
Technical Notes PPBD-JHACEF003, 4/11/96

Please send questions and comments via e-mail to pippindev@apple.com.

 1996, Apple Computer, Inc. All rights reserved. Apple, Macintosh, and Pippin are trademarks of 
Apple Computer, Inc. All other brand or product names are trademarks or registered trademarks of 
their respective companies or organizations.

Every effort has been made to ensure the accuracy of information in this document. However, Apple 
assumes no responsibility for the accuracy of the information. Product information is subject to 
change without notice. Mention of non-Apple products is for informational purposes only, and consti-
tutes neither an endorsement nor a recommendation. Apple assumes no responsibility with regard to 
the selection, performance or use of these products. All understandings, agreements, or warranties, if 
any, take place directly between the vendors and the prospective users. 

Abstract: The Applejack input device driver combines the features of a game-player pad and a mouse or 
trackball in a small handheld device. Generally, Applejack input devices are attached to a Pippin Power 
Player (a CD-ROM multimedia player device derived from the PowerPC Macintosh).  

Applejack Input Device Driver
version 003



2 Applejack Input Device Driver

Technical Notes PPBD-JHACEF003, 4/11/96

1 Introduction
The Pippin input device, Applejack, is a custom ADB device containing trackball information and a 
series of 18 button states. The Applejack driver resides in the Pippin ROM and loads at system boot time. 
On a Macintosh, the Applejack driver resides in the Applejack 2.2.0 system extension file. 1

The Applejack driver uses a `pipp' button mapping resource which allows any Applejack button to be 
mapped with either a mouse button or keyboard key function. The trackball data, however, is always 
treated as a ``mouse'' and there is no provision for remapping it. 

While provision for default button mapping is provided, applications can also include a custom `pipp' 
resource for setting button functions. On Pippin ROMs, a custom `pipp' resource would be loaded 
automatically when an application is launched. For applications that do not use mouse or keyboard 
mappings (not highly recommended), the Applejack raw data is directly readable from the driver.

1.1 Setting Up

The Applejack Software Developer's Kit diskette contains the Applejack 2.2.0 application for editing the 
`pipp' mapping resource, and an Applejack 2.2.0 system extension file.

1. From the SDK diskette, copy the application file to your Macintosh hard drive.

2. Drag-and-drop the Applejack 2.2.0 system extension file to the ``Extensions'' folder in your System 
Folder.

3. Ensure that the Applejack input device driver(s) are plugged into the ADB jack adapter(s) on the 
backside of your Macintosh.

4. Restart the Macintosh to initialize the Applejack 2.2.0 system extension file. 2

You are now ready to customize the Applejack input device driver.

1 Customizing the Applejack
There are two ways to customize the `pipp' mapping resource of the Applejack input device driver(s).

The simplest way involves using the Applejack 2.2.0 application as an interface for redefining device 
button mapping. This mechanism is as simple as aligning an attached Applejack device (or possibly, 
unattached Applejack device, as the case may be) with a visual device on the Macintosh screen. By 
clicking on the on-screen buttons, a developer customizes an Applejack device(s).

The second way involves modifying the `pipp' mapping resource code files manually, specifically 
defining how the button mechanisms on the device(s) should work.

1. The Applejack 2.2.0 system extension for Macintosh requires that the Cursor Device Manager be present. Any Power 
Macintosh or “AV” Macintosh has the Cursor Device Manager in ROM.

2. If the displayed Applejack 2.2.0 system extension icon is crossed out while rebooting your Macintosh, your Macintosh 
either could not find an Applejack device plugged into the ADB jack, or the Macintosh you are using does not have the 
Cursor Device Manager in the ROM (i.e., you are not using a PowerMacintosh or “AV” Macintosh).



Applejack Input Device Driver 3

Technical Notes PPBD-JHACEF003, 4/11/96

1.2 The Applejack Control 2.2.0 Application

The Applejack 2.2.0 application is the interface used for editing the `pipp' mapping resource. Double-
click on the Applejack 2.2.0 application icon and a window similar to Figure 1 will appear.

Figure 1 Applejack Control 2.2.0 Application Launch Window

If the Applejack 2.2.0 application does not find any Applejack device(s) physically connected to the bus, 
the window displays a ``NO GAME PADS FOUND'' message across the window instead, as follows.

Figure 2 NO GAME PAD FOUND Window

Regardless of whether an Applejack device(s) is connected or not, the button settings may be edited. By 
clicking on desired buttons, a developer can customize the Applejack device(s).

Applejack Control 2.2.0

MLock DblClk

CMND

aKP8

D ->

R ->L ->
OPT

b

_FOUND_

03

CMND-q

MBut Space

Shows the ADB addresses
of all Applejacks found.

Move the cursor over
any of these buttons
and click to bring up
an editing dialog box. 

Click On A Button To Assign Its Function

Enable Test Mode

Applejack Control 2.2.0

MLock DblClk

CMND

aKP8

D ->

R ->L ->
OPT

b

CMND-q

MBut Space

Click On A Button To Assign Its Function

Enable Test Mode

N O  G A M E  P A D  F O U N D

Move the cursor over
any of these buttons
and click to bring up
an editing dialog box. 



4 Applejack Input Device Driver

Technical Notes PPBD-JHACEF003, 4/11/96

A dialog box similar to Figure 3 or Figure 4 appears, depending on the button clicked on.

Figure 3 Applejack Control 2.2.0 Dialog Box--Customizing Keyboard Key Functions

When defining specific keyboard keys, select the “Keyboard Key” option, and press the key desired, 
which will appear in the character fill-in box.3 Also, modifiers can be designated (click on appropriate 
box) with a specific keyboard key, if desired. Then, click on “Ok” to proceed.

When defining mouse button functions, click on the appropriate “mouse” functions, as desired, then click 
on ``Ok'' to proceed.

Figure 4 Applejack Control 2.2.0 Dialog Box--Customizing Mouse Button Functions

By clicking ``Ok'' after defining each button, the Applejack driver's local data is updated. If an Applejack 
device is attached, the newly defined button functions can be tested immediately with the newly 
``customized'' Applejack device(s).

3. The KeyCaps desk accessory will not always draw the keys correctly for Applejack. Afterall. how does one define keys for 
an Applejack keyboard based on a standard typing keyboard?

Button:  S11

character
 Cmnd Cntl
 Option Shift

Functions

Mouse Button

Mouse Dbl Click

Mouse Click Loc

Keyboard Key ---->

Modifier Key

Cancel Ok

Name of the clicked-on button.

If “Keyboard Key” is selected,
type any keyboard key
and it will show up here. 

Any combination of these 
modifiers can go along with the 
selected keyboard key.

Click “Ok” and changes will
take effect immediately.

KPad5

Button:  S11Functions

Mouse Button

Mouse Dbl Click

Mouse Click Loc

Keyboard Key

Modifier Key

Cancel Ok Click “Ok” and changes will
take effect immediately.



Applejack Input Device Driver 5

Technical Notes PPBD-JHACEF003, 4/11/96

By quitting the Applejack 2.2.0 application, the `pipp' resource within the Applejack 2.2.0 system 
extension file is updated. If you would like to write the `pipp' resource into a separate file, use the 
``File:Make Resource...'' menu item.

1.2.1 Applejack Default Button Settings
The Driver in the Pippin ROM creates default settings for the Applejack buttons if there is no Applejack 
extension installed. The default Applejack button settings are as follows:

1.3 Modifying the `pipp' Button Mapping Resource

Alternatively, `pipp' resources can be built and keys (functions) remapped by looking at the driver's 
global data. Figure 5 illustrates the Applejack Input Device Driver and its corresponding button mapping.

Button Description

Front left button Extended Keyboard F11

Front middle button Extended Keyboard F12

Front right button Extended Keyboard F13

Blue button Extended Keyboard F14

Yellow button Letter J

Cross Up UP Arrow

Cross Left LEFT Arrow

Cross Right RIGHT Arrow

Cross Down DOWN Arrow

Red button Extended Keyboard F8

Green Button Letter K

Right Fire Mouse Button

Left Fire Mouse Button



6 Applejack Input Device Driver

Technical Notes PPBD-JHACEF003, 4/11/96

Figure 5 Applejack Input Device--Button Mapping

The `pipp' resource is identical to the driver's global data and is a structure of type AJGlobalData. This 
global data is pointed to by the .refCon field of the Cursor Device Manager record for each Applejack 
device, as defined in the following code.

typedef struct SwitchData {
Byte    function;
Byte    modifiers;
Byte    keyCode;
Byte    charCode;
} SwitchData, *SwitchDataPtr;

typedef struct AJGlobalData {
long    signature;
Byte    MyTalkR0;
Byte    handlerID;
Byte    ourMBState;
Byte    ourLockState;
long    switchStates;
SwitchData      switcheMappingArray[18];
long    nextjADBProc;
long    cursorHandler;
} AJGlobalData, *AJGlobalDataPtr;

Most notably in the above code is the signature. The driver installer has initialized the signature to equal 
`pipp' so that applications can look through the ADB device table and find this structure. Further, the 
function field of the SwitchData switchMappingArray is defined as follows:

98

160

S11 S12 S13 

S1 - Left Trigger button (under) 

S2 - Right Trigger button (under) 

Track ball 

S10 (yellow) 

S9 (blue) 

S7 (green) 

S8 (red) 

Trackball retaining ring 

Secondary Action buttons

Primary Action 
buttons

Notes:
1.  Dimensions and shape are shown only approximately.
2.  Switch and element reference designators shall correspond with circuit schematic and µC firmware designations.

+Y

+X

Cable 

48

S5 

S4 

S3 

S6 

"Directional Pad" 

Trigger button 



Applejack Input Device Driver 7

Technical Notes PPBD-JHACEF003, 4/11/96

enum {
kNothing = 0,    // maps to nothing
kMouse  = 1,    // maps to standard mouse button operation
kMouseDblClick = 2,    // maps to mouse button double click
kMouseLock = 3,    // toggles the mouse button state
kKeyboard = 4,    // maps to a keyboard key
kFrontPanel = 5,    // not used
kModifier = 6     // maps to a modifier key

};

Each element of the switchMappingArray array represents one of the switches on Applejack. The 
array index is equal to the bit numbers, as shown in Figure 6.

Figure 6 ADB Register 0 Four-Byte Packet and Bit Number to Button Mapping

<————————— Bits —————————>

7 6 5 4 3 2 1 0 Bit # S # Button Map

0 b17 y6 y5 y4 y3 y2 y1 y0 b17 S1 Left Fire

1 b16 x6 x5 x4 x3 x2 x1 x0 b16 S2 Right Fire

2 b15 b14 b13 b12 b11 b10 b9 b8 b15 S7 Green

3 b7 b6 b5 b4 b3 b2 b1 b0 b14 S8 Red

Bits y6 - y0 are the 7-bit, 2’s complement Y-axis displacement. b13 S6 Down

Bits x6 - x0 are the 7-bit, 2’s complement X-axis displacement. b12 S5 Right

b11 S4 Left

b10 S3 Up

b9 S10 Yellow

b8 S9 Blue

b7 NC

b6 NC

b5 NC

b4 NC

b3 NC

b2 S13 Right System

b1 S12 Middle System

b0 S11 Left System



8 Applejack Input Device Driver

Technical Notes PPBD-JHACEF003, 4/11/96

If a button is mapped as kKeyboard, then the Applejack driver posts a keyDown event with the 
.keyCode, .keyChar and .modifiers fields in the event record.

The following code shows an enumeration of equates for the .modifiers field.

enum {
kCommandBit = 0,
kShiftBit = 1,
kCapsLockBit = 2,
kOptionBit = 3,
kControlBit = 4

};

If a button is mapped as kModifier, then the Applejack driver sets the keyMap global for the keyCode 
specified in the .keyCode field. The other fields are ignored in this case.

The following code is another enumeration of equates for the .modifiers field.

enum {
kCommandKey             = 0x37,
kShiftKey               = 0x38,
kCapsLockKey            = 0x39,
kOptionKey              = 0x3A,
kControlKey             = 0x36

};

To change the mapping of a button, map a pointer to the AJGlobalData structure, then put in new 
values for the .switches fields for the desired switch. A good reason to do this would be if you wanted 
to read the Applejack raw data but did not want a button to also be generating system events.

The following code maps a pointer to the AJGlobalData structure for each connected Applejack, and 
then changes the selected switch.

void ChangeSwitchMapping (short whichSwitch, short function, short modifiers,
short keyCode, short charCode);

void ChangeSwitchMapping (short whichSwitch, short function, short modifiers,
short keyCode, short charCode);
{
ADBAddress address;
ADBDataBlock dataBlock;
AJGlobalDataPtr myAJ;
CursorDevicePtr myCrsrDev;
short index,i;

//We need to copy these changes into the currently installed drivers.
//Where are the Applejacks?

//The Applejack driver uses the .refcon field of the cursor device record to
//store a pointer to its globals, a AJGlobalDataPtr.

if(whichSwitch>=0 && whichSwitch<=17)
{ // where are the AppleJacks?
index = CountADBs();
while(index>0)

{
address=GetIndADB(&dataBlock,index);
if((dataBlock.origADBAddr)==kDevAddr)

{ // make sure that this is really us
if(dataBlock.dbDataAreaAddr)
{



Applejack Input Device Driver 9

Technical Notes PPBD-JHACEF003, 4/11/96

myCrsrDev=(CursorDevicePtr)dataBlock.dbDataAreaAddr;
if(myCrsrDev)

{
myAJ=(AJGlobalDataPtr)myCrsrDev->refCon;
if(myAJ->signature=='pipp')

{       // got it.
myAJ->switchMappingArray.function[whichSwitch]=function;
myAJ->switchMappingArray.modifiers[whichSwitch]=modifiers;
myAJ->switchMappingArray.keyCode[whichSwitch]=keyCode;
myAJ->switchMappingArray.charCode[whichSwitch]=charCode;
}

}
}

}
index--;
}

Some other ways to use this function could be as follows:

• Map the yellow button (S10, bit 9) to do nothing:

ChangeSwitchMapping(9,kNothing,0,0,0);

• Map the red button (S8, bit 14) to be equal to command-Q (quit):

ChangeSwitchMapping(14,kKeyboard,((1<<kCommandBit)),0x0C,'Q');

• Map the green button (S7, bit 15) to be equal to the shift key:

ChangeSwitchMapping(15,kModifier,0,kShiftKey,0);

3 Reading Raw Applejack Data

To read raw Applejack data yourself, use code like the previous sample code, and ensure that you map a 
pointer to the AJGlobalData for each connected Applejack. You need to do this only once, but 
remember the pointer since it will not be moved or purged. 

Then, examine myAJ->switchStates to read the state of a button. Each button correlates with a bit in 
switchStates. The bit number is the same as defined in the .switcheMappingArray array index.

For example, suppose you want to know if the yellow button is pressed; the following statement might 
apply:

if(!((myAJ>switchStates)&(1<<9))) // 0==DOWN
{ // 1==UP
Do something useful here, yellow button is down...
}

Be sure to keep separate pointers for each Applejack found (maximum of 4) even if you only support a 
single player play. If the bit number returns a value of ‘0’, then the button is pressed. If a value of ‘1’ is 
returned, the button is not pressed. No other event loop is required.



10 Applejack Input Device Driver

Technical Notes PPBD-JHACEF003, 4/11/96


