Developer Note

Developing PC Card Software for
the Mac OS

Developer Press
0 Apple Computer, Inc. 1995

Apple Computer, Inc.

[0 1995 Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc., except in the
normal use of the software or to make a
backup copy of the software. The same
proprietary and copyright notices must
be affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies to be
made for others, whether or not sold,
but all of the material purchased (with
all backup copies) may be sold, given,
or loaned to another person. Under the
law, copying includes translating into
another language or format. You may
use the software on any computer
owned by you, but extra copies cannot
be made for this purpose.

Printed in the United States of America.

The Apple logo is a trademark of
Apple Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist developers to
develop products only for Apple
Macintosh computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter, Macintosh,
and PowerBook are trademarks of
Apple Computer, Inc.,, registered in the
United States and other countries.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

America Online is a service mark of
Quantum Computer Services, Inc.
CompuServe is a registered trademark
of CompuServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Figures and Tables vii

Preface About This Developer Note ix
Contents of This Note ix
Conventions and Abbreviations X

Typographical Conventions X
Abbreviations X

Supplementary Documents xi
PCMCIA Documents xi
Apple Documents xii

Chapter 1 Overview 1

Overview of PCMCIA Standards 2

Mechanical Considerations for PC Card Developers 3
Optimal Square Corner Design 3
Typelll Cards 3

Overview of the Software Architecture 3
Card Services 5
Installation 5

Operation 6
Socket Services 7
Drivers as Clients 7
Programming Model =~ 9
PowerBook Implementation of the PCMCIA Standard 9

Chapter 2 Client Software 1

PCMCIA Services Model 12

Client Structure 13
Structure Overview 14
Client Setup 15

Event Processing 15
Card Insertion Message 16
Card Ready Message 18
Card Removal Message 18
Ejection Request Message 18
Ejection Failed Message 19
Client Information Message 19

Function Interrupt Message 20

Power Management Suspend Message

Power Management Resume Message
Sample Client Code 22

Global Variables 22

Client Initialization 23

Client Removal 24

Event Handler 25

Returning Client Information 27

Driver Location Icon 27

Sample Client Pseudocode 29

20
20

Chapter 3 Card Services Routines 33
Client Information 34
Configuration Routines 38
Masking Routines 45
Tuple Information 49
Card and Socket Status 53
Access Window Management 54
Client Registration 59
Miscellaneous Routines 61
PC Card Manager Constants 68
Chapter 4 Device Drivers 71
Driver Loading 72
Booting Requirements 72
Guidelines for Socket Developers 72
Interrupt Support 73
Alternative PCMCIA Controllers 74
Chapter 5 Human Interface 75

iv

Manual Card Ejection 76
Finder Extension 76
Card Services Client Registration 77
Card Icons 77
User Interactions 77
Card Information Display 79
Custom Card Actions 79
Software Not Installed 80
Custom Support for I/O Cards 81

Multifunction Cards 81
February-Release Support
Release 2 Support 83

Glossary 5

82

Index sz

Chapter 1

Chapter 2

Chapter 5

Figures and Tables

Overview 1

Figure 1-1

Table 1-1

Client Software

Software architecture for PC Card support 4

Sample of events reported by Card Services to clients

11

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4

PCMCIA software/hardware model 13
Example of event progression 14
Event processing from kCSCardInsertionMessage 17

kCSPMSuspendMessage and kCSPMResumeMessage
processing 21

Human Interface 75

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10

Table 5-1

Sample PC Card icon 77

Icon dragging warning 78

Card ejection warning 78

Ejection failure warning 78

User guide reference warning 79

Sample PC Card Get Info window 79

Generic message for cards that cannot be opened 80
Missing software warning 80

Parsing tuples for multifunction cards — February release
Parsing tuples for multifunction cards — Release 2 84

MFC tuple functions 83

82

vii

PREFAUCE

About This Developer Note

This developer note describes how the Personal Computer Memory Card
International Association (PCMCIA) expansion card interface is implemented
in PowerBook computers. The term PC Card is used throughout this note to
indicate expansion cards defined by the PCMCIA standard.

Apple provides full software support for PC Cards, including
= close adherence to the PCMCIA standard
= seamless integration into the Macintosh platform and user experience

= a high level of compatibility with existing and future PC Cards

This note is written for professional hardware and software engineers who
are generally familiar with existing Macintosh technology and have
previously read the PCMCIA standard. If you would like more information
about the PCMCIA standard and about Macintosh technology, see the
documents listed in “Supplementary Documents” beginning on page xi.

Contents of This Note

This note is divided into five chapters:

s Chapter 1, “Overview,” introduces the general features and concepts of the
PowerBook system software that supports PC Cards.

= Chapter 2, “Client Software,” describes how to write client software for the
Card Services application programming interface (API).

= Chapter 3, “Card Services Routines,” describes the Card Services portion of
the PC Card Manager, which constitutes the primary Macintosh system
software support for PC Cards in PowerBook computers.

= Chapter 4, “Device Drivers,” provides guidelines for developers writing
device drivers compatible with PowerBook computers.

= Chapter 5, “Human Interface,” describes the installation and operation of
PC Cards from the user’s viewpoint and provides human interface guide-
lines for developers of PC Card software.

At the end of this book are a glossary and an index.

ix

PREFAUCE

Conventions and Abbreviations

This developer note uses the following typographical conventions and
abbreviations.

Typographical Conventions

Terms that appear in the Glossary, are shown in boldface where they are first
appear in the main body of text.

Computer-language text, that is any text that is literally the same as it appears
in computer input or output, appears in Cour i er font.

Note
A note like this contains information that is interesting but not essential
for an understanding of the text. O

IMPORTANT

A note like this contains important information that you should read
before proceeding. a

A WARNING
A note like this indicates a potential problem that could damage
hardware, cause the software to crash, or cause permanent data loss. a

Abbreviations

Abbreviated units of measurement used in this note include

KB kilobytes MHz megahertz
MB megabytes \Y% volts

Other abbreviations used in this book include

API application programming interface

CIS Card Information Structure

DCE device control entry

EEPROM electrically-erasable programmable ROM

HFS hierarchical file system

JEDEC Joint Electron Device Engineering Council

MTD Memory Technology Driver

NVRAM nonvolatile RAM

PCMCIA Personal Computer Memory Card International Association

PREFAUCE

PDS processor-direct slot

RAM random-access memory
ROM read-only memory

SRAM static RAM

urr universal procedure pointer

Supplementary Documents

This section describes technical documents that supplement the material in
this book.

PCMCIA Documents

There are two primary sources of information about PCMCIA standards.

The first document is PCMCIA Standards, Standard Release 2.01—
November 1992. Current Apple hardware and software supports this
release, and you should read the following sections of this book if you
want to develop client software for PowerBook computers: Card Services
Specification, Socket Services Specification.

The latest version of the document is PC Card Standard, February 1995. This
book contains the same information as the first document, but it also
contains additional information on standards developed since 1992. The
document consists of a number of volumes, and the ones most relevant in
this context are: Volume 1, Overview and Glossary; Volume 5, Card
Services Specification; and Volume 6, Socket Services Specification.

To simplify references to these documents, if you can use either book, you are
referred to PCMCIA Standards. If the information you need is only in the latest
version, you are referred to PC Card Standard, or the February Release. If the
reference is to the actual standard, it is referenced as PCMCIA standard.

Both books are published by the Personal Computer Memory Card
International Association, and you can order them from

Personal Computer Memory Card International Association
1030G East Duane Avenue

Sunnyvale, CA 94086

Phone: 408-720-0107

Fax: 408-720-9416

xi

xii

PREFAUCE

Apple Documents

Apple Developer Press publishes a variety of books and technical notes
designed to help third-party developers design hardware and software
products compatible with Apple computers.

o Inside Macintosh is a collection of books, organized by topic, that describe
the system software of Macintosh computers. Together, these books
provide the essential reference for programmers, software designers, and
engineers. Desioning Cards and Drivers for the Macintosh Family, third
edition, explains the general software requirements for drivers compatible
with Macintosh computers.

» Technical Introduction to the Macintosh Family, second edition, surveys
the complete Macintosh family of computers from the developer’s point
of view.

» Macintosh Human Interface Guidelines provides authoritative information on
the theory behind the Macintosh “look and feel” and Apple’s standard
ways of using individual interface components. A companion CD-ROM
disk, Making It Macintosh, illustrates the Macintosh human interface
guidelines through interactive, animated examples.

The Apple publications listed are available from APDA, Apple’s worldwide
source for hundreds of development tools, technical resources, training
products, and information for anyone interested in developing applications
on Apple platforms. Customers receive the APDA Tools Catalog featuring all
current versions of Apple development tools and the most popular third-
party development tools. APDA offers convenient payment and shipping
options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

CHAPTER 1

Overview

CHAPTER 1

Overview

This chapter gives an overview of the software architecture that supports PC Cards
installed in PowerBook computers. It includes overviews of:

s The PCMCIA standard developed by the Personal Computer Memory Card
International Association.

= Elements of the architecture, including Card Services, Socket Services, and drivers as
clients. Card Services and Socket Services are the elements of the architecture that
conform to the PCMCIA standard. Chapter 3 of this developer note provides detailed
information about Socket Services. The note does not deal in detail with Socket
Services. However, you will find comprehensive information on the subject in
PCMCIA Standards, published by the Personal Computer Memory Card International
Association, and referred to throughout this developer note as PCMCIA Standards.

= The programming model.
» PowerBook implementation of the PCMCIA standard.

The architecture includes a PC Card Manager and client software written by Apple
Computer, Inc. and by third-party developers. Apple supplies the system software for
PC Cards in the ROMs of certain PowerBook computers. For details about the hardware
support for PC Cards, refer to the developer documentation provided with specific
PowerBook models.

Overview of PCMCIA Standards

The goal of the PCMCIA is to promote the interchangeability of Integrated Circuit Cards
(IC cards) among various computers and electronic products. The cards are referred to in
this developer note as PC Cards, and they are 68-pin I/O cards that provide:

= memory storage

» fax/modem implementation

= local area networks (LANs) implementation
= video support

There are three types of PC Cards: Type I, Type II, and Type III. The cards are 3.370” by
2.126”, but differ in thickness, with the Type III card being the thickest. Type I and Type
IT cards can be accommodated in the same type of slot. Type III cards requires a deeper
slot. In computers, such as the PowerBook, that provide two stacked slots, Type III cards
are usually plugged into the lower slot, but occupy the physical space of both slots.
Computers with two stacked slots can therefore accommodate: two Type I cards, two
Type II cards, one Type I card and one Type II card, or one Type III card. The standards
for PC Cards are defined in PCMCIA Standards.

2 Overview of PCMCIA Standards

CHAPTER 1

Overview

Mechanical Considerations for PC Card Developers

The Apple PCMCIA card slot is a unique design, that incorporates a software eject
capability. As a PC Card is inserted into the slot, the card presses against a spring-loaded
lever and then latches into place. The stored energy in the spring is used later to eject the
card. As a developer of PC Cards, you have some design choices that are recommended
to avoid mechanical incompatibilities with the Apple card slot.

Optimal Square Corner Design

When a PC Card is inserted into the slot, the leading edge of the card, which has a
female connector, is used to press against the spring-loaded lever. The process works
most effectively if your PC Card has square corners on the leading edge. Although
rounded corners will work, it is recommended that the radius of these corners be less
than 2 mm. Apple recommends that your card be designed with square corners on the
leading edge.

Type lll Cards

Type III cards are built so that they have essentially a double thickness. The PCMCIA
mechanical specification is very specific on the dimensions of the lower part of the Type
III card, but is very vague about the shape of the upper part of the card.

When a Type III card is inserted into the Apple card lower slot, the upper half of the card
actually presses against the ejection lever for the upper slot. Apple recommends that you
design the mechanical outline of the Type III card in such a way that the upper half of
the card cannot snag or bind on the upper arm of the card slot.

Since the PCMCIA specification allows much freedom in the shape of the upper half of
the card, Apple recommends that you test a prototype of your card in the Apple card slot
to ensure smooth insertion and ejection.

Overview of the Software Architecture

The PowerBook software support for PC Cards follows the traditional layered
architectures seen in the Macintosh platform, with Card Services and Socket Services
comprising the operating system portion. Unlike other Card and Socket Services
implementations, the PowerBook implementation does not allow clients access to the
Socket Services layer. Figure 1-1 gives an overview of the software architecture that
supports PC Cards in PowerBook computers.

Mechanical Considerations for PC Card Developers 3

CHAPTER 1

Overview

Figure 1-1 Software architecture for PC Card support

Clients
T 2
Card Services

¢

Socket Services Software

g

PCMCIA controller

PC Cards Hardware

» Clients are device drivers or application software that use Card Services.

» Card Services is the operating system layer that supports PC Card sockets and Socket
Services software. Card Services software also provides resource management for
clients of PC Cards. Table 1-1 lists some events that Card Services reports to clients. It
illustrates the relationship between the support architecture and its clients. Card
Services routines are described in detail in Chapter 3 of this developer note.

= Socket Services is the operating system layer that provides the upper layers of
software with hardware abstraction from socket controllers and adapters. PowerBook
support for PC Cards contains both Card Services and Socket Services software layers.
This developer note does not provide detailed information about Socket Services. For
this type of information, you should refer to PCMCIA Standards.

s The PCMCIA controller is the hardware interface to the PC Cards. It provides the
interface signals, configurable voltages to power the cards, hardware windows into
the card’s address space, and interrupt decoding for state changes.

s PC Cards themselves contain the hardware interface to the PowerBook’s PCMCIA
bus, as well as the hardware required to implement the card’s function (memory, fax/
modem, local area networks, and so on). The cards may also have a Card Information
Structure (CIS). This is a list of structures that describe the card’s functions and
capabilities.

= Sockets (not shown in Figure 1-1) are the actual hardware receptacles that accept PC
Cards. The PowerBook hardware implementation supports two stacked sockets that
allow the user to insert two Type I or Type II cards, or one Type III card. When the
Type III card is installed, its interface connector occupies only one socket (usually the
lower socket). However, because the card is thicker than Type I and Type II cards, it
occupies both slots.

Overview of the Software Architecture

CHAPTER 1

Overview

Table 1-1 Sample of events reported by Card Services to clients

Event message Meaning

kCSBat t er yDeadMessage The PC Card battery is no longer serviceable
and data may be lost.

kCSBat t er yLowMessage The PC Card battery is weak and should be
replaced. Data integrity of the PC Card is
maintained.

kCSCar dReadyMessage The PC Card’s +RDY/-BSY line has
transitioned from the busy to the ready state.

kCSCar dRenpval Message The PC Card has been removed from its socket.

kCSCar dl nserti onMessage The PC Card has been inserted into a socket,

or a client has just registered for insertion
events. Card Services is creating artificial
insertion events for the PC Cards that are
already in sockets.

kCSFuncti onl nt errupt Message The PC Card’s interrupt request (-IREQ) line
has been asserted.

Card Services

Card Services supports multiple clients and multiple Socket Services modules. Card
Services provides client registration, resource management, memory services, client
utilities, and advanced client utilities. The PowerBook Card Services architecture
coordinates access to sockets (through the Socket Services software interfaces) and access
to system resources. There is only one executing copy of Card Services in the host system.

Installation

The Card Services software is loaded from ROM and requires Macintosh System 7 or
later. It installs a trap for opcode $AAF0 and registers with the Gestalt Manager to let
other software know that it is installed. The Gestalt selector (pccd) determines whether
Card Services is installed. See “PC Card Manager Constants” beginning on page 68 for
the Gestalt attribute definitions.

Card Services performs the following installation processes:

= Accesses the socket hardware through Socket Services software, described in “Socket
Services” beginning on page 7.

= Receives all interrupt notification of socket changes from Socket Services.

= Passes status changes, interrupt notification, and other messages to clients through a
standard callback architecture. The clients of Card Services register with Card Services
when they need to communicate with PC Cards. At registration time the clients pass a

callback handler address to Card Services and an event mask to remove unwanted
events for a particular socket.

Card Services 5

CHAPTER 1

Overview

= Numbers resources (adapters, sockets, windows, pages, and so on) as they are
registered. Most numbering is zero-based in Card Services. For example, if two
sockets are registered by an adapter and they are the first two sockets to be registered
with Card Services, Card Services will number them socket 0 and socket 1. The
next set will be numbered 2, 3, and so on. Any undefined fields in the Card Services
interface definitions should be set to 0 for compatibility with future Card Services
revisions.

Operation

Events and the subsequent callbacks from Card Services to clients are generated from a
variety of status conditions and card interrupts, including phantom events that Card
Services manufactures for clients. Table 1-1 on page 5 lists some of the system messages.
See “PC Card Manager Constants” beginning on page 68 for a complete list of Card
Services callback events. Card Services itself is a state machine that waits for clients and
Socket Services modules to register with it. Card Services is driven by the actions of a
client or the actions of a Socket Services module.

Card Services performs the following operating tasks:
s Provides the means to register PC Card clients.

= Prioritizes and dispatches a card event, interrupt, or status change notification back
to registered clients. The PCMCIA standard specifies how callbacks to card clients
are prioritized.

= Provides the minimum CIS parsing needed to recognize and provide support for
different types of memory devices, and to provide simple ways for clients to extract
information from the CIS when they do not have the knowledge to do this.

= Provides the means to configure a PC Card in a specific socket.

s Provides the means to register Socket Services modules that support other types of
PCMCIA adapters.

» Provides OS (operating system) services to Socket Services modules. Such services
include routing interrupt callbacks, static (global) data space allocation and
deallocation, isolation from virtual memory requirements, and so on.

Card Services returns multibyte fields in little-endian format, which is the way most PC
Cards store data. With little-endian addressing, the address for a field refers to its least
significant byte, as opposed to big-endian addressing, where the address for a field
refers to its most significant byte. Macintosh computers use big-endian addressing.

Card Services supports the conversion of the little-endian to the big-endian format for
multibyte data. The conversion is done in the Socket Services layer, usually within the
controller itself. PowerBook Card Services lets client software control the addressing
format of multibyte data.

Card Services is reentrant by design. However, most of the functions that Card Services
provides are synchronous and control the configuration of PC Cards, not the interactions
with the functions that are on the PC Card. Only a few of the many Card Services
functions are designed to be asynchronous. Once a card is configured by a client, the
client usually accesses the card registers or card memory directly. PCMCIA Standards
describes in detail the nature of each function call.

Card Services

CHAPTER 1

Overview

Socket Services

Beneath the Card Services layer lies one or more Socket Services modules, each of which
is responsible for providing a common API (application programming interface) for
Card Services to call, and for routing communication between Card Services and the
socket controller hardware. Each Socket Services module is tailored to a specific piece

of socket controller hardware, which is either on the main logic board or on a

PCMCIA adapter.

Socket Services is part of the hardware abstraction layer. It presents a standard API
to Card Services that is unaffected by socket hardware changes. Socket Services is
responsible for handling the interrupt generation and interrupt control processes of
its particular hardware. When an interrupt is generated by hardware, Socket Services
accepts the interrupt and calls the Card Services entry point with information about
the socket and adapter that caused the interrupt and the nature of the interrupt.

A Socket Services module is specific to a PCMCIA controller. The initial Macintosh
implementation includes a Socket Services module for the hardware controller. Each
Socket Services module owns one or more host adapters, and each host adapter may
have multiple PCMCIA sockets associated with it.

Socket Services modules are responsible for

» Registering and acknowledging interrupt generation from the adapter
» Validating access parameters for adapters within its scope of control

= Relaying all control calls from Card Services to the adapter

» Informing Card Services of the Socket Services capabilities and attributes

The CSAddSocket Ser vi ces routine is called by a Socket Services module during
initialization to inform Card Services of its presence and attributes. Various entry
points and details of the Socket Services are passed to Card Services in the

AddSocket Ser vi cesPB parameter block. The last field in AddSocket Ser vi cesPBis
a pointer that is passed to Socket Services each time it is called by Card Services. In

this way Socket Service modules can retain global variables or other data that is
dependent upon the implementation.

Drivers as Clients

The support software for the PowerBook PC Card provides the functionality that PC
Card client developers require, using an architecture that resembles the traditional
Macintosh environment. The Card Services and Socket Services APIs are very similar to
the APIs presented in the PCMCIA standard. The PowerBook architecture also includes
guidelines for helping client developers implement client loading, PC Card parsing,
client event handling, and other aspects of the client environment.

Socket Services

CHAPTER 1

Overview

Macintosh drivers are the main clients of Card Services. However, applications, as well
as other types of code, can register with Card Services, and can become a client if they
wish. You should note the following client issues:

» Client loading. Whether it is loaded from a resource of type | NI T', from a configuration
ROM, or from an application program, the PowerBook architecture defines fast,
efficient ways for a client to inspect PC Card resources and to determine whether it is
appropriate for a client to control a particular PC Card.

» Client interrupt and message handling. Clients of PC Cards receive all event, interrupt,
and status change notifications through a callback mechanism. Clients do not need to
register interrupt handling routines specific to an adapter because that is taken care of
by Card Services and Socket Services. The client must provide an interrupt handling
callback address and adhere to the interrupt execution limitations of Macintosh
programming. For example, during interrupt time the client must not move memory.

» Client human-interface responsibilities. The Macintosh interface demands that PC Cards
be tightly integrated into the desktop metaphor. Drivers must provide services that
will allow users to manipulate the PC Cards in sensible ways (for example, when
gjecting a PC Card). The system determines the events and user actions of which a
client may have to be aware, and decides how the client should react.

IMPORTANT

Clients should not bypass the Card Services API to configure PC
Cards. Clients that do so may cause synchronization errors within
the adapter and eventually cause the system to malfunction. a

PC Card clients register with Card Services using a call CSRegi st er O i ent routine.
Most clients of Card Services will be drivers, which normally load with system
extensions. Applications can be clients as well, and they register during initialization. To
receive events, a registered client must enable events by calling a CSVendor Speci fi c
routine with the function code vsEnabl eSocket s.

Arguments to the CSRegisterClient include information about whether the client is a
memory client or an I /O client, and also contain the address of an event handler. Card
Services uses the event handler to notify clients of events, including interrupts from
cards. All events generated and delivered to clients use the callback mechanism. Clients
must preserve the contents of the arguments used in the callback mechanism, so that
when subsequent clients are notified by Card Services, they will see the same arguments
in their callback handler. Clients can specify the sockets and event types for which they
need to receive callback events. Clients use CSRequest Socket Mask,

CSRel easeSocket Mask, CSGet Cl i ent Event Mask, and CSSet Cl i ent Event Mask
to tell Card Services what events to forward.

The registration process provides the following services:
» [tinforms clients of cards already installed in a socket.

» Itinforms newly registered clients of any subsequent card events for a socket, such as
card insertion, card removal, battery low, and so on.

The order in which clients are notified of card events is outlined in the Card Services
section of PCMCIA Standards.

Drivers as Clients

CHAPTER 1

Overview

Programming Model

The PowerBook PC Card programming model supports the following features:

Parameter block programming interface. Each function call to Card Services has a single
parameter block argument. This is unlike the PCMCIA standard, which defines six
arguments, one of which is a parameter block.

Interrupt/Event/Status change notification services. Each driver or other client may
request interrupt, event, or status change notification for a particular socket. The
callback interface is described in the Card Services section of PCMCIA Standards.

Dynamic socket adapter registration. Socket controller and Socket Services software can
be added dynamically once Card Services is available. This allows Socket adapters to
be engineered onto PDSY (processor direct slot) cards or NuBus" cards.

Single trap entry point. All accesses to Apple PC Card support software are through the
Card Services interface. Socket Services access is not available to clients, except for
testing. A glue routine is provided for developers so that they can use the C function
calling conventions.

Mostly synchronous calling environment. The majority of calls to Card Services routines
execute synchronously. For those executed asynchronously, the event callback
mechanism notifies the caller when the operation is complete. There are no
completion-routine requirements for calls to Card Services

Reentrancy. Unlike Card Services, Socket Services is not reentrant code.

PowerBook Implementation of the PCMCIA Standard

The functional interface that exists in the PCMCIA standard is available to PC Card
developers. However, elements of the standard that are not relevant to the PowerBook
environment, or do not have direct analogies, are not included in the support
architecture.

Although the PCMCIA standard is supposed to represent a platform-independent
environment, it contains traces of the DOS architecture. The PowerBook implementation
supports those DOS elements only where appropriate. For instance, function calls

that allocate system resources for interrupt assignment in DOS do not have an
analogous counterpart in the Mac OS, and normal Macintosh interrupt processing
schemes are substituted.

Programming Model

CHAPTER 2

Client Software

CHAPTER 2

Client Software

A Card Services client is any third-party software that provides support for one or more
types of PC Card. The software can take the form of a driver, extension, application, or
other code. The client receives messages from Card Services indicating changes in the
state of the PC Card(s) it controls, and makes access and resource requests to Card
Services as needed for the card to perform its function.

The Mac OS Card Services implementation is compliant with version 2.01 of the
PCMCIA standard. However, there are several divergences from the standard, mainly
because of architectural differences between configurable voltage supplies to PC Cards,
hardware windows into the card’s address space, and interrupt decoding for state
changes.

This chapter explains how to write client software for the Card Services API.

PCMCIA Services Model

12

The PCMCIA standard provides a layered model to control card access and to isolate
hardware specifics from client software. This makes it possible to write client software
that can easily be ported to numerous PCMCIA platforms with few changes, if any.

The model consists of the following layers:

= Clients are responsible for performing functions associated with the particular kinds
of cards with which they can deal.

= Card Services arbitrates access control for each card socket, manages card and
PCMCIA resources, provides a client messaging system, and communicates with each
of the installed Socket Services.

= Socket Services modules are software units that work directly with the PCMCIA
hardware controller, converting generic commands into hardware-specific register
accesses. They configure card power, windows, and pages, and dispatch interrupts to
Card Services.

s The PCMCIA controller is the hardware interface to the PC Cards. It provides all the
signals needed to communicate with the cards in the sockets it controls. In addition, it
provides configurable voltages to power the cards, hardware windows into the card’s
address space, and interrupt decoding for state changes.

= Each PC Card contains a hardware interface to the PowerBook’s PCMCIA bus as well
as function-specific hardware. Cards may also have a Card Information Structure
(CIS). This is a list of structures that describe the functions and capabilities of the
card, and it is optional.

Figure 2-1 shows the interactions between the various components of the PCMCIA
services model. Note that clients may communicate only with Card Services and, once
they are allowed access, with the PC Card itself.

PCMCIA Services Model

CHAPTER 2

Client Software

Figure 2-1 PCMCIA software/hardware model

Client Client e Client

Te ¢ g

Card Services

¢ ¢

Socket Services |- . .| Socket Services
PCMCIA controller PCMCIA controller
t> PC Cards PC Cards

Note: Each client may communicate directly with
the PC Card(s) installed

Client Structure

A Card Services client can be any kind of software entity, including a driver, extension,
application, and so forth. Every client has a client event handler. This is a routine,
registered with Card Services, that processes notifications to the client of state changes to
any of the cards it monitors. The client software registers its event handler with Card
Services, which then calls this routine whenever it has an event for the client. The event
handler’s interface is

pascal Ul nt16 Event Handl er (C i ent Cal | backPB* pb)

The client is passed
= a pointer to a parameter block containing information about the event
= message-specific data buffers

= a pointer to the client’s data.

The client typically returns the result code noEr r, although some messages may require
that other result code values are returned instead.

Client Structure 13

CHAPTER 2

Client Software

Structure Overview

When there is a state change, such as a card insertion event, a process occurs, which
starts from the physical insertion of the card and ends with the event handler. Figure 2-2
shows an example of this process.

Figure 2-2 Example of event progression

14

/ A PC Card is inserted into the socket.

I

PCMCIA controller

_ The Socket Service's interrupt handler decodes the interrupt
Socket service and sends a kCSCardInsertionMessage to the Card
@ Services interrupt handler.

Card services

I

Clients Each client processes the message as it sees fit.

The PCMCIA controller notices that a card has been
inserted and generates an interrupt.

Card Services dispatches the message to each of the clients
that want to receive kCSCardInsertionMessage.

kCSCar dl nserti onMessage is one of several messages sent to a client’s event
handler. For more information about events, see “Event Processing” beginning on
page 15.

The client’s event handler is essentially an interrupt handler. Card state changes
typically generate interrupts that are eventually forwarded to the client, as shown in
Figure 2-2. Because of this, there are some precautions you should take when writing
client software.

= Minimize the amount of time spent in the event handler, because interrupts could be
restricted or disabled. This prevents the “jerky mouse” syndrome, as well as possible
data loss in other software that does not get time. In many cases you can delay time-
intensive processing until later.

s Use shared globals to communicate between the client event handler and the rest of
the client software.

s When Virtual Memory (VM) is active, make sure the event handler’s code and global
data (not the entire client) is held in memory. This prevents paging at interrupt time.

Client Structure

CHAPTER 2

Client Software

Client Setup

Before a client can interact with Card Services, it must register its event handler so that
Card Services can find the client. This is done by calling CSRegi st er O i ent . The client
passes a universal procedure pointer (UPP) to its event handler and a pointer to the
client’s data. Card Services adds the client to its queue, and synchronously initializes the
client’s state and returns. The parameter block passed to Card Services contains a

cl i ent Handl e field. It is important to save this value in the client’s globals because it is
needed to identify the client in a number of calls to Card Services.

Note

The CSRegi st er O i ent routine, and other routines
mentioned in the following discussion, are described in
Chapter 3, “Card Services Routines.” O

The synchronous aspect of client registration represents a deviation from the PCMCIA
standard. The standard requires CSRegi st er C i ent to be asynchronous, with a
kCSRegi st r at i onConpl et eMessage that notifies the client’s event handler that
registration is complete. Since this message may be sent at an arbitrary time, other
messages may be sent to a client before registration is finished. The client is thus unable
to process the message correctly at this time.

At this point, the client is registered with Card Services, but cannot receive any event
messages. This prevents unexpected messages from being sent to the client before it
has finished initialization. Once client initialization is complete, the client must call
CSVendor Speci f i ¢ with the Enabl eSocket Event s function code to notify Card
Services that it is ready to receive messages. This is a Card Services call specific to
the Mac OS.

The client should now be prepared to receive messages from Card Services. The
remainder of the core client software consists of the client event handler.

Event Processing

When a hardware event results in a state change, or a software event is generated, a
message is sent to each client’s event handler. A pointer to a parameter block is passed to
the event handler. This pointer contains the message (event type), message-specific
buffer pointers, and a pointer to the client’s global data. The client is free to process the
message, and then return a result code to indicate what happened. Unless otherwise
indicated, a result code of NnOEr r is returned so that new types of messages will be
handled correctly.

The event processing environment (not the events themselves) is binding-specific in
conformance with the PCMCIA standard. Most events are dispatched at interrupt
priority level 2, although some client-to-client events may be excluded. This means that
event processing must adhere to the normal Mac OS interrupt handling restrictions
described in Inside Macintosh: Processes, Chapter 1.

Event Processing 15

CHAPTER 2

Client Software

Any activity that cannot be handled in a normal interrupt handling environment (or that
may take too much time to complete) should be delayed, using the techniques described
in Inside Macintosh: Processes.

Some events (KCSPMSuspendMessage, k CSPMResuneMessage, and

kCSSSUpdat edMessage) are not specific to any socket. These events are dispatched
to clients based on the client’s global event mask, and the client’s socket Event
mask is irrelevant.

The next sections describe several types of events and what Card Services expects of
them. PCMCIA Standards describes more types of events than those shown below.
However, the ones described in this chapter merit particular attention because they are
specific to the Mac OS, or because they are handled in a way that is slightly different
from that described in PCMCIA Standards.

Card Insertion Message

A card insertion message (KCSCar dl nser ti onMessage) is sent to all clients to notify
them that a card has been inserted into a particular socket. By the time a client has
received this message, power has been applied to the socket. However, the card is not
ready for access at this point, so this call should be used only to indicate that the client
may soon be able to talk to a card.

IMPORTANT

If you access the card at this time, even to read tuples, the
access could cause a bus error. Wait until the client receives a
kCSCar dReadyMessage before trying to access the card. a

IMPORTANT

If a card fails to send a KCSCar dReady Message within a prescribed
period of time, clients should not post their own messages. Card
Services or the Mac OS Finder Extension will deal with cards that
appear to be damaged. a

Figure 2-3 illustrates the event processing that Card Services invokes when it receives
kCSCar dl nserti onMessage from Socket Services.

Event Processing

CHAPTER 2

Client Software

Figure 2-3

kCSCardInsertionMessage

Card Services:
Sets VCC = Vpp =5V
Sets interface = Memory Only

Issues kCSCardResetMessage to card

g

Received

kCSCardReadyMessage No

before
3 seconds?

J1ves

kCSCardReadyMessage

J

Event processing from kCSCardInsertionMessage

Finder issues a “Damaged Card”
alert to user and puts a “Damaged
Card Icon” on the desktop.

Card parses all tuples and issues
the kCSCardReadyMessage to all
registered clients.

g

Did any clients call
CSRequestConfiguration

was issuing the card
ready message?

Event Processing

No

while Card Services |:>

Finder issues an alert to user that
asks whether they want to eject
the card because no software
installed can use the card.

¥

No
Eject request :>

accepted?

Il ves

Card Services powers down the
card and issues
kCSCardUnconfigureMessage
to all registered clients.

Card Services powers off the card

and initiates the card ejection
process.

17

18

CHAPTER 2

Client Software

Card Ready Message

When a client receives a card ready message (kCSCar dReadyMessage), hardware on
the card has determined that it is ready to be accessed. At this point, the client can start
processing to determine whether or not it knows how to operate the card. It does this by
calling CSGet Conf i gur ati onl nf o to determine the card type, and to look for specific
tuples that will indicate if this card is one with which the client can communicate.

If the client determines that it knows how to use this card, it calls

CSGet Conf i gur ati onl nf o to get the current card configuration, and then calls
CSRequest Conf i gur at i on to request a card configuration. When the client does
this, some or all of the card’s resources are reserved for this client, and other clients
will not be able to operate the card in a mode that interferes with the first client.
You should check the result codes from each of these calls, since it is possible that
another client has already reserved a configuration for the card.

IMPORTANT

In some situations a card may never become ready or it may take a long
time to do so. If this happens, do nothing. The system software handles
the timeouts from the point at which the card is inserted into the socket
to the point at which it is ready for access. a

Card Removal Message

The card removal message (kCSCar dRenpval Message) indicates that a card has been
removed. Card removal can occur at appropriate and inappropriate times. If the card has
been legally ejected by calling CSEj ect Car d, then all clients should be safe and there
should be no side affects.

If the card was removed manually, it may have been done when a client was in the
process of accessing the card. In this case, a bus error is generated. Card Services does
not provide any kind of bus error protection for clients doing card accesses, so
individual clients must determine if they want to provide protection.

Ejection Request Message

Cards are ejected legally only after all clients have approved their ejection. This prevents
a card from being removed at an inappropriate time. When a client calls CSEj ect Car d,
each PC Card receives an ejection request message (KCSEj ect i onRequest Message)
giving it the opportunity to stop the card from being ejected. If the client allows the
ejection, it should send a noEr r result code. Otherwise it can return any other value to
block the ejection.

Event Processing

CHAPTER 2

Client Software

Ejection Failed Message

The ejection failed message (kCSEj ect i onFai | edMessage) is specific to the Mac OS
and is not part of the PCMCIA standard. This message is sent to each client after ejection
has been approved but the card cannot be successfully ejected. This may happen, for
example, if the PCMCIA slot is physically blocked, or if there is a malfunction in the card
eject mechanism.

Clients do not need to provide error notification to the user when this happens, since the
system handles error notification.

Client Information Message

A client information message (KCSCl i ent | nf oMessage) is sent to the client’s event
handler whenever a Get O i ent | nf o call is made using the client’s cl i ent Handl e. A
pointer to the Get O i ent | nf 0 parameter block is passed to the client in the buffer field
of the event handler’s parameter block. The client can then determine what type of
information is requested.

The upper byte of Get O i ent | nf oPB. at t ri but es contains a subfunction code that
describes the kind of information being requested. The client sends a result code of
kCSUnsuppor t edMbdeEr r for any subfunctions it does not support.

Currently six subfunctions are supported. Except for the csC i ent | nf o subfunction,
they are all specific to the Mac OS. These subfunctions are described in the following
sections.

kCSClientInfo Subfunction

This subfunction returns information about the client itself, such as the client’s attributes
and revision number, the lowest version of Card Services with which it is compliant, and
C strings describing the client’s function and manufacturer.

kCSCardName Subfunction

This subfunction returns an alternate name for a card other than that found in the card’s
tuples. This could be useful, for instance, if the name found on the card were something
like “XY-D22-0354, REVISION 2.3,” and you wanted to replace it with “FaxCo
FaxModem,” which provides a less cryptic human interface. The string is a zero-
terminated C string.

kCSCardType Subfunction

This subfunction covers a range of functions. Serial card type covers serial devices such
as UARTS, data and fax modems, pagers, and so on. The subfunction provides a means
of returning a more descriptive string. For instance, it might replace the generic “Serial
Port/Modem Card,” with the more specific “Fax Modem Card.” The string is a zero-
terminated C string.

Event Processing 19

20

CHAPTER 2

Client Software

kCSHelpString Subfunction

This subfunction returns a descriptive help message which is used when the cursor
moves over the card’s icon. This message overrides the generic help message which is
based on the card type. The string is a zero-terminated C string.

kCSCardlcon Subfunction

This subfunction returns a handle to an icon suite containing custom icons that display
the card on the desktop. The client owns the icon suite, so users of the icon suite may not
modify or dispose of it or its associated icons.

kCSActionProc Subfunction

When a client is called with this subfunction, it should perform a custom action in
response to the user clicking or opening the card’s icon. For instance, a pager card might
open a custom pager application that can download messages stored in the pager and
display them for the user. The client should send noEr r result code if it performed the
action. It should send any other value if it did not perform the action and wants the
caller to handle it.

Function Interrupt Message

The function interrupt message (KCSFunct i onl nt er r upt Message) is sent to the
client’s event handler in response to a function-specific interrupt from the card’s hard-
ware. The client then does any processing required by the interrupt, such as determining
the interrupt source (for a multifunction card), reading or writing to a data register, and
so on. The client then clears the source of the interrupt. This message is given high
priority by Card Services to minimize interrupt service time as much as possible.

Power Management Suspend Message

Card Services issues a power management suspend message (KCSPMSuspendMessage)
to indicate to registered clients that the PowerBook computer is going into sleep mode.
This message is guaranteed to occur after all I/O transactions are complete. Clients
should note the configuration of any cards and sockets they have configured because
they must reestablish the configuration after the computer wakes from sleep mode.

Power Management Resume Message

The power management resume message (KCSPMResuneMessage) is the first message a
client receives when the computer is waking from sleep mode. This message happens
before any I/O requests are generated. Immediately after Card Services has issued this
message to all registered clients, it scans the socket configuration and supplies power to
any socket that contains a PC Card but has no power. The process Card Services uses to
supply power to these cards is identical to the process it uses when it receives a

kCSCar dl nserti onMessage from Socket Services. Clients, therefore, should avoid
accessing any cards until they have received a kCSCar dReady Message for the socket.

Event Processing

CHAPTER 2

Client Software

Different PCMCIA controllers provide different information to Card Services when the
PowerBook computer is waking from sleep mode. In some instances, Card Services may
not be able to determine if PC Cards were switched in a socket during sleep mode.
Clients should always provide some check to ensure that the card that appears in a
socket is the same card the client was using before the computer went into sleep mode.

Figure 2-4 shows the processing sequence for kCSPMSuspendMessage and
kCSPMResurreMessage.

Figure 2-4 kCSPMSuspendMessage and kCSPMResumeMessage processing

kCSPMSuspendMessage
is issued to all registered
clients

See note 1 below.

Y

PowerBook is in Sleep
mode

Key Event wakes the PowerBook

kCSPMResuneMessage
is issued to all registered
clients

See note 2 below.

A

kCSCar dReadyMessage
issued

1. kCSPMBuspendMessage is issued to all registered clients after the last I/ O access is
completed prior to the computer entering sleep mode. Clients at this point should
record any card configuration information they want to restore after the PowerBook
wakes up. Clients should release all window resources, but keep all configurations.
This means that they should not call CSRel easeConf i gur at i on, because Card
Services maintains the cl i ent Handl e configuration lock during sleep mode.

2. Card Services processes each socket with a card as if it were processing a
kCSCar dl nser t i onMessage event. Note that clients must not access the card until
kCSCar dReadyMessage has been received. kCSPMResunmeMessage is merely an
indication to clients that Card Services is attempting to awaken cards that were
powered down during sleep mode. Card Services maintains the cl i ent Handl e
configuration lock during sleep mode, but clients must reestablish the card /socket
physical configurations by calling CSMbdi f yConf i gur at i on after they have
received kCSCar dReadyMessage for their socket.

Event Processing 21

CHAPTER 2

Client Software

Sample Client Code

22

This section provides code excerpts that illustrate some of the concepts discussed in the
previous sections, including global variables, the client’s initialization, removal, and
event-handling codes.

Global Variables

The client needs shared global data to communicate state information between the event
handler, which can run at interrupt time, and the rest of the client code that deals with
the functional aspects of the card or cards under its control. The global variables can be
set as follows:

t ypedef struct Sharedd obal s Sharedd obal s;

struct Sharedd obal s

{
PCCar dCSCl i ent UPP event Handl er ; /1 UPP for event handl er
unsi gned | ong cl i ent Handl e; /1 returned by Registerdient
char cardSt at e[kMaxCards]; // state of each card

b

The event Handl er field contains a UPP (universal procedure pointer) that points to the
client’s event handler. The cl i ent Handl e field contains the cl i ent Handl e returned
by CSRegi st er i ent, which is used in a number of calls to Card Services. The

car dSt at e array contains the current state of each card in the system. It is a bitmap that
contains the following bits:

#defi ne kCardl nserted (1<<0)
#def i ne kCar dReady (1<<1)
#define kCardl sMyType (1<<2)
#define kCardl sWiteProtected (1<<3)
#define kCardl sLocked (1<<4)
#define kBatteryl sLow (1<<5b)
#define kBatteryl sDead (1<<6)

With this minimal set of globals, you can now set up the client.

Sample Client Code

CHAPTER 2

Client Software

Client Initialization

The client initialization routine:

» allocates the shared globals

» registers the client’s event handler with Card Services
» performs other initialization tasks specific to its needs

The following code is an example of an initialization routine:

void Initialize()

{
Shar edd obal s *gl obal s;

Regi sterClientPB client;
Vendor Speci fi cPB vsPB;

/1 allocate space for the shared gl obals

gl obal s = (Sharedd obal s *) NewPt r Cl ear (si zeof (Shar edd obal s));
if (globals == nil) return;

/1 create a Universal Proc Ptr that points to the event handl er
gl obal s- >event Handl er = NewPCCar dCSCl i ent Proc(& Event Handl er) ;

/1 register the client with Card Services

client.clientHandle = nil;
client.clientEntry = globals->clientEntry;
client.attributes = csExcl usi veCardl nsert Events |
csExcl usi veCardl nsert Event s |
cslOdient;
client.event Mask = csReadyChangeEvent | csCardDet ect ChangeEvent;
client.clientData = (Ptr)gl obal s;
client.version = 0;
if (CSRegisterClient(&client) !'= noErr)
{
Tear DownWor | d(gl obal s);
return;
}

gl obal s->clientHandl e = client.clientHandl e;

/1l once everything's set up, nake sure rel evant pieces
/1 are held in nenory for VM

Sample Client Code

23

24

CHAPTER 2

Client Software

if ((Hol dMenory((void*)gl obals, sizeof(Sharedd obals)) != noErr) ||
(Hol dMemory((voi d*) &WEvent Handl er, kEvent Handl er Si ze) != noErr))

Tear DownWor | d(gl obal s);
return;

}

/1 now enabl e events from Card Services

vsPB. cl i ent Handl e
vsPB. vsCode

gl obal s->cl i ent Handl e;
vsEnabl eSocket Event s;

i f (CSVendor Specific(&sPB) != noErr)

Tear DownWor | d(gl obal s);
return;

Client Removal

The client removal routine is called when a client terminates in a normal manner, or
when there is an error during client initialization. The following code is an example of a
client removal routine:

voi d Tear DownWor | d(Shar edd obal s *gl obal s) {
Regi sterClientPB client;

/!l renmpbve the event handler from Card Services' clutches

client.clientHandl e = gl obal s->cli ent Handl e;
CSDeregi sterClient(&client);

/'l release the event handler’s and gl obals’ nenory

Unhol dMenory((voi d*) gl obal s, si zeof (Sharedd obal s));
Unhol dMenory((voi d*) &WEvent Handl er, kEvent Handl er Si ze) ;

/1 dispose of the globals

Di sposePtr ((Ptr)gl obal s);

Sample Client Code

CHAPTER 2

Client Software

Event Handler

The event handler routine is called by Card Services in response to a state change. Each
message is stubbed out to show what it does, but a real client may require more work to
be done for some messages, and may not need to do anything for others. The following
code is an example of an event handler routine:

pascal short MyEvent Handl er (C i ent Cal | backPB *pb)

{
Shar edd obal s *gl obal s;

unsi gned short socket;

gl obal s = (Sharedd obal s *) pb->cli ent Dat a;
socket = pb->socket;

swi tch (pb->function)

{
case kCSCardl nserti onMessage: /1 card has been inserted
gl obal s- >cardSt at e[socket] |= kCardl nsert ed;
br eak;
case kCSCar dRenpval Message: /1 card has been renoved
gl obal s- >car dSt at e[socket] = 0;
br eak;
case kCSCar dReadyMessage: /1 card is ready to be accessed
if (globals->cardState[socket] & kCardlnserted)
{
gl obal s- >car dSt at e[socket] | = kCar dReady;

if (Cardl sMyType(socket, gl obals))
gl obal s- >car dSt at e[socket] | = kCardl sMyType;
}

br eak;

case KCSEj ecti onRequest Message: /1 determine if it’'s OKto eject
/1l ny card
if (gl obal s->cardState[socket] & kCardl sM/Type)
ret urn(CanCar dBeEj ect ed(socket, gl obals));

br eak;
case KCSEj ecti onFai |l edMessage: /1 ejection failure (mechani sm
/1 etc.)
/1 depends on what the client wants to do
br eak;
case kCsSd i ent | nf oMessage: [l returns client information

return(FilllnCientInfo((GetdientlnfoPB *)pb->buffer, globals));

Sample Client Code

25

26

CHAPTER 2

Client Software

case kCSFunctionlnterrupt Message: // function interrupt fromthe
/'l card
Handl eCar dFunct i onl nt er rupt (socket, gl obal s);
br eak;

case KCSWit eProtect Message: /] card is wite-protected
gl obal s->cardSt at e[socket] | = kCardl sWiteProtected,
br eak;

case kCSWit eEnabl edMessage: /1 card is wite-enabled
gl obal s- >car dSt at e[socket] &= ~kCardl sWiteProtected;
br eak;

case kCSCardLockMessage: /1 card is locked into the socket
gl obal s- >car dSt at e[socket] | = kCardl sLocked;
br eak;

case kCSCar dUnl ockMessage: /1 card’s socket is now unl ocked
gl obal s- >cardSt at e[socket] &= ~kCardl sLocked;
br eak;

case kCSBatteryDeadMessage: [/l card’s battery is dead
gl obal s- >cardSt at e[socket] | = kBatteryl sDead;
br eak;

case kCSBatterylLowMessage: /] card’s battery is getting | ow
gl obal s- >car dSt at e[socket] |= kBatteryl sLow,
br eak;

case kCSCar dReset Message:
case KCSl nserti onRequest Message:
case kCsl nsertionConpl et eMessage:
case kCSPMResuneMessage:
case kCSPMsuspendMessage:
case kCSExcl usi veRequest Message:
case KCSExcl usi veConpl et eMessage:
case kCSReset Physi cal Message:
case kCSReset Request Message:
case kCSReset Conpl et eMessage:
case kCSSSUpdat edMessage:

br eak;

}

return(nokErr);

}

#define kdientVersion 0x0100 // driver version, in BCD
#define kCardServiceslLevel 0x0201 /'l Card Services rel ease

/1 conmpliance, in BCD
#define kRevi sionDate ((1994-1980)<<9) | (8<<b) | (25<<0) [/ y/nmd

Sample Client Code

CHAPTER 2

Client Software

Returning Client Information

When a call is made to CSGet d i ent | nf o, Card Services calls the client event
handler associated with the cl i ent Handl e passed in the parameter block.
kKCSC i ent | nf oMessage is passed to the client event handler, and

Cl i ent Cal | backPB. buf f er contains a pointer to a Get Cl i ent | nf oPB.

Driver Location Icon

Mass storage device drivers, such as those for hard disk and floppy disk drives, return a
pointer to a structure that describes the location of their device. This process is handled
by a control call with csCode set to 22. The structure is:

typedef struct DriverlLocationlcon DriverLocationlcon;
struct DriverLocationlcon
{

char | ocati onl con[256] ;

Str 255 | ocationString;

}s

For most mass storage devices, the driver knows where its device resides physically. This
means it can easily return an appropriate icon and location string. For PCMCIA-based
mass storage devices, the driver does not intrinsically know where its card is plugged in,
so it cannot provide a location icon.

The PowerBook implementation of Card Services provides a means for clients (typically
drivers) to acquire both the card’s location icon and a string describing the card’s current
location. Clients can call CSVendor Speci f i ¢ with pb. vsCode set to either

vsCGet CardLocat i onl con or vsGet CardLocat i onText , and Card Services will
return the appropriate information.

WARNING

The location icon and string can be localized, so that they can be loaded
from a disk. In the same way, Socket Services modules can be loaded at
any time during the boot process. Clients, therefore, should not assume
that the location information is valid before the PowerBook computer
has finished the start-up process. a

Because location information is not returned in the exact format that the driver control
call expects, the driver must pack the information into the format described above. For
example, in response to control call 22, the driver can make this call:

OSErr DriverControl (Cntrl Param *pb, DCtl Handl e dce)
{

switch (pb->csCode)

Sample Client Code 27

28

CHAPTER 2

Client Software

case 22:
socket = GetDriveSocket (gl obals, pb->i oVRef Nunj;
Get Dri ver Locati on(socket, &gl obal s->l ocationlcon);

*(DriverlLocationlcon *)&pb->csParani0] = &gl obal s->l ocati onl con;

return(noErr);

}

CGet Dri ver Locat i onl con makes the following calls to CSVendor Speci fi ¢ to get

the icon and string:

voi d GetDriverLocationlcon(unsigned short socket,
DriverLocationlcon *thel con)

{
Vendor Speci fi cPB pb;
Handl e t hel conSuite, thel conData;
Str255 | ocationString;
pb. vsCode = vsCet CardLocat i onl con;
pb. socket = socket;
pb. dat aLen = 0;

pb.vsDataPtr = (unsigned char *) &t helconSuite;
if ((CSVendor Specific(&pb) == noErr) && (thelconSuite !=nil) &&

(CGetl conFrontui t e(& hel conData, thelconSuite, ‘1CN#) != noErr))

Bl ockMove(*t hel conDat a, thel con->l ocationl con, 256);

pb. vsCode = vsCet CardLocat i onText;
pb. socket = socket;
pb. dat aLen = 256;

pb.vsDataPtr = (Ptr) &thelcon->locationString;
CSVendor Speci fi c(&pb);
c2pstr(thelcon->l ocationString);

Note

The vsGet Car dLocat i onText call follows the Card Services
convention for returning C strings, which are terminated with a null
character. It is necessary to call c2pstr () on the returned string to
convert it to a Pascal string, which contains a leading length byte. O

Sample Client Code

CHAPTER 2

Client Software

Sample Client Pseudocode

The first task a client undertakes is to recognize Card Services and determine its
compatibility with the Card Services version. If a client can interact with the available
Card Services, it registers with Card Services and provides the address of its event

handler, as shown below. The handler must be locked down while the client is registered.

mai n()

{

Regi sterClientPBclient;

If ((Card Services Exists) & (Card Services Revision is appropriate))

{

}

The event handler consists of the following big switch statement:

Cli ent Event Handl er (O i ent Cal | backPB pb)

{

client.clientHandl e
client.clientEntry

nil;

CSRegi sterClient(&client);

gCientHandl e = client.clientHandl e;

CSVendor Speci fi c(vsCode == vsEnabl eSocket Events);

swi t ch(pb- >event)

{

case kCsCardl nserti onMessage:
DoCardl nsertion();
br eak;

case kCSCar dReadyMessage:
DoCar dReady(pb- >socket) ;
br eak;

case kCSCar dRenpval Message:
DoCar dRenoval () ;
br eak;

case kCSEj ecti onRequest Message:

DoEj ect i onRequest () ;
br eak;

Sample Client Code

&Cl i ent Event Handl er;

29

30

CHAPTER 2

Client Software

case kCSPMsuspendMessage:
DoPMsuspend() ;
br eak;

}

The normal sequence of events delivered to a client upon the insertion of a PC Card into
a socket is KCSCar dl nserti onMessage -> kCSCar dReadyMessage -> . ..

Clients should not call any Card Services function that requires a card access until
kCSCar dReadyMessage is delivered. Upon receiving kCSCar dReadyMessage, clients
are free to parse the card attribute space (for example, using CSGet Fi r st Tupl e,

CSGet Next Tupl e, and CSGet Tupl eDat a) or ask Card Services for condensed
information about the card (for example, using CSVendor Speci fi c(vsCode ==
vsCet Car dI nf 0)).

When a client recognizes an inserted card it typically performs the following tasks:

DoCar dReady(socket)

{
Get ModRequest Confi gl nf oPB get ModReqConfi gPB;

ReqMbdRel W ndowPB r eqMbdRel W ndowPB;

i f (CSGet Configurationlnfo(&get ModReqConfi gPB) != noErr)
return(err);

if (get ModReqConfi gPB.firstDevType != nyDevi ceType)
return(err);

get ModReqConfi gPB. cl i ent Handl e = gd i ent Handl e;
get ModReqConf i gPB. socket = socket;

/1 we want | eave the card in Menory Only node (when we get
kCSCar dReadyMessage
/1 for the first tine the interface and card are in Menory Only node)

if (result = CSRequest Configuration(&get ModReqConfi gPB))
return(result);

/1 map the card into a wi ndow

reqModRel W ndowPB. cl i ent Handl e gd i ent Handl e;
r eqMbdRel W ndowPB. wi ndowHandl e nil;
reqMbdRel W ndowPB. socket = socket;

Sample Client Code

CHAPTER 2

Client Software

reqModRel W ndowPB. attributes = ..;
reqModRel W ndowPB. base 0;
reqModRel W ndowPB. si ze = 0;

if (result = CSRequest W ndow(& egMbdRel W ndowPB))
return(result);

return;

Sample Client Code

CHAPTER 3

Card Services Routines

CHAPTER 3

Card Services Routines

The PC Card Manager helps client software recognize, configure, and view PC Cards
that are inserted into PC Card sockets on PowerBook computers. The PC Card Manager
is composed of two sets of system software:

» Card Services is used by all PC Card client software. It is a new part of the Mac OS
and allows software to use PC Cards.

» Socket Services is used primarily by developers of new PC Card hardware.

This chapter describes only the Card Services routines as they apply to PC Cards used in
PowerBook computers. The chapter provides the following information for each routine:
a general description, software code, and result codes. When applicable, it supplies
supplementary information about the routine and also indicates areas where the routine
differs from the PCMCIA standard.

For detailed information on both Card Services and Socket Services, refer to PCMCIA
Standards, published by the Personal Computer Memory Card International Association.

Client Information

The routines described in this section let you access Card Services clients and get
information about those clients.

CSGetFirstClient

34

This routine returns a client handle for the first client in the Card Services global client
first-in-first-out (FIFO) queue.

pascal OSErr CSGetFirstCient(GetdientPB *pb)

typedef struct GetdientPB GetdientPB;
struct GetCientPB

{
U nt32 clientHandl e; /|l <- clientHandl e for this client
U nt16 socket; /1l -> logical socket nunber
Untlé attributes; /1 -> bitmap of attributes

}s

/] ‘"attributes' field val ues

enum

{
kCSCl i ent sFor Al | Socket s = 0x0000,

kCSCl i ent sThi sSocket Onl y= 0x0001
s

Client Information

CHAPTER 3

Card Services Routines

SUPPLEMENTARY INFORMATION

The client handle returned by this routine is used with CSGet O i ent | nf o. If the caller

specifies kKCSCl i ent sThi sSocket Onl y and passes in a valid socket number, Card
Services returns the first client whose event mask for the given socket is not NULL.

RESULT CODES
noErr No error
kCSBadSocket Er r Invalid socket specified
kCSNoMor el t ensEr r or No clients registered
CSGetNextClient

This routine returns a client handle for the next client in the Card Services global
first-in-first-out (FIFO) queue.

pascal OSErr CSGet Nextdient(GetCientPB *pb)

typedef struct GetdientPB GetdientPB;
struct GetdientPB

{
U nt32 clientHandl e; // <-> clientHandl e for this client
U ntl1l6 socket; /1 -> logical socket number
Untl6é attributes; /1l -> bitmap of attributes

}s

For the field values of at t r i but es, see “CSGetFirstClient” on page 34.

SUPPLEMENTARY INFORMATION

The next client handle is used with CSGet O i ent | nf 0. If the caller specifies
kCSO i ent sThi sSocket Onl y and passes in a valid socket number, Card Services
returns the next client whose event mask for the given socket is not NULL.

RESULT CODES
noErr No error
kCSBadSocket Er r Invalid socket specified
kCSNoMor el t ensEr r or No clients registered
kCSBadHandl eErr Invalid client handle

Client Information

35

CHAPTER 3

Card Services Routines

CSGetClientInfo

This routine returns information that describes a client, and it may be used by browsing
utilities. The information returned includes items such as revision date, length of the
client name, logical socket number, and so forth.

pascal

OSErr CSCGetdientlnfo(GetdientlnfoPB *pb)

typedef struct dientlnfoParam CientlnfoParam
struct dientlnfoParam

{
Ul nt 32 cl i ent Handl e; /1 -> clientHandl e returned by
Regi sterC i ent
U ntl6 attributes; /1 <-> subfunction + bitmapped client
attributes
U ntl6 revision; // <- BCD value of client's revision
U nt16 kCSLevel; // <- BCD val ue of CS rel ease
Untl6é revDate; /1l <- revision date: y[15-9], n[8-5], d[4-0]
SInt16 nanelLen; /1l <->in: max length of client name string,
/1 out: actual length
SInt16 vStringlLen; /1l <->in: max length of vendor string,
/1 out: actual length
Uunt8 *naneString ;; // <- pointer to client nane string
/1 (zero-term nated)
U nt8 *vendor String; // <- pointer to vendor string
/1 (zero-term nated)

}s

/1 upper byte of attributes is

/1 kCSCar dNaneSubf uncti on,
/1 KCSCar dTypeSubf uncti on,
/1 KCSHel pSt ri ngSubfuncti on

typedef struct AlternateText StringParam AlternateText StringParam
struct AlternateTextStringParam

{

Unt32clientHandle; // -> clientHandl e returned by

Regi sterd i ent

Untl6 attributes; // <-> subfunction + bitmapped client

unti16
U nt 16
SInt 16

U nt8
}s

attributes
socket ; /1 -> logical socket number
reserved;// -> zero
length; // <->in: max length of string,
/1 out: actual length
*text; // <- pointer to string (zero-termn nated)

/1 upper byte of attributes is

/1 kCSCar dl conSubf uncti on

t ypedef struct AlternateCardl conParam Al ternateCardl conParam

36 Client Information

CHAPTER 3

Card Services Routines

struct AlternateCardl conParam

{
Unt32clientHandle; // ->

Untl6é attributes; [/ <->

U nt16 socket; /1 ->
U nt 16 reserved; 1 ->
Handl e iconSuite; [/ <-

}

[l upper byte of attributes is
/1 KCSAct i onProcSubfuncti on

typedef struct CustomActi onProcParam Cust omActi onProcPar am

struct

{

clientHandl e returned by

Regi sterd i ent

subfunction + bitmapped client

attributes
| ogi cal socket
zero

handl e to suite containing all

nunber

/1 upper struct CustomActi onProcParam

U nt 32 clientHandl e; //-> clientHandl e returned by

Regi sterC i ent

U ntl6 attributes;

U ntl6 socket; /1
}s

attributes

-> | ogi cal

typedef struct GetdientlnfoPB GetdientlnforPB;

struct
uni on {

ClientlnfoParam

GetdientlnfoPB {

clientlnfo;

Al t ernat eText Stri ngParam al t er nat eText Stri ng;

Al t er nat eCar dl conPar am
Cust omAct i onPr ocPar am

al t ernat el con;
cust omAct i onPr oc;

} u;

}s

/1l "attributes' field values

enum {
kCSMenoryd i ent = 0x0001,
kCsSI O i ent = 0x0004,
kCSC i ent TypeMask = 0x0007,

kCSShar eabl eCardl nsert Events = 0x0008,
kCSExcl usi veCardl nsert Events = 0x0010,

kCSI nf oSubf unct i onMask = 0OxFFO0O0,
kCSC i ent | nf oSubf uncti on = 0x0000,
kCSCar dNaneSubf uncti on = 0x8000,
kCSCar dTypeSubf uncti on = 0x8100,
kCSHel pSt ri ngSubf uncti on = 0x8200,
kCSCar dl conSubf uncti on = 0x8300,
kCSAct i onPr ocSubf uncti onon = 0x8400

Client Information

socket

nunber

i cons

/'l <-> subfunction + bitmapped client

37

CHAPTER 3

Card Services Routines

SUPPLEMENTARY INFORMATION

RESULT CODES

The CSCGet C i ent | nf o0 routine is used by clients to extract information about the client
whose client handle is passed in. Note that in this case the caller does not pass in its own
client handle. Card Services passes KCSCl i ent | nf oMessage to the client pointed to by
the client handle. The caller of CSGet O i ent | nf 0 passes the requested information
subfunction in the upper byte of the at t ri but es field. Called clients should respond to
kCSC i ent | nf oMessage by filling out the data requested. When a client receives
kCSC i ent | nf oMessage that requires it to perform a custom action, it should be
aware that it is being called from the Finder or a similar process environment.

Each client that is called with kCSO i ent | nf oMessage is passed one of the items from
d i ent Cal | backPB. The buffer field of O i ent Cal | backPB contains a pointer to
CGet i entlnfoPB:

ClientCall backPB. function = kCsd i ent | nfoMessage ;
ClientCal | backPB. socket = 0;
ClientCall backPB.info = 0;
CientCall backPB. m sc = 0;

ClientCall backPB. buf f er

(Ptr) GetdientlnfoPB;

ClientCal | backPB. cl i ent Dat a
= ((AdientQRecPtr) GetdientlnfoPB->clientHandl e)->clientDataPtr;

Callers of CSCet C i ent | nf o should use Get Fi rst Cl i ent and Get Next Cl i ent to
iterate through all the registered clients. Card Services passes the client handle to the
caller of either routine.

noErr No error
kCSBadHandl eEr r Invalid client handle

Configuration Routines

38

The routines described in this section help you to configure the PC Cards and the 68-pin
sockets into which they are plugged.

Configuration Routines

CHAPTER 3

Card Services Routines

CSGetConfigurationInfo

This routine returns information about the specified socket and PC Card configuration.
The information, as shown below, includes such things as status register setting, device
ID, and manufacturer’s ID.

pascal OSErr CSGet Confi gurati onl nf o(Get ModRequest Confi gl nfoPB *pb)

t ypedef struct Get ModRequest Confi gl nf oPB Get MbdRequest Confi gl nf oPB;
struct Get ModRequest Confi gl nf oPB

{
Unt32 clientHandle; // -> clientHandl e returned by Registerdient
U ntl6 socket; /1 -> logical socket number
Untl6é attributes; /!l <- bitmap of configuration attributes
U nt8 vCcCe; /1l <- Vcc setting
U nt8 vppl; /1l <- Vppl setting
U nt8 vpp2; /'l <- Vpp2 setting
U nt8 i nt Type; /1l <- ‘interface type (nenmory or menory+l /0O
U nt32 configBase; /1l <- card base address of config registers
U nt8 st at us; /!l <- card status register setting, if present
U nt8 pi n; /1l <- card pin register setting, if present
U nt8 copy; /1l <- card socket/copy reg setting, if present
U nt8 confi gl ndex; // <- card option register setting, if present
U nt8 present; /1l <- bitmap of which config regs are present
U nt8 firstDevType; [/ <- fromDevicelD tuple
U nt8 f uncCode; /!l <- fromFunclD tuple
U nt8 sysl ni t Mask; /1l <- fromFunclD tuple
U nt16 manuf Code; /1l <- from ManufacturerlD tuple
U nt16 manuflnfo; /1l <- from ManufacturerlD tuple
unt8 car dVval ues; /1 <- valid card register val ues
Ui nt8 paddi ng[1] ;
s

/1l "attributes' field val ues

enum

{
kCSExcl usi vel yUsed = 0x0001,
kCSEnabl el REQGs = 0x0002,
kCSVccChangeVal i d = 0x0004,
kCSVpplChangeVvalid = 0x0008,
kCSVpp2ChangeVal i d = 0x0010,
kCSval i dC i ent = 0x0020,

/1 request that power be applied to socket during sleep
kCSSI eepPower = 0x0040,

Configuration Routines 39

CHAPTER 3

Card Services Routines

kCSLockSocket = 0x0080,
kCSTur nOnl nUse = 0x0100
}
/1 'intType' field val ues
enum
{
kCSMenoryl nt erface = 0x01,

kCSMenory_And_I O I nterface = 0x02

}s

/1 ‘'present' field val ues

enum

{
kCSOpt i onRegi st er Present = 0x01,
kCSSt at usRegi st er Present = 0x02,
kCSPi nRepl acenent Regi st er Present = 0x04,
kCSCopyRegi st er Present = 0x08

}s

/!l ‘'cardVal ues' field val ues

enum
{
kCSOpt i onVal ueVal i d = 0x01,
kCSSt at usVal ueval i d = 0x02,
kCSPi nRepl acenent Val ueVal i d= 0x04,
kCSCopyVal ueVval i d = 0x08
s

SUPPLEMENTARY INFORMATION

RESULT CODES

40

The CSCet Conf i gur at i onl nf o routine is generally called after a client has parsed a
tuple stream, identified an inserted card as its card, and then wants to initialize a

Get MbdRequest Conf i gl nf oPB parameter block. For a typical sequence of events, see
“Card Ready Message” beginning on page 18. For information about tuples, refer to
“Tuple Information” on page 49, and to the Glossary at the end of this note.

noErr No error
kCSBadHandl| eErr Invalid client handle
Configuration Routines

CHAPTER 3

Card Services Routines

CSRequestConfiguration

A client uses this routine to configure the PC Card and the socket. The routine must be
used by clients that require an I/O interface to their PC Card.

pascal OSErr CSRequest Confi gurati on(Get ModRequest Confi gl nf oPB *pb)

t ypedef struct Get ModRequest Confi gl nf oPB Get MbdRequest Confi gl nf oPB;
struct Get ModRequest Confi gl nf oPB

{
Unt32 clientHandl e;// -> clientHandl e returned by Registerdient
Ul nt 16 socket; /1 -> logical socket number
Untl6 attributes; // -> bitmap of configuration attributes
unt8 vcc; /1l -> Vcc setting
unt8 vppl; /1l -> Vppl setting
unt8 vpp2; /1l -> Vpp2 setting
Unt8 intType; /Il ->interface type (menory or nenory+l /0O
U nt32 configBase; // -> card base address of configuration registers
U nt8 status; /1l -> card status register setting, if present
unt8 pin; /!l -> card pin register setting, if present
unt8 copy; /1 ->card socket/copy regi ster setting, if present
Unt8 configlndex; // -> card option register setting, if present
U nt8 present; /1 ->bitmap of which confign registers are present
Unt8 firstDevType;// <- from DevicelD tuple
U nt8 funcCode; /1l <- from FunclD tuple
Unt8 syslnitMask; // <- from FunclD tuple
U nt 16 nanuf Code; /1l <- from ManufacturerlD tuple
U nt 16 nmanuf | nf o; /1l <- from Manufacturer|D tuple
Unt8 cardValues; [/ <- wvalid card register val ues
Unt8 padding[1]; [/
b

For the field values of at t ri but es, i nt Type, pr esent, and car dVal ues, see
“CSGetConfigurationInfo” beginning on page 39.

SUPPLEMENTARY INFORMATION
A client calls CSRequest Conf i gur at i on after it has parsed a PC Card that is inserted
and ready, and has recognized the card as being usable.

Card Services uses the client handle to maintain a lock on the configuration until the
same client calls CSRel easeConfi gur ati on. Once a socket and card are configured,
no other client may alter their configuration.

Configuring a socket and card requires three operations:
= establishing Vec and Vpp for the socket
» establishing the socket interface definition (Memory Only or I/O and Memory)

» writing to the configuration registers on the card

Configuration Routines 41

RESULT CODES

CHAPTER 3

Card Services Routines

When Card Services receives KCSCar dl nser t i onMessage and subsequently

kCSCar dReadyMessage for a socket, it configures the socket by setting Vec, Vppl, and
Vpp2 to 5 volts, configuring the interface to be Memory Only, and issuing a RESET to the
card. Card Services then parses the CIS of the card. Once Card Services has finished
parsing the CIS, it issues kCSCar dReady Message to all registered clients. It has already
delivered kCSCar dl nser ti onMessage to the same clients. Even if a client parses and
recognizes a card and intends to use the card without altering the configuration, it
should call CSRequest Conf i gur at i on to establish it as the configuring client.

noErr No error
kCSBadSocket Er r Invalid socket specified
kCSBadHandl eErr Invalid client handle
kCSConf i gur ati onLockedErr Another client has already locked a configuration
kCSNoCar dEr r No card in the specified socket
kCSQut O Resour ceErr Card Services lacks the resources to
complete this request
kCSBadBaseEr r Invalid base entered

CSModifyConfiguration

42

This routine allows a socket and PC Card configuration to be modified without using the
CSRel easeConf i gur at i on routine followed by the CSRequest Conf i gur ati on
routine. The routine can only modify a configuration originally requested through
CSRequest Confi gurati on.

pascal OSErr CSModi f yConfi gurati on(Get ModRequest Confi gl nf oPB *pb)

t ypedef struct Get ModRequest Confi gl nf oPB Get MbdRequest Confi gl nf oPB;
struct Get ModRequest Confi gl nf oPB

{
U nt32 clientHandl e; /1 ->clientHandl e returned by Registerdient
U nt 16 socket; /1l -> logical socket nunber
U ntl6 attributes; /1 -> bitmap of configuration attributes
unt8 vcc; /1l -> Vcc setting
unt8 vppl, /1l -> Vppl setting
unt8 vpp2; /1l -> Vpp2 setting
Unt8 intType; /1 ->interface type (menory or nenory+l /0O
Ul nt 32 confi gBase; /1 -> card base address of config registers
U nt8 status; /1l -> card status register setting, if present
unt8 pin; /1l -> card pin register setting, if present
unt8 copy; /1 -> card socket/copy regr setting, if present
U nt8 configlndex; // -> card option register setting, if present

Configuration Routines

CHAPTER 3

Card Services Routines

Unt8 present; /1 -> bitmap of which config regis are present
unt8 firstDevType; /1l <- from DevicelD tuple

U nt8 funcCode; /1l <- from FunclD tuple

Unt8 syslnitMsk; /1 <- from FunclD tuple

U nt 16 nanuf Code; /1 <- from ManufacturerlD tuple

U nt 16 nanuf | nf o; /1l <- from Manufacturer|D tuple

U nt8 cardVal ues; /1l <- valid card register val ues

U nt8 padding[l1]; /1

}s

For'attributes','intType',' present',and’' cardVal ues' field values see
“CSGetConfigurationInfo” beginning on page 39.

SUPPLEMENTARY INFORMATION

RESULT CODES

The CSModi f yConf i gur at i on routine is used by clients to alter any of the three
configuration elements of a socket or card: the power supply (Vcc and Vpp) for the
socket, the socket interface definition (Memory Only or I/O and Memory), the
configuration registers on the card. Only a client that has previously succeeded in calling
CSRequest Conf i gur at i on may call CSMbdi f yConfi gurati on.

noErr No error
kCSBadSocket Er r Invalid socket specified
kCSBadHandl eEr r Invalid client handle
kCSConf i gur ati onLockedErr Another client has already locked a configuration
kCSNoCar dEr r No card in the specified socket
kCSQut Of Resour ceErr Card Services lacks the resources to
complete this request
kCSBadBaseErr Invalid base entered

CSReleaseConfiguration

This routine releases the PC Card and socket from the I/O interface, and returns them to
a memory-only interface with configuration 0. If no clients have indicated that they are
using the socket, Card Services may remove power from the socket.

pascal OSErr CSRel easeConfi gurati on(Rel easeConfi gurati onPB *pb)

t ypedef struct Rel easeConfigurati onPB Rel easeConfi gurati onPB;
struct Rel easeConfigurati onPB
{

U nt32 clientHandl e;

U nt1l6 socket;

}s

Configuration Routines 43

CHAPTER 3

Card Services Routines

RESULT CODES
noErr No error
kCSBadSocket Err Invalid socket specified
kCSBadHandl eEr r Invalid client handle
kCSConf i gur at i onLockedErr Another client has already locked a configuration
kCSNoCar dEr r No card in the specified socket

CSAccessConfigurationRegister

This routine allows a client to modify a single configuration register. It can do this by
adding AccessConf i gur ati onRegi st er PC. of f set to the configuration base
address. However, clients do not generally use this routine.

pascal OSErr CSAccessConfi gurati onRegi ster(AccessConfi gurati onRegi sterPB *pb)
t ypedef struct AccessConfi gurati onRegi st er PBAccessConfi gurati onRegi st er PB;

struct AccessConfigurati onRegi sterPB

{
U nt 16 socket; /1 -> gl obal socket nunber
Unt8 action; /Il ->read/wite
Unt8 offset; /Il -> offset fromconfig register base
U nt8 value; // <->value to read/wite
U nt8 padding[1];
b

/1 ‘'action' field values
enum {
CS_ReadConfi gRegi st er
CS_WiteConfigRegister

0x00,
0x01

SUPPLEMENTARY INFORMATION

If the client uses this routine to modify a register, and adds
AccessConf i gur ati onRegi st er PB. of f set to the configuration base
address, then one of two things happens:

= IfactionissettoCS_ReadConfi gRegi st er, the configuration register value is
returned in AccessConf i gur ati onRegi st er PB. val ue.

» IfactionissettoCS_WiteConfi gRegi st er, the configuration register is written
with AccessConf i gur ati onRegi st er PB. val ue.

When clients want to set configuration registers, they usually call
CSRequest Conf i gur ati on or CSModi f yConf i gur ati on and set the appropriate
registers at that time.

44 Configuration Routines

CHAPTER 3

Card Services Routines
RESULT CODES

NnoErr No error
kCSBadSocket Err Invalid socket specified

Masking Routines

The routines described in this section get and set masks for client events and sockets.
Card Services provide notification about events based on the contents of this field. Each
mask is a 16-bit field, with bit 0 being the lowest-order bit. In the case of event masks, the
8 lower-order bits specify events noted by Socket Services, and the 8 higher-order bits
specify events generated by Card Services. The socket masks establish or clear an event
mask for a given socket number.

CSGetClientEventMask

Clients use this routine to obtain their current event mask.
pascal OSErr CSCGet d i ent Event Mask(Get Set i ent Event MaskPB * pb)

t ypedef struct GetSetd ient Event MaskPB CGet Set Cl i ent Event MaskPB;
struct GetSetC ient Event MaskPB

{
Unt32 clientHandle; // -> clientHandl e returned by Registerdient
Untl6é attributes; /1 -> bitmap of attributes
U ntl6 eventMsk; /1l <- bitnmap of events to be passedtoclient for
/1 this socket
U ntl1l6 socket; /1 -> logical socket number
s

/] ‘"attributes' field val ues

enum

{
kCSEvent MaskThi sSocket Onl y = 0x0001

}s

/1l 'event Mask' field val ues

enum
{
kCSW i t ePr ot ect Event = 0x0001,
kCSCar dLockChangeEvent = 0x0002,
kCSEj ect Request Event = 0x0004,

Masking Routines 45

CHAPTER 3

Card Services Routines

kCSI nsert Request Event
kCSBat t er yDeadEvent
kCSBat t er yLowEvent
kCSReadyChangeEvent
kCSCar dDet ect ChangeEvent
kCSPMChangeEvent
kCSReset Event

kCSSSUpdat eEvent
kCSFuncti onl nt er r upt
kCSAl | Event s

SUPPLEMENTARY INFORMATION

If Get Set A i ent Event MaskPB. at t ri but es has kCSEvent MaskThi sSocket Onl 'y
(bit 0) reset, CSGet C i ent Event Mask returns the client’s global event mask. If

Get Set d i ent Event MaskPB. att ri but es has kCSEvent MaskThi sSocket Onl y
set, then the event mask for the given socket number is returned. If the client has not
registered for the socket, kKCSBadSocket Er r is returned.

RESULT CODES

noErr
kCSBadSocket Err
kCSBadHandl eErr

CSSetClientEventMask

= 0x0008,
= 0x0010,
= 0x0020,
= 0x0040,
= 0x0080,
= 0x0100
= 0x0200
= 0x0400,
= 0x0800,
= OxFFFF

No error
Invalid socket specified

Invalid client handle

46

Clients use this routine to establish their event masks.

pascal OSErr CSSet d i ent Event Mask(Get Set O i ent Event MaskPB * pb)

t ypedef struct GetSetd ient Event MaskPB Get Set Cl i ent Event MaskPB;

struct Get Setd i ent Event MaskPB

{
Uunt32 clientHandle; //
Untl6é attributes; /1
U ntl6 event Mask; /1
/1
U nt1l6 socket; 1/

}

-> clientHandl e returned by Registerdient

-> bitnmap of attributes

-> bitmap of events to be passed to client
for this socket

-> | ogi cal socket nunber

For the field values of event Mask, see “CSGetClientEventMask” on page 45.

Masking Routines

CHAPTER 3

Card Services Routines

SUPPLEMENTARY INFORMATION

If Get Set i ent Event MaskPB. at t ri but es (bit 0) is reset, CSSet Cl i ent Event Mask
(the client’s global event mask) is changed. If Get Set Cl i ent Event MaskPB.

attri but es has kCSEvent MaskThi sSocket Onl y set, then the event mask for the
given socket number is changed. If the client has not registered for the socket,
kCSBadSocket Er r is returned.

After processing kCSCar dReady Message and determining that the card is not usable,
clients should clear their global event masks so that message processing with the system
is streamlined.

RESULT CODES
noErr No error
kCSBadSocket Er r Invalid socket specified
kCSBadHandl eErr Invalid client handle
CSRequestSocketMask

This routine requests that the client be notified of status changes for the given socket. If
the client has events enabled in the global event mask, it may be notified more than once
for each status change for the socket.

pascal OSErr CSRequest Socket Mask(ReqRel Socket MaskPB *pb)

typedef struct RegRel Socket MaskPB ReqRel Socket MaskPB;
struct ReqRel Socket MaskPB

{
Unt32 clientHandle; // -> clientHandl e returned by Registerdient
U ntl6 socket; /1 -> logical socket
Untlé eventMask; // -> bitmap of events to be passed to client for
/1 this socket
s

For the field values of event Mask, see “CSGetClientEventMask” on page 45.

SUPPLEMENTARY INFORMATION

CSRequest Socket Mask must be used before CSSet Cl i ent Event Mask or
CSCet d i ent Event Mask. Otherwise, these two routines may not execute successfully.
If the client has not registered for the socket, kCSBadSocket Er r is returned.

Masking Routines 47

CHAPTER 3

Card Services Routines

RESULT CODES
noErr No error
kCSBadSocket Err Invalid socket specified
kCSBadHandl eEr r Invalid client handle
CSReleaseSocketMask

The client uses this routine to clear the event mask and to request that it no longer be
notified of status changes to the socket. However, if the client has events enabled in a
global event mask, it will still be notified of status changes in that mask. This is the
recommended way for clients to clear socket events when they recognize that they are
not interested in using a particular PC Card.

pascal OSErr CSRel easeSocket Mask(ReqRel Socket MaskPB *pb)

t ypedef struct RegRel Socket MaskPB ReqRel Socket MaskPB;
struct ReqRel Socket MaskPB

{
Unt32 clientHandl e;// -> clientHandl e returned by RegisterCient
U ntl1l6 socket; /1l -> logical socket
Untl6 eventMask; // -> bitmap of events to be passed to client for
I thi s socket
i

For the field values of event Mask, see “CSGetClientEventMask” on page 45.

SUPPLEMENTARY INFORMATION

RESULT CODES

48

CSRel easeSocket Mask is used to clear the event mask for the given socket. If the
client has not registered for the socket, kCSBadSocket Er r is returned.

noErr No error
kCSBadSocket Err Invalid socket specified
kCSBadHandl eErr Invalid client handle
Masking Routines

CHAPTER 3

Card Services Routines

Tuple Information

The routines described in this section allow you to access tuples. A tuple is a chain or
linked list of data blocks. It can be of various lengths. Tuples contain information about
the PC Card, such as access speed, function ID, manufacturer’s ID, organization, and
so forth.

CSGetFirstTuple

This routine returns the first tuple of the type specified in the CIS for the specific socket.
If there are no tuples, the status argument returns KCSNoMbr el t ensEr r. The first tuple
identifies the local socket containing the specified PC Card. It also contains the
information needed to link to the next tuple, as well as fields that are used internally by
Card Services. Tuple format is described in more detail in “CSGetTupleData” on page 52.

pascal OSErr CSCet First Tupl e(Get Tupl ePB *pb)

t ypedef struct Get Tupl ePB Get Tupl ePB;
struct GCet Tupl ePB
{
U nt 16 socket; /1 -> logical socket number
Untl6 attributes; // -> bitrmap of attributes
Unt8 desiredTuple;// -> desired tuple code value, or $FF for all
Unt8 tupleOfset; // -> offset into tuple fromlink byte

U nt16 fl ags; /1l <->internal use only!
U nt32 IinkOf set /1l <->internal use only!
U nt32 cisOfset; /'l <->internal use only!
uni on
{
struct
{
U nt8 tupl eCode; /!l <- tuple code found
U nt8 tuplelink; /1l <- link value for tuple found
} Tupl ePB;
struct
{
U nt 16 tupl eDat aMax;// -> maxi mum size of tuple data area
U nt 16 tupl eDataLen;// <- nunber of bytes in tuple body

Tupl eBody tupleData; // <- tuple data

Tuple Information 49

RESULT CODES

CHAPTER 3

Card Services Routines

} Tupl eDat aPB;
bous
b

/] ‘"attributes' field val ues

enum

{

kCSRet ur nLi nkTupl es = 0x0001

noErr
kCSBadSocket Er r
kCSNoCar dEr r
kCSI nUseErr

kCSReadFai | ur eErr
kCSBadCl SEr r

kCSQut Of Resour ceErr

kCSNoMbr el t ensErr

CSGetNextTuple

No error
Invalid socket specified
No card in the specified socket

Card is configured and being used
by another client

Card cannot be read

Card Services has encountered a bad CIS
structure

Card Services lacks the resources to
complete this request

There are no more tuples to process

50

This routine returns the next tuple of the type specified in the CIS for the specific socket.
If there are no tuples, the status argument returns KCSNoMor el t ensEr r. The next tuple
contains information about the link value for the tuple. Certain fields in the tuple are
reserved for internal use by Card Services. These fields are updated by Card Services,
and must have the same values as the tuple returned just previously. Tuple format is
described in more detail in “CSGetTupleData” on page 52.

pascal OSErr CSGet Next Tupl e(Get Tupl ePB *pb)

typedef struct Get Tupl ePB Get Tupl ePB;

struct GCet Tupl ePB
{
Ul nt 16 socket;
U ntl6 attributes;

U nt8 desiredTuple;//

Unt8 tupleOfset;

Tuple Information

-> | ogi cal socket nunber

-> bitmap of attributes

-> desired tuple code value, or $FF for all
-> offset into tuple fromlink byte

RESULT CODES

CHAPTER 3

Card Services Routines

U ntl1l6 flags; /1
Unt32 linkOFfset; [/
U nt32 cisOfset; 1/

<-> internal use only!
<-> internal use only!
<-> internal use only!

uni on
{
struct
{
U nt8 tupleCode; /'l <- tuple code found
U nt8 tuplelink; /1 <- link value for tuple found
} Tupl ePB;
struct
{
U nt 16 tupl eDat aMax; // -> maxi mum si ze of tuple data area

U nt 16 tupl eDat aLen; // <- nunber of bytes in tuple body
Tupl eBody t upl eDat a; /1l <- tuple data

} Tupl eDat aPB;
Py
}

For the field values of at t r i but es, see “CSGetFirstTuple” on page 49.

noErr
kCSBadSocket Er r
kCSNoCar dEr r
kCSI nUseErr

kCSReadFai | ur eErr
kCSBadCl SEr r

kCSQut Of Resour ceErr

kCSNoMbr el t ensEr r

Tuple Information

No error
Invalid socket specified
No card in the specified socket

Card is configured and being used
by another client

Card cannot be read

Card Services has encountered a
bad CIS structure

Card Services lacks the resources to
complete this request

There are no more tuples to process

51

CHAPTER 3

Card Services Routines

CSGetTupleData

52

This routine returns the contents of the last tuple returned by eitherk CSGet Fi r st Tupl e,
or kCSGet Next Tupl e. Data returned is packed so that the tuple data is contiguous. The
argument packet contains the same fields as kCSGet Fi r st Tupl e, or KCSGet Next Tupl e:

» The Socket field identifies the logical socket containing the PC Card.

= Attributes, DesiredTuple, Flags, LinkOffset, and CISOffset fields are for the internal
use of Card Services, and the must contain the same values as kCSGet Fi r st Tupl e,
or KCSGet Next Tupl e. Attributes and DesiredTuple describe the tuple being processed.
Flags, LinkOffset, and CISOffset maintain state information during CIS processing
requests.

pascal OSErr CSCet Tupl eDat a(Get Tupl ePB *pb)

t ypedef struct Get Tupl ePB Get Tupl ePB;
struct GCet Tupl ePB

{
U nt 16 socket; /1 -> logical socket number
Untl6 attributes; // -> bitrmap of attributes
Unt8 desiredTuple;// -> desired tuple code value, or $FF for all
Unt8 tupleOfset; // -> offset into tuple fromlink byte
U nt16 fl ags; // <-> internal use
Unt32 IinkOfset; // <-> internal use
U nt32 cisOfset; /'l <->internal use
uni on
{
struct
{
U nt8 tupleCode; /1 <- tuple code found
U nt8 tuplelLink; /1l <- link value for tuple found
} Tupl ePB;
struct
{
U nt16 tupl eDat aMax; // -> maxi num si ze of tuple data area
U nt16 tupl eDat aLen; // <- nunber of bytes in tuple body
Tupl eBody t upl eDat a; /1 <- tuple data
} Tupl eDat aPB;
Pou
s
/1 ‘tattributes' field val ues
enum
{

kCSRet ur nLi nkTupl es = 0x0001

Tuple Information

CHAPTER 3

Card Services Routines

RESULT CODES
noErr No error
kCSBadSocket Err Invalid socket specified
kCSNoCar dEr r No card in the specified socket
kCSCQut Of Resour ceErr Card Services lacks the resources to

complete this request

Card and Socket Status

There is only one card and socket status routine, CSGet St at us.

CSGetStatus

This routine returns the following information about the current status of the PC Card
and its socket:

= Identifies the logical socket in which the card is installed.

= Provides information about the card itself
o whether it is write protected
o ifitis locked in the socket
o whether a request has been made to insert the card into the socket or to eject it
o the condition of the battery
o the status of the card’s readiness for an access

o whether a card is actually present in the socket.

= Itindicates any changes in the status of the card, as listed above.

pascal OSErr CSCet St at us(Get St at usPB *pb)
t ypedef struct Get StatusPB Get St at usPB;

struct Get St atusPB

{
U nt 16 socket; /1 -> logical socket number
U nt1l6 cardState; /Il <- current state of installed card
U nt16 socketState; // <- current state of the socket

s

Card and Socket Status

RESULT CODES

CHAPTER 3

Card Services Routines

/!l 'cardState' field val ues

enum

{
kCSW i t ePr ot ect ed= 0x0001,
kCSCar dLocked = 0x0002,
kCSEj ect Request = 0x0004,
kCSl nsert Request = 0x0008,

kCSBatteryDead = 0x0010,
kCSBat t er yLow = 0x0020,
k CSReady = 0x0040,

kCSCar dDet ect ed = 0x0080
}s

/1l 'socketState' field val ues

enum

{
kCSW i t ePr ot ect Changed = 0x0001,
kCSCar dLockChanged = 0x0002,
kCSEj ect Request Pendi ng = 0x0004,
kCSl nsert Request Pendi ng = 0x0008,

kCSBat t er yDeadChanged = 0x0010,

kCSBat t er yLowChanged = 0x0020,

kCSReadyChanged = 0x0040,

kCSCar dDet ect Changed = 0x0080
b
noErr No error
kCSBadSocket Err Invalid socket specified

Access Window Management

54

A window in this context is the block of system memory space assigned to the PC Card.
The routines described in this section allow you to:

= Assign a window.
= Modify the characteristics of the window.

= Release the block of system memory space allocated.

Access Window Management

CHAPTER 3

Card Services Routines

CSRequestWindow

This routine assigns memory space, sets the base address and memory window size,
defines access speed, and maps the logical socket number to the system memory
address space.

pascal OSErr CSRequest W ndow(ReqMbdRel W ndowPB * pb)

t ypedef struct RegMbdRel W ndowPB RegqMbdRel W ndowPB;
struct RegMddRel W ndowPB

{
Unt32 clientHandle;// -> clientHandl e returned by Registerdient
U nt 32 wi ndowHandl e; // <-> wi ndow descri ptor
U nt 16 socket; /'l -> logical socket nunber
Untl6 attributes; // -> window attributes (bitnmap)
Ul nt 32 base; /| <-> system base address
U nt 32 size; /1 <-> menory wi ndow si ze
U nt8 accessSpeed; // -> window access speed (bitmap)
/1 (not applicable for 1/0O node)
U nt8 padding[1];
b

/[l "attributes' field val ues

enum
{
kCSMenor yW ndow = 0x0001,
kCSI OW ndow = 0x0002,

kCSAttri but eWndow = 0x0004, // not normally used by Card Services
Il clients

k CSW ndowTypeMask = 0x0007,
kCSEnabl eW ndow = 0x0008,
kCSAccessSpeedVal i d = 0x0010,

kCSSwaplLi tt | eToBi géndi an= 0x0020,// configure socket for
little-endi aness

kCS16Bi t Dat aPat h = 0x0040,
kCSW ndowPaged = 0x0080,
kCSW ndowShar ed = 0x0100,
kCSW ndowFi r st Shar ed = 0x0200,

kCSW ndowPr ogr ammabl e = 0x0400
b

/1 '"accessSpeed' field val ues

enum

{
kCSDevi ceSpeedCodeMask = 0x07,

Access Window Management 55

CHAPTER 3

Card Services Routines

kCSSpeedExponent Mask = 0x07,
kCSSpeedMant i ssaMask = 0x78,
kCSUseWai t = 0x80,

kCSAccessSpeed250nsec = 0x01,
kCSAccessSpeed200nsec = 0x02,
kCSAccessSpeedl50nsec = 0x03,
kCSAccessSpeed100nsec = 0x04,

k CSExt AccSpeedMant 1pt 0 = 0xO01,
k CSExt AccSpeedMant 1pt 2 = 0x02,
k CSExt AccSpeedMant 1pt 3 = 0x03,
kCSExt AccSpeedMant 1pt5 = 0x04,
kCSExt AccSpeedMant 2pt 0 = 0x05,
k CSExt AccSpeedMant 2pt5 = 0x06,
k CSExt AccSpeedMant 3pt 0 = 0x07,
kCSExt AccSpeedMant 3pt 5 = 0x08,
k CSExt AccSpeedMant 4pt 0 = 0x09,
kCSExt AccSpeedMant 4pt 5 = OxO0A,
k CSExt AccSpeedMant 5pt 0 = 0xO0B,
k CSExt AccSpeedMant 5pt5 = 0x0C,
k CSExt AccSpeedMant 6pt 0 = 0x0D,
k CSExt AccSpeedMant 7pt 0 = OxOE,
k CSExt AccSpeedMant 8pt 0 = OxOF,

k CSExt AccSpeedExplns = 0x00,
k CSExt AccSpeedExplOns = 0xO01,
k CSExt AccSpeedExpl100ns = 0x02,
k CSExt AccSpeedExplus = 0x03,
kCSExt AccSpeedExplOus = 0x04,
k CSExt AccSpeedExp100us = 0xO05,
k CSExt AccSpeedExplmns = 0x06,
kCSExt AccSpeedExpl0ms = 0x07

b
RESULT CODES
nokErr No error
kCSBadSocket Err Invalid socket specified
kCSQut Of Resour ceErr Card Services lacks the resources to
complete this request
kCSBadBaseEr r Invalid base address
kCSBadAttri but eErr Invalid window attributes

56 Access Window Management

CHAPTER 3

Card Services Routines

DIVERGENCE FROM PCMCIA STANDARD

Apple has added another attribute (KCSI OTypeW ndow) that lets a client request that its
new window be anI/O cycle window. Speed characteristics of an I/ O window are fixed
and any speed-related parameters are ignored. Speed parameters are considered only if
the window is of the type Menory or At tri but e.

In the PCMCIA standard, there is an implied window assignment when a client calls
Request Conf i gur at i on because the client must have called Request | / Ofirst. This
assures the client that there is I/ O window support for the change.

CSModifyWindow

RESULT CODES

This routine modifies the attributes and access speed of the window that were allocated
by CSRequest W ndow

pascal OSErr CSModi f yW ndow(ReqvbdRel W ndowPB * pb)

t ypedef struct RegMbdRel W ndowPB RegMbdRel W ndowPB;
struct RegMddRel W ndowPB

{
Unt32 clientHandle;// -> clientHandl e returned by Registerdient
U nt 32 wi ndowHandl e; // <-> wi ndow descri ptor
U nt 16 socket; /1 -> logical socket number
Untl6 attributes; // -> window attributes (bitnap)
Ul nt 32 base; /|l <-> system base address
Ul nt 32 size; /1 <-> menory wi ndow si ze
U nt8 accessSpeed; // -> window access speed (bitmap)
/1 (not applicable for I/0O node)
U nt8 padding[1];
1

For the field values of at t r i but es and accessSpeed, see “CSRequestWindow” on
page 55.

nokErr No error

kCSBadSocket Er r Invalid socket specified

kCSBadHand! eEr r Invalid client handle

kCSQut Of Resour ceErr Card Services lacks the resources to
complete this request

kCSBadBaseEr r Invalid base address

kCSBaddAt tri but eErr Invalid window attributes

Access Window Management 57

CHAPTER 3

Card Services Routines

DIVERGENCE FROM PCMCIA STANDARD

The CSModi f yW ndowroutine must have a valid client handle (the one passed in on
CSRequest W ndow), otherwise a kCSBadHandl eEr r error is returned.

CSReleaseWindow

This routine releases the block of system memory assigned by CSRequest W ndow
pascal OSErr CSRel easeW ndow(ReqMbdRel W ndowPB * pb)

t ypedef struct RegMbdRel W ndowPB RegqMbdRel W ndowPB;
struct RegMddRel W ndowPB

{
Unt32 clientHandle;// -> clientHandl e returned by Registerdient
U nt 32 wi ndowHandl e;// -> wi ndow descri ptor
U nt 16 socket; /'l -> logical socket nunber
Untl6 attributes; // not used
Ul nt 32 size; // not used
U nt8 accessSpeed; // not used
Unt8 padding[1l]; // not used
}s
For the field values of at t r i but es and accessSpeed, see “CSRequestWindow” on
page 55.
RESULT CODES
noErr No error
kCSBadSocket Err Invalid socket specified
kCSBadHandl| eErr Invalid client handle

DIVERGENCE FROM PCMCIA STANDARD

CSRel easeW ndowmust have a valid client handle (the one passed in on
CSRequest W ndow), otherwise kCSBadHandl eEr r is returned.

58 Access Window Management

CHAPTER 3

Card Services Routines

Client Registration

When a PC Card is installed in a socket, it must be registered with Card Services. This
allows Card Services to provide the client with event notifications, and to keep track of
the clients that can manipulate PC Cards, using the client services routines described in
this section. These routines allow you to:

= Get information about Card Services.
= Register clients.

= Deregister clients.

CSGetCardServicesInfo

This routine allows a client to detect the presence of Card Services. It returns the number
of logical sockets installed; indicates whether Card Services is installed; and provides
information about the vendor, such as revision number.

pascal OSErr CSGCet CardServi cesl nf o(Get CardSer vi cesl nf oPB *pb)

t ypedef struct Get CardServiceslnfoPB Get CardServi cesl nf oPB;
struct Get CardServicesl nfoPB

{
U nt8 signature[?2]; /'l <- two ascii chars 'CS
Ul nt 16 count; // <- total nunmber of sockets installed
Ui nt16 revision; /'l <- BCD
U nt16 kCSLevel ; /'l <- BCD
U nt16 reserved; /'l -> zero
U ntl6é vStrlLen; /!l <->in: client's buffer size
out: vendor string length
Unt8 *vendorString; // <->in: pointer to buffer to hold CS vendor
/1 string (zero-termn nated)
/1 out: CS vendor string copied to buffer
s
RESULT CODES
nokErr No error

Client Registration 59

CHAPTER 3

Card Services Routines

CSRegisterClient

Clients invoke this routine to make Card Services aware of their presence and to indicate
their interest in various events. They also use the routine to indicate whether they are a
memory or I/O client device driver, or a Memory Technology Driver (MTD).

pascal OSErr CSRegisterdient(RegisterdientPB *pb)

t ypedef struct RegisterCientPB RegisterdientPB;
struct RegisterdientPB

{

Ul nt 32 clientHandl e; // <- client descriptor

PCCar dCSCl i ent UPPcl i entEntry; // -> UPP to client's event handler

Ul nt 16 attri butes; /1l -> bitmap of client attributes

U nt 16 event Mask; /1 -> bitmap of events to notify client

Ptr clientData; /1l -> pointer to client's data

U nt 16 ver sion; /1 ->Card Services versionclient expects
s

/1 "attributes' field values (see Getd i entlnfo)

/1 kCSMenoryd i ent = 0x0001,
/1 kCSIOdient = 0x0004,
/1 kCSShar eabl eCardl nsert Events = 0x0008,
/1 kCSExcl usi veCardl nsert Events = 0x0010

SUPPLEMENTARY INFORMATION
Observe these precautions when using CSRegi ster 0 i ent :
» [t must not be called at interrupt time.
= You must specify the type of client for event notification order.

= You must set the event mask for types of events in which the client is interested.
The event mask passed in during this call will be set for the global mask and all
socket event masks.

RESULT CODES
noErr No error
kCSQut Of Resour ceErr Card Services lacks the resources to
complete this request
kCSBadAttri but eErr Invalid window attributes

60 Client Registration

CHAPTER 3

Card Services Routines

DIVERGENCE FROM PCMCIA STANDARD

The CSRegi st er O i ent routine is synchronous. On returning from

CSRegi st er 0 i ent the client handle field is valid. Once this call is successful, all
clients should support reentrancy. After calling CSRegi st er C i ent, clients normally
call CSVendor Speci fi c with vsCode set to vsEnabl eSocket Event s.

CSDeregisterClient

Clients invoke this routine when they want to remove themselves from the system. They
must return all resources requested before calling this routine.

pascal OSErr CSDeregisterCient(RegisterdientPB *pb)

typedef struct RegisterdientPB RegisterdientPB;
struct RegisterdientPB

{

Ul nt 32 clientHandl e; // <- client descriptor

PCCar dCSCl i ent UPPcl i ent Entry; // -> UPP to client's event handl er

U nt 16 attributes; // -> bitmap of client attributes

U nt16 event Mask; /1 -> bitmap of events to notify client

Ptr clientData;, [// -> pointer to client's data

U nt16 ver si on; /1 ->Card Services versionclient expects
s

For the field values of at t r i but es, see “CSRegisterClient” on page 60.

RESULT CODES
nokErr No error
kCSBadHandl eErr Invalid client handle
kCSBadAttri but eErr Invalid window attributes

Miscellaneous Routines

The routines described in this section help you with various Card Services management
tasks, such as:

= Resetting the PC Card.
» Validating the CIS (Card Information Structure).

» Getting vendor information that is specific to Apple Computer, Inc.

Miscellaneous Routines 61

CHAPTER 3

Card Services Routines

CSResetCard

This routine resets the logical socket number. It can also reset PC Card attributes, but this
function of the routine is not used in this application.

pascal OSErr CSReset Car d(Reset Car dPB *pb)

t ypedef struct Reset CardPB Reset Car dPB;
struct Reset CardPB

{
Unt32 clientHandle; // -> clientHandl e returned by Registerdient
U ntl6 socket; /1l -> socket nunber
Untl6é attributes; /1 not used

b

SUPPLEMENTARY INFORMATION

Calling clients will receive kCSReset Conpl et eMessage regardless of whether or not
their socket event mask and global event mask have set KCSReset Event .

RESULT CODES
noErr No error
kCSBadSocket Er r Invalid socket specified
kCSNoCar dEr r No card in the specified socket
kCSBadHandl eEr r Invalid client handle

DIVERGENCE FROM PCMCIA STANDARD

Card Services does not issue KCSCar dReset Message in place of

kCSCar dReadyMessage. If a client is issuing a reset to a card, then it should know
whether the card will generate a kCSCar dReadyMessage or not. If the card goes
through a transition from busy to ready, then the client will know that it should not
access the card until it receives the kCSCar dReady Message event.

62 Miscellaneous Routines

CHAPTER 3

Card Services Routines

CSValidateCIS

RESULT CODES

This routine validates the CIS on the PC Card in the socket specified. It identifies the
logical socket that contains the PC Card and returns the number of valid tuple chains
located in the CIS.

pascal OSErr CSVal i dat eCl S(Val i dat eCl SPB *pb)

t ypedef struct ValidateCl SPB Val i dat eCl SPB;
struct Validat eCl SPB

{ U ntl6 socket; /'l -> socket nunber
U ntl1l6 chains; /1 -> whether link/null tuples should be included
i
nokErr No error
kCSBadSocket Er r Invalid socket specified
kCSNoCar dEr r No card in the specified socket
kCSBadCl SEr r Card Services has detected a bad CIS

DIVERGENCE FROM PCMCIA STANDARD

The PCMCIA standard indicates that a KCSBadCl SEr r result should be returned by
setting the pb- >chai ns element to zero. To accomodate cards that have no tuples,
Apple returns kCSBadCl SEr r as a result code if the CIS is bad. If noEr r is returned,
then the value in the pb- >chai ns reflects the number of valid tuples, not counting
link tuples.

CSVendorSpecific

CSVendor Speci fi ¢ is defined to allow Apple to extend the interface definition of Card
Services for elements that are specific to the Mac OS. The call requires two paramenters,
cl i ent Handl e and vsCode.

pascal OSErr CSVendor Speci fi c(Vendor Speci fi cPB *pb)

t ypedef struct Vendor Specifi cPB Vendor Speci fi cPB;

struct Vendor Specifi cPB

{
Unt32 clientHandle; // -> clientHandl e returned by Registerdient
U nt1l6 vsCode;
U ntl6 socket;

Miscellaneous Routines 63

CHAPTER 3

Card Services Routines

U nt32 datalen; /Il ->length of buffer pointed to by
vsDat aPtr

U nt8 *vsDat aPtr; // -> Card Services version this client
expects

}s

/1l 'vsCode' field val ues

enum

{
vsAppl eReser ved = 0x0000,
vsEj ect Card = 0x0001,
vsGet Cardl nfo = 0x0002,
vsEnabl eSocket Event s = 0x0003,
vsCGet CardLocati onl con = 0x0004,
vsCGet Car dLocat i onText = 0x0005,
vsGet Adapt er | nfo = 0x0006

}s

SUPPLEMENTARY INFORMATION

RESULT CODES

Additional parameters may be required for each vendor-specific code, as described in
the following sections. The parameters that may be required are:

» EjectCard Paraneter Bl ock
s Get Cardl nfo Paraneter Bl ock
= Enabl eSocket Events Paraneter Bl ock

= Get Adapterlnfo Paraneter Bl ock

nokErr No error
kCSUnsupport edFuncti onErr Invalid vendor-specific code

EjectCard Parameter Block

64

If clients have configured their PC Cards themselves, they must pass in their client
handle when they wish to eject such cards. Clients may not be able to eject cards they
have not configured until the card is reconfigured.

/1 vendor-specific call #1

t ypedef struct Vendor Specifi cPB Vendor Speci fi cPB;

struct Vendor Speci fi cPB

{
Unt32 clientHandle; // -> clientHandl e returned by Registerdient
U nt1l6 vsCode; // ->vsCode =1

Miscellaneous Routines

RESULT CODES

CHAPTER 3

Card Services Routines

U nt16 socket; /1l -> desired socket nunber to eject
U nt32 datalen; // not used
U nt8 *vsDat aPtr; // not used
b
nokErr No error
kCSBadSocket Er r or Invalid socket specified
kCSNoCar dEr r No card in the specified socket
kKCSI nUseErr Clard is configured and being used by another
client

GetCardInfo Parameter Block

Calling this routine allows the client to get vendor-specific information, as detailed in the
following code.

/1 vendor-specific call #2

t ypedef struct Get Cardl nfoPB Get Cardl nf oPB;
struct Get Cardl nf oPB

{
U nt8 cardType; /Il <- type of card in socket (defined at top of
file)
U nt8 subType; /1l <- detailed card type (defined at top of file)
U nt 16 reserved; /1l <-> reserved (should be set to zero)
U nt16 cardNaneLen; // -> nmaximumlength of card nane to be returned
U nt 16 vendor NaneLen;// -> maxi num | ength of vendor nane to be
returned
U nt8 *cardNane; /l -> ptr to card nane string (read fromdC S),
or nil
Uunt8 *vendorNanme; // -> ptr to vendor name (read fromdS), or nil
s

/1l GetCardlnfo card types

#define kCSUnknownCar dType 0
#define kCSMulti FunctionCardType 1
#define kCSMenoryCardType 2
#define kCSSeri al Port CardType 3
#define kCSSerial Onl yType 0
#define kCSDat aModeniype 1
#define kCSFaxMbdenilype 2
#defi ne kCSFaxAndDat aMbdemnivask (kCSDat aMbdenType | kCSFaxMbdenmType)
#define kCSVoi ceEncodi ngType 4

Miscellaneous Routines 65

CHAPTER 3

Card Services Routines

#define kCSParall el PortCardType 4
#define kCSFi xedDi skCar dType 5
#define kCSUnknownFi xedDi skType 0
#define KkCSATAInterface 1
#define kCSRotati ngDevi ce (0<<7)
#define KkCSSiliconDevice (1<<7)
#define kCSVi deoAdapt or CardType 6
#define kCSNetwor kAdapt or CardType 7
#define kCSAlI MsCar dType 8
#define kCSNuntCar dTypes 9
RESULT CODES
nokErr No error
kCSBadSocket Er r or Invalid socket specified
kCSNoCar dEr r No card in the specified socket

EnableSocketEvents Parameter Block

Calling this routine is equivalent to calling the old Request Socket mask for every
socket in the system, using the global event mask as the starting socket event mask.

/1 vendor-specific call #3

t ypedef struct Vendor Specifi cPB Vendor Speci fi cPB;
struct Vendor Speci fi cPB

{
Unt32 clientHandle;// -> clientHandl e returned by Registerdient
Ul nt 16 vsCode; // -> vsCode = 3
Ul nt 16 socket; // not used
Ul nt 32 dat alLen; // not used
unt8 *vsbDataPtr; // not used

}s

RESULT CODES
noErr No error
kCSBadHandl| eEr r Invalid client handle

DIVERGENCE FROM PCMCIA STANDARD

This call is not a standard PCMCIA call. It provides a better way to enable events after
reentrance into a client is available.

66 Miscellaneous Routines

CHAPTER 3

Card Services Routines

GetAdapterInfo Parameter Block

Socket Services API elements are frequently not brought out to the Card Services API but
are still required for normal card operation. This call allows clients to query the
capabilities of an adapter that interfaces to a given socket. This information may be used
to improve the operation of a client with a given socket and card.

/1 vendor-specific call #6

t ypedef struct Vendor Specifi cPB Vendor Speci fi cPB;
struct Vendor Speci fi cPB

{
Ul nt 32
Ul nt 16
U nt 16
Ul nt 32
unt8
}

cli ent Handl e; I

vsCode; 1/
socket ; /1
dat aLen; /1

/1
*vsDat aPtr; /1

-> clientHandl e returned by Registerdient

-> vsCode = 6

-> socket nunber

-> | ength of Get Adapter|nfoPB plus space for
vol t ages

-> Get AdapterinfoPB * (supplied by client)

typedef struct Get Adapter|nfoPB Get Adapt erl nf oPB;

struct GCet Adapterl nfoPB

{
Ul nt 32
U nt 16
Ul nt 16
U nt 16
unt8
}s

attri butes; /1

revi sion; 1/
reserved; 1/
numVol t Entries; //

*vol t ages; /1

// ‘"attributes' field val ues

enum

{

kCSLevel Model nterrupts
kCSPul seMbdel nterrupts
kCSPr ogr ammabl eW ndowAddr
kCSPr ogr anmrebl eW ndowsSi ze
kCSSocket Sl eepPower

k CSSof t war eEj ect
kCSLockabl eSocket

kCSI nUsel ndi cat or

Miscellaneous Routines

<- capabilties of socket's adapter
<- id of adapter

<- nunber of valid voltage val ues
<-> array of BCD voltage val ues

= 0x00000001,
= 0x00000002,
= 0x00000004,
= 0x00000008,
= 0x00000010,
= 0x00000020,
= 0x00000040,
= 0x00000080

67

RESULT CODES

CHAPTER 3

Card Services Routines

NnoErr No error
kCSBadSocket Er r or Invalid socket specified

Unsupported Routines

CSRequest Excl usi ve and CSRel easeExcl usi ve are not supported by the
PowerBook Card Services API.

PC Card Manager Constants

68

The PC Card Manager helps client software to recognize, configure, and view PC Cards
that are installed in the PC Card sockets on PowerBook computers. This section lists the
PC Card Manager constants and explains the function of each constant.

/!l mscell aneous

#define CS_MAX_SOCKETS 32 /!l along is used as a socket bitnmap

enum
{
gestal t CardServi cesAttr = 'pced', // Card Services attributes
gestal t CardServi cesPresent = 0 /1 if set, Card Services is present
b
enum
{
_PCCardDi spatch = OxAAFO // Card Services entry trap
b
/*
The PC Card Manager will migrate towards a conpl ete Maci ntosh nane
space very soon. Part of that process will be to reassign result codes

to a range reserved for the PC Card Manager. The range will be -9050 to
-9305 (decimal inclusive).
*/

PC Card Manager Constants

CHAPTER 3

Card Services Routines

/!l result codes

enum
{
kCSBadAapt er Er r = -9050
kCSBadAt tri but eErr = -9051
kCSBadBaseEr r = -9052
k CSBadEDCEr r = -9053
kCSBadl RQEr r = -9054
kCSBadOr f sett Err = -9055
kCSBadPageEr r = -9056
kCSBadSi zeErr = -9057
kCSBadSocket Err = -9058
kCSBadTypeErr = -9059
kCSBadVccErr = -9060
kCSBadVppErr = -9061
kCSBadW ndowEr r = -9062
kCSBadAr gLengt hEr r = -9063
kCSBadAr gsErr = -9064
kCSBadHandl eErr = -9065
kCSBadCl SEr r = -9066
kCSBadSpeedEr r = -9067
kCSReadFai | ureErr = -9068
kCSW it eFai | ureErr = -9069
kCSCGener al Fai | ureErr = -9070
kCSNoCar dEr r = -9071
kCSUnsupport edFuncti onErr = -9072
kCSUnsuppor t edModeEr r = -9073
kCSBusyErr = -9074
kCSW i t eProt ect edErr = -9075
kCSConf i gur ati onLockedErr = -9076
kCSI nUseEr r = -9077
kCSNoMbr el t emsEr r = -9078
kCSQut O Resour ceErr = -9079

}s

PC Card Manager Constants

inval i d adapter nunber
attributes field value is

invalid

base system menory address is invalid

EDC generator specified is invalid

specified IRQ level is invalid
specified PC Card nenory array offset is

invalid
specified page is invalid
specified size is invalid

speci fied | ogical or physica

nunmber is invalid

socket

speci fied wi ndow or interface type is

invalid
speci fied Vcc power |evel

is invalid

index is invalid
speci fied Vppl or Vpp2 power |eve

specified windowis invalid
ArgLength argurment is invalid
val ues in argunent packet are invalid

clientHandle is invalid
CISon card is invalid

speci fi ed speed is unavail abl e
unabl e to conplete read request

unable to conplete witer

request

an undefined error has occurred

no PC Card in the socket
function is not supported
i mpl emrent ati on

node i s not supported

by this

i ndex

unabl e to process request at this tine

media is wite-protected

a configuration has already been | ocked

resource is being used by a client

there are no nore of the itens requested

Card Services has exhausted the resource

69

CHAPTER 3

Card Services Routines

/1 nmessages sent to client's event handl er

enum
{

kCSNul | Message

kCSCar dl nserti onMessage

kCSCar dRenpval Message

kCSCar dLockMessage

kCSCar dUnl ockMessage
kCSCar dReadyMessage

kCSCar dReset Message

kCSl nserti onRequest Message

kCSl nserti onConpl et eMessage
kCSEj ect i onRequest Message
kCSEj ecti onFai | edMessage

kCSPMResuneMessage

k CSPMSuspendMessage
kCSReset Physi cal Message
kCSReset Request Message
kCSReset Conpl et eMessage
kCSBat t er yDeadMessage

kCSBat t er yLowiessage
kCSW i t ePr ot ect Message
kCSW i t eEnabl eMessage
kCSC i ent | nf oMessage
kCSSSUpdat edMessage

kCSFuncti onl nt er r upt Message
kCSAccessError Message
kCSCar dUnconf i gur edMessage

kCSSt at usChangedMessage

}s

0x00
0x01
0x02
0x03

0x04
0x05
0x06
0x07

0x08

0x09

Ox0A

0x0B
0x0C
0x0D
O0x0E
OxOF
0x10

Ox11
0x12
0x13
0x14
0x15

0x16
0x17
0x18

0x19

70 PC Card Manager Constants

11
11
/1
11

/1
/11
11

11
11

11

/1
11

/1
11

/11
11
11
11
/1

/1
11

/1
/11
/1
11

11
Il

/1
11
/1

11
/1

no nessages pending (not sent to clients)
card has been inserted into the socket
card has been renoved fromthe socket

card is locked into the socket with a
nmechani cal | atch

card is no longer |ocked into the socket
card is ready to be accessed
physi cal reset has conpl eted

request to insert a card using insertion
not or

insertion notor has finished inserting a
card

user or other client is requesting a card
ej ection

eject failure due to electrical or
nmechani cal probl ens

power nmanagenent resune

power nmanagenent suspend

physical reset is about to occur

client has requested physical reset
Reset Car () background reset has conpl eted

battery is no longer usable; data will be
| ost

battery is weak and shoul d be repl aced
card is now wite protected

card is now wite enabl ed

client is to return client information

AddSocket Ser vi ces/ Repl aceSocket Servi ces
has changed SS (Socket Servi ces) support

card function interrupt
client bus nade error on access to socket

a kCSCar dReadyMessage was delivered to
all clients and no clients request a
configuration for the socket

status change for cards in I/O node

CHAPTER 4

Device Drivers

CHAPTER 4

Device Drivers

This chapter provides guidelines for developers of PC Card device drivers for
PowerBook computers. It describes questions that commonly come up during
development and suggests answers to those questions.

Driver Loading

Currently there is no defined mechanism for installing and loading drivers from PC
Cards. Apple is working on an architecture for loading device drivers from PC Cards,
but neither the PCMCIA committee nor the Apple development team has a solution at
this time. Later versions of this developer note will describe any driver loading
architecture that Apple develops before the first product release.

In the first system release, all drivers and other client software are stored in the PC
Card’s expansion ROM. Because the expansion ROM is electronically erasable, its
contents can be changed in the field if necessary.

Drivers may also be loaded from a disk or other source by the Macintosh system
software.

Booting Requirements

The hierarchical file system (HFS) storage driver lets the HFS mount data storage and
search for a bootable system. To boot the Macintosh system from a PC Card, the HFS
storage driver must be

» aware of the Slot Manager. It must know how to install a DCE (device control entry)
that is compatible with booting from a slot device.

= present in the PC Card’s expansion ROM or in the Macintosh ROM.

Guidelines for Socket Developers

72

Card Services supports the process of adding and deleting Socket Services modules.
Socket Services modules are developed to enable support for different socket adapters or
different adapter topologies. For example, a PCMCIA adapter (controller) may be added
to a system via a PDS (processor-direct slot) connector and therefore requires a version of
Socket Services that knows how to handle interrupts from the PDS adapter.

Card Services provides AddSocket Ser vi ces for Socket Services developers. When
AddSocket Ser vi ces is called, the Socket Services to be installed passes an entry point,
a unique (usually version-associated) ID, the number of adapters and sockets supported
by the installing Socket Services module, and a pointer to the Socket Services globals.

Driver Loading

CHAPTER 4

Device Drivers

Card Services passes the installed Socket Services globals pointer to it during each
function call made to Socket Services. The AddSocket Ser vi ces parameter block
structure is as follows:

t ypedef struct

{
Ptr SSEnt ry; /1 entry point to SS
ushort Attributes; /1 unique id
ushort NumAdapt er s; /1 nunber of adapters supported
ushort NunBocket s; /1 nunber of sockets supported
Ptr Dat aPtr; /1 pointer to SS globals

}

AddSocket Ser vi cesPB;

Interrupt Support

Interrupt support for drivers is handled at multiple levels within the Mac OS architec-
ture. When a client registers with Card Services, the client passes a client callback
address that Card Services stores for all callbacks to the client. At the same time, the
registering client also passes an event mask for all events for which it wants to receive
callback notification. A client can adjust the event mask at some later time with

CGet i ent Event Mask and Set O i ent Event Mask.

When an event generated by Card Services or Socket Services is destined for a client
(for example, if the client has previously indicated that it wants to be notified of certain
events on a given socket) Card Services uses the appropriate event callback interface
described in the Card Services section of the PCMCIA Standards. There are different
callback arguments based on the event type.

Some events are artificially generated by Card Services. For example, when a client
registers after a PC Card has already been inserted into a socket, Card Services generates
a kCSCar dl nser ti onMessage event for the newly registered client. In this way, clients
can be designed to do PC Card tasks in response to event callbacks. These artificial
events execute at interrupt level 0.

Other events may be the result of an interrupt generated by the Socket Services adapter.
An example of this is a KCSFunct i onl nt er r upt Message event, which would be
generated by an adapter whose socket has a PC Card that asserts —| REQ This type of
event is dispatched to the client at the interrupt level at which the adapter interrupt
came in. In this case the client has to be aware that any event-handling code must
operate within the bounds of the normal execution restrictions placed on Macintosh
interrupt time. Refer to Inside Macintosh: Memory for further information.

Interrupt Support 73

CHAPTER 4

Device Drivers

Alternative PCMCIA Controllers

The PowerBook Card Services architecture is designed to support alternative PCMCIA
controllers in conformance with the intent of the PCMCIA standard. The PC Card
support architecture includes the ability to substitute PCMCIA controllers (and provide
an accompanying Socket Services module) and have existing clients work with the new
controller. There are no architectural barriers that would prevent Apple from adopting
other PCMCIA controllers in the future.

74 Alternative PCMCIA Controllers

CHAPTER 5

Human Interface

CHAPTER 5

Human Interface

This chapter discusses some of the human interface issues that are important to
developers designing panels or developing software for PC Cards in the PowerBook
environment.

The PCMCIA standard supports mass storage cards as well as I/O cards, such as
modems, network cards, and video cards. The Macintosh desktop metaphor already
includes the concept of storage device representation (for example, floppy disks, hard
disks, servers, and CD-ROMs) so it automatically supports PC Cards that provide mass
storage. Since users are already familiar with manipulating desktop icons for these
storage devices, Apple has extended the metaphor to include I/O cards as well. This
approach has the following advantages:

= [t provides a more consistent user experience for all types of PC Cards.
» [tinforms the user that the card is installed.

» [t provides greater protection for the user, the card, and the operating system by
providing a software-controlled removal mechanism for all cards.

Manual Card Ejection

PowerBook computers currently support PC Card ejection using a software command.

Ejection is controlled by Card Services which can eject a PC Card after notifying all card
clients that the card is about to be ejected. If clients are using resources on the card, they
have the option of refusing the request and telling users why the card cannot be ejected.

In the future, software ejection may not be the norm. Software clients may have to deal
with the situation where a PC Card is removed without notification. Currently, a user
may manually eject the card in an emergency by inserting a paper clip into a hole near
the card socket. (This method of ejection is similar to the method of emergency ejection
used with floppy diskettes in a floppy disk drive.) For this reason, clients must be careful
if they access PC Card addresses (registers and memory locations) directly because they
cannot rely on advice from Card Services before the PC Card is ejected, and clients it
must be aware that the access may fail under these conditions.

A mechanism built into Card Services prepares for and handles unexpected PC Card
removal. When Card Services detects an access error to a PC Card it sends an access
error message to each registered PC Card client. Clients may want to set an internal flag
and halt access to the card during the next attempt to access the card.

Finder Extension

76

Support for I/ O-oriented PC Cards is provided through a Macintosh Finder extension
that is a client of Card Services. The Finder extension mechanism was chosen because it
is the only external means of providing access to the Finder’s internal code. The
extension maintains card icons on the desktop, provides custom card information in Get

Manual Card Ejection

CHAPTER 5

Human Interface

Info windows, and ejects cards when they are dragged to the Trash folder. The Finder
extension also helps a client to provide custom icons, card names, card types, help
messages, and other custom features (based on card type) when a card is opened. For
example, a typical custom feature would be to open the Monitors control panel when the
user double-clicks a video card’s icon.

The following sections describe various Finder extension support features.

Card Services Client Registration

The Finder extension registers itself with Card Services as part of its startup process.
After that point, it simply tracks card events to determine when cards have been
inserted or removed. It ignores storage cards because they are normally handled by
device drivers.

The client event handler and extension code communicate with each other using shared
global variables. This is necessary because the event handler receives card events at
interrupt time. The shared variables let the extension code process events at a later
(noninterrupt) time, when it can use all parts of the Macintosh Toolbox.

Card Icons

Macintosh users benefit from having icons and names that reflect the functionality or the
type of the card, and each installed PC Card is identified by a custom icon. The name
associated with the icon is the name taken from the card’s level 1 version tuple. If the
tuple is missing or no name is specified, the card is assigned the name “Untitled.” The
user cannot change the card’s icon or name. Figure 5-1 shows a sample PC Card icon.

Figure 5-1 Sample PC Card icon

24

SBSC™ PageCard

Client software can provide a custom icon, overriding the default icon for the card type.
It may also override the card’s name. See “Custom Support for I/O Cards” on page 81
for more information about overriding card icons and names.

User Interactions

When a PC Card is inserted, the Finder extension places its icon on the Macintosh
desktop. At this point the icon can be dragged anywhere on the desktop or placed in the
Trash folder. If the user attempts to drag the icon to a folder or disk icon, or to an open
folder or disk window, the user is presented with a dialog box (Figure 5-2) that indicates
the icon must remain on the desktop, and the icon returns to its previous location.

Finder Extension 77

CHAPTER 5

Human Interface

Figure 5-2 Icon dragging warning

A PC Card cannot be moved off the
desktop.

If the user drags a PC Card icon onto an application’s icon and the application starts up,
the card’s file will not be included in the list of files sent to the application for processing.

If the user drags a card icon to the Trash folder, the Finder extension tries to eject the
card. If the card is in use, the ejection operation fails and the user is presented with the
dialog box shown in Figure 5-3.

Figure 5-3 Card ejection warning

The card “PageCard Revision R” could not
be ejected because it is in use.

If the card cannot be ejected because of a failure of the ejection mechanism or because the
card’s slot is blocked, the user is presented with a dialog box that describes the problem
and indicates what to do about it. Figure 5-4 shows atypical ejection failure dialog box.

Figure 5-4 Ejection failure warning

78

The card “PageCard Revision A” was not

0 successfully ejected. Please check that
nothing is blocking the slot of the
PCMCIA module.

If the user attempts to eject the card a second time, and this attempt also fails, the user is
presented with a dialog box pointing to the user guide for instructions on manual
ejection of the card. Figure 5-5 shows this dialog box.

Finder Extension

CHAPTER 5

Human Interface

Figure 5-5 User guide reference warning

The card “PageCard Revision A” was not
0 successfully ejected. Please refer to

your user guide for instructions on

manual ejection of PCMCIA cards.

When a card has been successfully ejected, the Finder extension removes its icon from
the desktop. It also closes the card’s Get Info window if it was open.

Card Information Display

Most Finder objects (disks, files, folders, Trash folder) are allowed to display information
about themselves using a Get Info window. PC Cards are no exception. The Get Info
windows for PC Cards contain all relevant information about the PC Cards such as their
icon, name, function, and location. Figure 5-6 shows an example of a PC Card Get Info
window.

Figure 5-6 Sample PC Card Get Info window

S[J== Mobile GPS Revision B

=N SESC™ PageCard

Kind : Serial Port/Madermn Card

A

where : Lower slot in PCMCIA rmodule

Custom Card Actions

A PowerBook user who double-clicks on an icon or selects Open from the File menu
expects something to happen. Typically, the item represented by the icon opens. Apple
does not currently implement any standard icon opening behavior for PC Cards.
However, Card Services and the Finder extension let developers supply custom actions.

Since many I/O cards have no user interface elements, opening a card may be meaning-
less. In this case, double-clicking on the desktop icon displays a dialog box that names
the card and gives a generic message about it, as shown in Figure 5-7.

Finder Extension 79

CHAPTER 5

Human Interface

Figure 5-7 Generic message for cards that cannot be opened

This card adds functionality to your
s Macintosh. It cannot be opened.

Card Services provides a mechanism that lets clients define custom actions for specific
card types. The Finder extension uses this mechanism to override the default open action
by first asking the client to perform a custom action. If no custom action is defined, the
Finder extension executes its default action.

Some examples of custom actions that a client might perform include
» helping the user select and open a terminal program for modem cards

= opening an address book application for a pager card

When defining custom actions, it should be easy to access a card’s associated elements
(such as a page card’s address book application) when you double-click the PC Card’s
icon. If some elements do not open immediately, a dialog box is displayed that directs
you to the interface element requiring attention.

IMPORTANT

Low-level PC Card support software should not implement
user interface actions. However, low-level software may
initiate events to be handled by higher-level software. a

Software Not Installed

When you are using PC Cards, you generally need specific application software. For
example, you need networking software for the LAN cards, and so forth. If you install a
card and the application software is not installed on your computer, you will see the type
of message shown in Figure 5-8. You can choose to ignore the message by clicking
Cancel, or eject the PC Card by clicking Eject. You will not be able to access the card until
you install the appropriate software.

Figure 5-8 Missing software warning

80

The correct software you need to use
this PC Card is not installed. Do you want
to eject the card now?

Finder Extension

CHAPTER 5

Human Interface

Custom Support for I/O Cards

The Finder extension provides a mechanism for developers that supports custom icons,
names, types, help messages, actions, and other custom features. Observe the following
guidelines when customizing these elements of PC Cards:

= You can design custom icons that are passed to the Macintosh Finder. The custom icon
should represent the functionality of the card and look similar to Apple PC Card
icons. The shape of the icon should be the same as the shape of Apple’s icons,
although you may use a unique symbol or logo inside this shape to identify the card
as coming from a particular developer.

= Card names provided by the card vendor may be overwritten with names provided
by the software developer. These names should be placed in a resource so that they
may be localized. For example, if a vendor supplies a card name “XY-5Y-22A,” which
is meaningless to the user, you may provide a card name such as “ACME Modem” to
explain the functionality provided by the card.

= You may override card types defined by the Finder. The Finder displays the
information to the user in the Kind field of the card’s Get Info window. For example,
the Finder may define a card type as “Serial Card” but you may override this with the
more specific card type “FAX Modem Card.”

= You may customize balloon help messages to provide more specific card information.
For example, if the Finder includes the help message “This is a serial card...” you may
substitute the message “This is a FAX Modem card...”

= Custom card actions are discussed in “Custom Card Actions” on page 79. You can
defines custom card actions that will be performed when the user double-clicks on the
desktop card icon. If you do not define custom actions, If it has no default action, it
displays the generic message shown in Figure 5-7.

Multifunction Cards

A multifunction card is one that can perform at least two discrete functions, such as
modem and network functions. This type of card is supported by the latest release of the
PCMCIA standard, which is documented in PC Card Standard, February 1995, and
referred to in this section as the “February release.”

Apple Computer, Inc. provides full software support for PC Cards, as defined by the
PCMCIA standard, release 2, and documented in PCMCIA Standards, Release 2.01,
November 1992. This standard does not support multifunction cards and, if you use a
multifunction card with the software currently supplied by Apple, only the first function
on the card will be recognized by the software.

There are ways currently available to work around this situation. This section provides
an overview of February-release support for multifunction cards, and indicates ways
that developers may use other Apple resources to accommodate multifunction cards
with the Apple software currently available.

Multifunction Cards 81

CHAPTER 5

Human Interface

IMPORTANT

Before you attempt to write drivers or other software to support
multifunction cards, you should read the relevant sections in
PC Card Standard, February 1995, and consult your technical
support representative at Apple Computer, Inc. a

February-Release Support

Multifunction cards contain multiple Card Information Structures (CIS). The first CIS,
which is shown in Figure 5-9 as the global CIS, identifies the card as being one that
contains multiple functions. It does this by means of the CI STPL_LONGLI NK_MFC tuple
(MEC tuple). There are separate CIS for each of the functions supported, that is for each
set of configuration registers on the card.

The MFC tuple performs the following functions:

= It provides the link to the next tuple.

= Itindicates the number of sets of configuration registers (that is the number of
functions implemented by the card)

= It provides the target addresses for each of the functions.

Table 5-1 summarizes the functions of the different bytes in the MFC tuple. You will find
detailed information on this subject in PC Card Standard, February 1995, Volume 4.

When the client parses the MFC tuple, it finds the first tuple listed. In the example
shown, this is the modem tuple. Subsequently the MFC tuple identifies and targets all
other functions on the PC Card.

Figure 5-9 Parsing tuples for multifunction cards — February release
Global CIS
MFC tuple
Modem
tuples
» Network
tuples
L Other
tuples

Multifunction Cards

CHAPTER 5

Human Interface

Table 5-1 MFC tuple functions

Byte

number Field Description

0 TPL_CODE Cl STPL_LONGLI NK_MFC

1 TPL_LI NK Link to next tuple. This will be at least byte 6,
figuring 5 bytes per function.

2 TPLMFC_NUM Number of sets of configuration registers.
This gives the count of the number of functions
on the card.

3 TPLMFC_TAS1 CIS target address space for the first function
on the PC Card.

4-7 TPLMFC_ADDR1 Target address for the first function stored as an
unsigned long integer, with the low-order byte first.

8 TPLMFC_TAS2 CIS target address space for the second function on
the PC Card.

9-12 TPLMFC_ADDR2 Target address for the second function stored as an
unsigned long integer, with the low-order byte first.

13-n Additional target address space and address fields

Release 2 Support

for any additional functions on the PC Card. If
there are only two functions, these fields will not
be present.

The MFC tuple is not supported by PCMCIA Standard Release 2 Card Services.
Therefore the process of identifying multiple functions described in the previous section
does not work with multifunction PC Cards currently used in Apple applications.

As shown in Figure 5-10, the global CIS identifies the first function (modem tuple), but
will ignore any other tuples. This means that the multifunction card is actually being

used as a single-function card.

Multifunction Cards

83

CHAPTER 5

Human Interface

Figure 5-10 Parsing tuples for multifunction cards — Release 2

Global CIS
MFC tuple
The first function is identified
I R Modem and implemented
tuples
These functions are ignored
» Network
tuples
L e Other
tuples

It is possible to parse multiple tuples manually, using Get Fi r st Tupl e and

Get Next Tupl e, combined with the return links attribute set, which is the Apple
constant kCSRet ur nLi nkTupl es. This process involves writing a client driver that
can call Card Services and parse the information it receives. The client driver gets
the first tuple, and then proceeds through the CIS identifying the tuple for each

card function in turn.

IMPORTANT

This developer note does not describe the process for manual
parsing, and you should contact your Apple technical support
representative if you wish to use multifunction cards with the
Release 2 of the PCMCIA standard. a

Apple Computer, Inc. is conducting an ongoing investigation to establish rules for
identifying and controlling multifunction PC Cards on the Macintosh desktop, and is
currently considering updating the software supplied with hardware that accommodates
multifunction PC Cards. There should be a desktop icon for each type of functionality
provided on a card, but Apple has yet to establish the mechanism for supporting user
actions for individual functions of a card.

The committee for PCMCIA standards is in the process of defining how Card Services,
Socket Services, and interrupt-sharing should work with multifunction PC Cards.

Multifunction Cards

Glossary

asynchronous This term is applied to processes
and operations in which the sequencing of events
is controlled by free-running signals. Each event
is triggered by the completion of the previous
event. The alternate type of operation is known
as synchronous.

big-endian Data formatting in which each field
is addressed by referring to its most significant
byte. This means that if you are accessing a
four-byte, 32-bit data word, the most significant
byte is byte 03, and the most significant bit is

bit 31. Macintosh computers use the big-endian
data format. Computers based on Intel
architectures, such as IBM PCs, use the
little-endian format. See also little-endian.

Card Information Structure (CIS) A list of
structures that describe the functions and
capabilities of a PC Card. These structures are
variable in length, and are made up of data
blocks referred to in this context as tuples. The
CIS is generally written only once, when the card
is formatted.

Card Services The part of the PC Card
Manager that provides system services for
third-party PC Card control software.

client A device driver or application program
that uses the Card Services software.

event handler A routine in a client that Card
Services uses to notify the client of events. This
routine lets clients of a particular PC Card handle
interrupts from functions on the card.

Finder extension A client of Card Services. It is
the only external means of accessing the Finder’s
internal code. The extension maintains card icons
on the desktop, provides custom card informa-
tion in the Get Info window, and ejects cards
when they are dragged to the Trash. The Finder
extension also helps clients provide custom icons,
card names, card types, help messages, and other
custom features.

glue routine A run-time library routine,
usually provided by the development environ-
ment. It provides a linkage between a high-level
language code and a system routine with an
interface protocol different from that of the
high-level language. It is also any short special-
purpose assembly-language routine.

hardware abstraction This is a process that
takes hardware functionality and gives it a name,
thus concealing the hardware implementation
from the software. The hardware abstraction
layer acts as a liason between the software
element and the hardware element.

JEDEC The Joint Electron Device Engineering
Council is one of the groups that determines
engineering standards in the United States.

little-endian Data formatting in which each
field is addressed by referring to its least
significant byte. This means that if you are
accessing a four-byte, 32-bit word, the most
significant byte is byte 00, and the most
significant bit is bit 00. Computers based on Intel
architectures, such as IBM PCs, use the
little-endian format. Macintosh computers use
the big-endian format. See also big-endian.

PC Card An expansion card that conforms to
the PCMCIA standard, and may be inserted into
a 68-pin socket in the PowerBook computer. PC
Cards provide such functions as additional
storage, fax/modem support, video support, and
LAN (local area network) support.

PC Card Manager Part of the Mac OS that
supports PC cards in PowerBook computers. The
PC Card Manager helps client software to
recognize, configure, and view PC Cards that are
inserted into PC Card sockets on PowerBook
computers.

85

GLOSSARY

PCMCIA controller The hardware interface

to PC Cards. It provides the interface signals,
configurable voltages to power the cards,
hardware windows into the card’s address space,
and interrupt decoding for state changes.

PCMCIA standards An industry standard for
computer expansion cards set by the Personal
Computer Memory Card Internal Association.

pseudocode This is an algorithm that is not
written in any real computer language. It is
generally written in English, or in something
close to a computer language.

reentrant A reentrant routine is one that is
able to accept a call while one or more previous
calls to it are pending. It can do this without
invalidating the previous call(s).

socket The hardware receptacle into which a
PC Card is inserted.

Socket Services The layer of software that is
responsible for routing communication to and
from Card Services and to and from the socket
controller hardware.

stubbed message A stub is a piece of code that
has no function. A stubbed message, therefore,
instead of handling some situation, generally
returns without doing anything.

synchronous This term is applied to processes
and operations in which the sequencing of events
is controlled by clock pulses. The alternate type
of operation is described as asynchronous.

86

tuple Tuples are elements of the CIS. They are
blocks of data made up of eight-bit bytes. Each
tuple contains information about itself, including
its length, type, and information about the PC
Card. Host software examines the tuples to deter-
mine the capabilities of the card, such as checksum
control, JEDEC programming information, and
configuration information. The tuple also
contains the link to the next tuple, or an indicator
showing that it is the last tuple in the list.

window The term window is used in this
developer note to indicate the block of system
memory space assigned to the PC Card. Itis a
defined address range that you can use to
perform read or write accesses to the card Each
card slot is assigned a block of memory. Each
block of memory is divided into two sections.
You can access the card in both sections at the
same time, for example, you could do a buffer
access using one section and generate an I/O
cycle using the other section. This use of the term
window should be distinguished from the
standard Macintosh usage, where a window
refers to some sort of panel displayed on the
screen, such as the Get Info window.

Index

A

abbreviations x

accessing memory space 86
accessing the PC Card 86
access windows 54

adapter registration 9

adapter topologies 72
AddSocket Ser vi ces parameter block 73
APDA xii

API 7

Apple documents xii
application software 4
architecture 2, 3, 4
asynchronous calls 9
asynchronous routines 6,9, 85

B

Balloon Help 81
big-endian format 6, 85

C

card corners 3
card ejection 3, 76, 78
facilitating 3
warning 78
card icons 77
card information display 79
Card Information Structure (CIS) 12, 85
card insertion 73
card names 81
Card Services 4,5, 6,12, 34, 85
API 12
clients 12
operating tasks 6
PowerBook implementation 27
card status 53
card types 81
C function 9
CIS parsing 6
Clanguage 9
client registration 77

clients 4, 12, 34, 85
code 22
deregistration 61
event handler 14
human interface 8
initialization 23
interrupt 8
loading 8
message handling 8
pseudocode 29
registration 59
removal 24
returning information 27, 36
setup 15
structure 13
writing software for 12
configuration 38
constants 68
conventions X

CSAccessConfi gur ati onRegi st er routine 44

CSAddSocket Ser vi cesPB routine 7
CSDer egi st er d i ent routine 61
CSGCet Car dSer vi cesl nf o routine 59
CSGet C i ent Event Mask routine 45
CSCGet C i ent | nf o routine 27, 36
CSGet Confi gur ati onl nf o routine 18, 39
CSCet Fi rst d i ent routine 34

CSGet Fi r st Tupl e routine 49

CSGet Next C i ent routine 35

CSGet Next Tupl e routine 50

CSGet St at us routine 53

CSGet Tupl eDat a routine 52

CShbdi f yConfi gur ati on routine 42
CSMwbdi f yW ndowroutine 57

CSRegi ster d i ent routine 8,15
CSRegi st er C i ent routine 60

CSRel easeConf i gur ati on routine 43
CSRel easeExcl usi ve routine 68
CSRel easeSocket Mask routine 48
CSRel easeW ndowroutine 58
CSRequest Conf i gur ati on routine 41
CSRequest Excl usi ve routine 68
CSRequest Socket Mask routine 47
CSRequest W ndowroutine 55
CSReset Car d routine 62

CSSet d i ent Event Mask routine 46
CSVal i dat eCl Sroutine 63

CSVendor Speci f i ¢ routine 8, 63

87

INDEX

current card state 22
custom card actions 79, 81
custom icons 81

D

deregistering clients 61

designing card corners 3

Designing Cards and Drivers for the Macintosh Family xii
device drivers 4

documentation xi

DOS 9

driver loading 72

driver location icon 27

drivers as clients 7

dynamic socket adapter registration 9

E

Ej ect Car d parameter block 64
Ej ect Car d vendor-specific call 64
ejection failure warning 78
ejection of PC cards 76
Enabl eSocket Event s parameter block 66
Enabl eSocket Event s vendor-specific call 15, 66
event handler 8, 13, 14, 25, 85
Event Handl er function 13
event masks 5, 8, 45
event messages
kCSBat t er yDeadMessage 5
kCSBat t er yLowMessage 5
kCSCar dl nserti onMessage 5
kCSCar dReadyMessage 5
kCSCar dRenmpoval Message 5
kCSFunct i onl nt er r upt Message 5
event notification 9
event processing 15
event progression 14
events, non-specific 16

F

fax/modem implementation 2
Finder extension 76, 85
function interrupts 20

88

G

gestalt 68

Gestalt Manager 5

Cet Adapt er | nf o parameter block 67
Get Adapt er | nf o vendor-specific call 67
Get Car dI nf o parameter block 65

Cet Car dI nf o vendor-specific call 65
CGetdientinfo 19

globals 14

global variables 22

H

hardware abstraction 85
hardware abstraction layer 7
hierarchical file system 72
human interface 8, 76
Human Interface Guidelines xii

icon dragging warning 78
icons 77
custom 81
location 27
information display for PC cards 79
Inside Macintosh xii
interrupts 5,7, 73
handling 15
notification 5,9

J

jerky mouse syndrome 14
Joint Electron Device Engineering Council (JEDEC) 85

K

kCSAct i onPr oc subfunction 20

kCSBat t er yDeadMessage event message 5

kCSBat t er yLowiMessage event message 5

kCSCar dl con subfunction 20

kCSCar dl nser ti onMessage event message 5, 14,
16,17

kCSCar dNane subfunction 19

kCSCar dReadyMessage event message 16, 18, 30

INDEX

kCSCar dReady Messageevent message 5 multifunction PC Cards 81-84
kCSCar dRenpval Message event message 5, 18 CIS structures 82

kCSCar dType subfunction 19 February-release support 82
kCSA i ent | nf oMessage event message 19 future Apple support 84
kCSA i ent | nf o subfunction 19 MEC tuple 82

kCSEj ect i onFai | edMessage event message 19 parsing multiple tuples 83

kCSEj ect i onRequest Message event message 18
kCSFunct i onl nt er r upt Message event message 20
kCSFunct i onl nt er r upt Message event message 5

kCSHel pSt ri ng subfunction 20 N
kCSPMResunmeMessage event message 20
kCSPMBuspendMessage event message 20 names of cards 81
kCSRegi st rati onConpl et eMessage event non-reentrancy of Socket Services 9
message 15 notification
of interrupts 5
services 9
NuBus cards 9

L numbering resources 6

LAN implementation 2
little-endian format 6, 85

loading client code 8 O
loading drivers from PC Cards 72
location icon 27 opening PC cards 79
M P, Q
Macintosh Finder 76 parameter blocks
managing windows 54 Ej ect Card 64
manually parsing tuples 84 Enabl eSocket Event s 66
masking routines 45 Get Adapt er I nfo 67
mass storage drivers 27 Get Cardl nfo 65
mass storage PC cards 76 programming interface 9
mechanical considerations 3 PC Card Manager 2, 34, 68, 85
mechanical design 3 constants 68
memory space 54 PC Cards 4, 85
memory space, accessing 86 dragging icons 77
memory storage 2 functions 2
message handling 8 types 2
messages 70 PCMCIA
kCSBat t er yDeadMessage 5 address xi
kCSBat t er yLow\vessage 5 compliance with standards 12
kCSCar dl nserti onMessage 5, 16,17 controller 4,12, 74, 86
kCSCar dReadyMessage 5, 16, 18, 30 documents xi
kCSCar dRenoval Message 5,18 standards 2,9, 86
kCsd i ent | nf oMessage 19 PDS (processor-direct slot) cards 9
kCSEj ect i onFai | edMessage 19 PowerBooks
kCSEj ect i onRequest Message 18 implementation 9
kCSFunct i onl nt er r upt Message 5, 20 sleep mode 20
kCSPMResunmeMessage 20 power management 20, 21
kCSPMsuspendMessage 20 processing resume messages 21
missing software warning 80 processing suspend messages 21

processor-direct slot (PDS) 72

INDEX

programming interface, parameter block 9
programming model 9
pseudocode 29, 86

R

S

reentrancy of Card Services code 6, 9

reentrant routines 86

registration of clients 59

registration services 8

removal of PC cards 76

removing clients 61

resources, numbering 6

result codes 69

rounded card corners 3

routines
CSAccessConfi gurati onRegi ster 44
CSAddSocket Servi cesPB 7
CSDer egi sterC ient 61
CSGet Car dSer vi cesl nfo 59
CSGet d i ent Event Mask 45
CSGetdientlnfo 27,36
CSGet Configurationl nfo 18,39
CSGetFirstdient 34
CSCet Fi rst Tupl e 49
CSGet Next Cl i ent 35
CSGet Next Tupl e 50
CSCet St at us 53
CSGet Tupl eDat a 52
CSModi f yConf i gurati on 42
CShodi f yW ndow 57
CSRegi sterdient 8,15,60
CSRel easeConfi guration 43
CSRel easeSocket Mask 48
CSRel easeW ndow 58
CSRequest Confi guration 41
CSRequest Excl usi ve 68
CSRequest Socket Mask 47
CSRequest W ndow 55
CSReset Card 62
CSSet d i ent Event Mask 46
CSval i dat eCl S 63
CSVendor Speci fic 8,63

routines not supported 68

90

shared globals 14
single trap entry point 9
sleep mode 20
Slot Manager 72
sockets 4, 86
adapters 72
masks 45
status 53
Socket Services 4,7,12, 86
software architecture 2, 3, 4
software card ejection 3
square card corners 3
status change notification 9
status changes 5
status information 53
stubbed message 86
subfunctions
kCSAct i onProc 20
kCSCar dl con 20
kCSCar dNarme 19
kCSCar dType 19
kCsCientlnfo 19
kCSHel pString 20
switch statement 29
synchronous routines 6, 9, 86
system memory space 54

T

Technical Introduction to the Macintosh Family xii
tuples 16, 49, 86

for multifunction cards 81-84

manually parsing 84
Type III card mechanical design 3

U

universal procedure pointer (UPP) 15, 22
unsupported routines 68

INDEX

\Y

vendor-specific calls
Get Adapt erl nfo 67
Get Cardl nfo 65
virtual memory 6, 14

W, X,Y, Z

warnings
card ejection 78
ejection failure 78
icon dragging 78
missing software 80
windows 4, 6,12, 54, 86
writing client software 12

91

T H E A PPLE PUBLISHTING

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Final pages were created on an Apple
LaserWriter Pro 630 printer. Line art
was created using Adobe Illustrator.
PostScript” , the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino” and display type is
Helvetica™. Bullets are ITC Zapf
Dingbats[]. Some elements, such as
program listings, are set in Apple Courier.

WRITERS
Joyce D. Mann and George Towner

DEVELOPMENTAL EDITOR
Jeanne Woodward

ILLUSTRATOR
Sandee Karr

PRODUCTION
Rex Wolf

Special thanks to Sue Bartalo, James Blair,
Steve Carlton, Steve Christensen,
Godfrey DiGiorgi, Dave Falkenberg,
Jerry Katzung, Mike Primeau,

D. K. Smith, and Carlton Van Putten

	Developing PC Card Software for the Mac OS
	Contents
	Figures and Tables
	About This Developer Note
	Contents of This Note
	Conventions and Abbreviations
	Typographical Conventions
	Abbreviations

	Supplementary Documents
	PCMCIA Documents
	Apple Documents

	Overview
	Overview of PCMCIA Standards
	Mechanical Considerations for PC Card Developers
	Optimal Square Corner Design
	Type III Cards

	Overview of the Software Architecture
	Card Services
	Installation
	Operation

	Socket Services
	Drivers as Clients
	Programming Model
	PowerBook Implementation of the PCMCIA Standard

	Client Software
	PCMCIA Services Model
	Client Structure
	Structure Overview
	Client Setup

	Event Processing
	Card Insertion Message
	Card Ready Message
	Card Removal Message
	Ejection Request Message
	Ejection Failed Message
	Client Information Message
	Function Interrupt Message
	Power Management Suspend Message
	Power Management Resume Message

	Sample Client Code
	Global Variables
	Client Initialization
	Client Removal
	Event Handler
	Returning Client Information
	Driver Location Icon
	Sample Client Pseudocode

	Card Services Routines
	Client Information
	Configuration Routines
	Masking Routines
	Tuple Information
	Card and Socket Status
	Access Window Management
	Client Registration
	Miscellaneous Routines
	PC Card Manager Constants

	Device Drivers
	Driver Loading
	Booting Requirements
	Guidelines for Socket Developers
	Interrupt Support
	Alternative PCMCIA Controllers

	Human Interface
	Manual Card Ejection
	Finder Extension
	Card Services Client Registration
	Card Icons
	User Interactions
	Card Information Display
	Custom Card Actions
	Software Not Installed
	Custom Support for I/O Cards

	Multifunction Cards
	February-Release Support
	Release 2 Support

	Glossary
	Index

