Developer Note

Macintosh PowerBook 5300
Computer

Macintosh PowerBook 5300/100
Macintosh PowerBook 5300¢/100
Macintosh PowerBook 5300c¢s/100
Macintosh PowerBook 5300ce/117

Developer Press
0 Apple Computer, Inc. 1995



Apple Computer, Inc.

[0 1995 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

The Apple logo is a trademark of
Apple Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleShare, AppleTalk,
Apple SuperDrive, LaserWriter,
LocalTalk, Macintosh, Macintosh
Quadra, Newton, PowerBook, and
ProDOS are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

AOCE, Apple Desktop Bus,
AppleScript, Disk First Aid, Finder,
Mac, PowerBook Duo, Power
Macintosh, and QuickDraw are
trademarks of Apple Computer, Inc.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

America Online is a service mark of
Quantum Computer Services, Inc.
Classic is a registered trademark
licensed to Apple Computer, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Motorola is a registered trademark of
Motorola Corporation.

NuBus is a trademark of Texas
Instruments.

PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Figures and Tables ix

Preface About This Developer Note  «xi
Contents of This Note ~ xi
Supplemental Reference Documents Xii

Apple Publications xii
Other Publications  xiii

Conventions and Abbreviations xiii
Typographical Conventions xiii
Standard Abbreviations xiv
Chapter 1 Introduction 1
Features 2

Appearance 3

Peripheral Devices 4

Configurations 5

Compeatibility Issues 5
RAM Expansion Cards 5
Number of Colors 5
Video Mirror Mode 6
Sound Sample Rates 6

Power Manager Interface 6
Microprocessor Differences 7
Completion Serialized Instructions 7

Split Cache 7
Data Alignment 7
POWER-Clean Code 8

Chapter 2 Architecture 9
Processor/Memory Subsystem 11
Main Processor 11
RAM 11
ROM 12

PBX Memory Controller IC 12
Memory Control 12
Bus Bridge 12



Input/Output Subsystem 13
Whitney Peripheral Support IC 13
Combo IC 14
Singer IC 14
Power Manager IC 14
Display Controller IC 14
Baboon Custom IC 15
TREX Custom IC 15

Video Card 16
Keystone Video Controller IC 16
Ariel Video Output IC 16

Chapter 3 I/O Features 17

Internal IDE Hard Disk Drive 18
Hard Disk Specifications 18
Hard Disk Connector 19

Connector Location 20
Signal Assignments 20
IDE Signal Descriptions 21

Trackpad 22

Keyboard 23

Flat Panel Display 24
Flat Panel Display Circuitry 24
Number of Colors 24

Serial Port 25

SCSI Port 25

ADBPort 27

Infrared Module 28

Sound System 28
Sound Inputs 29
Sound Outputs 29

Chapter 4 Expansion Modules 31

Expansion Bay 32

Expansion Bay Design 32

Expansion Bay Connector 33
Signals on the Expansion Bay Connector 34
Signal Definitions 36
Unused IDE Signals 37
Power on the Expansion Bay 38

User Installation of an Expansion Bay Device 38
Sequence of Control Signals 38
Guidelines for Developers 39

iv



RAM Expansion 39
Electrical Design Guidelines for the RAM Expansion Card
Connector Pin Assignments 40
Signal Descriptions 42
Address Multiplexing 43
Banks of DRAM 45
DRAM Device Requirements 45
Expansion Card Electrical Limits 46
Mechanical Design of the RAM Expansion Card 47
RAM Card Dimensions 47
RAM Card Connector 48
Video Card 49
The Apple Video Card 49
Monitors Supported 49
Video Mirroring 50
External Video Connector 51
Monitor Sense Codes 52
Video Card Design Guide 53
Video Card Connector 53
Signals on the Video Card Connector 53
Video Card Mechanical Design 55
PCMCIASlot 58
PCMCIA Features 58
Summary Specifications 59
Access Windows 59
Data Access 59
Signal Definitions 60
Power 60
Controller Interrupts 60

Chapter 5 Software Features 1

ROM Software 62
PowerPC 603 Microprocessor 62
Machine Identification 62

Memory Controller Software 63
Power Manager Software 63
Display Controller Software 63
Sound Features 63

ATA Storage Devices 64

IDE Disk Mode 64

Ethernet Driver 64

Support for Function Keys 64
Smart Battery Support 64
Trackpad Support 65



Chapter 6

System Software 65

Control Strip 66

Support for ATA Devices 66

Large Partition Support 66
64-Bit Volume Addresses 66
System-Level Software 67
Application-Level Software 67
Limitations 68

Drive Setup 68

Improved File Sharing 68

Dynamic Recompilation Emulator 68

Resource Manager in Native Code 69
Math Library 69
New BlockMove Extensions 69

POWER-Clean Native Code 71
POWER Emulation 72
POWER-Clean Code 72
Emulation and Exception Handling =~ 72
Code Fragments and Cache Coherency 72
Limitations of PowerPC 601 Compatibility
QuickDraw Acceleration API 73
Display Manager 74

Large Volume Support 75

Chapter 7

Overview of the Large Volume File System 76
API Changes 76
Allocation Block Size 76
File Size Limits 77
Compeatibility Requirements 77
The API Modifications 77
Data Structures 77
Extended Volume Parameter Block 77
Extended I/O Parameter Block 79
New Extended Function 81

Power Manager Interface 85

vi

About the Power Manager Interface 86
Things That May Change 86
Checking for Routines 87
Power Manager Interface Routines 87
Header File for Power Manager Dispatch 107



Chapter 8

Software for ATA Devices 115

Chapter 9

Introduction to the ATA Software 116
ATA Disk Driver 117
Drives on PC Cards 118
Drives in the Expansion Bay 119
ATA Manager 119
ATA Disk Driver Reference 120
Standard Device Routines 120
The Control Routine 120
The Status Routine 121
Control Functions 122
Status Functions 130
ATA Manager Reference 135
The ATA Parameter Block 135
Functions 141
Using the ATA Manager With Drivers 168
Notification of Device Events 168
Device Driver Loading 169
New API Entry Point for Device Drivers
Loading a Driver From the Media 171
Notify-All Driver Notification 172
ROM Driver Notification 173
Device Driver Purging 173
Setting the I/O Speed 175
Error Code Summary 175

PC Card Services 179

170

Client Information 180
Configuration 185

Masks 192

Tuples 196

Card and Socket Status 200
Access Window Management 201
Client Registration 205
Miscellaneous Functions 208

PC Card Manager Constants 215

Glossary 219

Index 221

vii






Figures and Tables

Chapter 1 Introduction 1
Figure 1-1 Front view of the computer 3
Figure 1-2 Back view of the computer 4
Table 1-1 Configurations 5
Chapter 2 Architecture 9
Figure 2-1 Block diagram 10
Chapter 3 I/O Features 17
Figure 3-1 Maximum dimensions of the internal IDE hard disk 19
Figure 3-2 Connector for the internal IDE hard disk 20
Figure 3-3 Position of the hard disk connector 20
Figure 3-4 Keyboard, United States layout 23
Figure 3-5 Keyboard, ISO layout 23
Figure 3-6 Serial port connector 25
Figure 3-7 ADB connector 27
Table 3-1 Pin assignments on the IDE hard disk connector 20
Table 3-2 Signals on the IDE hard disk connector 21
Table 3-3 Characteristics of the displays 24
Table 3-4 Serial port signals 26
Table 3-5 SCSI connector signals 26
Table 3-6 ADB connector pin assignments 27
Chapter 4 Expansion Modules 31
Figure 4-1 Expansion bay module 32
Figure 4-2 Expansion bay dimensions 33
Figure 4-3 RAM expansion card a7
Figure 4-4 Dimensions of the RAM expansion card 47
Figure 4-5 Restricted areas on the component side of the card 48
Figure 4-6 Video card 49
Figure 4-7 Video connectors 52
Figure 4-8 Dimensions of the video card 55
Figure 4-9 Video card and 80-pin connector 56
Figure 4-10 Video card bottom view with component restrictions 56
Figure 4-11 Video card top view with component restrictions 57
Figure 4-12 Video card top view 57

Figure 4-13 Detail of EMI shield mounting holes 58



Chapter 5

Chapter 7

Chapter 8

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9
Table 4-10
Table 4-11
Table 4-12
Table 4-13
Table 4-14
Table 4-15

Signal assignments on the expansion bay connector 34
Control signals on the expansion bay connector 36
Floppy disk signals on the expansion bay connector 36
IDE signals on the expansion bay connector 36

Unused IDE signals 37

Power for the expansion bay 38

Configurations of RAM banks 39

Signal assignments on the RAM expansion connector 40
Descriptions of signals on the RAM expansion connector 42
Address multiplexing for some typical DRAM devices 44
Video monitors and modes 50

Signals on the video connector 51

Monitor sense codes 52

Signals on the video card connector 53

Descriptions of the signals on the video card connector 55

Software Features 61

Table 5-1

Summary of Bl ockMove routines 70

Power Manager Interface 85

Table 7-1

Interface routines and their selector values 88

Software for ATA Devices 115

Figure 8-1

Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table 8-8
Table 8-9
Table 8-10
Table 8-11
Table 8-12
Table 8-13

ATA software model 116

Control functions 120

Status functions 122

Control bits in the at aFl ags field 138
ATA Manager functions 141

Event masks 146

Bits in pcValid field 156

ATA register selectors 164

Register mask bits 164

Event codes send by the ATA Manager 168
Input parameter bits for the old API 170
Input parameter bits for the new API 171
Purge permissions and responses 174
ATA driver error codes 175



PREFAUCE

About This Developer Note

This developer note describes the Macintosh PowerBook 5300 computer,
emphasizing the features that are new or different from those of other
Macintosh PowerBook computers.

This developer note is intended to help hardware and software developers
design products that are compatible with the Macintosh products described in
the note. If you are not already familiar with Macintosh computers or if you
would simply like more technical information, you may wish to read the
supplementary reference documents described in this preface.

This note is published in two forms: an online version included with the Apple
Developer CD and a paper version published by APDA. For information about
APDA, see “Supplemental Reference Documents.”

Contents of This Note

The information in this note is arranged in nine chapters.

= Chapter 1, “Introduction,” introduces the Macintosh PowerBook 5300
computer and describes its new features.

= Chapter 2, “Architecture,” describes the internal logic of the computer,
including the main ICs that appear in the block diagram.

s Chapter 3, “I/O Features,” describes the input/output features, including
both the internal I/ O devices and the external I/O ports.

= Chapter 4, “Expansion Modules,” describes the expansion features of
interest to developers. It includes development guides for the RAM
expansion card, the PDS card, and the communications cards.

s Chapter 5, “Software Features,” describes the new features of the ROM
and system software, with the emphasis on software that is specific to
this computer.

= Chapter 6, “Large Volume Support,” describes the modifications that
enable the file system to support volumes larger than 4 GB.

= Chapter 7, “Power Manager Interface,” describes the latest revision of the
application interface for the Power Manager software.

= Chapter 8, “Software for ATA Devices,” describes the low-level program
interface used by utility software for the IDE hard disk drive.

» Chapter 9, “PC Card Services,” describes a new part of Mac OS that
supports software using PC Cards in the PCMCIA slots.

This developer note also contains a glossary and an index.

xi



PREFAUCE

Supplemental Reference Documents

xii

The following documents provide information that complements or extends
the information in this developer note.

Apple Publications

Developers should have copies of the appropriate Apple reference books,
including Guide to the Macintosh Family Hardware, second edition, Designing
Cards and Drivers for the Macintosh Family, third edition, and the relevant
volumes of Inside Macintosh. These Apple books are available in technical
bookstores and through APDA.

For information about PC cards and the PCMCIA slot, developers should
have a copy of Developing PC Card Software for the Mac OS. That book is
scheduled for publication at about the time the Macintosh PowerBook 5300
computer is introduced.

For information about the Device Manager and the Power Manager,
developers should have a copy of Inside Macintosh: Devices. For information
about designing device drivers for Power Macintosh computers, developers
should have a copy of Designing PCI Cards and Drivers for Power Macintosh
Computers.

For information about the control strip, developers should have the Reference
Library volume of the Developer CD Series, which contains Macintosh
Technical Note OS 06 - Control Strip Modules.

For information about earlier PowerBook models, developers may wish to
have copies of the Macintosh Classic II, Macintosh PowerBook Family, and
Macintosh Quadra Family Developer Notes; and Macintosh Developer Notes,
numbers 1-5 and 9. These developer notes are available on the Developer CD
Series and through APDA.

APDA is Apple Computer’s worldwide source for hundreds of development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the APDA Tools Catalog featuring all current versions of Apple development
tools and the most popular third-party development tools. APDA offers
convenient payment and shipping options, including site licensing.



PREFAUCE

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Other Publications

For information about programming the PowerPC" family microprocessors,
developers should have copies of Motorola’s PowerPC 601 RISC Microprocessor
User’s Manual and PowerPC 603 Microprocessor Implementation Definition Book IV.

For information about ATA devices such as the built-in IDE hard disk,
developers should have access to the ATA /IDE specification, ANSI proposal
X3T10/0948D, Revision 2K or later (ATA-2).

For information about PC cards and the PCMCIA slot, developers should
refer to the PC Card Standard. You can order that book from

Personal Computer Memory Card International Association
1030G East Duane Avenue

Sunnyvale, CA 94086

Phone: 408-720-0107

Fax: 408-720-9416

Conventions and Abbreviations

This developer note uses the following typographical conventions and
abbreviations.

Typographical Conventions

Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in Couri er font.

xiii



PREFAUCE

Sidebar
Sidebars are used for information that is not part of information about a related subject or technical details
the main discussion. A sidebar may contain that are not required reading.

Hexadecimal numbers are preceded by a dollar sign ($). For example, the
hexadecimal equivalent of decimal 16 is written as $10. ]

Note
A note like this contains information that is of interest but is not
essential for an understanding of the text. O

IMPORTANT
A note like this contains important information that you should
read before proceeding. a

A WARNING
Warnings like this direct your attention to something that could
cause injury to the user, damage to either hardware or software,
or loss of data. a

Standard Abbreviations

Standard units of measure used in this note include

A amperes MHz megahertz

dB decibels mm millimeters

GB gigabytes ms milliseconds

Hz hertz mV millivolts

K 1024 MF microfarads

KB kilobytes ns nanoseconds

kbps kilobits per second Q ohms

kHz kilohertz pF picofarads

kQ kilohms \Y volts

M 1,048,576 VAC volts alternating current
mA milliamperes VDC volts direct current
MB megabytes W watts

Xiv



PREFAUCE

Other abbreviations used in this note include

$n

AC
ADB
API
ASIC
ATA
ATAPI
AUI
BCD
CAS
CCFL
CD
CIS
CLUT
CMOS
CPU
CSC
DAA
DAC
DC
DCE
DDM
DOS
DRAM
DSP
FIFO
FPU
FSTN
HBA
IC
IDE
1/0

IR
LCD
LSTTL
MMU

hexadecimal value n

alternating current

Apple Desktop Bus

application program interface
application-specific integrated circuit

AT attachment

ATA packet interface

auxiliary unit interface

binary coded decimal

column address strobe (a memory control signal)
cold cathode fluorescent lamp

compact disc

card information structure

color lookup table

complementary metal oxide semiconductor
central processing unit

color screen controller

data access adapter (a telephone line interface)
digital-to-analog converter

direct current

device control entry (a data structure)
driver descriptor map

disk operating system

dynamic RAM

digital signal processor

first in, first out

floating-point unit

film supertwist nematic (a type of LCD)
host bus adapter

integrated circuit

integrated device electronics

input/output

infrared

liquid crystal display

low-power Schottky TTL (a standard type of device)

memory management unit

continued

XV



PREFAUCE

NiCad nickel cadmium

NiMH nickel metal hydride

PCMCIA Personal Computer Memory Card International Association
PDS processor-direct slot

PROM programmable read-only memory

PWM pulse width modulation

RAM random-access memory

RAMDAC random-access memory, digital to analog converter

RAS row address strobe

RGB red-green-blue (a type of color video system)
RISC reduced instruction set computing

rms root-mean-square

ROM read-only memory

SCC Serial Communications Controller

SCsI Small Computer System Interface

SNR signal-to-noise ratio

SQOJ small outline J-lead package

sOP small outline package

SVGA super video graphics adapter

TDM time division multiplexing

TFT thin-film transistor (a type of LCD)

TSOP thin small outline package

TTL transistor-transistor logic (a standard type of device)
VCC positive supply voltage (voltage for collectors)
VGA video graphics adapter

VRAM video RAM

xvi



CHAPTER 1

Introduction




CHAPTER 1

Introduction

The Macintosh PowerBook 5300 computer is the first of a new generation of all-in-one
notebook computers featuring the PowerPCY 603 microprocessor. Inside the computer’s
contoured case are a PCMCIA slot, an expansion bay for a floppy disk drive or other
device, and space for a rechargeable battery.

Features

Here is a summary of the major features of the Macintosh PowerBook 5300 computer.
Each feature is described more fully later in this developer note.

Processor: The computer has a PowerPC 603 microprocessor running at a clock
frequency of 100 or 117 MHz, depending on the model.

RAM: The built-in memory consists of 8, 16, or 32 MB of low-power, self-refreshing
dynamic RAM (DRAM).

RAM expansion: The computer accepts a RAM expansion card with up to 56 MB, for
a total of 64 MB of RAM.

Display: The computer has a built-in flat panel display, an LCD backlit by a cold
cathode fluorescent lamp (CCFL). The display can be one of three types: active-matrix
color, DualScan color, or supertwist grayscale.

Video output: The computer has built-in video output circuitry that provides a
256-color display on all Apple monitors up to 17 inches in size.

Hard disk: The computer has one internal 2.5-inch IDE hard disk drive with a storage
capacity of 500 MB to 1.1 GB. See “Peripheral Devices” on page 4.

Disk mode: With an optional HDI-30 SCSI Disk Adapter cable, the computer allows
the user to read and store data on the computer’s internal hard disk from another
Macintosh computer.

Expansion bay: The computer has an opening that accepts a plug-in module with
a 1.4-MB Apple SuperDrive, some other IDE device, or a power device such as an
AC adapter.

PCMCIA slot: The computer accepts one type III or two type II PCMCIA cards.
Modem: The computer accepts a PCMCIA modem card.

Standard I/O ports: The computer has all the standard Macintosh inputs and
outputs, including external video output. The I/O ports are an HDI-30 connector for
external SCSI devices, a 4-pin mini-DIN Apple Desktop Bus (ADB) port, an 8-pin
mini-DIN serial port, stereo audio input and output jacks, and a video output
connector.

Networking: The computer has a built-in LocalTalk network interface.

Sound: The computer has a built-in microphone and speaker as well as a line-level
input jack and a stereo headphone jack.

Keyboard: The computer has a full-size keyboard with function keys and power
on/off control.

Features



CHAPTER 1

Introduction

s Trackpad: The cursor-positioning device is an integrated flat pad that replaces the
trackball used in previous Macintosh PowerBook computers.

s Infrared link: The computer has an infrared module that can communicate with
Newton PDAs and other communications devices.

= Batteries: The computer has space for one Macintosh PowerBook Intelligent Battery.
The battery is a 16.8-V lithium ion rechargeable battery with a built-in processor that
communicates with the computer’s Power Manager.

s Power supply: The computer comes with an external recharger/power adapter that
accepts any worldwide standard voltage from 100-240 VAC at 50-60 Hz.

= Security connector: The computer has a connector on the side panel that allows users
to attach a security device. The security device also secures the battery and any
module in the expansion bay.

= Weight: The computer weighs 6.5 pounds with the battery installed.

= Size: The computer is 11.3 inches wide and 8.5 inches deep. The models with
grayscale displays are 2.0 inches high; models with color displays are 2.1 inches high.

Appearance

The Macintosh PowerBook 5300 computer has a streamlined case that opens up like a
clamshell. Figure 1-1 shows a front view and Figure 1-2 shows a back view.

Figure 1-1 Front view of the computer

Sleep indicator

“¢: Brightness control

Speaker (D contrast control
Microphone
Trackpad Floppy disk drive module

Trackpad button in expansion bay

Security slot

Battery

Appearance 3



CHAPTER 1

Introduction

Figure 1-2 Back view of the computer

10 Video port

IR window —————

@ Reset button PC card eject buttons

¥ sound input jack Power adapter jack

¥ ADB port

@) Sound output jack

<& SCSlI port (HDI-30) &/ % serial 1/0 port

Peripheral Devices

In addition to the devices that are included with the computer, several peripheral
devices are available separately:

s The Macintosh PowerBook 8 MB Memory Expansion Kit expands the RAM in the
Macintosh PowerBook 5300 computer to 16 or 24 MB.

Note
In the 32-MB models, the RAM expansion slot is already occupied. O

s The Macintosh PowerBook Intelligent Battery is available separately as an additional
or replacement battery.

s The Macintosh PowerBook 45W AC Adapter, which comes with the computer, is also
available separately. The adapter can recharge two internal batteries in just four hours
while the computer is running or two hours while the computer is shut down or in
sleep mode.

4 Peripheral Devices



CHAPTER 1

Introduction

Configurations

The Macintosh PowerBook 5300 computer is available in several configurations, as
shown in Table 1-1.

Table 1-1 Configurations

Model number
5300/100

5300cs /100
5300cs /100
5300c/100
5300c/100
5300ce /117

Clock RAM Hard disk Display size

speed size size (pixels) Display type

100 MHz 8 MB 500 MB 640 by 480 DualScan gray scale
100 MHz 8 MB 500 MB 640 by 480 DualScan color

100 MHz 16 MB 750 MB 640 by 480 DualScan color

100 MHz 8 MB 500 MB 640 by 480 Active matrix color
100 MHz 16 MB 750 MB 640 by 480 Active matrix color
117 MHz 32 MB 1.1GB 800 by 600 Active matrix color

Compeatibility Issues

The Macintosh PowerBook 5300 computer incorporates many significant changes from
earlier PowerBook designs. This section highlights key areas you should investigate

in order to ensure that your hardware and software work properly with the new
PowerBook models. These topics are covered in more detail in subsequent sections.

RAM Expansion Cards

The RAM expansion card used in the Macintosh PowerBook 5300 computer is a new
design. RAM expansion cards designed for earlier PowerBook models will not work in
the PowerBook 5300 computer. See the section “RAM Expansion” beginning on page 39
for more information.

Number of Colors

The controller circuitry for the flat panel display includes a 256-entry color lookup table
(CLUT) and is compatible with software that uses QuickDraw and the Palette Manager.
The controller supports a palette of thousands of colors. However, due to the nature of
color LCD technology, some colors are dithered or exhibit noticeable flicker. Apple has
developed a new gamma table for the color displays that minimizes flicker and

Configurations



CHAPTER 1

Introduction

optimizes the available colors. For the active matrix color display, the effective range of
the CLUT is about 260,000 colors. For the DualScan color display, the range of the CLUT
is about 4000 colors.

See the section “Flat Panel Display” beginning on page 24 for more information about
the internal display hardware and LCD screen.

Video Mirror Mode

When a video card is installed and an external monitor is in use, the user can select video
mirror mode, in which the external monitor mirrors (duplicates) the flat panel display.
Applications that write directly to the display buffer may not be compatible with video
mirror mode unless they take precautions to ensure that they do not write outside the
active portion of the display. That is not a problem for applications that use QuickDraw
and never write directly to the display buffer.

See the section “Video Mirroring” on page 50 for more information about video modes.

Sound Sample Rates

The Macintosh PowerBook 5300 computer provides sound sample rates of 11.025 kHz,
22.05 kHz, and 44.1 kHz. The 22.05 kHz sample rate is slower than the 22.254 kHz
sample rate used in some older Macintosh models. The 22.254 kHz sample rate was
derived from the 16 MHz system clock; the 22.05 kHz rate was chosen for compatibility
with the 44.1 kHz audio CD sample rate.

For sound samples made at the 22.254 kHz rate, playback at the 22.05 kHz rate is about

1 percent low in pitch. Furthermore, programs that bypass the Sound Manager and write
to the sound FIFOs at the older rate now write too many samples to the FIFOs, causing
some samples to be dropped. The result is a degradation in sound quality for those
programs. Programs that use the Sound Manager to generate sounds are not affected by
the change.

Power Manager Interface

Developers have written software that provides expanded Power Manager control for
some older Macintosh PowerBook models. That software will not work in the Macintosh
PowerBook 5300 computer.

Until now, third-party software for the Power Manager has worked by reading and
writing directly to the Power Manager’s data structures, so it has had to be updated
whenever Apple brings out a new model with changes in its Power Manager software.
Starting with the Macintosh PowerBook 520 and 540 computers, the system software
includes interface routines for program access to the Power Manager functions, so it is
no longer necessary for applications to deal directly with the Power Manager’s data
structures. For more information, see Inside Macintosh: Devices.

Compatibility Issues



CHAPTER 1

Introduction

Developers should not assume that the Power Manager’s data structures are the same on
all PowerBook models. In particular, developers should beware of the following
assumptions regarding different PowerBook models:

= assuming that timeout values such as the hard disk spindown time reside at the same
locations in parameter RAM

= assuming that the power cycling process works the same way or uses the same
parameters

= assuming that direct commands to the Power Manager microcontroller are supported
on all models

Microprocessor Differences

Differences between the PowerPC 603e and the PowerPC 601 microprocessor affect the
way code is executed. Because of those differences, programs that execute correctly on
the PowerPC 601 may cause problems on the PowerPC 603e.

Completion Serialized Instructions

Completion serialized instructions cannot be executed until all prior instructions have
completed. The completion serialized instructions include load-and-store string and
load-and-store multiple instructions. Such instructions can cause performance degrada-
tion on the more heavily pipelined implementations.

Representatives of Apple Computer are working with compiler developers to establish
guidelines for the appropriate use of these instructions.

Split Cache

Unlike the PowerPC 601, which has a unified cache, the PowerPC 603e has separate
caches for instructions and data. This can lead to cache coherency problems in applica-
tions that mix code and data.

In the Mac OS, almost all native code is loaded by the Code Fragment Manager, which
ensures that the code is suitable for execution. If all your code is loaded by the Code
Fragment Manager, you don’t have to worry about cache coherency.

Problems can arise in applications that generate code in memory for execution. Examples
include compilers that generate code for immediate execution and interpreters that
translate code in memory for execution. For such cases, you can notify the Mac OS that
data is subject to execution by using the call MakeDat aExecut abl e, which is defined
in OSUtils.h.

Data Alignment

In PowerPC systems, data is normally aligned on 32-bit boundaries, whereas data for the
680x0 is typically aligned on 16-bit boundaries. Even though the PowerPC was designed
to support the 680x0 type of data alignment, misaligned data causes some performance
degradation. Furthermore, performance with misaligned data varies across the different
implementations of the PowerPC.

Compatibility Issues 7



CHAPTER 1

Introduction

While it is essential to use 16-bit alignment for data that is being shared with 680x0 code,
you should use PowerPC alignment for all other kinds of data. In particular, you should
not use global 680x0 alignment when compiling your PowerPC applications; instead, use
alignment pragmas to turn on 680x0 alignment only when necessary.

POWER-Clean Code

Several POWER instructions were included in the instruction set of the PowerPC 601 as
part of the transition from POWER to PowerPC. Those instructions are not included in
the instructions set of the PowerPC 603e.

Compilers designed for the POWER instruction set have also been used to compile
programs for the PowerPC. Most of those compilers have the option to suppress the
generation of the offending instructions. For example, the IBM xlc C compiler and the
xIC C++ compiler have the option - qar ch=ppc. Developers who use those compilers
must verify that the option is in effect for all pieces of code that is intended to run on the
PowerPC 603e.

The system software traps POWER instructions and emulates them in software. While
this POWER emulation keeps the system from crashing when it encounters a POWER
instruction, performance suffers because of the emulation. Developers should ensure
that their code is free of POWER instructions.

Compatibility Issues



CHAPTER 2

Architecture




CHAPTER 2

Architecture

The architecture of the Macintosh PowerBook 5300 computer is partitioned into

three subsystems: the processor/ memory subsystem, the input/output subsystem,
and the video card. The processor/ memory subsystem operates at 33.33 MHz on the
PowerPC 603 microprocessor bus. The input/output subsystem operates at 25 MHz
on the I/O bus, a 68030-compatible bus. An Apple custom IC called the PBX IC acts

as the bridge between the two buses, translating processor bus cycles into single or
multiple I/O bus cycles, as needed. The video card provides the signals for an external

video monitor.

The block diagram in Figure 2-1 shows the subsystems and the modules that

comprise them.

Figure 2-1 Block diagram
/Processor \ 110 subsystem\
and memory
subsystem SRAM . ADB
PowerPC Power [—____ ) Trackpad
603 Manager L — keyboard
micro-
processor — ) Power
Singer @) sound in
sound
ROM Whithey e | —© Sound out
lfe}
___| controller Combo Serial port A
SCC and Port B [IR]
PBX SCSIIC | scs
RAM memory Baboon
expansion RAM controller el |DE dlVE o
card — and floppy Expansion
k / disk drive [= Bay
controller
/ Video card \
TREX
PCMCIA PCMCIA
controller slots
Keystone .
! Ariel
video == VRAM == . ic0DAC VRAM
controller
e ECSC _I
video
Flat panel
controller display
External video

J

10



CHAPTER 2

Architecture

Processor / Memory Subsystem

The processor/ memory subsystem includes the PowerPC 603 microprocessor, main
RAM, and ROM. An optional RAM expansion card can be plugged into the logic board
and becomes part of the processor/ memory subsystem.

Main Processor

The main processor in the Macintosh PowerBook 5300 computer is a PowerPC 603e
microprocessor, an enhanced version of the PowerPC 603. Its principal features include

= full RISC processing architecture
= aload-store unit that operates in parallel with the processing units

= a branch manager that can usually implement branches by reloading the incoming
instruction queue without using any processing time

= two internal memory management units (MMU), one for instructions and one for data
= two 16 KB on-chip caches for data and instructions

For complete technical details, see Power PC 603 Microprocessor Implementation Definition
Book 1V.

The PowerPC 603e microprocessor in the Macintosh PowerBook 5300 computer runs at a
clock speed of either 100.00 or 116.66 (117) MHz, depending on the model. The micro-
processor’s clock speed is locked at either 3.0 or 3.5 times the memory subsystem’s clock
speed, which is 33.33 MHz.

RAM

The built-in RAM consists of 8, 16, or 32 MB of dynamic RAM (DRAM). The RAM ICs
are low-power, self-refreshing type with an access time of 70 ns.

An optional RAM expansion card plugs into a 120-pin connector on the logic board.
With the RAM expansion card installed, the processor/ memory subsystem supports
up to 64 MB of RAM. The RAM expansion card for the Macintosh PowerBook 5300
computer is not compatible with the RAM card used in earlier PowerBook models. See
the section “RAM Expansion” beginning on page 39 for details.

The PBX custom IC contains bank base registers that are used to make RAM addresses
contiguous, starting at address $0000 0000. See “PBX Memory Controller IC” on page 12.

Processor/Memory Subsystem 11



12

CHAPTER 2

Architecture

ROM

The ROM in the Macintosh PowerBook 5300 computer is implemented as a 1M by 32-bit
array consisting of two 1 M by 16-bit ROM ICs. The ROM devices support burst mode so
they do not degrade the performance of the PowerPC 603 microprocessor. The ROM ICs
provide 4 MB of storage, which is located in the system memory map between addresses
$3000 0000 and $3FFF FFFE. The ROM data path is 32 bits wide and addressable only as
longwords. See Chapter 5, “Software Features,” for a description of the features of this
new ROM.

PBX Memory Controller IC

The PBX IC is a new Apple custom IC that provides RAM and ROM memory control
and also acts as the bridge between the processor bus on the processor and memory
subsystem and the 68030-type I/O bus on the main logic board. The PBX IC also
provides bus cycle decoding for the SWIM floppy-disk controller.

Memory Control

The PBX IC controls the system RAM and ROM and provides address multiplexing and
refresh signals for the DRAM devices. For information about the address multiplexing,
see “Address Multiplexing” on page 43.

The PBX IC has a memory bank decoder in the form of an indexed register file. Each
nibble in the register file represents a 2 MB page in the memory address space (64 MB).
The value in each nibble maps the corresponding page to one of the eight banks of
physical RAM. By writing the appropriate values into the register file at startup time, the
system software makes the memory addresses contiguous.

Bus Bridge

The PBX IC acts as a bridge between the processor bus and the I/O bus, converting
signals on one bus to the equivalent signals on the other bus. The bridge functions are
performed by two converters. One accepts requests from the processor bus and presents
them to the I/O bus in a manner consistent with a 68030 microprocessor. The other
converter accepts requests from the I/O bus and provides access to the RAM and ROM
on the processor bus.

The bus bridge in the PBX IC runs asynchronously so that the processor bus and the I/O
bus can operate at different rates. The processor bus operates at a clock rate of
33.33 MHz and the I/O bus operates at 25.00 MHz.

Processor/Memory Subsystem



CHAPTER 2

Architecture

Input/Output Subsystem

The input/output subsystem includes the components that communicate by way of the
I/Obus:

» the Whitney custom IC

s the Combo I/O controller IC

» the Singer sound controller IC

s the Power Manager IC

s the display controller IC (ECSC)

» the Baboon custom IC that controls the expansion bay

s the TREX custom IC that controls the PCMCIA slots

The next sections describe these components.

Whitney Peripheral Support IC

The Whitney IC is a custom IC that provides the interface between the system bus and
the I/O bus that supports peripheral device controllers. The Whitney IC incorporates the
following circuitry:

= VIA1 like that in other Macintosh computers

= SWIM II floppy disk controller

s CPUID register

The Whitney IC also performs the following functions:
= bus error timing for the I /O bus

» bus arbitration for the I/O bus

= interrupt prioritization

= VIA2 functions

= sound data buffering

= clock generation

= power control signals

The Whitney IC contains the interface circuitry for the following peripheral ICs:
s Combo, which is a combination of SCC and SCSI ICs

= Singer, the sound codec IC

Input/Output Subsystem 13



14

CHAPTER 2

Architecture

The Whitney IC provides the device select signals for the following ICs:

= the flat panel display controller
» the external video controller

The Whitney IC also provides the power off and reset signals to the peripheral device ICs.

Combo IC

The Combo custom IC combines the functions of the SCC IC (85C30 Serial Communica-
tions Controller) and the SCSI controller IC (53C80). The SCC portion of the Combo IC
supports the serial I/O port. The SCSI controller portion of the Combo IC supports the
external SCSI devices.

Singer IC

The Singer custom IC is a 16-bit digital sound codec. It conforms to the IT&T ASCO 2300
Audio-Stereo Code Specification. The Whitney IC maintains sound I/O buffers in main
memory for sound samples being sent in or out through the Singer IC. For information
about the operation of the Singer IC, see the section “Sound System” on page 28.

Power Manager IC

The Power Manager IC is a 68HCO05 microprocessor that operates with its own RAM and
ROM. The Power Manager IC performs the following functions:

» controlling sleep, shutdown, and on/off modes
= controlling power to the other ICs

= controlling clock signals to the other ICs

= supporting the ADB

= scanning the keyboard

= controlling display brightness

= monitoring battery charge level

= controlling battery charging

Display Controller IC

An ECSC (enhanced color support chip) IC provides the data and control interface to the
LCD panel. The ECSC IC is similar to the CSC used in the PowerBook 520 and 540
models except that it can address 1 MB of video RAM. The ECSC IC contains a 256-entry
CLUT, RAMDAC, display buffer controller, and flat panel control circuitry. For more
information, see “Flat Panel Display Circuitry” on page 24.

Input/Output Subsystem



CHAPTER 2

Architecture

Baboon Custom IC

The Baboon custom IC provides the interface to the expansion bay. The IC performs four
functions:

= controls the expansion bay

= controls the IDE interfaces, both internal and in the expansion bay
= buffers the floppy-disk signals to the expansion bay

= decodes addresses for the PCMCIA slots and the IDE controller

The Baboon IC controls the power to the expansion bay and the signals that allow the
user to insert a device into the expansion bay while the computer is operating. Those
signals are fully described in the section “Expansion Bay” beginning on page 32.

The Baboon IC controls the interface for both the internal IDE hard disk drive and a
possible second IDE drive in the expansion bay. For information about the internal IDE
drive see the section “Internal IDE Hard Disk Drive” beginning on page 18. For
information about the IDE drive signals in the expansion bay, see the section “Signals on
the Expansion Bay Connector,” particularly Table 4-2 on page 36.

The Baboon IC also handles the signals to a floppy disk drive installed in the expansion
bay. For more information, see the section “Signals on the Expansion Bay Connector,”
particularly Table 4-2 on page 36.

The address decode portion of the Baboon IC provides address decoding for the IDE
controller portion of the IC. It also provides the chip select decode for the TREX custom
IC and address decoding for the two PCMCIA slots.

TREX Custom IC

The TREX custom IC provides the interface and control signals for the PCMCIA slots.
The main features of the TREX IC are

= the interrupt structure for the PCMCIA slots
= transfers of single-byte and word data to and from the PCMCIA slots

= power management for the PCMCIA slots, including
o sleep mode
o control of power to individual sockets

o support of insertion and removal of PC cards while the computer is operating
= support for software control of card ejection

» support for time-division multiplexing (TDM), Apple Computer’s technique for
implementing PC cards for telecommunications

For more information about the operation of the PCMCIA slots, see “PCMCIA Slot” on
page 58.

Input/Output Subsystem 15



CHAPTER 2

Architecture

Video Card

16

The video card includes two additional components that communicate by way of the
I/Obus:

s the Ariel custom video controller IC

s the Keystone custom video output IC

Keystone Video Controller IC

The Keystone custom IC contains the timing and control circuits for the external video
circuitry. The Keystone IC has internal registers that the video driver uses to set the
horizontal and vertical timing parameters. The Keystone IC also generates the video
refresh addresses for the VRAM.

Ariel Video Output IC

The Ariel custom IC contains the video CLUT (color lookup table) and DAC. The Ariel
IC takes the serial video data from the VRAM and generates the actual RGB signals for
the external video monitor. The Ariel is pin and software compatible with the AC843 but
does not support 24 bits per pixel.

For more information about the operation of the video card, see the section “Video Card”
beginning on page 49.

Video Card



CHAPTER 3

I/O Features




CHAPTER 3

1/0 Features

This chapter describes both the built-in I/ O devices and the interfaces for external I/O
devices. Like the earlier chapters, it emphasizes the similarities and differences between
the Macintosh PowerBook 5300 computer and other PowerBook models.

This chapter describes the following built-in devices and I/O ports:
» internal IDE hard disk drive

= built-in trackpad

= built-in keyboard

= built-in flat panel display

= serial port

= SCSI port

= Apple Desktop Bus (ADB) port

s IR module

sound system

Note
For information about the expansion bay and the optional
video card, see Chapter 4, “Expansion Modules.” O

Internal IDE Hard Disk Drive

18

The Macintosh PowerBook 5300 computer has an internal hard disk that uses the
standard IDE (integrated drive electronics) interface. This interface, used for IDE drives
on IBM AT-compatible computers, is also referred to as the ATA interface. The imple-
mentation of the ATA interface on the Macintosh PowerBook 5300 computer is a subset
of the ATA /IDE specification, ANSI proposal X3T10/0948D, Revision 2K (ATA-2).

For information about the IDE software interface, see Chapter 8, “Software for ATA
Devices.”

Hard Disk Specifications

Figure 3-1 shows the maximum dimensions of the hard disk and the location of the
mounting holes. The minimum clearance between any conductive components on the
drive and the bottom of the mounting envelope is 0.5 mm.

Internal IDE Hard Disk Drive



CHAPTER 3

1/0 Features

Figure 3-1 Maximum dimensions of the internal IDE hard disk

19.25 maximum
[0.757 maximum]

34.93+0.38
| [1.375+0.015]

38.10
[1.500]

| | 101.60 maximum
[4.00 maximum]

! 4.06 . 61.72 ! \
| [0.160] [2.430] | M3, 3.5 deep,
minimum full
' 70.00 thread, 8X
[2.755]

Note: Dimensions are in millimeters [inches]

Hard Disk Connector

The internal hard disk has a 48-pin connector that carries both the IDE signals and the
power for the drive. The connector has the dimensions of a 50-pin connector, but with
one row of pins removed. The remaining pins are in two groups: pins 1-44, which carry
the signals and power, and pins 46-48, which are reserved. Figure 3-2 shows the
connector and identifies the pins. Notice that pin 20 has been removed, and that pin 1 is
located nearest the gap, rather than at the end of the connector.

Internal IDE Hard Disk Drive 19



CHAPTER 3

1/0 Features

Figure 3-2 Connector for the internal IDE hard disk
43 41 39 37 35 33 3129 27 25 23 21 19 17 1513 11 9 7 5 3 1 47 45
I o o o A Ood
Oo0oDoOooOoooDooooao Oo0DoDoooooag Ood
44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 48 46

Note: gaps are equivalent to missing pins.

Connector Location

Figure 3-3 shows the position of the connector on the hard disk drive.

Figure 3-3 Position of the hard disk connector
Key: vacant Pin 1
position at pin 20 /7

3.99

[0.157]

/

I ooooooooooao 0o oo
yoooo0ooo0oooaon oo

a
a

a
a

a
a

oo oo
oo oo

A
1 Y

19.25 maximum
[0.757 maximum]

~—10.14£0.375
[0.399+0.014]

Center line of pin 44

Note: Dimensions are in millimeters [inches]

Signal Assignments

.

Vacant row in

50-pin connector

Table 3-1 shows the signal assignments on the 44-pin portion of the hard disk connector.
Aslash (/) at the beginning of a signal name indicates an active-low signal.

Table 3-1 Pin assignments on the IDE hard disk connector

Pin Pin

number Signal name number Signal name
1 /RESET 2 GROUND
3 DD7 4 DDS8
5 DD6 6 DD9
7 DD5 8 DD10

Internal IDE Hard Disk Drive

continued



CHAPTER 3

1/0 Features

Table 3-1 Pin assignments on the IDE hard disk connector (continued)

Pin Pin

number Signal name number Signal name
9 DD4 10 DD11

11 DD3 12 DD12

13 DD2 14 DD13

15 DD1 16 DD14

17 DDO0 18 DD15

19 GROUND 20 KEY

21 DMARQ 22 GROUND

23 /DIOW 24 GROUND

25 /DIOR 26 GROUND

27 IORDY 28 CSEL

29 /DMACK 30 GROUND

31 INTRQ 32 /TOCS16

33 DAl 34 /PDIAG

35 DAO 36 DA2

37 /CS0 38 /CS1

39 /DASP 40 GROUND

41 +5V LOGIC 42 +5V MOTOR

43 GROUND 44 Reserved

IDE Signal Descriptions

Table 3-2 describes the signals on the IDE hard disk connector.

Table 3-2 Signals on the IDE hard disk connector

Signal name Signal description

DA(0-2) IDE device address; used by the computer to select one of the registers
in the IDE drive. For more information, see the descriptions of the CS0
and CS1 signals.

DD(0-15) IDE data bus; buffered from IOD(16-31) of the computer’s I/ O bus.
DD(0-15) are used to transfer 16-bit data to and from the drive buffer.
DD(8-15) are used to transfer data to and from the internal registers
of the drive, with DD(0-7) driven high when writing.

continued

Internal IDE Hard Disk Drive 21



CHAPTER 3

1/0 Features

Table 3-2 Signals on the IDE hard disk connector (continued)
Signal name Signal description
/CS0 IDE register select signal. It is asserted low to select the main task file

registers. The task file registers indicate the command, the sector
address, and the sector count.

/CS1 IDE register select signal. It is asserted low to select the additional
control and status registers on the IDE drive.

CSEL Cable select; if CSEL is asserted, the device address is 1; if negated, the
device address is 0.

/DASP Device active or slave present.

IORDY IDE I/O ready; when driven low by the drive, signals the CPU to insert
wait states into the I/O read or write cycles.

/TIOCS16 IDE I/O channel select; asserted low for an access to the data port. The
computer uses this signal to indicate a 16-bit data transfer.

/DIOR IDE 1/0O data read strobe.

/DIOW IDE 1/0O data write strobe.

/DMACK Used by the host to initiate a DMA transfer in response to DMARQ.

DMARQ Asserted by the device when it is ready to transfer data to or from
the host.

INTRQ IDE interrupt request. This active high signal is used to inform the
computer that a data transfer is requested or that a command has
terminated.

/PDIAG Asserted by device 1 to indicate to device 0 that it has completed the
power-on diagnostics.

/RESET Hardware reset to the drive; an active low signal.

Key This pin is the key for the connector.

The IDE data bus is connected to the I/ O bus through bidirectional bus buffers. To match
the big-endian format of the 68030-compatible I/O bus, the bytes are swapped. The
lowest byte of the IDE data bus, DD(0-7), is connected to the high byte of the upper
word of the I/O bus, IOD(24-31). The highest byte of the IDE data bus, DD(8-15), is
connected to the low byte of the upper word of the I/O bus, IOD(16-23).

Trackpad

22

The pointing device in the Macintosh PowerBook 5300 computer is a trackpad, an
integrated flat pad that replaces the trackball used in previous PowerBook computers.
The trackpad provides precise cursor positioning in response to motions of the user’s
fingertip over the surface of the pad. A single button below the trackpad is used to
make selections.

Trackpad



CHAPTER 3

1/0 Features

The trackpad is a solid-state device that emulates a mouse by sensing the motions of the

user’s finger over its surface and translating those motions into ADB commands. The
trackpad is lighter and more durable than the trackball used in earlier PowerBook
computers, and it consumes less power.

Also see the section “Trackpad Support” on page 65.

Keyboard

A new keyboard design provides 76 (United States) or 77 (ISO) keys, including
12 function keys. Figure 3-4 shows the version of the keyboard used on machines
sold in the United States. Figure 3-5 shows the version of the keyboard used on
machines sold in countries that require the ISO standard.

Figure 3-4 Keyboard, United States layout

! @ # $ & ( ) +
1 2 3 4 5 6 7 8 9 0 =
{
w E T 1 U ] [ ]
?

Figure 3-5 Keyboard, ISO layout

Keyboard

23



CHAPTER 3

1/0 Features

After removing two screws, the user can lift out the keyboard to obtain access to the
internal components and expansion connectors inside the Macintosh PowerBook 5300
computer.

Flat Panel Display

24

The Macintosh PowerBook 5300 computer has a built-in flat panel display. Four display
options are available, as shown in Table 3-3. All four displays are backlit by a cold
cathode fluorescent lamp (CCFL). The FSTN displays can show up to 256 colors on color
displays or 16 levels of gray on grayscale displays. Both active matrix displays can show
up to thousands of colors.

Table 3-3 Characteristics of the displays

Size Size Dot pitch Number of
Display type (inches) (pixels) (mm) colors or grays
Supertwist grayscale 9.5 640 x 480 0.27 16
(FSTN)
DualScan color 10.4 640 x 480 0.30 256
(FSTN)
Active matrix color 104 640 x 480 0.30 Thousands
(TFT)
Active matrix color 104 800 x 600 0.27 Thousands
(TFT)

Flat Panel Display Circuitry

The flat panel display circuitry in the Macintosh PowerBook 5300 computer emulates a
NuBus” video card installed in slot $0. There is no declaration ROM as such; its
functions have been incorporated into the system ROM. The display circuitry includes
the new ECSC controller IC and a display buffer consisting of 1 MB of VRAM. The LCD
display is compatible with software that uses QuickDraw and the Palette Manager. The
display supports color table animation.

Number of Colors

The display controller IC contains a 256-entry CLUT. Although the CLUT supports a
palette of thousands of colors, many of the possible colors do not look acceptable on the
display. Due to the nature of color LCD technology, some colors are dithered or exhibit
noticeable flicker. Apple has developed new gamma tables for these displays that
minimize flicker and optimize available colors. With these gamma tables, the effective
range of the CLUT for the active matrix color display is about 260,000 colors; for the
DualScan color display, the effective range is about 4000 colors.

Flat Panel Display



CHAPTER 3

1/0 Features

Types of Displays

Flat panel displays come in two types: active matrix
and passive matrix.

Active matrix displays, also called thin-film
transistor (TFT) displays, have a driving transistor
for each individual pixel. The driving transistors
give active matrix displays high contrast and fast
response time.

Passive matrix refers to a display technology that
does not have individual transistors. That technology
is also called FSTN, for film supertwist nematic,
sometimes shortened to just supertwist.

DualScan is Apple Computer’s new type of FSTN
color, an improved version of the color display used in
the PowerBook 165c.

Serial Port

The Macintosh PowerBook 5300 computer has a standard Macintosh serial port for
synchronous, asynchronous, or AppleTalk serial communication. The 8-pin mini-DIN
connector on the back panel is the same as those on other Macintosh computers.
Figure 3-6 shows the connector and Table 3-4 shows the signal assignments for the

serial port.

Figure 3-6 Serial port connector

®OE
® O
®O

SCSI Port

The SCSI port on the Macintosh PowerBook 5300 computer supports the SCSI interface
as defined by the American National Standards Institute (ANSI) X3T9.2 committee.

The external HDI-30 connector is identical to those used in other PowerBook models.
The SCSI portion of the Combo IC connects directly to the external SCSI connector
and can sink up to 48 mA through each of the pins connected to the SCSI bus. The
data and control signals on the SCSI bus are active low signals that are driven by

open drain outputs.

Serial Port

25



26

CHAPTER 3

1/0 Features

Table 3-4 Serial port signals

Pin

number Signal name Signal description
1 HSKo Handshake output
2 HSKi Handshake input
3 TxD- Transmit data —

4 SG Signal ground

5 RxD- Receive data —

6 TxD+ Transmit data +

7 GPi General-purpose input
8 RxD+ Receive data +

Table 3-5 shows the signal assignments for the external SCSI connector. Note that pin 1
of the external SCSI connector is the /SCSI.DISK. MODE signal.

Table 3-5 SCSI connector signals
Pin Pin
number SCSI connector number SCSI connector
1 /SCSL.DISK.MODE 16 /DB6
2 /DB0 17 GND
3 GND 18 /DB7
4 /DB1 19 /DBP
5 TERMPWR (not used; 20 GND
reserved for future use)
6 /DB2 21 /REQ
7 /DB3 22 GND
8 GND 23 /BSY
9 /ACK 24 GND
10 GND 25 /ATN
11 /DB4 26 /C/D
12 GND 27 /RST
13 GND 28 /MSG
14 /DB5 29 /SEL
15 GND 30 /1/0
SCSI Port



CHAPTER 3

1/0 Features

ADB Port

The Apple Desktop Bus (ADB) port on the Macintosh PowerBook 5300 computer is
functionally the same as on other Macintosh computers.

The ADB connector is a 4-pin mini-DIN connector. Figure 3-7 shows the arrangement of
the pins on the ADB connector.

Figure 3-7 ADB connector

© ©
©) ®
]

The ADB is a single-master, multiple-slave serial communications bus that uses an
asynchronous protocol and connects keyboards, graphics tablets, mouse devices, and
other devices to the computer. The custom ADB microcontroller drives the bus and reads
status from the selected external device. A 4-pin mini-DIN connector connects the

ADB controller to the outside world. Table 3-6 lists the ADB connector pin assignments.
For more information about the ADB, see Guide to the Macintosh Family Hardware,

second edition.

Table 3-6 ADB connector pin assignments

Pin

number Name Description

1 ADB Bidirectional data bus used for input and output; an

open collector signal pulled up to +5 volts through a
470-ohm resistor on the main logic board.

2 PSW Power on signal; generates reset and interrupt key
combinations.

3 +5V +5 volts from the computer.

4 GND Ground from the computer.

IMPORTANT

The total current available for all devices connected
to the +5-V pins on the ADB is 100 mA. a

ADB Port 27



CHAPTER 3

1/0 Features

Infrared Module

The computer has an infrared (IR) module connected internally to serial port B. The IR
module can communicate with Newton PDAs and other communications devices. When
the computer is placed within a few feet of another machine with an IR interface, it can
send and receive serial data using one of several standard communications protocols.
The other machine may be another Macintosh PowerBook 5300 computer, a Newton
PDA, or some other IR-equipped device such as a remote control for a TV set.

The IR module in the Macintosh PowerBook 5300 computer supports the following
communications protocols:

s LocalTalk

» Newton/Sharp/ASK

= HP/IRDA

= TV remote control (receive only)

For LocalTalk operation, the IR module takes serial bits from the SCC and transmits
them using a modified form of pulse encoding called PPM-4. This method of encoding
uses four cycles of a 3.92-MHz carrier for each pulse, which increases the system’s
immunity to interference from fluorescent lights.

The modulation method used in the Newton PDA consists of gating a 500-kHz carrier on
and off. This method is capable of data rates up to 38.4k bits per second.

Sound System

28

The 16-bit stereo audio circuitry provides high-quality sound input and output through
the built-in microphone and speaker. The user can also connect external input and
output devices by way of the sound input and output jacks.

The sound system is based on the Singer codec IC along with input and output
amplifiers and signal conditioners. In the Macintosh PowerBook 5300 computer, the
Singer codec supports two channels of digital sound with sample sizes up to 16 bits and
sample rates of 11.025 kHz, 22.05 kHz, and 44.1 kHz.

The frequency response of the sound circuits, not including the microphone and speaker,
is within plus or minus 2 dB from 20 Hz to 20 kHz. Total harmonic distortion and noise
is less than 0.05 percent with a 1-V rms sine wave input. The signal-to-noise ratio (SNR)
is 85 dB, with no audible discrete tones.

Note
All sound level specifications in this section are rms values. O

Infrared Module



CHAPTER 3

1/0 Features

Sound Inputs

The sound system accepts inputs from several sources:
= built-in microphone

= external sound input jack

s sound from the expansion bay

s 1-bit sound from the PCMCIA slot

The sound signal from the built-in microphone goes through a dedicated preamplifier
that raises its nominal 30-mV level to the 1-V level of the codec circuits in the Singer IC.

Stereo sound signals from the external sound input jack go through an analog
multiplexer that selects either the external signals or the sound signals from the
expansion bay. The multiplexer also lowers the levels of the maximum 2-V signal at
the input jack to match the 1-V level of the codec circuits in the Singer IC.

The sound input jack has the following electrical characteristics:
= input impedance: 6.8k

» maximum level: 2.0 V rms

Note

The sound input jack accepts the maximum sound output of an audio
CD without clipping. When working with sound sources that have
significantly lower levels, you may wish to increase the sound output
level. You can do that using the Sound Manager as described in Inside
Macintosh: Sound. O

Stereo sound signals from the expansion bay go through an analog multiplexer that
selects either those signals or the line signals from the external input jack. The
multiplexer also raises the nominal 0.5-V level of the expansion-bay sound to the 1-V
input level of the codec circuits.

The sound input from the expansion bay has the following electrical characteristics:
= input impedance: 3.2k
= maximum level: 0.5 V rms

Each PCMCIA card has one sound output pin (SPKR_OUT) and the computer accepts
either one or two cards. The one-bit digital signals from the sound output pins are
exclusive-ORed together and routed to the built-in speaker and the external sound
output jack.

Sound Outputs

The sound system sends computer-generated sounds or sounds from an expansion-bay
device or PC card to a built-in speaker and to an external sound output jack. The sound
output jack is located on the back of the computer.

Sound System



30

CHAPTER 3

1/0 Features

The sound output jack provides enough current to drive a pair of low-impedance
headphones. The sound output jack has the following electrical characteristics:

output impedance: 33 Q
minimum recommended load impedance: 32 Q
maximum level: 1 V rms

maximum current: 32 mA peak

The computer turns off the sound signals to the internal speaker when an external device
is connected to the sound output jack and during power cycling.

Sound System



CHAPTER 4

Expansion Modules




CHAPTER 4

Expansion Modules

This chapter describes each of the following expansion features of the Macintosh
PowerBook 5300 computer:

= expansion bay
= RAM expansion
» video card (for an external monitor)

= PCMCIA slot

Expansion Bay

The expansion bay is an opening in the Macintosh PowerBook 5300 computer that
accepts a plug-in disk drive such as a floppy disk. The expansion bay can also accept a
power device such as an AC adapter or a second battery.

Expansion Bay Design

Figure 4-1 shows a module designed to fit into the expansion bay. Figure 4-2 shows the
dimensions of the expansion bay.

Figure 4-1 Expansion bay module

32

Expansion Bay



CHAPTER 4

Expansion Modules

Figure 4-2 Expansion bay dimensions

18.00 é‘
[0.709] J

106.00
[4.173]

- 145.75 [5.738] -

Note: Dimensions are in millimeters [inches]

Expansion Bay Connector

The expansion bay connector is a 90-pin shielded connector. The pins are divided into
two groups by a gap. Pins 1 and 46 are at the end of the connector nearest the gap; pins
45 and 90 are at the end farthest from the gap. The connector on the main logic board is
AMP part number C-93-1817-53.

A matching card connector is available as part number C-93-1817-54 from AMP, Inc. For
a specification sheet or information about obtaining this connector, contact AMP at

AMP, Inc.

19200 Stevens Creek Blvd.
Cupertino, CA 95014-2578
408-725-4914

AppleLink: AMPCUPERTINO

IMPORTANT

The expansion bay connector is designed so that when a module is
inserted into the expansion bay, the first connection is the ground by
way of the connector shells, then the power pins make contact, and last
of all the signal lines. a

Expansion Bay 33



34

CHAPTER 4

Expansion Modules

Signals on the Expansion Bay Connector

Table 4-1 shows the signal assignments on the expansion bay connector. Signal names
that begin with a slash (/) are active low.

Table 4-1 Signal assignments on the expansion bay connector
Pin Pin
number Signal name number Signal name
1 Reserved 27 MB_+3V
2 Reserved 28 IDE_D(5)
3 MB_+3V 29 IDE_D(7)
4 MB_SND_COM 30 IDE_D(8)
5 Reserved 31 IDE_D(10)
6 Reserved 32 MB_+3V
7 GND 33 IDE_D(13)
8 Reserved 34 IDE_D(15)
9 /DEV_IN 35 /DIOR
10 DEV_ID(1) 36 /CS3EX
11 GND 37 Reserved
12 MB_+5V 38 IDE_ADDR(1)
13 /WRREQ 39 Reserved
14 PHASE(0) 40 Reserved
15 MB_+5V 41 Reserved
16 PHASE(3) 42 Reserved
17 WRDATA 43 Reserved
18 FD_RD 44 Reserved
19 HDSEL 45 MB_+BAT
20 GND 46 Reserved
21 Reserved 47 Reserved
22 Reserved 48 MB_SND_L
23 Reserved 49 MB_SND_R
24 IOCHRDY 50 Reserved
25 GND 51 Reserved
26 IDE_D(2) 52 Reserved

continued

Expansion Bay



CHAPTER 4

Expansion Modules

Table 4-1 Signal assignments on the expansion bay connector (continued)
Pin Pin

number Signal name number Signal name
53 Reserved 72 IDE_D(4)

54 DEV_ID(0) 73 IDE_D(6)

55 DEV_ID(2) 74 GND

56 Reserved 75 IDE_D(9)

57 Reserved 76 IDE_D(11)
58 GND 77 IDE_D(12)
59 PHASE(1) 78 IDE_D(14)
60 PHASE(2) 79 GND

61 GND 80 /DIOW

62 MB_+5V 81 /CS1FX

63 /FL_ENABLE 82 IDE_ADDR(0)
64 /MB_IDE_RST 83 IDE_ADDR(2)
65 Reserved 84 GND

66 Reserved 85 IDE_INTRQ
67 MB_+5V 86 Reserved

68 Reserved 87 Reserved

69 IDE_D(0) 88 Reserved

70 IDE_D(1) 89 GND

71 IDE_D(3) 90 MB_+BAT

Expansion Bay

35



36

CHAPTER 4

Expansion Modules

Signal Definitions

The signals on the expansion bay connector are of three types: expansion bay control
signals, floppy disk signals, and IDE signals. The next three tables describe the three
types of signals: Table 4-2 describes the control signals, Table 4-3 describes the floppy
disk signals, and Table 4-4 describes the IDE signals.

Table 4-2 Control signals on the expansion bay connector

Signal name Signal description

DEV_ID(2:0) These three signal lines identify the type of media-bay device. A
value of 000b identifies a floppy-disk drive; 011b identifies all other
IDE devices.

/DEV_IN This signal is low whenever a device is installed in the expansion

bay; it is used by the Baboon IC to determine when a device has
been inserted or removed.

MB_SND_COM Common (ground) line for expansion bay sound signals.

MB_SND_L Left channel sound signal from the expansion bay device.

MB_SND_R Right channel sound signal from the expansion bay device.

Table 4-3 Floppy disk signals on the expansion bay connector

Signal name Signal description

FD_RD Read data from the floppy disk drive.

/FL_ENABLE Floppy disk drive enable.

PHASE(3:0) Phase(2:0) are state-control lines to the drive; Phase(3) is the strobe
signal for writing to the drive’s control registers.

WRDATA Write data to the floppy disk drive

/WRREQ Write data request signal.

Table 4-4 IDE signals on the expansion bay connector

Signal name Signal description

/ CS1FX IDE register select signal. It is asserted low to select the main task

file registers. The task file registers indicate the command, the
sector address, and the sector count.

/ CS3FX IDE register select signal. It is asserted low to select the additional
control and status registers on the IDE drive.
/DIOR IDE 1/0O data read strobe.
continued

Expansion Bay



CHAPTER 4

Expansion Modules

Table 4-4 IDE signals on the expansion bay connector (continued)
Signal name Signal description
/DIOW IDE 1/ O data write strobe.

IDE_ADDR(0-2) IDE device address; used by the computer to select one of the
registers in the IDE drive. For more information, see the
descriptions of the /CS1FX and /CS3FX signals.

IDE_D(0-15) IDE data bus, buffered from I0D(16-31) of the controller IC.
IDE_D(0-15) are used to transfer 16-bit data to and from the drive
buffer. IDE_D(0-7) are used to transfer data to and from the drive’s
internal registers, with IDE_D(8-15) driven high when writing.

IOCHRDY IDE I/O channel ready; when driven low by the IDE drive, signals
the CPU to insert wait states into the I/O read or write cycles.

IDE_INTRQ IDE interrupt request. This active high signal is used to inform the
computer that a data transfer is requested or that a command has
terminated.

/MB_IDE_RST Hardware reset to the IDE drive.

Note

Signal names that begin with a slash (/) are active low. O

Unused IDE Signals

Several signals defined in the standard interface for the IDE drive are not used by the
expansion bay. Those signals are listed in Table 4-5 along with any action required for the
device to operate in the media bay.

Table 4-5 Unused IDE signals

Signal name Comment

DMARQ No action required.

CSEL This signal must be tied to ground to configure the device as
the master in the default mode.

DMACK This signal must be pulled high (to the IDE device’s Vcc).

I0CS16 No action required.

PDIAG No action required; the device is never operated in master-
slave mode.

DAS No action required.

Expansion Bay 37



38

CHAPTER 4

Expansion Modules

Power on the Expansion Bay

Table 4-6 describes the power lines on the expansion bay connector. The MB_+5V line is
controlled by the MB_PWR_EN signal from the Power Manager IC. The current drawn
from MB_+5V must not exceed 1.0 A.

Table 4-6 Power for the expansion bay

Signal name Signal description

GND Ground.

MB_+5V 5V power; maximum total current is 1.0 A.

User Installation of an Expansion Bay Device

The user can insert a device into the expansion bay while the computer is operating. This
section describes the sequence of control events in the computer and gives guidelines for
designing an expansion bay device so that such insertion does not cause damage to the
device or the computer.

Sequence of Control Signals

Specific signals to the Baboon IC and the Power Manager IC allow the computer to
detect the insertion of a device into the expansion bay and take appropriate action. For
example, when an IDE device is inserted, the computer performs the following sequence
of events:

1. When a device is inserted, the /DEV_IN signal goes low, causing the Baboon IC to
generate an interrupt.

2. The Power Manager IC reads the three DEV_ID signals, which identify the device as
an IDE device.

3. System software responds to the interrupt and sets the /MB_PWR_EN signal low,
which turns on the power to the expansion bay.

4. When the media-bay power goes high, the Baboon IC generates another interrupt.

5. System software responds to the power-on interrupt and asserts the /MB_OE signal
to enable the IDE bus in the expansion bay.

6. The software then releases the /MB_IDE_RST signal from the Power Manager IC,
allowing the IDE device to begin operating.

Essentially the reverse sequence occurs when a device is removed from the
expansion bay:

1. When the device is removed, the /DEV_IN signal goes high causing the Baboon IC to
generate an interrupt and set / MB_OE high, disabling the IDE bus.

2. System software responds to the interrupt by reading the device ID settings in the
Power Manager IC, setting the /MB_PWR_EN signal high to turn off the power to the
expansion bay, and asserting the /MB_IDE_RST to disable the IDE drive.

Expansion Bay



CHAPTER 4

Expansion Modules

Guidelines for Developers

Each expansion bay device must be designed to prevent damage to itself and to
the computer when the user inserts or removes an expansion bay device with the
computer running.

The expansion bay connector is designed so that when the device is inserted the ground
and power pins make contact before the signal lines.

Even though you can design an expansion bay device that minimizes the possibility
of damage when it is inserted hot—that is, while the computer is running—your
instructions to the user should include warnings against doing so.

RAM Expansion

This section includes electrical and mechanical guidelines for designing a RAM
expansion card for the Macintosh PowerBook 5300 computer.

The RAM expansion card can contain from 8 MB to 48 MB of self-refreshing dynamic
RAM in one to six banks, with 2 MB, 4 MB, or 8 MB in each bank. Table 4-7 shows how
the banks can be implemented with standard RAM devices.

Table 4-7 Configurations of RAM banks

Number
Size of of devices
bank per bank Device size (bits)
2 MB 4 512K % 8
4 MB 8 1Mx4
4 MB 2 1Mx16
8 MB 4 2Mx8
IMPORTANT

The RAM expansion card for the Macintosh PowerBook 5300 computer
is a new design; cards designed for earlier PowerBook models cannot be
used in this PowerBook model. a

A WARNING
Installation of a RAM expansion card computer must be performed by
an experienced technician. Installation requires care to avoid damage to
the pins on the RAM expansion connector. a

RAM Expansion 39



40

CHAPTER 4

Expansion Modules

Electrical Design Guidelines for the RAM Expansion Card

This section provides the electrical information you need to design a RAM expansion
card for the Macintosh PowerBook 5300 computer. The mechanical specifications are
given in a subsequent section, beginning on page 47.

Connector Pin Assignments

Table 4-8 lists the names of the signals on the RAM expansion connector. Entries in the
table are arranged the same way as the pins on the connector: pin 1 across from pin 2,
and so on. Signal names that begin with a slash (/) are active low.

Table 4-8 Signal assignments on the RAM expansion connector
Pin Signal name Pin Signal name

1 +5V_MAIN 2 +5V_MAIN

3 +3V_MAIN 4 +3V_MAIN

5 GND 6 GND

7 /RASL(2) 8 RA(11)

9 /WE 10 /RASH(2)
11 /CASL(3) 12 /CASH(3)
13 DataL(28) 14 DataH(28)
15 DataL(29) 16 DataH(29)
17 DataL(30) 18 DataH(30)
19 DataL(31) 20 DataH(31)
21 DataL(24) 22 DataH(24)
23 DataL(25) 24 DataH(25)
25 DataL(26) 26 DataH(26)
27 DataL(27) 28 DataH(27)
29 +5V_MAIN 30 +5V_MAIN
31 DataL(20) 32 DataH(20)
33 GND 34 GND
35 DataL(21) 36 DataH(21)
37 DataL(22) 38 DataH(22)
39 DataL(23) 40 DataH(23)
41 DataL(16) 42 DataH(16)
43 DataL(17) 44 DataH(17)

RAM Expansion

continued



CHAPTER 4

Expansion Modules

Table 4-8 Signal assignments on the RAM expansion connector (continued)

Pin Signal name Pin Signal name
45 DataL.(18) 46 DataH(18)
47 DataL(19) 48 DataH(19)
49 DataL.(12) 50 DataH(12)
51 +3V_MAIN 52 +3V_MAIN
53 DataL(13) 54 DataH(13)
55 Datal.(14) 56 DataH(14)
57 DataL(15) 58 DataH(15)
59 +5V_MAIN 60 +5V_MAIN
61 DataL(8) 62 DataH(8)
63 GND 64 /RAM_OE
65 DataL(9) 66 DataH(9)
67 DataL(10) 68 DataH(10)
69 Datal.(11) 70 DataH(11)
71 Datal(4) 72 DataH(4)
73 DataL(5) 74 DataH(5)
75 DataL(6) 76 DataH(6)
77 DataL(7) 78 DataH(7)
79 /CASH(0) 80 /RASH(1)
81 /CASH(2) 82 /CASH(1)
83 +3V_MAIN 84 +3V_MAIN
85 DataH(3) 86 DataL(3)
87 DataH(2) 88 DataL(2)
89 +5V_MAIN 90 +5V_MAIN
91 DataH(1) 92 DataL(1)
93 GND 94 GND
95 DataH(0) 96 DataL(0)
97 RA(3) 98 RA(4)
99 RA(2) 100 RA(5)

101 RA(1) 102 RA(6)

103 RA(0) 104 RA(7)

105 RA(10) 106 RA(8)

RAM Expansion

continued

41



42

CHAPTER 4

Expansion Modules

Table 4-8 Signal assignments on the RAM expansion connector (continued)
Pin Signal name Pin Signal name
107 RA(9) 108 /RASL(0)
109 /RASL(1) 110 /RASL(3)

111 /CASL(1) 112 +12V

113 / CASL(0) 114 /RASH(0)
115 /CASL(2) 116 /RASH(3)
117 +5V_MAIN 118 +3V_MAIN
119 GND 120 GND

Signal Descriptions

Table 4-9 describes the signals on the RAM expansion connector. Signal names that begin
with a slash (/) are active low.

Table 4-9 Descriptions of signals on the RAM expansion connector

Signal name
+12V

+5V_MAIN
+3V_MAIN

/CASH(0-3)

/ CASL(0-3)

DataH(0-31)

Datal.(0-31)

RAM Expansion

Description
12.0 V for flash memory; 30 mA maximum.
5.0V £ 5%; 500 mA maximum.

3.6 V £ 5%; 500 mA maximum. Devices that use the +3V supply must
be 5-V tolerant.

Column address select signals for the individual bytes in a longword.
The signals are assigned to the bytes as follows:

/ CASH(3) selects DataH(24-31)
/CASH(2) selects DataH(16-23)
/CASH(1) selects DataH(8-15)
/ CASH(0) selects DataH(0-7)

Column address select signals for the individual bytes in a longword.
The signals are assigned to the bytes as follows:

/ CASL(3) selects DatalL(24-31)
/ CASL(2) selects DataL(16-23)
/CASL(1) selects DataL(8-15)

/ CASL(0) selects DataL(0-7)

Bidirectional 32-bit DRAM data bus. (DataH lines are connected to
corresponding DataL lines on the main logic board.)

Bidirectional 32-bit DRAM data bus. (DataL lines are connected to
corresponding DataH lines on the main logic board.)

continued



CHAPTER 4

Expansion Modules

Table 4-9 Descriptions of signals on the RAM expansion connector (continued)

Signal name Description

GND Chassis and logic ground.

RA(0-11) Multiplexed row and column address to the DRAM devices. (See the

section “Address Multiplexing” on page 43 to determine which bits to
use for a particular type of DRAM device.)

RAM_OE Output enable signal to the DRAM devices.

/RASL(0-3) Row address select signals for the four banks of DRAM whose data
bytes are selected by /CASL(0-3). (Signals /RASL(1-3) are for DRAM
on the expansion card. The /RASL(0) signal selects a bank of DRAM
on the main logic board.)

/RASH(0-3) Row address select signals for the four banks of DRAM whose data
bytes are selected by /CASH(0-3). (Signals /RASH(1-3) are for DRAM
on the expansion card. The /RASH(0) signal selects a bank of DRAM
on the main logic board.)

/WE Write enable for all banks of DRAM.

In the table, signals are specified as inputs or outputs with respect to the main logic
board that contains the CPU and memory module; for example, an input is driven by the
expansion card into the logic board.

IMPORTANT

The last letter in the names of row and column strobe signals identifies
signals that are used together: /CASL() signals are used with /RASL()
signals; /CASH() signals are used with /RASH() signals. In the
Macintosh PowerBook 5300 computer, corresponding Datal and DataH
lines are connected together. a

Address signals must be stable before the falling edge of RAS. Because each address line
is connected to every DRAM device, whereas each RAS line is connected to only one
bank of devices, the difference in loading can cause the address signals to change more
slowly than the RAS signals. This situation is more likely to arise on cards with many
DRAM devices. One solution is to add 100-Q damping resistors on the RAS lines.

Address Multiplexing

Signals RA(0-11) are a 12-bit multiplexed address bus and can support several different
types of DRAM devices.

Depending on their internal design and size, different types of DRAM devices require
different row and column address multiplexing. The operation of the multiplexing is
determined by the way the address pins on the devices are connected to individual
signals on the RA(0-11) bus and depends on the exact type of DRAM used.

Table 4-10 shows how the signals on the address bus are connected for several types of
DRAM devices. The device types are specified by their size and by the number of row
and column address bits they require.

RAM Expansion 43



CHAPTER 4

Expansion Modules

Table 4-10 also shows how the signals are multiplexed during the row and column
address phases. For each type of DRAM device, the first and second rows show the
actual address bits that drive each address pin during row addressing and column
addressing, respectively. The third row shows how the device’s address pins are
connected to the signals on the RA(0-11) bus.

IMPORTANT

Some types of DRAM devices don’t use all 12 bits in the row or column
address. The table shows the address-bit numbers for those unused bits
in italics; bit numbers for the bits that are used are shown in bold. a

Table 4-10 Address multiplexing for some typical DRAM devices

Individual signals on DRAM_ADDR bus
Type of DRAM device [11] [10]1 [91 8] [71 [6] [51 [4 [8]1 [2 [1] [0]

4 M by 1or 4 M by 4;11 row bits, 11 column bits

Row address bits 21 22 20 18 17 16 15 14 13 12 11 10
Column address bits 19 23 21 19 9 8 7 6 5 4 3 2
Device address pins — 10 9 8 7 6 5 4 3 2 1 0

2 M by 8; 12 row bits, 9 column bits

Row address bits 21 22 20 18 17 16 15 14 13 12 11 10
Column address bits 19 23 21 19 9 8 7 6 5 4 3 2
Device address pins 11 10 9 8 7 6 5 4 3 2 1 0

2 M by 8; 11 row bits, 10 column bits

Row address bits 21 22 20 18 17 16 15 14 13 12 11 10
Column address bits 19 23 21 19 9 8 7 6 5 4 3 2
Device address pins — 10 9 8 7 6 5 4 3 2 1 0

1 Mby 4or1M by 16; 11 row bits, 9 column bits

Row address bits 21 22 20 18 17 16 15 14 13 12 11 10
Column address bits 19 23 21 19 9 8 7 6 5 4 3 2
Device address pins 00 — 9 8 7 6 5 4 3 2 1 0

1Mby4orl1Mby 16; 10 row bits, 10 column bits

Row address bits 21 22 20 18 17 16 15 14 13 12 11 10

Column address bits 19 23 21 19 9 8 7 6 5 4 3 2

Device address pins - — 9 8 7 6 5 4 3 2 1 0
continued

44 RAM Expansion



CHAPTER 4

Expansion Modules

Table 4-10 Address multiplexing for some typical DRAM devices (continued)

Individual signals on DRAM_ADDR bus

Type of DRAM device [11] [20] [°9] [8] [71 [6] [6B1 [4 [8] (21 [1] [0]

512K by 8; 10 row bits, 9 column bits

Row address bits 21 22 20 18 17 16 15 14 13 12 11 10

Column address bits 19 23 21 19 9 8 7 6 5 4 3 2

Device address pins —- — 9 8 7 6 5 4 3 2 1 0
Note

The address multiplexing scheme used in the Macintosh
PowerBook 5300 computer supports only the types of RAM
devices shown in Table 4-10. Other RAM types should not be used. O

Banks of DRAM

The DRAM expansion card can have up to six banks of RAM, selected by individual
signals /RASL(1-3) and /RASH(1-3). Banks can be 2 MB, 4 MB, or 8 MB in size; on a
card with more than one bank, all banks must be the same size.

Because only one bank is active at a time, and because different-sized DRAM devices
consume about the same amount of power when active, a card having fewer devices per
bank consumes less power than a card having more devices per bank.

Note

The PBX IC has a memory bank decoder that is used by the startup
software to make the memory banks contiguous. For more information,
see “Memory Control” on page 12. O

DRAM Device Requirements

The DRAM devices used in a DRAM expansion card must meet the following minimum
specifications:

= fast page mode

s self-refreshing

= low-power grade

= row access time (tgac) of 70 ns or less

= column access time (tcac) of 20 ns or less

= page-mode cycle time (tpc) of 50 ns or less

DRAM devices that use the 3-V supply must be 5-V tolerant.

RAM Expansion 45



46

CHAPTER 4

Expansion Modules

Note

The DRAM refresh operation depends on the state of the computer.
When the computer is operating normally, the PBX IC provides refresh
signals consisting of 2048 CAS before RAS cycles every 128 ms. When
the computer goes into sleep mode, the PBX IC switches the DRAM
devices to their self-refresh feature to save power. See also “PBX
Memory Controller IC” on page 12. O

Expansion Card Electrical Limits

The DRAM expansion card must not exceed the following maximum current limits on
the +5V supply:

Active 500 mA
Standby 24 mA
Self-refresh 6 mA

The capacitive loading on the signal lines must not exceed the following limits:

/CASL(0-3), / CASH(0-3) 40 pF
DataL(0-31), DataH(0-31) 70 pF
RA(0-11) 25 pF
/RASL(1-3), /RASH(1-3) 30 pF
/WE 85 pF

If the total capacitive loading for the devices on your card exceeds these guidelines, you
should use buffers (such as 244-type devices) on the address and /RAS lines. Because of
timing constraints, you cannot use buffers on the /CAS and /WE lines. If you do use
buffers, you must keep within the following delay specifications:

= Maximum delay on RA(): 8ns
» Maximum delay on /RASL() and /RASH(): 10ns

s Minimum delay on /RASL() and /RASHY(): greater than or equal to the actual delay
on RA()

RAM Expansion



CHAPTER 4

Expansion Modules

Mechanical Design of the RAM Expansion Card

All the components of the RAM expansion card, including the connector, are on the same
side of the card, as shown in Figure 4-3.

Figure 4-3 RAM expansion card

Connector

Low-profile memory ICs
(typical configuration)

IMPORTANT

The component side is the bottom side when the card is installed.
The top surface of the board must have no components or component
leads. All components must reside on the bottom of the card, along
with the connector. O

RAM Card Dimensions

Figure 4-4 is a plan view of the component side of the card showing its dimensions and
the location of the connector.

Figure 4-4 Dimensions of the RAM expansion card

-~ 89.00[3.504] — =

86.30
5.30 —
[.209]

t 1—6.30 [.248]

¥ 9.96 [.392] e ———a5
f t J
R 1.52 [.060] — R 1.52 [.060]

23.92 [.942] —=—w
-—54.40 [2.142] - PIN 2

—-

~—5.00[.197]

Note: Dimensions are in millimeters [inches]

RAM Expansion 47



CHAPTER 4

Expansion Modules

Figure 4-5 shows the maximum component height and the restricted areas on the bottom
(component side) of the card. Only the connector can exceed the height limit shown.

Figure 4-5 Restricted areas on the component side of the card

48

~—— 77.00 [3.031] —»| |~ 2X 6.00 [.236]

-—
\ N\
% T

2X 81.83
[3.22]

6.00 [.236] =

No components
or traces

Component height
restricted to 1.42
[.056] maximum

B

Note: Dimensions are in millimeters [inches]

To keep within the component height restrictions, the DRAM devices on the RAM
expansion card must be of package type TSOP (thin small outline package) rather than
SOP or SOJ.

IMPORTANT
The thickness of the PC board is critical; it must be
within a 0.05-mm tolerance of 0.75 mm. a

WARNING
Do not exceed the dimensions shown in the drawings. Cards
that exceed these specifications may damage the computer. a

RAM Card Connector

The connector on the RAM expansion card is a 120-pin connector, part number
KX14-120K14E9, manufactured by JAE Electronics, Irvine, California.

Note

Some early prototypes of this connector had oil contamination of the
contact surfaces. Developers should avoid using those prototype
connectors in their products.

RAM Expansion



CHAPTER 4

Expansion Modules

Video Card

The Macintosh PowerBook 5300 computer accepts an optional video card that provides
support for an external video monitor. This section describes the video card that Apple
provides and includes a design guide for developers who wish to design such a card.

The Apple Video Card

Apple provides an optional video card for the Macintosh PowerBook 5300 computer.
Figure 4-6 shows its general appearance.

Figure 4-6 Video card

Shield

/ Foam block

connector

\80-pin connector

Monitors Supported

The external video card provides video output for all Apple 12-inch, 13-inch, and 16-inch
RGB monitors, the Apple Macintosh Portrait Display, and Apple Computer’s new
17-inch multiscan display. With appropriate adapter cables, the external video card can
also support a VGA display or an 800-by-600 pixel SVGA display.

The video card contains 512 KB of video RAM, which provides pixel depths of up to
8 bits per pixel on monitor screens of up to 624-by-832 pixels.

Video Card 49



CHAPTER 4

Expansion Modules

Table 4-11 lists the video monitors supported by the video card.

Table 4-11 Video monitors and modes

Maximum
Width Height pixel depth Frame rate
Monitor type (pixels) (pixels) (bits) (Hz)
12-inch RGB 512 384 8 60.15
13-inch RGB 640 480 8 66.67
Portrait 640 870 4 75.0
16-inch RGB 832 624 8 66.67
17-inch multiscan 640 480 8 66.67
17-inch multiscan 832 624 8 75.0
VGA or SVGA 640 480 8 59.95
SVGA 800 600 8 55.98

" Includes Macintosh Color Display and Apple High Resolution Monochrome Monitor.

The external video interface is enabled by attaching a monitor and restarting the
computer. During the boot process, ROM software tests the monitor sense lines and
activates the video output system if a recognized monitor is attached. If no monitor is
found, the video output system is deactivated to conserve power.

Video Mirroring

When two video displays are used, the Macintosh PowerBook 5300 computer has two
video output modes: dual mode and mirror mode. In dual mode, which is the normal
Macintosh mode of operation, the external video monitor is independent of the flat panel
display and displays additional information. Alternatively, the user can select mirror
mode, in which the external monitor mirrors (duplicates) the flat panel display.

The screen of the external monitor may be larger or smaller than the flat panel display. In
mirror mode, the display on the larger screen uses only the central portion of that screen
and matches the horizontal and vertical dimensions of the smaller screen.

WARNING

Applications that write directly to the display buffer may not be
compatible with mirror mode unless they ensure that they do not write
outside the active display area. That is not a problem for applications
that use QuickDraw and never write directly to the display buffer. a

Because the video output circuitry consumes additional power, Apple recommends that
customers use the AC adapter when using an external monitor.

Video Card



CHAPTER 4

Expansion Modules

External Video Connector

The video card for the Macintosh PowerBook 5300 computer has the same type VID-14
video output connector as the PowerBook 520 and 540 computers. An optional adapter
cable allows the user to attach a standard Apple video cable. Table 4-12 lists the signal
pin assignments for both the VID-14 connector on the card and the DB-15 connector on
the adapter cable. Figure 4-7 shows the pin configurations of the VID-14 connector and
the DB-15 connector.

Table 4-12 Signals on the video connector
Pin
VID-14 DB-15 Signal name Description
1 2 RED.VID Red video signal
2 1 RED.GND Red video ground
3 4 SENSEQ Monitor sense signal 0
4 12 /VSYNC Vertical synchronization signal
5 3 /CSYNC Composite synchronization signal
6 11 GND CSYNC and VSYNC ground
7 6 GRN.GND Green video ground
8 5 GRN.VID Green video signal
9 7 SENSE1 Monitor sense signal 1
10 14 HSYNC.GND HSYNC ground
11 10 SENSE2 Monitor sense signal 2
12 15 /HSYNC Horizontal synchronization signal
13 9 BLU.VID Blue video signal
14 13 BLU.GND Blue video ground
— 8 n.c. Not connected
Shell Shell SGND Shield ground

One source for the VID-14 adapter cable is

Hosiden America Corp.

10090 Pasadena Ave., Suite B2
Cupertino, CA 95014
408-252-0541

Refer to Hosiden part number CMP1220-010100.

Video Card

51



CHAPTER 4

Expansion Modules

Figure 4-7 Video connectors

VID-14 connector socket

@ (@@@@@@@@@@@@7\@

DB-15 connector socket

Monitor Sense Codes

To identify the type of monitor connected, the video card uses the Apple monitor sense
codes on the signals SENSE0-2 in Table 4-12. Table 4-13 shows the sense codes and the
extended sense codes for each of the monitors the card can support. Refer to the
Macintosh Technical Note M.HW.SenseLines for a description of the sense code system.

Table 4-13 Monitor sense codes

Standard

sense codes Extended sense codes
Monitor type (2-0) 1,2 ©, 2) ©, 1)
12-inch RGB 010 n.a. n.a. n.a.
13-inch RGB 110 n.a. n.a. n.a.
Portrait 001 n.a. n.a. n.a.
16-inch RGB 111 10 11 01
17-inch multiscan 110 11 01 00
VGA and SVGA 111 01 01 11
No monitor 111 11 11 11

Note

Both VGA and SVGA monitors have the same sense code. The first time
the user starts up with an SVGA monitor, the video card treats it as a
VGA monitor and shows a 640-by-480 pixel display. The user can switch
to the 800-by-600 pixel SVGA mode from the Monitors control panel;
when that happens, the computer changes the display to the 800-by-600
pixel display mode immediately, and continues to use that mode the
next time it is started up. O

Video Card



CHAPTER 4

Expansion Modules

Video Card Design Guide

This section gives electrical and mechanical specifications for developers who wish to
design a video card for the Macintosh PowerBook 5300 computer.

Video Card Connector

The video card is connected to the computer’s main logic board by an 80-pin connector.
The connector on the card is a surface-mount connector with 0.8-mm pitch, part number

KX14-80K5E9 manufactured by JAE Electronics.

Signals on the Video Card Connector

Table 4-14 shows the pin assignments on the video card connector. The table is arranged

the same way as the pins on the connector, with pin 1 across from pin 2, and so on.

Table 4-14 Signals on the video card connector
Pin Pin
number Signal name number Signal name

1 +5V 2 +5V

3 n.c. 4 IO_DATA(8)

5 n.c. 6 GND

7 n.c. 8 IO_DATA(7)

9 IO_DATA(6) 10 IO_DATA(26)
11 IO_DATA(15) 12 IO_DATA(25)
13 I0_DATA(14) 14 IO_DATA(24)
15 I0_DATA(12) 16 I0_DATA(29)
17 I0_DATA(13) 18 IO_DATA(28)
19 IO_DATA(4) 20 I0O_DATA(27)
21 GND 22 GND
23 IO_DATA(0) 24 IO_DATA(16)
25 IO_DATA(5) 26 IO_DATA(31)
27 IO_DATA(1) 28 I0_DATA(30)
29 I0O_DATA(11) 30 IO_DATA(19)
31 IO_DATA(@3) 32 IO_DATA(22)
33 IO_DATA(9) 34 IO_DATA(21)
35 IO_DATA(2) 36 I0O_DATA(17)
37 I0O_DATA(10) 38 I0_DATA(20)

Video Card

continued

53



54

CHAPTER 4

Expansion Modules

Table 4-14 Signals on the video card connector (continued)

Pin Pin

number Signal name number Signal name
39 I0_DATA(23) 40 IO_DATA(18)
41 /AS 42 I0O_RW

43 /TO_RESET 44 /DSACK(0)
45 +5V 46 +5V

47 SI1Z(1) 48 /DSACK(0)
49 S1Z(0) 50 I0_ADDR(0)
51 I0_ADDR(2) 52 I0_ADDR(1)
53 I0_ADDR(5) 54 I0_ADDR(3)
55 I0_ADDR(17) 56 I0_ADDR(4)
57 I0_ADDR(19) 58 I0_ADDR(7)
59 I0_ADDR(15) 60 I0_ADDR(6)
61 I0_ADDR(21) 62 I0_ADDR(10)
63 I0_ADDR(22) 64 I0_ADDR(12)
65 I0_ADDR(23) 66 I0_ADDR(13)
67 I0_ADDR(20) 68 I0_ADDR(11)
69 /KEY_CS 70 I0_ADDR(14)
71 /VID_IRQ 72 I0_ADDR(9)
73 VID_CLK 74 I0_ADDR(16)
75 +5V 76 I0_ADDR(8)
77 BUF_IOCLK 78 I0_ADDR(18)
79 GND 80 GND

Table 4-15 gives descriptions of the signals on the video card connector.

Video Card



CHAPTER 4

Expansion Modules

Table 4-15 Descriptions of the signals on the video card connector

Signal name Description

/AS Addpress strobe (68030 bus)
BUF_IOCLK 25 MHz I/O clock

/DSACK(1:0) Bus data acknowledge (68030 bus)
/EXT_VID_CS / CS for locations $FDXX XXXX

I0_ADDR(23:0) Address bus (68030 bus)
I0_DATA(31:0) Data bus (68030 bus)

IO_RESET Device reset; active low

I0O_RW Read /write (68030 bus)

/KEY_CS / CS for locations $FEXX XXXX; reserved
S17(1:0) Size of video RAM

VID_CLK 16 MHz video clock

/VID_IRQ Video interrupt

Video Card Mechanical Design

Figure 4-8 shows the dimensions of the video card and the location of the external
video connector.

Figure 4-8 Dimensions of the video card

| 30.20 | Video
[1.189] | /connector

| 0 = IE%—‘

H

93.98 87.68
[3.700] [3.452]

43.00
~T 1693 ™

Note: Dimensions are in millimeters [inches]

Video Card



CHAPTER 4

Expansion Modules

Figure 4-9 is a bottom view of the video card and shows the position of the 80-pin
connector (callout 3). Figure 4-10 and Figure 4-11 show the component restrictions on
the bottom and top of the card.

Figure 4-9 Video card and 80-pin connector

el A
¥
f=== G

vl
PIN 2 —
122 23[.875]

Note: Dimensions are in millimeters [inches]

Figure 4-10 Video card bottom view with component restrictions

1.71 [.067] ||~ - 39.58 [1.558]
29.16 [1.148] - - See Figure 4-12
/ 1.69 [.067]
Component r3_74 [.147]
height restricted -
to 2.50 [.098] T Component height restricted
maximum /to 2.00 [.079] maximum
/— Component height restricted /
to 4.00 [.157] maximum
/— Component height restricted
54.10 | to 2.75 [.108] maximum
[2_1'30] 2794 No_components, bottom side
[1.100] 113.50 531 77.88
a [:531] [3.066]
25.98 28.12
22.78 [.897] [1.023] [1.107]
v i
13.15[.518] ‘ ‘
16.88 [.665] — = t=-19.10 [.752]
- - 31.00 [1.220]
- »—38.75 [1.526]

Note: Dimensions are in millimeters [inches]

Video Card



CHAPTER 4

Expansion Modules

Figure 4-11 Video card top view with component restrictions

Component
height restricted
to 4.00 [.157]

maximum
A
| — Component
height restricted
to 6.50 [.256]
85.18 maximum
[3.354]
~9.90 |_— No component
[.390] allowed
‘ 7N
16.30__| ‘ 10.40
[.642] [.409]

Note: Dimensions are in millimeters [inches]

Figure 4-12 is a top view of the video card showing the position of the foam block that
helps hold the card in the proper position.

Figure 4-12 Video card top view

16.80 £ 0.50 I

~»—9.40+0.50

Note: Dimensions are in millimeters [inches]

Video Card

57



CHAPTER 4

Expansion Modules

Figure 4-13 is a detail drawing showing the dimensions of the three mounting holes for
the EMI shield

Figure 4-13 Detail of EMI shield mounting holes

0.80 [.031] —= | [=— —1.53[.060]
0.40 [.016] - |E l, I

—  3.05[.120]

}

Note: Dimensions are in millimeters [inches]

The thickness of the video card’s PC board is 1.30 mm [0.051 inches].

PCMCIA Slot

58

The Macintosh PowerBook 5300 computer has a PCMCIA slot that can accept two type II
PC cards or one type III PC card. This section summarizes the features and specifications
of the PCMCIA slots. For a description of the PC Card Services software, see Chapter 9,
“PC Card Services.” For complete specifications and descriptions of the software
interfaces, developers should consult Developing PC Card Software for the Mac OS.

PCMCIA Features

The PCMCIA slot supports two types of PC cards: mass storage cards such as SRAM and
ATA drives (both rotating hard disk and flash media), and I/O cards such as modems,
network cards, and video cards. The Macintosh desktop metaphor includes the concept
of storage device representation so it already supports mass storage cards. Apple
Computer has extended the metaphor to include I/O cards as well.

The user can insert or remove a PC card while the computer is operating. The user can
eject a PC card either by clicking on the Eject option in a Finder menu or by dragging the
card’s icon to the trash.

PowerBook computers currently support PC card ejection by software command. Soft-
ware ejection is controlled by Card Services and allows Card Services to eject a PC card
after notifying all clients of the card that its ejection is about to occur. If clients are using
resources on the card, the clients have the option of refusing the request and alerting
users to the reasons why an ejection can’t take place.

Support for I/ O-oriented PC cards is provided through a Macintosh Finder Extension
that is a client of the Card Services software. The Finder extension is responsible for
maintaining card icons on the desktop, providing card information in Get Info windows,

PCMCIA Slot



CHAPTER 4

Expansion Modules

and ejecting cards when they’re dragged to the trash. The Finder extension also helps a
client provide custom features such as icons, card names, card types, and help messages.

Summary Specifications

The PCMCIA slot in the Macintosh PowerBook 5300 computer contains two standard PC
card sockets. Each socket accepts either a Type I or Type II card. The PCMCIA slot also
accepts one Type III card, which occupies both sockets.

The mechanical and electrical characteristics of the PCMCIA slot conform to the
specifications given in the PCMCIA PC Card Standard, Release 2.1.

The sockets support 16-bit PC cards. Each socket is 5-volt keyed and supports either a
memory PC card or an I/O PC card.

Access Windows

Each socket supports two access windows in the computer’s address space.
= One attribute memory or common memory window

= OneI/O window

The only valid window combinations are the following:

= One attribute memory window

= One common memory window

= One common memory window and one I/0O window

Each window has a 64 MB address space. The window address spaces could be
implemented as 8 MB pages in some systems. The PCMCIA interface has the ability to
map the entire PC card’s memory space into the host system’s memory window.

Each window has its own independent access timing register.

Data Access

Each socket supports both byte and word data access in both memory and I/O modes.
The IOIS16 signal determines whether word access is single 16-bit access or two 8-bit
accesses. Byte swapping option is always big-endian mode.

The CE1 and CE2 signals determine the type of data bus access, as follows:
s Word access: CE1=L, CE2=L

s Even bus access: CE1=L, CE2=H

=  Odd bus access (not allowed): CE1=H, CE2=L

PCMCIA Slot 59



60

CHAPTER 4

Expansion Modules

Signal Definitions

Certain signals on the PC card sockets are defined as follows:

= BVDI, BVD2: Battery voltage signals (status and interrupt)

s WP: Write protect (status and interrupt)

= RDY/BSY: Ready/Busy signal (status and interrupt)

s WAIT: Used to delay access (maximum asserted time is 10 uS)

s IRQ: Interrupt request, level mode only (pulse mode is not supported)
s SPKR: Speaker (digital audio output)

» STSCHG/RI: Status change and ring indicator (wake-up mode)

» INPACK: This signal is not supported

Power

The PC card sockets provide power as follows:

s Vcc: Programmed as either 0 Vor 5V

» Vppl, Vpp2: Programmed as either 5V or 12 V
Vpp1 and Vpp2 cannot be programmed independently.

The maximum current from the Vcc pin is 600 mA. The maximum current from each
Vppl1 or Vpp2 pin is 30 mA. The maximum current from all Vpp pins is 120 mA.

The sockets support a low-powered sleep mode.

Controller Interrupts

There is a single interrupt for both sockets. The interrupt is a combination of the Status
Change signal and the PC card’s interrupt request signal.

PCMCIA Slot



CHAPTER 5

Software Features




CHAPTER 5

Software Features

This chapter describes the new features of the software for the Macintosh PowerBook
5300 computer. It describes both the built-in ROM and the system software that resides
on the hard disk.

ROM Software

62

The ROM software in the Macintosh PowerBook 5300 computer is based on the ROM
used in previous PowerBook computers, with enhancements to support the new
features. Some of the features this ROM supports include the following:

= PowerPC 603 microprocessor
= machine identification

= new memory controller IC
= Power Manager software
= new display controller

= new sound features

= ATA storage devices

= IDE disk mode

= Ethernet

= function keys

= smart batteries

s trackpad

The following sections describe each of these features.

PowerPC 603 Microprocessor

The PowerPC 603 microprocessor has power saving modes similar to the power cycling
and sleep modes of earlier PowerBook models. The ROM has been modified to include
the additional traps needed to control the power modes of the microprocessor.

The Macintosh PowerBook 5300 computer does not provide the economode reduced
speed feature found on the Macintosh PowerBook 160 and 180 models.

Machine Identification

The ROM includes new tables and code for identifying the machine.

Applications can find out which computer they are running on by using the Gestalt
Manager. The gest al t Machi neType value returned by the Macintosh PowerBook
5300 computer is 128 (hexadecimal $80). Inside Macintosh: Overview describes the Gestalt
Manager and tells how to use the gest al t Machi neType value to obtain the machine
name string.

ROM Software



CHAPTER 5

Software Features

Memory Controller Software

The memory control routines have been rewritten to operate with the PBX memory
controller IC, which has a control register configuration different from that of the
memory controller used in earlier PowerBook models. The memory initialization and
size code have been rewritten to deal with

» larger ROM size
= anew type of DRAM device

= new memory configurations

Power Manager Software

Changes to the Power Manager software include
» power cycling and sleep mode for the PowerPC 603 microprocessor
» support for the new lithium ion batteries

» support for turning on and off power to the Ethernet interface

The Macintosh PowerBook 5300 computer uses a modified version of the public API for
power management described in Inside Macintosh: Devices. See Chapter 7, “Power
Manager Interface.”

Display Controller Software

The Macintosh PowerBook 5300 computer has a new custom IC, the ECSC (enhanced
color support chip), that provides the data and control interface to the flat panel display.
The ROM software includes new video drivers for that IC.

The new drivers also support a wider range of external video monitors. See “Monitors
Supported” on page 49.

Sound Features

The ROM software includes new sound driver software to support the new Sound
Manager, which is part of the system software. The new driver software also supports
the following new features:

» improved sound performance by way of a new interface to the Singer sound IC
= support for 16-bit stereo sound input
= support for automatic gain control in software

» mixing of sound output from the modem

The new ROM software also includes routines to arbitrate the control of the sound
hardware between the modem and the Sound Manager.

ROM Software 63



64

CHAPTER 5

Software Features

ATA Storage Devices

Support for ATA storage devices (the internal IDE drive, PCMCIA drives, and ATAPI
CD-ROM drives) is incorporated in the ROM software.

IDE Disk Mode

The ROM software also includes modifications to support disk mode. In previous
PowerBook models, the internal hard disk was a SCSI drive and the setup for disk access
from another computer was called SCSI disk mode. In the Macintosh PowerBook 5300
computer, the internal hard disk is an IDE drive and the disk access mode is called IDE
target mode.

IDE target mode interprets SCSI commands from the external computer, translates them
into the equivalent IDE commands, and calls the ATA driver to carry them out. IDE
target mode does not support all SCSI commands; it does support the commands used in
the Apple SCSI device driver and the new Drive Setup utility.

Note
The ATA driver is described in Chapter 8, “Software for ATA Devices.” O

Ethernet Driver

The driver for the Ethernet interface can now put a sleep task for Ethernet into the Power
Manager’s sleep table. This sleep task first makes a control call to the Ethernet driver to
prepare the Ethernet interface IC for sleep mode. The sleep task then makes a Power
Manager call to turn off power to the IC. The sleep task installs a corresponding wake
task that turns the interface power back on and reinitializes the interface IC.

Support for Function Keys

The keyboard on the Macintosh PowerBook 5300 computer has a row of 12 function keys
across the top. Except for the function keys, the keyboard is similar to those on previous
PowerBook models. The function keys are added to the key matrix in the same way as
the function keys on the Apple Extended Keyboard and return the same key codes.

Smart Battery Support

The Power Manager IC communicates with the processors in the PowerBook Intelligent
Batteries by means of a serial interface. The Power Manager’s command set has been
expanded to provide system access to the data from the batteries.

ROM Software



CHAPTER 5

Software Features

Trackpad Support

The trackpad hardware, the Power Manager IC, and the system software work together
to translate the movements of a finger across the surface of the trackpad into cursor
movements.

The control registers for the trackpad hardware are part of the Power Manager IC. The
Power Manager’s software takes the raw data from the trackpad hardware and converts
it to the same format as ADB mouse data before sending it on to the system software.

The ADB software that supports the trackpad includes the Cursor Device Manager,
which provides a standard interface for a variety of devices. The ADB software checks to
see whether a device connected to the ADB port is able to use the Cursor Device
Manager. For more information, see the January 1994 revision of Technical Note HW 01,
ADB—The Untold Story: Space Aliens Ate My Mouse.

System Software

The Macintosh PowerBook 5300 computer is shipped with new system software based
on Mac OS version 7.5 and augmented by several new features.

IMPORTANT

Even though the software for the Macintosh PowerBook 5300 computer
incorporates significant changes from System 7.5, it is not a reference
release: that is, it is not an upgrade for earlier Macintosh models. a

The system software includes changes in the following areas:
= control strip support

» support for ATA devices (IDE and ATAPI)

= large partition support

= Drive Setup, a new utility

» improved file sharing

= anew Dynamic Recompilation Emulator

= a Resource Manager completely in native code
» improved math library

= POWER-clean native code

= POWER emulation

s QuickDraw acceleration API

= Display Manager

These changes are described in the sections that follow.

System Software 65



66

CHAPTER 5

Software Features

Note

For those changes that affect the software, information about new or
modified APIs is given elsewhere. Please see the cross references in the
individual sections. O

Control Strip

The desktop on the Macintosh PowerBook 5300 computer has the status and control
element called the control strip that was introduced in the PowerBook 280 and the
PowerBook 500 models. It is a strip of graphics with small button controls and indicators
in the form of various icons. For a description of the control strip and guidelines for
adding modules to it, see Macintosh Technical Note OS 06 - Control Strip Modules.

Support for ATA Devices

Support for ATA devices (the internal IDE drive, PCMCIA drives, and ATAPI CD-ROM
drives) is incorporated in the ROM software.

System software for controlling the internal IDE drive and PCMCIA drives is included in
anew ATA Hard Disk device driver and the ATA Manager. System software for
controlling the optional ATAPI CD-ROM drive is provided by a system extension in
conjunction with the ATA Manager. The ATA Hard Disk device driver and the ATA
Manager are described in Chapter 8, “Software for ATA Devices.”

Large Partition Support

The largest disk partition supported by System 7.5 is 4 GB. The new system software
extends that limit to 2 terabytes.

IMPORTANT
The largest possible file is still 2 GB. a

The changes necessary to support the larger partition size affect many parts of the
system software. The affected software includes system-level and application-level
components.

64-Bit Volume Addresses

The current disk driver API has a 32-bit volume address limitation. This limitation
has been circumvented by the addition of a new 64-bit extended volume API
(PBXGet Vol | nf 0) and 64-bit data types (ui nt 64, XVol umrePar am and XI OPar am).

For the definitions of the new API and the three data types, please see “The API
Modifications” beginning on page 77.

System Software



CHAPTER 5

Software Features

System-Level Software

Several system components have been modified to use the 64-bit API to correctly
calculate true volume sizes and read and write data to and from large disks. The
modified system components are

= virtual memory code
» Disk Init

= FSM Init

= Apple disk drivers

= HFS ROM code

Application-Level Software

Current applications do not require modification to gain access to disk space beyond the
traditional 4 GB limit as long as they do not require the true size of the large partition.
Applications that need to obtain the true partition size will have to be modified to use
the new 64-bit API and data structures. Typical applications include utilities for disk
formatting, partitioning, initialization, and backup.

The following application-level components of the system software have been modified
to use the 64-bit API:

= Finder

= Finder Extensions (AppleScript, AOCE Mailbox, and Catalogs)

= Drive Setup

» Disk First Aid

In the past, the sum of the sizes of the files and folders selected in the Finder was limited
to the largest value that could be stored in a 32-bit number—that is, 4 GB. By using the
new 64-bit API and data structures, the Finder can now operate on selections whose total
size exceeds that limit. Even with very large volumes, the Finder can display accurate
information in the Folder and Get Info windows and obtain the true volume size for
calculating available space when copying.

The Finder extensions AppleScript, AOCE Mailbox, and Catalogs have been modified
in the same way as the Finder because their copy-engine code is similar to that in
the Finder.

A later section describes the modified Drive Setup application.

System Software 67



68

CHAPTER 5

Software Features

Limitations

The software modifications that support large partition sizes do not solve all the
problems associated with the use of large volumes. In particular, the modifications do
not address the following:

s HFS file sizes are still limited to 2 GB or less.

» Large allocation block sizes cause inefficient storage. On a 2 GB volume, the minimum
file size is 32 KB; on a 2 terabyte volume, the minimum file size is a whopping 32 MB.

» Drives with the new large volume driver will not mount on older Macintosh models.

Drive Setup

The software for the Macintosh PowerBook 5300 computer includes a new disk setup
utility named Drive Setup that replaces the old HDSC Setup utility. The Drive Setup
utility has several other enhancements, including

= an improved user interface

» support for large volumes (larger than 2 GB)

= support for chainable drivers

= support for multiple HFS partitions

» the ability to mount volumes from within the Drive Setup applications
» the ability to start up (boot) from any HFS partition

= support for removable media drives

Improved File Sharing

Version 7.6 of the file sharing software incorporates many of the features of AppleShare,
including an API for servers.

The user can now set up shared files on ejectable media such as cartridge drives and
CD-ROM drives. The software keeps track of the status of the shared files when the
media are inserted and removed.

Dynamic Recompilation Emulator

The Dynamic Recompilation Emulator (or DR Emulator) is an extension to the current
interpretive emulator providing on-the-fly translation of 680x0 instructions into
PowerPC instructions for increased performance. The DR Emulator operates as an
enhancement to a modified version of the existing interpretive emulator.

The design of the DR Emulator mimics a hardware instruction cache and employs a
variable size translation cache. Each compiled 680x0 instruction requires on average
fewer than four PowerPC instructions. In operation, the DR Emulator depends on
locality of execution to make up for the extra cycles used in translating the code.

System Software



CHAPTER 5

Software Features

The DR Emulator provides a high degree of compatibility for 680x0 code. One area
where compatibility will be less than that of the current interpretive emulator is for
self-modifying code that does not call the cache flushing routines. Such code also has
compatibility problems on Macintosh Quadra models with the cache enabled.

Resource Manager in Native Code

The Resource Manager in the software for the Macintosh PowerBook 5300 computer is
similar to the one in the earlier Power Macintosh computers except that it is completely
in native PowerPC code. Because the Resource Manager is used intensively by both
system software and applications, the native version provides an improvement in
system performance.

The Process Manager has been modified to remove patches it formerly made to the
Resource Manager.

Math Library

The new math library (MathLib) is an enhanced version of the floating-point library
included in the ROM in the first generation of Power Macintosh computers.

The new math library is bit compatible in both results and floating-point exceptions with
the math library in the first-generation ROM. The only difference is in the speed of
computation.

The new math library has been improved to better exploit the floating-point features of
the PowerPC microprocessor. The math library now includes enhancements that assist
the compiler in carrying out its register allocation, branch prediction, and overlapping of
integer and floating-point operations.

Compared with the previous version, the new math library provides much improved
performance without compromising its accuracy or robustness. It provides performance
gains for often-used functions of up to 15 times.

The application interface and header files for the math library have not been changed.

New BlockMove Extensions

The system software for the Macintosh PowerBook 5300 computer includes new
extensions to the Bl ockMbve routine. The extensions provide improved performance
for programs running in native mode.

The new Bl ockMove extensions provide several benefits for developers.

= They’re optimized for the PowerPC 603 and PowerPC 604 processors, rather than the
PowerPC 601.

= They’re compatible with the new Dynamic Recompilation Emulator.
= They provide a way to handle cache-inhibited address spaces.

= They include new high-speed routines for setting memory to zero.

System Software 69



70

CHAPTER 5

Software Features

Note

The new Bl ockMove extensions do not use the string instructions,
which are fast on the PowerPC 601 but slow on other PowerPC
implementations. O

Some of the new Bl ockMbve extensions can be called only from native code; see
Table 5-1.

Except for Bl ockZer o and Bl ockZer oUncached, the new Bl ockMove extensions use
the same parameters as Bl ockMove. Calls to Bl ockZer o and Bl ockZer oUncached
have only two parameters, a pointer and a length; refer to the header file (Menory. h).

Table 5-1 summarizes the Bl ockMove routines and according to three criteria: whether
the routine can be called from 680x0 code, whether it is okay to use for moving 680x0
code, and whether it is okay to use with buffers or other uncacheable destination
locations.

Table 5-1 Summary of Bl ockMove routines
Can be Okay to use Okay to
called from for moving use with
Bl ockMbve version 680x0 code 680x0 code buffers
Bl ockMove Yes Yes No
Bl ockMoveDat a Yes No No
Bl ockMoveDat aUncached No No Yes
Bl ockMoveUncached No Yes Yes
Bl ockZero No — No
Bl ockZer oUncached No — Yes

The fastest way to move data is to use the Bl ockMbveDat a routine. It is the
recommended method whenever you are certain that the data is cacheable and
does not contain executable 680x0 code.

The Bl ockMove routine is slower than the Bl ockMoveDat a routine only because it has
to clear out the software cache used by the DR Emulator. If the DR EMulator is not in
use, the Bl ockMbve routine and the Bl ockMbveDat a routine are the same.

IMPORTANT

The versions of Bl ockMove for cacheable data use the dcbz instruction
to avoid unnecessary pre-fetch of destination cache blocks. For
uncacheable data, you should avoid using those routines because the
dcbz instruction faults and must be emulated on uncacheable or
write-through locations, making execution extremely slow. a

System Software



CHAPTER 5

Software Features

IMPORTANT

Driver software cannot call the Bl ockMove routines directly. Instead,
drivers must use the Bl ockCopy routine, which is part of the Driver
Services Library. The Bl ockCopy routine is an abstraction that allows
you to postpone binding the specific type of Bl ockMove operation until
implementation time. a

The Driver Services Library is a collection of useful routines that Apple Computer
provides for developers working with the new Power Macintosh models. For
more information, please refer to Designing PCI Cards and Drivers for Power
Macintosh Computers.

POWER-Clean Native Code

The instruction set of the PowerPC 601 microprocessor included some of the same
instructions as those found in the instruction set of the POWER processor, and the
compiler used to generate native code for the system software in the previous Power
Macintosh models generated some of those POWER-only instructions. However, the
PowerPC 603 microprocessor used in the Macintosh PowerBook 5300 computer does not
support the POWER-only instructions, so a new POWER-clean version of the compiler is
being used to compile the native code fragments.

Note

The term POWER-clean refers to code that is free of the POWER
instructions that would prevent it from running correctly on a
PowerPC 603 or PowerPC 604 microprocessor. O

Here is a list of the POWER-clean native code elements in the system software for the
Macintosh PowerBook 5300 computer.

= interface library

= private interface library
= native QuickDraw

» MathLib

= Mixed Mode Manager

= Code Fragment Manager
= Font Dispatch

= Memory Manager

» standard text

= the FMSwapFont function
= Standard C Library

System Software 71



72

CHAPTER 5

Software Features

POWER Emulation

Earlier Power Macintosh computers included emulation for certain PowerPC 601
instructions that would otherwise cause an exception. The emulation code dealt with
memory reference instructions to handle alignment and data storage exceptions. It also
handled illegal instruction exceptions caused by some PowerPC instructions that were
not implemented in the PowerPC 601. In the Macintosh PowerBook 5300 computer,
the emulation code has been enhanced to include the POWER instructions that are
implemented on the PowerPC 601 but not on the PowerPC 603.

Note

Although the term POWER emulation is often used, a more appropriate
name for this feature is PowerPC 601 compatibility. Rather than
supporting the entire POWER architecture, the goal is to support those
features of the POWER architecture that are available to programs
running in user mode on the PowerPC 601-based Power Macintosh
computers. O

POWER-Clean Code

Because the emulation of the POWER-only instructions degrades performance, Apple
Computer recommends that developers revise any applications that use those
instructions to conform with the PowerPC architecture. POWER emulation works, but
at a significant cost in performance; POWER-clean code is preferable.

Emulation and Exception Handling

When an exception occurs, the emulation code first checks to see whether the instruction
encoding is supported by emulation. If it is not, the code passes the original cause of

the exception (illegal instruction or privileged instruction) to the application as a native
exception.

If the instruction is supported by emulation, the code then checks a flag bit to see
whether emulation has been enabled. If emulation is not enabled at the time, the
emulator generates an illegal instruction exception.

Code Fragments and Cache Coherency

Whereas the PowerPC 601 microprocessor has a single cache for both instructions and
data, the PowerPC 603 has separate instruction and data caches. As long as applications
deal with executable code by using the Code Fragment Manager, cache coherency is
maintained. Applications that bypass the Code Fragment Manager and generate
executable code in memory, and that do not use the proper cache synchronization
instructions or Code Fragment Manager calls, are likely to encounter problems when
running on the PowerPC 603.

System Software



CHAPTER 5

Software Features

IMPORTANT

The emulation software in the Macintosh PowerBook 5300 computer
cannot make the separate caches in the PowerPC 603 behave like the
combined cache in the PowerPC 601. Applications that generate
executable code in memory must be modified to use the Code Fragment
Manager or maintain proper cache synchronization by other means. a

Limitations of PowerPC 601 Compatibility

The emulation code in the Macintosh PowerBook 5300 computer allows programs
compiled for the PowerPC 601 to execute without halting on an exception whenever
they use a POWER-only feature. For most of those features, the emulation matches the
results that are obtained on a Power Macintosh computer with a PowerPC 601. However,
there are a few cases where the emulation is not an exact match; those cases are
summarized here.

= MQ register. Emulation does not match the undefined state of this register after
multiply and divide instructions.

s di v and di vo instructions. Emulation does not match undefined results after
an overflow.

= Real-time clock registers. Emulation matches the 0.27 percent speed discrepancy of
the Power Macintosh models that use the PowerPC 601 microprocessor, but the values
of the low-order 7 bits are not 0.

= POWER version of dec register. Emulation includes the POWER version, but
decrementing at a rate determined by the time base clock, not by the real-time clock.

= Cache line compute size (C| cS) instruction. Emulation returns values appropriate
for the type of PowerPC microprocessor.

= Undefined SPR encodings. Emulation does not ignore SPR encodings higher than 32.

= Invalid forms. Invalid combinations of register operands with certain instructions
may produce results that do not match those of the PowerPC 601.

= Floating-point status and control register (FPSCR). The FPSCR in the PowerPC 601
does not fully conform to the PowerPC architecture, but the newer PowerPC
processors do.

QuickDraw Acceleration API

The QuickDraw acceleration API is the current accelerator interface for the PowerPC
version of native QuickDraw. It allows a patch chaining mechanism for decisions on
categories of blit operations, and also specifies the format and transport of the data to the
accelerator.

System Software 73



74

CHAPTER 5

Software Features

Display Manager

Until now, system software has used the NuBus-specific Slot Manager to get and set
information about display cards and drivers. New system software removes this explicit
software dependency on the architecture of the expansion bus. The Display Manager
provides a uniform API for display devices regardless of the implementation details of
the devices.

System Software



CHAPTER 6

Large Volume Support




CHAPTER 6

Large Volume Support

This chapter describes the large volume file system for the Macintosh PowerBook 5300
computer. The large volume file system is a version of the hierarchical file system (HFS)
that has been modified to support volume sizes larger than the current 4 GB limit. It
incorporates only the changes required to achieve that goal.

Overview of the Large Volume File System

76

The large volume file system includes
» modifications to the HFS ROM code, Disk First Aid, and Disk Init

» anew extended API that allows reporting of volume size information beyond the
current 4 GB limit

» new device drivers and changes to the Device Manager API to support devices
that are greater than 4 GB

= anew version of HDSC Setup that supports large volumes and chainable drivers
(Chainable drivers are needed to support booting large volumes on earlier
Macintosh models.)

API Changes

The system software on the Macintosh PowerBook 5300 computer allows all current
applications to work without modifications. Unmodified applications that call the file
system still receive incorrect values for large volume sizes. The Finder and other utility
programs that need to know the actual size of a volume have been modified to use the
new extended PBXGet Vol | nf o function to obtain the correct value.

The existing low-level driver interface does not support I/O to a device with a range of
addresses greater than 4 GB because the positioning offset (in bytes) for a read or write
operation is a 32-bit value. To correct this problem, a new extended I/O parameter block
record has been defined. This extended parameter block has a 64-bit positioning offset.
The new parameter block and the extended PBXGet Vol | nf o function are described in
“The API Modifications” beginning on page 77.

Allocation Block Size

The format of HFS volumes has not changed. What has changed is the way the HFS
software handles the allocation block size. Existing HFS code treats the allocation block
as a 16-bit integer. The large volume file system uses the full 32 bits of the allocation
block size parameter. In addition, any software that deals directly with the allocation
block size from the volume control block must now treat it as a true 32-bit value.

Even for the larger volume sizes, the number of allocation blocks is still defined by a
16-bit integer. As the volume size increases, the size of the allocation block also increases.
For a 2 GB volume, the allocation block size is 32 KB and therefore the smallest file on
that disk will occupy at least 32 KB of disk space. This inefficient use of disk space is not
addressed by the large volume file system.

Overview of the Large Volume File System



CHAPTER 6

Large Volume Support

The maximum number of files will continue to be less than 65,000. This limit is directly
related to the fixed number of allocation blocks.

File Size Limits

The HFS has a maximum file size of 2 GB. The large volume file system does not remove
that limit because doing so would require a more extensive change to the current API
and would incur more compatibility problems.

Compatibility Requirements

The large volume file system requires at least a 68020 microprocessor or a Power
Macintosh model that emulates it. In addition, the file system requires a Macintosh Ilci
or more recent model. On a computer that does not meet both those requirements, the
large volume file system driver will not load.

The large volume file system requires System 7.5 or higher and a new Finder that
supports volumes larger than 4 GB (using the new extended PBXGet Vol | nf o function).

The API Modifications

The HFS API has been modified to support volume sizes larger than 4 GB. The
modifications consist of two extended data structures and a new extended
PBXGet Vol | nf o function.

Data Structures

This section describes the two modified data structures used by the large volume
file system:

= the extended volume parameter block

» the extended I/O parameter block

Extended Volume Parameter Block

In the current HVol unePar amrecord, volume size information is clipped at 2 GB.
Because HFS volumes can now exceed 4 GB, a new extended volume parameter block
is needed in order to report the larger size information. The XVol unePar amrecord
contains 64-bit integers for reporting the total bytes on the volume and the number

of free bytes available (parameter names i oVTot al Byt es and i oVFr eeByt es). In
addition, several of the fields that were previously signed are now unsigned (parameter
namesi oOVAtrb,i oVBi t Map,i oAl | ocPtr,i oVAI Bl kSi z,i oVd pSi z,i oAl Bl St,

i OVNXt CNI D, i oVW Cnt,i oVFi | Cnt,andi oVDi r Cnt).

The API Modifications 77



CHAPTER 6

Large Volume Support

struct XVol unePar am {
Par anBl ockHeader

unsi gned | ong i oXVer si on; /' XVol umePar am ver si on ==

short i oVol | ndex; /1 vol ume index

unsi gned | ong i oVCr Dat €; /1l date & tinme of creation

unsi gned | ong i oVLsMod,; /1 date & time of last nodification
unsi gned short i OVALr b; /1 volume attributes

unsi gned short i OVNFl s; /1l number of files in root directory
unsi gned short i 0VBi t Map; /1 first block of volume bitmap
unsi gned short i OAl'l ocPtr; /1 first block of next new file
unsi gned short i OVNNAI Bl ks; /'l nunber of allocation blocks

unsi gned | ong i oVAI Bl kSi z; /'l size of allocation blocks

unsi gned | ong i oVd pSi z; /1 default clunp size

unsi gned short i oAl Bl St ; /1 first block in volunme nmap

unsi gned | ong i oOVNxt CNI D; /1 next unused node |ID

unsi gned short i oVFr Bl k; /1 nunmber of free allocation bl ocks
unsi gned short i oVSi g\Wor d; /1 volume signature

short i oVDr vl nf o; /1 drive nunber

short i oVDRef Num /'l driver reference nunber

short i oVFSI D; /[l file-systemidentifier

unsi gned | ong i oVBkUp; /'l date & time of |ast backup

unsi gned short i oVSegNum /1 used internally

unsi gned | ong i OVW Cnt ; /1 volume wite count

unsi gned | ong i oVFi | Cnt; /'l nunber of files on volune

unsi gned | ong i ovDi r Cnt ; /1 nunmber of directories on volune
| ong i oVFndrinfo[8]; // information used by the Finder

ui nt 64 i oVTotal Bytes; // total nunber of bytes on vol une
ui nt 64 i oVFr eeByt es; /'l number of free bytes on vol une

Field descriptions
i oVol | ndex
i oVCr Dat e

An index for use with the PBHGet VI nf o function.
The date and time of volume initialization.

78

oVLsMod

oVAtrb
OVNnFl s
OVBi t Map
OAl | ocPtr
oVNMAI Bl ks
oVAI Bl kSi z
oVd pSi z
oAl Bl St

The API Modifications

The date and time the volume information was last modified. (This
field is not changed when information is written to a file and does
not necessarily indicate when the volume was flushed.)

The volume attributes.

The number of files in the root directory.

The first block of the volume bitmap.

The block at which the next new file starts. Used internally.
The number of allocation blocks.

The size of allocation blocks.

The clump size.

The first block in the volume map.



CHAPTER 6

Large Volume Support

oVNxt CNI D
oVFr Bl k
oVSi g\Wr d

oVDr vl nfo
oVDRef Num

oVFSI D

oVBkUp

oVSeqNum
oVW Cnt

oVFi | Cnt
oVDi r Cnt

oVFndr I nfo

The next unused catalog node ID.
The number of unused allocation blocks.

A signature word identifying the type of volume; it's $D2D7 for
MFS volumes and $4244 for volumes that support HFS calls.

The drive number of the drive containing the volume.

For online volumes, the reference number of the I/ O driver for the
drive identified by i oVDr vI nf 0.

The file-system identifier. It indicates which file system is servicing
the volume; it’s zero for File Manager volumes and nonzero for
volumes handled by an external file system.

The date and time the volume was last backed up (it’s 0 if never
backed up).

Used internally.
The volume write count.
The total number of files on the volume.

The total number of directories (not including the root directory) on
the volume.

Information used by the Finder.

Extended I/O Parameter Block

The extended I/O parameter block is needed for low-level access to disk addresses
beyond 4 GB. It is used exclusively by PBRead and PBW i t e calls when performing I/O
operations at offsets greater than 4 GB. To indicate that you are using an XI OPar am
record, you should set the kUseW dePosi ti oni ng bit in the i oPosMbde field.

Because file sizes are limited to 2 GB, the regular | OPar amrecord should always be used
when performing file level I/O operations. The extended parameter block is intended

only for Device Manager I/O operations to large block devices at offsets greater
than 4 GB.

The only change in the parameter block is the parameter i oWPos O f set, which is of
typei nt 64.

struct Xl OParam {

The API Modifications

CEl enPtr
short
short
Ptr
ProcPtr
OSEr r

StringPtr

short
short
char

gLi nk; /1l next queue entry
qType; /'l queue type
i oTr ap; /1 routine trap

oCndAddr ; /1
oConpl etion;//
OoResul t; /1
oNanePtr; /1

routi ne address

poi nter to conpletion routine
result code

poi nter to pathname

oVRef Num /1 vol ume specification

oRef Num /1l file reference nunber

oVer sNum /1 not used

79



80

CHAPTER 6

Large Volume Support

char
Ptr
Ptr

unsi gned | ong
unsi gned | ong

short
i nt 64

s

Field descriptions
i oRef Num
i oVer sNum

i oPer mssn
i oM sc

i oBuf f er

i oReqCount
i oAct Count
i oPosMbde

i oPosCOF f set

The API Modifications

oPer nssn; /1 read/write perm ssion
oM sc; /1 m scel | aneous
oBuf fer; // data buffer

oReqCount; // requested nunber of bytes

OAct Count; // actual nunber of bytes

oPosMode; /1 positioning nmode (w de nbde set)
oWPosOf fset;// w de positioning offset

The file reference number of an open file.

A version number. This field is no longer used and you should
always set it to 0.

The access mode.

Depends on the routine called. This field contains either a new
logical end-of-file, a new version number, a pointer to an access
path buffer, or a pointer to a new pathname. Because i oM sc is of
type Pt r, you'll need to perform type coercion to interpret the value
of i oM sc correctly when it contains an end-of-file (a Longl nt
value) or version number (a Si gnedByt e value).

A pointer to a data buffer into which data is written by _Read calls
and from which data is read by _W i t e calls.

The requested number of bytes to be read, written, or allocated.
The number of bytes actually read, written, or allocated.

The positioning mode for setting the mark. Bits 0 and 1 of this field
indicate how to position the mark; you can use the following
predefined constants to set or test their value:

CONST

fsAtMark = 0; {at current mark}
fsFronttart = 1; {from beginning of file}

f sFromnLEOF = 2; {fromlogical end-of-file}
fsFromvark = 3; {relative to current nark}

You can set bit 4 of the i oPosMdde field to request that the data be
cached, and you can set bit 5 to request that the data not be cached.
You can set bit 6 to request that any data written be immediately
read; this ensures that the data written to a volume exactly matches
the data in memory. To request a read-verify operation, add the
following constant to the positioning mode:

CONST
rdverify = 64; {use read-verify node}

You can set bit 7 to read a continuous stream of bytes, and place
the ASCII code of a newline character in the high-order byte to
terminate a read operation at the end of a line.

The offset to be used in conjunction with the positioning mode.



CHAPTER 6

Large Volume Support

New Extended Function

This section describes the extended PBXGet Vol | nf o function that provides volume size
information for volumes greater than 4 GB.

Before using the new extended call, you should check for availability by calling

the Gest al t function. Make your call to Gest al t with the gest al t FSAt t r selector
to check for new File Manager features. The response parameter has the

gest al t FSSuppor t s2TBVol unes bit set if the File Manager supports large volumes
and the new extended function is available.

PBXGetVollnfo

You can use the PBXGet Vol | nf o function to get detailed information about a volume. It
can report volume size information for volumes up to 2 terabytes.

pascal OSErr PBXGet Vol | nf o ( XVol umePar am par anBl ock, Bool ean async);

par anBl ock A pointer to an extended volume parameter block.

async A Boolean value that specifies asynchronous (true) or synchronous
(false) execution.

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Arrow Meaning
- Input

- Output
- Both

Parameter block

- i oCompl etion ProcPtr Pointer to a completion routine.
- i oResul t OSEr r Result code of the function.

o i oNanePt r StringPtr Pointer to the volume’s name.
o i oVRef Num short On input, a volume

specification; on output, the
volume reference number.

- i oXVer si on unsi gned | ong Version of XVol unePar am
(value = 0).

. i oVol I ndex short Index used for indexing
through all mounted volumes.

- i oVCr Dat e unsi gned | ong Date and time of initialization.

- i oVLsMod unsi gned | ong Date and time of last
modification.

The API Modifications 81



DESCRIPTION

82

CHAPTER 6

Large Volume Support

- i OVAtrb unsi gned short Volume attributes.

- i OVNTFIl s unsi gned short Number of files in the
root directory.

- i OVBi t Map unsi gned short First block of the volume
bitmap.

- i oVAI | ocPtr unsi gned short Block where the next new
file starts.

- i OVNmAI Bl ks unsi gned short Number of allocation blocks.

- i oVAl Bl kSi z unsi gned | ong Size of allocation blocks.

- i ovVd pSi z unsi gned | ong Default clump size.

- i oAl Bl St unsi gned short First block in the volume
block map.

- i oVNxt CNI D unsi gned | ong Next unused catalog node ID.

- i oVFr Bl k unsi gned short Number of unused
allocation blocks.

- i oVSi gWord unsi gned short Volume signature.

- i oVDr vl nfo short Drive number.

- i oVDRef Num short Driver reference number.

- i OVFSI D short File system handling
this volume.

- i 0VBKUp unsi gned | ong Date and time of last backup.

- i oVSegNum unsi gned short Used internally.

- i OVW Cnt unsi gned | ong Volume write count.

- i OVFi | Cnt unsi gned | ong Number of files on the volume.

- i oVDi r Cnt unsi gned | ong Number of directories on
the volume.

- i oVFndr | nf o[ 8] | ong Used by the Finder.

- i oVTot al Byt es ui nt 64 Total number of bytes on
the volume.

- i OVFr eeByt es ui nt 64 Number of free bytes

on the volume.

The PBXCet Vol | nf o function returns information about the specified volume. It is
similar to the PBHGet VI nf o function described in Inside Macintosh: Files except that it
returns additional volume space information in 64-bit integers.

The API Modifications



CHAPTER 6

Large Volume Support

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for PBXGet Vol | nf 0 are:

Trap macro Selector
_HFSDi spat ch $0012

RESULT CODES
noErr 0 Successful completion, no error occurred
nsvErr -35 No such volume
par ankrr =50 No default volume

The API Modifications

83






CHAPTER 7

Power Manager Interface




CHAPTER 7

Power Manager Interface

This chapter describes the new application programming interface (API) to the Power
Manager control software in the Macintosh PowerBook 5300 computer.

About the Power Manager Interface

86

Developers have written control panel software for previous Macintosh PowerBook
models to give the user more control over the power management settings than is
provided in the PowerBook control panel. Because that software reads and writes
directly to the Power Manager’s private data structures and parameter RAM, the
software needs to be updated any time Apple Computer makes a change to the internal
operation of the Power Manager.

System software for the Macintosh PowerBook 5300 computer and for future Macintosh
PowerBook models includes interface routines for program access to the Power Manager
functions, so it is no longer necessary for applications to deal directly with the Power
Manager’s data structures. The new routines provide access to most of the Power
Manager’s parameters. Some functions will be reserved because of their overall effect on
the system. The interface is extensible; it will probably grow over time to acccommodate
new kinds of functions.

Things That May Change

By using the Power Manager interface, developers can isolate themselves from future
changes to the internal operation of the Power Manager software.

IMPORTANT

Apple Computer reserves the right to change the internal operation of
the Power Manager software. Developers should not make their
applications depend on the Power Manager’s internal data structures or
parameter RAM. a

As new PowerBook models appear, developers should not depend on the Power
Manager’s internal data structures staying the same. In particular, developers should
beware of the following assumptions regarding different PowerBook models:

= assuming that timeout values such as the hard disk spindown time reside at the same
locations in parameter RAM

= assuming that the power cycling process works the same way or uses the same
parameters

= assuming that direct commands to the Power Manager microcontroller are supported
on all models

About the Power Manager Interface



CHAPTER 7

Power Manager Interface

Checking for Routines

Before calling any of the Power Manager interface routines, it's always a good idea to
call the Gestalt Manager to see if they’re present on the computer. The Gestalt Manager
is described in Inside Macintosh: Overview.

A new bit has been added to the gest al t Power Mgr At t r selector:

#def i ne gestal t PMyr Di spat chExi sts 4

If that bit is set to 1, then the routines are present.

Because more routines may be added in the future, one of the new routines simply
returns the number of routines that are implemented. The following code fragment
determines both that the routines in general exist and that at least the hard disk
spindown routine exists.

| ong pngrAttri butes;
Bool ean routi neskxi st;

routi neskxi st = fal se;
if (! CGestalt(gestaltPowerMrAttr, &ongrAttributes))
if (pngrAttributes & (1<<gestaltPMrD spatchExists))
i f (PMsel ectorCount () >= 7)
routi neskxi st = true;

WARNING

If you call a routine that does not exist, the call to the public Power
Manager trap (if the trap exists) will return an error code, which your
program could misinterpret as data. a

Power Manager Interface Routines

This section tells you how to call the interface routines for the Power Manager software.

The interface routines are listed here in the order of their routine selector values, as
shown in Table 7-1.

About the Power Manager Interface

87



88

CHAPTER 7

Power Manager Interface

Table 7-1 Interface routines and their selector values

Routine name
PMSel ect or Count

PMFeat ur es

CGet Sl eepTi nmeout

Set Sl eepTi nmeout

Get Har dDi skTi meout

Set Har dDi skTi meout

Har dDi skPower ed

Spi nDownHar dDi sk

| sSpi ndownDi sabl ed

Set Spi ndownDi sabl e

Har dDi skQ nst al |

Har dDi skQRenove

Get Scal edBatteryl nfo
Aut oSl eepCont r ol

Get I nt Modem nf o

Set | nt Mbdentt at e

Maxi munmPr ocessor Speed
Cur rent Processor Speed
Ful | Processor Speed

Set Pr ocessor Speed

CGet SCSI Di skMbdeAddr ess
Set SCSI Di skMbdeAddr ess
Get WakeupTi ner

Set WakeupTi ner

| sProcessor Cycl i ngEnabl ed
Enabl ePr ocessor Cycl i ng
Bat t er yCount

Cet Batt eryVol t age
CGetBatteryTi nes

About the Power Manager Interface

Selector value

Decimal
0

O 0 NN O GO s~ W N R

N N N N N N N N N R R R R R = om |
® N O U ok W R O VW 0NN kW N R,o

Hexadecimal
$00

$01
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0C
$0D
$O0E
$OF
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1C



CHAPTER 7

Power Manager Interface

Assembly-language note

All the routines share a single trap, _Power Myr Di spat ch ($A09E). The
trap is register based; parameters are passed in register DO and
sometimes also in AQ. A routine selector value passed in the low word of
register DO determines which routine is executed. O

PMSelectorCount

DESCRIPTION

You can use the PMSel ect or Count routine to determine which routines are
implemented.

short PMsel ect or Count () ;

The PMSel ect or Count routine returns the number of routine selectors present. Any
routine whose selector value is greater than the returned value is not implemented.

ASSEMBLY-LANGUAGE INFORMATION

PMFeatures

The trap is _Power Myr Di spat ch ($A09E). The selector value for PMSel ect or Count is
0 ($00) in the low word of register DO. The number of selectors is returned in the low
word of register DO.

DESCRIPTION

You can use the PMFeat ur es routine to find out which features of the Power Manager
are implemented.

unsi gned | ong PMFeat ures();

The PMFeat ur es routine returns a 32-bit field describing hardware and software
features associated with the Power Manager on a particular machine. If a bit value is 1,
that feature is supported or available; if the bit value is 0, that feature is not available.
Unused bits are reserved by Apple for future expansion.

About the Power Manager Interface 89



CHAPTER 7

Power Manager Interface

Field descriptions

Bit name
hasWakeupTi ner
hasShar edMbdenPor t

hasProcessor Cycl i ng

nmust Processor Cycl e
hasReducedSpeed
dynam cSpeedChange
hasSCSI Di skMode
canCet BatteryTi ne

canWakeupOnRi ng

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for PMFeat ur es is 1 ($01)
in the low word of register D0. The 32-bit field of supported features is returned in

register DO.

GetSleepTimeout

Bit
number
0

1

Description
The wakeup timer is supported.

The hardware forces exclusive access to either
SCC port A or the internal modem. (If this

bit is not set, then typically port A and the
internal modem may be used simultaneously
by means of the Communications Toolbox.)

Processor cycling is supported; that is, when
the computer is idle, the processor power is
cycled to reduce the power usage.

The processor cycling feature must be left on
(turn it off at your own risk).

Processor can be started up at a reduced
speed in order to extend battery life.

Processor speed can be switched dynamically
between its full and reduced speed at any
time, rather than only at startup time.

The SCSI disk mode is supported.

The computer can provide an estimate of the
battery time remaining.

The computer supports waking up from the
sleep state when an internal modem is
installed and the modem detects a ring.

DESCRIPTION

90

You can use the Get Sl eepTi meout routine to find out how long the computer will wait

before going to sleep.

unsi gned char Get Sl eepTi neout () ;

The Get Sl eepTi meout routine returns the amount of time that the computer will wait
after the last user activity before going to sleep. The value of Get Sl eepTi neout is
expressed as the number of 15-second intervals that the computer will wait before going

to sleep.

About the Power Manager Interface



CHAPTER 7

Power Manager Interface

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Get Sl eepTi nmeout is
2 ($02) in the low word of register D0. The sleep timeout value is returned in the low
word of register DO.

SetSleepTimeout

DESCRIPTION

You can use the Set Sl eepTi meout routine to set how long the computer will wait
before going to sleep.

voi d Set Sl eepTi meout (unsi gned char tineout);

The Set Sl eepTi meout routine sets the amount of time the computer will wait after the
last user activity before going to sleep. The value of Set Sl eepTi meout is expressed as
the number of 15-second intervals that make up the desired time. If a value of 0 is passed
in, the routine sets the t i meout value to the default value (currently equivalent to

8 minutes).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Set Sl eepTi neout is
3 ($03) in the low word of register D0. The sleep timeout value to set is passed in the
high word of register DO.

GetHardDiskTimeout

DESCRIPTION

You can use the Get Har dDi skTi meout routine to find out how long the computer will
wait before turning off power to the internal hard disk.

unsi gned char Get HardDi skTi neout () ;

The Get Har dDi skTi meout routine returns the amount of time the computer will wait
after the last use of a SCSI device before turning off power to the internal hard disk. The
value of Get Har dDi skTi neout is expressed as the number of 15-second intervals the
computer will wait before turning off power to the internal hard disk.

About the Power Manager Interface 91



CHAPTER 7

Power Manager Interface

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Get Har dDi skTi neout
is 4 ($04) in the low word of register DO. The hard disk timeout value is returned in the
low word of register DO.

SetHardDiskTimeout

DESCRIPTION

You can use the Set Har dDi skTi nmeout routine to set how long the computer will wait
before turning off power to the internal hard disk.

voi d Set Har dDi skTi neout (unsi gned char tineout);

The Set Har dDi skTi meout routine sets how long the computer will wait after the last
use of a SCSI device before turning off power to the internal hard disk. The value of

Set Har dDi skTi meout is expressed as the number of 15-second intervals the computer
will wait before turning off power to the internal hard disk. If a value of 0 is passed in,
the routine sets the t i meout value to the default value (currently equivalent to

4 minutes).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Set Har dDi skTi neout
is 5 ($05) in the low word of register DO. The hard disk timeout value to set is passed in
the high word of register DO.

HardDiskPowered

DESCRIPTION

92

You can use the Har dDi skPower ed routine to find out whether the internal hard disk
is on.

Bool ean Har dDi skPower ed() ;

The Har dDi skPower ed routine returns a Boolean value indicating whether the internal
hard disk is powered up. A value of t r ue means that the hard disk is on, and a value of
f al se means that the hard disk is off.

About the Power Manager Interface



CHAPTER 7

Power Manager Interface

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Har dDi skPower ed is
6 ($06) in the low word of register DO. The Boolean result is returned in the low word of
register DO.

SpinDownHardDisk

DESCRIPTION

You can use the Spi nDownHar dDi sk routine to force the hard disk to spin down.

voi d Spi nDownHar dDi sk() ;

The Spi nDownHar dDi sk routine immediately forces the hard disk to spin down and
power off if it was previously spinning. Calling Spi nDownHar dDi sk will not spin
down the hard disk if spindown is disabled by calling Set Spi ndownDi sabl e (defined
later in this section).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Spi nDownHar dDi sk
is 7 ($07) in the low word of register DO.

IsSpindownDisabled

DESCRIPTION

You can use the | sSpi ndownDi sabl ed routine to find out whether hard disk
spindown is enabled.

Bool ean | sSpi ndownDi sabl ed() ;

The | sSpi ndownDi sabl ed routine returns a Boolean value of t r ue if hard disk
spindown is disabled, or f al se if spindown is enabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is_Power Myr Di spat ch ($A09E). The selector value for | sSpi ndownDi sabl ed
is 8 ($08) in the low word of register DO. The Boolean result is passed in the low byte of
register DO.

About the Power Manager Interface 93



CHAPTER 7

Power Manager Interface

SetSpindownDisable

You can use the Set Spi ndownDi sabl e routine to disable hard disk spindown.

voi d Set Spi ndownDi sabl e( Bool ean set Di sabl e);

DESCRIPTION

The Set Spi ndownDi sabl e routine enables or disables hard disk spindown, depending
on the value of set Di sabl e. If the value of set Di sabl e ist r ue, hard disk spindown
will be disabled; if the value is f al se, spindown will be enabled.

Disabling hard disk spindown affects the Spi nDownHar dDi sk routine, defined earlier,
as well as the normal spindown that occurs after a period of hard disk inactivity.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Set Spi ndownDi sabl e
is 9 ($09) in the low word of register D0. The Boolean value to set is passed in the high
word of register DO.

HardDiskQInstall

You can use the Har dDi skQ nst al | routine to notify your software when power to the
internal hard disk is about to be turned off.

OSErr HardDi skQ nst al | (HDQueueEl enent *t heEl enment) ;

DESCRIPTION
The Har dDi skQ nst al | routine installs an element into the hard disk power-down
queue to provide notification to your software when the internal hard disk is about to be
powered off. For example, this feature might be used by the driver for an external
battery-powered hard disk. When power to the internal hard disk is turned off, the
external hard disk could be turned off as well.

The structure of HDQueueEl enent is as follows.

t ypedef pascal void (*HDSpi ndownProc) (HDQueueEl enent *t heEl enment);
struct HDQueueEl ement {

Ptr hdQLi nk; /* pointer to next queue el enment */

short hdQType; /* queue el ement type (nust be HDQType) */
short hdFl ags; /* miscellaneous flags (reserved) */

HDSpi ndownPr oc hdPr oc; /* pointer to routine to call */

| ong hdUser ; /* user-defined (variable storage, etc.) */

} HDQueueEl enent ;

94 About the Power Manager Interface



CHAPTER 7

Power Manager Interface

When power to the internal hard disk is about to be turned off, the software calls the
routine pointed to by the hdPr oc field so that it can do any special processing. The
software passes the routine a pointer to its queue element so that, for example, the
routine can reference its variables.

Before calling Har dDi skQ nst al |, the calling program must set the hdQType field to

#defi ne HDPwr QType ' HD /* queue el ement type */

or the queue element won't be added to the queue and Har dDi skQ nst al | will return
an error.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Har dDi skQ nst al |
is 10 ($0A) in the low word of register DO. The pointer to the HDQueue element is passed
in register A0. The result code is returned in the low word of register DO.

HardDiskQRemove

You can use the Har dDi skQRenpve routine to discontinue notifying your software
when power to the internal hard disk is about to be turned off.

OSErr Har dDi skQRenove( HDQueueE!l erent *t heEl enent ) ;

DESCRIPTION

The Har dDi skQRenpve routine removes a queue element installed by
Har dDi skQ nst al | . If the hdQType field of the queue element is not set to
HDPwr QType, Har dDi skQRenpve simply returns an error.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Har dDi skQRenove is
11 ($0B) in the low word of register D0. The pointer to the HDQueue element is passed in
register AO. The result code is returned in the low word of register DO.

GetScaledBatteryInfo

You can use the Get Scal edBat t er yl nf o routine to find out the condition of the
battery or batteries.

voi d Get Scal edBatterylnfo(short whichBattery, Batterylnfo *thelnfo);

About the Power Manager Interface 95



CHAPTER 7

Power Manager Interface

DESCRIPTION

The Get Scal edBat t er yl nf o routine provides a generic means of returning
information about the battery or batteries in the system. Instead of returning a voltage
value, the routine returns the battery level as a fraction of the total possible voltage.

Note

New battery technologies such as NiCad (nickel cadmium) and nickel
metal hydride (NiMH) have replaced the sealed lead acid batteries of
the original Macintosh Portable. The algorithm for determining the
battery voltage documented in the Power Manager chapter of Inside
Macintosh, Volume VI, is no longer correct for all PowerBook models. O

The value of whi chBat t er y determines whether Get Scal edBat t er yl nf o returns
information about a particular battery or about the total battery level. The value of

Cet Scal edBat t er yl nf o should be in the range of 0 to Bat t er yCount () . If the value
of whi chBat t ery is 0, Get Scal edBat t er yl nf o returns a summation of all the
batteries, that is, the effective battery level of the whole system. If the value of

whi chBat t ery is out of range, or the selected battery is not installed,

Cet Scal edBat t er yl nf 0 returns a result of 0 in all fields. Here is a summary of the
effects of the whi chBat t er y parameter:

Value of whi chBattery Information returned
0 Total battery level for all batteries
From 1 to Bat t er yCount () Battery level for the selected battery

Less than 0 or greater
than Bat t er yCount 0 in all fields of t hel nf o

The Get Scal edBat t er yl nf o routine returns information about the battery in the
following data structure:

typedef struct Batterylnfo {

unsi gned char fl ags; /* misc flags (see below) */

unsi gned char war ni ngLevel ; /* scal ed warning | evel (0-255) */
char reserved; /* reserved for internal use */
unsi gned char batteryLevel ; /* scaled battery |evel (0-255) */

} Batterylnfo;

96

The f | ags character contains several bits that describe the battery and charger state. If a
bit value is 1, that feature is available or is operating; if the bit value is 0, that feature is
not operating. Unused bits are reserved by Apple for future expansion.

About the Power Manager Interface



CHAPTER 7

Power Manager Interface

Field descriptions

Bit name Elljtmber Description
batterylnstall ed 7 A battery is installed.

bat t er yChar gi ng 6 The battery is charging.
char ger Connect ed 5 The charger is connected.

The value of war ni ngLevel is the battery level at which the first low battery warning
message will appear. The routine returns a value of 0 in some cases when it’s not
appropriate to return the warning level.

The value of bat t er yLevel is the current level of the battery. A value of 0 represents
the voltage at which the Power Manager will force the computer into sleep mode; a
value of 255 represents the highest possible voltage.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Get Scal edBat t eryl nf 0is 12 ($0C) in the low word of register DO. The
Bat t er yl nf o data are returned in the low word of register DO as follows:

Bits 31-24 Flags
Bits 23-16 Warning level

Bits 15-8 Reserved
Bits 7-0 Battery level
AutoSleepControl

DESCRIPTION

You can use the Aut 0S| eepCont r ol routine to turn the automatic sleep feature on
and off.

voi d Aut oSl eepControl (Bool ean enabl eSl eep) ;

The Aut 0S| eepCont r ol routine enables or disables the automatic sleep feature that
causes the computer to go into sleep mode after a preset period of time. When

enabl eS| eep is set to t r ue, the automatic sleep feature is enabled (this is the normal
state). When enabl eS| eep is set to f al se, the computer will not go into the sleep
mode unless it is forced to either by some user action—for example, by the user’s
selecting Sleep from the Special menu of the Finder—or in a low battery situation.

About the Power Manager Interface



CHAPTER 7

Power Manager Interface

IMPORTANT

Calling Aut 0S| eepCont r ol with enabl eS| eep set to f al se multiple
times increments the auto sleep disable level so that it requires the same
number of calls to Aut 0S| eepCont r ol with enabl eSl eep set to

t r ue to reenable the auto sleep feature. If more than one piece of

software makes this call, auto sleep may not be reenabled when you
think it should be. a

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Aut 0S| eepCont r ol
is 13 ($0D) in the low word of register D0. The Boolean value is passed in the high word
of register DO.

GetIntModemlInfo

DESCRIPTION

98

You can use the Get | nt Mbdem nf o routine to find out information about the
internal modem.

unsi gned | ong Getl nt Mbdem nfo();

The Get | nt Modem nf o routine returns a 32-bit field containing information that
describes the features and state of the internal modem. It can be called whether or not a
modem is installed and will return the correct information.

If a bit is set, that feature or state is supported or selected; if the bit is cleared, that feature
is not supported or selected. Undefined bits are reserved by Apple for future expansion.

Field descriptions

Bit

Bit name number Description

hasl nt er nal Modem 0 An internal modem is installed.

i nt ModenRi ngDet ect 1 The modem has detected a ring on the
telephone line.

i nt ModenOf f Hook 2 The internal modem has taken the telephone
line off hook (that is, you can hear the dial
tone or modem carrier).

i nt ModenRi ng\WakeEnb 3 The computer will come out of sleep mode if

the modem detects a ring on the telephone
line and the computer supports this feature
(see the canWakeupOnRi ng bit in

PMFeat ur es).

About the Power Manager Interface



CHAPTER 7

Power Manager Interface

Bit
Bit name number Description
ext Modentel ect ed 4 The external modem is selected (if this bit is

set, then the modem port will be connected to
port A of the SCC; if the modem port is not
shared by the internal modem and the SCC,
then this bit can be ignored).

Bits 15-31 contain the modem type, which will take on one of the following values:
-1 Modem is installed but type not recognized.
0 No modem is installed.

Modem is a serial modem.

2 Modem is a PowerBook Duo-style Express
Modem.

3 Modem is a PowerBook 160/ 180-style
Express Modem.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Get | nt Modemnl nf o is
14 ($0E) in the low word of register DO0. The bit field to set is passed in the high word of
register DO.

SetIntModemState

DESCRIPTION

You can use the Set | nt Modenft at e routine to set some parts of the state of the
internal modem.

voi d Setl nt Modentst at e(short theState);

The Set | nt MbdenSt at e routine configures some of the internal modem’s state
information. Currently the only items that can be changed are the internal / external
modem selection and the wakeup-on-ring feature.

To change an item of state information, the calling program sets the corresponding bit in
t heSt at e. In other words, to change the internal / external modem setting, set bit 4 of

t heSt at e to 1. To select the internal modem, bit 15 should be set to 0; to select the
external modem, bit 15 should be set to 1. Using this method, the bits may be set or
cleared independently, but they may not be set to different states at the same time.

About the Power Manager Interface 99



CHAPTER 7

Power Manager Interface

Note

In some PowerBook computers, there is a hardware switch to connect
either port A of the SCC or the internal modem to the modem port. The
two are physically separated, but software emulates the serial port
interface for those applications that don’t use the Communications
Toolbox. You can check the has Shar edMbdenPor t bit returned by
PMFeat ur es to determine which way the computer is set up. O

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Set | nt Modentt at e
is 15 ($0F) in the low word of register DO. The bit field is returned in register DO.

MaximumProcessorSpeed

DESCRIPTION

You can use the Maxi munPr ocessor Speed routine to find out the maximum speed of
the computer’s microprocessor.

short Maxi munProcessor Speed() ;

The Maxi munPr ocessor Speed routine returns the maximum clock speed of the
computer’s microprocessot, in MHz.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Maxi munPr ocessor Speed is 16 ($10) in the low word of register D0. The processor
speed value is returned in the low word of register DO.

CurrentProcessorSpeed

DESCRIPTION

100

You can use the Cur r ent Pr ocessor Speed routine to find out the current clock speed
of the microprocessor.

short Current Processor Speed();

The Cur r ent Pr ocessor Speed routine returns the current clock speed of the
computer’s microprocessor, in MHz. The value returned is different from the maximum
processor speed if the computer has been configured to run with a reduced processor
speed to conserve power.

About the Power Manager Interface



CHAPTER 7

Power Manager Interface

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Cur r ent Processor Speed is 17 ($11) in the low word of register D0. The processor
speed value is returned in the low word of register DO.

FullProcessorSpeed

DESCRIPTION

You can use the Ful | Processor Speed routine to find out whether the computer will
run at full speed the next time it restarts.

Bool ean Ful | Processor Speed() ;

The Ful | Pr ocessor Speed routine returns a Boolean value of t r ue if, on the next
restart, the computer will start up at its maximum processor speed; it returns f al se if
the computer will start up at its reduced processor speed.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Ful | Processor Speed is 18 ($12) in the low word of register D0O. The Boolean
result is returned in the low byte of register DO.

SetProcessorSpeed

DESCRIPTION

You can use the Set Pr ocessor Speed routine to set the clock speed the microprocessor
will use the next time the computer is restarted.

Bool ean Set Processor Speed( Bool ean ful | Speed);

The Set Pr ocessor Speed routine sets the processor speed that the computer will use
the next time it is restarted. If the value of f ul | Speed is set to t r ue, the processor will
start up at its full speed (the speed returned by Maxi munPr ocessor Speed, described
on page 100). If the value of f ul | Speed is set to f al se, the processor will start up at its
reduced speed.

For PowerBook models that support changing the processor speed dynamically, the
processor speed will also be changed. If the speed is actually changed,
Set Pr ocessor Speed will return t r ue; if the speed isn’t changed, it will return f al se.

About the Power Manager Interface 101



CHAPTER 7

Power Manager Interface

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for

Set Processor Speed is 19 ($13) in the low word of register D0. The Boolean
value to set is passed in the high word of register DO. The Boolean result is
returned in register DO.

GetSCSIDiskModeAddress

DESCRIPTION

You can use the Get SCSI Di skMbdeAddr ess routine to find out the SCSI ID the
computer uses in SCSI disk mode.

short Get SCSI Di skMbdeAddress();

The Get SCSI Di skMbdeAddr ess routine returns the SCSI ID that the computer uses
when it is started up in SCSI disk mode. The returned value is in the range 1 to 6.

Note

When the computer is in SCSI disk mode, the computer
appears as a hard disk to another computer. O

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Cet SCSI Di skMbdeAddr ess is 20 ($14) in the low word of register DO. The
SCSI ID is returned in the low word of register DO.

SetSCSIDiskModeAddress

DESCRIPTION

102

You can use the Set SCSI Di skMbdeAddr ess routine to set the SCSI ID for the
computer to use in SCSI disk mode.

voi d Set SCSI Di skMbdeAddr ess(short scsi Address);

The Set SCSI Di skMbdeAddr ess routine sets the SCSI ID that the computer will use if
it is started up in SCSI disk mode.

The value of scsi Addr ess must be in the range of 1 to 6. If any other value is given, the
software sets the SCSI ID for SCSI disk mode to 2.

About the Power Manager Interface



CHAPTER 7

Power Manager Interface

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Set SCSI Di skMbdeAddr ess is 21 ($15) in the low word of register DO. The
SCSI'ID to set is passed in the high word of register DO.

GetWakeupTimer

You can use the Get WakeupTi mer routine to find out when the computer will wake up
from sleep mode.

voi d Get WakeupTi ner (WakeupTi me *t heTi ne);

DESCRIPTION

The Get WakeupTi ner routine returns the time when the computer will wake up from
sleep mode.

If the PowerBook model doesn’t support the wakeup timer, Get WakeupTi mer returns a
value of 0. The time and the enable flag are returned in the following structure:

typedef struct WakeupTi me {

unsi gned |l ong wakeTi ne; /* wakeup tinme (sane format as the tine) */
char wakeEnabl ed; /* l1l=enable timer, O=disable tiner */
} WakeupTi ne;

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Get WakeupTi nmer
is 22 ($16) in the low word of register D0. The pointer to WakeupTi e is passed in
register AO0.

SetWakeupTimer

You can use the Set WakeupTi mer routine to set the time when the computer will wake
up from sleep mode.

voi d Set WakeupTi ner (WakeupTi me *t heTi ne);

DESCRIPTION

The Set WakeupTi mer routine sets the time when the computer will wake up from
sleep mode and enables or disables the timer. On a PowerBook model that doesn’t
support the wakeup timer, Set WakeupTi mer does nothing.

About the Power Manager Interface 103



CHAPTER 7

Power Manager Interface

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Set WakeupTi ner
is 23 ($17) in the low word of register D0. The pointer to WakeupTi ne is passed in
register AQ.

IsProcessorCyclingEnabled

DESCRIPTION

You can use the | sProcessor Cycl i ngEnabl ed routine to find out whether processor
cycling is enabled.

Bool ean | sProcessor Cycli ngEnabl ed() ;

The | sProcessor Cycl i ngEnabl ed routine returns a Boolean value of t r ue if
processor cycling is currently enabled, or f al se if it is disabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
| sProcessor Cycl i ngEnabl ed is 24 ($18) in the low word of register DO.
The Boolean result is returned in register DO.

EnableProcessorCycling

DESCRIPTION

104

You can use the Enabl ePr ocessor Cycl i ng routine to turn the processor cycling
feature on and off.

voi d Enabl eProcessor Cycl i ng(Bool ean enabl e);

The Enabl ePr ocessor Cycl i ng routine enables processor cycling if a value of t r ue is
passed in, and disables it if f al se is passed.

WARNING

You should follow the advice of the must Pr ocessor Cycl e bit in the
feature flags when turning processor cycling off. Turning processor
cycling off when it’s not recommended can result in hardware failures
due to overheating. a

About the Power Manager Interface



CHAPTER 7

Power Manager Interface

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Enabl eProcessor Cycl i ng is 25 ($19) in the low word of register DO.
The Boolean value to set is passed in the high word of register DO.

BatteryCount

You can use the Bat t er yCount routine to find out how many batteries the
computer supports.

short BatteryCount();

DESCRIPTION

The Bat t er yCount routine returns the number of batteries supported internally by the
computer. The return value of Bat t er yCount may not be the same as the number of
batteries currently installed.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Bat t er yCount is 26
($1A) in the low word of register DO. The number of batteries supported is returned in
the low word of register DO.

GetBatteryVoltage

You can use the Get Bat t er yVol t age routine to find out the battery voltage.

Fi xed GetBatteryVoltage(short whichBattery);

DESCRIPTION
The Get Bat t er yVol t age routine returns the battery voltage as a fixed-point number.
The value of whi chBat t er y should be in the range 0 to Bat t er yCount () —1. If the

value of whi chBat t ery is out of range, or the selected battery is not installed,
Get Bat t er yVol t age will return a result of 0.0 volts.

ASSEMBLY-LANGUAGE INFORMATION
The trap is _Power Myr Di spat ch ($A09E). The selector value for
Cet Bat t er yVol t age is 27 ($1B) in the low word of register DO. The battery
number is passed in the high word of register D0. The 32-bit value of the battery
voltage is returned in register DO.

About the Power Manager Interface 105



CHAPTER 7

Power Manager Interface

GetBatteryTimes

You can use the Get Bat t er yTi nes routine to find out about how much battery
time remains.

void GetBatteryTines (short whichBattery, BatteryTi neRec *theTi nes);

DESCRIPTION

The Get Bat t er yTi mes routine returns information about the time remaining on the
computer’s battery or batteries. The information returned has the following data
structure:

typedef struct BatteryTi neRec {
unsi gned | ong expectedBatteryTine; /* estimated tine remaining */

unsi gned | ong mini munBatteryTi me; /[* minimumtine remaining */
unsi gned | ong maxi nunBatteryTi ne; /* maximumtinme renmai ning */
unsi gned long tinmeUntil Charged; /* time until full charge */

} BatteryTi meRec;

The time values are in seconds. The value of expect edBat t er yTi ne is the estimated
time remaining based on current usage patterns. The values of mi ni nunBat t er yTi e
and maxi munBat t er yTi me are worst-case and best-case estimates, respectively. The
value of ti meUnt i | Char ged is the time that remains until the battery or batteries are
fully charged.

The value of whi chBat t er y determines whether Get Bat t er yTi nes returns the time
information about a particular battery or the total time for all batteries. The value of

Cet Scal edBat t er yl nf o should be in the range of 0 to Bat t er yCount () . If the value
of whi chBatt ery is 0, Get Bat t er yTi nes returns a total time for all the batteries, that
is, the effective battery time for the whole system. If the value of whi chBat t ery is out
of range, or the selected battery is not installed, Get Bat t er yTi mes returns a result of 0
in all fields. Here is a summary of the effects of the whi chBat t er y parameter:

Value of whi chBattery Information returned
0 Total battery time for all batteries
From 1toBatteryCount( ) Battery time for the selected battery

Less than 0 or greater than
Bat t er yCount 0in all fields of t heTi nes

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Cet Bat t er yTi mes is
28 ($1C) in the low word of register D0. The pointer to Bat t er yTi meRec is passed in
register AQ.

106 About the Power Manager Interface



CHAPTER 7

Power Manager Interface

Header File for Power Manager Dispatch

Here is a sample header file for access to the Power Manager.

[ Rk Rk kR Kok kK kK kR ok Kk ok ko R ok kR ok ko R ok kR ok ko R ok ko Rk ko Rk ko Rk ko Kk ko Rk ko Kk kK

file: PowerMrDi spatch.h

contai ns: header file for access to the Power Manager

Copyright 0O 1992-1993 by Apple Conputer, Inc. Al rights reserved.
~k~k**********************************************************************************/
#i f ndef __ _Power Mgr Di spatch__
#define __ Power Mgr Di spatch__
#i fndef __TYPES__
#i ncl ude <Types. h>

#endi f

#i f ndef gestal t PMyr Di spat chExi sts

#defi ne gestal t PMgr Di spat chExi sts 4 |* gestaltPowerMgrAttr bit:
1=Power Myr Di spatch exists */

#endi f

/* bits in bitfield returned by PMreatures */
#def i ne hasWakeupTi ner 0 /* l=wakeup timer is supported */
#defi ne hasShar edMbdenPor t 1 /* 1=nodem port shared by SCC and internal nodem */

#defi ne hasProcessor Cycling 2 |* l1=processor cycling is supported */

#def i ne nust Processor Cycl e 3 /* l1l=processor cycling should not be turned off */
#defi ne hasReducedSpeed 4 |* 1=processor can be started up at reduced speed */
#defi ne dynam cSpeedChange 5 /* l1l=processor speed can be sw tched dynamically */
#defi ne hasSCSI Di skMbde 6 /* 1=SCSl disk node is supported */

#define canGetBatteryTi ne 7 /* l1l=battery tine can be calcul ated */

#def i ne canWakeupOnRi ng 8 /* 1l=can wake up when the nodem detects a ring */

About the Power Manager Interface 107



/* bits

#defi ne

#def i ne

#def i ne

#def i ne

#def i ne

#defi ne

CHAPTER 7

Power Manager Interface

in bitfield returned by GetlntMdem nfo and set by Setlnt ModenState */
hasl nternal Modem O /* 1=internal nodeminstalled */

i nt ModenRi ngDetect 1 /* 1=internal nodem has detected a ring */

i nt Modent¥ f Hook 2 /* l1=internal nodemis off hook */

i nt ModenRi ngWakeEnb3 /* 1=wake up on ring is enabled */

ext Modentel ected 4 /* 1=external nodem sel ected */

nmodentet Bi t 15 /* 1=set bit, O=clear bit (SetlntMdentState) */

/* information returned by GetScal edBatterylnfo */

struct Batterylnfo {

unsi gned charfl ags; /* misc flags (see below) */
unsi gned charwar ni ngLevel ; /* scal ed warning | evel (0-255) */
char reserved; /* reserved for internal use */
unsi gned charbatteryLevel ; /* scaled battery |level (0-255) */
b
typedef struct Batterylnfo Batterylnfo;
/* bits in Batterylnfo.flags */
#define batterylnstalled 7 /* 1=battery is currently connected */
#define batteryCharging 6 /* 1=battery is being charged */
#defi ne chargerConnected 5 /* 1=charger is connected to the PowerBook */
/* (this doesn't nmean the charger is plugged in) */
/* hard di sk spindown notification queue el enent */
t ypedef struct HDQueueEl ement HDQueueEl enent;
108 About the Power Manager Interface



CHAPTER 7

Power Manager Interface

t ypedef pascal void (*HDSpi ndownProc) (HDQueueEl enent *t heEl ement);

struct HDQueueEl ement {

Ptr hdQLi nk; /* pointer to next queue el enent */
short hdQType; /* queue el ement type (must be HDQType) */
short hdFl ags; /* mscellaneous flags */
HDSpi ndownPr oc hdPr oc; /* pointer to routine to call */
| ong hdUser ; /* user-defined (variable storage, etc.) */
b
#defi ne HDPwr QType' HD /* queue el ement type */

/* wakeup time record */

t ypedef struct WakeupTi nme {
unsi gned | ong wakeTi ne; /* wakeup time (sane format as current tinme) */
char wakeEnabl ed; /* l1l=enable wakeup tinmer, 0=di sable wakeup tiner */

} WakeupTi ne;

/* battery time information (in seconds) */

t ypedef struct BatteryTi meRec {

unsi gned | ong expect edBatt eryTi ne; /* estimated battery time remaining */
unsi gned | ong m ni munBat t eryTi ne; /* mninmumbattery tine remaining */

unsi gned | ong nmaxi munBat t er yTi ne; /* maxi mum battery tinme remaining */

unsi gned | ong ti meUnti | Char ged,; /* time until battery is fully charged */

} BatteryTi neRec;

#i fdef __cpluspl us
extern "C' {

#endi f

About the Power Manager Interface 109



CHAPTER 7

Power Manager Interface

#pragma paraneter _ DO PMsel ect or Count (__DO)
short PMsel ect or Count ()

= {0x7000, OxAO09E};

#pragma paranmeter __ DO PMreat ures
unsi gned | ong PMFreat ures()

= {0x7001, OxAQ09E};

#pragma paranmeter __ DO Get Sl eepTi neout
unsi gned char Get Sl eepTi nmeout ()

= {0x7002, OXAQ9E};

#pragma paranmeter __ DO Set Sl eepTi neout (__DO)
voi d Set Sl eepTi neout (unsi gned char tinmeout)

= {0x4840, 0x303C, 0x0003, OxAQ9E};

#pragma paraneter __ DO Get HardD skTi neout
unsi gned char Get HardDi skTi neout ()

= {0x7004, OXAQ9E};

#ipragma paraneter __ DO Set HardDi skTi neout (__DO)
voi d Set Har dDi skTi neout (unsi gned char tineout)

= {0x4840, 0x303C, 0x0005, OxAQ9E};

#pragma parameter __DO HardD skPowered
Bool ean Har dDi skPower ed()

= {0x7006, OxAO09E};

110 About the Power Manager Interface



CHAPTER 7

Power Manager Interface

#pragma paraneter __ DO Spi nDownHar dDi sk
voi d Spi nDownHar dDi sk()

= {0x7007, OXAO9E};

#pragma paranmeter __ DO | sSpi ndownDi sabl ed
Bool ean | sSpi ndownDi sabl ed()

= {0x7008, OxAQ09E};

#pragma paranmeter __ DO Set Spi ndownDi sabl e(__DO)
voi d Set Spi ndownDi sabl e( Bool ean set Di sabl e)

= {0x4840, 0x303C, 0x0009, OxAQ9E};

#pragma parameter __ DO HardDi skQ nstal |l (__A0)
OSErr HardDi skQ nst al | (HDQueueEl errent *t heEl enent)

= {0x700A, OxAO09E};

#pragma paranmeter __ DO HardD skQRemove(__A0)
OSErr Har dDi skQRenove( HDQueueE!l ement *t heEl enent)

= {0X700B, OXAQ9E};

#ipragma paranmeter __ DO Get Scal edBatterylnfo(__D0, _A0)
voi d Get Scal edBatteryl nfo(short whichBattery, Batterylnfo *thel nfo)

= {0x4840, 0x303C, 0x000C, OxAQ9E, 0x2080};

#pragma parameter __ DO Aut oSl eepControl (__DO)
voi d Aut oSl eepCont rol ( Bool ean enabl eSl eep)

= {0x4840, 0x303C, 0x000D, OxAQ9E};

About the Power Manager Interface 111



CHAPTER 7

Power Manager Interface

#pragma paraneter _ DO Getlnt Modenl nfo(__DO)
unsi gned | ong Get | nt Modem nfo()

= {OX700E, OXAO9E};

#pragma parameter __ DO Setl nt Mbdentt at e(__DO)
voi d Set | nt Mbdentt at e(short theState)

= {0x4840, 0x303C, 0x000F, OxAQ09E};

#pragma paranmeter __ DO Maxi munProcessor Speed
short Maxi munProcessor Speed()

= {0x7010, OXAQ9E};

#pragma parameter __DO Current Processor Speed
short Current Processor Speed()

= {0x7011, OxAO09E};

#pragma parameter __ DO Ful | Processor Speed
Bool ean Ful | Processor Speed()

= {0x7012, OXAQ9E};

#ipragma paranmeter __ DO Set Processor Speed(__DO0)
Bool ean Set Processor Speed( Bool ean ful | Speed)

= {0x4840, 0x303C, 0x0013, OxAQ09E};

#pragma parameter __ DO Get SCSI Di skMbdeAddr ess
short Get SCSI Di skiMbdeAddr ess()

= {0x7014, OxA09E};

112 About the Power Manager Interface



CHAPTER 7

Power Manager Interface

#pragma paraneter _ DO Set SCSI Di skModeAddr ess(__DO)
voi d Set SCSI Di skModeAddr ess(short scsi Addr ess)

= {0x4840, 0x303C, 0x0015, OxAQ09E};

#pragma parameter __DO Get WakeupTi mer (__A0)
voi d Get WakeupTi mer (WakeupTi me *t heTi ne)

= {0x7016, OxAQ09E};

#pragma parameter __ DO Set WakeupTi nmer (__A0)
voi d Set WakeupTi ner (WakeupTi me *t heTi ne)

= {0x7017, OxAQ9E};

#pragma parameter _ DO | sProcessor Cycli ngEnabl ed
Bool ean | sProcessor Cycl i ngEnabl ed()

= {0x7018, OxAO09E};

#pragma paraneter __DO Enabl eProcessor Cycli ng(__DO)
voi d Enabl eProcessor Cycl i ng( Bool ean enabl e)

= {0x4840, 0x303C, 0x0019, OxAO09E};

#pragma paraneter __ DO BatteryCount
short BatteryCount()

= {0x701A, OxAO09E};

#pragma parameter _ DO GetBatteryVoltage(__DO0)
Fi xed GetBatteryVoltage(short whichBattery)

= {0x4840, 0x303C, 0x001B, OxAQ09E};

About the Power Manager Interface

113



CHAPTER 7

Power Manager Interface

#pragma paranmeter _ DO GetBatteryTi mes(__DO, __A0)
void GetBatteryTi mes(BatteryTi meRec *t heTi nes)

= {0x4840, 0x303C, 0x001C, OxAQ09E};

#i fdef __cpluspl us

}

#endi f

#endi f

114 About the Power Manager Interface



CHAPTER 8

Software for ATA Devices




CHAPTER 8

Software for ATA Devices

This chapter describes the system software that controls ATA devices in the Macintosh
PowerBook 5300 computer. To use the information in this chapter, you should already be
familiar with writing programs for the Macintosh computer that call device drivers to
manipulate devices directly. You should also be familiar with the ATA /IDE specification,
ANSI proposal X3T10/0948D, Revision 2K or later (ATA-2).

Introduction to the ATA Software

In the Macintosh PowerBook 5300 computer, the ATA software supports not only the
internal ATA (IDE) hard disk drive, but also ATA drives installed in the expansion bay
and in the PCMCIA slot. In addition to traditional Macintosh partitioned drives, the ATA
software also supports other file formats such as DOS through the PC Exchange system
extension.

The ATA software in the Macintosh PowerBook 5300 computer conforms to the
Macintosh driver model. File systems communicate with the driver by way of the Device
Manager, as shown in Figure 8-1. The ATA software consists of the ATA Manager and the
ATA Disk Driver. For an ATA drive in the PCMCIA slot, the ATA software uses the Card
Services software to configure the PCMCIA hardware and obtain access to the drive. See
Chapter 9, “PC Card Services.”

Figure 8-1 ATA software model

PC Other file

HFS exchange system

Device Manager

ATA disk driver

ATA Manager

Card Services

R

ATA PCMCIA
controller controller

116 Introduction to the ATA Software



CHAPTER 8

Software for ATA Devices

At the system level, the ATA disk driver and the ATA Manager work in the same way
that the SCSI Manager and associated SCSI device drivers work. The ATA disk driver
provides drive partition, data management, and error-handling services for the
operating system as well as support for determining device capacity and controlling
device-specific features. The ATA Manager provides data transport services between the
ATA hard disk drive and the system. The ATA Manager handles interrupts from the
drives and manages the interface timing.

ATA hard disk drives appear on the desktop the same way SCSI hard disk drives
currently do. Except for applications that perform low-level services such as formatting
and partitioning of disk drives, applications interact with the ATA hard disk drives in a
device-independent manner through the File Manager or by calling the Device Manager.

ATA Disk Driver

The ATA disk driver for the Macintosh PowerBook 5300 computer has the
following features:

= Supports all ATA drives that comply with the ANSI ATA specification X3T10.
= Uses the ATA Manager for system and bus independence.

= Supports multiple drives and multiple partitions (volumes).

= Recognizes both HFS hard disk and floppy disk formats.

= Supports PC Exchange for DOS file compatibility.

= Adheres to the driver rules described in Designing PCI Cards and Drivers for Power
Macintosh Computers.

= Supports both synchronous and asynchronous requests from the file system.

= Supports manual or powered ejection of PCMCIA cards.

The ATA disk driver resides in ROM and supports all ATA drives that adhere to the
ANSI ATA specification X3T10. The driver can support any number of ATA drives, either
internal or installed in the expansion bay or the PCMCIA slot.

The ATA disk driver relies on the services of the ATA Manager, which provides the ATA
protocol engine and relieves the driver of system and bus dependencies. The main
functions of the driver are managing the media and monitoring the status of the drive.

The ATA disk driver is responsible for providing block-oriented access to the storage
media. The file systems treat the media as one or more logical partitions or volumes in
which data at any address can be read or written indefinitely.

The ATA disk driver provides status and control functions. In addition, the driver’s
functionality has been augmented to support PC Exchange and the new Drive Setup
application. The functions are described in “ATA Disk Driver Reference” beginning on
page 120.

The ATA disk driver supports both synchronous and asynchronous requests from the file
system. The driver executes synchronous requests without relinquishing control back to

Introduction to the ATA Software 117



118

CHAPTER 8

Software for ATA Devices

the caller until completion. The driver queues asynchronous calls and returns control to
the caller; it then executes the requested task in the background during interrupt time.

Drives on PC Cards

It might seem that the system should treat drives on PC cards like floppy disks because
they are removable. On closer examination, the floppy-disk model is not appropriate for
such drives. The Mac OS assumes that a floppy disk is not partitioned and has a single
HFS volume. Drives on PC cards can be quite large, making multiple partitions
desirable, and they can be used in multiple platforms, so they may have formats other
than HFS. For those and other reasons having to do with the way the Mac OS works, the
ATA disk driver uses the hard disk storage model for PC card drives.

The hard disk model in the Mac OS assumes that the media is fixed, that is, not ejectable.
The Disk Eject option in the Special menu of the Finder is disabled for fixed media, but
the driver can still request that an eject call be given when a volume is unmounted from
the desktop (that is, when its icon is dragged to the trash). The driver can use this eject
call to eject the PC card drive when the last volume on the drive has been unmounted.

Having only the single eject call is a problem for PC card drives that have removable
media because there is no way to distinguish between ejecting the media and ejecting the
drive. That being the case, the ATA disk driver in the Macintosh PowerBook 5300
computer does not support ejection of removable media in PC card drives. It supports
drives such as hard disks if the media is inserted before the drive is installed in the
PCMCIA socket.

Note

The hard disk model does not permit a single drive copy. This lack
should only be noticeable with single-socket systems or with a single
Type III drive in a stacked Type II socket configuration. O

The PC card drive media may contain one or more individual pile system partitions
(volumes) displayed as icons on the desktop. The ATA disk driver mounts the volumes
automatically when the PC card is inserted into a socket.

The ATA disk driver in the Macintosh PowerBook 5300 supports both partitioned and
nonpartitioned media. Partitioned media must contain a Macintosh Partition Map or the
driver treats it as nonpartitioned. The driver searches the partition map and posts disk
inserted events for all HFS, ProDOS, and other valid file system partitions it finds. If
there are no valid file system partitions in the partition map or if the partition map itself
does not exist, the disk driver posts a disk inserted event for the entire media as a single
partition of unknown system type. The HFS file system and installed foreign file systems
such as PC Exchange can then inspect the media to determine whether it is formatted.

Power management for PC card drives is similar to that for the internal drive, which
uses an internal spindown timer to reduce power to the drive after a period of inactivity.
Instead of removing power to the drive, the driver’s spindown manager issues low
power commands to the drive. This approach provides power conservation without
incurring the performance slowdown associated with turning the drive on and off.

Introduction to the ATA Software



CHAPTER 8

Software for ATA Devices

The driver maintains independent spindown timers for each PC card drive, allowing
it to provide maximum power conservation with one or more drives is inactive. The
spindown time, which can be set from the PowerBook control panel, is the same for
all drives.

Control panels and control strip modules currently provide manual control of spindown
for the internal drive by means of calls to the Power Manager. That approach doesn’t
work for the PC card drives. Instead, the ATA disk driver provides a new control
function (Set Power Mbde) and a new status function (Get Power Mode) that software
can use to provide manual control of spindown.

Drives in the Expansion Bay

The ATA disk driver treats drives installed in the expansion bay the same as PC card
drives except that drives in the expansion bay cannot be power ejected and the media
icon on the desktop is the generic hard disk icon.

ATA Manager

The ATA Manager manages the ATA controller and its protocol. It provides data
transport services between ATA devices and the system, directing commands to the
appropriate device and handling interrupts from the devices.

The ATA Manager schedules I/O requests from the ATA hard disk driver, the operating
system, and applications. The ATA Manager can handle both synchronous and asynchro-
nous requests. When making asynchronous requests, the calling program must provide a
completion routine.

The ATA Manager’s internal processing of requests can be either by polling or by
interrupts. When it is polling, the ATA Manager continually monitors for the next state
of the protocol by looping. When it is interrupt-driven, the ATA Manager is notified of
the next protocol state by an interrupt. The ATA Manager determines which way to
process each request as it is received; if interrupts are disabled, it processes the request
by polling.

Note

The ATA Manager does not provide an access mechanism for tuples on
the PCMCIA device. Any client can request tuple information from the
Card Services software described in Chapter 9, “PC Card Services.” O

The functions and data structures of the ATA Manager are described in “ATA Manager
Reference” beginning on page 135.

Introduction to the ATA Software 119



CHAPTER 8

Software for ATA Devices

ATA Disk Driver Reference

This section describes the routines provided by the ATA disk driver. The information in
this section assumes that you are already familiar with how to use device driver routines
on the Macintosh computer. If you are not familiar with Macintosh device drivers, refer
to the chapter “Device Manager” in Inside Macintosh: Devices for additional information.

Standard Device Routines

The ATA disk driver provides the standard control and status routines described in the
chapter “Device Manager” of Inside Macintosh: Devices. Those routines are described in
this section. The specific control and status functions supported in the ATA disk driver
are defined in “Control Functions” beginning on page 122 and “Status Functions”
beginning on page 130.

Note
The ATA disk driver resides in ROM and is
not opened or closed by applications. O

The Control Routine

120

The control routine sends control information to the ATA disk driver. The type of control
function to be performed is specified in csCode.

The ATA disk driver implements many of the control functions supported by the SCSI
hard disk device driver and defined in Inside Macintosh: Devices. The ATA disk driver
also implements several new ones that are defined in Designing PCI Cards and Drivers for
Power Macintosh Computers. The control functions are listed in Table 8-1 and described in
“Control Functions” beginning on page 122.

Table 8-1 Control functions
Value of
csCode Definition
5 Verify media
6 Format media
7 Eject drive
17 Enable or disable physical I/ O access
21 Get drive icon
22 Get media icon

continued

ATA Disk Driver Reference



CHAPTER

8

Software for ATA Devices
Table 8-1 Control functions (continued)
Value of
csCode Definition
23 Drive information
44 Set startup partition
45 Set partition mounting
46 Set partition write protect
48 Clear partition mounting
49 Clear partition write protection
50 Register partition
51 Add a new drive to the drive queue
60 Mount volume
65 Driver-specific need-time code (system task time)
70 Power-mode status management control
RESULT CODES
noErr Successful completion, no error occurred
control Err Unimplemented control call; could not complete
requested operation
nsDrvErr No such drive installed

The Status Routine

The status routine returns status information about the ATA disk driver. The type of
information returned is specified in the csCode field and the information itself is
pointed to by the csPar anPt r field.

The ATA disk driver implements many of the status functions supported by the SCSI
hard disk device driver and defined in Inside Macintosh: Devices. The ATA disk driver
also implements several new ones that are defined in Designing PCI Cards and Drivers for
Power Macintosh Computers. The status functions are listed in Table 8-2 and described in
“Status Functions” beginning on page 130.

ATA Disk Driver Reference 121



CHAPTER 8

Software for ATA Devices

Table 8-2 Status fun

ctions

Value of
csCode Definition

8
43
44
45
46
51
70

RESULT CODES
noErr

Return drive status information

Return driver Gestalt information

Return pa

Return pa

rtition boot status

rtition mount status

Return partition write protect status

Return partition information

Power mode status information

stat uskrr

nsDr vErr

Control Functions

Successful completion, no error occurred
Unimplemented status call; could not complete
requested operation

No such drive installed

The control routine in the ATA disk driver supports a standard set of control functions.
The functions are used for control, status, and power management.

In the definitions that follow, an arrow preceding a parameter indicates whether the
parameter is an input parameter, an output parameter, or both.

Arrow

—
—

>

verify

Meaning
Input
Output
Both

The ver i f y function requests a read verification of the data on the ATA hard drive
media. This function performs no operation and returns noEr r if the logical drive
number is valid.

Parameter block

—

csCode

i oVRef Num
csPar ani ]
i oResul t

122 ATA Disk Driver Reference

A value of 5.

The logical drive number.
None defined.

See result codes.



CHAPTER 8

Software for ATA Devices

RESULT CODES
NoErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

format
Because ATA hard drives are low-level formatted at the factory, this function does not
perform any operation. The driver returns noEr r if the logical drive number is valid.
Parameter block
- csCode A value of 6.
- i oVRef Num The logical drive number.
- csPar ani ] None defined.
- i oResul t See result codes.

RESULT CODES
noErr Successful completion, no error occurred.
nsDrvErr The specified logical drive number does not exist.

eject
The ej ect function notifies the driver when a volume is no longer required by the file
system. The driver performs no action unless the drive itself is ejectable (for example, a
PC card drive). If the drive is ejectable and there is no other mounted volume for the
drive, then the driver initiates the eject operation. When the driver is notified that the
drive has been removed from the bus, the driver removes all associated logical drives
from the drive queue and updates its internal records.
Parameter block
- csCode Avalue of 7.
- i oVRef Num The logical drive number.
- csPar ani ] None defined.
- i oResul t See result codes.

RESULT CODES
NoErr Successful completion, no error occurred
nsDr vErr The specified logical drive number does not exist
of fLi nErr The specified drive is not on the bus

ATA Disk Driver Reference 123



CHAPTER 8

Software for ATA Devices

get drive icon

The get drive i con function returns a pointer to the device icon and the device name
string to be displayed on the desktop when the media is initialized. If no physical icon is
available the function returns the media icon. The iconis an' | CN#' resource and varies
with the system. The device name string is in Pascal format.

Parameter block

N csCode A value of 21.
- i oVRef Num The logical drive number.
- csPar ani ] None defined.
- csPar anf 0-1] Pointer to the drive icon and name string.
- i oResul t See result codes.
RESULT CODES
noErr Successful completion, no error occurred
nsDr vErr The specified logical drive number does not exist

get media icon

RESULT CODES

124

The get nedi a i con function returns a pointer to the media icon and the device name
string to be displayed on the desktop for an HFS volume and in the Get Info command
of the Finder. The iconis an' | CN#' resource and varies with the type of drive or media.
The device name string is in Pascal format.

Parameter block

- csCode A value of 22.

- i oVRef Num The logical drive number.

- csParani] None defined.

- csPar anf 0-1] Addpress of drive icon and name string
(information is in | CN# format).

- i oResul t See result codes.

noErr Successful completion, no error occurred

nsDr vErr The specified logical drive number does not exist

ATA Disk Driver Reference



CHAPTER 8

Software for ATA Devices

get drive information

RESULT CODES

The get drive information function returns information about the specified drive
as defined on page 470 of Inside Macintosh, Volume V.

Note
This information is not in Inside Macintosh: Devices. O

Because ATA devices are not designated, all drives are designated as unspecified. Also,
all drives are specified as SCSI because the only other option is IWM, which applies only
to certain floppy disk drives. The internal ATA drive is specified as primary and all
others as secondary. Drives on PC cards and in the expansion bay are specified as
removable (meaning the drive itself, not the media).

Parameter block

- csCode A value of 23.

- i oVRef Num The logical drive number.

- csPar ani ] None defined.

- csPar anf 0-1] Drive information value (long).

$0601 = primary, fixed, SCSI, internal.
$0201 = primary, removable, SCSI, internal.

- i oResul t See result codes.
NoErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

set startup partition

Theset startup partition function sets the specified partition to be the startup
partition. The partition is specified either by its logical drive or by its block address on
the media. The current startup partition is cleared. A result code of control Err is
returned if the partition does not have a partition map entry on the media or if the
partition could not be set to be the startup partition.

Parameter block

- csCode A value of 44.
o i oVRef Num The logical drive number, or
0 if using the partition’s block address.
- csPar anf 0-1] The partition’s block address (long) if i 0VRef Numis 0.
- i oResul t See result codes.

ATA Disk Driver Reference 125



CHAPTER 8

Software for ATA Devices
RESULT CODES
NnoErr Successful completion, no error occurred
control Err Unimplemented control call; could not complete
requested operation
nsDrvErr The specified logical drive number does not exist

set partition mounting

Theset partition mounting function enables the specified partition to be
mounted. The partition is specified either by its logical drive or by its block address on
the media. A result code of cont r ol Err is returned if the partition does not have a
partition map entry on the media or if the partition could not be enabled to be mounted.

Parameter block

- csCode A value of 45.
- i oVRef Num The logical drive number, or
0 if using the partition’s block address.
- csPar anf 0-1] The partition’s block address (long) if i oVRef Numis 0.
- i oResul t See result codes.
RESULT CODES
NoErr Successful completion, no error occurred
control Err Unimplemented control call; could not complete
requested operation
nsDr vErr The specified logical drive number does not exist

set partition write protect

Theset partition wite protect function sets the specified partition to be
(software) write protected. The partition is specified either by its logical drive or by its
block address on the media. A result code of cont r ol Err is returned if the partition

does not have a partition map entry on the media or if the partition could not be set to be
write protected.

Parameter block

- csCode A value of 46.
- i oVRef Num The logical drive number, or
0 if using the partition’s block address.
- csPar anf 0-1] The partition’s block address (long) if i oVRef Numis 0.
- i oResul t See result codes.

126 ATA Disk Driver Reference



CHAPTER 8

Software for ATA Devices
RESULT CODES
NnoErr Successful completion, no error occurred
control Err Unimplemented control call; could not complete
requested operation
nsDrvErr The specified logical drive number does not exist

clear partition mounting

Thecl ear partition nounting function prevents the specified partition from
being mounted. The partition is specified either by its logical drive or by its block
address on the media. A result code of cont r ol Err is returned if the partition does

not have a partition map entry on the media or if the partition could not be set so as
not to be mounted.

Parameter block

- csCode A value of 48.
. i oVRef Num The logical drive number, or
0 if using the partition’s block address.
- csPar anf 0-1] The partition’s block address (long) if i oVRef Numis 0.
- i oResul t See result codes.
RESULT CODES
noErr Successful completion, no error occurred
control Err Unimplemented control call; could not complete
requested operation
nsDrvErr The specified logical drive number does not exist

clear partition write protect

Thecl ear partition wite protect function disables the (software) write
protection on the specified partition. The partition is specified either by its logical drive
or by its block address on the media. A result code of cont r ol Err is returned if the

partition does not have a partition map entry on the media or if write protection could
not be disabled.

Parameter block

- csCode A value of 49.
. i oVRef Num The logical drive number, or
0 if using the partition’s block address.
- csPar anf 0-1] The partition’s block address (long) if i oVRef Numis 0.
- i oResul t See result codes.

ATA Disk Driver Reference 127



RESULT CODES

CHAPTER 8

Software for ATA Devices

NoErr Successful completion, no error occurred

control Err Unimplemented control call; could not complete
requested operation

nsDrvErr The specified logical drive number does not exist

register partition

RESULT CODES

get a drive

Theregi ster partition function supports PC Exchange. It requests the driver to
redefine the starting block offset and capacity of an existing partition.

A pointer to the drive queue element is passed in along with the new physical offset and
capacity. The pointer has the following form:

struct {
DrvCEl Pte t heDri ve; /1 Partition to be registered
| ong phyStart; /1 New start offset
| ong phySi ze; /1 New capacity (bl ocks)
}
Parameter block
5 csCode A value of 50.
5 i oVRef Num The logical drive number.
S csPar anf 0-1] Pointer to new driver information.
- i oResul t See result codes.
noErr Successful completion, no error occurred.
nsDrvErr The specified logical drive number does not exist.

128

The get a dri ve function supports PC Exchange. It requests the driver to create a new
logical drive (partition) in the System Drive Queue. A pointer to the Dr vQEI Pt r

variable is passed in; this variable contains the pointer to a valid partition on the
physical drive to which the new partition is to be added. Upon completion, the function
returns the new Dr vQEI Pt r in the variable. The Dr vQEl Pt r variable is defined as
follows:

DrvQEl Ptr *theDrive; //Pointer to existing partition

ATA Disk Driver Reference



C

HAPTER 8

Software for ATA Devices

Parameter block

RESULT CODES

csCode

i oVRef Num
csPar ani ]
csPar ani ]
i oResul t

noErr
nsDr vErr

mount volume

Avalue of 51.

The logical drive number.
Pointer to existing partition.
Pointer to new partition.
See result codes.

Successful completion, no error occurred
The specified logical drive number does not exist

The mount vol une function instructs the driver to post a disk inserted event for the
specified partition. The partition is specified either by its logical drive or by its block
address on the media.

Parameter block

—

—

RESULT CODES

csCode
i oVRef Num

csPar anf 0-1]
i oResul t

noErr
control Err

nsDrvErr

set power mode

A value of 48.
The logical drive number, or
0 if using the partition’s block address.

The partition’s block address (long) if i 0VRef Numis 0.

See result codes.

Successful completion, no error occurred
Unimplemented control call; could not complete
requested operation

The specified logical drive number does not exist

The set power npde function changes the drive’s power mode to one of four modes:
active, standby, idle, or sleep. It can be used to reduce drive power consumption and
decrease system noise levels.

IMPORTANT

Although the power modes have the same names as the ones in the
ATA /1DE specification, they do not have the same meanings. a

= Active: The fully operational state with typical power consumption.

= Standby: The state with minimal power savings. The device can return to the active
state in less than 5 seconds.

ATA Disk Driver Reference

129



CHAPTER 8

Software for ATA Devices

= Idle: The state with moderate power savings. The device can return to the active state

within 15 seconds.

= Sleep: The state with minimum power consumption. The device can return to the
active state within 30 seconds.

Parameter block

5 csCode
= i oVRef Num
- csPar anf 0]

- i oResul t
RESULT CODES

noErr

nsDrvErr

Status Functions

A value of 70.

The logical drive number.

The most significant byte contains one of the
following codes:

0 = enable the active mode

1 = enable the standby mode

2 = enable the idle mode

3 = enable the sleep mode

(least significant byte = don’t care)

See result codes.

Successful completion, no error occurred
The specified logical drive number does not exist

The Status routine in the ATA disk driver supports a standard set of status functions.
These functions are used to obtain information about a partition (volume) in an ATA

hard disk drive.

drive status

The dri ve st at us function returns the same type of information that disk drivers are
required to return for the status routine, as described on page 215 of Inside Macintosh,

Volume II.

Note

This information is not in Inside Macintosh: Devices. O

Parameter block

5 csCode

5 i oVRef Num
- csParani]
- i oResul t

130 ATA Disk Driver Reference

A value of 8.

The logical drive number.
Not used.

See result codes.



CHAPTER 8

Software for ATA Devices

RESULT CODES
NnoErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

driver gestalt

The dri ver gestalt function provides the application with information about the
ATA hard disk driver and the attached device. Several calls are supported under this
function. A Gestalt selector is used to specify a particular call.

The Dri ver Gest al t Par amdata type defines the ATA driver gestalt parameter block:

struct DriverGestaltParam

{
at aPBHdr /1 See definition on page 136
Sl nt 16 i oVRef Num /1 refNum of device
SInt 16 csCode; /1l Driver Gestalt code
OSType driverGestaltSelector; // GCestalt selector
driverGestaltlnfo driverGestaltResponse; // Returned result

1

typedef struct DriverCestaltParam Driver Gestal t Param
The fields dri ver Gest al t Sel ect or and dri ver Gest al t Response are 32-bit fields.

Parameter block

- csCode A value of 43.

- i oVRef Num The logical drive number.

- driverGestaltSel ector Gestalt function selector. This is a 32-bit
ASCII field containing one of the following
selectors:

'sync' Indicates synchronous or
asynchronous driver.

' devt' Specify type of device the driver
is controlling.

intf' Specify the device interface.

' boot' Specify PRAM value to
designate this driver or device.

"vers' Specify the version number of
the driver.

"I pw’ Indicates support for
low-power mode.

" dAPI'’ Indicates support for calls to
PC Exchange.

"purg' Indicates driver can be closed
or purged.

"'wi de' Indicates large volume support.

'ejec Eject call requirements.

ATA Disk Driver Reference 131



CHAPTER 8

Software for ATA Devices
- driver Gest al t Response Return value based on the driver gestalt
selector. The possible return values are:

'sync' t r ue (1), indicating that the
driver is synchronous.

" devt' " di sk' indicating a hard disk
driver.

intf' "ide ' for an IDE (ATA) drive,
or' pcnt' fora PC card drive.

' boot' PRAM value (long).

'vers' Current version number
of the driver.

"I pwr’ true (1)

' dAPI'' true (1)

"purg' Indicates driver can be closed or
purged.

"wi de' true (1)

'ejec’ Eject call requirements (long):
bit 0: if set, don’t issue eject call
on Restart.
bit 1: if set, don’t issue eject call
on Shutdown.

- i oResul t See result codes.
RESULT CODES
noErr Successful completion, no error occurred
nsDr vErr The specified logical drive number does not exist
stat uskrr Unknown selector was specified
get boot partition

RESULT CODES

132

The get boot partition function returns 1 if the specified partition is the boot
partition, 0 if it is not. The partition is specified either by its associated logical drive or
the partition’s block address on the media.

Parameter block

- csCode Avalue of 44.
- i oVRef Num The logical drive number or
0 if using the partition’s block address.
- csParan ] The partition’s block address (long) if
i oVRef Num= 0.
- i oResul t See result codes.
noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

ATA Disk Driver Reference



CHAPTER 8

Software for ATA Devices

get partition mount status

RESULT CODES

Theget partition nmount status function returns 1 if the specified partition has
mounting enabled, 0 if not enabled or if the partition does not have a partition map entry
on the media. The partition is specified either by its associate logical drive or the
partition’s block address on the media.

Parameter block

- csCode Avalue of 45.
- i oVRef Num The logical drive number or
0 if using the partition’s block address.
- csParan ] The partition’s block address (long) if
i oVRef Num= 0.
- i oResul t See result codes.
noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

get partition write protect status

RESULT CODES

Theget partition wite protect status function returns 1 if the specified
partition is write protected (software), 0 if it is not. The partition is specified either by its
associate logical drive or the partition’s block address on the media.

Parameter block

- csCode A value of 46.
- i oVRef Num The logical drive number or
0 if using the partition’s block address.
- csParanf ] The partition’s block address (long)
ifi oVRef Num=0.
- i oResul t See result codes.
noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

ATA Disk Driver Reference 133



CHAPTER 8

Software for ATA Devices

get partition information

The get partition information function supports PC Exchange. It requests the
driver to return information about the partition specified by i oVRef Num

The csPar amfield contains a pointer to the device information element for the return
information. The pointer has the following form:

struct ({
Devi cel dent SCSI | b /!l Device ID

/1 Physical start of partition
unsi gned | ong physPartitionlLoc;
/] Partition identifier
unsi gned | ong partitionNunber;
} partlinfoRec, *partlnfoRecPtr;

Parameter block

- csCode A value of 51.
- i oVRef Num The logical drive number.
- csPar ani ] The information data structure.
- i oResul t See result codes.
RESULT CODES
noErr Successful completion, no error occurred
nsDr vErr The specified logical drive number does not exist

get power mode

The get power node function returns the current power mode state of the internal
hard disk. The power modes are defined on page 129.

Parameter block

- csCode A value of 70.

- i oVRef Num The logical drive number.

- csParanf] None defined.

- csPar anf | The most significant byte contains one of the

following codes:

0 = active mode

1 = standby mode

2 =idle mode

3 = sleep mode

(least significant byte = don’t care)
- i oResul t See result codes.

134 ATA Disk Driver Reference



CHAPTER 8

Software for ATA Devices

RESULT CODES
NoErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist
stat uskrr The power management information couldn’t be

returned due to a manager error

ATA Manager Reference

This section defines the data structures and functions that are specific to the
ATA Manager.

The ATA Manager has a single entry point through the trap $AAF1. Functions are
dispatched within the manager based on the manager function code defined in the
parameter block header.

When making calls to the ATA Manager you have to pass and retrieve parameter
information through a parameter block. The size and content of the parameter

block depends on the function being called. However, all calls to the ATA Manager
have a common parameter block header structure. The structure of the at aPBHdr
parameter block is common to all ATA parameter block data types. Several additional
ATA parameter block data types have been defined for the various functions of

the ATA Manager.

The ATA Parameter Block

This section defines the fields common to all ATA Manager functions that use the ATA
parameter block. The fields used for specific functions are defined in the description of
the functions to which they apply. You use the ATA parameter block for all calls to the

ATA Manager. The at aPBHdr data type defines the ATA parameter block.

The parameter block includes a field, Myr FCode, in which you specify the function
selector for the particular function to be executed; you must specify a value for this field.
Each ATA function may use different fields of the ATA parameter block for parameters
specific to that function.

An arrow preceding the comment indicates whether the parameter is an input parameter,
an output parameter, or both.

Arrow Meaning
- Input

- Output
- Both

ATA Manager Reference 135



136

CHAPTER 8

Software for ATA Devices

The ATA parameter block header structure is defined as follows:

struct at aPBHdr

Ptr
SInt16
unt8
U nt8
Ptr
ProchPtr
OSEr r
uint8
unt8
U nti16
SInt 16
Ul nt 32
Ul nt 32
Ptr
Ptr

U nt16
SInt 16
Si nt 32

s

at alLi nk;

at aQlype;

at aPBVer s;

hdr Reser ved;
hdr Reserved?2;
at aConpl eti on;
ataResul t;

Myr FCode;

at al OSpeed,;

at aFl ags;

hdr Reser ved3;
devi cel D

Ti meQut ;
ataPtr1i;
ataPtr 2;

at aSt at e;

i nt Semaphor es;
hdr Reser ved4;

/1 ATA Manager paraneter bl ock
header structure

/'l Reserved

/1l Type byte

/1 - Paraneter block version nunber

/'l Reserved

/'l Reserved

/1 Conpletion routine

11
/1
/1
11
/1
/1
11
/1
/11
11
/11
11

~ Returned result

- Manager function code
- I/Otimng class

- Control options
Reserved

- Device ID

- Transaction tineout val ue
Cient storage Ptr 1
Cient storage Ptr 2
Reserved, init to O

i nternal senaphores
Reserved

typedef struct ataPBHdr ataPBHdr;

Field description
at aLi nk

at aQlype

at aPBVer s

hdr Reser ved
hdr Reser ved2

ataConpl eti o

S

This field is reserved for use by the ATA Manager. It is used
internally for queuing I/O requests. It must be initialized to 0
before calling the ATA Manager.

This field is the queue type byte. It should be initialized to 0 before
calling the ATA Manager.

This field contains the parameter block version number. Values of 1
and 2 are the only values currently supported. Any other value
results in a par ankr r. For individual differences between versions
1 and 2, refer to the individual functions.

Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

n  This field contains the completion routine pointer to be called upon
completion of the request. When this field is set to 0, it indicates
a synchronous I/O request; a non-zero value indicates an
asynchronous I/O request. The routine this field points to is called

ATA Manager Reference



CHAPTER 8

Software for ATA Devices

at aResul t

Mgr FCode

at al OSpeed

at aFl ags

hdr Reser ved3

devi cel D

Ti meCut

when the request has finished without error, or when the request
has terminated due to an error. This field is valid for any manager
request. The completion routine is called as follows:

pascal void (*RoutinePtr) (atal OPB *)

The completion routine is called with the associated manager
parameter block in the stack.

Completion status. This field is returned by the ATA Manager after
the request has been completed. Refer to Table 8-13 on page 175 for
a list of the possible error codes returned in this field.

This field is the function selector for the ATA Manager. The
functions are defined in Table 8-4 on page 141. An invalid code in
this field results in an ATAFuncNot Suppor t ed error.

This field specifies the I/O cycle timing requirement of the specified
ATA drive. This field should contain word 51 of the identify drive
data. Currently values 0 through 3 are supported, as defined in the
ATA /IDE specification. See the ATA /IDE specification for the
definitions of the timing values. If a timing value higher than one
supported is specified, the manager operates in the fastest timing
mode supported by the manager. Until the timing value is
determined by examining the identify drive data returned by the
ATA | denti fy function, the client should request operations using
the slowest mode (mode 0).

This 16-bit field contains control settings that indicate special
handling of the requested function. The control bits are defined in
Table 8-3 on page 138.

Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

A short word that uniquely identifies an ATA device. The field
consists of the following structure:

struct deviceldentification

U ntl6 Reserved; [// The upper word is reserved
U nt16 deviceNum // Consists of device ID and bus ID

t ypedef struct deviceldentification

devi cel dentification

Bit 15 of the devi ceNumfield indicates master (=0) /slave (=1)
selection. Bits 14 through 0 contain the bus ID (for example,

$0 = master unit of bus 0, $80 = slave unit of bus 0). The present
implementation allows only one device in the master configuration.
This value is always 0.

This field specifies the transaction timeout value in milliseconds. A
value of 0 disables the transaction timeout detection.

ATA Manager Reference 137



CHAPTER 8

Software for ATA Devices

ataPtrl This pointer field is available for application use. It is not modified
by the ATA Manager.

ataPtr2 This pointer field is available for application use. It is not modified
by the ATA Manager.

ataState This field is used by the ATA Manager to keep track of the current

bus state. This field must contain 0 when calling the manager.

i nt Semaphores  This field is used internally by the ATA Manager. It should be set to
0 before calling the ATA Manager.

hdr Reser ved4 Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

Table 8-3 describes the functions of the control bits in the at aFl ags field.

Table 8-3 Control bits in the at aFl ags field

Name Bit Definition

LED Enabl e 0 Some systems are equipped with an activity LED
controlled by software. Setting this bit to 1 indicates
that the LED should be turned on for this transaction.
The LED is automatically turned off at the end of the
transaction. Setting the bit to 0 indicates that the LED
should not be turned on for this transaction. This bit
has no effect in systems with no activity LED.

— 1-2 Reserved.

RegUpdat e 3 When set to 1 this bit indicates that a set of device
registers should be reported back upon completion of
the request. This bit is valid for the ATA_Execl /O
function only. Refer to the description on page 149
for details. The following device registers are
reported back:

= Sector count register

= Sector number register
» Cylinder register(s)

= SDH register

continued

138 ATA Manager Reference



CHAPTER 8

Software for ATA Devices

Table 8-3 Control bits in the at aFl ags field (continued)

Name Bit Definition

Pr ot ocol Type 4-5 These two bits specify the type of command. The
following command types are defined:

$0 = standard ATA
$1 = PCMCIA/ATA
$2 = ATAPI

These bits are used to indicate special protocol
handling.

For ATA command values of $A0 or $A1, this field
must contain the ATAPI setting. For all other ATA
commands, this field must contain the standard ATA

setting.

— 6-7 Reserved.

SGType 89 This 2-bit field specifies the type of scatter gather list
passed in. This field is only valid for read / write
operations.

The following types are defined:
00 = scatter gather disabled

01 = scatter gather type I enabled
10 = reserved

11 = reserved

When set to 0, this field indicates that the i oBuf f er
field contains the host buffer address for this transfer,
and the i oReqCount field contains the byte transfer
count.

When set to 1, this field indicates that the i oBuf f er
and the i oReqCount fields of the parameter block for
this request point to a host scatter gather list and the
number of scatter gather entries in the list, respectively.

The format of the scatter gather list is a series of the
following structure definition:

struct 1 0OBl ock /1l SG entry structure

Unt8* ioBuffer; // - Data buffer pointer
U nt32 ioReqCount; // - Byte count

1
t ypedef struct 10Bl ock | OBl ock;

continued

ATA Manager Reference 139



140

CHAPTER 8

Software for ATA Devices

Table 8-3 Control bits in the at aFl ags field (continued)

Name

QLockOnError

| rmedi at e

ATAiI oDi recti on

Byt eSwap

ATA Manager Reference

Bit
10

11

12,13

14
15

Definition

When set to 0, this bit indicates that an error during
the transaction should not freeze the I/O queue for
the device. When an error occurs on an I/O request
with this bit set to 0, the next queued request is
processed without interruption. If an error occurs
when this bit is set, however, any subsequent request
without the Tmmediate' bit set is held off until an 'T/O
Queue Release' command is received. This allows the
ATA Manager to preserve the error state so that a
client can examine it.

When this bit is set, only those requests with the
Tmmediate' bit set are processed. Use this bit with
caution; it can cause the system to hang if not handled
correctly.

When this bit is set to 1, it indicates that the request
must be executed as soon as possible and the status of
the request must be returned. It forces the request to
the head of the I/O queue for immediate execution.
When this bit is set to 0, the request is queued in the
order it is received and is executed according to

that order.

This bit field specifies the direction of data transfer. Bit
values are binary and defined as follows:

00 = no data transfer

10 = data direction in (read)
01 = data direction out (write)
11 = reserved

Note: These bits do not need to be set to reflect the
direction of the command packet bytes.

Reserved.

When set to 1, this bit indicates that every byte of data
prior to transmission on write operations and upon
reception on read operations is to be swapped. When
this bit is set to 0, it forces bytes to go out in the
LSB-MSB format that is compatible with IBM clones.
Typically, this bit should be set to 0. Setting this bit has
performance implications because the byte swap is
performed by the software. Use this bit with caution.

Caution: Setting this bit to 1 causes the bytes in ATAPI
command packets to be swapped.



CHAPTER 8

Software for ATA Devices

Functions
This section describes the ATA Manager functions that are used to manage and perform
data transfers. Each function is requested through a parameter block specific to that
service. A request for an ATA function is specified by a function code within the
parameter block. The entry point for all the functions is the same.
The function names and ATA Manager function codes are shown in Table 8-4.
Table 8-4 ATA Manager functions
Function name Code Description
ATA Abort $10 Terminate the command.
ATA Busl nquiry $03 Get bus information.
ATA _DrvrDeregi ster $87 Deregister the driver reference number.
ATA DrvrRegi ster $85 Register the driver reference number.
ATA Execl O $01 Execute ATAT/O.
ATA EjectDrive $89 Auto-eject the drive.
ATA_Fi ndRef Num $86 Look up the driver reference number.
ATA Get DevConfi g $8A Get the device configuration.
ATA Get Locati onl con $8C Get the device location icon and string.
ATA Identify $13 Get the drive identification data.
ATA _Myr I nquiry $90 Get information about the ATA Manager
and the system configuration.
ATA Mbodi f yDr vr Event Mask $88 Modify the driver event mask.
ATA_NOP $00 Perform no operation.
ATA QRel ease $04 Release the I/O queue.
ATA RegAccess $12 Obtain access to an ATA device register.
ATA Reset Bus $11 Reset the ATA bus.
ATA Set DevConfi g $8B Set the device configuration.
ATA_Abort

You can use the ATA_Abort function to terminate a queued I/O request. This function
applies to asynchronous I/O requests only. The ATA_Abor t function searches through
the I/O queue associated with the selected device and aborts the matching I/O request.
The current implementation does not abort if the found request is in progress. If the
specified I/ O request is not found or has started processing, an ATAUnabl eToAbor t
status is returned. If aborted, the ATAReqAbor t ed status is returned.

ATA Manager Reference 141



RESULT CODES

CHAPTER 8

Software for ATA Devices

It is up to the application that called the ATA_Abort function to clean up the aborted
request. Clean up includes parameter block deallocation and O/S reporting.

The manager function code for the ATA_Abor t function is $10.

The parameter block associated with this function is defined as follows:

struct ATA Abort /1 ATA abort structure
{
at aPBHdr /1 See definition on page 136
ATA PB* Abort PB /1 Address of the paraneter
/1 block to be aborted
U nt16 Reserved /'l Reserved
b

typedef struct ATA Abort ATA Abort;

Field descriptions

at aPBHdr See the definition of the at aPBHdr parameter block on page 136.

Abor t PB This field contains the address of the I/O parameter block to
be aborted.

Reser ved This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

noErr Successful completion, no error occurred

nsDrvErr Specified device is not present

ATAMgrNot I nitialized ATA Manager not initialized

ATARegAbort ed The request was aborted

ATAUnabl eToAbor t Request to abort couldn’t be honored

ATA_BusInquiry

142

You can use the ATA_Bus| nqui ry function to gets information about a specific ATA
bus. This function is provided for possible future expansion of the Macintosh ATA
architecture.

The manager function code for the at aBus| nqui ry function is $03.

The parameter block associated with this function is defined below:

struct ATA Buslnquiry /1 ATA bus inquiry structure
{
at aPBHdr /1 See definition on page 136
Ul nt 16 at aEngi neCount ; /1 ~ TBD; zero for now
U nt16 at aReserved; /!l Reserved
Ul nt 32 at abat aTypes; /1 ~ TBD; zero for now

ATA Manager Reference



CHAPTER 8

Software for ATA Devices
U nt16 at al OpbSi ze;
Ul nt16 at aMax| QpbSi ze;
Ul nt 32 at aFeat ur eFl ags;
U nt8 at aVer si onNum
unt8 at aHBAI nqui ry;
Ul nt 16 at aReserved?;
Ul nt 32 at aHBAPri vPtr;
Ul nt 32 at aHBAPri vSi ze;
Ul nt 32 at aAsyncFl ags;
Ul nt 32 at aReserved3[ 4] ;
Ul nt 32 at aReser ved4;
SInt8 at aReserved5[ 16] ;
SInt8 at aHBAVendor [ 16] ;
SInt8 ataContrl Fam | y[ 16];
SInt8 ataContrl Type[ 16] ;
SInt8 at aXPTversi on[ 4] ;
SInt8 at aReserved6[ 4] ;
SInt8 at aHBAver si on[ 4] ;
unt8 at aHBAsI ot Type;
Uunt8 at aHBAsI| ot Num
U nt16 at aReserved7;
Ul nt 32 at aReser veds;

b

/1
/1
/1
/1
/1
I
/1
/1
11
11
11
11
11
11
11
11
11
11
11
11
11
11

~ Size of ATA1/O PB

~ TBD; zero for now

~ TBD

~ HBA Version nunber

~ TBD; zero for now
Reserved

~ Ptr to HBA private data
~ Size of HBA private data
~ Capability for callback
Reserved

Reserved

TBD

~ HBA Vendor ID

~ Family of ATA controller
~ Controller nodel nunber
« Version nunber of XPT
Reserved

~ Version nunber of HBA
~ Type of slot

~ Slot nunber of the HBA
Reserved

Reserved

typedef struct ATA Buslnquiry ATA Buslnquiry;

Field descriptions
at aPBHdr

at aEngi neCount
at aReserved

at aDat aTypes

Currently set to 0.

See the definition of the at aPBHdr on page 136.

Reserved. All reserved fields are set to 0.
Returns a bit map of data types supported by this host bus adapter

(HBA). The data types are numbered from 0 to 30; 0 through 15 are
reserved for Apple definition and 16 through 30 are available for
vendor use. This field is currently not supported; it returns a value

of 0.
at al OpbSi ze
at aMax!| OpbSi ze

This field contains the size of the I/ O parameter block supported.
This field specifies the maximum I/O size for the HBA. This field is

currently not supported and returns 0.
at aFeat ur eFl ags This field specifies supported features. This field is not supported; it

returns a value of 0.

at aVer si onNum
returns a value of 1.
at aHBAI nqui ry  Reserved.

at aHBAPri vPt r

The version number of the HBA is returned. The current version

This field contains a pointer to the HBA's private data area. This

field is not currently supported; it contains a value of 0.

ATA Manager Reference

143



RESULT CODES

CHAPTER 8

Software for ATA Devices

at aHBAPr i vSi ze This field contains the byte size of the HBA’s private data area. This
field is currently not supported; it contains a value of 0.

at aAsyncFl ags  These flags indicate which types of asynchronous events the HBA is
capable of generating. This field is currently not supported; it
contains a value of 0.

at aHBAVendor This field contains the vendor ID of the HBA. This is an ASCII
text field.

ataContrl| Fam | y Reserved.
ataContr| Type This field identifies the specific type of ATA controller.
at aXxPTversion Reserved.

at aHBAver si on  This field specifies the version of the HBA. This field is currently
not supported; it contains a value of 0.

at aHBAs| ot Type This field specifies the type of slot. This field is currently not
supported; it contains a value of 0.

at aHBAs| ot Num  This field specifies the slot number of the HBA. This field is
currently not supported; it contains a value of 0.

noErr Successful completion, no error occurred
ATAMgrNot I nitialized ATA Manager not initialized

ATA_DrvrRegister

144

You can use the ATA_Dr vr Regi st er function to register the driver and an event
handler for the drive whose reference number is passed in. Any active driver that
controls one or more devices through the ATA Manager must register with the manager
to insure proper operation and notification of events. The ATA_Dr vr Regi st er function
should be called only at non-interrupt time.

The first driver to register for the device gets the device. All subsequent registrations for
the device are rejected. The registration mechanism is used for manager to notify the
appropriate driver when events occur. Refer to Section 6 of this document for possible
events and their definition.

The manager function code for the ATA_Dr vr Regi st er function is $85.

There are two versions of the data structure for registration. The version is identified by
the at aPBVer s field in the parameter block.

Version two allows a driver to register as a Notify-all driver. Registration of a Notify-all
driver is signalled by a value of —1 in the devicelD field of the header and the bit 0 of
'drvrFlags' set to 0. Notify-all driver registration is used if notification of all device
insertions is desired. Registered default drivers will be called if no media driver is found
on the media. Typically, an INIT driver registers as a Notify-all driver. The single driver
may register as a Notify-all driver, then later register for one or more devices on the bus.

ATA Manager Reference



CHAPTER 8

Software for ATA Devices

Note

To insure proper operation, all PCMCIA / ATA and Notify-all
device drivers must register using version two, which provides
event handling capability.

Two versions of the parameter block associated with this function are defined below:

/1l Version 1 (ataPBVers = 1)
st ruct at abDr vr Regi st er /1 Parameter block structure
/1 for ataPBVers = 1

{

at aPBHdr /| Header informtion

SInt16 dr vr Ref Num /1 - Driver reference nunber

U nt 16 Fl agReser ved; /1 Reserved -> should be zero

Ul nt16 devi ceNext | D /1 Not used

SInt16 Reserved|[ 21] ; /1l Reserved for future expansion
i

typedef struct ataDrvrRegister ataDrvrRegister;

/1 Version 2(ataPBVers = 2)
st ruct at aDr vr Regi st er /1 Paraneter block structure
/1 for ataPBVers = 2

{
at aPBHdr /1 Header infornmation
SInt 16 dr vr Ref Num /1 - Driver reference nunber
U ntl6 drvrFl ags; /[l - Driver flags; set to O
U nt 16 devi ceNext | D /1 Not used
SInt 16 Reserved; /'l Reserved; set to zero
ProcPtr ataEHandl er Ptr /1 - Event handler routine ptr
Sl nt 32 drvr Cont ext ; /1 - Value to pass in along with
/1l the event handl er
Ul nt 32 at aEvent Mask; /1 - masks of various events for
/1 the event handl er
SInt16 Reserved[ 14] ; /1l Reserved for future expansion
b

typedef struct ataDrvrRegister ataDrvrRegister;

Field descriptions
at aPBHdr See the at aPBHAr parameter block definition on page 136.

dr vr Ref Num This field specifies the driver reference number to be registered.
This value must be less than 0 to be valid. This field is a don't-care
field for registration of a Notify-all driver.

Fl agReser ved Reserved.
devi ceNext I D Not used by this function.

ATA Manager Reference 145



146

CHAPTER 8

Software for ATA Devices
Reser ved[ 21] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

at aEHandl er Pt r A pointer to driver's event handler routine. This routine will be

called whenever an event happens, and the mask bit for the
particular event is set in the at aEvent Mask field is set. The calling
convention for the event handler is as follows:

pascal SIntl16 (ataEHandl erPtr) (ATAEvent Rec*);

where the ATAEvent Rec is defined as follows:

typedef struct
{
U nt16 event Code; // - ATA event code
U ntl6 phyDrvRef; [/ - |ID associated with
/1 the event
Sl nt 32 drvrContext;// - context passed in
/1 by the driver
} ATAEvent Rec;

See “Notification of Device Events” beginning on page 168 for a list
of the ATA event codes.

drvr Cont ext A value to be passed in when the event handler is called. This value

will be loaded in the ATAEventRec before calling the event handler.

at aEvent Mask The mask defined in this field is used to indicate whether the event

handler should be called or not, based on the event. The event
handler will only be called if the mask for the event has been set(1).
If the mask is not set(0) for an event, the ATA Manager will take no
action. Table 8-5 lists the masks have been defined.

Table 8-5 Event masks

Bits Event Mask

$00 Null event

$01 Online event: a device has come on line

$02 Offline event: a device has gone off line

$03 Device removed event: a device has been removed (taken out)
$04 Reset event: a device has been reset

$05 Offline request event: a request to take the drive off line

$06 Eject request event: a request to eject the drive

$07 Configuration update event: the system configuration has changed
$08-$1F Reserved for future expansion

ATA Manager Reference



CHAPTER 8

Software for ATA Devices
RESULT CODES
NoErr Successful completion, no error occurred
nsDrvErr Specified device is not present
par anerr Parameter error detected

ATA_DrvrDeregister

You can use the ATA_Dr vr DeRegi st er function to deregister the selected drive. After
successful completion of this function, the driver reference number for the drive is set to
0, which indicates that there is no driver in control of this device.

This function should be called when the controlling device is no longer available to the
registered driver (device ejection) or the device driver is being closed down. Typically,
this call is embedded in the O ose( ) function of the driver.

The manager function code for the ATA_Dr vr DeRegi st er function is $87.

There are two versions of the data structure for registration. The version is identified by
the at aPBVer s field in the parameter block.

Two versions of the parameter block associated with this function are defined below:
/1 Version 1 (ataPBVers = 1)

struct at aDr vr Regi st er /1 Paraneter block structure
/1l for ataPBVers =1

{

at aPBHdr /'l Header information

SInt16 dr vr Ref Num /1 Not used

U nt 16 Fl agReser ved,; /'l Reserved

U nt16 devi ceNext | D; /'l Not used

SInt16 Reserved[ 21] ; /1l Reserved for future expansion
1

typedef struct ataDrvrRegister ataDrvrRegister;

/1 Version 2(ataPBVers = 2)
struct at aDr vr Regi st er /1 Paraneter block structure
/1 for ataPBVers = 2

{
at aPBHdr /'l Header information
Sl nt 16 drvr Ref Num /1l - Driver reference nunber
U nt16 drvr Fl ags; /[l - driver flags; set to O
U nt 16 devi ceNext | D /1 Not used
Sl nt 16 Reserved; /'l Reserved -> should be zero
ProcPtr ataEHandl erPtr /1l - Event handler routine ptr
Sl nt 32 drvr Cont ext ; /'l - Value to pass in along

/! with the event handl er

ATA Manager Reference 147



RESULT CODES

CHAPTER 8

Software for ATA Devices
Ul nt 32 at aEvent Mask; /!l - WMasks of various events
/[l for event handl er
SInt16 Reserved[ 14] ; /1l Reserved for future expansion
b

typedef struct ataDrvrRegi ster ataDrvrRegister;

In deregistration of a Notify-all driver, the at aEHandl er Pt r field is used to match the
entry (because the devi cel Dfield is invalid for registration and deregistration of the
Notify-all driver). If the driver is registered as both Notify-all and for a specific device,
the driver must deregister for each separately.

IMPORTANT
Note: Notify-all device drivers must deregister
using the parameter version two. a

Field descriptions

at aPBHdr See the at aPBHdr parameter block definition on page 136.

drvr Ref Num This field is not used with the deregister function.

drvrFlags No bit definition has been defined for the field. This field shall be
set to 0 in order to insure compatibility in the future.

deviceNextID Not used for this function.

Reserved Reserved. Should be set to 0

ataEHandlerPtr A pointer to driver's event handler routine. This field is only used

for Notify-all driver deregistration. This field is not used for all
other deregistration. Because this field is used to identify the correct
Notify-all driver entry, this field must be valid for Notify-all driver

deregistration.
drvrContext Not used for this function.
ataEventMask Not used for this function.
NoErr Successful completion, no error occurred
nsDr vErr Specified device is not present

ATA_EjectDrive

148

You can use the ATA_EjectDrive function to eject a device from a selected socket. You
must insure that all partitions associated with the device have been dismounted from
the desktop.

ATA Manager Reference



CHAPTER 8

Software for ATA Devices

The data structure of the function is as follows:

struct atakfj ect /1 configuration paraneter bl ock
{

at aPBHdr /'l Header information

U nt16 Reserved|[ 24] ; /'l Reserved
1

typedef struct atagject atakj ect;

Field descriptions
at aPBHdr See the at aPBHdr parameter block definition on page 136.

Reser ved[ 24] Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

RESULT CODES
noErr Successful completion, no error occurred
nsDrvErr Specified device is not present
ATA_ExeclO

You can use the ATA_Execl Ofunction to perform data I /O transfers to or from an ATA
device. Your application must provide all the parameters needed to complete the
transaction prior to calling the ATA Manager. Upon return, the parameter block contains
the result of the request.

The manager function code for the ATA_Exec| Ofunction is $01.
The parameter block associated with the ATA_Exec| Ofunction is defined below:

struct ATA Execl O /1 ATA Execl O structure
{
at aPBHdr /1 See definition on page 136
SInt8 ataStatusReg; [//  Last device status register inage
SInt8 at aErr or Reg; /1l ~ Last device error register
/1 (validif bit 0 of Status field set)
Sl nt 16 at aReser ved; /'l Reserved
Ul nt 32 Bl i ndTxSi ze; /! - Data transfer size
Ul nt 8* i oBuf fer; /! ~ Data buffer ptr

Ul nt 32 ataActual TxCnt;// ~ Actual nunber of bytes
!/l transferred
Ul nt 32 at aReserved2; // Reserved

ATA Manager Reference 149



150

CHAPTER 8

Software for ATA Devices

devi cePB RegBl ock; /1 - Device register inmages
Ul nt 8* packet COBPtr; // ATAPI packet command bl ock pointer
U ntl6 at aReserved3[6];// Reserved

1

typedef struct ATA Execl O ATA Execl G

Field descriptions
at aPBHdr See the parameter block definition on page 136.

at aSt at usReg This field contains the last device status register image. See the ATA
specification for status register bit definitions.

at aErr or Reg This field contains the last device error register image. This field is
valid only if the error bit (bit 0) of the St at us register is set. See the
ATA /IDE specification for error register bit definitions.

at aReser ved Reserved. All reserved fields are set to 0 for future compatibility.

Bl i ndTxSi ze This field specifies the maximum number of bytes that can be
transferred for each interrupt or detection of a data request. Bytes
are transferred in blind mode (no byte level handshake). Once an
interrupt or a data request condition is detected, the ATA Manager
transfers up to the number of bytes specified in the field from or to
the selected device. The typical number is 512 bytes.

i oBuf fer This field contains the host buffer address for the number of bytes
specified in the 'ioReqCount' field. Upon returning, this field is
updated to reflect data transfers. When the 'SGType' bits of the
‘ataFlags' field are set, this field points to a scatter gather list.

The scatter gather list consists of series of TOBIk' entries defined
as follows:

struct |10Bl k

{
Ul nt 8* i oBuf fer; /! ~ Data buffer ptr

Ul nt 32 i oReqCount; // o Transfer length
i
typedef struct 10Blk |0Blk;

i oReqCount This field contains the number of bytes to transfer either from or to
the buffer specified in ioBuffer. Upon returning, the ioReqCount
field is updated to reflect data transfers (0 if successful; otherwise,
the number of bytes that remained to be transferred prior to the
error condition). When the SGType bits of the ataFlags field are set,
the ioReqCount field contains the number of scatter gather entries
in the list pointed to by the ioBuffer field.

at aAct ual TxCnt This field contains the total number of bytes transferred for
this request.

at aReser ved2 This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

ATA Manager Reference



RESULT CODES

CHAPTER 8

Software for ATA

RegBl ock

packet CDBPt

at aReser ved

noErr
nsDrvErr

AT _AbortErr
AT _Recal Err

Devices

This field contains the ATA device register image structure. Values
contained in this structure are written out to the device during the
command delivery state. The caller must provide the image prior to
calling the ATA Manager. The ATA device register image structure
is defined as follows:

struct Device_PB /1 Device register inmages

{
unt8 Features;// - Features register imge
u nt8 Count ; /'l « Sector count
unt8 Sector; [// o Sector start/finish
unt8 Reserved;// Reserved
Ul nt 16 Cylinder;// « Cylinder 68000 fornmat
unt8 SDH; /1 ~ SDH register inmage
unt8 Command; // - Conmand regi ster inage

b

typedef struct Device_ PB Device PB;

For ATAPI commands, the cylinder image must contain the
preferred PIO DRQ packet size to be written out to the Cylinder
High /Low registers during the command phase.

r This field contains the packet pointer for ATAPL. The ATAPI bit of
the ProtocolType field must be set for this field to be valid. Setting
the ATAPI protocol bit also signals the Manager to initiate the
transaction without the DRDY bit set in the status register of the
device. For ATA commands, this field should contain 0 in order to
insure compatibility in the future. The packet structure for the
ATAPI command is defined as follows:

struct ATAPI CndPacket// ATAPI Comand packet structure
{

SInt 16 packet Size;// Size of conmmand packet
/1 in bytes (exclude size)
SInt16 comand[8]; // The ATAPI command packet
1
t ypedef struct ATAPI CndPacket ATAPI CndPacket ;

3[ 6] These fields are reserved. To ensure future compatibility, all
reserved fields should be set to 0.

Successful completion, no error occurred
Specified logical drive number does not exist
Command aborted bit set in error register
Track 0 not found bit set in error register

ATA Manager Reference 151



CHAPTER 8

Software for ATA Devices

AT WFItErr
AT_SeekErr

AT _UncDat aErr
AT_Cor Dat aErr
AT _BadBl KErr
AT_DMar KEr r

AT_| DNFEr r
ATABuUsY
ATAMgrNot I nitialized
ATAPBI nval i d
ATAQ.ocked
ATAReql nPr og
ATATr ansTi meQut
ATAUnknownSt at e

Write fault bit set in status register

Seek complete bit not set upon completion
Uncorrected data bit set in error register
Data corrected bit set in status register
Bad block bit set in error register

Data mark not found bit set in error register
ID not found bit set in error register
Selected device busy (BUSY bit set)

ATA Manager not initialized

Invalid device base address detected (= 0)
I/0O queue locked—cannot proceed

I/O channel in use—cannot proceed
Timeout: transaction timeout detected

Device in unknown state

ATA_FindRefNum

You can use the ATA_Fi ndRef Numfunction to determine whether a driver has been
installed for a given device. You pass in a device ID and the function returns the current
driver reference number registered for the given device. A value of 0 indicates that no
driver has been registered. The devi ceNext | Dfield contains a device ID of the next
device in the list. The end of the list is indicated with a value of $FF.

To create a list of all drivers for the attached devices, pass in $FF for devi cel D. This
causes devi ceNext | Dto be filled with the first device in the list. Each successive driver
can be found by moving the value returned in devi ceNext | Dinto devi cel Duntil the
function returns $FF in devi ceNext | D, which indicates the end of the list.

The manager function code for the ATA_Fi ndRef Num function is $86.

Two versions of the parameter block associated with this function are defined below:
/1 Version 1 (ataPBVers = 1)

struct at aDr vr Regi st er /] Parameter block structure
Il for ataPBVers =1

{

at aPBHdr /| Header information

SInt16 dr vr Ref Num /1l ~ Driver reference nunber

Ul nt 16 Fl agReser ved; /1 Reserved; set to O

U nt16 devi ceNext | D I/l < used to specify the

/1 next drive ID

SInt 16 Reserved[ 21] ; /1l Reserved for future expansion

b

typedef struct ataDrvrRegister ataDrvrRegister;

152 ATA Manager Reference



CHAPTER 8

Software for ATA Devices

/1 Version 2(ataPBVers = 2)
struct at abDrvr Regi st er [/l Parameter block structure
/1 for ataPBVers = 2

{
at aPBHdr /'l Header information
SInt16 dr vr Ref Num /1l ~ Driver reference nunber
U nt16 drvr Fl ags; /1 - Reserved; set to O
U nt16 devi ceNext | D /! < used to specify the
/1 next drive ID
Sl nt 16 Reserved; /'l Reserved -> should be zero
ProcPtr ataEHandl erPtr /Il <« An event handler routine ptr
Sl nt 32 drvr Cont ext ; I/l <« a value to pass in along with
/1 the event handl er
Ul nt 32 at aEvent Mask; /'l < current setting of the mask
/1 of events for the event handl er
SInt16 Reserved|[ 14] ; /1l Reserved for future expansion
b

typedef struct ataDrvrRegi ster ataDrvrRegister;

Field descriptions
at aPBHdr See the at aPBHdr parameter block definition on page 136.

dr vr Ref Num Upon return, this field contains the reference number for the device
specified in the devi cel Dfield of the at aPBHdr data.

FI agReser ved This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.

devi ceNext I D Upon return, this field contains the devi cel D of the next device on
the list.

Reser ved[ 21] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RESULT CODES
noErr Successful completion, no error occurred
nsDrvErr Specified device is not present

ATA_Get Device Configuration

You can use the ATA_Get DevConf i g function to get the current configuration of a
device. The configuration includes current voltage settings and access characteristics.
This function can be issued to any bus that the ATA Manager supports. However, some
fields returned may not be valid for the particular device type (for example, the voltage
settings for the internal device are invalid).

ATA Manager Reference 153



CHAPTER 8

Software for ATA Devices

The data structure for the function is as follows:

st ruct at aGet DevConfiguration// Paramneter bl ock

{
at aPBHdr /1 Header information
Sl nt 32 ConfigSetting /'l « socket configuration setting
unt8 at al OspeedMode /1l Reserved for future expansion
U nt8 Reserveds3; /1 Reserved for word alignnent
U nt 16 pcVal i d; /1l « Mask indicating which

/1 PCMCI A-uni que fields
/1 are valid, when set.
U nt 16 RWWul ti pl eCount; // Reserved for future expansion
U nt16 SectorsPerCylinder; // Reserved for future expansion

Ul nt 16 Heads; /'l Reserved for future expansion
U nt 16 SectorsPerTrack; // Reserved for future expansion
U nt16 socket Num /'l ~ socket nunber used by

/| CardServices
unt8 socket Type; I/l ~ Specifies the socket type
U nt8 devi ceType; I/l ~ Specifies the active

/1 device type
/1 Fields below are valid according to the bit nask
/1 in pcvalid (PCMCI A unique fields)

U nt8 pcAccessMode; Il « Access node of the socket:
/1 Mermory vs. 1/0O
U nt8 pcVcc; I/l o Vcc voltage in tenths
unt8 pcVppl; /Il o Vpp 1 voltage in tenths
unt8 pcVpp2; /[l - Vpp 2 voltage in tenths
U nt8 pcSt at us; /Il o Card Status register setting
U nt8 pcPi n; /Il « Card Pin register setting
unt8 pcCopy; I/l « Card Socket/ Copy register
/] setting
unt8 pcConfi gl ndex; /Il o Card Option register setting
U nt 16 Reserved[ 10] ; /1 Reserved

b
typedef struct ataGetDevConfiguration ataCGetDevConfiguration;

Field descriptions

at aPBHdr See the at aPBHdr parameter block definition on page 136.
ConfigSetting This field indicates various configuration settings. The following
bits have been defined:

Bits 5 - 0: Reserved for future expansion (set to 0)
Bit 6: ATAPI packet DRQ handling setting (only applies to ATAPI)

1: The function waits for an interrupt to happen before sending the
ATAPI command packet.

154 ATA Manager Reference



CHAPTER 8

Software for ATA Devices

at al OSpeedMode
pcVval i d

0: The function waits for the assertion of DRQ bit in the status
register before sending the ATAPI command packet. This is the
default setting.

Bits 7-31: Reserved (set to 0)

This field is reserved for future expansion.

This field indicates which of the PCMCIA unique fields contain

valid values. Table 8-6 on page 156 lists the fields corresponding to
each bit.

RWWUI t i pl eCount This field is reserved for future expansion.
Sect or sPer Cyl i nder

Heads

This field is reserved for future expansion.

This field is reserved for future expansion.

Sect or sPer Tr ack This field is reserved for future expansion.

socket Num

socket Type

devi ceType

pcAccessMde

pcVcc
pcVppl
pcVpp2
pcSt at us

pcPin

This field contains the socket number used by Card Services for the
device. This value will be needed to request services directly from
Card Services (such as GetTuple). A value of $FF indicates that the
selected device is not a Card Services client.

This field specifies the type of the socket. Possible values are:
$00 = unknown socket type

$01 = Internal ATA bus

$02 = Media Bay socket

$03 = PCMCIA socket

This field specifies the type of the device. Possible values are:
$00 = unknown type or no device present

$01 = standard ATA device

$02 = ATAPI device

$03 = PCMCIA ATA device

This field specifies the current access mode of the device; it is valid
only if bit 0 of the pcValid field is set, and only for

ATA_Get Devi ceConf i gurati on, not for

ATA_Set Devi ceConfi gur at i on. Possible values are:

0=1/O mode

1 =Memory mode

This field indicates the current voltage setting of Vcc in tenths of a
volt. It is valid only if bit 1 of the pcValid field is set.

This field indicates the current voltage setting of Vppl1 in tenths of a
volt. It is valid only if bit 2 of the pcValid field is set.

This field indicates the current voltage setting of Vpp2 in tenths of a
volt. It is valid only if bit 3 of the pcValid field is set.

This field indicates the current Card register setting of the PCMCIA
device. It is valid only if bit 4 of the pcValid field is set.

This field indicates the current Card Pin Register setting of the
PCMCIA device. It is valid only if bit 5 of the pcValid field is set.

ATA Manager Reference 155



RESULT CODES

CHAPTER 8

Software for ATA Devices

pcCopy This field indicates the current Card Socket/Copy register setting of
the PCMCIA device. It is valid only if bit 6 of the pcValid field is set.

pcConfi gl ndex  This field indicates the current Card Option register setting of the
PCMCIA device. It is valid only if bit 7 of the pcValid field is set.

Table 8-6 Bits in pcValid field

Bits Field validity indicated

0 pcAccessMode field is valid, when set

1 pcVec field is valid, when set

2 pcVppl field is valid, when set

3 pcVpp?2 field is valid, when set

4 pcStatus field is valid, when set

5 pcPin field is valid, when set

6 pcCopy field is valid, when set

7 pcConfigindex field is valid, when set

8-14 Reserved (set to 0)

15 Reserved

noErr Successful completion, no error occurred
nsDrvErr Specified device is not present

ATA_GetDevLocationIcon

156

You can use the ATA_GetDevLocationIcon function to get the location icon data and the
icon string for the selected device. The length of the icon data returned is fixed at 256
bytes; the string is delimited by the null character. Both the icon data and location string
are copied to buffers pointed to by the structure. Data is not copied if the corresponding
pointer is set to zero.

The locationString field is in C string format. You may have to call c2pstr() function to
convert to a Pascal string before returning the string to the operating system.

The data structure for the Dr vLocat i onl con function is as follows:

struct DrvLocationl con

{

at aPBHdr /'l see above definition
SInt 16 at al conType; /1 - lcon type specifier
SInt 16 at al conReserved; // Reserved; set to zero

ATA Manager Reference



RESULT CODES

CHAPTER 8

Software for ATA Devices

SInt8 *atalLocationlconPtr;
/1 - Pointer to icon data buffer
SInt8 *atalLocationStringPtr;
/1 - Pointer to location string
/1 data buffer
SInt16 Reserved[ 18] ; /'l Reserved
1

typedef struct DrvLocationlcon DrvLocati onl con;

Field descriptions

at aPBHdr See the at aPBHdr parameter block definition on page 136.

at al conType This field defines the type of icon desired as follows:
$01 - large B&W icon with mask
$81 - same as 1, but ProDOS icon

at al conReser ved Reserved to be long-word aligned. This field should be set to zero
for future compatibility.

atalLocati onl conPtr
A pointer to the location icon buffer. When the pointer is non-zero,
the function copies the icon data to the buffer.
atalLocationStringPtr
A pointer to the location string buffer. When the pointer is non-zero,
the function copies the string data to the buffer.

NoErr Successful completion, no error occurred
ATAI nternal Err The icon data and string could not be found

ATA _Identify

You can use the ATA | dent i fy function to obtain device identification data from the
selected device. The identification data contains information necessary to perform I/O
to the device. Refer to the ATA /IDE specification for the format and the information
description provided by the data.

The manager function code for the ATA | dent i fy function is $13.

If the ATAPI bit is set in the protocol type field of the header, the ATA Manager performs
the ATAPI Identify command ($A1).

The parameter block associated with this function is defined below:

st ruct ataldentify /1 Parameter block structure
{
at aPBHdr /1 See definition on page 136
SInt8 at aSt at usRegq; /1l ~ Last ATA status inmage

ATA Manager Reference 157



RESULT CODES

158

CHAPTER 8

Software for ATA Devices
SInt8 at aErr or Reg; /1l ~ Last ATA error inage;
// valid if error bit set
SInt 16 at aReser ved,; /'l Reserved
Ul nt 32 Bl i ndTxSi ze; /Il « this field is set to 512
/1 upon returning
Ul nt8 * Dat aBuf ; /1 Buffer for the identify data

/1 (512 bytes)

Ul nt 32 at aRequest Count; // « indicates remaining

/1 byte count

Ul nt 32 at aAct ual TxCnt ; /1 « actual transfer count
Ul nt 32 at aReserved?2; !/l Reserved
devi cePB RegBl ock; [/l ~ taskfile image sent for

/!l the command

U nt16 Reserved3[ 8] ; /1l Used internally by ATA Manager

b

typedef struct ataldentify ataldentify;

Field descriptions
at aPBHdr

at aSt at usReg
at aError Reg

at aReser ved

Bl i ndTxSi ze
Dat aBuf

at aRequest Count
at aAct ual TxCnt
at aReser ved?2

RegBl ock
Reser ved3] 8]

noErr
nsDr vErr

See the definition of the at aPBHdr parameter block on page 136.
Status register image for the last ATA taskfile.

Error register image last ATA taskfile. This field is only valid if the
LSB (error bit) of the 'ataStatusReg' field is set.

Reserved. To ensure future compatibility, all reserved fields should
be set to 0.

Byte size of the Identify data.

Pointer to the data buffer for the device identify data. The length of
the buffer must be at least 512 bytes.

Byte count of the remaining data.
Byte count of the data actually transferred.

Reserved. To ensure future compatibility, all reserved fields should
be set to 0.

Taskfile image sent for the command.

Reserved. To ensure future compatibility, all reserved fields should
be set to 0.

Successful completion, no error occurred
Specified device is not present

ATA Manager Reference



CHAPTER 8

Software for ATA Devices

ATA_MgrInquiry

You can use the ATA_Myr | nqui ry function to get information, such as the version
number, about the ATA Manager. This function may be called prior to the manager
initialization, however the system configuration information may be invalid.

The manager function code for the ATA_Mgr | nqui ry function is $90.

The parameter block associated with this function is defined below:

struct ATA Mgrinquiry /1 ATA inquiry structure
{
at aPBHdr /1 See definition on page 136
NumVer si on Mgr Ver si on /1l < Manager version numnber
unt8 MGRPBVer s; /1l ~ Manager PB version nunber
/'l supported
U nt8 Reservedl; /'l Reserved
U nt16 at aBusCnt ; /'l <« Nunmber of ATA buses in system
U nt 16 at aDev(Cnt ; /1« Nunber of ATA devices detected
unt8 at aMaxMode; /1« Maxi mum |/ O speed node
U nt8 Reserved2; /'l Reserved
U nt16 | OCl kResolution; // < 1/0O clock resolution in nsec
U nt16 Reserved[17]; // Reserved
s

typedef struct ATA Myrlnquiry ATA Myrlnquiry;

Field descriptions

at aPBHdr See the at aPBHdr parameter block definition on page 136.
Mgr Ver si on Upon return, this field contains the version number of the
ATA Manager.
MGRPBVer s This field contains the number corresponding to the latest version

of the parameter block supported. A client may use any parameter
block definition up to this version.

Reser ved Reserved. All reserved fields are set to 0 for future compatibility.

at aBusCnt Upon return, this field contains the total number of ATA buses in
the system. This field contains a zero if the ATA Manager has not
been initialized.

at aDevCnt Upon return, this field contains the total number of ATA devices
detected on all ATA buses. The current architecture allows only one
device per bus. This field will contain a zero if the ATA Manager
has not been initialized.

at aMaxMode This field specifies the maximum I/O speed mode that the ATA

Manager supports. Refer to the ATA specification for information
on mode timing.

ATA Manager Reference 159



RESULT CODES

CHAPTER 8

Software for ATA Devices

| OCl kResol ution
This field contains the I/O clock resolution in nanoseconds. The
current implementation doesn’t support the field (returns 0).

Reserved[ 17] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.
noErr 0 Successful completion, no error occurred

ATA_ModifyDrvrEventMask

RESULT CODES

160

You can use the ATA_ModifyDrvrEventMask function for modifying an existing driver
event mask that has been specified by the ATA_Dr vr Regi st er function. Modifying the
mask for a non-registered bus has no effect.

This function is only available with at aPBVer s of two (2).

The data structure of the function is as follows:

struct ataModi f yEvent Mask

{
at aPBHdr /! Header information
Ul nt 32 nmodi fi edBEvent Mask;// - new event mask val ue
SInt16 Reserved[ 22] ; /1l Reserved for future expansion
}s

typedef struct atalMddifyEvent Mask at aMbdi f yEvent Mask;

Field descriptions
at aPBHdr See the at aPBHdr parameter block definition on page 136.

modi fi edEvent Mask
New event mask setting. The definitions of the subfields are given
in Table 8-5 on page 146.

Reserved[ 24] Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

NoErr Successful completion, no error occurred
ATAI nternal Err The icon data and string could not be found

ATA Manager Reference



CHAPTER 8

Software for ATA Devices

ATA_NOP
The ATA_NOP function performs no operation across the interface and does not
change the state of either the manager or the device. This function returns noEr r if the
drive number is valid.
The manager function code for the ATA_NOP function is $00.
The parameter block associated with this function is defined below:
I struct at aNOP /'l Parameter block structure
{
at aPBHdr /1 See definition on page 136
U ntl6 Reserved| 24] ; /'l Reserved
};
t ypedef struct ataNOP at aNOP;
Field descriptions
ataPBHdr See the definition of the at aPBHdr on page 136.
There are no additional function-specific variations on at aPBHdr for this function.
RESULT CODES
noErr Successful completion, no error occurred
nsDr vErr Specified device is not present

ATA_QRelease

You can use the ATA_QRel ease function to release a frozen I/ O queue.

When the ATA Manager detects an I/O error and the QLockOnEr r or bit of the
parameter block is set for the request, the ATA Manager freezes the queue for the
selected device. No pending or new requests are processed or receive status until the
queue is released through the ATA_QRel ease command. Only those requests with
the | medi at e bit set in the ATAFI ags field of the at aPBHdr parameter block are
processed. Consequently, for the ATAT/O queue release command to be processed, it
must be issued with the | medi at e bit set in the parameter block. An ATAI/O queue
release command issued while the queue isn’t frozen returns the noEr r status.

The manager function code for the ATA_QRel ease function is $04.

The parameter block associated with this function is defined as follows:

struct ataQRel ease /1 Parameter block structure
{
at aPBHdr /1 See definition on page 136
U ntl6 Reserved[ 24] ; /1 Reserved
b

typedef struct ataQRel ease ataQRel ease;

ATA Manager Reference 161



RESULT CODES

CHAPTER 8

Software for ATA Devices

Field descriptions
at aPBHdr See the definition of the at aPBHdr on page 136.

There are no additional function-specific variations on at aPBHdr for this function.

noErr Successful completion, no error occurred
nsDr vErr Specified device is not present
ATAMgrNot I nitialized ATA Manager not initialized

ATA_RegAccess

162

You can use the ATA_RegAccess function to gain access to a particular device register
of a selected device. This function is used for diagnostic and error recovery processes.

The manager function code for the ATA_RegAccess function is $12.
Two versions of the parameter block associated with this function are defined below:
/1 Version 1 (ataPBVers = 1)

st ruct at aRegAccess /1 Parameter block structure
/1 for ataPBVers of 1

{
at aPBHdr /1 See definition on page 136
U nt16 RegSel ect ; /1 - Device Register Selector
uni on {
Unt8 byteRegValue; // « Register value read or
/!l to be witten
U nt16 wordRegVal ue; // o Wird register val ue read
/1 or to be witten
} registerVal ue;
Ul nt 16 Reserved[ 22] ; /'l Reserved
1

typedef struct ataRegAccess ataRegAccess;

/1 Version 2 (ataPBVers = 2)
st ruct at aRegAccess /1 Parameter block structure
/1 for ataPBVers of 2

{
at aPBHdr /1 See definition on page 136
U nt16 RegSel ect ; /1 - Device Register Selector
uni on {

Unt8 byteRegValue; // ~ Register value read or
/!l to be witten

ATA Manager Reference



CHAPTER 8

Software for ATA Devices

U nt16 wordRegValue; // ~ Wrd register value read

// or to be witten

} registerVal ue;
/1 The following fields are valid only if RegSel ect = $FFFF
Ul nt16 regvask; /1 - WMask indicating which

devicePB ri ;

/1 conbination of registers
/1 to access.

/'l & register imges

/1 (Feature - Conmand)

unt8 al t St at DevCnt r Reg; /l - Aternate Stat (R) or

/1 Device Cntl (W register

U nt8 Reserveds3; /1l Reserved (set to 0)
U nt16 Reserved[ 16] ; /'l Reserved

}s

typedef struct ataRegAccess ataRegAccess;

Field descriptions
at aPBHdr

RegSel ect

RegVal ue

Reser ved[ 2]

regMask

ri

See the definition of the at aPBHdr parameter block on page 136.

This field specifies which of the device registers to access. The
selectors for the registers supported by the ATA_RegAccess
function are listed in Table 8-7.

This field represents the value to be written (ATAI oDi r ecti on =
01 binary) or the value read from the selected register

(ATAi oDi r ect i on =10 binary). For the Data register, this field is a
16-bit field; for other registers, an 8-bit field. In the case where the
RegSel ect field is set to $FFFF (ataPBVers = 2 or higher), this field
is sued to store the upper byte of the Data Register image.

This field is unused except in the cases where the RegSelect is set to
either 0 (Data register) or $FFFF (more than one register selected).
In those two cases, this field contains the lower byte of the Data
register image.

This field is only valid for ataPBVers field of 2 or higher. This field
indicates what combination of the taskfile registers should be
accessed. A bit set to one indicates either a read or a write to the
register. A bit set to zero performs no operation to the register. Bit
assignments are as shown in Table 8-8.

This field is only valid for at aPBVer s field of 2 or higher. This field
contains register images for Error/Features, Sector Count, Sector

Number, Cylinder Low, Cylinder High, SDH, and Status/Command.
Only those register images indicated in the regMask field are valid.
Refer to 'ATA Execute I/O' section above for the structure definition.

al t St at DevCnt r Reg

This field is only valid for at aPBVer s value of 2 or higher. This
field contains the register image for Alternate Status (R) or Device
Control (W) register. This field is valid if the Alternate Status/
Device Control Register bit in the r egMask field is set to one.

ATA Manager Reference 163



164

CHAPTER 8

Software for ATA Devices
Table 8-7 ATA register selectors
Selector name Selector Register description
Dat aReg 0 Data register (16-bit access only)
Er r or Reg 1 Error register (R) or features register (W)
SecCnt Reg 2 Sector count register
SecNunReg 3 Sector number register
Cyl LoReg 4 Cylinder low register
Cyl H Reg 5 Cylinder high register
SDHReg 6 SDH register
St at usReg 7 Status register (R) or command register (W)
CmdReg
Al t St at us $0E Alternate status (R) or device control (W)
DevCntr
$FFFF More than one register access (valid only for
ataPBVers = 2 or higher)
Table 8-8 Register mask bits
Bit
number Definition
0 Data register
1 Error register (R) or Feature register (W)
2 Sector Count register
3 Sector Number register
4 Cylinder Low register
5 Cylinder High register
6 SHD register
7 Status register (R) or Command register (W)
8-13 Reserved (set to 0)
14 Alternate Status register (R) or Device Control register (W)
15 Reserved (set to 0)

When reading or writing ATA registers, use the following order:

1. Data register

2. Alternate Status register (R) or Device Control register (W)

3. Error register (R) or Feature register (W)

ATA Manager Reference



RESULT CODES

CHAPTER 8

Software for ATA Devices

4. Sector Count register

5. Sector Number register

6. Cylinder Low register

7. Cylinder High register

8. Status register (R) or Command register (W)

noErr Successful completion, no error occurred
nsDrvErr Specified device is not present

ATA_ResetBus

You can use the ATA_Reset Bus function to reset the specified ATA bus. This function
performs a soft reset operation to the selected ATA bus. The ATA interface doesn’t
provide a way to reset individual units on the bus. Consequently, all devices on the
bus will be reset.

The manager function code for the ATA_Reset Bus function is $11.

IMPORTANT

You should avoid calling this function under interrupt because
it may take up to several seconds to complete. a

WARNING

Use this function with caution; it may terminate any
active requests to devices on the bus. a

If the ATAPI bit is set in the protocol type field of the header, the Manager will perform
the ATAPI reset command ($08).

Upon completion, this function flushes all I/O requests for the bus in the queue. Pending
requests are returned to the client with the 'ATA AbortedDueToRst' status.

The parameter block associated with this function is defined below:

struct ATA ResetBus /1 ATA reset structure

{
at aPBHdr /1 See definition on page 136
SInt8 St at us; /'l ~ Last ATA status register inage
SInt8 Reserved; /'l Reserved

U nt 16 Reserved[ 23]; // Reserved
b
typedef struct ATA ResetBus ATA Reset Bus;

ATA Manager Reference 165



RESULT CODES

CHAPTER 8

Software for ATA Devices

Field descriptions
at aPBHdr See the definition of the at aPBHdr parameter block on page 136.
St at us This field contains the last device status register image following

the bus reset. See the ATA /IDE specification for definitions of the
status register bits.

Reser ved[ 23] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

noErr Successful completion, no error occurred

nsDr vErr Specified device is not present

ATA_SetDevConfiguration

166

You can use the ATA_SetDevConfig function to set the configuration of a device. It
contains the current voltage setting and access characteristics. This function can be
issued to any bus that the ATA Manager controls. However, some field settings may be
inappropriate for the particular device type (for example, setting the voltage for the
internal device).

The data structure of the at aSet DevConf i gur at i on function is as follows:

struct ataSet DevConfiguration // configuration paraneter bl ock

{

at aPBHdr /'l Header information

Sl nt 32 ConfigSetting /'l « socket configuration setting
U nt8 at al OSpeedMbde /'l Reserved for future expansion
unt8 Reserveds; /1 Reserved for word alignnent

U nt16 pcVal i d; /'l o Mask indicating which

/1 PCMClI A-unique fields are valid
U nt16 RWWIl ti pl eCount; // Reserved for future expansion
U nt16 Sect orsPer Cyl i nder;// Reserved for future expansion

U nt 16 Heads; /'l Reserved for future expansion
U nt16 SectorsPerTrack; // Reserved for future expansion
U nt16 Reserved4[ 2] ; /'l Reserved

/1 Fields below are valid according to the bit nask
/1 in pcvalid (PCMCI A unique fields)

unt8 pcAccessMde; /'l o Access node of the socket:
/1 Mermory or |/O

unt8 pcVcc; /'l o Vcc voltage

U nt8 pcVppl; /Il o Vpp 1 voltage

unt8 pcVpp2; Il « Vpp 2 voltage

unt8 pcSt at us; /Il o~ Card Status register setting

ATA Manager Reference



CHAPTER 8

Software for ATA Devices
unt8 pcPi n; /[l o Card Pin register setting
unt8 pcCopy; /'l o Card Socket/ Copy register
/] setting
unt8 pcConfi gl ndex; /[l o Card Option register setting
U nt1l6 Reserved[ 10] ; /'l Reserved
b

t ypedef struct ataSetDevConfi guration ataSet DevConfi gurati on;

Field descriptions
at aPBHdr See the at aPBHdr parameter block definition on page 136.

ConfigSetting This field controls various configuration settings. The following bits
have been defined:

Bits 0-5: Reserved for future expansion (set to 0)
Bit 6: ATAPI packet DRQ handling setting (only applies to ATAPI)

1 = The function waits for an interrupt to happen before sending the
ATAPI command packet.

0 = The function waits for the assertion of DRQ bit in the status
register before sending the ATAPI command packet. This is the
default setting.

Bits 7-31: Reserved (set to 0)
at al OSpeedMbde This field is reserved for future expansion.

pcvalid This field indicates which of the PCMCIA unique fields contain
valid values. Table 8-6 on page 156 lists the fields corresponding to
each bit.

RWWUI ti pl eCount This field is reserved for future expansion.

Sect or sPer Cyl i nder
This field is reserved for future expansion.

Heads This field is reserved for future expansion.
Sect or sPer Tr ack This field is reserved for future expansion.

pcAccessMbde  This field is valid only if the bit 0 of the pcValid field is set. The
value is written to the access mode control. Possible values are:

0=1/0O mode
1 =Memory mode

pcVecce This field indicates the new voltage setting of Vcc in tenths of a volt.
It is valid only if the bit 1 of the pcValid field is set.

pcVppl This field indicates the new voltage setting of Vppl in tenths of a
volt. It is valid only if the bit 2 of the pcValid field is set.

pcVpp2 This field indicates the new voltage setting of Vpp2 in tenths of a
volt. It is valid only if the bit 3 of the pcValid field is set.

pcSt at us This field indicates the new Card Register setting of the PCMCIA
device. It is valid only if the bit 4 of the pcValid field is set.

pcPin This field indicates the new Card Pin Register setting of the

PCMCIA device. It is valid only if the bit 5 of the pcValid field is set.

ATA Manager Reference 167



RESULT CODES

CHAPTER 8

Software for ATA Devices

pcCopy This field indicates the new Card Socket/Copy Register setting of
the PCMCIA device. It is valid only if the bit 6 of the pcValid field
is set.

pcConfi gl ndex  This field indicates the new Card Option Register setting of the
PCMCIA device. It is valid only if the bit 7 of the pcValid field is set.

noErr Successful completion, no error occurred
nsDrvErr Specified device is not present

Using the ATA Manager With Drivers

168

This section describes several operations dealing with drivers:
= notification of device events

s loading a device driver

= old and new driver entry points

» loading a driver from the media

= notification of Notify-all drivers

» notification of the ROM driver

Notification of Device Events

Due to asynchronous event reporting mechanism of the Card Services Manager, the ATA
Manager notifies its clients by a callback mechanism using the client’s event handler.
Each client that is to be notified of device events must register its event handler at the
time of driver registration. Refer to the section “ATA_DrvrRegister” beginning on

page 144 for the calling convention of the event handler.

The following event codes have been defined:

Table 8-9 Event codes send by the ATA Manager

Event

code Event description

$00 Null event; signifies no real event. The client should simply return with no
error code.

$01 Online event; signifies that a device has come online. This event may happen

as a result of several actions:
« A device has been inserted into the socket.
= A device has been re-powered from sleep /low power.

continued

Using the ATA Manager With Drivers



CHAPTER 8

Software for ATA Devices

Table 8-9 Event codes send by the ATA Manager (continued)

Event

code Event description
The client should let the O/S know about the presence of the device, if not
done so already, verify the device type, and upload any device characteristics.

$02 Offline event; signifies that the device has gone offline. This event may
happen as a result of several actions:
= A device has been manually removed from the socket.
The client should let the operating system know that the device has gone
offline by setting the offline bit, if appropriate.

$03 Device removed event; signifies that the device has been ejected gracefully.
The client should clean up the internal variables to reflect the latest state of
the socket. The client may notify the O/S of the event.

$04 Reset event; signifies that the device has been reset. This indicates that any
pending request or the settings may have been aborted.

$05 Offline request event; requests permission for the device to go offline.

$06 Eject request event; requests permission to eject the drive.

$07 Configuration update event; signifies that the system configuration related to

I/O subsystems may have changed. This event may imply that the number of
ATA buses and devices has changed. Consequently, if the client is a driver
capable of handling more than one device, it may want to query the manager
for the current configuration.

Device Driver Loading

This section describes the sequence and method of driver installation, and the
recommended driver initialization sequence.

The operating system attempts to install a device driver for a given ATA device in the
following instances:

s during system startup or restart
s during accRun, following the drive insertion
» each time it is called to register a Notify-all driver

Three classes of drivers are identified and discussed below. The driver loading and
initialization sequence is as follows:

1. Media driver. The driver on the media is given the highest priority.
2. Notify-all drivers. Any INIT drivers are given the next priority.
3. ROM driver. The built-in ROM driver is loaded if no other driver is found.

The initialization sequences for the three driver classes are described in “Loading a
Driver From the Media” on page 171.

Using the ATA Manager With Drivers 169



170

CHAPTER 8

Software for ATA Devices

Once the driver loading and initialization sequence has been performed for a particular
device, the process is not repeated until one of the following situations occurs:

system restart
= device ejection followed by an insertion

= shutdown and re-initialization of the manager; but only if the exi st i ngd obal Pt r
field of the parameter block is invalid.

= a Notify-all driver registration occurs. In this case, only the registering driver is
notified of the drive online.

New API Entry Point for Device Drivers

Two entry points into each ATA driver are currently defined, for the old API and the new
API. Use of the new API is strongly recommended. The differences between the two
APIs are as follows:

» Entry point: in the old APJ, the entry point is offset 0 bytes from the start of the driver;
in the new API], it is offset 8 bytes from the start of the driver (the same as with
SCSI drivers).

» D5 register: In the old API, the input parameter in the D5 register contains just the bus
ID; in the new AP, the D5 register contains the devl dent parameters.

Table 8-10 shows the contents of the D5 register, high order bits first, for the old API
(calls offset 0 bytes into the driver).

Table 8-10 Input parameter bits for the old API

Bits Value Definition

31-24 0 Reserved; set to 0

23-16 0 Reserved; set to 0

15-8 0 Reserved; set to 0

7-0 ATAbus ID The bus ID where the device resides. This is the ID used to

communicate with the ATA Manager.

Table 8-11 shows the contents of the D5 register, high order bits first, for the new AP
(calls offset 8 bytes into the driver)

Using the ATA Manager With Drivers



CHAPTER 8

Software for ATA Devices

Table 8-11 Input parameter bits for the new API

Bits Value Definition
31-24 Reserved In this byte, bits 29-31 are currently defined. All other bits
should be set to 0.
Bit 31 1 =Load at run time (RAM based)
0 = Load at startup time (ROM based)
Bit 30 1 = Mount volumes associated with this drive
0 = Don't mount any volume associated with
this drive
Bit 29 1 =New API entry (use 8-byte offset)

0 = Old API entry (use 0-byte offset)
This bit is set internally by each driver

23-16 ATA bus ID The bus ID where the device resides. This is the ID used
to communicate with the ATA Manager.

15-8 Device ID The device ID within the given bus. This field is used to
identify the device on a particular bus. The current and
previous ATA Manager implementations assume that the
device ID field is always zero.

7-0 Reserved Reserved; set to 0

IMPORTANT
ATA Manager version 1.0 uses the old API; the ATA
Manager version 2.0 uses the new APL a

Loading a Driver From the Media

Upon detection of a device insertion, the driver loader, an extension of the ATA Manager,
initiates a driver load operation during accRun time. The driver loader searches the
DDM and partition maps of the media. If an appropriate driver is found, the driver
loader allocates memory in the system heap and loads the driver.

For the old AP], the driver is opened by jumping to the first byte of the driver code with
the D5 register containing the bus ID of the device. For the new AP]I, the driver is opened
by jumping to the eighth byte of the driver code with the D5 register containing the new
API definition.

The appropriate driver is identified by following fields:
» ddType =$701 for Mac O/S
= partition name = Appl e_Dri ver _ATA

The media driver should be capable of handling both old and new APIs. The Quadra 630
uses the old API; other Macintosh models use the new API.

Using the ATA Manager With Drivers 171



172

CHAPTER 8

Software for ATA Devices

The typical sequence of the media driver during the Open() call is as follows:
1. Allocate driver globals
2. Initialize the globals

3. Install any system tasks, such as VBL, time manager, shutdown procedure, and the
like. Initialize the device and its parameters

4. Register the device with the ATA Manager. The driver is expected to fail the Open()
operation if an error is returned from the driver registration call for a given device.

The installed driver is expected to return the following information in DO:

= The upper 16-bit word contains the driver reference number corresponding to the
Unit Table entry. This field is only valid when the lower 16-bits of DO is zero. The
reference number returned must be less than 0 to be valid.

= The lower 16-bit word contains the status of the driver Open() operation. A value of
zero indicates no error.

Notify-All Driver Notification

When an error is returned from the media driver loading, the driver load function then
calls the Notify-all drivers, one by one. This driver type is determined from the driver
registration (-1 in the devicelD field of the driver registration parameter block). Unlike
the media driver, this driver is notified of a device insertion by means of the callback
mechanism at accRun time, when the manager calls the driver with an online event.
Consequently, each Notify-all driver must provide a callback routine pointer in the
driver registration. The driver may get a series of online event notifications during the
Notify-all registration. The driver is assumed to be installed in system (for example, the
INIT driver). Refer to “Notification of Device Events” on page 168 for the event opcode
and the definition of the structure passed in.

Upon returning from the call, each Notify-all driver must provide a status indicating
whether the driver controls the specified device or not. A status of zero indicates that the
driver controls the device; a non-zero status indicates that the driver doesn't control

the device.

The calling of the Notify-all drivers continues until a zero status is received from one of
the registered drivers or until the end of the list is reached.

The typical sequence of the notify-all driver during the online event handling is
as follows:

1. Check for the presence and the device type.

2. If the driver controls this device, allocate and initialize global variables.
3. Initialize the device and its parameters.
4

. Perform driver registration for the device with the manager. The driver should release
its ownership of the device and return a non-zero status if the driver registration fails.

Using the ATA Manager With Drivers



CHAPTER 8

Software for ATA Devices

ROM Diriver Notification

If no driver indicates that it controls the device, the ATA Manager calls the ATA HD
driver in the system ROM. The ROM driver is called only for an HD device. For the
Macintosh 630 models, as in the case of the media driver, the called address is the first
byte of the driver. For all other Macintosh models, the called address is offset by 8 bytes.
The input and the output of the driver and the Open() sequence are the same for both the
media driver and the ROM driver.

Device Driver Purging

When a device removal event is detected, an attempt is made to close() the device, to
remove it from the unit table, and to dispose of the corresponding driver in memory. A
key function in supporting this feature is a new driver Gestalt call. Driver support for
this call is strongly recommended.

The driver Gestalt selector for the function is '‘purg'. The call provides following
information to the driver loader:

= The starting location of the driver

= The purge permission: close(), DrvrRemove(), and DisposePtr()

The following structure describes the response associated with the purge call. The
description of this and other driver gestalt calls can be found in the Driver Gestalt
documentation in Designing PCI Cards and Drivers for Power Macintosh Computers.

struct Driver CGestaltPurgeResponse
/1 Driver purge pernission structure

SInt16 purgePerm ssion; // <--: purge response
/1 0 = Do not change the
/1 state of the driver
/1 3 = Do Cose() and
/1 DrvrRenove() this driver
/1 refnum but don't
/1 deallocate driver code
/1 7 = Do dose(),
/1 DrvrRenove(), and
/1 DisposePtr()

SInt16 pur geReser ved;

Uni ver sal ProcPtr purgeDrvrPointer;// <--: starting address
/1 of the driver
/1 (valid only if disposePtr
/1l perm ssion is given)

Using the ATA Manager With Drivers 173



174

CHAPTER 8

Software for ATA Devices

The driver must either return a st at usEr r indicating that the call is not supported or
return one of the three values defined in the pur gePer m ssi on field of the response
structure described above. If an error or an illegal value is returned in response to the
call, then the manager treats as if the response of 0 is received. The three possible purge
permissions are listed in Table 8-12. All other response values are reserved and should
not be used.

Table 8-12 Purge permissions and responses

Purge permissions

Response Cl ose() Dr vr Rermove() Di sposePtr ()
7 v v v

3 v v

0

Upon receiving of a response, the manager purge sequence is as follows:

if a response of 3 or 7
if ( (err = PBAose() ) == noErr )
/* Close the driver down*/

{
if ( aresponse of 7)
Di sposePtr (); /* Dispose the driver nenory*/
Drvr Remove (); /* Renove it fromthe UTabl e*/
}

The driver C ose() call applies only to the corresponding Unit Table entry. In other
words, if the driver is used to control multiple devices (such as multiple Unit Table
entries), then the Cl ose() should apply only to the particular device with the matching
driver refnum. The other devices must remain operational.

The registered driver must make the decision as to what value to return in response to
the call. Some examples are listed below:

» If the driver is in control of any other device, it should return a response of 3: The
driver closes the particular device down, but the driver stays resident for other
devices.

s If the driver must remain available for other potential device insertion, it should
return a response of 3.

» If the driver is a media driver controlling the particular device, then it should return a
response of 7. Another media driver will become active when a device is inserted.

Using the ATA Manager With Drivers



CHAPTER 8

Software for ATA Devices

Setting the 1/0O Speed

The ATA controllers used in Macintosh systems have their I/O cycle time adjustable to
optimize the data transfers. There are two mechanisms for setting the I/ O cycle time: the
at al OSpeed field of the parameter block header (this field is only valid when a data
transfer is involved) and the at al OSpeedMbde field of the ATA Set Socket Configuration
function. The speed setting via the ATA Set Socket Configuration function is considered
the default setting. In other words, if the Current Speed bit of the at aFl ags field in the
parameter block header is set, then the default speed setting previously set through the
ATA Set Socket Configuration function is used as the I/ O speed mode of the particular
transaction.

If the Current Speed bit is cleared, then the speed setting specified in the at al OSpeed
field of the transaction parameter block is used. The initial speed setting prior to the first
'ATA Set Socket Configuration'is mode 0.

Because the current PC Card specification defines the ATA1/O timing of 0 for all
PCMCIA / ATA devices, the speed setting field has no effect on the I/ O speed for those
devices. Currently the field is hard coded to mode 0.

Error Code Summary

Table 8-13 lists two sets of error codes for ATA drivers: old error codes, used with the
Macintosh PowerBook 150 and the Macintosh 630 series computers; and new error
codes, to be used with all future Macintosh models. The choice of error codes is
determined by the at aPBVer s field in the at aPBHdr structure, defined on page 136. If
at aPBVer s is set to 1, then the old error codes are used; if at aPBVer s is set to 2, then
the new error codes are used.

Table 8-13 ATA driver error codes

Error code
(new)

0

$FFCE
(=50)

$FFC8
(-56)

$DB43
(-9405)

$DB44
(-9404)

Error code
(old) Error name Error description
0 noErr No error detected on the
requested operation.
$FFCE par ankrr Error in parameter block.
(-50)
$FFCS8 nsDrvErr No such drive; no device is attached to
(-56) the specified port.
$F901 AT_NRdyErr Drive ready condition not detected.
(-1791)
$F904 AT_I| DNFEr r Sector ID not found error reported
(-1788) by device.

continued

Error Code Summary 175



CHAPTER 8

Error code
(new)

$DB45
(-9403)

$DB46
(-9402)

$DB47
(-9401)

$DB48
(~9400)

$DB49
(-9399)

$DB4A
(-9398)

$DB4B
(-9397)

$DB4C
(-9396)

$DB4D
(-9395)

$DB4E
(-9394)

$DB70
(-9360)

$DB71
(-9359)

$DB72
(-9358)

$DB73
(-9357)

$DB74
(-9356)

$DB75
(-9355)

$DB76
(-9354)

176

Software for ATA Devices

Table 8-13 ATA driver error codes (continued)
Error code

(old) Error name

$F905 AT_Dwmar KErr
(-1787)

$F906 AT_BadBI KEr r
(-1786)

$F907 AT_Cor Dat aErr
(-1785)

$F906 AT _UncDat aErr
(-1784)

$F909 AT_SeekErr
(-1783)

$F90A AT WFItErr
(-1782)

$F90B AT _Recal Err
(-1781)

$F90C AT _AbortErr
(-1780)

$F90E AT_MCErr

(-1778)

$F90F ATAPI| CheckErr
(-1777)

$F8F6 ATAMgr Not I nitialized
(-1802)

$F8F5 ATAPBI nval i d
(-1803)

$F8F4 ATAFuncNot Support ed
(-1804)

$F8F3 ATABuUsYy

(-1805)

$F8EF2 ATATr ansTi neCut
(-1806)

$F8F1 ATAReql nPr og
(-1807)

$FSFO ATAUnknownSt at e
(-1808)

Error Code Summary

Error description

Data mark not found reported by device.
Bad block detected by device.

Notification that data was corrected
(good data).

Unable to correct data (possibly
bad data).

Seek error detected by device.

Write fault detected by device.
Recalibrate failure detected by device.
Command was aborted by device.
Media-changed error.

ATAPI Check Condition detected.

ATA Manager has not been initialized.
The request function can not be
performed until the manager has
been initialized.

Invalid ATA port address detected (ATA
Manager initialization problem).

An unknown ATA Manager function
code specified.

Selected device is busy; it is not ready to
go to the next phase yet.

Time-out condition detected. The
operation had not completed within the
user-specified time limit.

Device busy; the device on the port is
busy processing another command.

The device status register reflects an
unknown state.

continued



CHAPTER 8

Software for ATA Devices

Table 8-13 ATA driver error codes (continued)

Error code
(new)
$DB77
(-9353)

$DB78
(-9352)

$DB79
(-9351)

$DB7A
(-9350)

$DB7B
(-9349)

$DB7C
(-9348)

$DB7D
(-9347)

$DB7E
(-9346)

$DB7F
(-9345)

$DB80
(-9344)

$DB81
(-9343)

$DB82
(-9342)

$DB83
(-9341)

$DB84
(-9340)

$DBY0
(-9328)

$DB9I1
(-9327)

$DB92
(-9326)

$DB93
(-9325)

Error code
(old)

$FSEF
(-1809)

$FSEE
(-1810)

$FSED
(-1811)

$F8EC
(-1812)

$FSEB
(-1813)

$FSEA
(~1814)

$FSE9
(-1815)

$FSES
(-1816)

$F8E7
(-1817)

$F90D
(-1818)

$F8F9
(-1799)

$F8E8
(-1800)

Error name
ATAQLocked

ATARegAbort ed

ATAUnabl eToAbor t

ATAAbor t edDueToRst

ATAPI PhaseEr r

ATAPI ExCnt Er r

ATANoCl i ent Err

ATAl nternal Err

ATABUSErr

AT_NoAddr Err

DriverLocked

Cant Hand|l eEvent

ATAMgr Menor yEr r

ATASDFai | Err

ATAI nval i dDr vNum

ATAMenor yErr

ATANo DDIVET r

ATANoDr i ver Err

Error Code Summary

Error description

I/0O queue for the port is locked due to a
previous I/O error. It must be unlocked
prior to continuing.

The I/O queue entry was aborted due to
an abort command.

The I/O queue entry could not be
aborted. It was too late to abort or the
entry was not found.

The I/O queue entry aborted due

to a bus reset.

Unexpected phase detected.

Warning: overrun/underrun condition
detected (the data is valid).

No client present to handle the event.
Card Services returned an error.

Bus error detected on I/0O.

Invalid taskfile base address.

The current driver must be removed
before adding another.

Particular event could not be handled.
ATA Manager memory allocation error.
ATA Manager shutdown process failed.
Invalid drive number from event.
Memory allocation error.

No DDM found on the media.

No driver found on the media.

177






CHAPTER 9

PC Card Services




CHAPTER 9

PC Card Services

This chapter describes the Card Services part of the PC Card Manager.

The PC Card Manager is a new part of Mac OS that lets software use PC cards. The PC
Card Manager helps client software recognize, configure, and view PC cards that are
inserted into PC card sockets on PowerBook computers.

The PC Card Manager comprises two sets of system software:
= Card Services, used by all PC card client software

» Socket Services, used primarily by developers of new PC card hardware

This chapter covers only the Card Services functions. For descriptions of the other
functions of the PC Card Manager, see Developing PC Card Software for the Mac OS.

Client Information

You can use the functions described in this section to get information about Card
Services clients.

The Card Services software keeps information about all its clients in a first-in, first-
out queue called the global client queue. You can use the CSCGet Fi r st O i ent and
CSCet Next Cl i ent functions to iterate through all the registered clients. Either of
those functions returns a handle that you can then use with the CSGet Ol i ent | nf o
function to obtain the corresponding client information.

In the definitions that follow, an arrow preceding a parameter indicates whether the
parameter is an input parameter, an output parameter, or both.

Arrow Meaning

- Input

- Output

o Both
CSGetFirstClient

You can use the CSGet Fi r st O i ent function to find the first client in the Card
Service’s global client queue.

pascal OSErr CSGetFirstCient(GetdientPB *pb);
The parameter block associated with this function is as follows:

typedef struct GetdientPB GetdientPB;
struct GetdientPB

{
Unt32 clientHandle;// ~ clientHandle for this client

180 Client Information



CHAPTER 9

PC Card Services

U ntl6é socket; /1 - logical socket nunber
Untl6 attributes; // - bitmap of attributes

b
/] "attributes' field val ues

enum
{
csC i ent sFor Al | Socket s= 0x0000,
csCd i ent sThi sSocket Onl y= 0x0001

}s

DESCRIPTION
The CSGet Fi r st C i ent function returns a cl i ent Handl e value to the first client in
Card Services’ global client queue. If the caller specifies csCl i ent sThi sSocket Onl y
and passes in a valid socket number, Card Services returns the first client whose event
mask for the given socket is not NULL.

RESULT CODES

SUCCESS No error
BAD_SOCKET Invalid socket specified
NO MORE | TEMS No clients registered

CSGetNextClient

You can use the CSGet Next C i ent function to find the next client in the Card Service’s
global client queue.

pascal OSErr CSGetNextCient(GetdientPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetdientPB GetdientPB;,
struct GetCientPB

{
Unt32 clientHandle;// o clientHandle for this client
U ntl6 socket; /1l - logical socket nunber
Untl6 attributes; // - bitmap of attributes

1

Forat t ri but es field values, see “CSGetFirstClient” on page 180.

Client Information 181



CHAPTER 9

PC Card Services

DESCRIPTION

The CSGet Next C i ent function returns the next ¢l i ent Handl e in Card Services’
global client queue. If the caller specifies csC i ent sThi sSocket Onl y and passes in a
valid socket number, Card Services returns the next client whose event mask for the

given socket is not NULL.

RESULT CODES

SUCCESS
BAD_SOCKET
NO_MORE_| TEMS
BAD_HANDLE

CSGet(ClientInfo

No error

Invalid socket specified
No clients registered
Invalid cl i ent Handl e

You can use the CSGet C i ent | nf o function to get information from the Card Service’s

global client queue.

pascal

OSErr CSGetdientInfo(GetdientlnfoPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetdientlnfoPB GetdientlnfoPB;,
struct GetdientlnfoPB

{

Ul nt 32cl i ent Handl e; //

- clientHandl e returned by Registerdient

U ntl6attributes; // ~ subfunction + bitmapped client attributes

uni on

{

struct

U nt 16
U nt 16
ul nt16

SInt16

SInt16

Ul nt8

revision;
cslLevel ;
revDat e;

namelLen;

vStringlLen;

*naneString;

182 Client Information

/1
/1

/1
/1
11
/1
/1
11
/1
/1
11
/1
/1

upper byte of attributes is
csd i ent | nfoSubfunction

~ BCD value of client's revision
~ BCD val ue of CS rel ease
~ revision date:
y[15-9], n{8-5], d[4-0]
o in: maxi mum | ength of
client nanme string,
out: actual length
- in: max length of vendor string,
out: actual |ength
~ pointer to client nane string
(zero-term nat ed)



CHAPTER 9

PC Card Services

unt8 *vendor String;// ~ poi
/1 (z
}

Clientlnfo;

st ruct /'l upper byt

nter to vendor string
ero-term nat ed)

e of attributes is

/] csCar dNaneSubf uncti on,

{ /1 csCardTyp

/1 csHel pStr

U ntl6é socket; /'l - 1ogical
Untl6 reserved; // - zero

eSubf uncti on,
i ngSubfuncti on
socket nunber

SInt16 |ength; /Il « in: max length of string,

/1 out :
unt8 *text, /1 <- point
}
Al ternateText Stri ng;
st ruct /'l upper byt
/1 csCardlco
{
U ntl6 socket; /1 - 1ogical
Handle iconSuite;// ~ handle
}

Al t er nat eCar dl con;

actual length
er to string (zero-term nated)

e of attributes is
nSubf uncti on

socket nunber
to suite containing all icons

e of attributes is

/] csActionProcSubfunction

st ruct /'l upper byt
{

U ntl6é socket; /'l - 1ogical
}

Cust omAct i onPr oc;

}ou
s

/] "attributes' field val ues

enum {
csMenoryd i ent = 0x0001,
csl Od i ent = 0x0004,
csC i ent TypeMask = 0x0007,

csShar eabl eCar dl nsert Event s= 0x0008,
csExcl usi veCar dl nsert Event s= 0x0010,

Client Information

socket nunber

183



CHAPTER 9

PC Card Services

csl nf oSubf uncti onMask = OxFF0O0,
csC i entl nfoSubfunction = 0x0000,
csCar dNarmeSubf unct i on = 0x8000,
csCardTypeSubfuncti on = 0x8100,
csHel pSt ri ngSubf uncti on = 0x8200,
csCar dl conSubfuncti on = 0x8300,
csActi onProcSubfunction = 0x8400

b

DESCRIPTION

184

The CSCet C i ent | nf o function is used to obtain information about a client from the
Card Service’s global client queue. The client is specified by passing in a cl i ent Handl e
value previously obtained using Get Fi r st Cl i ent or Get Next Ol i ent .

Note that in this case the caller does not pass in its own cl i ent Handl e value, but that
of the client whose information is being requested.

The caller of the CSGet C i ent | nf o function specifies the type of information being
requested by setting the requested information subfunction in the upper byte of the
attri but es field. The Card Services software passes a CLI ENT_| NFOmessage to the
client pointed to by cl i ent Handl e. Called clients are expected to respond to the

CLI ENT_I NFOmessage by providing the data requested. When a client receives a

CLI ENT_I NFOmessage to perform a custom action, it needs to be aware that it is being
called from the Finder or a similar process environment.

Each time the Card Services software calls a client with a CLI ENT_| NFOmessage, Card
Services passes a client callback parameter block (Cl i ent Cal | backPB). The buffer field
of the Cl i ent Cal | backPB structure contains a pointer to the get client info parameter
block (Get C i ent | nf 0PB), which has the following structure:

Client Cal | backPB. function CLI ENT_I NFG,
Cient Cal | backPB. socket = 0;
ClientCall backPB.info
CientCall backPB. m sc = 0;

Cient Cal | backPB. buf fer (Ptr) CGetdientlnfoPB;

[
Lo

C i ent Cal | backPB. cl i ent Dat a
= ((dientQRecPktr)
GetdientlnfoPB->clientHandl e)->clientDataPtr;

Before calling the CSCGet Cl i ent | nf o function, you should use Cet Fi rst O i ent and
CGet Next Cl i ent to iterate through the registered clients. Card Services returns
cl i ent Handl e to the caller of either function.

Client Information



RESULT CODES

CHAPTER 9

PC Card Services

SUCCESS
BAD_HANDLE

Configuration

No error
Invalid cl i ent Handl e value

The functions described in this section help you configure cards and sockets.

CSGetConfigurationInfo

You can use the CSGet Conf i gur at i onl nf o function to get the information needed to
initialize a CSMbdi f yConf i gur at i on parameter block.

pascal OSErr

CSGet Confi gur ati onl nf o( Get ModRequest Confi gl nf oPB *pb) ;

The parameter block associated with this function is as follows:

typedef struct Get ModRequest Confi gl nf oPB Get ModRequest Confi gl nf oPB

struct Get ModRequest Confi gl

{
Ul nt 32

U nt16
Ul nt 16
Ul nt8
unt8
unt8
Ul nt8
Ul nt 32
unt8
U nt8
U nt8
unt8
U nt8
unt8
unt8
U nt8
U nt16
U nt 16

clientHandl e;//

socket ; /1
attributes; [/
vce; /1
vppl; /1
vpp2; /1
i nt Type; /11
configBase; [/
st at us; /1
pi n; /1
copy; /1
configlndex; //
present; 11
firstDevType;//
f uncCode; /1

syslnit Mask; //
manuf Code; /1
manuf | nf o; /1

Configuration

nf oPB

clientHandl e returned by Registerdient
| ogi cal socket nunber

bi t map of configuration attributes

Vcc setting

Vppl setting

Vpp2 setting

interface type (menory or nenory+l/0O
card base address of config registers
card status register setting, if present
card pin register setting, if present
card socket/copy reg setting, if present
card option register setting, if present
bit map of which config regs are present
from Devicel D tuple

from Funcl D tuple

from Funcl D tuple

from Manufacturerl D tuple

from Manufacturerl D tuple

185



CHAPTER 9

PC Card Services

unt8 cardvalues; // <« valid card register val ues
unt8 paddi ng[ 1] ;
1

/] "attributes' field val ues

enum

{
csExcl usi vel yUsed = 0x0001
csEnabl el REQs = 0x0002,
csVccChangeVval i d = 0x0004,
csVpplChangeVal i d = 0x0008,
csVpp2ChangeVval i d = 0x0010,
csValiddient = 0x0020,

/'l request that power be applied to socket during sleep
csSl eepPower 0x0040,
csLockSocket = 0x0080,

csTurnOnl nUse = 0x0100

1

/1 "intType' field val ues

enum

{
csMenoryl nterface = 0x01
csMenmory_And_| O I nterface = 0x02

b

/1 'present' field values

enum

{
csOpti onRegi st er Present = 0x01
csSt at usRegi st er Present = 0x02,
csPi nRepl acenent Regi ster Present = 0x04,
csCopyRegi st er Present = 0x08

1

/1 *cardval ues' field val ues

enum

{
csOptionVal ueval i d = 0x01
csSt atusVal ueval i d = 0x02,
csPi nRepl acenent Val ueVal i d = 0x04,
csCopyVal ueval i d = 0x08

186 Configuration



DESCRIPTION

CHAPTER 9

PC Card Services

The CSGet Conf i gur ati onl nf o function is generally called after a client has parsed a
tuple stream, identified an inserted card as its card, and is ready to initialize a
CSModi f yConf i gur at i on parameter block.

RESULT CODES

CSRequestConfiguration

SUCCESS
BAD_HANDLE

No error
Invalid cl i ent Handl e value

You can use the CSRequest Conf i gur at i on function to establish yourself as the
configuring client for a card and socket and to lock the configuration.

pascal OSErr

CSRequest Conf i gur ati on( Get ModRequest Confi gl nf oPB *pb) ;

The parameter block associated with this function is as follows:

typedef struct Get ModRequest Confi gl nf oPB Get ModRequest Confi gl nf oPB
struct Get ModRequest Confi gl nf oPB

{

Ul nt 32
Ul nt 16
U nt16
unt8
Ul nt8
unt8
unt8
Ul nt 32
U nt8
unt8
U nt8
U nt8
unt8
U nt8
unt8
unt8
U ntl16
U nt16
unt8
U nt8

cli ent Handl e;
socket ;

attri butes;
vCc;

vppl;

vpp2;

i nt Type;
confi gBase;
st at us;

pi n;

copy;
confi gl ndex;
present;
firstDevType;
f uncCode
sysl ni t Mask;
manuf Code;
manuf | nf o;
cardVval ues;
paddi ng[ 1] ;

Configuration

/1
11
/1
/1
Il
/1
/11
11
11
/11
11
11
11
11
11
/1
11
11
/1
11

clientHandl e returned by Registerdient

| ogi cal socket nunber

bitmap of configuration attributes

Vcec setting

Vppl setting

Vpp2 setting

interface type (menory or nenory+l/0O

card base address of configuration registers

card status register setting, if present
card pin register setting, if present

card socket/copy reg. setting, if present
card option register setting, if present

bit map of which config registers are present
from Devicel D tuple

fromFuncl D tuple

from Funcl D tuple

from Manufacturerl D tuple

from Manufacturerl D tuple

valid card register val ues

187



DESCRIPTION

RESULT CODES

188

CHAPTER 9

PC Card Services

Forattri butes,int Type, present, and car dVal ues field values see
“CSGetConfigurationInfo” beginning on page 185.

The CSRequest Conf i gur at i on function is used by a client to establish a locked
configuration on a socket and its card. A client calls CSRequest Conf i gur at i on after it
has parsed an inserted and ready card and has recognized the card as being usable.

Card Services uses ¢l i ent Handl e to lock in the configuration until the same client calls
CSRel easeConfi gur at i on. Once a socket and card are configured no other client may
alter their configuration.

Configuring a socket and card consists of three operations:
» establishing Vecc and Vpp for the socket
» establishing the socket interface definition (memory only or I/O and memory)

» writing the configuration registers on the card

When Card Services receives a CARD_I NSERTI ON and subsequent CARD_READY event
for a socket, it configures the socket by setting Vee, Vppl, and Vpp2 to 5 volts; configuring
the interface to be memory only; and issuing RESET to the card. Card Services then
parses the CIS (card information structure) of the card. Once Card Services has finished
parsing the CIS, it issues a CARD_READY message to all registered clients. (It has
previously delivered a CARD_| NSERTI ON message to the same clients.) Even if a

client parses and recognizes a card and intends to use the card without altering

the configuration, it should call CSRequest Conf i gur at i on to establish itself as the
configuring client.

SUCCESS No error
BAD_HANDLE Invalid cl i ent Handl e value
BAD_SOCKET Invalid socket number

CONFI GURATI ON_LOCKED Another client has already locked
a configuration

NO CARD No card

QUT_OF_RESOURCE Card Services lacks enough resources to
complete this request

BAD BASE Invalid base entered

Configuration



CHAPTER 9

PC Card Services

CSModifyConfiguration

t ypedef st

struct Get

{
Ul nt 32
Ul nt 16
U nt16
unt8
u nt8
unt8
unt8
Ul nt 32
u nt8
unt8
U nt8
U nt8
unt8
U nt8
U nt8
unt8
U ntl16
U nt16
unt8
unt8

DESCRIPTION

You can use the CSModi f yConf i gur at i on function to alter the configuration of a
socket or card.

pascal OSErr CSModifyConfiguration(Get ModRequest Confi gl nf oPB *pb);

The parameter block associated with this function is as follows:

ruct Get ModRequest Confi gl nfoPB Get ModRequest Conf i gl nf oPB;
ModRequest Confi gl nf oPB
clientHandle; // - clientHandl e returned by Registerdient
socket ; /1 - logical socket nunber
attri butes; /1 - bitmap of configuration attributes
vce; /1l - Vcc setting
vppl; /Il - Vppl setting
vpp2; /'l - Vpp2 setting
i nt Type; /1 - interface type (nmenory or nenory+l/0O
confi gBase; /'l - card base address of config registers
st at us; /1l - card status register setting, if present
pi n; /1 - card pin register setting, if present
copy; /'l - card socket/copy reg. setting, if present
configlndex; // - card option register setting, if present
present; /1 - bitmap of which config regs. are present
firstDevType; // ~ from DevicelD tuple
f uncCode; /[l < fromFunclD tuple
syslnitMask; // ~ from FunclD tuple
manuf Code; I/l < from ManufacturerlD tuple
manuf | nf o; /1l « from Manufacturerl D tuple
car dVal ues; /1l < valid card register val ues
paddi ng[ 1] ; /1
Forattri butes,intType, present, and car dVal ues field values see
“CSGetConfigurationInfo” beginning on page 185.

The CSModi f yConf i gur at i on function is used by clients to alter any of the three
configuration elements of a socket or card. Only a client that has previously succeeded in
calling CSRequest Conf i gur at i on may call CSModi f yConfi gurati on.

Configuration 189



CHAPTER 9

PC Card Services

RESULT CODES
SUCCESS No error
BAD HANDLE Invalid cl i ent Handl e value
BAD SOCKET Invalid socket number

CONFI GURATI ON_LOCKED Another client has already locked
a configuration

NO_CARD No card

QUT_OF_RESOURCE Card Services lacks enough resources
to complete this request

BAD BASE Invalid base entered

CSReleaseConfiguration

You can use the CSRel easeConf i gur at i on function to release a previously locked
configuration.

pascal OSErr CSRel easeConfi gurati on(Rel easeConfi gurati onPB *pb);
The parameter block associated with this function is as follows:

typedef struct Rel easeConfigurati onPB Rel easeConfi gurati onPB;
struct Rel easeConfigurati onPB

{
U nt32 clientHandl e;

U nt16 socket;
b

DESCRIPTION

The CSRel easeConf i gur at i on function is used by clients to release a configuration
previously locked for a socket and card.

RESULT CODES
SUCCESS No error
BAD HANDLE Invalid cl i ent Handl e value
BAD SOCKET Invalid socket number

CONFI GURATI ON_LOCKED  Another client has already locked
a configuration
NO_CARD No card in specified socket

190 Configuration



CHAPTER 9

PC Card Services

CSAccessConfigurationRegister

You can use the CSAccessConf i gur at i onRegi st er function to modify a single
configuration register. This function is not normally used by clients.

pascal OSErr
CSAccessConfi gurati onRegi st er (AccessConfi gurati onRegi sterPB *pb);

The parameter block associated with this function is as follows:

typedef struct AccessConfi gurationRegi sterPB
AccessConfi gurati onRegi st er PB;

struct AccessConfigurati onRegi sterPB

{
U nt16 socket; /1 - gl obal socket nunber
Unt8 action; /1 - read/wite
Uunt8 offset; /1 - offset fromconfig register base
unt8 value; /! - value to read/wite
U nt8 padding[1];

1

/1 "action' field val ues

enum {
CS_ReadConfi gRegi st er= 0x00,
CS WiteConfigRegister= 0x01

1

DESCRIPTION

The CSAccessConfi gur at i onRegi st er function lets a client modify a single
configuration register. The location of the register is defined by adding

AccessConf i gur ati onRegi st er PB. of f set to the configuration base address (see
CsModi f yConfi gur ati on on page 189). If the act i on parameter is set to
CS_ReadConf i gRegi st er, then the configuration register value is returned in
AccessConfi gurati onRegi st er PB. val ue. If the act i on parameter is set to
CS_WiteConfi gRegi st er, then the configuration register is written with
AccessConfi gurati onRegi st er PB. val ue.

IMPORTANT

The CSAccessConfi gur ati onRegi st er function is not
normally used by clients. When clients want to set configuration
registers they usually call CSRequest Conf i gurati on or
CsSModi f yConfi gur at i on and set the appropriate registers

at that time. a

Configuration 191



RESULT CODES

Masks

CHAPTER 9

PC Card Services

SUCCESS No error
BAD SOCKET Invalid socket number

The functions described in this section get and set client event and socket masks.

CSGetClientEventMask

192

You can use the CSGetClientEventMask function to obtain your current event mask.
pascal OSErr CSGet i ent Event Mask( Get Set C i ent Event MaskPB *pb) ;

The parameter block associated with this function is as follows:

typedef struct GetSetdient Event MaskPB Get Set C i ent Event MaskPB;
struct GCetSetd i ent Event MaskPB
{
Unt32 clientHandle;// - clientHandl e returned by
Regi sterd i ent
Untlé attributes; [/

!

bitmap of attributes

U ntl6 event Mask; /Il « bitmap of events to be passed to
/1 client for this socket
U ntl6é socket; /1l - logical socket nunber

s
/] "attributes' field val ues

enum

{
csEvent MaskThi sSocket Onl y= 0x0001

s

[/ '"eventMask' field val ues

enum

{
csWiteProtect Event = 0x0001,
csCar dLockChangeEvent = 0x0002,
csEj ect Request Event = 0x0004,
csl nsert Request Event = 0x0008,

Masks



CHAPTER 9

PC Card Services

csBatt er yDeadEvent = 0x0010,
csBatt eryLowEvent = 0x0020,
csReadyChangeEvent = 0x0040,
csCar dDet ect ChangeEvent = 0x0080,
csPMChangeEvent = 0x0100,
csReset Event = 0x0200,
csSSUpdat eEvent = 0x0400,
csFunctionl nterrupt = 0x0800,
csAl | Events = OxFFFF

DESCRIPTION

The CSCet Cl i ent Event Mask function is used by a client to obtain its current

event mask. If the Get Set Cl i ent Event MaskPB. at t ri but es field has

csEvent MaskThi sSocket Onl y reset, the CSGet Cl i ent Event Mask function returns
the client’s global event mask. If Get Set Ol i ent Event MaskPB. at t ri but es has
csEvent MaskThi sSocket Onl y set, then the event mask for the given socket number
is returned.

RESULT CODES
SUCCESS No error
BAD_ HANDLE Invalid cl i ent Handl e value
BAD SOCKET Invalid socket number
CSSetClientEventMask

You can use the CSSetClientEventMask function to establish your event mask.
pascal OSErr CSSet i ent Event Mask( Get Set O i ent Event MaskPB *pb) ;

The parameter block associated with this function is as follows:

typedef struct GetSetdientEvent MaskPB Get Set O i ent Event MaskPB;
struct GetSetd ient Event MaskPB

{
Unt32 clientHandle;// - clientHandl e returned by Registerdient
Untlé attributes; // - bitmap of attributes
U ntl6 event Mask; /1 - bitmap of events to pass to client
/1 for this socket
U ntl6é socket; /1l - logical socket nunber
1

For event Mask field values, see “CSGetClientEventMask” on page 192.

Masks 193



CHAPTER 9

PC Card Services

DESCRIPTION

The CSSet C i ent Event Mask function is used by a client to establish its event

mask. If the Get Set O i ent Event MaskPB. at t ri but es field is reset,

CSSet d i ent Event Mask sets the client’s global event mask. If the

Get Set d i ent Event MaskPB. at t ri but es field has csEvent MaskThi sSocket Onl y
set, then the event mask for the given socket number is set.

After processing CARD_READY and determining that the card is not usable, clients
should clear their global event masks so that message processing with the system
is streamlined.

RESULT CODES

SUCCESS No error

BAD HANDLE The cl i ent Handl e field of Get O i ent | nf oPB
is invalid

BAD_SOCKET Invalid socket number

CSRequestSocketMask

You can use the CSRequestSocketMask function to establish an event mask for a
specified socket.

pascal OSErr CSRequest Socket Mask( RegRel Socket MaskPB *pb) ;

The parameter block associated with this function is as follows:

typedef struct ReqRel Socket MaskPB RegRel Socket MaskPB;
struct ReqRel Socket MaskPB

{

Unt32 clientHandle;// - clientHandl e returned by Registerdient

U ntl6 socket; /1 - logical socket

U ntl6 event Mask; /!l - bitmap of events to pass to client

/1 for this socket
1
For event Mask field values, see “CSGetClientEventMask” on page 192.

DESCRIPTION

The CSRequest Socket Mask function is used to establish an event mask for the given
socket number.

194 Masks



CHAPTER 9

PC Card Services

RESULT CODES
SUCCESS No error
BAD HANDLE The cl i ent Handl e field of Get O i ent | nf oPB
is invalid
CSReleaseSocketMask

You can use the CSReleaseSocketMask function to clear the event mask for a PC card
that you are no longer using.

pascal OSErr CSRel easeSocket Mask( RegRel Socket MaskPB *pb) ;

The parameter block associated with this function is as follows:

t ypedef struct ReqRel Socket MaskPB ReqgRel Socket MaskPB;
struct RegRel Socket MaskPB

{

Unt32 clientHandle;// - clientHandl e returned by Registerdient

U ntl6 socket; /1 - logical socket

U ntl6 event Mask; /1 - bitnmap of events to pass to client

/1 for this socket
1
For event Mask field values, see “CSGetClientEventMask” on page 192.

DESCRIPTION

The CSRel easeSocket Mask function is used to clear the event mask for the specified
socket. This is the recommended way for clients to clear socket events when they are not
using a particular PC card.

RESULT CODES

SUCCESS No error
BAD_HANDLE The cl i ent Handl e field of Get Tl i ent | nf oPB
is invalid

Masks 195



CHAPTER 9

PC Card Services

Tuples

You can use the functions described in this section to obtain PC card information from
the corresponding tuples.

CSGetFirstTuple

You can use the CSGet Fi r st Tupl e function to obtain access to the first tuple associated
with a particular socket.

pascal OSErr CSGet First Tupl e( Get Tupl ePB *pb);

The parameter block associated with this function is as follows:

typedef struct Get Tupl ePB Get Tupl ePB;
struct GetTupl ePB

{
U nt16 socket; /1 - logical socket number
U ntl6é attributes; /1 - bitnmap of attributes
Unt8 desiredTuple; // - desired tuple code value, or $FF for all
Unt8 tupleOfset; // - offset into tuple fromlink byte
U nt16 fl ags; /Il o reserved for internal use
U nt32 |inkOfset I/l o reserved for internal use
U nt32 cisOfset; /Il o reserved for internal use
uni on
{
struct
{
Uunt8 tupleCode; // ~ tuple code found
Uunt8 tupleLink; // « link value for tuple found
}  Tupl ePB;
struct
{
Ul nt16 t upl eDat aMVax; /1 - maximum size of tuple data area
U nt16 t upl eDat alLen; /'l <~ nunber of bytes in tuple body
Tupl eBody tupl eDat a; I/l < tuple data
}  Tupl eDat aPB;
b
i

196 Tuples



CHAPTER 9

PC Card Services

// "attributes' field values

enum
{
csRet ur nLi nkTupl es= 0x0001
b
RESULT CODES
SUCCESS No error
BAD SOCKET Invalid socket number
NO_CARD No card in specified socket
I N_USE Card is configured and being used
by another client
READ FAIl LURE Card cannot be read
BAD CI S Card Services has encountered a
bad CIS structure
QUT_OF_RESOURCE Card Services is not able to obtain resources
to complete function
NO_MORE_| TEMS There are no more tuples to process
CSGetNextTuple

You can use the CSGet Next Tupl e function to obtain access to each tuple associated
with a particular socket after you have used the CSGet Fi r st Tupl e function to obtain
access to the first tuple associated with that socket.

pascal OSErr CSGet Next Tupl e( Get Tupl ePB *pb);

The parameter block associated with this function is as follows:

typedef struct GetTupl ePB Get Tupl ePB;
struct GetTupl ePB
{
U nt16 socket; /1 - logical socket number
U ntl6 attributes; /1 - bitnmap of attributes
Unt8 desiredTuple; // - desired tuple code value, or $FF for all
Uunt8 tupleOfset; // - offset into tuple fromlink byte

U ntl6 fl ags; /Il o reserved for internal use
unt32 |inkOf fset; /Il o reserved for internal use
U nt32 cisOfset; /Il o reserved for internal use
uni on
{

struct

{

Tuples 197



CHAPTER 9

PC Card Services

U nt8 tupl eCode; /1l « tuple code found
U nt8 tupleLink; /Il <« link value for tuple found

} Tupl ePB;

struct

{
Ul nt16 tupl eDataMax; // - maxi num size of tuple data area
U nt16 tupl eDat aLen; // ~ nunber of bytes in tuple body
Tupl eBody t upl eDat a; /1 ~ tuple data

}  Tupl eDat aPB;

Forattri but es field values, see “CSGetFirstTuple” on page 196.

RESULT CODES

SUCCESS
BAD_SOCKET
NO_CARD

| N_USE

READ FAI LURE
BAD CI' S

OUT_OF_RESOURCE

NO_MORE_| TEMS

CSGetTupleData

No error

Invalid socket number

No card in specified socket

Card is configured and being used
by another client

Card cannot be read

Card Services has encountered a
bad CIS structure

Card Services is not able to obtain
resources to complete function
There are no more tuples to process

You can use the CSCGet Tupl eDat a function to obtain information for the tuple
previously found using either the CSGet Next Tupl e or CSCet Fi r st Tupl e function.

pascal

OSErr CSGet Tupl eDat a( Get Tupl ePB *pb) ;

The parameter block associated with this function is as follows:

t ypedef struct Get Tupl ePB Get Tupl ePB;

struct Get Tupl ePB

{
U nt 16 socket; I
U ntl6 attri butes; J A
Uunt8 desiredTuple; // -
Uunt8 tupleCfset; [/ -
198 Tuples

| ogi cal socket nunber
bitmap of attributes
desired tuple code val ue,
of f set

or $FF for
into tuple fromlink byte

al |



CHAPTER 9

PC Card Services

U ntil6 fl ags; /'l o internal use
unt32 |inkOfset; /Il o internal use
U nt32 cisOfset; /'l « internal use
uni on
{

st ruct

{

Uunt8 tupleCode; // ~ tuple code found
Uunt8 tupleLink; // « link value for tuple found

} Tupl ePB;
struct
{
Ul nt 16 tupl eDataMax; // - maxi num size of tuple data area
U nt16 tupl eDat aLen; // ~ nunber of bytes in tuple body
Tupl eBody t upl eDat a; /Il « tuple data
}  Tupl eDat aPB;
}ou
s
/] 'attributes' field val ues
enum
{
csRet ur nLi nkTupl es= 0x0001
1
RESULT CODES
SUCCESS No error
BAD SOCKET Invalid socket number
NO_CARD No card in specified socket

QUT_OF RESCURCE Card Services is unable to obtain
resources to complete function

Tuples 199



CHAPTER 9

PC Card Services

Card and Socket Status

The CSCet St at us function gets card and socket status information.

CSGetStatus

You can use the CSGet St at us function to get status information for the specified socket.
pascal OSErr CSCet St at us( CGet St at usPB *pb) ;

The parameter block associated with this function is as follows:

t ypedef struct Get StatusPB Get St at usPB;

struct Get StatusPB

{
U nt16 socket; /1 - logical socket nunber
U nt16 cardState; /Il « current state of installed card
U nt16 socketState; // ~ current state of the socket

s

// 'cardState' field val ues

enum

{
csWiteProtected = 0x0001,
csCar dLocked = 0x0002,
csEj ect Request = 0x0004,
csl nsert Request = 0x0008,
csBatt er yDead = 0x0010,
csBatterylLow = 0x0020,
csReady = 0x0040,
csCar dDet ect ed = 0x0080

}s

/Il 'socketState' field val ues

200 Card and Socket Status



CHAPTER 9

PC Card Services

enum
{
csWit eProt ect Changed = 0x0001,
csCar dLockChanged = 0x0002,
csEj ect Request Pendi ng = 0x0004,
csl nsert Request Pendi ng = 0x0008,
csBat t er yDeadChanged = 0x0010,
csBatt er yLowChanged = 0x0020,
csReadyChanged = 0x0040,
csCar dDet ect Changed = 0x0080
b
RESULT CODES
SUCCESS No error
BAD SOCKET Invalid socket number

Access Window Management

The functions described in this section help you manage access windows.

CSRequestWindow

t ypedef struct
struct

{

Ul nt 32
Ul nt 32
U nt 16
Ul nt 16
Ul nt 32
Ul nt 32
U nt8

unt8

You can use the CSRequest W ndow function to establish a new access window.

pascal OSErr CSRequest W ndow( ReqModRel W ndowPB * pb) ;

The parameter block associated with this function is as follows:

clientHandle; //
wi ndowHandl e; //
socket ; /1
attri butes; /1
base; /1
si ze; /1
accessSpeed; [/

/1
paddi ng[ 1] ;

- clientHandl e returned by Registerdient

>

—

—

>

“

wi ndow descri ptor

ReqModRel W ndowPB ReqModRel W ndowPB;
ReqModRel W ndowPB

| ogi cal socket nunber
wi ndow attributes (bitmap)

system base address
menory w ndow si ze

wi ndow access speed (bitnap)

(not applicable for

Access Window Management

I / O node)

201



CHAPTER 9

PC Card Services

/] 'attributes' field val ues

enum

{
csMenor yW ndow = 0x0001
cs| ON ndow = 0x0002,
CSAttri buteW ndow =

/1
csW ndowTypeMask = 0x0007,
csEnabl eW ndow = 0x0008,
csAccessSpeedVal i d= 0x0010,
csLittl eEndi an =
/1

cs16Bi t Dat aPat h = 0x0040,
csW ndowPaged = 0x0080,
csW ndowshar ed = 0x0100,
csW ndowFi r st Shared = 0x0200,
csW ndowPr ogr anmabl e = 0x0400

b

/1l "accessSpeed' field val ues

enum

{
csDevi ceSpeedCodeMask= 0x07,
csSpeedExponent Mask = 0x07,
csSpeedMant i ssaMask = 0x78,
csUseWi t = 0x80,
csAccessSpeed250nsec = 0x01
csAccessSpeed200nsec = 0x02,
csAccessSpeedl50nsec = 0x03,
csAccessSpeed100nsec = 0x04,
csExt AccSpeedMant 1pt 0= 0x01,
csExt AccSpeedMant 1pt 2= 0x02,
csExt AccSpeedMant 1pt 3= 0x03,
csExt AccSpeedMant 1pt 5= 0x04,
csExt AccSpeedMant 2pt 0= 0x05,
csExt AccSpeedMant 2pt 5= 0x06,
csExt AccSpeedMant 3pt 0= 0x07,
csExt AccSpeedMant 3pt 5= 0x08,
csExt AccSpeedMant 4pt 0= 0x09,
csExt AccSpeedMant 4pt 5= 0x0A,
csExt AccSpeedMant 5pt 0= 0x0B

202 Access Window Management

0x0004,// not normally used by Card Services

clients

0x0020,// configure socket for

littl e-endi anness



CHAPTER 9

PC Card Services

csExt AccSpeedMant 5pt 5= 0x0C,
csExt AccSpeedMant 6pt 0= 0x0D,
csExt AccSpeedMant 7pt 0= OxOE,
csExt AccSpeedMant 8pt 0= OxOF,

csExt AccSpeedExplns = 0x00,
csExt AccSpeedExpl0Ons = 0x01,
csExt AccSpeedExp100ns= 0x02,
csExt AccSpeedExplus = 0x03,
csExt AccSpeedExpl0Ous = 0x04,

csExt AccSpeedExp100us= 0xO05,
csExt AccSpeedExplns = 0x06,
csExt AccSpeedExplOns = 0x07

b

DIVERGENCE FROM PCMCIA STANDARD

RESULT CODES

Apple has added another attribute (csl OTypeW ndow) that lets a client request that its
new access window be an I/O cycle window. For an I/O cycle window, speed
characteristics are fixed and any speed-related parameters are ignored. Speed parameters
are only effective if the access window is of type Menory or At tri but e.

In the PCMCIA standard, there is an implied window assignment when a client calls
CSRequest Conf i gur at i on because the client must have called Request | / Ofirst.
This assures the client that there is I/O cycle window support for the change.

SUCCESS No error

BAD SOCKET Invalid socket number

QUT_OF RESCURCE Card Services is unable to obtain
resources to complete function

BAD_BASE Invalid base address
BAD_ATTRI BUTE Invalid window attributes
CSModifyWindow

You can use the CSModi f yW ndow function to modify information about an
access window.

pascal OSErr CSMbdi f yW ndow( ReqMbdRel W ndowPB * pb) ;

Access Window Management 203



CHAPTER 9

PC Card Services

The parameter block associated with this function is as follows:

t ypedef struct RegMbdRel W ndowPB RegModRel W ndowPB;
struct RegMbdRel W ndowPB

{
Unt32 clientHandle; // - clientHandl e returned by Registerdient
U nt 32 wi ndowHandl e; // « w ndow descri ptor
U nt16 socket; /1 - logical socket numnber
U ntl6 attributes; /1 - window attributes (bitnmap)
U nt 32 base; !/l « system base address
U nt 32 si ze; /'l  menmory wi ndow size
U nt8 accessSpeed; // - w ndow access speed (bitnmap)
/1 (not applicable for I/0O node)
U nt8 padding[1];
i

Forattri but es and accessSpeed field values, see “CSRequestWindow” on page 201.

DIVERGENCE FROM PCMCIA STANDARD

The CSModi f yW ndow function must have a valid cl i ent Handl e value (the one
passed in on CSRequest W ndow); otherwise a BAD_HANDLE error is returned.

RESULT CODES
SUCCESS No error
BAD_SOCKET Invalid socket number
QUT_OF_RESOURCE Card Services is unable to obtain
resources to complete function
BAD_BASE Invalid base address
BAD ATTRI BUTE Invalid window attributes
BAD_HANDLE Invalid cl i ent Handl e value
CSReleaseWindow

You can use the CSRel easeW ndow function to clear an access window that is not
longer needed.

pascal OSErr CSRel easeW ndow( ReqMbdRel W ndowPB * pb) ;

204 Access Window Management



CHAPTER 9

PC Card Services

The parameter block associated with this function is as follows:

t ypedef struct RegMbdRel W ndowPB RegModRel W ndowPB;
struct RegMbdRel W ndowPB

{
Unt32 clientHandle; // - clientHandl e returned by Registerdient
U nt 32 wi ndowHandl e; // - w ndow descri ptor
U nt16 socket; /1 - logical socket numnber
U ntl6 attributes; /1 not used
U nt 32 si ze; /1 not used
U nt8 accessSpeed; // not used
U nt8 padding[1]; /1 not used
s

For attributes and accessSpeed field values, see “CSRequestWindow” on page 201.

DIVERGENCE FROM PCMCIA STANDARD

The CSRel easeW ndow function must have a valid cl i ent Handl e value (the one
passed in on CSRequest W ndow); otherwise a BAD_HANDLE error is returned.

RESULT CODES
SUCCESS No error
BAD_SOCKET Invalid socket number
BAD_HANDLE Invalid cl i ent Handl e value

Client Registration

The functions described in this section help you get information about Card Services and
register and deregister clients.

CSGetCardServicesInfo

You can use the CSCGet Car dSer vi cesl nf o function to get information from the Card
Services software about the PC cards currently installed.

pascal OSErr CSGet CardServi cesl nfo(Get CardServi cesl nfoPB *pb);

Client Registration 205



CHAPTER 9

PC Card Services

The parameter block associated with this function is as follows:

t ypedef struct Get CardServicesl nfoPB Get CardServi cesl nf oPB;
struct GetCardServiceslnfoPB

{
Uunt8 signature[2]; // < two ASCII chars 'CS
U nt 16 count; /1 < total nunmber of sockets installed
U nt16 revision; /1 ~ BCD
U ntl6 cslLevel; /1 ~ BCD
U nt16 reserved; /'l > zero
U ntl6 vStrlLen; /Il - in: client's buffer size
out: vendor string length
Uunt8 *vendorString;// o in: pointer to buffer to hold CS vendor
/1 string (zero-term nated)
/1 out: CS vendor string copied to buffer
s
RESULT CODES
SUCCESS No error
CSRegisterClient

You can use the CSRegi st er d i ent function to register yourself as a client of the Card
Services software.

pascal OSErr CSRegisterCient(RegisterdientPB *pb);

The parameter block associated with this function is as follows:

typedef struct RegisterdientPB RegisterdientPB,
struct RegisterdientPB

{
Ul nt 32 clientHandle; // « client descriptor
PCCar dCSCl i ent UPPcl i entEntry; // - UPP to client's event handler
U ntl6 attributes; /1 - bitmap of client attributes
U nt16 event Mask; /'l - bitnmap of events to notify client
Ptr cl i ent Dat a; /! - pointer to client's data
U nt16 versi on; /1 - Card Services version
/1 client expects
1

/] "attributes' field values (see GetCientlnfo)

206 Client Registration



CHAPTER 9

PC Card Services

/1 csMenmorydient 0x0001,
/1 cslOdient 0x0004,
/| csShareabl eCardl nsert Event s= 0x0008,
/1 csExcl usiveCardl nsert Event s= 0x0010

DESCRIPTION

Observe these cautions when using CSRegi sterd i ent :
= [t must not be called at interrupt time.
= You must specify the type of client for event notification order.

= You must set the event mask for types of events client is interested in. The event mask
passed in during this call will be set for the global mask and all socket event masks.

DIVERGENCE FROM PCMCIA STANDARD
The CSRegi st er d i ent function is synchronous. On returning from
CSRegi sterd i ent, the cl i ent Handl e field is valid. Once this call is successful,
all clients are expected to support reentrancy. After CSRegi st er Cl i ent, clients
normally call CSVendor Speci f i ¢ with vsCode set to vsEnabl eSocket Event s.

RESULT CODES

SUCCESS No error

QUT_OF RESOURCE Card Services is unable to obtain
resources to complete function

BAD_ATTRI BUTE Invalid window attributes

CSDeregisterClient

You can use the CSDer egi st er 0 i ent function to clear client information previously
registered with the Card Services software.

pascal OSErr CSDeregi sterdient(RegisterdientPB *pb);

The parameter block associated with this function is as follows:

typedef struct RegisterdientPB RegisterCientPB;
struct RegisterdientPB

{
Ul nt 32 clientHandle; // « client descriptor
PCCar dCSCl i ent UPP clientEntry; /1 - UPP to client's event handl er
U nt 16 attri butes; /1 - bitnmap of client attributes
U nt16 event Mask; /!l - bitmap of events to notify
/1 client

Client Registration 207



CHAPTER 9

PC Card Services

Ptr cl i ent Dat a; /! - pointer to client's data
U nt 16 versi on; /1 - Card Services version
/1 client expects
1
Forattri but es field values, see “CSRegisterClient” on page 206.
RESULT CODES
SUCCESS No error
BAD ATTRI BUTE Invalid window attributes
BAD_HANDLE Invalid cl i ent Handl e value

Miscellaneous Functions

The functions described in this section help you with various Card Services
management tasks.

CSResetCard

You can use the CSReset Car d function to reset a PC card in a specified socket.
pascal OSErr CSReset Card(Reset CardPB *pb);

The parameter block associated with this function is as follows:

typedef struct Reset CardPB Reset Car dPB;
struct Reset CardPB

{
Unt32 clientHandle;// - clientHandl e returned by Registerdient
U ntl6 socket; /'l - socket nunber
Untl6 attributes; // not used

1

DESCRIPTION

Calling clients will receive RESET_COVPLETE messages regardless of whether or not

their socket event mask and global event mask have csReset Event set.

208 Miscellaneous Functions



CHAPTER 9

PC Card Services

DIVERGENCE FROM PCMCIA STANDARD

Card Services does not issue CARD_RESET in place of CARD_READY. If a client is issuing
a reset to a card, then it should know whether the card will generate a CARD_READY or
not. If the card transitions from BSY to RDY, then the client will also know that it
shouldn’t access the card until it receives the CARD_READY event.

RESULT CODES
SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
BAD HANDLE Invalid cl i ent Handl e value or cl i ent Handl e
does not match configuring cl i ent Handl e
CSValidateCIS

You can use the CSVal i dat eCl S function to find out whether a socket has a valid CIS.
pascal OSErr CSVali dat eCl S(Val i dateCl SPB *pb);

The parameter block associated with this function is as follows:

typedef struct ValidateCl SPB Vali dat eCl SPB
struct ValidateCl SPB

{

U ntl6 socket; /1 - socket nunber

U ntl6 chains; /1 - whether link/null tuples should be
i ncl uded
b

DIVERGENCE FROM PCMCIA STANDARD

The PCMCIA standard specifies that a BAD_Cl S result is to be returned by setting the
pb- >chai ns element to 0. To accommodate cards that don’t have any tuples, Card
Services uses the result code to return BAD _Cl S (if the CIS is bad). If SUCCESS is
returned, then the value in pb- >chai ns reflects the number of valid tuples, with link
tuples not counted.

RESULT CODES
SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
BAD CI' S Card Services has detected a bad CIS

Miscellaneous Functions 209



CHAPTER 9

PC Card Services

CSVendorSpecific

You can use the CSVendor Speci fi ¢ function to perform certain elements that are
Mac OS specific.

pascal OSErr CSVendor Speci fi c(Vendor Specifi cPB *pb);

The parameter block associated with this function is as follows:

typedef struct Vendor Specifi cPB Vendor Speci fi cPB
struct Vendor Speci fi cPB

{
Unt32 clientHandle;// - clientHandl e returned by Registerdient
U nt16 vsCode;
U nt1l6 socket;
U nt 32 datalen; /1 - length of buffer pointed to by vsDataPtr
u nt8 *vsDataPtr; // - Card Services version this client expects
1

// 'vsCode' field val ues

enum
{
vsAppl eReser ved = 0x0000,
vsEj ect Card = 0x0001
vsGet Cardl nfo = 0x0002,
vsEnabl eSocket Event s = 0x0003,
vsCet Car dLocat i onl con= 0x0004,

vsCGet CardLocat i onText = 0x0005,

vsCet Adapt er I nf o = 0x0006

b

DESCRIPTION
The CSVendor Speci fi ¢ function is provided to allow Apple Computer to extend the
interface definition of Card Services for elements that are Mac OS specific. This function
requires two parameters, cl i ent Handl e and vsCode. For each vsCode there may be
additional parameters required. The following sections describe the additional
parameters required for each vsCode selector.

RESULT CODES

SUCCESS No error
UNSUPPORTED_FUNCTI ON The vsCode value is invalid

210 Miscellaneous Functions



CHAPTER 9

PC Card Services

EjectCard Parameter Block

You can use vendor-specific call #1 to eject a card.
/1 vendor-specific call #1

The parameter block associated with this function is as follows:

t ypedef struct Vendor SpecificPB Vendor Speci fi cPB;
struct Vendor Speci fi cPB

{
Unt32 clientHandle;// - clientHandl e returned by Registerdient
U nt16 vsCode; /1 - vsCode =1
U ntl6é socket; /1 - desired socket nunber to eject
U nt32 datalen; /1 not used
U nt8 *vsDataPtr; // not used
b
DESCRIPTION
Clients must pass in their cl i ent Handl e value to eject cards that they have configured.
Clients may not be able to eject cards that they did not configure unless the card is
previously unconfigured.
RESULT CODES
SUCCESS No error
BAD SOCKET Invalid socket number
NO_CARD No card in specified socket
I N_USE Another client refused the

ejection request

GetCardInfo Parameter Block

You can use vendor-specific call #2 to get information about a card in a socket.

/1 vendor-specific call #2

The parameter block associated with this function is as follows:

typedef struct GetCardlnfoPB Cet Cardl nf oPB;
struct Get Cardl nfoPB

{
U nt8 cardType; /1 ~ type of card in socket
/1 (defined at top of file)

Miscellaneous Functions 211



unt8
Ul nt 16
U nt 16
Ul nt 16
Ul nt8
U nt8

s

CHAPTER 9

PC Card Services

subType; /1 ~ detailed card type (defined at top of file)
reserved; /! o reserved (should be set to 0)
cardNarmeLen; // - maximum |l ength of card name to be returned

vendor NaneLen;// - max.

| ength of vendor nane to be returned

*car dNare; /1 - ptr to card nane string (fromdCl'S), or nil
*vendor Nane; // - ptr to vendor nanme (fromdC'S), or nil

/1l GetCardlnfo card types

#define csUnknownCardType 0

#define csMiltiFunctionCardType 1

#define csMenoryCardType 2

#define csSerial PortCardType 3

#define csSerial OnlyType 0

#define csDat aMbdenType 1

#define csFaxModenilype 2

#defi ne csFaxAndDat aMbdemvask (csDat aMbdeniType | csFaxModenType)

#define csVoi ceEncodi ngType 4

#define csParallel PortCardType 4

#define csFixedDi skCardType 5

#define csUnknownFi xedDi skType O

#define csATAlnterface 1

#define csRotatingDevice (0<<7)

#define csSiliconDevice (1<<7)

#define csVi deoAdaptor CardType 6

#defi ne csNetwor kAdapt or Car dType7

#define csAl MsCardType 8

#define csNuntCardTypes 9

RESULT CODES
SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket

212

Miscellaneous Functions



CHAPTER 9

PC Card Services

EnableSocketEvents Parameter Block

You can use vendor-specific call #3 to enable events on every socket in the system.
/1 vendor-specific call #3
The parameter block associated with this function is as follows:

t ypedef struct Vendor SpecificPB Vendor Speci fi cPB;
struct Vendor Speci fi cPB

{
Unt32 clientHandle; // - clientHandl e returned by Registerdient
U nt 16 vsCode; /1 - vsCode = 3
Ul nt 16 socket; /!l not used
U nt 32 dat alLen; /1 not used
Uunt8 *vsDataPtr; /1 not used
1
DESCRIPTION

Calling this function is like calling the CSRequest Socket Mask function for every
socket in the system, using the global event mask as the starting socket event mask.

DIVERGENCE FROM PCMCIA STANDARD

This function is not in the PCMCIA specification. After reentrancy into a client is
available, calling this function to enable events is better than making repeated calls to the
Request Socket Mask function.

RESULT CODES

SUCCESS No error
BAD HANDLE Invalid cl i ent Handl e value

GetAdapterInfo Parameter Block

You can use vendor-specific call #6 to get information about an adapter that interfaces to
a specified socket.

/1 vendor-specific call #6

Miscellaneous Functions 213



CHAPTER 9

PC Card Services

The parameter block associated with this function is as follows:

t ypedef struct Vendor SpecificPB Vendor Speci fi cPB;
struct Vendor Speci fi cPB

{

Unt32 clientHandle;// - clientHandl e returned by Registerdient

U nt16 vsCode; /1 - vsCode = 6

U ntl6 socket; /1 - socket numnber

U nt32 datalLen; /'l - length of GetAdapterlnfoPB plus space for

/1 vol t ages

unt8 *vsDataPtr; // - GCetAdapterlnfoPB * (supplied by client)

s

typedef struct Cet Adapterl nfoPB Get Adapt er | nf oPB;

struct Get Adapt er | nf oPB

{
Unt32 attributes; // « capabilities of socket's adapter
U ntl6é revision; /Il < revision ID of adapter
U ntl6é reserved,; /1
Untl6 nunVoltEntries;// ~ nunber of valid voltage val ues
unt8 *vol t ages; /1l <-> array of BCD voltage val ues
s

/] "attributes' field val ues

enum

{
csLevel Model nterrupts = 0x00000001,
csPul seModel nterrupts = 0x00000002,
csProgrammuabl eW ndowAddr = 0x00000004,
csProgrammuabl eW ndowSi ze= 0x00000008,
csSocket Sl eepPower = 0x00000010,
csSof t war eEj ect = 0x00000020,
csLockabl eSocket = 0x00000040,
csl nUsel ndi cat or = 0x00000080

1

DESCRIPTION

There are many instances where Socket Services API elements are not brought out to the
Card Services API but the elements are required for normal card operation. This call
allows clients to query the capabilities of an adapter that interfaces to a given socket.
This information may be used to improve the operation of a client with a given socket
and card.

214 Miscellaneous Functions



CHAPTER 9

PC Card Services

RESULT CODES

SUCCESS No error
BAD SOCKET Invalid socket number

CSRequestExclusive and CSReleaseExclusive

The functions CSRequest Excl usi ve and CSRel easeExcl usi ve are not not
supported by the Macintosh PowerBook Card Services software.

PC Card Manager Constants

This section lists all the constants used by the PC Card Manager.

/1 m scell aneous

#define CS_MAX SOCKETS 32 /1 along is used as a socket bitnmap
enum
{

gestal t CardServi cesAttr = 'pced',// Card Services attributes

gestal t CardServi cesPresent= 0 /1l if set, Card Services is present
1
enum
{

_PCCar dDi spat ch= OXAAFO // Card Services entry trap
1
/*

The PC Card Manager will migrate toward a conpl ete Maci ntosh nane space
very soon. Part of that process will be to reassign result codes to a range
reserved for the PC Card Manager. The range will be -9050 to -9305 (decim
i ncl usive).

*/

/!l result codes

enum
{
SUCCESS = 0x00, // request succeeded
BAD ADAPTER = 0x01, // invalid adapter nunber
BAD ATTRIBUTE = 0x02, // attributes field value is invalid
BAD BASE = 0x03, // base systemnmenory address is invalid

PC Card Manager Constants 215



CHAPTER 9

PC Card Services

BAD_EDC = 0x04, /I
RESERVED 5 = 0x05, //
BAD_| RQ = 0x06, //
BAD_OFFSET = 0x07, /I
BAD_PAGE = 0x08, //
READ FAILURE = 0x09, //
BAD_SI ZE = Ox0A, /!
BAD_SOCKET = 0x0B, //
RESERVED C = 0x0C, //
BAD_TYPE = 0xOD, //
BAD_VCC = OXxOE, //
BAD_VPP = OXOF, //
RESERVED 10 = 0x10, //
BAD_W NDOW = ox11, //
WRI TE_FAI LURE = 0x12, //
RESERVED 13 = 0x13, //
NO_CARD = ox14, /I

UNSUPPORTED_FUNCTI ON= 0x15,
UNSUPPORTED MODE= 0x16, //
BAD_SPEED = ox17, /!
BUSY = 0x18, //
GENERAL_FAI LURE= 0x19, //
WRI TE_PROTECTED= Ox1A, //
BAD ARG LENGTH = 0x1B, //

BAD_ARGS = 0x1C, //
CONFI GURATI ON_LOCKED= 0x1D,
I N_USE = Ox1E, //

NO MORE_| TEMS = Ox1F, //
OUT_OF_RESOURCE= 0x20, //

EDC generator specified is invalid
«reserved for historical purposes»
specified IRQ level is invalid

PC card nenory array offset is invalid
specified page is invalid

unabl e to conplete read request
specified size is invalid

speci fi ed physical socket nunber is invalid
«reserved for historical purposes»

wi ndow or interface type is invalid

Vcc power level index is invalid

Vppl or Vpp2 power level index is invalid
«reserved for historical purposes»
specified window is invalid

unable to conplete wite request
«reserved for historical purposes»

no PC card in the socket

/1 not supported by this inplenmentation
node is not supported

speci fied speed is unavail abl e

unable to process request at this tine
an undefined error has occurred

media is wite protected

ArgLength argunent is invalid

val ues in argunent packet are invalid

/1 a configuration has al ready been | ocked
resource is being used by a client

there are no nore of the requested item
Card Services has exhausted the resource
clientHandl e value is invalid

ClSon card is invalid

/'l no messages pending

/1 (not sent to clients)

/1 card has been inserted into the socket
/1l card has been renoved fromthe socket

/1 card is locked into the socket with

/1 a nechani cal |atch

/1l card is no longer |ocked into the socket
/1 card is ready to be accessed

BAD HANDLE = 0x21, [/
BAD CI S = 0x22 /1
b
/'l messages sent to client's event handl er
enum
{
NULL_ MVESSAGE = 0x00,
CARD_| NSERTI ON = 0x01,
CARD_REMOVAL = 0x02,
CARD_LOCK = 0x03,
CARD_UNLCOCK = 0x04,
CARD_READY = 0x05,
216 PC Card Manager Constants



CHAPTER 9

PC Card Services

CARD_RESET
| NSERTI ON_REQUEST

| NSERTI ON_COWPLETE=

EJECTI ON_REQUEST

EJECTI ON_FAI LED

PM_RESUME =
PM_SUSPEND =
EXCLUSI VE_REQUEST

EXCLUSI VE_COVPLETE=

RESET_PHYSI CAL
RESET _REQUEST
RESET_COMPLETE

BATTERY_DEAD

BATTERY_LOW

W\RI TE_PROTECT
VRl TE_ENABLED
ERASE_COVPLETE

CLI ENT_I NFO

SS_UPDATED

FUNCTI ON_| NTERRUPT=
ACCESS_ERRCR =

CARD_UNCONFI GURED

STATUS_CHANGED

0x06,
0x07,

0x08,

0x09,
Ox0A,
0xO0B,
0x0C,
0x0D,
OxOE,
OxOF,
0x10,
Ox11,
0x12,
0x13,
0x14,
0x15,
0x16,
0x17,

0x18,

0x19,
Ox1A

0x1B,

0Ox1C

/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11

PC Card Manager Constants

physi cal reset has conpl eted
request to insert a card using
i nsertion notor
insertion notor has finished
i nserting
a card
user or other client is requesting a
card ejection
eject failure due to electrical or
mechani cal probl ens
power managemnent resune ( TBD)
power managenent suspend ( TBD)
client is trying to obtain exclusive
card access
i ndi cat es whet her or not
Request Excl usi ve succeeded
physi cal reset is about to occur
client has requested physical reset
Reset Card() background reset has
conpl et ed
battery is no | onger usable;
data will be | ost
battery is weak and shoul d
be repl aced
card is now wite protected
card is now wite enabl ed
gueued background erase request
has conpl et ed
client is to return
client information
AddSocket Ser vi ces/ Repl aceSocket
servi ces has changed SS support
card function interrupt
client bus errored on access
to socket
a CARD READY was delivered to al
clients and no client requested
a configuration for the socket
status change for cards in |I/O node

217






Glossary

680x0 code Instructions that can run on a
PowerPC microprocessor only by means of an
emulator. See also native code.

ADB See Apple Desktop Bus.

APDA Apple Computer’s worldwide direct
distribution channel for Apple and third-party
development tools and documentation products.

API  See application programming interface.

Apple Desktop Bus (ADB) An asynchronous
bus used to connect relatively slow user-input
devices to Apple computers.

Apple SuperDrive Apple Computer’s disk
drive for high-density floppy disks.

AppleTalk Apple Computer’s local area
networking protocol.

application programming interface (API)
The calls and data structures that allow
application software to use the features of the
operating system.

big-endian Data formatting in which each field
is addressed by referring to its most significant
byte. See also little-endian.

Card Services The part of the Macintosh PC
Card Manager that provides system services for
control software in PCMCIA cards.

client A device driver or application program
that uses the Card Services software.

codec A digital encoder and decoder.

color depth The number of bits required to
encode the color of each pixel in a display.

DAC See digital-to-analog converter.

data burst Multiple longwords of data sent
over a bus in a single, uninterrupted stream.

data cache In a PowerPC microprocessor, the
internal registers that hold data being processed.

digital-to-analog converter (DAC) A device
that produces an analog electrical signal in
response to digital data.

direct memory access (DMA) A process for
transferring data rapidly into or out of RAM
without passing it through a processor or buffer.

DLPI Data Link Provider Interface, the standard
networking model used in Open Transport.

DMA See direct memory access.
DRAM See dynamic random-access memory.

DR Emulator The Dynamic Recompilation
Emulator, an improved 680x0-code emulator for
the PowerPC microprocessor.

dynamic random-access memory (DRAM)
Random-access memory in which each storage
address must be periodically interrogated
(“refreshed”) to maintain its value.

Ethernet A high-speed local area network
technology that includes both cable standards
and a series of communications protocols.

GCR See group code recording.

Grand Central A custom IC that provides
core I/ O services in second-generation
Power Macintosh computers.

Group Code Recording (GCR) An Apple
recording format for floppy disks.

input/output (I/O) Parts of a computer system
that transfer data to or from peripheral devices.

I/O See input/output.

little-endian Data formatting in which each
field is addressed by referring to its least
significant byte. See also big-endian.

LocalTalk The cable terminations and other
hardware that Apple supplies for local area
networking from Macintosh serial ports.

mini-DIN An international standard form of
cable connector for peripheral devices.

219



GLOSSARY

native code Instructions that run directly on a
PowerPC microprocessor. See also 680x0 code.

nonvolatile RAM RAM that retains its contents
even when the computer is turned off; also
known as parameter RAM.

NuBus A bus architecture in Apple computers
that supports plug-in expansion cards.

NuBus adapter card A card for the Power
Macintosh 6100/60 that gives the computer
NuBus capability. It plugs into the PDS connector
and accepts short NuBus cards.

PBX The custom IC that provides the interface
between the PowerPC 603 bus and the I/O bus in
a Macintosh PowerBook 5300 computer.

PCcard An expansion card that conforms to
the PCMCIA standard.

PC Card Manager The part of the Mac OS that
supports PC cards in PowerBook computers.

PC Exchange A utility program that runs on
Macintosh computers and reads other floppy
disk formats, including DOS and ProDOS.

PCMCIA standard An industry standard for
computer expansion cards.

pixel Contraction of picture element; the smallest
dot that can be drawn on a display.

POWER-clean Refers to PowerPC code free of
instructions that are specific to the PowerPC 601
and Power instruction sets and are not found on
the PowerPC 603 and PowerPC 604
microprocessors.

PowerPC Trade name for a family of RISC
microprocessors. The PowerPC 601, 603, and 604
microprocessors are used in Power Macintosh
computers.

220

reduced instruction set computing (RISC) A
technology of microprocessor design in which all
machine instructions are uniformly formatted
and are processed through the same steps.

RISC See reduced instruction set computing.
SCC See Serial Communications Controller.
SCSI See Small Computer System Interface.

Serial Communications Controller (SCC)
Circuitry on the Combo IC that provides an
interface to the serial data ports.

SIMM See Single Inline Memory Module.

Single Inline Memory Module (SIMM) A
plug-in card for memory expansion, containing
several RAM ICs and their interconnections.

Small Computer System Interface (SCSI)

An industry standard parallel bus protocol for
connecting computers to peripheral devices such
as hard disk drives.

socket The hardware receptacle that a PC Card
is inserted into.

Socket Services The layer of software that is
responsible for communication between Card
Services and the socket controller hardware.

tuple A parsable data group containing config-
uration information for a PCMCIA card.

Versatile Interface Adapter (VIA) The interface
for system interrupts that is standard on most
Apple computers.

VIA See Versatile Interface Adapter.

video RAM (VRAM) Random-access memory
used to store both static graphics and video
frames.

VRAM See video RAM.



Index

Numerals

68HCO05 microprocessor 14

A

AC adapter 4

access to internal components 24

access windows 201

active matrix display 25

ADB (Apple Desktop Bus) port 27

ADB connector 27

appearance 3

Ariel CLUT-DACIC 16

ATA_Abort function 141

ATA_Busl nqui ry function 142

ATA disk driver 117, 120-135
clear partition nounting function 127

clear partition wite protect function 127

control functions 122-130
control routine 120
Device Manager routines 120-122
driver gestalt function 131
dri ver Gest al t Par amparameter block 131
drive status function 130
ej ect function 123
f or mat function 123
get a drive function 128
get drive icon function 124
get drive information function 125
get nedi a i con function 124
get partition information function 134
get partition nmount status function 133
get partition wite protect status
function 133
get power npde function 134
nmount vol une function 129
register partition function 128
set partition mounting function 126
set partition wite protect function 126
set power node function 129
set startup partition function 125
status functions 130-135
status routine 121
veri fy function 122
ATA_Drvr Der egi st er function 147

ATA_Dr vr Regi st er function 144
ATA _Execl Ofunction 149
ATA_Fi ndRef Numfunction 152

ATA hard disk drives, compared with SCSI drives 117

ATA | denti fy function 157
ATA IDE specification 116
ATA interface 18
ATA Manager 135-177

making calls to 135

purpose of 117, 119
ATA Manager functions

ATA Abort 141

ATA Busl nquiry 142

ATA DrvrDeregister 147

ATA DrvrRegi ster 144

ATA_Execl O 149

ATA_Fi ndRef Num 152

ATA I dentify 157

ATA _Myr I nquiry 159

ATA_NOP 161

ATA QRel ease 161

ATA RegAccess 162

ATA Reset Bus 165
ATA_Myr | nqui ry function 159
ATA _NOP function 161
ATA parameter block header 136
at aPBHdr structure 136-140
ATA_QRel ease function 161
ATA_RegAccess function 162
ATA_Reset Bus function 165
ATA software

ATA disk driver 117

ATA Manager 119

error codes 175
Aut 0S|l eepCont r ol routine 97

B

Baboon custom IC 15

back view 4

batteries 4

Bat t er yCount routine 105

Bl ockCopy routine 71

Bl ockMoveDat a routine 70

Bl ockMoveDat aUncached routine 70
Bl ockMove extensions 69-70

221



INDEX

Bl ockMove routine 70
Bl ockMoveUncached routine 70
Bl ockZer o routine 70
Bl ockZer oUncached routine 70

C

cache coherency 7,72
Card Services software 180-217
access window functions
CShbdi f yW ndow 203
CSRel easeW ndow 204
CSRequest W ndow 201
client information functions
CSCGetdientlnfo 182
CSGetFirstCient 180
CSGet Next d i ent 181
client registration functions
CSDer egi sterd i ent 207
CSGet Car dSer vi cesl nfo 205
CSRegi sterC i ent 206
clients 180
configuration functions
CSAccessConfi gurati onRegi ster 191
CSGet Confi gurationl nfo 185
CSModi f yConfi gurati on 189
CSRel easeConfi guration 190
CSRequest Confi gurati on 187
gestalt constant 215
masking functions
CSGet d i ent Event Mask 192
CSRel easeSocket Mask 195
CSRequest Socket Mask 194
CSSet d i ent Event Mask 193
messages 216
miscellaneous functions
CSReset Card 208
CSval i dat eCl S 209
CSVendor Speci fic 210
result codes 215
status functions, CSGet St at us 200
tuples functions
CSGet Fi rst Tupl e 196
CSGet Next Tupl e 197
CSGet Tupl eDat a 198
unsupported functions
CSRel easeExcl usi ve 215
CSRequest Excl usi ve 215
vendor-specific calls
Ej ect Card 211
Enabl eSocket Event s 213
Get Adapt er I nfo 213
Get Cardl nfo 211

222

clear partition mounting function 127

clear partition wite protect function 127

clients, registration of 205
Code Fragment Manager 7, 72
Combo custom IC 13, 14
compatibility 5
with the PowerPC 601 72,73
sound sample rates 6
configurations 5
connectors
ADB 27
expansion bay 33
external video 51, 52
hard disk 20
RAM expansion 40, 42
RAM expansion card 48
SCSI 25
serial port 25
video 51
control routine 120

CSAccessConfi gurati onRegi st er function 191

CSDer egi sterd i ent function 207
CSGet Car dSer vi cesl nf o function 205
CSGet d i ent Event Mask function 192
CSGet d i ent | nf o function 182
CSGet Confi gur ati onl nf o function 185
CSGet FirstC i ent function 180
CSGet Fi r st Tupl e function 196
CSGet Next d i ent function 181
CSGet Next Tupl e function 197
CSGet St at us function 200
CSGet Tupl eDat a function 198
CSModi f yConf i gur ati on function 189
CSMbdi f yW ndow function 203
CSRegi st er d i ent function 206
CSRel easeConfi gurati on function 190
CSRel easeExcl usi ve function 215
CSRel easeSocket Mask function 195
CSRel easeW ndow function 204
CSRequest Conf i gur ati on function 187
CSRequest Excl usi ve function 215
CSRequest Socket Mask function 194
CSRequest W ndow function 201
CSReset Car d function 208
CSSet d i ent Event Mask function 193
CSval i dat eCl S function 209
CSVendor Speci fi ¢ function 210
Cur r ent Pr ocessor Speed routine 100
custom ICs

Ariel 16

Baboon 15

Combo 14

ECSC 14

Keystone 16

PBX 12



INDEX

custom ICs (continued)
Pratt 10
Singer 14, 28
TREX 15
Whitney 13

D

dcbz instruction 70
Device Manager 79
display controller IC 14
Display Manager 74
displays
active matrix 24, 25
backlighting 24
dual mode 50
DualScan 25
external video monitors 49, 50
adapter cable 51
flat panel types 24
FSTN 25
mirror mode 6, 50
NuBus card emulation 24
number of colors 6, 24
passive matrix 24
supertwist 24, 25
TFT 25
driver gestalt function 131
dri ver Gest al t Par amparameter block 131
Driver Services Library 71
Drive Setup, modifications to 68
drive st atus function 130
dual mode 50
DualScan display 25
Dynamic Recompilation Emulator 68

E

ECSC custom IC 14
Ej ect Car d vendor-specific call 211
ej ect function 123
Emulator, Dynamic Recompilation 68
Enabl eProcessor Cycl i ng routine 104
Enabl eSocket Event s vendor-specific call 213
error codes 175
Ethernet driver 64
event mask 192
expansion bay 32-39
device installation 38
expansion bay connector 33-38
signal assignments 34
signal definitions 36-37

expansion bay controller IC 15

extended I/O parameter block 79-80
extended volume parameter block 77-79
external video port 50

F

features summary 2

Finder modifications for large volume support 67, 76

flat panel displays 24

format function 123

front view 3

Ful | Processor Speed routine 101
function-key software 64

G

CGestal t function 81

gest al t Machi neType value 62

gest al t Power Mgr At t r selector 87

Cet Adapt er | nf o vendor-specific call 213

get a drive function 128

Get Bat t er yTi nes routine 106

Get Bat t er yVol t age routine 105

get boot partition function 132

Cet Car dI nf o vendor-specific call 211

get drive icon function 124

get drive information function 125

Get Har dDi skTi neout routine 91

Get | nt Moden nf o routine 98

get nedi a icon function 124

get partition information function 134

get partition nmount status function 133

get partition wite protect status
function 133

get power node function 134

Get Scal edBat t er yl nf 0 routine 95

Get SCSI Di skMbdeAddr ess routine 102

Get S| eepTi meout routine 90

Get WakeupTi ner routine 103

H

hard disk 18
dimensions 18
IDE data bus 22

hard disk capacity 5

hard disk connector 20
pin assignments on 20
signals on 21

223



INDEX

Har dDi skPower ed routine 92 M, N, O

Har dDi skQ nst al | routine 94

Har dDi skQRenove routine 95 main processor 11

HDI-30 connector 25 Maxi munmPr ocessor Speed routine 100
HFS volume format 76 MC68LC040 microprocessor support 62

memory controller IC 12
memory controller software 63
memory expansion 4, 11

|, J mirror mode 6, 50
monitor sense codes 52
IDE disk interface 18 mount vol une function 129

IDE hard disk 18
connector 20
pin assignments on 20

data bus 22 P

dimensions 18

signals 21 PBX custom IC 12
identifying the computers 62 as bus bridge 12
IDE specification 116 PBXGet Vol | nf o function 81
infrared module 28 PC cards 58, 180
input/output subsystem 10 Finder extension for 59
interpretive emulator 68 software eject 58
I/0 ports PCMCIA cards. See PC cards

SCSI 25 PCMCIA slot 58-60

serial 25 access windows 59

video 50, 51 data access modes 59
| sProcessor Cycl i ngEnabl ed routine 104 features 58
I sSpi ndownDi sabl ed routine 93 power 60

signal definitions 60
specifications 59-60
PCMCIA slots 15

K peripheral devices 4
peripheral support IC 13
keyboards 23 PMFeat ur es routine 89
function keys 64 PMSel ect or Count routine 89
ISO layout 23 pointing device 22
removing 24 POWER-clean code 72
United States layout 23 POWER-clean native code 71
Keystone video timing IC 16 POWER emulation 72
exception handling 72
POWER instructions
emulation of 72
L Power Manager IC 14
trackpad registers in 65
large partition support. See large volume support Power Manager interface routines 87-106
large volume support 66, 76 Aut 0S| eepControl 97
allocation blocks 76 Bat t er yCount 105
extended API 66 Cur rent Processor Speed 100
extended data structures 77 Enabl ePr ocessor Cycl i ng 104
extended parameter block 77, 79 Ful | Processor Speed 101
limitations 68 Get BatteryTi mes 106
maximum file size 77 Get Bat t er yVol t age 105
modified applications 67 Get Har dDi skTi meout 91
requirements 77 Get | nt Modem nfo 98

Get Scal edBatterylnfo 95

224



INDEX

Power Manager interface routines (continued)

Get SCSI Di skMbdeAddr ess 102

CGet Sl eepTi meout 90

Get VakeupTi mer 103

Har dDi skPower ed 92

Har dDi skQ nstal |l 94

Har dDi skQrenove 95

I sProcessor Cycl i ngEnabl ed 104

| sSpi ndownDi sabl ed 93

Maxi murmPr ocessor Speed 100

PMFeat ures 89

PMSel ect or Count 89

Set Har dDi skTi neout 92

Set | nt Mbdentt at e 99

Set Processor Speed 101

Set SCSI Di skMbdeAddr ess 102

Set Sl eepTi meout 91

Set Spi ndownDi sabl e 94

Set WakeupTi mer 103

Spi nDownHar dDi sk 93
Power Manager software 63, 86

checking for routines 87

data structures 6

dispatching 107

interface routines 86, 87-106

unsafe assumptions 7, 86
PowerPC 601 microprocessor 72

compatibility limitations 73

compatibility with 72
PowerPC 603 microprocessor 11, 71, 72
PowerPC 604 microprocessor 72
processor clock speed 2, 5, 11
processor/memory subsystem 10, 11

Q

DRAM devices 45
electrical limits 46
mechanical design of 4748
RAM banks 45

reference documents xii

regi ster partition function 128
Resource Manager in native code 69

ROM
address range 12
implementation of 12
software features 62
ROM software features 62

S

QuickDraw acceleration API 73

R

RAM
contiguous banks of 12
expansion 4, 11, 39-48
addressing 43
DRAM devices 45
RAM banks 45
signals 40, 42
size of 5
RAM expansion card 39-48
connector 48
dimensions 47

SCCIC 14
SCSI controller IC 14
SCSI port 25
connector 25
secondary logic board 11
serial port 25
Set Har dDi skTi neout routine 92
Set | nt Modentt at e routine 99

set partition nounting function 126
set partition wite protect function 126

set power node function 129
Set Pr ocessor Speed routine 101

Set SCSI Di skMbdeAddr ess routine 102

Set Sl eepTi neout routine 91
Set Spi ndownDi sabl e routine 94

set startup partition function 125

Set WakeupTi mer routine 103
Singer custom IC 13, 14, 28
socket mask 192
sound
input sources 29
built-in microphone 29
CD-ROM drive 29
PCMCIA slot 29
sound input jack 29
output devices 29
sound circuits 29
characteristics 29, 30
sound features 63
sound IC 14, 28
sound sample rates 6, 28
sound specifications 28
Spi nDownHar dDi sk routine 93
status routine 121
Supertwist display 25
System 7.5 66

225



T, U

INDEX

w

TFT display 25
trackball 22
trackpad 22

software support for 65
TREX custom IC 15
tuple information 196
tuples 119

Vv

VCB allocation block size 76
veri fy function 122
video adapter cable 51
video card 16, 49-58
video connector 51
video controller IC 16
video modes
dual 50
mirror 6,50
video monitors 49, 50
adapter cable for 51
sense codes 52
VGA and SVGA 52
video output IC 16
video port 50

226

Whitney custom IC 13

X, Y, Z

Xl OPar amdata structure 79
XVol unePar amparameter block 77






T H E A PPLE PUBLISHTING

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages and final pages were created
on an Apple LaserWriter Pro printer.
Line art was created using

Adobe Tllustrator” and

Adobe Photoshop" . PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino” and display type is
Helvetica"”. Bullets are ITC Zapf
DingbatsD. Some elements, such as
program listings, are set in Apple Courier.

WRITER
Allen Watson

DEVELOPMENTAL EDITOR
Wendy Krafft

ILLUSTRATORS
Deb Dennis, Sandee Karr,
Shawn Morningstar

PRODUCTION EDITOR
Rex Wolf

Special thanks to Mark Baumwell,
John Howard, Tom Llewellyn,
Richard Schnell, Mark Seibert,

George Towner, and Markus Wallgren



	Macintosh PowerBook 5300 Computer
	Contents
	Figures and Tables
	About This Developer Note
	Contents of This Note
	Supplemental Reference Documents
	Apple Publications
	Other Publications

	Conventions and Abbreviations
	Typographical Conventions
	Standard Abbreviations


	Introduction
	Features
	Appearance
	Peripheral Devices
	Configurations
	Compatibility Issues
	RAM Expansion Cards
	Number of Colors
	Video Mirror Mode
	Sound Sample Rates
	Power Manager Interface
	Microprocessor Differences
	POWER-Clean Code


	Architecture
	Processor/Memory Subsystem
	Main Processor
	RAM
	ROM
	PBX Memory Controller IC

	Input/Output Subsystem
	Whitney Peripheral Support IC
	Combo IC
	Singer IC
	Power Manager IC
	Display Controller IC
	Baboon Custom IC
	TREX Custom IC

	Video Card
	Keystone Video Controller IC
	Ariel Video Output IC


	I/O Features
	Internal IDE Hard Disk Drive
	Hard Disk Specifications
	Hard Disk Connector

	Trackpad
	Keyboard
	Flat Panel Display
	Flat Panel Display Circuitry
	Number of Colors

	Serial Port
	SCSI Port
	ADB Port
	Infrared Module
	Sound System
	Sound Inputs
	Sound Outputs


	Expansion Modules
	Expansion Bay
	Expansion Bay Design
	Expansion Bay Connector
	User Installation of an Expansion Bay Device

	RAM Expansion
	Electrical Design Guidelines for the RAM Expansion Card
	Mechanical Design of the RAM Expansion Card

	Video Card
	The Apple Video Card
	Video Card Design Guide

	PCMCIA Slot
	PCMCIA Features
	Summary Specifications


	Software Features
	ROM Software
	PowerPC 603 Microprocessor
	Machine Identification
	Memory Controller Software
	Power Manager Software
	Display Controller Software
	Sound Features
	ATA Storage Devices
	IDE Disk Mode
	Ethernet Driver
	Support for Function Keys
	Smart Battery Support
	Trackpad Support

	System Software
	Control Strip
	Support for ATA Devices
	Large Partition Support
	Drive Setup
	Improved File Sharing
	Dynamic Recompilation Emulator
	Resource Manager in Native Code
	Math Library
	New BlockMove Extensions
	POWER-Clean Native Code
	POWER Emulation
	QuickDraw Acceleration API
	Display Manager


	Large Volume Support
	Overview of the Large Volume File System
	API Changes
	Allocation Block Size
	File Size Limits
	Compatibility Requirements

	The API Modifications
	Data Structures
	New Extended Function


	Power Manager Interface
	About the Power Manager Interface
	Things That May Change
	Checking for Routines
	Power Manager Interface Routines
	Header File for Power Manager Dispatch


	Software for ATA Devices
	Introduction to the ATA Software
	ATA Disk Driver
	ATA Manager

	ATA Disk Driver Reference
	Standard Device Routines
	Control Functions
	Status Functions

	ATA Manager Reference
	The ATA Parameter Block
	Functions

	Using the ATA Manager With Drivers
	Notification of Device Events
	Device Driver Loading
	Device Driver Purging
	Setting the I/O Speed

	Error Code Summary

	PC Card Services
	Client Information
	Configuration
	Masks
	Tuples
	Card and Socket Status
	Access Window Management
	Client Registration
	Miscellaneous Functions
	PC Card Manager Constants

	Glossary
	Index


