintosh computers
as explained in

Designing Cards and Drivers for the Macintosh Family,

 third edition. You
must also be familiar with the Device Manager and the Slot Manager, both of which are
described in

Inside Macintosh: Devices

. You should also be familiar with the way
QuickDraw and QuickDraw GX prepare images for video devices, as explained in

Inside
Macintosh: Imaging

With QuickDraw

 and in the

Inside Macintosh: QuickDraw GX

 suite of
books.

About the Display Manager 1

The

Display Manager

 allows users to dynamically change the arrangement and display
modes of the displays attached to their computers. For example, users can move their
displays, add or remove displays, switch displays to show more or fewer pixels, and
move the menu bar from one display to another—all without restarting their computers.
When the user changes the display environment, the Display Manager notifies all
current applications about these changes. Applications can then reposition their
windows according to their own criteria; otherwise, the Display Manager repositions all
windows so that the user can find them in the new display environment.

From the perspective of your video device, the Display Manager allows users to choose
from the various display modes available on their displays. For example, a multiple-scan
display might support display modes with screen resolutions of 640 by 480 pixels and

C H A P T E R 1

Device Support for the Display Manager

About the Display Manager

1-3

Draft. Preliminary.



1995 Apple Computer, Inc. 3/2/95

1024 by 768 pixels. When editing a bitmap image with a paint application, a user might
wish to use the lower screen resolution, which—compared with the higher resolution—
displays fewer pixels on the screen but displays them at a larger size. When using a
spreadsheet application, however, the user might then want to switch to the higher
resolution to increase the number of onscreen pixels and thereby view a greater number
of cells in a spreadsheet.

To change to the higher resolution, the user opens the Monitors control panel and selects
the display mode for that resolution. The Display Manager then sends your video device
driver a control request to switch the display to the newly selected display mode.

All required display modes appear when the user opens the Monitors control panel. For
a particular type of display (for example, a 21-inch video monitor), a

required display
mode

 is one that Apple requires the display to support. A multiple-scan display must
support several required display modes, one of which is designated to be the default
display mode. The

default display mode

 appears the first time a user turns on a display.
For example, the first time a user connects and starts a 21-inch video monitor, it should
use a mode displaying 1152 by 870 pixels. However, a 21-inch multiple-scan display is
also required to support display modes with resolutions of 640 by 480 pixels, 832 by 624
pixels, and 1024 by 768 pixels, which the user can select with the Monitors control panel.

Note

If a device driver does not support the type 6 extended sense codes as
described on page 1-5, the user of a multiple-scan monitor generally sees
only a default display mode of 640 by 480 pixels.

◆

In addition to its required display modes, a display may also support additional display
modes, which are called

optional display modes.

 Optional display modes are shown
when the user holds the Option key and clicks the Options button in the Monitors
control panel. After the user selects an optional display mode, the Display Manager asks
your device driver to switch to that display mode, and the Monitors control panel
displays a confirmation dialog box asking whether the mode works. If the mode does
not work, the user may not be able to see the dialog box, in which case pressing
Command-period, Escape, Return, or Enter all cause the Display Manager to revert to
the previous display mode. If within 6 seconds the user does not click a button in the
dialog box or press any of these keys, the Display Manager reverts to the previous
display mode.

C H A P T E R 1

Device Support for the Display Manager

1-4

About the Display Manager

Draft. Preliminary.



1995 Apple Computer, Inc. 3/2/95

Table 1-1 shows the screen resolutions and scan timings for the default, required, and
optional display modes of Apple displays that can be altered using the Display Manager.

If the user changes the display mode for the display attached to your video device before
shutting down the computer, the Monitors control panel makes the

SetDefaultMode

call to your driver, which should store that mode in parameter RAM and use it as the
startup mode (that is, as a new default display mode) when the user next restarts the
computer.

In determining what type of display is attached to your video device, device drivers
usually examine the display’s sense code. As described in “Supporting Type 6 Extended
Sense Codes for Multiple-Scan Displays” beginning on page 1-5, a

sense code

 is an
identification code that is read by the primary initialization code for a video device from
the sense lines of an attached display. Your device driver can associate each sense code
with a default display mode and a set of required and optional display modes for the
display.

Table 1-1

Characteristics of the display modes for Apple displays

Display type

Screen resolution and
scan timing of default
mode

Screen resolutions and
scan timings of other
required modes

Screen resolutions and
scan timings of optional
modes

Multiple-scan
 type 1

640

×

 480 pixels at 67 Hz
(e.g., 13-inch display)

832

×

 624 pixels at 75 Hz 512

×

 384 pixels at 60 Hz

Multiple-scan
 type 2

832

×

 624 pixels at 75 Hz
(e.g., 16-inch display)

640

×

 480 pixels at 67 Hz
1024x768 pixels at 75 Hz

Multiple-scan
 type 3

1152

×

 870 pixels at 75 Hz
(e.g., 21-inch display)

640

×

 480 pixels at 67 Hz
832

×

 624 pixels at 75 Hz
1024

×

 768 pixels at 75 Hz

VGA 640

×

 480 pixels at 60 Hz 800

×

 600 pixels
at 56 Hz (i.e., SVGA)

1024

×

 768 pixels
at 60 Hz (i.e., VESA
1K-60Hz)

1024

×

 768 pixels
at 70 Hz (i.e., VESA
1K-70Hz)

Full-page
portrait

640

×

 870 pixels at 75 Hz 640

×

 818 pixels at 75 Hz

Flat-panel
display

640

×

 480 pixels 640

×

 400 pixels

C H A P T E R 1

Device Support for the Display Manager

Supporting the Display Manager With Your Device Driver

1-5

Draft. Preliminary.



1995 Apple Computer, Inc. 3/2/95

Supporting the Display Manager With Your Device Driver 1

To support the Display Manager, your video device must

■

recognize type 6 extended sense codes, either in the

PrimaryInit

 code in your
declaration ROM or in a patch to your device driver

■

allow all functional sResources supported by the attached display to remain in the slot
resource table; that is, your

PrimaryInit

 code and your driver should

enable one
functional sResource and disable the other sResources supported by the display

■

support two status requests and one control request in your device driver

■

report timing information for the attached display either by including timing
information for each functional sResource in your declaration ROM or by supporting
the

cscGetModeTiming

 status request in your device driver

The Display Manager requires System 7.1 and Color QuickDraw. If the Display Manager
is not present but your device driver supports it, the user can still select different display
modes on a Color QuickDraw system by using the Monitors control panel; however, the
user must restart the computer for the new display mode to take effect.

Supporting Type 6 Extended Sense Codes for

Multiple-Scan Displays 1

Listed here are the extended sense codes for multiple-scan displays that your device
must recognize. (If you create your own displays, they must communicate these
extended sense codes to their video devices.)

extendedMSB1 Equ $03 ; type 6, 12 or 13-inch multiple-scan

; display

extendedMSB2 Equ $0B ; type 6, 16 or 17-inch multiple-scan

; display

extendedMSB3 Equ $23; ; type 6, 19 or 21-inch multiple-scan

 ; display

extendedHR Equ $2B ; 12 or 13-inch single-scan display

; without an extended sense code

Extended sense codes

 are 6-bit binary numbers that define how displays’ sense lines
should respond in order for displays to be recognized by your video device. Before the
introduction of these extended sense codes, a video device determined the display type
by reading its three sense lines and simply comparing the signal value of each to ground.
By convention, the sense lines were identified as 0, 1, and 2. Given the three lines and the
two different states, on or off, there were a total of eight possible sense codes. Your
device reads a sense line connected to ground as a binary 0 and an ungrounded sense
line as a binary 1.

C H A P T E R 1

Device Support for the Display Manager

1-6

Supporting the Display Manager With Your Device Driver

Draft. Preliminary.



1995 Apple Computer, Inc. 3/2/95

Seven combinations of the sense line states were assigned to early displays. To support
additional display types, extended sense codes have been added. Multiple-scan displays
indicate that they support

type 6 extended sense codes

 by leaving sense lines 1 and 2
ungrounded and sense line 0 grounded. (The eighth sense line combination, where none
of the three sense lines is connected to ground, signals the use of type 7 extended sense
codes, which are not discussed in this chapter.)

When your video device reads the states of the display’s sense lines and finds that only
line 0 is grounded, your device should interpret the states of the sense lines as a type 6
extended sense code. If your device supports regular but not extended sense codes, it
will interpret this sense line combination as the sense code for a 13-inch single-scan
display. In this case, the user will be able to use the display in only one mode: that which
supports a screen resolution of 640 by 480 pixels.

Multiple-scan displays communicate a type 6 sense code and its extended sense code by
connecting sense lines 1 and 2 with either a wire or a diode. As shown in Figure 1-1, a
straight wire between these sense lines signals a 13-inch multiple-resolution display, a
diode connecting line 1 to line 2 signals a 17-inch multiple-resolution display, and a
diode connected line 2 to line 1 signals a 21-inch multiple-resolution display. If there are
no connections between these sense lines, then the display is a 13-inch display that does
not support multiple scan timings.

Figure 1-1

Sense line connections for type 6 sense codes

02

1

02

1

02

1

02

1

101011b

$2B

extendedHR

13-inch single-

scan display

000011b

$03

extendedMSB1

13-inch multiple-

scan display

001011b

$0B

extendedMSB2

17-inch multiple-

scan display

100011b

$23

extendedMSB3

21-inch multiple-

scan display

C H A P T E R 1

Device Support for the Display Manager

Supporting the Display Manager With Your Device Driver

1-7

Draft. Preliminary.



1995 Apple Computer, Inc. 3/2/95

To determine an extended sense code, your device pulls down each sense line while
reading the other two sense lines. When reading a line, your device compares it with the
down line instead of comparing it with ground. If a line has the same state as the down
line, your device assigns it a binary value of 0; otherwise, your device assigns it a binary
value of 1. Starting with the third sense line, your device pulls down each line and
compares it with the others as follows:

1. Of the three sense lines (0, 1, and 2), start by pulling down line 2; compare it with line
0 and then with line 1 to derive the first 2 bits of the sense code. For a 13-inch
multiple-scan display, for example, you will derive the binary value 00.

2. After pulling down line 2, pull down line 1; compare it with line 0 and then with line
2 to derive the next 2 bits. For a 13-inch multiple-scan display, for example, you will
derive the binary value 00.

3. Use the binary value 11 for the last 2 bits, which are identical for all type 6 sense
codes. For a 13-inch multiple-scan display, then, you derive a sense code value of 00
00 11b (where

b

 denotes binary), which equates to hexadecimal value $03 and the
constant

extendedMSB1

.

Enabling and Disabling Functional sResources 1

Video devices typically have functional sResources to support a variety of display
modes. A

functional sResource,

 stored in a device’s declaration ROM, describes a
specific function of the device—for example, controlling a display at a certain display
mode. Your device should use sResources to describe display modes for its attached
display. The

PrimaryInit

 code for your video device driver should not delete from the
slot resource table any of the functional sResources supported by the display attached to
your video device. Instead, your device driver should enable one functional sResource,
which Color QuickDraw uses to build the

GDevice

 record for your device, and your
driver should disable the other sResources.

When the Display Manager sends your device driver the

cscSwitchMode

 control call,
your control routine should use the Slot Manager function

SetSRsrcState

 once to
disable the functional sResource describing the existing display mode and then again to
enable the functional sResource specified by

cscSwitchMode

, as illustrated in Listing
1-1.

Listing 1-1

Disabling and enabling sResources for display modes

;code fragment illustrating how to disable and enable functional

; sResources while switching display modes

WITH VSCVidParams,SpBlock

MOVEM.L D0-D1/A0-A1,-(SP) ;save work registers--D1

; contains the spID field for

; the sResource to enable, and

; D1.b contains the sResource ID

C H A P T E R 1

Device Support for the Display Manager

1-8

Supporting the Display Manager With Your Device Driver

Draft. Preliminary.



1995 Apple Computer, Inc. 3/2/95

; that is about to swapped in;

; A1 points to a device control

; block

MOVE.B dCtlSlotID(A1),D0 ;save the sResource to disable

MOVE.B D1,dCtlSlotId(A1) ;save the sResource to enable,

; update dCtlSlotId

;if necessary, update dCtlDevBase and dCtlExtDev too

SUBA.W #spBlockSize,SP ;allocate slot parameter block

MOVE.L SP,A0 ;point to block with A0

MOVE.B dCtlSlot(A1),spSlot(A0) ;set up the right slot number

CLR.B spExtDev(A0) ;it is necessary to clear this

MOVE.B D0,spID(A0) ;write out spID of sResource to

; disable

_SRsrcInfo ;(update SpBlock for below)

MOVE.L #1,spParamData(A0) ;the sResource to disable

_SetSRsrcState ;disable the current sResource

MOVE.B dCtlSlotID(A1),spID(A0) ;write out spID of sResource to

; enable

MOVE.L #0,spParamData(A0) ;the sResource to enable

_SetSRsrcState ;enable the specified sResource

_SUpdateSRT ;update slot resource table

As shown in Listing 1-1, your control routine should use the Slot Manager function

SUpdateSRT

 after enabling the sResource for the new display mode; using the

SUpdateSRT

 function updates the device driver reference number for this sResource in
the slot resource table.

Your control routine must update the

dCtlSlotID

 field (and—if your driver uses it—
the

dCtlExtDev

 field) of your driver’s device control entry. If disabling and enabling
sResources moves the pixel map’s base address in the

GDevice

 record for your video
device, your control routine must also update the

dCtlDevBase

 field of the device
control entry.

Responding to Control and Status Requests 1
Using control and status requests, the Display Manager informs your device driver
about user changes to the display environment and asks your device driver about its
attached display.

When the user opens the Monitors control panel and changes the display mode for the
display attached to your video device, the Display Manager sends your device driver the
cscSwitchMode control request, described on page 1-19. To support the Display
Manager, your driver must provide a control routine to respond to this request.

The Display Manager uses the cscGetCurMode status request, described on page 1-21,
to determine whether your video device driver supports the Display Manager. If your
driver returns the statusErr result code to this status request, system software

C H A P T E R 1

Device Support for the Display Manager

Supporting the Display Manager With Your Device Driver 1-9
Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

assumes that your driver cannot switch display modes without making the user restart
the computer. The Display Manager and other parts of system software also make a
cscGetCurMode status request to save the current display mode. For example, the
Monitors control panel uses cscGetCurMode to save the current display mode in case it
becomes necessary to undo a change made by the user.

The Display Manager uses the cscGetConnection status request, described on
page 1-22, to gather information about the display capabilities of the display attached to
your video device. For example, when the Display Manager sends your device driver the
cscGetConnection status request, your video device driver reports whether the
display modes represented by the sResources for the attached display are optional or
required.

If your video device’s declaration ROM does not include a timing directory describing
the scan timings for the display attached to your device, the Display Manager uses the
cscGetModeTiming status request to gather this information. The next section
describes how your device can report scan timings to the Display Manager.

Reporting Scan Timings 1
Your video device must report timing information for its attached display. If you are
creating a new ROM for your device, you might want to include scan timings in your
declaration ROM; otherwise, your driver must return a display’s scan timings by
supporting the cscGetModeTiming status request.

To gather scan timing information, the Display Manager makes a cscGetModeTiming
status request to your driver. If your driver returns the statusErr result code, the
Display Manager uses the Slot Manager to examine the declaration ROM on your video
device. The Display Manager looks in your declaration ROM for a timing directory
(sVidParmDir = 123) in the board sResource, which is the data structure that identifies
your device to the Slot Manager. The timing directory should contain the scan timings
for all the functional sResources in the declaration ROM (just as the video mode name
directory should contain the names of all the functional sResources). For each functional
sResource in the declaration ROM, the timing directory should contain an entry with a
value represented by one of the following constants:

enum {

timingUnknown = 0, /* unknown timing */

timingApple12 = 130, /* 512x384 (60 Hz) 12" RGB */

timingApple12x = 135, /* 560x384 (60 Hz) */

timingApple13 = 140, /* 640x480 (67 Hz) 13" RGB */

timingApple13x = 145, /* 640x400 (67 Hz) */

timingAppleVGA = 150, /* 640x480 (60 Hz) VGA */

timingApple15 = 160, /* 640x870 (75 Hz) full page display */

timingApple15x = 165, /* 640x818 (75 Hz) full page display 818 */

timingApple16 = 170, /* 832x624 (75 Hz) 16" RGB */

timingAppleSVGA = 180, /* 800x600 (56 Hz) SVGA */

timingApple1Ka = 190, /* 1024x768 (60 Hz) VESA 1K-60Hz */

C H A P T E R 1

Device Support for the Display Manager

1-10 Device Support for the Display Manager Reference

Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

timingApple1Kb = 200, /* 1024x768 (70 Hz) VESA 1K-70Hz */

timingApple19 = 210, /* 1024x768 (75 Hz) Apple 19" RGB */

timingApple21 = 220, /* 1152x870 (75 Hz) Apple 21" RGB */

timingAppleNTSC_ST

= 230, /* 512x384 (60 Hz, interlaced, nonconvolved) */

timingAppleNTSC_FF

= 232, /* 640x480 (60 Hz, interlaced, nonconvolved) */

timingAppleNTSC_STconv

= 234, /* 512x384 (60 Hz, interlaced, convolved) */

timingAppleNTSC_FFconv

= 236, /* 640x480 (60 Hz, interlaced, convolved) */

timingApplePAL_ST

= 238, /* 640x480 (50 Hz, interlaced, nonconvolved) */

timingApplePAL_FF

= 240, /* 768x576 (50 Hz, interlaced, nonconvolved) */

timingApplePAL_STconv

= 242, /* 640x480 (50 Hz, interlaced, nonconvolved) */

timingApplePAL_FFconv

= 244 /* 768x576 (50 Hz, interlaced, nonconvolved) */

};

The Display Manager uses these constants to look up display modes in an internal table
of modes supported by various displays.

If your board sResource doesn’t include a timing directory, your device driver must
supply a status routine that processes and responds to the cscGetModeTiming status
request. The cscGetModeTiming status request is described in detail on page 1-24.

Device Support for the Display Manager Reference 1

This reference section describes the records and the control and status requests used by
the Display Manager. “Data Structures” shows the C language data structures for the
VDSwitchInfoRec, VDDisplayConnectInfoRec, and VDTimingInfoRec records.
“Control Requests” describes the cscSwitchMode control request. “Status Requests”
describes the cscGetCurMode, cscGetConnection, and cscGetModeTiming status
requests.

Data Structures 1
This section shows the C language data structures for the VDSwitchInfoRec,
VDDisplayConnectInfoRec, and VDTimingInfoRec records. The Display Manager
sends the cscSwitchMode control request to your video device driver to switch to the
display mode specified by a VDSwitchInfoRec record. Your device driver also uses a

C H A P T E R 1

Device Support for the Display Manager

Device Support for the Display Manager Reference 1-11
Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

VDSwitchInfoRec record to return information about the current display mode in
response to a cscGetCurMode status request from the Display Manager. Using a
VDDisplayConnectInfoRec record, your device driver returns information about the
capabilities of your attached display in response to a cscGetConnection status
request. In response to a cscGetCurMode status request, your device driver uses a
VDTimingInfoRec record to return information about the scan timings available on the
display.

VDSwitchInfoRec 1

The Display Manager uses the cscSwitchMode control request, described on page 1-19,
to switch your video device to the display mode specified by a VDSwitchInfoRec
record. Your video device driver is responsible for setting your video device and your
device control entry information to match the display mode specified in this record.

Your device driver also uses a VDSwitchInfoRec record to return information about
the current display mode in response to a cscGetCurMode status request (described on
page 1-21) from the Display Manager.

struct VDSwitchInfoRec {

unsigned short csMode; /* depth mode (also called video

mode) */

unsigned long csData; /* functional sResource for display

mode */

unsigned short csPage; /* number for a video page */

Ptr csBaseAddr; /* pointer to the base address for

the video page specified in the

csPage field */

unsigned long csReserved; /* reserved for future expansion;

currently set to 0 by the

Display Manager */

};

Field descriptions

csMode The depth mode (also called video mode), which describes the pixel
depth and is specified by a constant or its value from the following
enumerated list:

enum {

firstVidMode = 128, /* first depth mode,

representing lowest

supported pixel

depth */

secondVidMode = 129, /* second depth mode,

representing next

C H A P T E R 1

Device Support for the Display Manager

1-12 Device Support for the Display Manager Reference

Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

highest depth */

thirdVidMode = 130, /* third depth mode,

representing next

highest depth */

fourthVidMode = 131, /* fourth depth mode,

representing next

highest depth */

fifthVidMode = 132, /* fifth depth mode,

representing next

highest depth */

sixthVidMode = 133, /* sixth depth mode,

representing next

highest depth */

};

In response to the cscSwitchMode control request, your control
routine should switch your video device to use the pixel depth
specified by this mode. In response to the cscGetCurMode status
request, your status routine should use the csMode field to return
the current depth mode.
A depth mode specified by the firstVidMode constant represents
the lowest supported pixel depth—typically, 1 bit per pixel. A depth
mode specified by the secondVidMode constant represents the
next highest supported pixel depth—often, but not necessarily, 2
bits per pixel. If your video device supports 4 bits per pixel instead
of 2 as its next highest pixel depth, then its driver uses the
secondVidMode constant to represent 4 bits per pixel. In this
manner, the remaining constants signifying depth modes specify an
ordered set of increasingly higher pixel depths.

csData The number used by your video device to identify the functional
sResource describing a particular display mode. In response to the
cscSwitchMode control request, your control routine should
enable the functional sResource specified in this field after disabling
the current sResource. In response to the cscGetCurMode status
request, your status routine should use this field to return the
number for the sResource that describes the current display mode.

csPage The number for a video page. In response to the cscSwitchMode
control request, your control routine should switch the display to
this video page. In response to the cscGetCurMode status request,
your status routine should use this field to return the current video
page. Remember that the first video page is always number 0.

csBaseAddr A pointer to the base address for the video page specified in the
csPage field. In response to both the cscSwitchMode control
request and the cscGetCurMode status request, your routine
should use this field to return a pointer to the base address for the
video page specified in the csPage field.

C H A P T E R 1

Device Support for the Display Manager

Device Support for the Display Manager Reference 1-13
Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

csReserved Reserved for future expansion. The Display Manager currently sets
this field to 0.

VDDisplayConnectInfoRec 1

To gather information about the capabilities of the display attached to your video device,
the Display Manager makes the cscGetConnection status request to your video
device driver. (The cscGetConnection status request is described on page 1-22.) Your
driver must provide a status routine to respond to this request by returning information
in two of the fields of a VDDisplayConnectInfoRec record.

struct VDDisplayConnectInfoRec {

unsigned short csDisplayType; /* type of connected

display */

unsigned short csConnectTagged; /* reserved; currently set

by Display Manager to

0 */

unsigned long csConnectFlags; /* support (required or

optional) for the

display modes for this

display */

unsigned long csDisplayComponent; /* reserved for future;

currently set to 0 by

the Display Manager */

unsigned long csConnectReserved; /* reserved for future;

currently set to 0 by

the Display Manager */

};

Field descriptions

csDisplayType The type of display attached to your video device. If your video
device controls Apple displays or displays similar to those from
Apple, your status routine can return one of the following constants
or the value it represents:

 enum {

 kPanelTFTConnect

= 2, /* fixed-in-place LCD (TFT, aka

"active matrix") panels */

 kFixedModeCRTConnect

= 3, /* very limited displays */

 kMultiModeCRT1Connect

= 4, /* 12" optional, 13" default,

16" required */

C H A P T E R 1

Device Support for the Display Manager

1-14 Device Support for the Display Manager Reference

Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

 kMultiModeCRT2Connect

= 5, /* 12" optional, 13" required,

16" default, 19" required */

 kMultiModeCRT3Connect

= 6, /* 12" optional, 13" required,

16" required, 19" required,

21" default */

 kMultiModeCRT4Connect

= 7, /* expansion to large multimode (not

yet implemented) */

 kModelessConnect

= 8, /* expansion to modeless model

(not yet implemented) */

 kFullPageConnect

= 9, /* 640x818 (to get 8bpp in 512K

case) and 640x870 (nothing else

supported) */

 kVGAConnect

= 10, /* 640x480 VGA default --

nothing else required */

 kNTSCConnect

= 11, /* NTSC ST (default), FF, STconv,

FFconv */

 kPALConnect

= 12, /* PAL ST (default), FF, STconv,

FFconv */

 kHRConnect

= 13, /* 640x400 (to get 8bpp in 256K

case) and 640x480 (nothing else

supported) */

 kPanelFSTNConnect

= 14 /* fixed-in-place LCD FSTN (aka

"supertwist") panels */

};

If your video device controls a display unlike those previously
listed, your status routine can return the following constant or the
value it represents:

enum {

kUnknownConnect = 1 /* display unlike Apple’s */

}

C H A P T E R 1

Device Support for the Display Manager

Device Support for the Display Manager Reference 1-15
Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

csConnectTagged
Reserved for future expansion. The Display Manager currently sets
this field to 0.

csConnectFlags Flag bits indicating whether all the display modes for this display
are required or optional. Your status routine should set or clear the
bits represented by the following constants:

 enum {

 kAllModesValid

= 0, /* all display modes not deleted by

PrimaryInit code are optional */

 kAllModesSafe

= 1, /* all display modes not deleted by

PrimaryInit code are required;

if you set this bit, set the

kAllModesValid bit, too */

 kHasDirectConnect

= 3 /* for future expansion, setting this bit

means that your driver can talk

directly to the display (e.g., there is

a serial data link via sense lines) */

 kIsMonoDev

= 4 /* this display does not support color */

 kUncertainConnect

= 5 /* there may not be a display; Monitors

control panel makes the user confirm

some operations--like moving the menu

bar--when this bit is set */

};

csDisplayComponent
Reserved for future expansion. The Display Manager currently sets
this field to 0.

csConnectReserved
Reserved for future expansion. The Display Manager currently sets
this field to 0.

VDTimingInfoRec 1

Unless your video device’s declaration ROM includes a timing directory as described in
“Reporting Scan Timings” beginning on page 1-9, your driver must provide a status
routine that responds to the cscGetModeTiming status request. Your status routine
must return timing information in the fields of the VDTimingInfoRec record that

C H A P T E R 1

Device Support for the Display Manager

1-16 Device Support for the Display Manager Reference

Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

cscGetModeTiming passes to your driver. (The cscGetModeTiming status request is
described on page 1-24.)

struct VDTimingInfoRec {

unsigned long csTimingMode; /* sResource describing

display mode */

unsigned long csTimingReserved; /* reserved for future;

currently set to 0 by the

Display Manager */

unsigned long csTimingFormat; /* format for timing info;

currently, only the format

represented by the

constant kDeclROMtables is

valid */

unsigned long csTimingData; /* scan timings data for

sResource passed in

csTimingMode field */

unsigned long csTimingFlags; /* flag bits indicating

whether the display mode

with these scan timings

is optional or required */

};

Field descriptions

csTimingMode The functional sResource describing a display mode. The Display
Manager uses this field to specify an sResource. In the rest of this
record, your status routine should supply the timing information
for this display mode.

csTimingReserved
Reserved for future expansion. The Display Manager currently sets
this field to 0.

csTimingFormat Format of the information in the csTimingData field. Currently,
only the format represented by the constant kDeclROMtables is
valid.

/* use information in this record instead of

looking in the declaration ROM for timing info;

used for patching existing card without

updating declaration ROM */

#define kDeclROMtables 'decl'

csTimingData Scan timings data for the sResource specified in the csTimingMode
field. If your video device controls Apple displays or displays
similar to those from Apple, your status routine can return one of
the following constants or the value it represents:

C H A P T E R 1

Device Support for the Display Manager

Device Support for the Display Manager Reference 1-17
Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

enum {

timingApple12

= 130, /* 512x384 (60 Hz) 12" RGB */

timingApple12x

= 135, /* 560x384 (60 Hz) */

timingApple13

= 140, /* 640x480 (67 Hz) 13" RGB */

timingApple13x

= 145, /* 640x400 (67 Hz) */

timingAppleVGA

= 150, /* 640x480 (60 Hz) VGA */

timingApple15

= 160, /* 640x870 (75 Hz) full page display */

timingApple15x

= 165, /* 640x818 (75 Hz) full page display

818 */

timingApple16

= 170, /* 832x624 (75 Hz) Apple 16" RGB */

timingAppleSVGA

= 180, /* 800x600 (56 Hz) SVGA */

timingApple1Ka

= 190, /* 1024x768 (60 Hz) VESA 1K-60Hz */

timingApple1Kb

= 200, /* 1024x768 (70 Hz) VESA 1K-70Hz */

timingApple19

= 210, /* 1024x768 (75 Hz) Apple 19" RGB */

timingApple21

= 220, /* 1152x870 (75 Hz) Apple 21" RGB */

timingAppleNTSC_ST

= 230, /* 512x384 (60 Hz, interlaced,

nonconvolved) */

timingAppleNTSC_FF

= 232, /* 640x480 (60 Hz, interlaced,

nonconvolved) */

timingAppleNTSC_STconv

= 234, /* 512x384 (60 Hz, interlaced,

convolved) */

timingAppleNTSC_FFconv

= 236, /* 640x480 (60 Hz, interlaced,

convolved) */

timingApplePAL_ST

= 238, /* 640x480 (50 Hz, interlaced,

nonconvolved) */

C H A P T E R 1

Device Support for the Display Manager

1-18 Device Support for the Display Manager Reference

Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

timingApplePAL_FF

= 240, /* 768x576 (50 Hz, interlaced,

nonconvolved) */

timingApplePAL_STconv

= 242, /* 640x480 (50 Hz, interlaced,

nonconvolved) */

timingApplePAL_FFconv

= 244 /* 768x576 (50 Hz, interlaced,

nonconvolved) */

};

If your video device controls a display unlike those previously
listed, your status routine can return the following constant or the
value it represents:

enum {

timingUnknown = 0, /* unknown timing */

}

If you would like unique values assigned to displays that you
manufacture, contact Macintosh Developer Technical Support.

csTimingFlags Flag bits indicating whether the display mode with these scan
timings is optional or required. Your status routine should set or
clear the bits represented by the following constants:

enum {

kModeValid = 0, /* this display mode is

optional */

kModeSafe = 1, /* this display mode is

required; if you set this

bit, you should also set

the kModeValid bit */

kModeDefault = 2, /* this display mode is

the default for the

attached display; if you

set this bit, you should

also set the kModeSafe and

kModeValid bits */

kShowModeNow = 3 /* show this mode in Monitors

control panel; useful for

SVGA modes */

};

C H A P T E R 1

Device Support for the Display Manager

Device Support for the Display Manager Reference 1-19
Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

Control Requests 1
The Display Manager uses one control request, cscSwitchMode. When issued this
control request, the Display Manager switches to the display mode specified by a
VDSwitchInfoRec record. Your driver is responsible for setting your video device and
your device control entry information to match the new display mode.

Video devices typically have functional sResources to support a variety of display
modes. To support the Display Manager, the PrimaryInit code in the declaration
ROM for your video device should not delete from the slot resource table any functional
sResources describing display modes supported by the attached display. Instead, your
device driver should enable one functional sResource (which Color QuickDraw then
uses to build the GDevice record for your device) and you should leave the other
sResources disabled.

cscSwitchMode 1

When the user opens the Monitors control panel and changes the display mode for the
display attached to your video device, the Display Manager sends your device driver the
cscSwitchMode control request using the PBControlSync call, as illustrated in the
following sample function:

/*

The CallcscSwitchMode function demonstrates the means for using

the PBControl call to send the cscSwitchMode call to the

specified video driver whose driver refNum is passed in

deviceRefNum. The second parameter, the VDSwitchInfoPtr is set

in the csParam field where the Display Manager aware driver will

expect this pointer. The routine sets up the parameter block,

makes a synchronous call to the driver and returns the result.

This call must be made synchronously at System Task time

*/

OSErr CallcscSwitchMode(short deviceRefNum, VDSwitchInfoPtr

vdSwitchInfoPtr)

{

ParamBlockRecpb; /* allocate param block on stack.*/

/* specify the driver to make the

control call to */

pb.cntrlParam.ioCRefNum = deviceRefNum;

/* make a cscSwitchMode control call.*/

pb.cntrlParam.csCode = cscSwitchMode;

C H A P T E R 1

Device Support for the Display Manager

1-20 Device Support for the Display Manager Reference

Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

/* set csParam to the value of

vdSwitchInfoPtr; */

/* have to do some fancy typecasting to

get things to assign correctly */

(Ptr)&pb.cntrlParam.csParam = (Ptr)vdSwitchInfoPtr;

/* make the synchronous call

and return the result */

return (PBControlSync(&pb));

}

Your driver must provide a control routine to respond to this request. Summarized here
is the information that the Display Manager passes and the value that your control
routine must return in the fields of the VDSwitchInfoRec record; the
VDSwitchInfoRec record and the values passed in its fields are described in detail on
page 1-11:

As illustrated in Listing 1-1 on page 1-7, your control routine should use the Slot
Manager function SetSRsrcState, once to disable the functional sResource describing
the existing display mode and then again to enable the functional sResource specified in
the csData field passed in the VDSwitchInfoRec record. Your control routine should
use the Slot Manager function SUpdateSRT after enabling the sResource for the new
display mode; using the SUpdateSRT function updates the device driver reference
number for this sResource in the slot resource table. Your control routine must update
the dCtlSlotID field (and—if your driver uses it—the dCtlExtDev field) of the device
control entry for your driver. It must also update the dCtlDevBase field of the device
control entry if disabling and enabling sResources changes the pixel map’s base address
in your video device’s GDevice record.

Your control routine must also return one of the following result codes for the control
request:

RESULT CODES

→ csMode depth mode to switch to
→ csData the number used by your video device to identify the

functional sResource describing the new display mode
→ csPage number of the video page to switch to
← csBaseAddr pointer to the base address for the video page specified in

the csPage field

noErr 0 No error; your device driver
successfully processed this control
request

controlErr –17 Your driver does not respond to this
control request

C H A P T E R 1

Device Support for the Display Manager

Device Support for the Display Manager Reference 1-21
Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

Status Requests 1
The Display Manager uses three status requests to gather information from your device
driver. To gather information about the current display mode, the Display Manager
makes the cscGetCurMode status request to your driver. The Display Manager also
uses this status request to determine whether your video device driver supports the
Display Manager. To gather information about the display capabilities of the display
attached to your video device, the Display Manager uses the cscGetConnection
status request. Your device driver should provide status routines that process and
respond to these status requests. If your video device’s declaration ROM does not
include a timing directory describing the scan timings for the display attached to your
device, the Display Manager uses the cscGetModeTiming status request to gather this
information from your device driver.

cscGetCurMode 1

To gather information about the current display mode, the Display Manager and other
parts of system software, make a cscGetCurMode status request to your driver using
PBStatusSync, as illustrated in the following sample function:

/*

The CallcscGetCurMode function demonstrates the means for using

the PBStatus call tosend the cscGetCurMode call to the specified

video driver whose driver refNum is passed in deviceRefNum. The

second parameter, the VDSwitchInfoPtr is set in the csParam field

where the Display Manager aware driver will expect this pointer.

The routine sets up the parameter block, makes a synchronous call

to the driver and returns the result. This call must be made

synchronously at System Task time.

*/

OSErr CallcscGetCurMode(short deviceRefNum, VDSwitchInfoPtr

vdSwitchInfoPtr)

{

ParamBlockRecpb; /* allocate param block on stack. */

/* specify the driver to make the

control call to */

pb.cntrlParam.ioCRefNum = deviceRefNum;

/* make a cscGetCurMode control call */

pb.cntrlParam.csCode = cscGetCurMode;

C H A P T E R 1

Device Support for the Display Manager

1-22 Device Support for the Display Manager Reference

Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

/* set csParam to the value of

vdSwitchInfoPtr; */

/* have to do some fancy typecasting

to get things to assign correctly */

(Ptr)&pb.cntrlParam.csParam = (Ptr)vdSwitchInfoPtr;

/* make the synchronous call

and return the result */

return (PBStatusSync(&pb));

}

For example, the Monitors control panel uses this call to save the current display mode
in case it becomes necessary to undo a change made by the user. Your driver must
provide a status routine to respond to this request. Summarized here is the information
that your status routine must return in the fields of the VDSwitchInfoRec record
passed by this status request; the VDSwitchInfoRec record and the values you can
return in its fields are described in detail on page 1-11.

The Display Manager also uses the cscGetCurMode status request to determine
whether your video device driver supports the Display Manager. If your driver returns
the result code statusErr, system software assumes that your driver does not support
the Display Manager. If your driver supports the Display Manager, it should return the
result code noErr instead.

RESULT CODES

cscGetConnection 1

To gather information about the display capabilities of the display attached to your
video device, the Display Manager makes the cscGetConnection status request to
your driver, as illustrated in the following sample function:

← csMode depth mode of the current pixel depth
← csData The number used by your video device to identify the

functional sResource describing the current display mode
← csPage number of the current video page
← csBaseAddr pointer to the base address for the video page specified in

the csPage field

noErr 0 No error; your device driver supports
the Display Manager and successfully
processed the status request

statusErr –18 Your driver does not respond to this
status request

C H A P T E R 1

Device Support for the Display Manager

Device Support for the Display Manager Reference 1-23
Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

/*

The CallcscGetConnection function demonstrates the means for using the

PBStatus call to send the cscGetConnection call to the specified video

driver whose driver refNum is passed in deviceRefNum. The second parameter,

the VDDisplayConnectInfoPtr is set in the csParam field where the Display

Manager aware driver will expect this pointer. The routine sets up the

parameter block, makes a synchronous call to the driver and returns the

result. This call must be made synchronously at System Task time

*/

OSErr CallcscGetConnection(short deviceRefNum, VDDisplayConnectInfoPtr

vdDisplayConnectInfoPtr)

{

ParamBlockRecpb; */ allocate param block on stack. */

/* specify the driver to make the control call to */

pb.cntrlParam.ioCRefNum = deviceRefNum;

/* making a cscGetCurMode control call. */

pb.cntrlParam.csCode = cscGetConnection;

/* set csParam to the value of

vdDisplayConnectInfoPtr; */

/* have to do some fancy typecasting to get things

to assign correctly */

(Ptr)&pb.cntrlParam.csParam = (Ptr)vdDisplayConnectInfoPtr;

/* make the synchronous call and

return the result */

return (PBStatusSync(&pb));

}

Your driver must provide a status routine to respond to this request. Summarized here is
the information that your status routine must return in the fields of the
VDDisplayConnectInfoRec record passed by this status call; that record and the
values that your routine can return in its fields are described in detail on page 1-13.

In addition, your status routine should return one of the following codes as a result of
the status request.

← csDisplayType type of display
← csConnectFlags flag bits indicating whether the display modes for this

display are required or optional

C H A P T E R 1

Device Support for the Display Manager

1-24 Device Support for the Display Manager Reference

Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

RESULT CODES

cscGetModeTiming 1

Your video device must report timing information for its attached display. If you are
creating a new ROM for your device, you might want to include scan timings in a timing
directory in your declaration ROM, as described in “Reporting Scan Timings” beginning
on page 1-9; otherwise, your driver must return a display’s scan timings by supporting
the cscGetModeTiming status request.

To gather scan timing information, the Display Manager makes the
cscGetModeTiming status request to your driver, as illustrated here:

/*

CallcscGetModeTiming demonstrates the means for using the

PBStatus call to send the cscGetModeTiming call to the specified

video driver whose driver refNum is passed in deviceRefNum. The

second parameter, the VDTimingInfoPtr is set in the csParam field

where the Display Manager aware driver will expect this pointer.

The routine sets up the parameter block, makes a synchronous call

to the driver and returns the result. This call must be made

synchronously at System Task time

*/

OSErr CallcscGetModeTiming(short deviceRefNum, VDTimingInfoPtr

vdTimingInfoPtr)

{

ParamBlockRecpb; /* allocate param block on stack. */

/* specify the driver to make

the control call to */

pb.cntrlParam.ioCRefNum = deviceRefNum;

/* make a cscGetCurMode control call. */

pb.cntrlParam.csCode = cscGetModeTiming;

/* set csParam to the value of

vdTimingInfoPtr;

/* have to do some fancy typecasting

to get things to assign correctly */

noErr 0 No error; your device driver
successfully processed the status request

statusErr –18 Your driver does not respond to this
status request

C H A P T E R 1

Device Support for the Display Manager

Summary of Device Support for the Display Manager 1-25
Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

(Ptr)&pb.cntrlParam.csParam = (Ptr)vdTimingInfoPtr;

/* make the synchronous call

and return the result */

return (PBStatusSync(&pb));

}

If your device driver routine returns the statusErr result code, then the Display
Manager examines the declaration ROM on your video device. The Display Manager
looks for the timing directory (sVidParmDir = 123) in the board sResource.

If your board sResource doesn’t include a timing directory, your device driver must
supply a status routine that processes and responds to the cscGetModeTiming status
request. Summarized here is the information that the Display Manager passes and that
your status routine must return in the fields of the VDTimingInfoRec record passed by
this status call; the VDTimingInfoRec record and the values passed in its fields are
described in detail on page 1-15.

RESULT CODES

Summary of Device Support for the Display Manager 1

Constants 1

/* csMode values describing pixel depth in VDSwitchInfoRec */

enum {

firstVidMode = 128, /* first depth mode, representing lowest

supported pixel depth */

secondVidMode = 129, /* second depth mode, representing next highest

pixel depth */

→ csTimingMode the sResource describing a display mode, the timing
information for which should be supplied in the rest of
this record

← csTimingFormat format of the information in the csTimingData field;
currently, only the format represented by the constant
kDeclROMtables is valid

← csTimingData scan timings for the sResource specified in the
csTimingMode field

← csTimingFlags flag bits indicating whether the display mode with
these scan timings is required or optional

noErr 0 No error; your device driver
successfully processed the status request

statusErr –18 Your driver does not respond to this
status request

C H A P T E R 1

Device Support for the Display Manager

1-26 Summary of Device Support for the Display Manager

Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

thirdVidMode = 130, /* third depth mode, representing next highest

pixel depth */

fourthVidMode = 131, /* fourth depth mode, representing next highest

pixel depth */

fifthVidMode = 132, /* fifth depth mode, representing next highest

pixel depth */

sixthVidMode = 133, /* sixth depth mode, representing next highest

pixel depth */

};

/* csDisplayType values in VDDisplayConnectInfoRec */

enum {

kUnknownConnect = 1, /* reserved */

kPanelTFTConnect = 2, /* fixed-in-place LCD (TFT, aka

"active matrix") panels */

kFixedModeCRTConnect = 3, /* very limited displays */

kMultiModeCRT1Connect = 4, /* 12" optional, 13" default,

16" required */

kMultiModeCRT2Connect = 5, /* 12" optional, 13" required,

16" default, 19" required */

kMultiModeCRT3Connect = 6, /* 12" optional, 13" required, 16" required,

19" required, 21" default */

kMultiModeCRT4Connect = 7, /* expansion to large multimode (not yet

implemented) */

kModelessConnect = 8, /* expansion to modeless model (not yet

implemented) */

kFullPageConnect = 9, /* 640x818 (to get 8bpp in 512K case) and

640x870 (nothing else supported) */

kVGAConnect = 10, /* 640x480 VGA default -- nothing else

required */

kNTSCConnect = 11, /* NTSC ST (default), FF, STconv, FFconv */

kPALConnect = 12, /* PAL ST (default), FF, STconv, FFconv */

kHRConnect = 13, /* 640x400 (to get 8bpp in 256K case) and

640x480 (nothing else supported) */

kPanelFSTNConnect = 14 /* fixed-in-place LCD FSTN (aka

"supertwist") panels */

};

/* csConnectFlags values in VDDisplayConnectInfoRec */

enum {

kAllModesValid = 0, /* all display modes not deleted by PrimaryInit

code are optional */

kAllModesSafe = 1, /* all display modes not deleted by PrimaryInit

code are required; if you set this

C H A P T E R 1

Device Support for the Display Manager

Summary of Device Support for the Display Manager 1-27
Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

bit, set the kAllModesValid bit, too */

kHasDirectConnect = 3 /* for future expansion, setting this bit

means that your driver can talk directly

to the display (e.g., there is a

serial data link via sense lines) */

kIsMonoDev = 4 /* this display does not support color */

kUncertainConnect

= 5 /* there may not be a display; Monitors control

panel makes the user confirm some

operations--like moving the menu bar--when

this bit is set */

};

/* csTimingFormat value in VDTimingInfoRec */

#define kDeclROMtables 'decl' /* use information in this record instead of

looking in the declaration ROM for

timing info; used for patching existing

card without updating declaration ROM */

/* csTimingData values in VDTimingInfoRec */

enum {

timingUnknown = 0, /* unknown timing */

timingApple12 = 130, /* 512x384 (60 Hz) 12" RGB */

timingApple12x = 135, /* 560x384 (60 Hz) */

timingApple13 = 140, /* 640x480 (67 Hz) 13" RGB */

timingApple13x = 145, /* 640x400 (67 Hz) */

timingAppleVGA = 150, /* 640x480 (60 Hz) VGA */

timingApple15 = 160, /* 640x870 (75 Hz) full page display */

timingApple15x = 165, /* 640x818 (75 Hz) full page display 818 */

timingApple16 = 170, /* 832x624 (75 Hz) 16" RGB */

timingAppleSVGA = 180, /* 800x600 (56 Hz) SVGA */

timingApple1Ka = 190, /* 1024x768 (60 Hz) VESA 1K-60Hz */

timingApple1Kb = 200, /* 1024x768 (70 Hz) VESA 1K-70Hz */

timingApple19 = 210, /* 1024x768 (75 Hz) Apple 19" RGB */

timingApple21 = 220, /* 1152x870 (75 Hz) Apple 21" RGB */

timingAppleNTSC_ST

= 230, /* 512x384 (60 Hz, interlaced, nonconvolved) */

timingAppleNTSC_FF

= 232, /* 640x480 (60 Hz, interlaced, nonconvolved) */

timingAppleNTSC_STconv

= 234, /* 512x384 (60 Hz, interlaced, convolved) */

timingAppleNTSC_FFconv

= 236, /* 640x480 (60 Hz, interlaced, convolved) */

timingApplePAL_ST

C H A P T E R 1

Device Support for the Display Manager

1-28 Summary of Device Support for the Display Manager

Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

= 238, /* 640x480 (50 Hz, interlaced, nonconvolved) */

timingApplePAL_FF

= 240, /* 768x576 (50 Hz, interlaced, nonconvolved) */

timingApplePAL_STconv

= 242, /* 640x480 (50 Hz, interlaced, nonconvolved) */

timingApplePAL_FFconv

= 244 /* 768x576 (50 Hz, interlaced, nonconvolved) */

};

/* csTimingFlags values in VDTimingInfoRec */

enum {

kModeValid = 0, /* this display mode is optional */

kModeSafe = 1, /* this display mode is required; if you set this

bit, you should also set the kModeValid bit */

kModeDefault = 2, /* this display mode is the default for the

attached display; if you set this bit, you should

also set the kModeSafe and kModeValid bits */

kShowModeNow = 3 /* show this mode in Monitors control panel; useful

for SVGA modes */};

/* code for Display Manager control request*/

enum {

cscSwitchMode = 10, /* switch to another display mode */

};

/* codes for Display Manager status requests */

enum {

cscGetCurMode = 10, /* save the current display mode */

cscGetConnection = 12, /* return information about display capabilities

of connected display */

cscGetModeTiming = 13 /* return scan timings data for a display mode */

};

Data Structures 1

struct VDSwitchInfoRec {

unsigned short csMode; /* depth mode (also called video mode) */

unsigned long csData; /* functional sResource for display mode */

unsigned short csPage; /* number for a video page */

Ptr csBaseAddr; /* pointer to the base address for the video

page specified in the csPage field */

unsigned long csReserved; /* reserved for future expansion; currently

C H A P T E R 1

Device Support for the Display Manager

Summary of Device Support for the Display Manager 1-29
Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

set to 0 by the Display Manager */

};

typedef struct VDSwitchInfoRec VDSwitchInfoRec;

typedef VDSwitchInfoRec *VDSwitchInfoPtr;

struct VDDisplayConnectInfoRec {

unsigned short csDisplayType; /* type of connected display */

unsigned short csConnectTagged; /* reserved; currently set to 0 by the

Display Manager */

unsigned long csConnectFlags; /* support (required or optional) for

display modes for this display */

unsigned long csDisplayComponent; /* reserved for future;

currently set to 0 by the

Display Manager */

unsigned long csConnectReserved; /* reserved for future;

currently set to 0 by the

Display Manager*/

};

typedef struct VDDisplayConnectInfoRec VDDisplayConnectInfoRec;

typedef VDDisplayConnectInfoRec *VDDisplayConnectInfoPtr;

struct VDTimingInfoRec {

unsigned long csTimingMode; /* sResource describing display mode */

unsigned long csTimingReserved; /* reserved for future expansion;

currently set to 0 by the

Display Manager */

unsigned long csTimingFormat; /* format for timing info; currently,

only the format represented by the

constant kDeclROMtables is valid */

unsigned long csTimingData; /* scan timings for the sResource

passed in the csTimingMode field */

unsigned long csTimingFlags; /* flag bits indicating whether the

display mode with these scan timings

is optional or required */

};

typedef struct VDTimingInfoRec VDTimingInfoRec;

typedef VDTimingInfoRec *VDTimingInfoPtr;

C H A P T E R 1

Device Support for the Display Manager

1-30 Summary of Device Support for the Display Manager

Draft. Preliminary.  1995 Apple Computer, Inc. 3/2/95

Result Codes 1
noErr 0 No error; your device driver successfully processed the request
controlErr –17 Your driver does not respond to this control request
statusErr –18 Your driver does not respond to this status request

GL-31

Draft. Preliminary,



1995 Apple Computer, Inc. 3/2/95

board sResource

In the declaration ROM of a
device, such as an expansion card, a unique data
structure that describes the device so that the Slot
Manager can identify it. A device can have only
one board sResource. The entries in this data
structure include the device’s identification
number, vendor information, board flags,
initialization code, and so on.

default display mode

A

required display
mode

 that appears the first time a user turns on a
display.

depth mode

A constant (or its value from an
enumerated list) that represents a pixel depth
supported by a video device. Also called

video
mode

.

display

An output device—such as a video
monitor or flat-panel display—on which an
application can show interactive visual
information—such as text for a document or data
for a spreadsheet. Also called a

monitor

.

Display Manager

A set of system software
routines that allow users to dynamically change
the arrangement and display modes of the
displays attached to their computers. Users can
move displays, add or remove displays, switch
multiple-scan displays to show more or less of
the desktop, and move the menu bar from one
display to another—without restarting their
computers.

display mode

A combination of several
interrelated capabilities for a display that can be
altered by the Display Manager without
restarting the computer. These capabilities
include the refresh rate, number of onscreen
pixels, scan timings, and pixel depth.

extended sense code

A 6-bit binary
identification code that is read by the primary
initialization code of a video device from the
sense lines of an attached display. Compared
with the original

sense codes,

 extended sense

codes allow a greater number of display types to
identify themselves to video devices. Compare

type 6 extended sense code

.

functional sResource

A data structure in a
device’s declaration ROM that describes a
specific function of the device—for example,
controlling a display at a certain display mode.

horizontal scan timing

The time required by a
display to draw one horizontal line, including
retrace.

monitor

 See

display.

multiple-scan display

A display capable of
operating at multiple horizontal and vertical scan
timings.

optional display mode

A display mode that is
not required by the Display Manager for a
particular type of display (such as a 19-inch
video monitor) but that can be supported by the
display anyway. A list of optional display modes
appears when the user holds the Option key and
clicks the Options button in the Monitors control
panel. Compare

required display mode.

required display mode

A display mode that a
particular type of display (such as a 19-inch
video monitor) is required by the Display
Manager to support. Compare

optional display
mode.

scan timing

The time required by a display to
draw either one vertical or horizontal line,
including retrace.

screen resolution

The number of pixels which a
display can render. Screen resolution is specified
as pixels in the

x

 and

y

 directions—for example,
680 by 400 pixels.

sense code

An identification code that is read
by the primary initialization code of a video
device from the sense lines of an attached
display. The video device uses the sense code to
determine how to control the display.

Glossary

Thi d t t d ith F M k 4 0 4

G L O S S A R Y

GL-32

Draft. Preliminary,



1995 Apple Computer, Inc. 3/2/95

type 6 extended sense code

A 6-bit binary
identification code that is read by the primary
initialization code of a video device from the
sense lines of an attached multiple-scan display.
The type 6 extended sense code causes video
devices that don’t support the Display Manager
to nevertheless support multiple-scan displays as
640-by-480 dpi displays.

vertical scan timing

The time required by a
display to draw one vertical line, including
retrace.

video device

A piece of hardware, such as a
plug-in video card or a built-in video interface,
that controls a display.

video device driver

The program that controls
a video device.

video mode

See

depth mode.

video timing

See

scan timing.

G L O S S A R Y

GL-33

Draft. Preliminary,



1995 Apple Computer, Inc. 3/2/95

T H E A P P L E P U B L I S H I N G S Y S T E M

Draft. Preliminary,



1995 Apple Computer, Inc. 3/2/95

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Line art was created using
Adobe Illustrator



 and Adobe
Photoshop



.

Text type is Palatino



 and display type is
Helvetica



. Bullets are ITC Zapf
Dingbats



. Some elements, such as
program listings, are set in Apple Courier.

Thi d t t d ith F M k 4 0 4

	Display Device Driver Guide
	Contents
	Figures
	About This Developer Note
	Supplementary Documents
	Conventions and Abbreviations

	Device Support for the Display Manager
	About the Display Manager
	Supporting the Display Manager With Your Device Driver
	Device Support for the Display Manager Reference
	Summary of Device Support for the Display Manager
	Result Codes

	Glossary

