
Developer Note

© Apple Computer, Inc. 1996

Developer Note

ATA Device Software Guide
ATA Device Software for Macintosh Computers

Apple Computer, Inc.
© 1996 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, Mac, Macintosh, and Power
Macintosh are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
Apple Desktop Bus is a trademark of
Apple Computer, Inc.
Adobe Illustrator is a trademark of
Adobe Systems Incorporated, which
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Linotype/AG and?or its
subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Figures and Tables v

Preface About This Note vii

Contents of This Note vii
Supplemental Reference Documents vii
The Apple Developer Catalog viii
Apple Developer World Web Site viii
Typographical Conventions viii

Chapter 1 Software for ATA Devices 1

Introduction to ATA Software 2
ATA Disk Driver 3
ATA Manager 4

Chapter 2 ATA Driver Reference 5

High-Level Device Manager Routines 6
ATA Disk Driver Control and Status Functions 8

Chapter 3 ATA Manager Reference 21

The ATA Parameter Block 22
Setting Data Transfer Timing 28

Setting Up PIO Data Transfers 29
Setting Up Multiword and Singleword DMA Data Transfers 29

Functions 29

Appendix Result Code Summary 59
iii

iv

Figures and Tables

Chapter 1 Software for ATA Devices 1

Figure 1-1 Relationship of the ATA Manager to the Macintosh system
architecture 2

Chapter 2 ATA Driver Reference 5

Table 2-1 Status functions supported by the ATA disk driver 7
Table 2-2 Control function supported by the ATA disk driver 8

Chapter 3 ATA Manager Reference 21

Table 3-1 Control bits in the ataPBFlags field 25
Table 3-2 ATA Manager functions 30
Table 3-3 ATA register selectors for RegSelect field 40
Table 3-4 Register mask selectors 40

Appendix Result Code Summary 59

Table A-1 ATA Manager result codes 59
v

vi

P R E F A C E

About This Note

This developer note describes the system software that controls ATA
(AT-Attachment) devices, such as ATA hard disk drives (sometimes referred
to as integrated drive electronics (IDE) drives) installed in a Macintosh
computer. This note also provides information for ATAPI (ATA Packet
Interface) CD-ROM and PCMCIA (Personal Computer Memory Card
International Association) devices. It is intended to help experienced
Macintosh hardware and software developers design compatible products. If
you are unfamiliar with Macintosh computers or would simply like more
technical information, you may wish to read the related technical manuals
listed in the section “Supplemental Reference Documents,” later in this
preface.

To use the information in this developer note, you should already be familiar
with writing programs for the Macintosh computer that call device drivers to
manipulate devices directly. You should also be familiar with the ANSI
specification X3.279-1996, “AT Attachment Interface with Extensions (ATA-2).”

Contents of This Note 0

This note contains three chapters, an appendix, and an index:

■ Chapter 1, “Software for ATA Devices,” introduces the system software
components that control ATA devices installed in a Macintosh computer.

■ Chapter 2, “ATA Driver Reference,” describes the Macintosh device driver
routines provided by the ATA disk driver.

■ Chapter 3, “ATA Manager Reference,” defines the data structures and
functions that are specific to version 3.0 of the ATA Manager.

■ The appendix, “Result Code Summary,” lists the possible result codes
returned by the ATA device software for the Mac OS.

This developer note also contains an index.

Supplemental Reference Documents 0

Developers may need copies of the appropriate Apple reference books and
should have the relevant books of the Inside Macintosh series. Developers
should also have Designing PCI Cards and Drivers for Power Macintosh
Computers. These books are available in technical bookstores and through the
Apple Developer Catalog.
vii

The Apple Developer Catalog 0

The Apple Developer Catalog (ADC) is Apple Computer’s worldwide source for
hundreds of development tools, technical resources, training products, and
information for anyone interested in developing applications on Apple
computer platforms. Customers receive the Apple Developer Catalog featuring
all current versions of Apple development tools and the most popular
third-party development tools. ADC offers convenient payment and shipping
options, including site licensing.

To order products or to request a complimentary copy of the Apple Developer
Catalog, contact

Apple Developer Catalog
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Apple Developer World Web Site 0

The Apple Developer World web site is the one-stop source for finding
technical and marketing information specifically for developing successful
Macintosh-compatible software and hardware products. Developer World is
dedicated to providing developers with up-to-date Apple documentation for
existing and emerging Macintosh technologies. Developer World can be
reached at http://www.devworld.apple.com.

Typographical Conventions 0

This developer note uses the following typographical conventions.

Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in Courier font.

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink ORDER.ADC

Internet http://www.devcatalog.apple.com
viii

P R E F A C E

Hexadecimal numbers are preceded by a dollar sign ($). For example, the
hexadecimal equivalent of decimal 16 is written as $10.

Note
A note like this contains information that is interesting but not essential
for an understanding of the text. ◆

IMPORTANT

A note like this contains important information that you should read
before proceeding. ▲
ix

x

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0
Software for ATA Devices 1

C H A P T E R 1

Software for ATA Devices

This chapter introduces the Macintosh system software that controls ATA
(AT-Attachment) devices, such as ATA hard disk drives, and provides data transport
services for CD-ROM drives that use the ATAPI (ATA Packet Interface) protocol and
ATA/PCMCIA (ATA Personal Computer Memory Card International Association)
devices that use the Mac OS Card Services.

Introduction to ATA Software 1

Support for ATA devices is incorporated in the Macintosh ROM software (firmware).
System software for controlling ATA devices is provided by the ATA disk driver, which
the ATA Manager loads into RAM from the drive media. The relationship of the ATA
disk driver and the ATA Manager is shown in Figure 1-1.

Figure 1-1 Relationship of the ATA Manager to the Macintosh system architecture

CD-ROM
driver

SCSI
hard disk

driver

File Manager

Device Manager

ATA disk
driver

CD-ROM
SCSI

hard disk
Other SCSI

devices

SCSI interface

Peripheral
devices

System
software

Application

SCSI Manager

ATA interface

ATA Manager

ATA/IDE
hard disk

Other SCSI
device
drivers

ATAPI
CD-ROM
2 Introduction to ATA Software

C H A P T E R 1

Software for ATA Devices

At the system level, the ATA disk driver and ATA Manager work in the same way that
the SCSI Manager and associated SCSI device drivers work. The ATA disk driver
provides drive partition, data management, and error-handling services for the Mac O S
as well as support for determining device capacity and controlling device-specific
features. The ATA Manager provides an interface to the ATA disk drive for the ATA disk
driver.

ATA disk drives and CD-ROM drives appear on the desktop the same way SCSI disk
drives currently do. Except for applications that perform low-level services, such as
formatting and partitioning utilities, applications interact with the ATA disk drives in a
device-independent manner through the File Manager.

The ATA Manager provides support for ATAPI and ATA/PCMCIA data transport
services, and does not provide access to PCMCIA tuples. Any client that wants to get
PCMCIA tuple information must do so through the PCMCIA Card Services.

ATA Disk Driver 1
The ATA disk driver has the following features:

■ It uses the ATA Manager for system and bus independence.

■ It supports multiple partitions (volumes).

■ It recognizes both partitioned and nonpartitioned Macintosh media.

■ It adheres to the new driver rules described in Designing PCI Cards and Drivers for the
Macintosh Family.

■ It supports both synchronous and asynchronous requests from the file system.

The ATA disk driver supports all ATA drives that adhere to the ANSI ATA specification
X3.279-1996.

The ATA disk driver relies on the services of the ATA Manager, which provides the ATA
protocol engine and relieves the driver of system and bus dependencies. The main
functions of the driver are managing the media and monitoring the status of the drive.

The ATA disk driver is responsible for providing block-oriented access to the storage
media. The file systems treat the media as one or more logical partitions or volumes in
which data at any address can be read or written indefinitely.

The ATA disk driver provides operating system–dependent services through a set of
driver routines required to interface with the Mac OS. In addition, the ATA disk driver
provides control and status functions that are specific to this implementation of the ATA
disk driver. The required disk driver routines, as specified in Inside Macintosh: Devices,
are open, close, prime, control, and status.

There are two versions of the ATA disk driver: a RAM-based version, which is installed
on the drive media by the Drive Setup application, and a ROM-resident version. At
system startup time, if the ATA Manager does not find a RAM-based driver on the ATA
drive media, the ATA disk driver in the ROM is selected as the driver for the drive. Note
that this is different from the SCSI driver-loading sequence, which always requires that a
RAM-based driver be installed on the media. The ATA disk driver in ROM is a subset of
Introduction to ATA Software 3

C H A P T E R 1

the ATA disk driver on the media and should not be used for normal operation. The ATA
disk driver in ROM provides emergency access to the ATA drive. The ATA disk driver
installed on the media by the Drive Setup application provides the latest features and
optimal performance.

The RAM-based ATA disk driver supports all modes of PIO and DMA operations as
defined in the ANSI X3.279-1996 ATA-2 specification. When the driver is opened for an
ATA drive, the ATA disk driver configures the ATA Manager and the drive for optimal
performance based upon both the system and drive capabilities. Typically, DMA modes
are selected over PIO modes.

The ATA disk driver supports conservation of system power by spinning down the disk
drive to reduce power consumption. Spinning down the drive also flushes the drive
write cache to prevent data loss. The ATA disk driver spins down the disk drive in
response to a sleep demand, the “Set Power Mode” control call (csCode 70), and system
shutdown and restart and when no access has been made to the drive within the time
specified in the Energy Saver control panel.

The ATA disk driver usually has a driver reference number of –54 (decimal) but may also
have a different reference number if –54 is taken when the driver is loaded. The driver
name is .ATDISK. Like all Macintosh device drivers, the ATA disk driver can be called
by using either the driver reference number or the driver name, .ATDISK.

The ATA disk driver does not provide request queuing. All driver requests either are
completed immediately or are passed to the ATA Manager for further processing.
However, the driver does process asynchronous requests, using the ATA Manager to
notify the driver when an operation has completed.

ATA Manager 1
The ATA Manager manages the ATA controller and its protocol. The ATA Manager
provides data transport services between ATA devices and the system, directing
commands to the appropriate device and handling interrupts from the devices.

The ATA Manager schedules I/O requests from the ATA disk driver, the operating
system, and applications. The ATA Manager is also responsible for managing the
hardware interface to the ATA controller electronics.

When making calls to the ATA Manager, you have to pass and retrieve parameter
information through a parameter block. The size and content of the parameter block
depend on the function being called. However, all calls to the ATA Manager have a
common parameter block header structure. The structure of the ataPBHdr parameter
block is common to all ATA parameter block data types. Several additional ATA
parameter block data types have been defined for the various ATA Manager functions.
The additional parameter block data types, which are specific to the function being
called, are described in Chapter 3, “ATA Manager Reference.”

1

4 Introduction to ATA Software

C H A P T E R 2

Figure 2-0
Listing 2-0
Table 2-0
ATA Driver Reference 2

C H A P T E R 2

ATA Driver Reference

This chapter describes the Macintosh device driver routines provided by the ATA disk
driver. The information in this chapter assumes that you are already familiar with how
to use device driver services on the Macintosh computer. If you are not familiar with
Macintosh device drivers, refer to the chapter “Device Manager” in Inside Macintosh:
Devices for additional information.

High-Level Device Manager Routines 2

The ATA disk driver supports the required set of routines for handling requests from the
Device Manager, as defined in the chapter “Device Manager” of Inside Macintosh: Devices.
Those routines are briefly defined here for convenience. Additional control functions
supported in the ATA disk driver are defined in “ATA Disk Driver Control and Status
Functions” beginning on page 8.

open 2

The open routine should not be called to open the ATA disk driver. The ATA disk driver
requires a physical drive ID from the ATA Manager and is called by the ATA Manager
after being loaded from the drive media. An open call to the ATA disk driver returns a
result of openErr if it has not been opened previously and returns a result of noErr and
does not reopen if it is already open.

When opened, the ATA disk driver initializes itself for the drive specified and registers
itself for control of the drive with the ATA Manager. The driver installs itself in the
system unit table and installs a system drive queue entry for each file system partition
(volume) found on the media. After opening the ATA disk driver is able to respond to all
other close, prime, status, and control calls.

RESULT CODES

close 2

The close routine instructs the ATA disk driver to terminate execution. The driver
deregisters for control of the drive with the ATA Manager, removes the drive queue
entries for each volume associated with the drive, and deallocates all memory used
during operation. The driver does not remove itself from the unit table.

noErr 0 Successful completion; no error occurred
openErr –23 Could not open driver
DRVRCantAllocate –1793 Global memory allocation error
ATABufFail –1796 Device buffer test failed
6 High-Level Device Manager Routines

C H A P T E R 2

ATA Driver Reference
RESULT CODE

prime 2

The prime routine performs logical block read and write operations to a specified
volume with automatic retries on errors. The driver accepts either the standard 32-bit
address or a 64-bit large volume address, both of which must be aligned on a 512-byte
boundary representing a logical block address on the volume. The prime routine
performs either a read or write command, as specified by the caller.

RESULT CODES

status 2

The status routine returns status information about the ATA disk driver. The type of
information returned is specified in the csCode field, and the information itself is
pointed to by the csParamPtr field.

Table 2-1 shows the status functions supported by the ATA disk driver.

RESULT CODES

noErr 0 Successful completion; no error occurred

noErr 0 Successful completion, no error occurred
ioErr –36 I/O error
paramErr –50 Invalid parameter specified
nsDrvErr –56 No such drive installed

Table 2-1 Status functions supported by the ATA disk driver

Value of
csCode Definition

8 Return drive status information.

43 Return driver gestalt information.

44 Return boot partition.

45 Return partition mounting status.

46 Return partition write protect status.

70 Power mode status information.

noErr 0 Successful completion; no error occurred
statusErr –18 Unimplemented status function; could not complete requested

operation
nsDrvErr –56 No such drive installed
High-Level Device Manager Routines 7

C H A P T E R 2

ATA Driver Reference
control 2

The ATA driver implements many of the control functions supported by the SCSI hard
disk driver and defined in Inside Macintosh: Devices. The ATA disk driver also
implements several new functions defined in Designing PCI Cards and Drivers for Power
Macintosh Computers. The control functions are listed in Table 2-2 and described in “ATA
Disk Driver Control and Status Functions.”

RESULT CODES

ATA Disk Driver Control and Status Functions 2

The ATA disk driver supports a standard set of control functions for ATA disk drive
devices. The functions are used for control, status, and power management.

Table 2-2 Control function supported by the ATA disk driver

Value of
csCode Definition

5 Verify media

6 Format media

7 Eject media

21 Return drive icon

22 Return media icon

23 Return drive characteristics

44 Enable partition as startup partition

45 Enable partition to be mounted

46 Set partition write protected

48 Disable partition mounting

49 Disable partition write protection

60 Mount volume

70 Set power mode

noErr 0 Successful completion; no error occurred
controlErr –17 Unimplemented control function; could not complete

requested operation
nsDrvErr –56 No such drive installed
8 ATA Disk Driver Control and Status Functions

C H A P T E R 2

ATA Driver Reference
In the function descriptions, an arrow preceding a parameter indicates whether the
parameter is an input parameter, an output parameter, or both.

verify 2

The verify control function requests a read verification of the data on the ATA hard
drive media. This function performs no operation and returns noErr if the logical drive
number is valid.

Parameter block

RESULT CODES

format 2

The format control function initializes the hard drive for use by the operating system.
Because ATA hard drives are low-level formatted at the factory, this function does not
perform any operation. The driver always returns noErr if the logical drive number is
valid.

Parameter block

RESULT CODES

Arrow Meaning
→ Input
← Output
↔ Both

→ csCode A value of 5.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 6.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
nsDrvErr –56 The specified logical drive number does not exist
ATA Disk Driver Control and Status Functions 9

C H A P T E R 2

ATA Driver Reference
eject 2

The eject control function is used by the driver to determine when a volume becomes
unmounted. If the unmounted volume was the last mounted volume of the drive, the
drive is placed in a low-power mode to conserve power. If the drive is also ejectable
(PCMCIA, for example), a drive ejection is initiated.

Parameter block

RESULT CODES

return drive icon 2

The return drive icon control function returns a pointer to the device icon and the
device location string.

Parameter block

RESULT CODES

return media icon 2

The return media icon control function returns a pointer to the media icon and the
location string. The media icon will differ depending on the media (hard drive, CD-ROM
drive, or PCMCIA drive).

→ csCode A value of 7.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 21.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Address of drive icon and location string (information is in

ICN# format).
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
nsDrvErr –56 The specified logical drive number does not exist
10 ATA Disk Driver Control and Status Functions

C H A P T E R 2

ATA Driver Reference
Parameter block

RESULT CODES

return drive characteristics 2

The return drive characteristics function returns information about the
characteristics of the specified drive, as defined in Inside Macintosh, Volume V.

Parameter block

RESULT CODES

enable startup partition 2

The enable startup partition control function enables the specified partition to
be the startup (boot) partition. The partition is specified by either its logical drive
number or its block address on the media. The current entry for the boot partition is
cleared. A result of controlErr is returned if the partition does not have a partition
map entry on the media or could not be enabled as the startup partition.

Parameter block

→ csCode A value of 22.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Address of drive icon and location string (information is in

ICN# format).
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 23.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Drive information.

$0601 = primary, fixed, SCSI, internal
$0201 = primary, removable, SCSI, internal

← ioResult See result codes.

noErr 0 Successful completion; no error occurred
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 44.
ATA Disk Driver Control and Status Functions 11

C H A P T E R 2

ATA Driver Reference
RESULT CODES

enable partition mounting 2

The enable partition mounting control function enables the specified partition to
be mounted when the drive is recognized. The partition is specified by either its logical
drive number or its block address on the media. A result of controlErr is returned if
the partition does not have a partition map entry on the media or could not be enabled
for mounting.

Parameter block

RESULT CODES

enable partition write protect 2

The enable partition write protect control function enables software write
protection on the specified partition. The partition is specified by either its logical drive
number or its block address on the media. A result of controlErr is returned if the
partition does not have a partition map entry on the media or write protection could not
be enabled for the partition.

Parameter block

→ ioVRefNum The logical drive number, or 0 if using partition block address.
→ csParam[] The partition block address (long) if ioVRefNum = 0.
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
controlErr –17 Unimplemented control function; could not complete

requested operation
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 45.
→ ioVRefNum The logical drive number, or 0 if using partition block address.
→ csParam[] The partition block address (long) if ioVRefNum param = 0.
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
controlErr –17 Unimplemented control function; could not complete

requested operation
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 46.
12 ATA Disk Driver Control and Status Functions

C H A P T E R 2

ATA Driver Reference
RESULT CODES

clear partition mounting 2

The clear partition mounting control function prevents a partition from being
mounted when the drive is recognized. The partition is specified by either its logical
drive number or its block address on the media. A result of controlErr is returned if
the partition does not have a partition map entry on the media or partition mounting
could not be cleared.

Parameter block

RESULT CODES

clear partition write protect 2

The clear partition write protect control function disables software write
protection for the specified partition. The partition is specified by either its logical drive
number or its block address on the media. A result of controlErr is returned if the
partition does not have a partition map entry on the media or write protection could not
be cleared.

Parameter block

→ ioVRefNum The logical drive number, or 0 if using partition block address.
→ csParam[] The partition block address (long) if ioVRefNum = 0.
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
controlErr –17 Unimplemented control function; could not complete

requested operation
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 48.
→ ioVRefNum The logical drive number, or 0 if using partition block address.
→ csParam[] The partition block address (long) if ioVRefNum param = 0.
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
controlErr –17 Unimplemented control function; could not complete

requested operation
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 49.
ATA Disk Driver Control and Status Functions 13

C H A P T E R 2

ATA Driver Reference
RESULT CODES

mount volume 2

The mount volume control function instructs the drive to post a disk inserted event for
the specified partition. The partition is specified by either its logical drive number or its
block address on the media.

Parameter block

RESULT CODES

set power mode 2

The set power mode control function changes the drive power mode to one of four
modes: active, idle, standby, and sleep. This function can be used to reduce drive power
consumption.

In active mode the drive interface is active, the spindle motor is running at full speed,
and the device is respnding to commands.

In idle mode the nonessential electronics on the ATA hard drive are disabled. For
example, the read and write channels are disabled during the idle state. The spindle
motor remains enabled during the idle state, so the drive still responds immediately to
any commands requesting media access.

In standby mode the head is parked and the spindle motor is disabled. The drive
interface remains active and is still capable of responding to commands. However, it can

→ ioVRefNum The logical drive number, or 0 if using partition block address.
→ csParam[] The partition block address (long) if ioVRefNum = 0.
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
controlErr –17 Unimplemented control function; could not complete

requested operation
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 60.
→ ioVRefNum The logical drive number, or 0 if using partition block address.
→ csParam[] The partition block address (long) if ioVRefNum = 0.
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
controlErr –17 Unimplemented control function; could not complete

requested operation
nsDrvErr –56 The specified logical drive number does not exist
14 ATA Disk Driver Control and Status Functions

C H A P T E R 2

ATA Driver Reference
take several seconds to respond to media access commands, because the drive’s spindle
motor must return to full speed before media access can take place.

In sleep mode both the drive interface and the spindle motor are disabled. The driver
must reset and reconfigure the drive before another access to the drive can be made.
Since many drives do not support sleep mode and because there is little power savings
difference between standby and sleep modes, the ATA disk driver may put the drive in
standby mode instead.

Parameter block

RESULT CODES

drive info 2

The ATA disk driver provides a drive status function for retrieving status information
from the drive. The drive info status function returns the same type of information
that disk drivers are required to return for the status function, as described in the
chapter “Device Manager” in Inside Macintosh: Devices.

Parameter block

RESULT CODES

→ csCode A value of 70.
→ ioVRefNum The logical drive number.
→ csParam[0] The most significant byte contains one of the following codes:

0 = enable active mode
1 = enable standby mode
2 = enable idle mode
3 = enable sleep mode

← ioResult See result codes.

noErr 0 Successful completion; no error occurred
controlErr –17 The power management information couldn’t be returned

due to a manager error
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 8.
→ ioVRefNum The logical drive number.
→ csParam[] Contains status information about the internal ATA disk drive.
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
nsDrvErr –56 The specified logical drive number does not exist
ATA Disk Driver Control and Status Functions 15

C H A P T E R 2

ATA Driver Reference
driver gestalt 2

The driver gestalt status function provides the application information about the
ATA disk driver and the attached device. Several calls are supported under this function.
A gestalt selector is used to specify a particular call.

The DriverGestaltParam data type defines the ATA gestalt structure. Refer to
Designing PCI Cards and Drivers for the Macintosh Family for information related to the
ATA gestalt structure.

The fields driverGestaltSelector and driverGestaltResponse are 32-bit fields
that contain the gestalt selector and possible responses. The selectors and responses are
defined in the parameter block definition.

Parameter block

→ csCode A value of 43.
→ ioVRefNum The logical drive number.
→ driverGestaltSelector Gestalt function selector. This is a 32-bit ASCII

field containing one of the selectors:
sync Indicates synchronous or

asynchronous driver.
devt Specifies type of device the driver

is controlling.
intf Specifies the device interface.
boot Specifies PRAM value to designate

this driver or device.
vers Specifies the version number of the

driver.
lpwr Indicates low-power mode support.
purg Request if the driver can be closed

and or purged.
wide Indicates large-volume support.
ejec Specifies eject control function

requirements.
← driverGestaltResponse Returned result based on the driver gestalt

selector. The possible four-character return
values are:
TRUE If the sync driver selector is

specified, this Boolean value
indicates that the driver is
synchronous; a value of FALSE
indicates asynchronous.

'disk' If the devt driver selector is
specified, this value indicates a
hard disk driver.

'ide ' If the intf driver selector is
specified, this value indicates the
interface is ATA.

nnnn If the vers selector is specified,
the current version number of the
driver is returned.
16 ATA Disk Driver Control and Status Functions

C H A P T E R 2

ATA Driver Reference
RESULT CODES

get startup partition 2

The get startup partition status function returns 1 if the specified partition is the
startup partition, 0 if it is not. The partition is specified by either its logical drive number
or its block address on the media.

Parameter block

RESULT CODES

TRUE If the lpwr selector is specified,
this value indicates the power
mode control and status function
are supported.

TRUE If the wide selector is specified,
this value indicates the driver
supports large volumes.

value If the ejec selector is specified,
this value indicates when the ejec
call should be made. Bit 0, if set,
means don’t issue eject call on
restart. Bit 1, if set, means don’t
issue eject call on shutdown.

If the purg selector is specified,
this value indicates whether the
driver can close and/or be purged
from memory. A value of 0
indicates that the driver cannot be
closed. A value of 3 indicates that
the driver can be closed but not
purged. A value of 7 indicates that
the driver can be both closed and
purged from memory.

← ioResult See result codes.

noErr 0 Successful completion; no error occurred
statusErr –18 Unknown selector was specified
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 44.
→ ioVRefNum The logical drive number, or 0 if using partition block address.
→ csParam[] The partition block address (long) if ioVRefNum = 0.
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
nsDrvErr –56 The specified logical drive number does not exist
ATA Disk Driver Control and Status Functions 17

C H A P T E R 2

ATA Driver Reference
get partition mount status 2

The get partition mount status status function returns 1 if the specified partition
has mounting enabled, 0 if not enabled or the partition does not have a partition map
entry on the media. The partition is specified by either its logical drive number or its
block address on the media.

Parameter block

RESULT CODES

get partition write protect status 2

The get partition write protect status status function returns 1 if the
specified partition is software write protected, 0 if it is not. The partition is specified by
its either logical drive number or its block address on the media.

Parameter block

RESULT CODES

get power mode 2

The get power mode status function returns the current power mode state of the
internal hard disk.

→ csCode A value of 46.
→ ioVRefNum The logical drive number, or 0 if using partition block address.
→ csParam[] The partition block address (long) if ioVRefNum = 0.
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 45.
→ ioVRefNum The logical drive number, or 0 if using partition block address
→ csParam[] The partition block address (long) if ioVRefNum = 0.
← ioResult See result codes.

noErr 0 Successful completion; no error occurred
nsDrvErr –56 The specified logical drive number does not exist
18 ATA Disk Driver Control and Status Functions

C H A P T E R 2
Parameter block

RESULT CODES

2

→ csCode A value of 70.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[] The most significant byte of this field contains one of the

following values:
1 = drive is in standby mode
2 = drive is in idle mode
3 = drive is in sleep mode

← ioResult See result codes.

noErr 0 Successful completion; no error occurred
statusErr –18 The power management information couldn’t be returned due

to a manager error
nsDrvErr –56 The specified logical drive number does not exist
ATA Disk Driver Control and Status Functions 19

C H A P T E R 3

Figure 3-0
Listing 3-0
Table 3-0
ATA Manager Reference 3

C H A P T E R 3

ATA Manager Reference
This chapter defines the data structures and functionsspecific to version 3.0 of the ATA
Manager. The section “The ATA Parameter Block” shows the data structure of the ATA
parameter block. Version 3.0 of the ATA Manager supports DMA data transfers. The
section “Setting Data Transfer Timing,” discusses how the ATA Manager interacts with
ATA devices to set up DMA transfers. The “Functions” section describes the functions
for managing and performing data transfers through the ATA Manager.

The ATA Parameter Block 3

This section defines the fields that are common to all ATA Manager functions that use the
ATA parameter block. The fields used for specific functions are defined in the description
of the functions to which they apply. You use the ATA parameter block for all calls to the
ATA Manager. The ataPBHdr data type defines the ATA parameter block.

ATA Manager 3.0 defines ATA parameter block version 3, which is required for the
specification of ANSI ATA-2 compliant transfer timings, and DMA timing in particular.
Parameter block versions 1 and 2 are still supported, but full use of version 3 is
recommended when the best data transfer performance of the device is required.

The parameter block includes a field, ataPBFunctionCode, in which you specify the
function selector for the particular function to be executed; you must specify a value for
this field. Each ATA function may use different fields of the ATA parameter block for
parameters specific to that function.

An arrow preceding the comment indicates whether the parameter is an input parameter,
an output parameter, or both.

The following unique typedef identifiers are used in the ATA Manager parameter
block and function definitions:

SInt8 A signed 8-bit field

SInt16 A signed 16-bit field

SInt32 A signed 32-bit field

UInt8 An unsigned 8-bit field

UInt16 An unsigned 16-bit field

UInt32 An unsigned 32-bit field

The ATA parameter block header structure is defined as follows:

typedef struct ataPBHdr /* ATA Manager parameter

block header structure */

{

Ptr ataPBLink; /* Reserved, set to 0 */

Arrow Meaning
→ Input
← Output
↔ Both
22 The ATA Parameter Block

C H A P T E R 3

ATA Manager Reference
SInt16 ataPBQType; /* Type byte */

UInt8 ataPBVers; /* → Parameter block

version number */

UInt8 ataPBReserved; /* Reserved */

Ptr ataPBReserved2; /* Reserved */

ProcPtr ataPBCallbackPtr; /* Universal completion

routine pointer */

OSErr ataPBResult; /* ← Returned result */

UInt8 ataPBFunctionCode; /* → Manager function

 code */

UInt8 ataPBIOSpeed; /* → I/O timing class */

UInt16 ataPBFlags; /* → Control options */

SInt16 ataPBReserved3; /* Reserved */

long ataPBDeviceID; /* → Device ID */

UInt32 ataPBTimeOut; /* → Transaction timeout

 value */

Ptr ataPBClientPtr1; /* Client storage Ptr 1 */

Ptr ataPBClientPtr2; /* Client storage Ptr 2 */

UInt16 ataPBState; /* Reserved, init to 0 */

SInt16 ataPBSemaphores; /* Reserved */

SInt32 ataPBReserved4; /* Reserved */

} ataPBHdr;

Field descriptions

ataPBLink This field is reserved for use by the ATA Manager. It is used
internally for queuing I/O requests. It must be initialized to 0
before the ATA Manager is called and should be ignored upon
return. This field should not be changed until the requested
operation has completed.

ataPBQType This field is the queue type byte for safety check. It should be
initialized to 0.

ataPBVers This field contains the parameter block structure version number.
Values 1 through 3 are currently supported. Any values greater than
3 or a value of 0 result in a paramErr error.

ataPBReserved This field is reserved for future use. To ensure future compatibility,
all reserved fields should be set to 0.

ataPBReserved2 This field is reserved for future use. To ensure future compatibility,
all reserved fields should be set to 0.

ataPBCallbackPtr
This field contains the completion routine pointer to be called on
completion of the request. When this field is set to zero, it indicates
a synchronous I/O request; a nonzero value indicates an
asynchronous I/O request. The routine to which this field points is
called either when the request has finished without error or when
the request has terminated due to an error. This field is valid for any
manager request. The completion routine is called as follows:
The ATA Parameter Block 23

C H A P T E R 3

ATA Manager Reference
pascal void (*RoutinePtr) (ataPB *)

The completion routine is called with the associated manager
parameter block in the stack.

ataPBResult Completion status. This field is returned by the ATA Manager after
the request is completed. The value in this field is invalid until the
operation is complete. Refer to Table A-1 on page A-59 for a list of
the possible error codes returned in this field.

ataPBFunctionCode
This field is the function selector for the ATA Manager. The
functions are defined in Table 3-2 on page 3-30. An invalid code in
this field results in an ATAFuncNotSupported error.

ataPBPIOSpeed This field specifies the I/O speed requirement for the ATA device. It
is ignored in version 3.0 of the ATA Manager. The method for
determining the I/O speed for version 3 of the ATA Manager is
provided in the ATA_SetDevConfig function description.

For parameter block versions 1 and 2, this field specifies the I/O
cycle timing requirement of the specified device. This field should
contain the equivalent of word 51 of the identify drive data, as
defined in the ATA-2 specification. Values 0 through 3 are
supported by version 2 of the ATA Manager. See the ATA-2
specification for the definitions of the timing values. If a timing
value higher than one supported is specified, the ATA Manager
operates in the fastest timing mode supported. Until the timing
value is determined by examining the identify drive data returned
by the ATA_Identify function, the client should request
operations using the slowest mode (PIO mode 0).

In ATA Manager version 1, the value in this field is always valid.
That is, this timing value is used to complete the requested
operation. With ATA Manager version 2, the value in this field is
valid only if the CurrentSpeed bit is set to 0 in the ataFlags
field. If the CurrentSpeed bit is set to 1, the manager uses the
timing mode set previously by the ATA_SetDevConfig command
for the device, or the default value, which is mode 0.

ataPBFlags This 16-bit field contains control settings that indicate special
handling of the requested function. The control bits are defined in
Table 3-1 on page 3-25.

ataPBReserved3 This field is reserved for future use. To ensure future compatibility,
all reserved fields should be set to 0.

ataPBDeviceID A number that uniquely identifies an ATA device. This field consists
of the following structure:
typedef struct /* Device ID structure */
{
UInt16 Reserved; /* The upper word is reserved */
UInt8 devNum; /* Consists of device ID */
UInt8 busNum /* Bus ID number */
} deviceIdentification;
24 The ATA Parameter Block

C H A P T E R 3

ATA Manager Reference
Version 3. 0 of the ATA Manager supports two ATA devices per bus.
The devices are physically numbered 0 and 1, respectively. Earlier
versions of the ATA Manager used an unsigned 16-bit integer to
specify the device number. In version 3.0 of the ATA Manager the
value of devNum is used to distinguish between two devices on the
bus specified by busNum. In systems with only one ATA device, this
value is always 0.

ataPBTimeOut This field specifies the transaction timeout value in milliseconds. A
value of 0 disables the transaction timeout detection. If a timeout
value is not set, the system may halt indefinately if the device fails
to respond properly.

ataPBClientPtr1 This pointer field is available for application use. It is not modified
or used by the ATA Manager.

ataPBClientPtr2 This pointer field is available for application use. It is not modified
or used by the ATA Manager.

ataPBState This field is used by the ATA Manager to keep track of the current
bus state. This field must contain 0 when calling the ATA Manager.

ataPBSemaphores This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

ataPBReserved4 This field is reserved for future use. To ensure future compatibility,
all reserved fields should be set to 0.

Table 3-1 describes the functions of the control bits in the ataPBFlags field.

Table 3-1 Control bits in the ataPBFlags field

Name Bits Definition

none 0–2 Reserved.

RegUpdate 3 When set to 1, this bit indicates that a set of device
registers should be reported back on completion of the
request. This bit is valid for the ATA_ExecIO function
only. Refer to the description on page 3-31 for details.
The following device registers are reported back:

Sector count register
Sector number register
Cylinder register(s)
SDH register

continued
The ATA Parameter Block 25

C H A P T E R 3

ATA Manager Reference
ProtocolType 4–5 These bits specify the type of command:

00 = standard ATA
01 = reserved
11 = ATAPI

These bits indicate how the protocol should be
handled for the command type. Setting the bits to
ATAPI and providing a nonzero packet command
pointer indicates that a packet command should be
sent prior to any data transfers. For ATA command
values of $A0 and $A1, this field should contain the
ATAPI setting. For all other ATA commands, the field
must contain the ATA setting.

— 6 Reserved.

UseDMA 7 When set to 1, this bit indicates the data transfer is to
be via DMA. DMA transfers are valid only with
version 3.0 or greater of the ATA Manager and on
system hardware that supports DMA. DMA transfers
to and from ATA devices use different command
codes from PIO transfers. The state of this bit must
correspond to the command code.

SGType 8–9 This 2-bit field specifies the type of scatter-gather list
passed in. This field is valid only for read/write
operations.

The following types are defined:

00 = scatter-gather disabled
01 = scatter-gather type I enabled
10 = reserved
11 = reserved

When set to 0, this field indicates that the ioBuffer
field contains the host buffer address for this transfer,
and the ioReqCount field contains the byte transfer
count.

When set to 1, this field indicates that the ioBuffer
and the ioReqCount fields of the parameter block for
this request point to a host scatter-gather list and the
number of scatter-gather entries in the list,
respectively.

The format of the scatter-gather list is a series of the
following structure definition:

Table 3-1 Control bits in the ataPBFlags field (continued)

Name Bits Definition
26 The ATA Parameter Block

C H A P T E R 3

ATA Manager Reference
typedef struct /* SG entry structure */
{

uchar* ioBuffer; /* → Data buffer pointer */
ulong ioReqCount; /* → Byte count */

} IOBlock;

QLockOnError 10 When set to 0, this bit indicates that an error during
the transaction should not freeze the I/O queue for
the device. When an error occurs on an I/O request
with this bit set to 0, the next queued request is
processed following this request. When an error
occurs with this bit set to 1, any I/O request without
the Immediate bit set is halted until an
ATA_QRelease command is issued. A status code of
$717 is returned for subsequent asynchronous I/O
requests until the I/O Queue Release command is
issued. This permits the client application to examine
the state at the time of the error. However, use this bit
with caution. When it is set to 1 and an error condition
is not handled correctly, the system will hang.

Immediate 11 When this bit is set to 1, it indicates that the request
must be executed as soon as possible and the status of
the request must be returned. It forces the request to
the head of the I/O queue for immediate execution.
When this bit is set to 0, the request is queued in the
order received and is executed according to that order.

ATAioDirection 12–13 This bitfield specifies the direction of data transfer. Bit
values are binary and defined as follows:

00 = no data transfer

10 = data direction in (read)

01 = data direction out (write)

11 = reserved

These bits do not need to specify the direction of the
ATAPI command packet bytes.

continued

Table 3-1 Control bits in the ataPBFlags field (continued)

Name Bits Definition
The ATA Parameter Block 27

C H A P T E R 3

ATA Manager Reference
Setting Data Transfer Timing 3

This section defines the mechanism used by version 3.0 of the ATA Manager to set up
and adjust the system hardware and software for optimized data transfers from and to
ATA devices.

Beginning with version 3.0 of the ATA Manager, all cycle timing for data transfer is
accomplished through the ATA_SetDevConfig function, defined on page 3-51. The
timing values in the ataPIOSpeedMode field (used by ATA Manager version 2.0 to set
cycle timing) in the parameter block header are ignored, and PIO, singleword DMA, and
multiword DMA data transfer times are specified separately in the ATA_SetDevConfig
function parameter block. In addition, minimum cycle times are determined for PIO and
multiword DMA transfers with the ATA_SetDevConfig function.

The ATA-2 specification requires that ATA devices report cycle-timing requirements and
transfer mode information through the ATA identify device command. In order to
synchronize the system ATA controller speed to the device speed, the identify device
information must be interpreted by the ATA Manager. The ATA Manager receives the
necessary information from the client in the ATA_SetDevConfig function. Five fields in
the ATA_SetDevConfig parameter block are used in various combinations to specify
the timing and transfer mode values for PIO, multiword DMA, and singleword DMA
data transfers.

ByteSwap 14 When set to 1, this bit indicates that every byte of data
prior to transmission on write operations and on
reception on read operations is to be swapped. When
this bit is set to 0, it forces bytes to go out in the
LSB-MSB format compatible with PC clones. Typically,
this bit should be set to 0. Setting this bit has
performance implications because the byte swap is
performed by the software. Use this bit with caution.
ATAPI command packet bytes are swapped when this
bit is set to 1.

UseConfigSpeed 15 When set to 1, this bit indicates that the current I/O
speed setting specified in the most recent call to the
ATA_SetDevConfig command should be used to
transfer data across the ATA interface. If a
ATA_SetDevConfig command has not been issued
since power on, then the default settings of PIO mode
0 and singleword DMA mode 0 are used.

Table 3-1 Control bits in the ataPBFlags field (continued)

Name Bits Definition
28 Setting Data Transfer Timing

C H A P T E R 3

ATA Manager Reference
Setting Up PIO Data Transfers 3
To set up PIO data transfers, the ATA Manager takes the values specified in the
ataPIOSpeedMode and ataPIOCycleTime fields of the ATA_SetDevConfig
parameter block to create a cycle time that approximates the specified cycle time and
maintains the appropriate device signal-timing requirements for the specified PIO
transfer mode.

Setting Up Multiword and Singleword DMA Data Transfers 3
To set up multiword DMA data transfers, the ATA Manager takes the values in the
ataMultiDMASpeed and ataMultiCycleTime fields of the ATA_SetDevConfig
parameter block to create a multiword DMA cycle time in system hardware that
maintains the timing required by the multiword DMA mode while not exceeding the
indicated cycle time.

To set up singleword DMA data transfers, the ATA Manager takes the value specified in
the ataSingleDMASpeed field of the ATA_SetDevConfig parameter block to create
the appropriate cycle timing for the device. The ATA-2 specification has no
recommended timing values for singleword DMA data transfer modes, only minimum
cycle times.

When both the ataSingleDMASpeed and ataMultiDMASpeed fields in the
ATA_SetDevConfig function parameter block are set to 0 and the UseDMA flag in the
ataPBFlags field is set to true, the ATA Manager uses singleword DMA mode 0 timing
for data transfers.

The UseConfigSpeed flag of the ataPBFlags field in the ataPBHdr parameter block
header must be set for both the ataExecIO and ATA_SetDevConfig functions to
utilize new timing configuration information. When the UseConfigSpeed flag is not
set, new timing values are not calculated and saved during an ATA_SetDevConfig
function call. When the UseConfigSpeed flag is not set and the UseDMA flag is
specified, timing is set to singleword DMA mode 0. If the UseConfigSpeed flag is not
set for an ataExecIO function, PIO mode 0 timing is used for commands and PIO data
transfers.

Additional reference documentation related to Identify Device data transfer timing
information for ATA devices can be found in the ANSI ATA-2 specification.

Functions 3

This section describes the ATA Manager functions that are used to manage and perform
data transfers. Each function is requested through a parameter block specific to that
service. A request for an ATA function is specified by a function code in the parameter
block. The entry point for all the functions is the same.
Functions 29

C H A P T E R 3

ATA Manager Reference
ATA Manager function names and codes are shown in Table 3-2.

ATA_NOP 3

The ATA_NOP function performs no operation across the interface and does not
change the state of either the manager or the device. It returns noErr if the drive
number is valid.

The manager function code for the ATA_NOP function is $00.

The parameter block associated with this function is defined as follows:

struct ataNOP /* ATA NOP structure */

{

ataPBHdr /* ataPBHdr parameter block */

UInt16 Reserved[24];

} ataQRelease;

Field descriptions

ataPBHdr See the definition of the ataPBHdr structure on page 3-22.

Table 3-2 ATA Manager functions

Function name Code Description

ATA_NOP $00 No operation.

ATA_ExecIO $01 Execute ATA I/O.

ATA_BusInquiry $03 Bus inquiry.

ATA_QRelease $04 I/O queue release.

ATA_Abort $10 Terminate command.

ATA_ResetBus $11 Reset ATA bus.

ATA_RegAccess $12 ATA device register access.

ATA_Identify $13 Get the drive identification data.

ATA_DrvrRegister $85 Register the driver reference number.

ATA_FindRefNum $86 Look up the driver reference number.

ATA_DrvrDeregister $87 Deregister the driver reference number.

ATA_GetDevConfig $8A Get the device configuration.

ATA_SetDevConfig $8B Set the device configuration.

ATA_GetLocationIcon $8C Get device location icon and string.

ATA_MgrInquiry $90 ATA Manager inquiry.
30 Functions

C H A P T E R 3

ATA Manager Reference
Reserved[24] Reserved. All reserved fields should be set to 0.

RESULT CODES

See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.

ATA_ExecIO 3

You can use the ATA_ExecIO function to perform all data I/O transfers to or from an
ATA device. Your application must provide all of the parameters needed to complete the
transaction prior to calling the ATA Manager. On return, the parameter block contains
the result of the request.

A prior call to the ATA_SetDevConfig function is recommended to obtain the optimal
performance from the device. See page 3-51 for information about the
ATA_SetDevConfig function.

The manager function code for the ATA_ExecIO function is $01.

The parameter block associated with the ATA_ExecIO function is defined as follows:

typedef struct /* ATA_ExecIO structure */

{

ataPBHdr /* ataPBHdr parameter block */

SInt8 ataStatusReg; /* ← Last device status register

 image */

SInt8 ataErrorReg; /* ← Last device error register

image (valid if bit 0 of

Status field is set) */

SInt16 ataReserved; /* Reserved */

UInt32 BlindTxSize; /* → Data transfer size */

UInt8 *ioBuffer; /* → Data buffer pointer */

UInt32 ioReqCount; /* ↔ Number of bytes to transfer */

UInt32 ataActualTxCnt; /* ← Number of bytes transferred */

UInt32 ataReserved2; /* Reserved */

devicePB RegBlock; /* → Device register images */

ATAPICmdPacket *packetCDBPtr; /* → ATAPI packet command

 block pointer */

UInt16 ataReserved3[6]; /* Reserved */

} ataExecIO;
Functions 31

C H A P T E R 3

ATA Manager Reference
Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 3-22.
ataStatusReg This field contains the last device status register image. See the

ATA-2 specification for status register bit definitions.
ataErrorReg This field contains the last device error register image. This field is

valid only if the error bit (bit 0) of the Status register is set. See the
ATA-2 specification for error register bit definitions.

ataReserved Reserved. All reserved fields are set to 0 for future compatibility.
BlindTxSize This field specifies the maximum number of bytes that can be

transferred for each interrupt or detection of a data request. Bytes
are transferred in blind mode (no byte-level handshake). Once an
interrupt or a data request condition is detected, the ATA Manager
transfers up to the number of bytes specified in the field from or to
the selected device. The typical number is 512 bytes.
The BlindTxSize field is used only for PIO transfers. It is ignored
for DMA data transfers.
This field is ignored for ATAPI commands. For the ATAPI ptotocol,
the dynamic byte transfer count is specified in the cylinder registers
(big-endian format) at the beginning of each interrupt. See the
Cylinder field in the definition of the devicePB structure for the
RegBlock field.

ioBuffer This field contains either the host buffer address for the number of
bytes specified in the ioReqCount field and the requested transfer
length, or a pointer to a scatter-gather list and the number of scatter
gather entries. If the SGType bits of the ataPBFlags field are set,
an IOBlk structure contains the scatter-gather information. The
IOBlk structure is defined as follows:

typedef struct

{

UInt8 *ioBuffer; /* → Data buffer ptr */

UInt32 ioReqCount; /* → Transfer length */

} IOBlk;

ioBuffer This field contains the host buffer address for the
number of bytes specified in the ioReqCount field.
On returning, the ioBuffer field is updated to
reflect data transfers. When the SGType bits of the
ataFlags field are set, the ioBuffer field points
to a scatter gather list. The scatter-gather list
consists of a series of IOBlk entries.

ioReqCount This field contains the number of bytes to transfer
either from or to the buffer specified in ioBuffer.
On returning, the ioReqCount field is updated to
reflect data transfers (0 if successful; otherwise, the
number of bytes that remained to be transferred
prior to the error condition). When the SGType bits
32 Functions

C H A P T E R 3

ATA Manager Reference
of the ataFlags field are set, the ioReqCount
field contains the number of scatter-gather entries
in the list pointed to by the ioBuffer field.

ioReqCount This field contains the number of bytes to transfer either from or to
the buffer specified in ioBuffer. On returning, this field is
updated to reflect data transfers (0 if successful; otherwise, the
number of bytes that remained to be transferred prior to the error
condition). When the SGType bits of the ataPBFlags field are set,
the ioReqCount field contains the number of scatter-gather entries
in the list pointed to by the ioBuffer field.

ataActualTxCnt This field contains the total number of bytes transferred for this
request.

ataReserved2 This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RegBlock This field contains the ATA device register image structure. Values
contained in this structure are written out to the device during the
command delivery state. The caller must provide the image prior to
calling the ATA Manager. The ATA device register image structure
is defined as follows:

typedef struct /* Device register images */

{ UInt8 Features; /* → Features register

image */

UInt8 Count; /* ↔ Sector count */

UInt8 Sector; /* ↔ Sector start/finish */

UInt8 Reserved; /* Reserved */

UInt16 Cylinder; /* ↔ Cylinder big-endian

format */

UInt8 SDH; /* ↔ SDH register image */

UInt8 Command; /* → Command register image */

} devicePB;

For ATAPI commands, the cylinder image must contain the
preferred PIO DRQ packet size, which is written out to the cylinder
high/low registers at command phase.

packetCDBPtr This field contains the pointer to the ATAPICmdPtr packet
structure for the ATAPI protocol. The ATAPI bit of the
ProtocolType field in the ataPBHdr parameter block must be set
for this field to be valid. Setting the ATAPI protocol bit also signals
the ATA Manager to initiate the transaction without the DRDY bit
set in the status register of the device. The ATAPICmdPtr structure
is defined as follows:

typedef struct /* ATAPI command packet */;

{

SInt16 packetSize; /* Size of command, in

bytes (exclude size) */
Functions 33

C H A P T E R 3

ATA Manager Reference
SInt16 command[8]; /* Actual ATAPI

command packet */

} ATAPICmdPacket;

For ATA commands, this field should contain 0 in order to ensure
compatibility in the future.

ataReserved3[6] These fields are reserved. To ensure future compatibility, all
reserved fields should be set to 0.

RESULT CODES

See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.

ATA_BusInquiry 3

The ATA_BusInquiry function returns information about a specific ATA bus for
standard ATA and ATAPI interfaces and for the HBA environment. The support for HBA
features in this function is provided for possible future expansion of the Macintosh ATA
architecture.

The manager function code for the ATA_BusInquiry function is $03.

The parameter block associated with this function is defined as follows:

typedef struct /* ATA bus inquiry structure */

{

ataPBHdr /* ataPBHdr parameter block */

UInt16 ataEngineCount; /* ← TBD; 0 for now */

UInt16 ataReserved; /* Reserved */

UInt32 ataDataTypes; /* ← TBD; 0 for now */

UInt16 ataIOpbSize; /* ← Size of ATA I/O PB */

UInt16 ataMaxIOpbSize; /* ← TBD; 0 for now */

UInt32 ataFeatureFlags; /* ← TBD */

UInt8 ataVersionNum; /* ← HBA version number */

UInt8 ataHBAInquiry; /* ← TBD; 0 for now */

UInt16 ataReserved2; /* Reserved */

UInt32 ataHBAPrivPtr; /* ← Ptr to HBA private data */

UInt32 ataHBAPrivSize; /* ← Size of HBA private data */

UInt32 ataAsyncFlags; /* ← Capability for callback */

UInt8 ataPIOModes; /* ← PIO modes supported */

UInt8 ataReserved3; /* Reserved */

UInt8 ataSingleDMAModes; /* ← Singleword DMA mode */

UInt8 ataMultiDMAModes; /* ← Multiword DMA mode */

UInt32 ataReserved4[8]; /* Reserved */
34 Functions

C H A P T E R 3

ATA Manager Reference
SInt8 ataHBAVendor[16]; /* ← HBA Vendor ID */

SInt8 ataContrlFamily[16];/* ← Family of ATA controller */

SInt8 ataContrlType[16]; /* ← Controller model number */

SInt8 ataXPTversion[4]; /* ← Version number of XPT */

SInt8 ataReserved6[4]; /* Reserved */

SInt8 ataHBAversion[4]; /* ← Version number of HBA */

UInt8 ataHBAslotType; /* ← Type of slot */

UInt8 ataHBAslotNum; /* ← Slot number of HBA */

UInt16 ataReserved7; /* Reserved */

UInt32 ataReserved8; /* Reserved */

} ataBusInquiry;

Field descriptions

ataPBHdr See the definition of the ataPBHdr structure on page 3-22.
ataEngineCount This field is currently set to 0.
ataReserved Reserved. All reserved fields are set to 0 to ensure future

compatibility.
ataDataTypes Not supported by the current ATA architecture. Returns a bitmap of

data types supported by this HBA. The data types are numbered
from 0 through 30; 0 through 15 are reserved for Apple definition
and 16 through 30 are available for vendor use. This field is
currently not supported and returns 0.

ataIOpbSize This field contains the size of the I/O parameter block supported.
ataMaxIOpbSize This field specifies the maximum I/O size for the HBA. This field is

currently not supported and returns 0.
ataFeatureFlags This field specifies supported features. This field is not supported; it

returns a value of 0.
ataVersionNum The version number of the HBA is returned. The current version

returns a value of 1.
ataHBAInquiry Reserved.
ataHBAPrivPtr This field contains a pointer to the private data area for the HBA.

This field is not supported; it returns a value of 0.
ataHBAPrivSize This field contains the byte size of the private data area for the

HDA. This field is not supported; it returns a value of 0.
ataAsyncFlags These flags indicate which types of asynchronous events the HBA is

capable of generating. This field is not supported; it returns a value
of 0.

ataPIOModes This bit-significant field specifies the PIO modes that the ATA bus
supports. The least significant bit indicates support for PIO transfer
mode 0. Refer to the ATA-2 specification for information on PIO
mode timing.

ataSingleDMAModes
This bit-significant field specifies the singleword DMA transfer
modes that the ATA bus supports. The least significant bit indicates
Functions 35

C H A P T E R 3

ATA Manager Reference
support for singleword DMA transfer mode 0. Refer to the ATA-2
specification for information on DMA mode timing.

ataMultiDMAModes
This bit-significant field specifies the multiword DMA transfer
modes that the ATA bus supports. The least significant bit indicates
support for multiword DMA transfer mode 0. Refer to the ATA-2
specification for information on DMA mode timing.

ataHBAVendor This field contains the vendor ID of the HBA. This is an ASCII text
field. It is currently not supported.

ataContrlFamilyReserved.
ataContrlType This field identifies the specific type of ATA controller. This field is

not supported; it returns a value of 0.
ataXPTversion Reserved.
ataHBAversion This field specifies the version of the HBA. This field is not

supported; it returns a value of 0.
ataHBAslotType This field specifies the type of slot. This field is not supported; it

returns a value of 0.
ataHBAslotNum This field specifies the slot number of the HBA. This field is not

supported; it returns a value of 0.

RESULT CODES

See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.

ATA_QRelease 3

The ATA_QRelease function releases the frozen I/O queue of the selected device.

When the ATA Manager detects an I/O error and the QLockOnError bit of the
parameter block is set for the request, the ATA Manager freezes the queue for the
selected device. No pending or new requests are processed or receive status until the
queue is released through the ATA_QRelease function. Only those requests with
the Immediate bit set in the ataPBFlags field of the ataPBHdr parameter block are
processed. Consequently, for the ATA I/O queue release command to be processed, it
must be issued with the Immediate bit set in the parameter block. An ATA I/O queue
release command issued while the queue isn’t frozen returns the noErr status.

The manager function code for the ATA_QRelease function is $04.

The parameter block associated with this function is defined as follows:

struct ataQRelease /* ATA QRelease structure */

{

ataPBHdr /* ataPBHdr parameter block */

UInt16 Reserved[24];

} ataQRelease;
36 Functions

C H A P T E R 3

ATA Manager Reference
Field descriptions

ataPBHdr See the definition of the ataPBHdr structure on page 3-22.
Reserved[24] Reserved. All reserved fields should be set to 0.

RESULT CODES

See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.

ATA_Abort 3

The ATA_Abort function terminates a specified queued I/O request. This function
applies to asynchronous I/O requests only. The ATA_Abort function searches through
the I/O queue associated with the selected device and aborts the matching I/O request.
The current implementation does not abort if the found request is in progress. If the
specified I/O request is not found or has started processing, an ATAUnableToAbort
status is returned. If aborted, the ATAReqAborted status is returned.

It is up to the application that called the ATA_Abort function to clean up the aborted
request. Cleanup includes parameter block deallocation and operating-system reporting.

The manager function code for the ATA_Abort function is $10.

The parameter block associated with this function is defined as follows:

typedef struct /* ATA abort structure */

{

ataPBHdr /* ataPBHdr parameter block */

ataPB* AbortPB; /* Address of the parameter block

of the function to be aborted */

UInt16 Reserved[22]; /* Reserved */

} ataAbort;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 3-22.
AbortPB This field contains the address of the I/O parameter block to be

aborted.
Reserved[22] This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.

RESULT CODES

See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.
Functions 37

C H A P T E R 3

ATA Manager Reference
ATA_ResetBus 3

The ATA_ResetBus function performs a soft reset operation to the selected ATA bus.
The ATA interface doesn’t provide a way to reset individual units on the bus.
Consequently, all devices on the bus are reset.

IMPORTANT

This function should be used with caution since it may terminate any
active requests to devices on the bus. ▲

The manager function code for the ATA_ResetBus function is $11.

The parameter block associated with this function is defined as follows:

typedef struct /* ATA reset structure */

{

ataPBHdr /* ataPBHdr parameter block */

SInt8 Status; /* ← Last ATA status register image */

SInt8 Reserved2; /* Reserved */

UInt16 Reserved[23]; /* Reserved */

} ataResetBus;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 3-22.
Status This field contains the last device status register image following

the bus reset. See the ATA-2 specification for definitions of the status
register bits.

Reserved[23] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RESULT CODES

See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.

ATA_RegAccess 3

The ATA_RegAccess function enables access to a particular device register of a selected
device. This function is used for diagnostic and error recovery processes.

The manager function code for the ATA_RegAccess function is $12.

The parameter block associated with this function is defined as follows:

typedef struct /* Register access structure */

{

struct ataPBHdr;; /* ataPBHdr parameter block */

UInt16 RegSelect; /* → Device register selector */
38 Functions

C H A P T E R 3

ATA Manager Reference
union{

UInt8 byteRegValue; /* ↔ Byte register value to

 read or to be written */

UInt16 wordRegValue; /* ↔ Word register value to

 read or to be written */

} registerValue;

UInt16 RegMask; /* → Mask for registers(s) to

 update */

devicePB xi; /* ↔ Register images */

UInt8 altStatDevCntrReg;/* ↔ Alternate status(R) or

 device control(W) register

 image */

UInt8 Reserved[3]; /* Reserved */

UInt16 Reserved[16]; /* Reserved */

} ataRegAccess;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 3-22.
RegSelect This field specifies which device registers to access. The selectors for

the registers supported by the ATA_RegAccess function are listed
in Table 3-3. If RegSelect is 0xFFFF, then RegMask describes
which register(s) are to be accessed as part of a multiregister access.

RegValue This field is either the source or destination of values for individual
register accesses. For byte accesses, the upper half of the word is
used. Word accesses (such as the data register) use the entire word.
This field is the source or destination for the data register
component of multiregister accesses.

regMask This field is valid only if the RegSelect field contains 0xFFFF. It
indicates what combination of the taskfile registers should be
accessed. A bit set to 1 indicates either a read or a write to the
register. A bit set to 0 performs no operation to the register. The
mask bits corresponding to the selected registers are listed in
Table 3-4 on page 3-40. Bit 0 is the least significant bit of the field.

xi This field contains register images for error/features, sector count,
sector number, cylinder low, cylinder high, SDH, and status/
command. Only those register images specified in the regMask
field are valid. Refer to the description of the devicePB structure
for the RegBlock field on page 3-33.

altStatDevCntrReg
For multiregister writes, this field is the source for device control
writes and the destination for alternate status reads. This field is
Functions 39

C H A P T E R 3

ATA Manager Reference
valid if the alternate status/device control register bit in the
RegMask field is set to 1.

The register mask selectors are defined in Table 3-4.

RESULT CODES

Table 3-3 ATA register selectors for RegSelect field

Selector name Selector Register description

DataReg 0 Data register (16-bit access only)

ErrorReg 1 Error register (R) or features register (W)

SecCntReg 2 Sector count register

SecNumReg 3 Sector number register

CylLoReg 4 Cylinder low register

CylHiReg 5 Cylinder high register

SDHReg 6 SDH register

StatusReg
CmdReg

7 Status register (R) or command register (W)

AltStatus
DevCntr

14 Alternate status (R) or device control (W)

0xFFFF Multiregister access (ataPBVers 2.0 or greater)

Table 3-4 Register mask selectors

Mask bit Register description

0 Data register

1 Error register

2 Sector count register

3 Sector number register

4 Cylinder low register

5 Cylinder high register

6 ataTFSDH register

7 Status/command register

8–13 Reserved (set to 0)

14 Alternate status/device control register

15 Reserved (set to 0)
40 Functions

C H A P T E R 3

ATA Manager Reference
See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.

ATA_Identify 3

The ATA_Identify function returns the device identification data from the selected
device. The identification data contains information necessary to perform I/O to the
device. Refer to the ATA-2 specification for the format and the information description
provided by the data.

The manager function code for the ATA_Identify function is $13.

The parameter block associated with this function is defined as follows:

typedef struct
{
ataPBHdr /* ataPBHdr parameter block */
SInt8 ataStatusReg; /* ← Last ATA status image */
sInt8 ataErrorReg; /* ← Last ATA error image */
SInt16 ataReserved; /* Reserved */
UInt32 BlindTxSize; /* ← Set to 512 on return */
UInt8 *DataBuf; /* ↔ Buffer for the data */
UInt32 ataRequestCount; /* ← Indicates remaining

 byte count */
UInt32 ataActualTxCnt; /* ← Actual transfer count */
UInt32 ataReserved2; /* Reserved */
devicePB RegBlock; /* ← taskfile image sent

for the command */
UInt16 Reserved3[8]; /* Reserved */

} ataIdentify;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 3-22.
ataStatusReg Last ATA taskfile status register image.
ataErrorReg Last ATA taskfile error register image. This field is only valid if the

LSB (error bit) of the ataStatusReg field is set .
BlindTxSize Size, in bytes, of the device identify data returned.
DataBuf A pointer to the data buffer for the device identify data. The length

of the buffer must be at least 512 bytes.
ataRequestCountNumber of remaining bytes to transfer.
ataActualTxCnt Number of bytes transferred.
RegBlock Taskfile image sent to the device.

RESULT CODES

See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.
Functions 41

C H A P T E R 3

ATA Manager Reference
ATA_DrvrRegister 3

The ATA_DrvrRegister function registers the driver reference number passed in for
the selected drive. The function doesn’t check for the existence of another driver. Any
active driver that controls one or more devices through the ATA Manager must register
with the manager to ensure proper operation and notification of events. The first driver
to register for the device gets the device. All subsequent registrations for the device are
rejected.

The manager function code for the ATA_DrvrRegister function is $85.

The parameter block associated with ataPBVers of 1 is defined as follows:

typedef struct /* Driver registration

structure for ataPBVers 1 */

{

ataPBHdr /* ataPBHdr parameter block */

SInt16 drvrRefNum; /* → Driver reference number */

UInt16 FlagReserved; /* Reserved (should be 0)*/

UInt16 deviceNextID; /* Not used */

SInt16 Reserved[21]; /* Reserved */

} ataDrvrRegister;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 3-22.
drvrRefNum This field specifies the driver reference number to be registered.

This value must be less than 0 to be valid.
FlagReserved Reserved.
deviceNextID Not used by this function.
Reserved[21] This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.

The parameter block associated with ataPBVers of 2 or greater is defined below:

typedef struct /* Driver registration

structure for ataPBVers 2

or greater */

{

ataPBHdr /* ataPBHdr parameter block */

SInt16 drvrRefNum; /* → Driver reference number */

UInt16 drvrFlags; /* → Driver flags, set to 0 */

UInt16 deviceNextID; /* Not used */

SInt16 Reserved; /* Reserved (should be 0) */

ProcPtr ataEHandlerPtr; /* → Event handler routine

pointer */

SInt32 drvrContext; /* → Value to pass in with
42 Functions

C H A P T E R 3

ATA Manager Reference
event handler */

UInt32 ataEventMask; /* → Masks of various events

for event handlers */

SInt16 Reserved[14]; /* Reserved */

} ataDrvrRegister;

The version 2 parameter block also allows another type of registration: notify-all driver
registration. The notify-all driver registration is identified by a value of -1 in the
ataPBDeviceID field of the header and bit 0 of drvrFlags set to 0. The notify-all
driver registration is used if notification of all device insertions is desired. Registered
default drivers are called if no media driver is found on the media. Typically, an init
driver registers as a notify-all driver. The single driver may register as a notify-all driver
and then later register for one or more devices on the bus.

Note
All PCMCIA/ATA and notify-all device drivers must register using the
parameter block version 2 and utilize the event-handling capability in
order to insure proper operation. See the description of the
ataEHandlerPtr, drvrContent, and ataEventMask fields for
additional information related to event handling. ◆

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 3-22.
drvrRefNum This field specifies the driver reference number to be registered.

This value must be less than 0 to be valid.
drvrFlags No bit definition has been defined for the field. This field shall be

set to 0 in order to ensure compatibility in the future.
deviceNextID Not used by this function.
Reserved Reserved.
ataEHandlerPtr A pointer to an event handler routine for the driver. This routine is

called whenever an event happens, and the mask bit for the
particular event is set in the ataEventMask field.
The calling convention for the event handler is as follows:
pascal SInt16 (ataEHandlerPtr) (ATAEventRec*);

where ATAEventRec structure is defined as follows:
typedef struct
{ UInt16 evenCode; /* ATA event code */

UInt16 phyDrvRef; /* ID associated with
the event */

SInt32 drvrContext;/* Context passed in by
the driver */

} ATAEventRec;

drvrContext A value to be passed in when the event handler is called. This value
is loaded in the ATAEventRec structure before calling the event
handler.
Functions 43

C H A P T E R 3

ATA Manager Reference
ataEventMask The mask defined in this field is used to indicate whether the event
handler should be called or not, based on the event. The event
handler is called only if the mask for the event has been set (1). If
the mask is not set (0) for an event, the ATA Manager takes no
action. The following masks have been defined:
Bits Event mask
0x00 Null event.
0x01 Online event – a device has come online.
0x02 Offline event – a device has gone offline.
0x03 Device removed event – a device has been removed.
0x04 Reset event – a device has been reset.
0x05 Offline request event – a request to put the device

offline has been detected.
0x06 Eject request event – a request to eject a device has

been detected.
0x07 Configuration update event – the system configuration

has changed (more devices).
0x08 – 0x1F Reserved.

Reserved[14] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RESULT CODES

See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.

ATA_FindRefNum 3

The ATA_FindRefNum function allows an application to determine whether a driver has
been installed for a given device. You pass in a device ID, and the function returns the
current driver reference number registered for the given device. A value of 0 indicates
that no driver has been registered. The deviceNextID field contains the device ID of
the next device in the list. The end of the list is indicated with the constant
kATAEndIterateDeviceID with a value of 0xFF.

To create a list of all drivers for the attached devices, pass in the constant
kATAStartIterateDeviceID with a value of 0xFFFF for the ataPBDeviceID field
in the ataPBHdr structure. This causes deviceNextID field to be filled with the first
device in the list. Each successive driver can be found by moving the value returned in
deviceNextID into the ataPBDeviceID field in the ataPBHdr parameter block until
the function returns 0xFF in deviceNextID, which indicates the end of the list.

The manager function code for the ATA_FindRefNum function is $86.
44 Functions

C H A P T E R 3

ATA Manager Reference
The parameter block associated with this function for ataPBVers version 1 is defined as
follows:

typedef struct /* Driver registration for

ataPBVers version 1 */

{

ataPBHdr /* ataPBHdr parameter block */

SInt16 drvrRefNum; /* ← Contains the driver refNum */

UInt16 FlagReserved; /* Reserved */

UInt16 deviceNextID; /* ← Contains the next drive ID */

SInt16 Reserved[21]; /* Reserved */

} ataDrvrRegister;

The parameter block associated with this function for ataPBVer version 2 is defined as
follows:

typedef struct /* Driver registration for

ataPBVers version 2

or greater */

{

ataPBHdr /* ataPBHdr parameter block */

SInt16 drvrRefNum; /* ← Driver reference number */

UInt16 drvrFlags; /* → Reserved, set to 0 */

UInt16 deviceNextID; /* Used to specify the next

device ID */

SInt16 Reserved; /* Reserved (should be 0) */

ProcPtr ataEHandlerPtr; /* ← Event handler routine

pointer */

SInt32 drvrContext; /* ← Value to pass in with

event handler */

UInt32 ataEventMask; /* ← Current setting of the

mask of various events

for event handler */

SInt16 Reserved[14]; /* Reserved */

} ataDrvrRegister;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 3-22.
drvrRefNum On return, this field contains the reference number for the device

specified in the ataPBDeviceID field of the ataPBHdr data.
drvrFlags This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.
deviceNextID On return, this field contains the device ID of the next device on the

list.
Functions 45

C H A P T E R 3

ATA Manager Reference
ataEHandlerPtr Currently registered event handler routine pointer for the selected
device. This field is valid only for ataPBVers of 2 or greater.

drvrContext Currently registered value to be passed along when the event
handler is called. This field is valid only for ataPBVers of 2 or
greater.

ataEventMask Current event mask value for the selected device. This field is valid
only for ataPBVers of 2 or greater.

Reserved[nn] Reserved. To ensure future compatibility, all reserved fields should
be set to 0.

RESULT CODES

See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.

ATA_DrvrDeregister 3

The ATA_DrvrDeregister function deregisters the driver reference number passed in
for the selected drive. After successful completion of this function, the driver reference
number for the drive is set to 0, which indicates that no driver is in control of this device.

The manager function code for the ATA_DrvrDeregister function is $87.

For notify-all driver deregistration, the ataEHandlerPtr field is used to match the
entry (the ataPBDeviceID field is invalid for the notify-all driver registration/
deregistration). If a driver is registered as both a notify-all and for a specific device, the
driver must deregister for each separately.

All notify-all device drivers must deregister using the ATA Manager parameter block
version 2.

The parameter block associated with this function for ataPBVers version 1 is defined as
follows:

typedef struct /* Driver registration */

/* structure for ataPBVers 1 */

{

ataPBHdr /* ataPBHdr parameter block */

SInt16 drvrRefNum; /* Not used*/

UInt16 FlagReserved; /* Reserved */

UInt16 deviceNextID; /* Not used */

SInt16 Reserved[21]; /* Reserved */

} ataDrvrRegister;
46 Functions

C H A P T E R 3

ATA Manager Reference
The parameter block associated with this function for ataPBVer version 2 is defined as
follows:

typedef struct /* Driver registration

structure for ataPBVers 2

 or greater */

{

ataPBHdr /* See definition on page 3-22 */

SInt16 drvrRefNum; /* → Driver reference number */

UInt16 drvrFlags; /* → Driver flags, set to 0 */

UInt16 deviceNextID; /* Not used */

SInt16 Reserved; /* Reserved (should be 0) */

ProcPtr ataEHandlerPtr; /* → Event handler routine

pointer */

SInt32 drvrContext; /* → Value to pass in with

event handler */

UInt32 ataEventMask; /* → Masks of various events

for event handlers */

SInt16 Reserved[14]; /* Reserved */

} ataDrvrRegister;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 3-22.
drvrRefNum Not used for this function.
drvrFlags No bits have been defined for this field. This field should be set to 0

in order to ensure compatibility in the future.
deviceNextID Not used for this function.
Reserved Reserved.
ataEHandlerPtr A pointer to the driver event handler routine. This field is only used

for notify-all driver deregistration. This field is not used for other
driver deregistration. Since this field is used to identify the correct
“notify-all” driver entry, this field must be valid for “notify-all”
driver deregistration.

drvrContext Not used for this function.
ataEventMask Not used for this function.

RESULT CODES

See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.
Functions 47

C H A P T E R 3

ATA Manager Reference
ATA_GetDevConfig 3

The ATA_GetDevConfig function allows an application to determine the configuration
for a specified socket.

The manager function code for the ATA_GetDevConfig function is $8A.

The parameter block associated with this function is defined as follows:

typedef struct

{

ataPBHdr /* ataPBHdr parameter block *

SInt32 ConfigSetting; /* ↔ 32 bits of configuration

 information */

UInt8 ataPIOSpeedMode; /* ← Default PIO mode setting */

UInt8 Reserved3; /* Reserved for word alignment */

UInt16 pcValid; /* ← PCMCIA unique */

UInt16 RWMultipleCount; /* Reserved */

UInt16 SectorsPerCylinder; /* Reserved */

UInt16 Heads; /* Reserved */

UInt16 SectorsPerTrack; /* Reserved */

UInt16 socketNum; /* ← Socket number */

UInt8 socketType; /* ← Type of socket */

UInt8 deviceType; /* ← Type of active device */

UInt8 pcAccessMode; /* ← Access mode of socket */

UInt8 pcVcc; /* ← Device voltage */

UInt8 pcVpp1; /* ← Vpp 1 voltage */

UInt8 pcVpp2; /* ← Vpp 2 voltage */

UInt8 pcStatus; /* ← Status register setting */

UInt8 pcPin; /* ← Pin register setting */

UInt8 pcCopy; /* ← Copy register setting */

UInt8 pcConfigIndex; /* ← Option register setting */

UInt8 ataSingleDMASpeed; /* ← Singleword DMA

timing class */

UInt8 ataMultiDMASpeed; /* ← Default Multiword DMA

timing class */

UInt16 ataPIOCycleTime; /* ← Default cycle time for

PIO mode */

UInt16 ataMultiCycleTime; /* ← Default cycle time for

multiword DMA mode */

UInt16 Reserved[7]; /* Reserved*/

} ataGetDevConfig;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 3-22.
48 Functions

C H A P T E R 3

ATA Manager Reference
ConfigSetting This 32-bit field contains various configuration information. The
bits have the following definitions:
Bits 0–5: Reserved
Bit 6: ATAPI packet DRQ handling setting

0 = wait for an interrupt before sending the ATAPI
command packet.
1 = wait for the assertion of DRQ in the status register
before sending the ATAPI command packet. This is
the default setting.

Bits 7–31: Reserved, set to 0
ataPIOSpeedMode This field indicates the value for the PIO mode currently used

for commands and PIO data transfers. This value can be
modified with the ATA_SetDevConfig function. In parameter
block versions 1 and 2, this field is an integer. In parameter
block versions 3 and greater, this field is bit significant, where
the low-order bit indicates that PIO mode 0 is the current mode.

pcValid This 16-bit field applies to systems that support PCMCIA card
services. It indicates which of the PCMCIA unique fields contain
valid information. The following values are defined:
bit 0: When set, the value in the pcAccessMode field is valid.
bit 1: When set, the value in the pcVcc field is valid.
bit 2: When set, the value in the pcVpp1 field is valid.
bit 3: When set, the value in the pcVpp2 field is valid.
bit 4: When set, the value in the pcStatus field is valid.
bit 5: When set, the value in the pcPin field is valid.
bit 6: When set, the value in the pcCopy field is valid.
bit 7: When set, the value in the pcConfigIndex field is valid.
bits 14–8: Reserved (set to 0).
bit 15: Reserved.

RWMultipleCount This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

SectorsPerCylinder
This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

Heads This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

SectorsPerTrack This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

socketNum This field contains the socket number for the device used by the
PCMCIA card services. The socket number is required to
request card services. A value of 0xFF indicates the device is not
a card services client.

socketType This field specifies the type of socket. The values are defined as
00 = unknown socket type
01 = internal ATA bus
02 = media bay socket
03 = PCMCIA socket
Functions 49

C H A P T E R 3

ATA Manager Reference
deviceType This field specifies the type of device. The possible values are
defined as:
00 = unknown or no device present
01 = standard ATA device detected
02 = ATAPI device detected
03 = PCMCIA ATA device detected

pcAccessMode This field specifies the current mode of the socket. This field is
valid only when bit 0 of the pcValid field is set. The mode
values are
0 = I/O mode
1 = memory mode

pcVcc This field specifies the voltage on Vcc in tenths of a volt. The
value in this field is valid only valid when bit 1 of the pcValid
field is set.

pcVpp1 This field specifies the voltage of Vpp1 in tenths of a volt. The
value in this field is valid only when bit 2 of the pcValid field
is set.

pcVpp2 This field specifies the voltage of Vpp2 in tenths of a volt. The
value in this field is valid only when bit 3 of the pccValid field
is set.

pcStatus This field specifies the current card register setting of a PCMCIA
device. The value in this field is valid only when bit 4 of the
pccValid field is set.

pcPin This field specifies the current card pin register setting of a
PCMCIA device. The value in this field is valid only when bit 5
of the pccValid field is set.

pcCopy This field specifies the current setting of the card socket/copy
register of a PCMCIA device. The value in this field is valid only
when bit 6 of the pccValid field is set.

pcConfigIndex This field specifies the current setting of the card option register
of a PCMCIA device. The value in this field is valid only when
bit 7 of the pccValid field is set.

ataSingleDMASpeed This bit-significant field indicates which singleword DMA
mode, if any, is currently configured for use with DMA
transfers. The intitial default value is singleword DMA mode 0.
The DMA transfer mode may be modified with the
ATA_SetDevConfig function. This field is valid only for ATA
Manager 3.0 or greater.

ataMultiDMASpeed This bit-significant field indicates which multiword DMA mode,
if any, is currently configured for use with DMA transfers. The
intitial default value of this field is 0, which indicates that
multiword DMA not selected. The DMA transfer mode may be
modified by the ATA_SetDevConfig function. This field is
valid only for ATA Manager 3.0 or greater.

ataPIOCycleTime This word field specifies the minimum cycle time, in
microseconds, of mode 3 or greater PIO transfers. For additional
information about the contents of this field, see the
50 Functions

C H A P T E R 3

ATA Manager Reference
ataPIOCycleTime field in the ATA_SetDevConfig
description beginning on page 3-51.
The actual cycle time may be higher than this value if the system
hardware is unable to create the requested cycle time while
maintaining signal timing for the PIO mode in use. This field is
valid only for ATA Manager 3.0 or greater.

ataMultiCycleTime
This word field specifies the minimum cycle time, in
microseconds, of mode 1 or higher multiword DMA data
transfers. For additional information about the contents of this
field, see the ataMultiCycleTime field in the
ATA_SetDevConfig function description, next.
The actual cycle time may be higher than this value if the system
hardware is unable to create the requested cycle time while
maintaining signal timing for the multiword DMA mode in use.
This field is valid only for ATA Manager 3.0 or greater.

RESULT CODES

See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.

ATA_SetDevConfig 3

The ATA_SetDevConfig function allows an application to set the configuration
parameters of a specified socket. Some of the fields are not appropriate for a particular
socket type — for example, setting the voltage for the internal device. Part of the device
configuration includes setting up the parameters for I/O transfer mode and timing. The
section “Setting Data Transfer Timing” beginning on page 3-28 includes a discussion of
how to use the ATA Manager to set up the software for data transfers, including DMA
data transfers.

The manager function code for the ATA_SetDevConfig function is $8B.

The parameter block associated with this function is defined as follows:

typedef struct

{

ataPBHdr /* ataPBHdr parameter block */

char ConfigSetting; /* → 32 bits of configuration

information */

ushort ataPIOSpeedMode; /* → Default PIO mode setting*/

ushort Reserved3; /* Reserved for word alignment*/

ulong pcValid; /* → PCMCIA unique */

ulong RWMultipleCount; /* Reserved */

ulong SectorsPerCylinder; /* Reserved */

ulong Heads; /* Reserved */
Functions 51

C H A P T E R 3

ATA Manager Reference
ulong SectorsPerTrack; /* Reserved */

ulong Reserved4[2]; /* Reserved */

/* PCMCIA-unique fields are indicated with a pc prefix */

ushort pcAccessMode; /* → Access mode of socket */

ushort pcVcc; /* → Device voltage */

ushort pcVpp1; /* → Vpp 1 voltage */

ushort pcVpp2; /* → Vpp 2 voltage */

ushort pcStatus; /* → Status register setting */

ushort pcPin; /* → Pin register setting */

ushort pcCopy; /* → Copy register setting */

ushort pcConfigIndex; /* → Option register setting */

/* The following fields are valid for parameter block version

3.0 or greater (ataPBVers 3 or greater) */

ushort ataSingleDMASpeed; /* → Singleword DMA

timing class */

ushort ataMultiDMASpeed; /* → Multiple word DMA

timing class */

ulong ataPIOCycleTime; /* → Cycle time for PIO mode */

ulong ataMultiCycleTime; /* → Cycle time for multiword

DMA mode */

ulong Reserved[7]; /* Reserved*/

} ATA_SetDevConfig;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 3-22.
ConfigSetting This 32-bit field controls various configuration settings. The bits

have the following definitions:
Bits 0–5: Reserved, set to 0
Bit 6: ATAPI packet DRQ handling setting

0 = wait for an interrupt before sending the ATAPI
command packet.
1 = wait for the assertion of DRQ in the status register
before sending the ATAPI command packet. This is
the default setting.

Bits 7–31: Reserved, set to 0
ataPIOSpeedMode This field contains the PIO mode to be used for commands and

PIO data transfers for parameter blocks prior to version 3. For
parameter block version 3 or greater, the value is bit significant,
with the low-order bit signifying PIO mode 0. Be sure to note
the difference in bit positions between this field and the
corresponding “advanced PIO modes” field of the ATA-2
identify device information.

pcValid This 16-bit field applies to systems that support PCMCIA card
services. The bits indicate which fields in the parameter block
contain valid settings for PCMCIA . The following values are
defined:
52 Functions

C H A P T E R 3

ATA Manager Reference
bit 0: When set, the value in the pcAccessMode field is valid.
bit 1: When set, the value in the pcVcc field is valid.
bit 2: When set, the value in the pcVpp1 field is valid.
bit 3: When set, the value in the pcVpp2 field is valid.
bit 4: When set, the value in the pcStatus field is valid.
bit 5: When set, the value in the pcPin field is valid.
bit 6: When set, the value in the pcCopy field is valid.
bit 7: When set, the value in the pcConfigIndex field is valid.
bits 8–14: Reserved (set to 0).
bit 15: Reserved.

PWMultipleCount This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

SectorsPerCylinder
This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

Heads This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

SectorsPerTrack This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

Reserved4[2] This field is reserved.
pcAccessMode This field specifies the mode of the socket. This field is valid

only when bit 0 of the pcValid filed is set. The mode values are:
0 = I/O mode
1 = memory mode

pcVcc This field specifies the new voltage setting for Vcc in tenths of a
volt. The value in this field is valid only when bit 1 of the
pcValid field is set.

pcVpp1 This field specifies the new voltage setting for Vpp1 in tenths of
a volt. The value in this field is valid only when bit 2 of the
pcValid field is set.

pcVpp2 This field specifies the new voltage setting for Vpp2 in tenths of
a volt. The value in this field is valid only when bit 3 of the
pccValid field is set.

pcStatus This field specifies the new card register setting for a PCMCIA
device. The value in this field is valid only when bit 4 of the
pccValid field is set.

pcPin This field specifies the new card pin register setting for a
PCMCIA device. The value in this field is valid only when bit 5
of the pccValid field is set.

pcCopy This field specifies the new card socket/copy register setting for
a PCMCIA device. The value in this field is valid only when bit
6 of the pccValid field is set.

pcConfigIndex This field specifies the new card option register setting for a
PCMCIA device. The value in this field is valid only when bit 7
of the pccValid field is set.

ataSingleDMASpeed This bit-significant field specifies the singleword DMA mode for
DMA data transfers. It corresponds to the high-order byte of
Functions 53

C H A P T E R 3

ATA Manager Reference
word 62 of the identify device data described in the ATA-2
specification. If word 62 is not supported by the device, then it
reflects word 52 converted to bit significance. The ATA software
supports word 62 modes 0 through 2, as defined in the ATA-2
specification. If the specified timing mode is higher than the
values supported by the software, then the highest possible
mode is selected for transfers.

The ATA Manager selects the transfer rate that satisfies the
requirements of the mode and the system DMA hardware. The
rate and mode are used on subsequent DMA transfers until
changed by another ATA_SetDevConfig function call. The
default singleword DMA mode is mode 0. This field is valid for
parameter block version 3 or greater.

For additional information related to setting the I/O data
transfer speed, see “Setting Data Transfer Timing” beginning on
page 3-28.

ataMultiDMASpeed This bit-significant field specifies the multiword DMA cycle
mode for DMA data transfers. It corresponds to the high-order
byte of word 63 of the identify device data described in the
ATA-2 specification. If word 63 is not supported by the device,
then this value should be 0 which indicates that multiword
DMA should not be attempted. The ATA software supports
word 63 modes 0 through 2, as defined in the ATA-2
specification. If the specified timing mode is higher than the
values supported by the software, then the highest supported
mode is selected for DMA transfers. This field is used in
conjunction with the value set in the ataMultiCycleTime
field. The ATA Manager selects the transfer rate that satisfies the
requirements of the mode specified in the
ataMultiCycleTime field and the system DMA hardware.
The rate and mode are used on subsequent DMA transfers until
changed by another ATA_SetDevConfig function call. The
default setting for DMA mode is singleword DMA mode 0. This
field is valid for parameter block version 3 or greater.

For additional information related to setting the I/O data
transfer speed, see “Setting Data Transfer Timing” beginning on
page 3-28.

ataPIOCycleTime This word field is used in conjunction with the ataPBIOSpeed
field of the ataPBHdr structure to specify the cycle time for
command and PIO data transfers. The value in this field
represents word 68 of the identify device information, as
defined in the ATA-2 specification. If this value is not 0, the ATA
Manager selects the closest approximation of the cycle time
supported by the system hardware that does not exceed the
value and still meets the timing requirements of the selected
mode.
54 Functions

C H A P T E R 3

ATA Manager Reference
If this value is 0, the ATA Manager uses the minimum cycle
times from the ATA-2 specification for the mode. The resulting
cycle timing represents the maximum timing for PIO mode 2,
because that is the highest mode supported without reporting
word 68 of the identify device information.

ataMultiCycleTime This word field is used in conjunction with the
ataMultiDMASpeed field to specify the cycle time for
multiword DMA data transfers. The value represents the same
value reported in word 65 or word 66 of the identify device
information, as specified in the ATA-2 specification. If the value
specified in this field is not 0, the ATA Manager selects the
closest cycle time supported by the system hardware that does
not exceed the value and meets the other timing requirements of
the mode specified in the ataMultiDMASpeed field.

If the value is 0, the ATA Manager uses the minimum cycle
times specified in the ATA-2 specification for the selected mode.
The resulting cycle timing represents the minimum timing for
multiword DMA mode 0, because that is the highest mode
supported without reporting word 65 or word 66 of the identify
device information.

RESULT CODES

See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.

ATA_GetLocationIcon 3

The ATA_GetLocationIcon function returns a pointer to the structure defining the
location icon data for the selected device. The structure contains the icon data and an
icon string for the device.

The manager function code for the ATA_GetLocationIcon function is $8C.

The parameter block associated with this function is defined as follows:

typedef struct

{

ataPBHdr /* ataPBHdr parameter block */

ulong iconData; /* Pointer to icon data and

 the size of the data */

} ATA_GetLocationIcon;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 3-22.
Functions 55

C H A P T E R 3

ATA Manager Reference
iconData This field contains two fields, a pointer to a structure that contains
the icon data and the size, in bytes, of the icon data. The structure
that contains the actual icon data is defined as follows:
struct DriverLocationIcon
{
ushort locationIcon[256];
char locationString;
} DriverLocationIcon;

The locationIcon field is the device icon data (fixed 256 bytes).
The locationString field is string in C string format (null
terminated).

RESULT CODES

See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.

ATA_MgrInquiry 3

The ATA_MgrInquiry function gets information, such as the version number, about the
ATA Manager.

The manager function code for the ATA_MgrInquiry function is $90.

The parameter block associated with this function is defined as follows:

typedef struct /* ATA inquiry structure */

{

ataPBHdr /* ataPBHdr parameter block */

NumVersion MgrVersion; /* Version of ATA Manager */

UInt8 MGRPBVers; /* ← Manager PB version

number supported */

UInt8 Reserved1; /* Reserved */

UInt16 ataBusCnt; /* ← Number of ATA buses in

system */

UInt16 ataDevCnt; /* ← Number of ATA devices

detected */

UInt8 ataPIOMaxMode; /* ← Maximum PIO speed mode */

UInt8 Reserved2; /* Reserved */

UInt16 Reserved3; /* Reserved */

UInt8 ataSingleDMAModes; /* ← Singleword DMA modes

supported */

UInt8 ataMultiDMAModes;/* ← Multiword DMA modes

supported */

UInt16 Reserved[16]; /* Reserved */

} ataMgrInquiry;
56 Functions

C H A P T E R 3
Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 3-22.
MgrVersion On return, this field contains the version number of the

ATA Manager present in the system.
MGRPBVers This field contains the number corresponding to the latest version

of the parameter block supported. A client may use any ataPBHdr
parameter block definition up to this version.

Reserved Reserved. All reserved fields are set to 0 for future compatibility.
ataBusCnt On return, this field contains the total number of ATA buses in the

system. This field contains a 0 if the ATA Manager has not been
initialized. Not all ATA buses reported may be active. However,
clients should allocate adequate data storage to handle up to the
reported number of buses and/or channels.

ataDevCnt On return, this field contains the total number of ATA devices
detected on all ATA buses. The current architecture allows only one
device per bus. This field contains a 0 if the ATA Manager has not
been initialized. With media bay and PCMCIA sockets, the value
reported may change depending on the current configuration.

ataPIOMaxMode This field specifies the maximum PIO speed mode that the ATA
Manager supports. Refer to the ATA-2 specification for information
on mode timing. For additional information about the individual
bus capabilities, see the description of the ATA_BusInquiry
function on page 3-34.

ataSingleDMAModes
This bit-significant field specifies the maximum DMA mode that the
ATA Manager can support. The least significant bit indicates
support for singleword DMA transfer mode 0. Refer to the ATA-2
specification for information on DMA mode timing.

ataMultiDMAModes
This bit-significant field specifies the multiword DMA transfer
modes that the manager can support. The least significant bit
indicates support for multiword DMA transfer mode 0. Refer to
ATA-2 specification for information on DMA mode timing.

Reserved[16] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RESULT CODES

See Table A-1 on page A-59 for possible result codes returned by the ATA Manager.
3

Functions 57

A P P E N D I X

Figure A-0
Listing A-0
Table A-0
Result Code Summary A

A summary of the ATA result codes is provided in Table A-1. ATA parameter block
versions 2 and greater have a different numbering scheme from that of version 1. The
error code number values for parameter block version 1 are contained in parentheses.

Table A-1 ATA Manager result codes

Error
code

Error code
(version 1) Name Description

0 0 noErr Successful completion; no error detected

–50 paramErr Invalid parameter specified

–56 nsDrvErr No such drive installed

–9325 ATANoDriverErr No driver found on media

–9226 ATANoDDMErr No DDM found on media

–9327 ATAMemoryErr Memory allocation error

–9328 ATAInvalidDrvNum Invalid driver number from event

–9337 ATAMgrConsistencyErr Manager detected internal inconsistency

–9338 ATAXferModeErr I/O transfer mode not supported

–9339 ATAXferParamErr I/O transfer parameters inconsistent

–9340 ATASDFailErr Shutdown failure

–9341 ATAMgrMemoryErr Manager memory allocation error

–9342 (–1800) CantHandleEvent Particular event could not be handled

–9343 (–1799) DriverLocked Current driver must be removed before
adding another

–9344 (–1818) AT_NoAddrErr Invalid taskfile base address

–9345 (–1817) ATABusErr Bus error detected on I/O

–9346 (–1816) ATAInternalErr Card services returned an error

–9347 (–1815) ATANoClientErr No client present to handle event

–9348 (–1814) ATAPIExCntErr Warning: overrun/underrun condition
detected (data valid)

–9349 (–1813) ATAPIPhaseErr Unexpected phase detected

–9350 (–1812) ATAAbortedDueToRst The I/O queue entry aborted due to a bus
reset

continued
59

A P P E N D I X

Result Code Summary
–9351 (–1811) ATAUnableToAbort Request to abort couldn’t be honored

–9352 (–1810) ATAReqAborted The request was aborted

–9353 (–1809) ATAQLocked I/O queue locked—cannot proceed

–9354 (–1808) ATAUnknownState Device in unknown state

–9355 (–1807) ATAReqInProg I/O channel in use—cannot proceed

–9356 (–1806) ATATransTimeOut Timeout: transaction timeout detected

–9357 (–1805) ATABusy Selected device is busy; device isn’t ready
to go to next phase yet

–9358 (–1804) ATAFuncNotSupported An unknown manager function code
specified

–9359 (–1803) ATAPBInvalid Invalid device base address detected (=0)

–9360 (–1802) ATAMgrNotInitialized ATA Manager not initialized

–9371 ATAEjectDrvErr Could not eject the drive

–9372 ATADevUnSupported Device type not supported

–9373 ATABufFail Device buffer test failed

–9374 ATAInitFail ATA Manager initialization failure

–9375 NoATAMgr No ATA Manager installed in the system
(MgrInquiry failure)

–9376 DRVRCantAllocate Global memory allocation error

–9396 (–1780) AT_AbortErr Command-aborted bit set in error register

–9397 (–1781) AT_RecalErr Recalibrate failure detected by device

–9398 (–1782) AT_WrFltErr Write fault bit set in status register

–9399 (–1783) AT_SeekErr Seek complete bit not set on completion

–9400 (–1784) AT_UncDataErr Uncorrected data bit set in error register

–9401 (–1785) AT_CorDataErr Data-corrected bit set in status register

–9402 (–1786) AT_BadBlkErr Bad block bit set in error register

–9403 (–1787) AT_DMarkErr Data mark not found bit set in error
register

–9404 (–1788) AT_IDNFErr ID not found bit set in error register

–9405 (–1791) AT_NRdyErr Drive ready condition not detected

Table A-1 ATA Manager result codes (continued)

Error
code

Error code
(version 1) Name Description
60

Index
A, B

ATA (IDE) hard disk, compared with SCSI drives 3
ATA (IDE) software

ATA Manager 2, 4
device driver 2
hard disk device driver 3

ATA_Abort function 37
ATA_BusInquiry function 34
ATA_DrvrDeregister function 46
ATA_DrvrRegister function 42
ATA_ExecIO function 31
ATA_FindRefNum function 44
ATA_GetDevConfig function 48
ATA_GetLocationIcon function 55
ATA_Identify function 41
ATA_MgrInquiry function 56
ATA_NOP function 30
ATA_QRelease function 36
ATA_RegAccess function 38
ATA_ResetBus function 38
ATA_SetDevConfig function 51
ATA-2 specification 2
ATA disk driver 3, 5 to 19
close routine 6
control functions 8 to 19
control routine 8
Device Manager routines 6 to 8
drive info function 15
driver gestalt function 16
driverGestalt parameter block 16
driver name 4
driver reference number 4
eject function 10
format function 9
get partition mount status function 18
get partition write protect status

function 18
get power mode function 18
get startup partition function 17
making calls to 4
open routine 6
prime routine 7
return drive characteristics function 11
return media icon function 10
set power mode function 14
status routine 7
verify function 9

ATA Manager 2, 22 to ??

making calls to 22
parameter block 4
purpose of 3, 4

ATA Manager functions
ATA_Abort 37
ATA_BusInquiry 34
ATA_DrvrDeregister 46
ATA_DrvrRegister 42
ATA_ExecIO 31
ATA_FindRefNum 44
ATA_GetDevConfig 48
ATA_GetLocationIcon 55
ATA_Identify 41
ATA_MgrInquiry 56
ATA_NOP 30
ATA_QRelease 36
ATA_RegAccess 38
ATA_ResetBus 38
ATA_SetDevConfig 51

ATA parameter block header 22
ataPBHdr structure 22 to 28
.ATDISK driver name 4

C

clear partition mounting function 13
clear partition write protect function 13
close routine 6
control routine 8

D

data transfer timing 28
device ID list 44
DMA 26, 28, 50
DMA data transfers 51
DMA transfer mode 50
drive info function 15
driver gestalt function 16
driverGestalt parameter block 16
driver list for attached devices 44
driver reference number 44
61

I N D E X
E

eject function 10
enabale partition write protect function 12
enable partition mounting function 12
enable startup partition function 11

F

format function 9

G - L

get partition mount status function 18
get partition write protect status

function 18
get power mode function 18
get startup partition function 17

M, N

mount volume function 14
multiword DMA 29, 50

O

open routine 6

P, Q

PCMCIA device configuration fields 49
prime routine 7

R

return drive characteristics function 11
return drive icon function 10
return media icon function 10

S, T, U

set power mode function 14

singleword DMA 29, 50
status routine 7

V - Z

verify function 9
62

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Line art was created using
Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITER
Steve Schwander

COPY EDITOR
John Hammett, Beverly McGuire

PRODUCTION EDITOR
JoAnne Smith

ILLUSTRATOR
Sandee Karr

PRODUCTION EDITOR
Alex Solinski

Special thanks to Rhoads Hollowell,
Steve Parsons, Rich Schnell, and Kevin
Snow

	ATA Device Software Guide
	Figures and Tables
	About This Note
	Contents of This Note
	Supplemental Reference Documents
	The Apple Developer Catalog
	Apple Developer World Web Site
	Typographical Conventions

	Software for ATA Devices
	Introduction to ATA Software
	ATA Disk Driver
	ATA Manager

	ATA Driver Reference
	High-Level Device Manager Routines
	ATA Disk Driver Control and Status Functions

	ATA Manager Reference
	The ATA Parameter Block
	Setting Data Transfer Timing
	Setting Up PIO Data Transfers
	Setting Up Multiword and Singleword DMA Data Trans...

	Functions

	Result Code Summary
	Index

