

ð

Developer Press



 Apple Computer, Inc. 1995

ð

Developer Note

Macintosh PowerBook 5300
Computer

Macintosh PowerBook 5300/100
Macintosh PowerBook 5300c/100
Macintosh PowerBook 5300cs/100
Macintosh PowerBook 5300ce/117

Thi d t t d ith F M k 4 0 4

ð

Apple Computer, Inc.



 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleShare, AppleTalk,
Apple SuperDrive, LaserWriter,
LocalTalk, Macintosh, Macintosh
Quadra, Newton, PowerBook, and
ProDOS are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
AOCE, Apple Desktop Bus,
AppleScript, Disk First Aid, Finder,
Mac, PowerBook Duo, Power
Macintosh, and QuickDraw are
trademarks of Apple Computer, Inc.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.
Classic is a registered trademark
licensed to Apple Computer, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Motorola is a registered trademark of
Motorola Corporation.
NuBus is a trademark of Texas
Instruments.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Thi d t t d ith F M k 4 0 4

iii

Contents

Figures and Tables ix

Preface

About This Developer Note

xi

Contents of This Note xi
Supplemental Reference Documents xii

Apple Publications xii
Other Publications xiii

Conventions and Abbreviations xiii
Typographical Conventions xiii
Standard Abbreviations xiv

Chapter 1

Introduction

1

Features 2
Appearance 3
Peripheral Devices 4
Configurations 5
Compatibility Issues 5

RAM Expansion Cards 5
Number of Colors 5
Video Mirror Mode 6
Sound Sample Rates 6
Power Manager Interface 6
Microprocessor Differences 7

Completion Serialized Instructions 7
Split Cache 7
Data Alignment 7

POWER-Clean Code 8

Chapter 2

Architecture

9

Processor/Memory Subsystem 11
Main Processor 11
RAM 11
ROM 12
PBX Memory Controller IC 12

Memory Control 12
Bus Bridge 12

Thi d t t d ith F M k 4 0 4

iv

Input/Output Subsystem 13
Whitney Peripheral Support IC 13
Combo IC 14
Singer IC 14
Power Manager IC 14
Display Controller IC 14
Baboon Custom IC 15
TREX Custom IC 15

Video Card 16
Keystone Video Controller IC 16
Ariel Video Output IC 16

Chapter 3

I/O Features

17

Internal IDE Hard Disk Drive 18
Hard Disk Specifications 18
Hard Disk Connector 19

Connector Location 20
Signal Assignments 20
IDE Signal Descriptions 21

Trackpad 22
Keyboard 23
Flat Panel Display 24

Flat Panel Display Circuitry 24
Number of Colors 24

Serial Port 25
SCSI Port 25
ADB Port 27
Infrared Module 28
Sound System 28

Sound Inputs 29
Sound Outputs 29

Chapter 4

Expansion Modules

31

Expansion Bay 32
Expansion Bay Design 32
Expansion Bay Connector 33

Signals on the Expansion Bay Connector 34
Signal Definitions 36
Unused IDE Signals 37
Power on the Expansion Bay 38

User Installation of an Expansion Bay Device 38
Sequence of Control Signals 38
Guidelines for Developers 39

v

RAM Expansion 39
Electrical Design Guidelines for the RAM Expansion Card 40

Connector Pin Assignments 40
Signal Descriptions 42
Address Multiplexing 43
Banks of DRAM 45
DRAM Device Requirements 45
Expansion Card Electrical Limits 46

Mechanical Design of the RAM Expansion Card 47
RAM Card Dimensions 47
RAM Card Connector 48

Video Card 49
The Apple Video Card 49

Monitors Supported 49
Video Mirroring 50
External Video Connector 51
Monitor Sense Codes 52

Video Card Design Guide 53
Video Card Connector 53
Signals on the Video Card Connector 53
Video Card Mechanical Design 55

PCMCIA Slot 58
PCMCIA Features 58
Summary Specifications 59

Access Windows 59
Data Access 59
Signal Definitions 60
Power 60
Controller Interrupts 60

Chapter 5

Software Features

61

ROM Software 62
PowerPC 603 Microprocessor 62
Machine Identification 62
Memory Controller Software 63
Power Manager Software 63
Display Controller Software 63
Sound Features 63
ATA Storage Devices 64
IDE Disk Mode 64
Ethernet Driver 64
Support for Function Keys 64
Smart Battery Support 64
Trackpad Support 65

vi

System Software 65
Control Strip 66
Support for ATA Devices 66
Large Partition Support 66

64-Bit Volume Addresses 66
System-Level Software 67
Application-Level Software 67
Limitations 68

Drive Setup 68
Improved File Sharing 68
Dynamic Recompilation Emulator 68
Resource Manager in Native Code 69
Math Library 69
New BlockMove Extensions 69
POWER-Clean Native Code 71
POWER Emulation 72

POWER-Clean Code 72
Emulation and Exception Handling 72
Code Fragments and Cache Coherency 72
Limitations of PowerPC 601 Compatibility 73

QuickDraw Acceleration API 73
Display Manager 74

Chapter 6

Large Volume Support

75

Overview of the Large Volume File System 76
API Changes 76
Allocation Block Size 76
File Size Limits 77
Compatibility Requirements 77

The API Modifications 77
Data Structures 77

Extended Volume Parameter Block 77
Extended I/O Parameter Block 79

New Extended Function 81

Chapter 7

Power Manager Interface

85

About the Power Manager Interface 86
Things That May Change 86
Checking for Routines 87
Power Manager Interface Routines 87
Header File for Power Manager Dispatch 107

vii

Chapter 8

Software for ATA Devices

115

Introduction to the ATA Software 116
ATA Disk Driver 117

Drives on PC Cards 118
Drives in the Expansion Bay 119

ATA Manager 119
ATA Disk Driver Reference 120

Standard Device Routines 120
The Control Routine 120
The Status Routine 121

Control Functions 122
Status Functions 130

ATA Manager Reference 135
The ATA Parameter Block 135
Functions 141

Using the ATA Manager With Drivers 168
Notification of Device Events 168
Device Driver Loading 169

New API Entry Point for Device Drivers 170
Loading a Driver From the Media 171
Notify-All Driver Notification 172
ROM Driver Notification 173

Device Driver Purging 173
Setting the I/O Speed 175

Error Code Summary 175

Chapter 9

PC Card Services

179

Client Information 180
Configuration 185
Masks 192
Tuples 196
Card and Socket Status 200
Access Window Management 201
Client Registration 205
Miscellaneous Functions 208
PC Card Manager Constants 215

Glossary

219

Index

221

ix

Figures and Tables

Chapter 1

Introduction

1

Figure 1-1

Front view of the computer 3

Figure 1-2

Back view of the computer 4

Table 1-1

Configurations 5

Chapter 2

Architecture

9

Figure 2-1

Block diagram 10

Chapter 3

I/O Features

17

Figure 3-1

Maximum dimensions of the internal IDE hard disk 19

Figure 3-2

Connector for the internal IDE hard disk 20

Figure 3-3

Position of the hard disk connector 20

Figure 3-4

Keyboard, United States layout 23

Figure 3-5

Keyboard, ISO layout 23

Figure 3-6

Serial port connector 25

Figure 3-7

ADB connector 27

Table 3-1

Pin assignments on the IDE hard disk connector 20

Table 3-2

Signals on the IDE hard disk connector 21

Table 3-3

Characteristics of the displays 24

Table 3-4

Serial port signals 26

Table 3-5

SCSI connector signals 26

Table 3-6

ADB connector pin assignments 27

Chapter 4

Expansion Modules

31

Figure 4-1

Expansion bay module 32

Figure 4-2

Expansion bay dimensions 33

Figure 4-3

RAM expansion card 47

Figure 4-4

Dimensions of the RAM expansion card 47

Figure 4-5

Restricted areas on the component side of the card 48

Figure 4-6

Video card 49

Figure 4-7

Video connectors 52

Figure 4-8

Dimensions of the video card 55

Figure 4-9

Video card and 80-pin connector 56

Figure 4-10

Video card bottom view with component restrictions 56

Figure 4-11

Video card top view with component restrictions 57

Figure 4-12

Video card top view 57

Figure 4-13

Detail of EMI shield mounting holes 58

Thi d t t d ith F M k 4 0 4

x

Table 4-1

Signal assignments on the expansion bay connector 34

Table 4-2

Control signals on the expansion bay connector 36

Table 4-3

Floppy disk signals on the expansion bay connector 36

Table 4-4

IDE signals on the expansion bay connector 36

Table 4-5

Unused IDE signals 37

Table 4-6

Power for the expansion bay 38

Table 4-7

Configurations of RAM banks 39

Table 4-8

Signal assignments on the RAM expansion connector 40

Table 4-9

Descriptions of signals on the RAM expansion connector 42

Table 4-10

Address multiplexing for some typical DRAM devices 44

Table 4-11

Video monitors and modes 50

Table 4-12

Signals on the video connector 51

Table 4-13

Monitor sense codes 52

Table 4-14

Signals on the video card connector 53

Table 4-15

Descriptions of the signals on the video card connector 55

Chapter 5

Software Features

61

Table 5-1

Summary of

BlockMove

 routines 70

Chapter 7

Power Manager Interface

85

Table 7-1

Interface routines and their selector values 88

Chapter 8

Software for ATA Devices

115

Figure 8-1

ATA software model 116

Table 8-1

Control functions 120

Table 8-2

Status functions 122

Table 8-3

Control bits in the

ataFlags

 field 138

Table 8-4

ATA Manager functions 141

Table 8-5

Event masks 146

Table 8-6

Bits in pcValid field 156

Table 8-7

ATA register selectors 164

Table 8-8

Register mask bits 164

Table 8-9

Event codes send by the ATA Manager 168

Table 8-10

Input parameter bits for the old API 170

Table 8-11

Input parameter bits for the new API 171

Table 8-12

Purge permissions and responses 174

Table 8-13

ATA driver error codes 175

xi

P R E F A C E

About This Developer Note

This developer note describes the Macintosh PowerBook 5300 computer,
emphasizing the features that are new or different from those of other
Macintosh PowerBook computers.

This developer note is intended to help hardware and software developers
design products that are compatible with the Macintosh products described in
the note. If you are not already familiar with Macintosh computers or if you
would simply like more technical information, you may wish to read the
supplementary reference documents described in this preface.

This note is published in two forms: an online version included with the Apple
Developer CD and a paper version published by APDA. For information about
APDA, see “Supplemental Reference Documents.”

Contents of This Note 0

The information in this note is arranged in nine chapters.

■

Chapter 1, “Introduction,” introduces the Macintosh PowerBook 5300
computer and describes its new features.

■

Chapter 2, “Architecture,” describes the internal logic of the computer,
including the main ICs that appear in the block diagram.

■

Chapter 3, “I/O Features,” describes the input/output features, including
both the internal I/O devices and the external I/O ports.

■

Chapter 4, “Expansion Modules,” describes the expansion features of
interest to developers. It includes development guides for the RAM
expansion card, the PDS card, and the communications cards.

■

Chapter 5, “Software Features,” describes the new features of the ROM
and system software, with the emphasis on software that is specific to
this computer.

■

Chapter 6, “Large Volume Support,” describes the modifications that
enable the file system to support volumes larger than 4 GB.

■

Chapter 7, “Power Manager Interface,” describes the latest revision of the
application interface for the Power Manager software.

■

Chapter 8, “Software for ATA Devices,” describes the low-level program
interface used by utility software for the IDE hard disk drive.

■

Chapter 9, “PC Card Services,” describes a new part of Mac OS that
supports software using PC Cards in the PCMCIA slots.

This developer note also contains a glossary and an index.

Thi d t t d ith F M k 4 0 4

xii

P R E F A C E

Supplemental Reference Documents 0

The following documents provide information that complements or extends
the information in this developer note.

Apple Publications 0

Developers should have copies of the appropriate Apple reference books,
including

Guide to the Macintosh Family Hardware,

second edition,

Designing
Cards and Drivers for the Macintosh Family,

 third edition, and the relevant
volumes of

Inside Macintosh.

 These Apple books are available in technical
bookstores and through APDA.

For information about PC cards and the PCMCIA slot, developers should
have a copy of

Developing PC Card Software for the Mac OS.

 That book is
scheduled for publication at about the time the Macintosh PowerBook 5300
computer is introduced.

For information about the Device Manager and the Power Manager,
developers should have a copy of

Inside Macintosh: Devices.

For information
about designing device drivers for Power Macintosh computers, developers
should have a copy of

Designing PCI Cards and Drivers for Power Macintosh
Computers

.

For information about the control strip, developers should have the Reference
Library volume of the Developer CD Series, which contains Macintosh
Technical Note

OS 06 - Control Strip Modules

.

For information about earlier PowerBook models, developers may wish to
have copies of the

Macintosh Classic II, Macintosh PowerBook Family, and
Macintosh Quadra Family Developer Notes;

and

 Macintosh Developer Notes,

numbers 1–5 and 9. These developer notes are available on the Developer CD
Series and through APDA.

APDA is Apple Computer’s worldwide source for hundreds of development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the

APDA Tools Catalog

featuring all current versions of Apple development
tools and the most popular third-party development tools. APDA offers
convenient payment and shipping options, including site licensing.

xiii

P R E F A C E

To order products or to request a complimentary copy of the

APDA Tools
Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Other Publications 0

For information about programming the PowerPC



 family microprocessors,
developers should have copies of Motorola’s

PowerPC 601 RISC Microprocessor
User’s Manual

 and

PowerPC 603 Microprocessor Implementation Definition Book IV.

For information about ATA devices such as the built-in IDE hard disk,
developers should have access to the ATA/IDE specification, ANSI proposal
X3T10/0948D, Revision 2K or later (ATA-2).

For information about PC cards and the PCMCIA slot, developers should
refer to the

PC Card Standard

. You can order that book from

Personal Computer Memory Card International Association
1030G East Duane Avenue
Sunnyvale, CA 94086
Phone: 408-720-0107
Fax: 408-720-9416

Conventions and Abbreviations 0

This developer note uses the following typographical conventions and
abbreviations.

Typographical Conventions 0

Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in

Courier

 font.

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

xiv

P R E F A C E

Hexadecimal numbers are preceded by a dollar sign ($). For example, the
hexadecimal equivalent of decimal 16 is written as $10.]

Note

A note like this contains information that is of interest but is not
essential for an understanding of the text.

◆

IMPORTANT

A note like this contains important information that you should
read before proceeding.

▲

▲ W A R N I N G

Warnings like this direct your attention to something that could
cause injury to the user, damage to either hardware or software,
or loss of data.

▲

Standard Abbreviations 0

Standard units of measure used in this note include

A amperes MHz megahertz

dB decibels mm millimeters

GB gigabytes ms milliseconds

Hz hertz mV millivolts

K 1024

µ

F microfarads

KB kilobytes ns nanoseconds

kbps kilobits per second

Ω

ohms

kHz kilohertz pF picofarads

k

Ω

kilohms V volts

M 1,048,576 VAC volts alternating current

mA milliamperes VDC volts direct current

MB megabytes W watts

Sidebar

information about a related subject or technical details
that are not required reading.

Sidebars are used for information that is not part of
the main discussion. A sidebar may contain

xv

P R E F A C E

Other abbreviations used in this note include

$

n

 hexadecimal value

n

AC alternating current

ADB Apple Desktop Bus

API application program interface

ASIC application-specific integrated circuit

ATA AT attachment

ATAPI ATA packet interface

AUI auxiliary unit interface

BCD binary coded decimal

CAS column address strobe (a memory control signal)

CCFL cold cathode fluorescent lamp

CD compact disc

CIS card information structure

CLUT color lookup table

CMOS complementary metal oxide semiconductor

CPU central processing unit

CSC color screen controller

DAA data access adapter (a telephone line interface)

DAC digital-to-analog converter

DC direct current

DCE device control entry (a data structure)

DDM driver descriptor map

DOS disk operating system

DRAM dynamic RAM

DSP digital signal processor

FIFO first in, first out

FPU floating-point unit

FSTN film supertwist nematic (a type of LCD)

HBA host bus adapter

IC integrated circuit

IDE integrated device electronics

I/O input/output

IR infrared

LCD liquid crystal display

LS TTL low-power Schottky TTL (a standard type of device)

MMU memory management unit

continued

xvi

P R E F A C E

NiCad nickel cadmium

NiMH nickel metal hydride

PCMCIA Personal Computer Memory Card International Association

PDS processor-direct slot

PROM programmable read-only memory

PWM pulse width modulation

RAM random-access memory

RAMDAC random-access memory, digital to analog converter

RAS row address strobe

RGB red-green-blue (a type of color video system)

RISC reduced instruction set computing

rms root-mean-square

ROM read-only memory

SCC Serial Communications Controller

SCSI Small Computer System Interface

SNR signal-to-noise ratio

SOJ small outline J-lead package

SOP small outline package

SVGA super video graphics adapter

TDM time division multiplexing

TFT thin-film transistor (a type of LCD)

TSOP thin small outline package

TTL transistor-transistor logic (a standard type of device)

VCC positive supply voltage (voltage for collectors)

VGA video graphics adapter

VRAM video RAM

C H A P T E R 1

Introduction 1Figure 1-0
Listing 1-0
Table 1-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1

Introduction

2

Features

The Macintosh PowerBook 5300 computer is the first of a new generation of all-in-one
notebook computers featuring the PowerPC



 603 microprocessor. Inside the computer’s
contoured case are a PCMCIA slot, an expansion bay for a floppy disk drive or other
device, and space for a rechargeable battery.

Features 1

Here is a summary of the major features of the Macintosh PowerBook 5300 computer.
Each feature is described more fully later in this developer note.

■

Processor

: The computer has a PowerPC 603 microprocessor running at a clock
frequency of 100 or 117 MHz, depending on the model.

■

RAM:

The built-in memory consists of 8, 16, or 32 MB of low-power, self-refreshing
dynamic RAM (DRAM).

■

RAM expansion:

The computer accepts a RAM expansion card with up to 56 MB, for
a total of 64 MB of RAM.

■

Display:

The computer has a built-in flat panel display, an LCD backlit by a cold
cathode fluorescent lamp (CCFL). The display can be one of three types: active-matrix
color, DualScan color, or supertwist grayscale.

■

Video output:

The computer has built-in video output circuitry that provides a
256-color display on all Apple monitors up to 17 inches in size.

■

Hard disk:

The computer has one internal 2.5-inch IDE hard disk drive with a storage
capacity of 500 MB to 1.1 GB. See “Peripheral Devices” on page 4.

■

Disk mode:

With an optional HDI-30 SCSI Disk Adapter cable, the computer allows
the user to read and store data on the computer’s internal hard disk from another
Macintosh computer.

■

Expansion bay:

The computer has an opening that accepts a plug-in module with
a 1.4-MB Apple SuperDrive, some other IDE device, or a power device such as an
AC adapter.

■

PCMCIA slot:

The computer accepts one type III or two type II PCMCIA cards.

■

Modem:

The computer accepts a PCMCIA modem card.

■

Standard I/O ports:

The computer has all the standard Macintosh inputs and
outputs, including external video output. The I/O ports are an HDI-30 connector for
external SCSI devices, a 4-pin mini-DIN Apple Desktop Bus (ADB) port, an 8-pin
mini-DIN serial port, stereo audio input and output jacks, and a video output
connector.

■

Networking:

The computer has a built-in LocalTalk network interface.

■

Sound:

The computer has a built-in microphone and speaker as well as a line-level
input jack and a stereo headphone jack.

■

Keyboard:

The computer has a full-size keyboard with function keys and power
on/off control.

C H A P T E R 1

Introduction

Appearance

3

■

Trackpad:

The cursor-positioning device is an integrated flat pad that replaces the
trackball used in previous Macintosh PowerBook computers.

■

Infrared link:

The computer has an infrared module that can communicate with
Newton PDAs and other communications devices.

■

Batteries:

The computer has space for one Macintosh PowerBook Intelligent Battery.
The battery is a 16.8-V lithium ion rechargeable battery with a built-in processor that
communicates with the computer’s Power Manager.

■

Power supply:

The computer comes with an external recharger/power adapter that
accepts any worldwide standard voltage from 100–240 VAC at 50–60 Hz.

■

Security connector:

The computer has a connector on the side panel that allows users
to attach a security device.

The security device also secures the battery and any
module in the expansion bay.

■

Weight:

The computer weighs 6.5 pounds with the battery installed.

■

Size:

The computer is 11.3 inches wide and 8.5 inches deep. The models with
grayscale displays are 2.0 inches high; models with color displays are 2.1 inches high.

Appearance 1

The Macintosh PowerBook 5300 computer has a streamlined case that opens up like a
clamshell. Figure 1-1 shows a front view and Figure 1-2 shows a back view.

Figure 1-1

Front view of the computer

Sleep indicator

Brightness control

Contrast control

Microphone

Floppy disk drive module

in expansion bay

Security slot

Battery

Trackpad button

Trackpad

Speaker

C H A P T E R 1

Introduction

4

Peripheral Devices

Figure 1-2

Back view of the computer

Peripheral Devices 1

In addition to the devices that are included with the computer, several peripheral
devices are available separately:

■

The Macintosh PowerBook 8 MB Memory Expansion Kit expands the RAM in the
Macintosh PowerBook 5300 computer to 16 or 24 MB.

Note

In the 32-MB models, the RAM expansion slot is already occupied.

◆

■

The Macintosh PowerBook Intelligent Battery is available separately as an additional
or replacement battery.

■

The Macintosh PowerBook 45W AC Adapter,

which comes with the computer, is also
available separately. The adapter can recharge two internal batteries in just four hours
while the computer is running or two hours while the computer is shut down or in
sleep mode.

PC card slots
IR window

Video port

Reset button

Sound input jack

Sound output jack

PC card eject buttons

Power adapter jack

ADB port

/ Serial I/O portSCSI port (HDI-30)

C H A P T E R 1

Introduction

Configurations

5

Configurations 1

The Macintosh PowerBook 5300 computer is available in several configurations, as
shown in Table 1-1.

Compatibility Issues 1

The Macintosh PowerBook 5300 computer incorporates many significant changes from
earlier PowerBook designs. This section highlights key areas you should investigate
in order to ensure that your hardware and software work properly with the new
PowerBook models. These topics are covered in more detail in subsequent sections.

RAM Expansion Cards 1

The RAM expansion card used in the Macintosh PowerBook 5300 computer is a new
design. RAM expansion cards designed for earlier PowerBook models will not work in
the PowerBook 5300 computer. See the section “RAM Expansion” beginning on page 39
for more information.

Number of Colors 1

The controller circuitry for the flat panel display includes a 256-entry color lookup table
(CLUT) and is compatible with software that uses QuickDraw and the Palette Manager.
The controller supports a palette of thousands of colors. However, due to the nature of
color LCD technology, some colors are dithered or exhibit noticeable flicker. Apple has
developed a new gamma table for the color displays that minimizes flicker and

Table 1-1

Configurations

Model number
Clock
speed

RAM
size

Hard disk
size

Display size
(pixels) Display type

5300/100 100 MHz 8 MB 500 MB 640 by 480 DualScan gray scale

5300cs/100 100 MHz 8 MB 500 MB 640 by 480 DualScan color

5300cs/100 100 MHz 16 MB 750 MB 640 by 480 DualScan color

5300c/100 100 MHz 8 MB 500 MB 640 by 480 Active matrix color

5300c/100 100 MHz 16 MB 750 MB 640 by 480 Active matrix color

5300ce/117 117 MHz 32 MB 1.1 GB 800 by 600 Active matrix color

C H A P T E R 1

Introduction

6

Compatibility Issues

optimizes the available colors. For the active matrix color display, the effective range of
the CLUT is about 260,000 colors. For the DualScan color display, the range of the CLUT
is about 4000 colors.

See the section “Flat Panel Display” beginning on page 24 for more information about
the internal display hardware and LCD screen.

Video Mirror Mode 1

When a video card is installed and an external monitor is in use, the user can select video
mirror mode, in which the external monitor mirrors (duplicates) the flat panel display.
Applications that write directly to the display buffer may not be compatible with video
mirror mode unless they take precautions to ensure that they do not write outside the
active portion of the display. That is not a problem for applications that use QuickDraw
and never write directly to the display buffer.

See the section “Video Mirroring” on page 50 for more information about video modes.

Sound Sample Rates 1

The Macintosh PowerBook 5300 computer provides sound sample rates of 11.025 kHz,
22.05 kHz, and 44.1 kHz. The 22.05 kHz sample rate is slower than the 22.254 kHz
sample rate used in some older Macintosh models. The 22.254 kHz sample rate was
derived from the 16 MHz system clock; the 22.05 kHz rate was chosen for compatibility
with the 44.1 kHz audio CD sample rate.

For sound samples made at the 22.254 kHz rate, playback at the 22.05 kHz rate is about
1 percent low in pitch. Furthermore, programs that bypass the Sound Manager and write
to the sound FIFOs at the older rate now write too many samples to the FIFOs, causing
some samples to be dropped. The result is a degradation in sound quality for those
programs. Programs that use the Sound Manager to generate sounds are not affected by
the change.

Power Manager Interface 1

Developers have written software that provides expanded Power Manager control for
some older Macintosh PowerBook models. That software will not work in the Macintosh
PowerBook 5300 computer.

Until now, third-party software for the Power Manager has worked by reading and
writing directly to the Power Manager’s data structures, so it has had to be updated
whenever Apple brings out a new model with changes in its Power Manager software.
Starting with the Macintosh PowerBook 520 and 540 computers, the system software
includes interface routines for program access to the Power Manager functions, so it is
no longer necessary for applications to deal directly with the Power Manager’s data
structures. For more information, see

Inside Macintosh: Devices

.

C H A P T E R 1

Introduction

Compatibility Issues

7

Developers should not assume that the Power Manager’s data structures are the same on
all PowerBook models. In particular, developers should beware of the following
assumptions regarding different PowerBook models:

■

assuming that timeout values such as the hard disk spindown time reside at the same
locations in parameter RAM

■

assuming that the power cycling process works the same way or uses the same
parameters

■

assuming that direct commands to the Power Manager microcontroller are supported
on all models

Microprocessor Differences 1

Differences between the PowerPC 603e and the PowerPC 601 microprocessor affect the
way code is executed. Because of those differences, programs that execute correctly on
the PowerPC 601 may cause problems on the PowerPC 603e.

Completion Serialized Instructions 1

Completion serialized instructions cannot be executed until all prior instructions have
completed. The completion serialized instructions

include load-and-store string and
load-and-store multiple instructions. Such instructions can cause performance degrada-
tion on the more heavily pipelined implementations.

Representatives of Apple Computer are working with compiler developers to establish
guidelines for the appropriate use of these instructions.

Split Cache 1

Unlike the PowerPC 601, which has a unified cache, the PowerPC 603e has separate
caches for instructions and data. This can lead to cache coherency problems in applica-
tions that mix code and data.

In the Mac OS, almost all native code is loaded by the Code Fragment Manager, which
ensures that the code is suitable for execution. If all your code is loaded by the Code
Fragment Manager, you don’t have to worry about cache coherency.

Problems can arise in applications that generate code in memory for execution. Examples
include compilers that generate code for immediate execution and interpreters that
translate code in memory for execution. For such cases, you can notify the Mac OS that
data is subject to execution by using the call

MakeDataExecutable

, which is defined
in OSUtils.h.

Data Alignment 1

In PowerPC systems, data is normally aligned on 32-bit boundaries, whereas data for the
680x0 is typically aligned on 16-bit boundaries. Even though the PowerPC was designed
to support the 680x0 type of data alignment, misaligned data causes some performance
degradation. Furthermore, performance with misaligned data varies across the different
implementations of the PowerPC.

C H A P T E R 1

Introduction

8

Compatibility Issues

While it is essential to use 16-bit alignment for data that is being shared with 680x0 code,
you should use PowerPC alignment for all other kinds of data. In particular, you should
not use global 680x0 alignment when compiling your PowerPC applications; instead, use
alignment pragmas to turn on 680x0 alignment only when necessary.

POWER-Clean Code 1

Several POWER instructions were included in the instruction set of the PowerPC 601 as
part of the transition from POWER to PowerPC. Those instructions are not included in
the instructions set of the PowerPC 603e.

Compilers designed for the POWER instruction set have also been used to compile
programs for the PowerPC. Most of those compilers have the option to suppress the
generation of the offending instructions. For example, the IBM xlc C compiler and the
xlC C++ compiler have the option

-qarch=ppc.

 Developers who use those compilers
must verify that the option is in effect for all pieces of code that is intended to run on the
PowerPC 603e.

The system software traps POWER instructions and emulates them in software. While
this POWER emulation keeps the system from crashing when it encounters a POWER
instruction, performance suffers because of the emulation. Developers should ensure
that their code is free of POWER instructions.

C H A P T E R 2

Architecture 2Figure 2-0
Listing 2-0
Table 2-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 2

Architecture

10

The architecture of the Macintosh PowerBook 5300 computer is partitioned into
three subsystems: the processor/memory subsystem, the input/output subsystem,
and the video card. The processor/memory subsystem operates at 33.33 MHz on the
PowerPC 603 microprocessor bus. The input/output subsystem operates at 25 MHz
on the I/O bus, a 68030-compatible bus. An Apple custom IC called the PBX IC acts
as the bridge between the two buses, translating processor bus cycles into single or
multiple I/O bus cycles, as needed. The video card provides the signals for an external
video monitor.

The block diagram in Figure 2-1 shows the subsystems and the modules that
comprise them.

Figure 2-1

Block diagram

Sound in

Sound out

Expansion

Bay

SRAM ADB

Trackpad

Keyboard

Power

Combo

SCC and

SCSI IC

Singer

sound

IC

PCMCIA

slots

VRAM

RAM

ROM

Processor

and memory

subsystem

Video card

I/O subsystem

Ariel

video DAC

PowerPC

603

micro-

processor

ECSC

video

controller

TREX

PCMCIA

controller

Whitney

I/O

controller

Power

Manager

Keystone

video

controller
VRAM

External video

Flat panel

display

PBX

memory

controller

RAM

expansion

card

Serial port A

Port B [IR]

SCSI
Baboon

 IDE drive

and floppy

disk drive

controller

C H A P T E R 2

Architecture

Processor/Memory Subsystem

11

Processor/Memory Subsystem 2

The processor/memory subsystem includes the PowerPC 603 microprocessor, main
RAM, and ROM. An optional RAM expansion card can be plugged into the logic board
and becomes part of the processor/memory subsystem.

Main Processor 2

The main processor in the Macintosh PowerBook 5300 computer is a PowerPC 603e
microprocessor, an enhanced version of the PowerPC 603. Its principal features include

■

full RISC processing architecture

■

a load-store unit that operates in parallel with the processing units

■

a branch manager that can usually implement branches by reloading the incoming
instruction queue without using any processing time

■

two internal memory management units (MMU), one for instructions and one for data

■

two 16 KB on-chip caches for data and instructions

For complete technical details, see

Power PC 603 Microprocessor Implementation Definition
Book IV.

The PowerPC 603e microprocessor in the Macintosh PowerBook 5300 computer runs at a
clock speed of either 100.00 or 116.66 (117) MHz, depending on the model. The micro-
processor’s clock speed is locked at either 3.0 or 3.5 times the memory subsystem’s clock
speed, which is 33.33 MHz.

RAM 2

The built-in RAM consists of 8, 16, or 32 MB of dynamic RAM (DRAM). The RAM ICs
are low-power, self-refreshing type with an access time of 70 ns.

An optional RAM expansion card plugs into a 120-pin connector on the logic board.
With the RAM expansion card installed, the processor/memory subsystem supports
up to 64 MB of RAM. The RAM expansion card for the Macintosh PowerBook 5300
computer is not compatible with the RAM card used in earlier PowerBook models. See
the section “RAM Expansion” beginning on page 39 for details.

The PBX custom IC contains bank base registers that are used to make RAM addresses
contiguous, starting at address $0000 0000. See “PBX Memory Controller IC” on page 12.

C H A P T E R 2

Architecture

12

Processor/Memory Subsystem

ROM 2

The ROM in the Macintosh PowerBook 5300 computer is implemented as a 1M by 32-bit
array consisting of two 1 M by 16-bit ROM ICs. The ROM devices support burst mode so
they do not degrade the performance of the PowerPC 603 microprocessor. The ROM ICs
provide 4 MB of storage, which is located in the system memory map between addresses
$3000 0000 and $3FFF FFFF. The ROM data path is 32 bits wide and addressable only as
longwords. See Chapter 5, “Software Features,” for a description of the features of this
new ROM.

PBX Memory Controller IC 2

The PBX IC is a new Apple custom IC that provides RAM and ROM memory control
and also acts as the bridge between the processor bus on the processor and memory
subsystem and the 68030-type I/O bus on the main logic board. The PBX IC also
provides bus cycle decoding for the SWIM floppy-disk controller.

Memory Control 2

The PBX IC controls the system RAM and ROM and provides address multiplexing and
refresh signals for the DRAM devices. For information about the address multiplexing,
see “Address Multiplexing” on page 43.

The PBX IC has a memory bank decoder in the form of an indexed register file. Each
nibble in the register file represents a 2 MB page in the memory address space (64 MB).
The value in each nibble maps the corresponding page to one of the eight banks of
physical RAM. By writing the appropriate values into the register file at startup time, the
system software makes the memory addresses contiguous.

Bus Bridge 2

The PBX IC acts as a bridge between the processor bus and the I/O bus, converting
signals on one bus to the equivalent signals on the other bus. The bridge functions are
performed by two converters. One accepts requests from the processor bus and presents
them to the I/O bus in a manner consistent with a 68030 microprocessor. The other
converter accepts requests from the I/O bus and provides access to the RAM and ROM
on the processor bus.

The bus bridge in the PBX IC runs asynchronously so that the processor bus and the I/O
bus can operate at different rates. The processor bus operates at a clock rate of
33.33 MHz and the I/O bus operates at 25.00 MHz.

C H A P T E R 2

Architecture

Input/Output Subsystem

13

Input/Output Subsystem 2

The input/output subsystem includes the components that communicate by way of the
I/O bus:

■

the Whitney custom IC

■

the Combo I/O controller IC

■

the Singer sound controller IC

■

the Power Manager IC

■

the display controller IC (ECSC)

■

the Baboon custom IC that controls the expansion bay

■

the TREX custom IC that controls the PCMCIA slots

The next sections describe these components.

Whitney Peripheral Support IC 2

The Whitney IC is a custom IC that provides the interface between the system bus and
the I/O bus that supports peripheral device controllers. The Whitney IC incorporates the
following circuitry:

■

VIA1 like that in other Macintosh computers

■

SWIM II floppy disk controller

■

CPU ID register

The Whitney IC also performs the following functions:

■

bus error timing for the I/O bus

■

bus arbitration for the I/O bus

■

interrupt prioritization

■

VIA2 functions

■

sound data buffering

■

clock generation

■

power control signals

The Whitney IC contains the interface circuitry for the following peripheral ICs:

■

Combo, which is a combination of SCC and SCSI ICs

■

Singer, the sound codec IC

C H A P T E R 2

Architecture

14

Input/Output Subsystem

The Whitney IC provides the device select signals for the following ICs:

■

the flat panel display controller

■

the external video controller

The Whitney IC also provides the power off and reset signals to the peripheral device ICs.

Combo IC 2

The Combo custom IC combines the functions of the SCC IC (85C30 Serial Communica-
tions Controller) and the SCSI controller IC (53C80). The SCC portion of the Combo IC
supports the serial I/O port. The SCSI controller portion of the Combo IC supports the
external SCSI devices.

Singer IC 2

The Singer custom IC is a 16-bit digital sound codec. It conforms to the IT&T

ASCO 2300
Audio-Stereo Code Specification.

 The Whitney IC maintains sound I/O buffers in main
memory for sound samples being sent in or out through the Singer IC. For information
about the operation of the Singer IC, see the section “Sound System” on page 28.

Power Manager IC 2

The Power Manager IC is a 68HC05 microprocessor that operates with its own RAM and
ROM. The Power Manager IC performs the following functions:

■

controlling sleep, shutdown, and on/off modes

■

controlling power to the other ICs

■

controlling clock signals to the other ICs

■

supporting the ADB

■

scanning the keyboard

■

controlling display brightness

■

monitoring battery charge level

■

controlling battery charging

Display Controller IC 2

An ECSC (enhanced

color support chip) IC provides the data and control interface to the
LCD panel. The ECSC IC is similar to the CSC used in the PowerBook 520 and 540
models except that it can address 1 MB of video RAM. The ECSC IC contains a 256-entry
CLUT, RAMDAC, display buffer controller, and flat panel control circuitry. For more
information, see “Flat Panel Display Circuitry” on page 24.

C H A P T E R 2

Architecture

Input/Output Subsystem

15

Baboon Custom IC 2

The Baboon custom IC provides the interface to the expansion bay. The IC performs four
functions:

■

controls the expansion bay

■

controls the IDE interfaces, both internal and in the expansion bay

■

buffers the floppy-disk signals to the expansion bay

■

decodes addresses for the PCMCIA slots and the IDE controller

The Baboon IC controls the power to the expansion bay and the signals that allow the
user to insert a device into the expansion bay while the computer is operating. Those
signals are fully described in the section “Expansion Bay” beginning on page 32.

The Baboon IC controls the interface for both the internal IDE hard disk drive and a
possible second IDE drive in the expansion bay. For information about the internal IDE
drive see the section “Internal IDE Hard Disk Drive” beginning on page 18. For
information about the IDE drive signals in the expansion bay, see the section “Signals on
the Expansion Bay Connector,” particularly Table 4-2 on page 36.

The Baboon IC also handles the signals to a floppy disk drive installed in the expansion
bay. For more information, see the section “Signals on the Expansion Bay Connector,”
particularly Table 4-2 on page 36.

The address decode portion of the Baboon IC provides address decoding for the IDE
controller portion of the IC. It also provides the chip select decode for the TREX custom
IC and address decoding for the two PCMCIA slots.

TREX Custom IC 2

The TREX custom IC provides the interface and control signals for the PCMCIA slots.
The main features of the TREX IC are

■

the interrupt structure for the PCMCIA slots

■

transfers of single-byte and word data to and from the PCMCIA slots

■

power management for the PCMCIA slots, including

n

sleep mode

n

control of power to individual sockets

n

support of insertion and removal of PC cards while the computer is operating

■

support for software control of card ejection

■

support for time-division multiplexing (TDM), Apple Computer’s technique for
implementing PC cards for telecommunications

For more information about the operation of the PCMCIA slots, see “PCMCIA Slot” on
page 58.

C H A P T E R 2

Architecture

16

Video Card

Video Card 2

The video card includes two additional components that communicate by way of the
I/O bus:

■

the Ariel custom video controller IC

■

the Keystone custom video output IC

Keystone Video Controller IC 2

The Keystone custom IC contains the timing and control circuits for the external video
circuitry. The Keystone IC has internal registers that the video driver uses to set the
horizontal and vertical timing parameters. The Keystone IC also generates the video
refresh addresses for the VRAM.

Ariel Video Output IC 2

The Ariel custom IC contains the video CLUT (color lookup table) and DAC. The Ariel
IC takes the serial video data from the VRAM and generates the actual RGB signals for
the external video monitor. The Ariel is pin and software compatible with the AC843 but
does not support 24 bits per pixel.

For more information about the operation of the video card, see the section “Video Card”
beginning on page 49.

C H A P T E R 3

I/O Features 3Figure 3-0
Listing 3-0
Table 3-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 3

I/O Features

18

Internal IDE Hard Disk Drive

This chapter describes both the built-in I/O devices and the interfaces for external I/O
devices. Like the earlier chapters, it emphasizes the similarities and differences between
the Macintosh PowerBook 5300 computer and other PowerBook models.

This chapter describes the following built-in devices and I/O ports:

■

internal IDE hard disk drive

■

built-in trackpad

■

built-in keyboard

■

built-in flat panel display

■

serial port

■

SCSI port

■

Apple Desktop Bus (ADB) port

■

IR module

■

sound system

Note

For information about the expansion bay and the optional
video card, see Chapter 4, “Expansion Modules.”

◆

Internal IDE Hard Disk Drive 3

The Macintosh PowerBook 5300 computer has an internal hard disk that uses the
standard IDE (integrated drive electronics) interface. This interface, used for IDE drives
on IBM AT–compatible computers, is also referred to as the ATA interface. The imple-
mentation of the ATA interface on the Macintosh PowerBook 5300 computer is a subset
of the ATA/IDE specification, ANSI proposal X3T10/0948D, Revision 2K (ATA-2).

For information about the IDE software interface, see Chapter 8, “Software for ATA
Devices.”

Hard Disk Specifications 3

Figure 3-1 shows the maximum dimensions of the hard disk and the location of the
mounting holes. The minimum clearance between any conductive components on the
drive and the bottom of the mounting envelope is 0.5 mm.

C H A P T E R 3

I/O Features

Internal IDE Hard Disk Drive

19

Figure 3-1

Maximum dimensions of the internal IDE hard disk

Hard Disk Connector 3

The internal hard disk has a 48-pin connector that carries both the IDE signals and the
power for the drive. The connector has the dimensions of a 50-pin connector, but with
one row of pins removed. The remaining pins are in two groups: pins 1–44, which carry
the signals and power, and pins 46–48, which are reserved. Figure 3-2 shows the
connector and identifies the pins. Notice that pin 20 has been removed, and that pin 1 is
located nearest the gap, rather than at the end of the connector.

3.00

[0.118]

4.06

[0.160]

61.72

[2.430]

70.00

[2.755]

M3, 3.5 deep,

minimum full

thread, 8X

Note: Dimensions are in millimeters [inches]

19.25 maximum

[0.757 maximum]

34.93±0.38

[1.375±0.015]

101.60 maximum

[4.00 maximum]

38.10

[1.500]

C H A P T E R 3

I/O Features

20

Internal IDE Hard Disk Drive

Figure 3-2

Connector for the internal IDE hard disk

Connector Location 3

Figure 3-3 shows the position of the connector on the hard disk drive.

Figure 3-3

Position of the hard disk connector

Signal Assignments 3

Table 3-1 shows the signal assignments on the 44-pin portion of the hard disk connector.
A slash (/) at the beginning of a signal name indicates an active-low signal.

Table 3-1

Pin assignments on the IDE hard disk connector

Pin
number Signal name

Pin
number Signal name

1 /RESET 2 GROUND

3 DD7 4 DD8

5 DD6 6 DD9

7 DD5 8 DD10

continued

43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 45

44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

47

48 46

Note: gaps are equivalent to missing pins.

Note: Dimensions are in millimeters [inches]

19.25 maximum

[0.757 maximum]

3.99

[0.157]

10.14±0.375

[0.399±0.014]

Key: vacant

position at pin 20

Vacant row in

50-pin connector

Pin 1

Center line of pin 44

C H A P T E R 3

I/O Features

Internal IDE Hard Disk Drive

21

IDE Signal Descriptions 3

Table 3-2 describes the signals on the IDE hard disk connector.

9 DD4 10 DD11

11 DD3 12 DD12

13 DD2 14 DD13

15 DD1 16 DD14

17 DD0 18 DD15

19 GROUND 20 KEY

21 DMARQ 22 GROUND

23 /DIOW 24 GROUND

25 /DIOR 26 GROUND

27 IORDY 28 CSEL

29 /DMACK 30 GROUND

31 INTRQ 32 /IOCS16

33 DA1 34 /PDIAG

35 DA0 36 DA2

37 /CS0 38 /CS1

39 /DASP 40 GROUND

41 +5V LOGIC 42 +5V MOTOR

43 GROUND 44 Reserved

Table 3-2

Signals on the IDE hard disk connector

Signal name Signal description

DA(0–2) IDE device address; used by the computer to select one of the registers
in the IDE drive. For more information, see the descriptions of the CS0
and CS1 signals.

DD(0–15) IDE data bus; buffered from IOD(16–31) of the computer’s I/O bus.
DD(0–15) are used to transfer 16-bit data to and from the drive buffer.
DD(8–15) are used to transfer data to and from the internal registers
of the drive, with DD(0–7) driven high when writing.

continued

Table 3-1

Pin assignments on the IDE hard disk connector (continued)

Pin
number Signal name

Pin
number Signal name

C H A P T E R 3

I/O Features

22

Trackpad

The IDE data bus is connected to the I/O bus through bidirectional bus buffers. To match
the big-endian format of the 68030-compatible I/O bus, the bytes are swapped. The
lowest byte of the IDE data bus, DD(0–7), is connected to the high byte of the upper
word of the I/O bus, IOD(24–31). The highest byte of the IDE data bus, DD(8–15), is
connected to the low byte of the upper word of the I/O bus, IOD(16–23).

Trackpad 3

The pointing device in the Macintosh PowerBook 5300 computer is a trackpad, an
integrated flat pad that replaces the trackball used in previous PowerBook computers.
The trackpad provides precise cursor positioning in response to motions of the user’s
fingertip over the surface of the pad. A single button below the trackpad is used to
make selections.

/CS0 IDE register select signal. It is asserted low to select the main task file
registers. The task file registers indicate the command, the sector
address, and the sector count.

/CS1 IDE register select signal. It is asserted low to select the additional
control and status registers on the IDE drive.

CSEL Cable select; if CSEL is asserted, the device address is 1; if negated, the
device address is 0.

/DASP Device active or slave present.

IORDY IDE I/O ready; when driven low by the drive, signals the CPU to insert
wait states into the I/O read or write cycles.

/IOCS16 IDE I/O channel select; asserted low for an access to the data port. The
computer uses this signal to indicate a 16-bit data transfer.

/DIOR IDE I/O data read strobe.

/DIOW IDE I/O data write strobe.

/DMACK Used by the host to initiate a DMA transfer in response to DMARQ.

DMARQ Asserted by the device when it is ready to transfer data to or from
the host.

INTRQ IDE interrupt request. This active high signal is used to inform the
computer that a data transfer is requested or that a command has
terminated.

/PDIAG Asserted by device 1 to indicate to device 0 that it has completed the
power-on diagnostics.

/RESET Hardware reset to the drive; an active low signal.

Key This pin is the key for the connector.

Table 3-2

Signals on the IDE hard disk connector (continued)

Signal name Signal description

C H A P T E R 3

I/O Features

Keyboard

23

The trackpad is a solid-state device that emulates a mouse by sensing the motions of the
user’s finger over its surface and translating those motions into ADB commands. The
trackpad is lighter and more durable than the trackball used in earlier PowerBook
computers, and it consumes less power.

Also see the section “Trackpad Support” on page 65.

Keyboard 3

A new keyboard design provides 76 (United States) or 77 (ISO) keys, including
12 function keys. Figure 3-4 shows the version of the keyboard used on machines
sold in the United States. Figure 3-5 shows the version of the keyboard used on
machines sold in countries that require the ISO standard.

Figure 3-4

Keyboard, United States layout

Figure 3-5

Keyboard, ISO layout

]

return

enter

shift

ctrl option

~

`

!
1

@
2

#
3

$
4

%
5

^
6

&
7

*
8

(
9

)
0

_
-

+
=

esc F2 F3 F4F1 F8 F9 F10 F11 F12F5 F6 F7

Q W E R T Y U I O P [

A S D F G H J K L ; '

Z X C V B N M , . /

{

?><

":

delete

\tab

caps lock

shift

±

§
!
1

@
2

#
3

$
4

%
5

^
6

&
7

*
8

(
9

)
0

_
-

+
=

esc F2 F3 F4F1 F8 F9 F10 F11 F12F5 F6 F7

Q W E R T Y U I O P [
{

]
}

A S D F G H J K L ; '

Z X C V B N M , . /

ctrl

~

`

\

?><

|":

C H A P T E R 3

I/O Features

24

Flat Panel Display

After removing two screws, the user can lift out the keyboard to obtain access to the
internal components and expansion connectors inside the Macintosh PowerBook 5300
computer.

Flat Panel Display 3

The Macintosh PowerBook 5300 computer has a built-in flat panel display. Four display
options are available, as shown in Table 3-3. All four displays are backlit by a cold
cathode fluorescent lamp (CCFL). The FSTN displays can show up to 256 colors on color
displays or 16 levels of gray on grayscale displays. Both active matrix displays can show
up to thousands of colors.

Flat Panel Display Circuitry 3

The flat panel display circuitry in the Macintosh PowerBook 5300 computer emulates a
NuBus



 video card installed in slot $0. There is no declaration ROM as such; its
functions have been incorporated into the system ROM. The display circuitry includes
the new ECSC controller IC and a display buffer consisting of 1 MB of VRAM. The LCD
display is compatible with software that uses QuickDraw and the Palette Manager. The
display supports color table animation.

Number of Colors 3

The display controller IC contains a 256-entry CLUT. Although the CLUT supports a
palette of thousands of colors, many of the possible colors do not look acceptable on the
display. Due to the nature of color LCD technology, some colors are dithered or exhibit
noticeable flicker. Apple has developed new gamma tables for these displays that
minimize flicker and optimize available colors. With these gamma tables, the effective
range of the CLUT for the active matrix color display is about 260,000 colors; for the
DualScan color display, the effective range is about 4000 colors.

Table 3-3

Characteristics of the displays

Display type
Size
(inches)

Size
(pixels)

Dot pitch
(mm)

Number of
colors or grays

Supertwist grayscale
(FSTN)

9.5 640 x 480 0.27 16

DualScan color
(FSTN)

10.4 640 x 480 0.30 256

Active matrix color
(TFT)

10.4 640 x 480 0.30 Thousands

Active matrix color
(TFT)

10.4 800 x 600 0.27 Thousands

C H A P T E R 3

I/O Features

Serial Port

25

Serial Port 3

The Macintosh PowerBook 5300 computer has a standard Macintosh serial port for
synchronous, asynchronous, or AppleTalk serial communication. The 8-pin

mini-DIN
connector on the back panel is the same as those on other Macintosh computers.
Figure 3-6 shows the connector and Table 3-4 shows the signal assignments for the
serial port.

Figure 3-6

Serial port connector

SCSI Port 3

The SCSI port on the Macintosh PowerBook 5300 computer supports the SCSI interface
as defined by the American National Standards Institute (ANSI) X3T9.2 committee.

The external HDI-30 connector is identical to those used in other PowerBook models.
The SCSI portion of the Combo IC connects directly to the external SCSI connector
and can sink up to 48 mA through each of the pins connected to the SCSI bus. The
data and control signals on the SCSI bus are active low signals that are driven by
open drain outputs.

Types of Displays

Passive matrix refers to a display technology that
does not have individual transistors. That technology
is also called FSTN, for film supertwist nematic,
sometimes shortened to just supertwist.

DualScan is Apple Computer’s new type of FSTN
color, an improved version of the color display used in
the PowerBook 165c.

Flat panel displays come in two types: active matrix
and passive matrix.

Active matrix displays, also called thin-film
transistor (TFT) displays, have a driving transistor
for each individual pixel. The driving transistors
give active matrix displays high contrast and fast
response time.

8 7 6

1

5 4

2

3

C H A P T E R 3

I/O Features

26

SCSI Port

Table 3-5 shows the signal assignments for the external SCSI connector. Note that pin 1
of the external SCSI connector is the /SCSI.DISK.MODE signal.

Table 3-4

Serial port signals

Pin
number Signal name Signal description

1 HSKo Handshake output

2 HSKi Handshake input

3 TxD– Transmit data –

4 SG Signal ground

5 RxD– Receive data –

6 TxD+ Transmit data +

7 GPi General-purpose input

8 RxD+ Receive data +

Table 3-5

SCSI connector signals

Pin
number SCSI connector

Pin
number SCSI connector

1 /SCSI.DISK.MODE 16 /DB6

2 /DB0 17 GND

3 GND 18 /DB7

4 /DB1 19 /DBP

5 TERMPWR (not used;
reserved for future use)

20 GND

6 /DB2 21 /REQ

7 /DB3 22 GND

8 GND 23 /BSY

9 /ACK 24 GND

10 GND 25 /ATN

11 /DB4 26 /C/D

12 GND 27 /RST

13 GND 28 /MSG

14 /DB5 29 /SEL

15 GND 30 /I/O

C H A P T E R 3

I/O Features

ADB Port

27

ADB Port 3

The Apple Desktop Bus (ADB) port on the Macintosh PowerBook 5300 computer is
functionally the same as on other Macintosh computers.

The ADB connector is a 4-pin mini-DIN connector. Figure 3-7 shows the arrangement of
the pins on the ADB connector.

Figure 3-7

ADB connector

The ADB is a single-master, multiple-slave serial communications bus that uses an
asynchronous protocol and connects keyboards, graphics tablets, mouse devices, and
other devices to the computer. The custom ADB microcontroller drives the bus and reads
status from the selected external device. A 4-pin mini-DIN connector connects the
ADB controller to the outside world. Table 3-6 lists the ADB connector pin assignments.
For more information about the ADB, see

Guide to the Macintosh Family Hardware,

second edition.

IMPORTANT

The total current available for all devices connected
to the +5-V pins on the ADB is 100 mA.

▲

Table 3-6

ADB connector pin assignments

Pin
number Name Description

1 ADB Bidirectional data bus used for input and output; an
open collector signal pulled up to +5 volts through a
470-ohm resistor on the main logic board.

2 PSW Power on signal; generates reset and interrupt key
combinations.

3 +5V +5 volts from the computer.

4 GND Ground from the computer.

4 3

2 1

C H A P T E R 3

I/O Features

28

Infrared Module

Infrared Module 3

The computer has an infrared (IR) module connected internally to serial port B. The IR
module can communicate with Newton PDAs and other communications devices. When
the computer is placed within a few feet of another machine with an IR interface, it can
send and receive serial data using one of several standard communications protocols.
The other machine may be another Macintosh PowerBook 5300 computer, a Newton
PDA, or some other IR-equipped device such as a remote control for a TV set.

The IR module in the Macintosh PowerBook 5300 computer supports the following
communications protocols:

■

LocalTalk

■

Newton/Sharp/ASK

■

HP/IRDA

■

TV remote control (receive only)

For LocalTalk operation, the IR module takes serial bits from the SCC and transmits
them using a modified form of pulse encoding called PPM-4. This method of encoding
uses four cycles of a 3.92-MHz carrier for each pulse, which increases the system’s
immunity to interference from fluorescent lights.

The modulation method used in the Newton PDA consists of gating a 500-kHz carrier on
and off. This method is capable of data rates up to 38.4k bits per second.

Sound System 3

The 16-bit stereo audio circuitry provides high-quality sound input and output through
the built-in microphone and speaker. The user can also connect external input and
output devices by way of the sound input and output jacks.

The sound system is based on the Singer codec IC along with input and output
amplifiers and signal conditioners. In the Macintosh PowerBook 5300 computer, the
Singer codec supports two channels of digital sound with sample sizes up to 16 bits and
sample rates of 11.025 kHz, 22.05 kHz, and 44.1 kHz.

The frequency response of the sound circuits, not including the microphone and speaker,
is within plus or minus 2 dB from 20 Hz to 20 kHz. Total harmonic distortion and noise
is less than 0.05 percent with a 1-V rms sine wave input. The signal-to-noise ratio (SNR)
is 85 dB, with no audible discrete tones.

Note

All sound level specifications in this section are rms values.

◆

C H A P T E R 3

I/O Features

Sound System

29

Sound Inputs 3

The sound system accepts inputs from several sources:

■

built-in microphone

■

external sound input jack

■

sound from the expansion bay

■

1-bit sound from the PCMCIA slot

The sound signal from the built-in microphone goes through a dedicated preamplifier
that raises its nominal 30-mV level to the 1-V level of the codec circuits in the Singer IC.

Stereo sound signals from the external sound input jack go through an analog
multiplexer that selects either the external signals or the sound signals from the
expansion bay. The multiplexer also lowers the levels of the maximum 2-V signal at
the input jack to match the 1-V level of the codec circuits in the Singer IC.

The sound input jack has the following electrical characteristics:

■

input impedance: 6.8k

■

maximum level: 2.0 V rms

Note

The sound input jack accepts the maximum sound output of an audio
CD without clipping. When working with sound sources that have
significantly lower levels, you may wish to increase the sound output
level. You can do that using the Sound Manager as described in

Inside
Macintosh: Sound.

◆

Stereo sound signals from the expansion bay go through an analog multiplexer that
selects either those signals or the line signals from the external input jack. The
multiplexer also raises the nominal 0.5-V level of the expansion-bay sound to the 1-V
input level of the codec circuits.

The sound input from the expansion bay has the following electrical characteristics:

■

input impedance: 3.2k

■

maximum level: 0.5 V rms

Each PCMCIA card has one sound output pin (SPKR_OUT) and the computer accepts
either one or two cards. The one-bit digital signals from the sound output pins are
exclusive-ORed together and routed to the built-in speaker and the external sound
output jack.

Sound Outputs 3

The sound system sends computer-generated sounds or sounds from an expansion-bay
device or PC card to a built-in speaker and to an external sound output jack. The sound
output jack is located on the back of the computer.

C H A P T E R 3

I/O Features

30 Sound System

The sound output jack provides enough current to drive a pair of low-impedance
headphones. The sound output jack has the following electrical characteristics:

■ output impedance: 33 Ω

■ minimum recommended load impedance: 32 Ω

■ maximum level: 1 V rms

■ maximum current: 32 mA peak

The computer turns off the sound signals to the internal speaker when an external device
is connected to the sound output jack and during power cycling.

C H A P T E R 4

Expansion Modules 4Figure 4-0
Listing 4-0
Table 4-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 4

Expansion Modules

32

Expansion Bay

This chapter describes each of the following expansion features of the Macintosh
PowerBook 5300 computer:

■

expansion bay

■

RAM expansion

■

video card (for an external monitor)

■

PCMCIA slot

Expansion Bay 4

The expansion bay is an opening in the Macintosh PowerBook 5300 computer that
accepts a plug-in disk drive such as a floppy disk. The expansion bay can also accept a
power device such as an AC adapter or a second battery.

Expansion Bay Design 4

Figure 4-1 shows a module designed to fit into the expansion bay. Figure 4-2 shows the
dimensions of the expansion bay.

Figure 4-1

Expansion bay module

C H A P T E R 4

Expansion Modules

Expansion Bay

33

Figure 4-2

Expansion bay dimensions

Expansion Bay Connector 4

The expansion bay connector is a 90-pin shielded connector. The pins are divided into
two groups by a gap. Pins 1 and 46 are at the end of the connector nearest the gap; pins
45 and 90 are at the end farthest from the gap. The connector on the main logic board is
AMP part number C-93-1817-53.

A matching card connector is available as part number C-93-1817-54 from AMP, Inc. For
a specification sheet or information about obtaining this connector, contact AMP at

AMP, Inc.
19200 Stevens Creek Blvd.
Cupertino, CA 95014-2578
408-725-4914
AppleLink: AMPCUPERTINO

IMPORTANT

The expansion bay connector is designed so that when a module is
inserted into the expansion bay, the first connection is the ground by
way of the connector shells, then the power pins make contact, and last
of all the signal lines.

▲

18.00

[0.709]

106.00

[4.173]

145.75 [5.738]

Note: Dimensions are in millimeters [inches]

C H A P T E R 4

Expansion Modules

34

Expansion Bay

Signals on the Expansion Bay Connector 4

Table 4-1 shows the signal assignments on the expansion bay connector. Signal names
that begin with a slash (/) are active low.

Table 4-1

Signal assignments on the expansion bay connector

Pin
number Signal name

Pin
number Signal name

1 Reserved 27 MB_+3V

2 Reserved 28 IDE_D(5)

3 MB_+3V 29 IDE_D(7)

4 MB_SND_COM 30 IDE_D(8)

5 Reserved 31 IDE_D(10)

6 Reserved 32 MB_+3V

7 GND 33 IDE_D(13)

8 Reserved 34 IDE_D(15)

9 /DEV_IN 35 /DIOR

10 DEV_ID(1) 36 /CS3FX

11 GND 37 Reserved

12 MB_+5V 38 IDE_ADDR(1)

13 /WRREQ 39 Reserved

14 PHASE(0) 40 Reserved

15 MB_+5V 41 Reserved

16 PHASE(3) 42 Reserved

17 WRDATA 43 Reserved

18 FD_RD 44 Reserved

19 HDSEL 45 MB_+BAT

20 GND 46 Reserved

21 Reserved 47 Reserved

22 Reserved 48 MB_SND_L

23 Reserved 49 MB_SND_R

24 IOCHRDY 50 Reserved

25 GND 51 Reserved

26 IDE_D(2) 52 Reserved

continued

C H A P T E R 4

Expansion Modules

Expansion Bay

35

53 Reserved 72 IDE_D(4)

54 DEV_ID(0) 73 IDE_D(6)

55 DEV_ID(2) 74 GND

56 Reserved 75 IDE_D(9)

57 Reserved 76 IDE_D(11)

58 GND 77 IDE_D(12)

59 PHASE(1) 78 IDE_D(14)

60 PHASE(2) 79 GND

61 GND 80 /DIOW

62 MB_+5V 81 /CS1FX

63 /FL_ENABLE 82 IDE_ADDR(0)

64 /MB_IDE_RST 83 IDE_ADDR(2)

65 Reserved 84 GND

66 Reserved 85 IDE_INTRQ

67 MB_+5V 86 Reserved

68 Reserved 87 Reserved

69 IDE_D(0) 88 Reserved

70 IDE_D(1) 89 GND

71 IDE_D(3) 90 MB_+BAT

Table 4-1

Signal assignments on the expansion bay connector (continued)

Pin
number Signal name

Pin
number Signal name

C H A P T E R 4

Expansion Modules

36

Expansion Bay

Signal Definitions 4

The signals on the expansion bay connector are of three types: expansion bay control
signals, floppy disk signals, and IDE signals. The next three tables describe the three
types of signals: Table 4-2 describes the control signals, Table 4-3 describes the floppy
disk signals, and Table 4-4 describes the IDE signals.

Table 4-2

Control signals on the expansion bay connector

Signal name Signal description

DEV_ID(2:0) These three signal lines identify the type of media-bay device. A
value of 000b identifies a floppy-disk drive; 011b identifies all other
IDE devices.

/DEV_IN This signal is low whenever a device is installed in the expansion
bay; it is used by the Baboon IC to determine when a device has
been inserted or removed.

MB_SND_COM Common (ground) line for expansion bay sound signals.

MB_SND_L Left channel sound signal from the expansion bay device.

MB_SND_R Right channel sound signal from the expansion bay device.

Table 4-3

Floppy disk signals on the expansion bay connector

Signal name Signal description

FD_RD Read data from the floppy disk drive.

/FL_ENABLE Floppy disk drive enable.

PHASE(3:0) Phase(2:0) are state-control lines to the drive; Phase(3) is the strobe
signal for writing to the drive’s control registers.

WRDATA Write data to the floppy disk drive

/WRREQ Write data request signal.

Table 4-4

IDE signals on the expansion bay connector

Signal name Signal description

/CS1FX IDE register select signal. It is asserted low to select the main task
file registers. The task file registers indicate the command, the
sector address, and the sector count.

/CS3FX IDE register select signal. It is asserted low to select the additional
control and status registers on the IDE drive.

/DIOR IDE I/O data read strobe.

continued

C H A P T E R 4

Expansion Modules

Expansion Bay

37

Note

Signal names that begin with a slash (/) are active low.

◆

Unused IDE Signals 4

Several signals defined in the standard interface for the IDE drive are not used by the
expansion bay. Those signals are listed in Table 4-5 along with any action required for the
device to operate in the media bay.

/DIOW IDE I/O data write strobe.

IDE_ADDR(0–2) IDE device address; used by the computer to select one of the
registers in the IDE drive. For more information, see the
descriptions of the /CS1FX and /CS3FX signals.

IDE_D(0–15) IDE data bus, buffered from IOD(16–31) of the controller IC.
IDE_D(0–15) are used to transfer 16-bit data to and from the drive
buffer. IDE_D(0–7) are used to transfer data to and from the drive’s
internal registers, with IDE_D(8-15) driven high when writing.

IOCHRDY IDE I/O channel ready; when driven low by the IDE drive, signals
the CPU to insert wait states into the I/O read or write cycles.

IDE_INTRQ IDE interrupt request. This active high signal is used to inform the
computer that a data transfer is requested or that a command has
terminated.

/MB_IDE_RST Hardware reset to the IDE drive.

Table 4-5

Unused IDE signals

Signal name Comment

DMARQ No action required.

CSEL This signal must be tied to ground to configure the device as
the master in the default mode.

DMACK This signal must be pulled high (to the IDE device’s Vcc).

IOCS16 No action required.

PDIAG No action required; the device is never operated in master-
slave mode.

DAS No action required.

Table 4-4

IDE signals on the expansion bay connector (continued)

Signal name Signal description

C H A P T E R 4

Expansion Modules

38

Expansion Bay

Power on the Expansion Bay 4

Table 4-6 describes the power lines on the expansion bay connector. The MB_+5V line is
controlled by the MB_PWR_EN signal from the Power Manager IC. The current drawn
from MB_+5V must not exceed 1.0 A.

User Installation of an Expansion Bay Device 4

The user can insert a device into the expansion bay while the computer is operating. This
section describes the sequence of control events in the computer and gives guidelines for
designing an expansion bay device so that such insertion does not cause damage to the
device or the computer.

Sequence of Control Signals 4

Specific signals to the Baboon IC and the Power Manager IC allow the computer to
detect the insertion of a device into the expansion bay and take appropriate action. For
example, when an IDE device is inserted, the computer performs the following sequence
of events:

1. When a device is inserted, the /DEV_IN signal goes low, causing the Baboon IC to
generate an interrupt.

2. The Power Manager IC reads the three DEV_ID signals, which identify the device as
an IDE device.

3. System software responds to the interrupt and sets the /MB_PWR_EN signal low,
which turns on the power to the expansion bay.

4. When the media-bay power goes high, the Baboon IC generates another interrupt.

5. System software responds to the power-on interrupt and asserts the /MB_OE signal
to enable the IDE bus in the expansion bay.

6. The software then releases the /MB_IDE_RST signal from the Power Manager IC,
allowing the IDE device to begin operating.

Essentially the reverse sequence occurs when a device is removed from the
expansion bay:

1. When the device is removed, the /DEV_IN signal goes high causing the Baboon IC to
generate an interrupt and set /MB_OE high, disabling the IDE bus.

2. System software responds to the interrupt by reading the device ID settings in the
Power Manager IC, setting the /MB_PWR_EN signal high to turn off the power to the
expansion bay, and asserting the /MB_IDE_RST to disable the IDE drive.

Table 4-6

Power for the expansion bay

Signal name Signal description

GND Ground.

MB_+5V 5 V power; maximum total current is 1.0 A.

C H A P T E R 4

Expansion Modules

RAM Expansion

39

Guidelines for Developers 4

Each expansion bay device must be designed to prevent damage to itself and to
the computer when the user inserts or removes an expansion bay device with the
computer running.

The expansion bay connector is designed so that when the device is inserted the ground
and power pins make contact before the signal lines.

Even though you can design an expansion bay device that minimizes the possibility
of damage when it is inserted hot—that is, while the computer is running—your
instructions to the user should include warnings against doing so.

RAM Expansion 4

This section includes electrical and mechanical guidelines for designing a RAM
expansion card for the Macintosh PowerBook 5300 computer.

The RAM expansion card can contain from 8 MB to 48 MB of self-refreshing dynamic
RAM in one to six banks, with 2 MB, 4 MB, or 8 MB in each bank. Table 4-7 shows how
the banks can be implemented with standard RAM devices.

IMPORTANT

The RAM expansion card for the Macintosh PowerBook 5300 computer
is a new design; cards designed for earlier PowerBook models cannot be
used in this PowerBook model.

▲

▲ W A R N I N G

Installation of a RAM expansion card computer must be performed by
an experienced technician. Installation requires care to avoid damage to
the pins on the RAM expansion connector.

▲

Table 4-7

Configurations of RAM banks

Size of
bank

Number
of devices
per bank Device size (bits)

2 MB 4 512K

×

 8

4 MB 8 1 M

×

 4

4 MB 2 1 M

×

 16

8 MB 4 2 M

×

 8

C H A P T E R 4

Expansion Modules

40

RAM Expansion

Electrical Design Guidelines for the RAM Expansion Card 4

This section provides the electrical information you need to design a RAM expansion
card for the Macintosh PowerBook 5300 computer. The mechanical specifications are
given in a subsequent section, beginning on page 47.

Connector Pin Assignments 4

Table 4-8 lists the names of the signals on the RAM expansion connector. Entries in the
table are arranged the same way as the pins on the connector: pin 1 across from pin 2,
and so on. Signal names that begin with a slash (/) are active low.

Table 4-8

Signal assignments on the RAM expansion connector

Pin Signal name Pin Signal name

1 +5V_MAIN 2 +5V_MAIN

3 +3V_MAIN 4 +3V_MAIN

5 GND 6 GND

7 /RASL(2) 8 RA(11)

9 /WE 10 /RASH(2)

11 /CASL(3) 12 /CASH(3)

13 DataL(28) 14 DataH(28)

15 DataL(29) 16 DataH(29)

17 DataL(30) 18 DataH(30)

19 DataL(31) 20 DataH(31)

21 DataL(24) 22 DataH(24)

23 DataL(25) 24 DataH(25)

25 DataL(26) 26 DataH(26)

27 DataL(27) 28 DataH(27)

29 +5V_MAIN 30 +5V_MAIN

31 DataL(20) 32 DataH(20)

33 GND 34 GND

35 DataL(21) 36 DataH(21)

37 DataL(22) 38 DataH(22)

39 DataL(23) 40 DataH(23)

41 DataL(16) 42 DataH(16)

43 DataL(17) 44 DataH(17)

continued

C H A P T E R 4

Expansion Modules

RAM Expansion

41

45 DataL(18) 46 DataH(18)

47 DataL(19) 48 DataH(19)

49 DataL(12) 50 DataH(12)

51 +3V_MAIN 52 +3V_MAIN

53 DataL(13) 54 DataH(13)

55 DataL(14) 56 DataH(14)

57 DataL(15) 58 DataH(15)

59 +5V_MAIN 60 +5V_MAIN

61 DataL(8) 62 DataH(8)

63 GND 64 /RAM_OE

65 DataL(9) 66 DataH(9)

67 DataL(10) 68 DataH(10)

69 DataL(11) 70 DataH(11)

71 DataL(4) 72 DataH(4)

73 DataL(5) 74 DataH(5)

75 DataL(6) 76 DataH(6)

77 DataL(7) 78 DataH(7)

79 /CASH(0) 80 /RASH(1)

81 /CASH(2) 82 /CASH(1)

83 +3V_MAIN 84 +3V_MAIN

85 DataH(3) 86 DataL(3)

87 DataH(2) 88 DataL(2)

89 +5V_MAIN 90 +5V_MAIN

91 DataH(1) 92 DataL(1)

93 GND 94 GND

95 DataH(0) 96 DataL(0)

97 RA(3) 98 RA(4)

99 RA(2) 100 RA(5)

101 RA(1) 102 RA(6)

103 RA(0) 104 RA(7)

105 RA(10) 106 RA(8)

continued

Table 4-8

Signal assignments on the RAM expansion connector (continued)

Pin Signal name Pin Signal name

C H A P T E R 4

Expansion Modules

42

RAM Expansion

Signal Descriptions 4

Table 4-9 describes the signals on the RAM expansion connector. Signal names that begin
with a slash (/) are active low.

107 RA(9) 108 /RASL(0)

109 /RASL(1) 110 /RASL(3)

111 /CASL(1) 112 +12V

113 /CASL(0) 114 /RASH(0)

115 /CASL(2) 116 /RASH(3)

117 +5V_MAIN 118 +3V_MAIN

119 GND 120 GND

Table 4-9

Descriptions of signals on the RAM expansion connector

Signal name Description

+12V 12.0 V for flash memory; 30 mA maximum.

+5V_MAIN 5.0 V

±

 5%; 500 mA maximum.

+3V_MAIN 3.6 V

±

 5%; 500 mA maximum.

Devices that use the +3V supply must
be 5-V tolerant.

/CASH(0–3) Column address select signals for the individual bytes in a longword.
The signals are assigned to the bytes as follows:

/CASH(3) selects DataH(24–31)

/CASH(2) selects DataH(16–23)

/CASH(1) selects DataH(8–15)

/CASH(0) selects DataH(0–7)

/CASL(0–3) Column address select signals for the individual bytes in a longword.
The signals are assigned to the bytes as follows:

/CASL(3) selects DataL(24–31)

/CASL(2) selects DataL(16–23)

/CASL(1) selects DataL(8–15)

/CASL(0) selects DataL(0–7)

DataH(0–31) Bidirectional 32-bit DRAM data bus. (DataH lines are connected to
corresponding DataL lines on the main logic board.)

DataL(0–31) Bidirectional 32-bit DRAM data bus. (DataL lines are connected to
corresponding DataH lines on the main logic board.)

continued

Table 4-8

Signal assignments on the RAM expansion connector (continued)

Pin Signal name Pin Signal name

C H A P T E R 4

Expansion Modules

RAM Expansion

43

In the table, signals are specified as inputs or outputs with respect to the main logic
board that contains the CPU and memory module; for example, an input is driven by the
expansion card into the logic board.

IMPORTANT

The last letter in the names of row and column strobe signals identifies
signals that are used together: /CASL() signals are used with /RASL()
signals; /CASH() signals are used with /RASH() signals. In the
Macintosh PowerBook 5300 computer, corresponding DataL and DataH
lines are connected together.

▲

Address signals must be stable before the falling edge of RAS. Because each address line
is connected to every DRAM device, whereas each RAS line is connected to only one
bank of devices, the difference in loading can cause the address signals to change more
slowly than the RAS signals. This situation is more likely to arise on cards with many
DRAM devices. One solution is to add 100-

Ω

 damping resistors on the RAS lines.

Address Multiplexing 4

Signals RA(0-11) are a 12-bit multiplexed address bus and can support several different
types of DRAM devices.

Depending on their internal design and size, different types of DRAM devices require
different row and column address multiplexing. The operation of the multiplexing is
determined by the way the address pins on the devices are connected to individual
signals on the RA(0-11) bus and depends on the exact type of DRAM used.

Table 4-10 shows how the signals on the address bus are connected for several types of
DRAM devices. The device types are specified by their size and by the number of row
and column address bits they require.

GND Chassis and logic ground.

RA(0–11) Multiplexed row and column address to the DRAM devices. (See the
section “Address Multiplexing” on page 43 to determine which bits to
use for a particular type of DRAM device.)

RAM_OE Output enable signal to the DRAM devices.

/RASL(0–3) Row address select signals for the four banks of DRAM whose data
bytes are selected by /CASL(0–3). (Signals /RASL(1–3) are for DRAM
on the expansion card. The /RASL(0) signal selects a bank of DRAM
on the main logic board.)

/RASH(0–3) Row address select signals for the four banks of DRAM whose data
bytes are selected by /CASH(0–3). (Signals /RASH(1–3) are for DRAM
on the expansion card. The /RASH(0) signal selects a bank of DRAM
on the main logic board.)

/WE Write enable for all banks of DRAM.

Table 4-9

Descriptions of signals on the RAM expansion connector (continued)

Signal name Description

C H A P T E R 4

Expansion Modules

44

RAM Expansion

Table 4-10 also shows how the signals are multiplexed during the row and column
address phases. For each type of DRAM device, the first and second rows show the
actual address bits that drive each address pin during row addressing and column
addressing, respectively. The third row shows how the device’s address pins are
connected to the signals on the RA(0-11) bus.

IMPORTANT

Some types of DRAM devices don’t use all 12 bits in the row or column
address. The table shows the address-bit numbers for those unused bits
in italics; bit numbers for the bits that are used are shown in bold.

▲

Table 4-10

Address multiplexing for some typical DRAM devices

Individual signals on DRAM_ADDR bus

Type of DRAM device

[11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

4 M by 1 or 4 M by 4;11 row bits, 11 column bits

Row address bits

21

22 20 18 17 16 15 14 13 12 11 10

Column address bits

19

23 21 19 9 8 7 6 5 4 3 2

Device address pins

— 10 9 8 7 6 5 4 3 2 1 0

2 M by 8; 12 row bits, 9 column bits

Row address bits

21 22 20 18 17 16 15 14 13 12 11 10

Column address bits

19 23 21

19 9 8 7 6 5 4 3 2

Device address pins

11 10 9 8 7 6 5 4 3 2 1 0

2 M by 8; 11 row bits, 10 column bits

Row address bits

21

22 20 18 17 16 15 14 13 12 11 10

Column address bits

19 23

21 19 9 8 7 6 5 4 3 2

Device address pins

— 10 9 8 7 6 5 4 3 2 1 0

1 M by 4 or 1 M by 16; 11 row bits, 9 column bits

Row address bits

21 22 20 18 17 16 15 14 13 12 11 10

Column address bits 19 23 21 19 9 8 7 6 5 4 3 2

Device address pins 10 — 9 8 7 6 5 4 3 2 1 0

1 M by 4 or 1 M by 16; 10 row bits, 10 column bits

Row address bits 21 22 20 18 17 16 15 14 13 12 11 10

Column address bits 19 23 21 19 9 8 7 6 5 4 3 2

Device address pins — — 9 8 7 6 5 4 3 2 1 0

continued

C H A P T E R 4

Expansion Modules

RAM Expansion 45

Note
The address multiplexing scheme used in the Macintosh
PowerBook 5300 computer supports only the types of RAM
devices shown in Table 4-10. Other RAM types should not be used. ◆

Banks of DRAM 4

The DRAM expansion card can have up to six banks of RAM, selected by individual
signals /RASL(1–3) and /RASH(1–3). Banks can be 2 MB, 4 MB, or 8 MB in size; on a
card with more than one bank, all banks must be the same size.

Because only one bank is active at a time, and because different-sized DRAM devices
consume about the same amount of power when active, a card having fewer devices per
bank consumes less power than a card having more devices per bank.

Note
The PBX IC has a memory bank decoder that is used by the startup
software to make the memory banks contiguous. For more information,
see “Memory Control” on page 12. ◆

DRAM Device Requirements 4

The DRAM devices used in a DRAM expansion card must meet the following minimum
specifications:

■ fast page mode

■ self-refreshing

■ low-power grade

■ row access time (tRAC) of 70 ns or less

■ column access time (tCAC) of 20 ns or less

■ page-mode cycle time (tPC) of 50 ns or less

DRAM devices that use the 3-V supply must be 5-V tolerant.

512K by 8; 10 row bits, 9 column bits

Row address bits 21 22 20 18 17 16 15 14 13 12 11 10

Column address bits 19 23 21 19 9 8 7 6 5 4 3 2

Device address pins — — 9 8 7 6 5 4 3 2 1 0

Table 4-10 Address multiplexing for some typical DRAM devices (continued)

Individual signals on DRAM_ADDR bus

Type of DRAM device [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

C H A P T E R 4

Expansion Modules

46 RAM Expansion

Note
The DRAM refresh operation depends on the state of the computer.
When the computer is operating normally, the PBX IC provides refresh
signals consisting of 2048 CAS before RAS cycles every 128 ms. When
the computer goes into sleep mode, the PBX IC switches the DRAM
devices to their self-refresh feature to save power. See also “PBX
Memory Controller IC” on page 12. ◆

Expansion Card Electrical Limits 4

The DRAM expansion card must not exceed the following maximum current limits on
the +5V supply:

The capacitive loading on the signal lines must not exceed the following limits:

If the total capacitive loading for the devices on your card exceeds these guidelines, you
should use buffers (such as 244-type devices) on the address and /RAS lines. Because of
timing constraints, you cannot use buffers on the /CAS and /WE lines. If you do use
buffers, you must keep within the following delay specifications:

■ Maximum delay on RA(): 8ns

■ Maximum delay on /RASL() and /RASH(): 10ns

■ Minimum delay on /RASL() and /RASH(): greater than or equal to the actual delay
on RA()

Active 500 mA

Standby 24 mA

Self-refresh 6 mA

/CASL(0–3), /CASH(0–3) 40 pF

DataL(0–31), DataH(0–31) 70 pF

RA(0–11) 25 pF

/RASL(1–3), /RASH(1–3) 30 pF

/WE 85 pF

C H A P T E R 4

Expansion Modules

RAM Expansion 47

Mechanical Design of the RAM Expansion Card 4
All the components of the RAM expansion card, including the connector, are on the same
side of the card, as shown in Figure 4-3.

Figure 4-3 RAM expansion card

IMPORTANT

The component side is the bottom side when the card is installed.
The top surface of the board must have no components or component
leads. All components must reside on the bottom of the card, along
with the connector. ◆

RAM Card Dimensions 4

Figure 4-4 is a plan view of the component side of the card showing its dimensions and
the location of the connector.

Figure 4-4 Dimensions of the RAM expansion card

Connector

Low-profile memory ICs

(typical configuration)

86.30

[3.398]

54.40 [2.142]

23.92 [.942]

R 1.52 [.060]

5.30

[.209]

9.96 [.392]

PIN 1

PIN 2

5.00 [.197]

6.30 [.248]

R 1.52 [.060]

89.00 [3.504]

Note: Dimensions are in millimeters [inches]

C H A P T E R 4

Expansion Modules

48 RAM Expansion

Figure 4-5 shows the maximum component height and the restricted areas on the bottom
(component side) of the card. Only the connector can exceed the height limit shown.

Figure 4-5 Restricted areas on the component side of the card

To keep within the component height restrictions, the DRAM devices on the RAM
expansion card must be of package type TSOP (thin small outline package) rather than
SOP or SOJ.

IMPORTANT

The thickness of the PC board is critical; it must be
within a 0.05-mm tolerance of 0.75 mm. ▲

▲ W A R N I N G

Do not exceed the dimensions shown in the drawings. Cards
that exceed these specifications may damage the computer. ▲

RAM Card Connector 4

The connector on the RAM expansion card is a 120-pin connector, part number
KX14-120K14E9, manufactured by JAE Electronics, Irvine, California.

Note
Some early prototypes of this connector had oil contamination of the
contact surfaces. Developers should avoid using those prototype
connectors in their products.

77.00 [3.031] 2X 6.00 [.236]

6.00 [.236]

Component height

restricted to 1.42

 [.056] maximum

No components

or traces

2X 81.83

 [3.22]

Note: Dimensions are in millimeters [inches]

C H A P T E R 4

Expansion Modules

Video Card 49

Video Card 4

The Macintosh PowerBook 5300 computer accepts an optional video card that provides
support for an external video monitor. This section describes the video card that Apple
provides and includes a design guide for developers who wish to design such a card.

The Apple Video Card 4
Apple provides an optional video card for the Macintosh PowerBook 5300 computer.
Figure 4-6 shows its general appearance.

Figure 4-6 Video card

Monitors Supported 4

The external video card provides video output for all Apple 12-inch, 13-inch, and 16-inch
RGB monitors, the Apple Macintosh Portrait Display, and Apple Computer’s new
17-inch multiscan display. With appropriate adapter cables, the external video card can
also support a VGA display or an 800-by-600 pixel SVGA display.

The video card contains 512 KB of video RAM, which provides pixel depths of up to
8 bits per pixel on monitor screens of up to 624-by-832 pixels.

Foam block

Video

connector

Shield

80-pin connector

C H A P T E R 4

Expansion Modules

50 Video Card

Table 4-11 lists the video monitors supported by the video card.

The external video interface is enabled by attaching a monitor and restarting the
computer. During the boot process, ROM software tests the monitor sense lines and
activates the video output system if a recognized monitor is attached. If no monitor is
found, the video output system is deactivated to conserve power.

Video Mirroring 4

When two video displays are used, the Macintosh PowerBook 5300 computer has two
video output modes: dual mode and mirror mode. In dual mode, which is the normal
Macintosh mode of operation, the external video monitor is independent of the flat panel
display and displays additional information. Alternatively, the user can select mirror
mode, in which the external monitor mirrors (duplicates) the flat panel display.

The screen of the external monitor may be larger or smaller than the flat panel display. In
mirror mode, the display on the larger screen uses only the central portion of that screen
and matches the horizontal and vertical dimensions of the smaller screen.

▲ W A R N I N G

Applications that write directly to the display buffer may not be
compatible with mirror mode unless they ensure that they do not write
outside the active display area. That is not a problem for applications
that use QuickDraw and never write directly to the display buffer. ▲

Because the video output circuitry consumes additional power, Apple recommends that
customers use the AC adapter when using an external monitor.

* Includes Macintosh Color Display and Apple High Resolution Monochrome Monitor.

Table 4-11 Video monitors and modes

Monitor type
Width
(pixels)

Height
(pixels)

Maximum
pixel depth
(bits)

Frame rate
(Hz)

12-inch RGB 512 384 8 60.15

13-inch RGB* 640 480 8 66.67

Portrait 640 870 4 75.0

16-inch RGB 832 624 8 66.67

17-inch multiscan 640 480 8 66.67

17-inch multiscan 832 624 8 75.0

VGA or SVGA 640 480 8 59.95

SVGA 800 600 8 55.98

C H A P T E R 4

Expansion Modules

Video Card 51

External Video Connector 4

The video card for the Macintosh PowerBook 5300 computer has the same type VID-14
video output connector as the PowerBook 520 and 540 computers. An optional adapter
cable allows the user to attach a standard Apple video cable. Table 4-12 lists the signal
pin assignments for both the VID-14 connector on the card and the DB-15 connector on
the adapter cable. Figure 4-7 shows the pin configurations of the VID-14 connector and
the DB-15 connector.

One source for the VID-14 adapter cable is

Hosiden America Corp.
10090 Pasadena Ave., Suite B2
Cupertino, CA 95014
408-252-0541

Refer to Hosiden part number CMP1220-010100.

Table 4-12 Signals on the video connector

Pin

Signal name DescriptionVID-14 DB-15

1 2 RED.VID Red video signal

2 1 RED.GND Red video ground

3 4 SENSE0 Monitor sense signal 0

4 12 /VSYNC Vertical synchronization signal

5 3 /CSYNC Composite synchronization signal

6 11 GND CSYNC and VSYNC ground

7 6 GRN.GND Green video ground

8 5 GRN.VID Green video signal

9 7 SENSE1 Monitor sense signal 1

10 14 HSYNC.GND HSYNC ground

11 10 SENSE2 Monitor sense signal 2

12 15 /HSYNC Horizontal synchronization signal

13 9 BLU.VID Blue video signal

14 13 BLU.GND Blue video ground

— 8 n.c. Not connected

Shell Shell SGND Shield ground

C H A P T E R 4

Expansion Modules

52 Video Card

Figure 4-7 Video connectors

Monitor Sense Codes 4

To identify the type of monitor connected, the video card uses the Apple monitor sense
codes on the signals SENSE0-2 in Table 4-12. Table 4-13 shows the sense codes and the
extended sense codes for each of the monitors the card can support. Refer to the
Macintosh Technical Note M.HW.SenseLines for a description of the sense code system.

Note
Both VGA and SVGA monitors have the same sense code. The first time
the user starts up with an SVGA monitor, the video card treats it as a
VGA monitor and shows a 640-by-480 pixel display. The user can switch
to the 800-by-600 pixel SVGA mode from the Monitors control panel;
when that happens, the computer changes the display to the 800-by-600
pixel display mode immediately, and continues to use that mode the
next time it is started up. ◆

Table 4-13 Monitor sense codes

Monitor type

Standard
sense codes Extended sense codes

(2–0) (1, 2) (0, 2) (0, 1)

12-inch RGB 0 1 0 n.a. n.a. n.a.

13-inch RGB 1 1 0 n.a. n.a. n.a.

Portrait 0 0 1 n.a. n.a. n.a.

16-inch RGB 1 1 1 1 0 1 1 0 1

17-inch multiscan 1 1 0 1 1 0 1 0 0

VGA and SVGA 1 1 1 0 1 0 1 1 1

No monitor 1 1 1 1 1 1 1 1 1

8 7 6 5 4 3 2

15 14 13 12 11 10 9

1

2 4 6 8 10 12 14

1 3 5 7 9 11 13

VID-14 connector socket

DB-15 connector socket

C H A P T E R 4

Expansion Modules

Video Card 53

Video Card Design Guide 4
This section gives electrical and mechanical specifications for developers who wish to
design a video card for the Macintosh PowerBook 5300 computer.

Video Card Connector 4

The video card is connected to the computer’s main logic board by an 80-pin connector.
The connector on the card is a surface-mount connector with 0.8-mm pitch, part number
KX14-80K5E9 manufactured by JAE Electronics.

Signals on the Video Card Connector 4

Table 4-14 shows the pin assignments on the video card connector. The table is arranged
the same way as the pins on the connector, with pin 1 across from pin 2, and so on.

Table 4-14 Signals on the video card connector

Pin
number Signal name

Pin
number Signal name

1 +5V 2 +5V

3 n.c. 4 IO_DATA(8)

5 n.c. 6 GND

7 n.c. 8 IO_DATA(7)

9 IO_DATA(6) 10 IO_DATA(26)

11 IO_DATA(15) 12 IO_DATA(25)

13 IO_DATA(14) 14 IO_DATA(24)

15 IO_DATA(12) 16 IO_DATA(29)

17 IO_DATA(13) 18 IO_DATA(28)

19 IO_DATA(4) 20 IO_DATA(27)

21 GND 22 GND

23 IO_DATA(0) 24 IO_DATA(16)

25 IO_DATA(5) 26 IO_DATA(31)

27 IO_DATA(1) 28 IO_DATA(30)

29 IO_DATA(11) 30 IO_DATA(19)

31 IO_DATA(3) 32 IO_DATA(22)

33 IO_DATA(9) 34 IO_DATA(21)

35 IO_DATA(2) 36 IO_DATA(17)

37 IO_DATA(10) 38 IO_DATA(20)

continued

C H A P T E R 4

Expansion Modules

54 Video Card

Table 4-15 gives descriptions of the signals on the video card connector.

39 IO_DATA(23) 40 IO_DATA(18)

41 /AS 42 IO_RW

43 /IO_RESET 44 /DSACK(0)

45 +5V 46 +5V

47 SIZ(1) 48 /DSACK(0)

49 SIZ(0) 50 IO_ADDR(0)

51 IO_ADDR(2) 52 IO_ADDR(1)

53 IO_ADDR(5) 54 IO_ADDR(3)

55 IO_ADDR(17) 56 IO_ADDR(4)

57 IO_ADDR(19) 58 IO_ADDR(7)

59 IO_ADDR(15) 60 IO_ADDR(6)

61 IO_ADDR(21) 62 IO_ADDR(10)

63 IO_ADDR(22) 64 IO_ADDR(12)

65 IO_ADDR(23) 66 IO_ADDR(13)

67 IO_ADDR(20) 68 IO_ADDR(11)

69 /KEY_CS 70 IO_ADDR(14)

71 /VID_IRQ 72 IO_ADDR(9)

73 VID_CLK 74 IO_ADDR(16)

75 +5V 76 IO_ADDR(8)

77 BUF_IOCLK 78 IO_ADDR(18)

79 GND 80 GND

Table 4-14 Signals on the video card connector (continued)

Pin
number Signal name

Pin
number Signal name

C H A P T E R 4

Expansion Modules

Video Card 55

Video Card Mechanical Design 4

Figure 4-8 shows the dimensions of the video card and the location of the external
video connector.

Figure 4-8 Dimensions of the video card

Table 4-15 Descriptions of the signals on the video card connector

Signal name Description

/AS Address strobe (68030 bus)

BUF_IOCLK 25 MHz I/O clock

/DSACK(1:0) Bus data acknowledge (68030 bus)

/EXT_VID_CS /CS for locations $FDXX XXXX

IO_ADDR(23:0) Address bus (68030 bus)

IO_DATA(31:0) Data bus (68030 bus)

IO_RESET Device reset; active low

IO_RW Read/write (68030 bus)

/KEY_CS /CS for locations $FEXX XXXX; reserved

SIZ(1:0) Size of video RAM

VID_CLK 16 MHz video clock

/VID_IRQ Video interrupt

87.68

[3.452]

93.98

[3.700]

30.20

[1.189]

Video

connector

43.00

[1.693]

Note: Dimensions are in millimeters [inches]

C H A P T E R 4

Expansion Modules

56 Video Card

Figure 4-9 is a bottom view of the video card and shows the position of the 80-pin
connector (callout 3). Figure 4-10 and Figure 4-11 show the component restrictions on
the bottom and top of the card.

Figure 4-9 Video card and 80-pin connector

Figure 4-10 Video card bottom view with component restrictions

22.23 [.875]

6.29 [.248]

PIN 1

PIN 2

3

Note: Dimensions are in millimeters [inches]

38.75 [1.526]

31.00 [1.220]

19.10 [.752]

Component height restricted

to 4.00 [.157] maximum

Component height restricted

to 2.00 [.079] maximum

Component height restricted

to 2.75 [.108] maximum

No components, bottom side

See Figure 4-12

3.74 [.147]
1.69 [.067]

39.58 [1.558]

16.88 [.665]

13.15 [.518]

29.16 [1.148]

27.94

[1.100]

54.10

[2.130]

25.98

[1.023]

28.12

[1.107]

77.88

[3.066]

13.50 [.531]

22.78 [.897]

Component

height restricted

to 2.50 [.098]

maximum

1.71 [.067]

Note: Dimensions are in millimeters [inches]

C H A P T E R 4

Expansion Modules

Video Card 57

Figure 4-11 Video card top view with component restrictions

Figure 4-12 is a top view of the video card showing the position of the foam block that
helps hold the card in the proper position.

Figure 4-12 Video card top view

16.30

[.642]

10.40

[.409]

Component

height restricted

to 4.00 [.157]

maximum

Component

height restricted

to 6.50 [.256]

maximum

No component

allowed

Note: Dimensions are in millimeters [inches]

85.18

[3.354]

9.90

[.390]

9.40 ± 0.50

16.80 ± 0.50

Foam

block

Note: Dimensions are in millimeters [inches]

C H A P T E R 4

Expansion Modules

58 PCMCIA Slot

Figure 4-13 is a detail drawing showing the dimensions of the three mounting holes for
the EMI shield

Figure 4-13 Detail of EMI shield mounting holes

The thickness of the video card’s PC board is 1.30 mm [0.051 inches].

PCMCIA Slot 4

The Macintosh PowerBook 5300 computer has a PCMCIA slot that can accept two type II
PC cards or one type III PC card. This section summarizes the features and specifications
of the PCMCIA slots. For a description of the PC Card Services software, see Chapter 9,
“PC Card Services.” For complete specifications and descriptions of the software
interfaces, developers should consult Developing PC Card Software for the Mac OS.

PCMCIA Features 4
The PCMCIA slot supports two types of PC cards: mass storage cards such as SRAM and
ATA drives (both rotating hard disk and flash media), and I/O cards such as modems,
network cards, and video cards. The Macintosh desktop metaphor includes the concept
of storage device representation so it already supports mass storage cards. Apple
Computer has extended the metaphor to include I/O cards as well.

The user can insert or remove a PC card while the computer is operating. The user can
eject a PC card either by clicking on the Eject option in a Finder menu or by dragging the
card’s icon to the trash.

PowerBook computers currently support PC card ejection by software command. Soft-
ware ejection is controlled by Card Services and allows Card Services to eject a PC card
after notifying all clients of the card that its ejection is about to occur. If clients are using
resources on the card, the clients have the option of refusing the request and alerting
users to the reasons why an ejection can’t take place.

Support for I/O-oriented PC cards is provided through a Macintosh Finder Extension
that is a client of the Card Services software. The Finder extension is responsible for
maintaining card icons on the desktop, providing card information in Get Info windows,

3.05 [.120]

0.80 [.031]

0.40 [.016]

1.53 [.060]

Note: Dimensions are in millimeters [inches]

C H A P T E R 4

Expansion Modules

PCMCIA Slot 59

and ejecting cards when they’re dragged to the trash. The Finder extension also helps a
client provide custom features such as icons, card names, card types, and help messages.

Summary Specifications 4
The PCMCIA slot in the Macintosh PowerBook 5300 computer contains two standard PC
card sockets. Each socket accepts either a Type I or Type II card. The PCMCIA slot also
accepts one Type III card, which occupies both sockets.

The mechanical and electrical characteristics of the PCMCIA slot conform to the
specifications given in the PCMCIA PC Card Standard, Release 2.1.

The sockets support 16-bit PC cards. Each socket is 5-volt keyed and supports either a
memory PC card or an I/O PC card.

Access Windows 4

Each socket supports two access windows in the computer’s address space.

■ One attribute memory or common memory window

■ One I/O window

The only valid window combinations are the following:

■ One attribute memory window

■ One common memory window

■ One common memory window and one I/O window

Each window has a 64 MB address space. The window address spaces could be
implemented as 8 MB pages in some systems. The PCMCIA interface has the ability to
map the entire PC card’s memory space into the host system’s memory window.

Each window has its own independent access timing register.

Data Access 4

Each socket supports both byte and word data access in both memory and I/O modes.
The IOIS16 signal determines whether word access is single 16-bit access or two 8-bit
accesses. Byte swapping option is always big-endian mode.

The CE1 and CE2 signals determine the type of data bus access, as follows:

■ Word access: CE1=L, CE2=L

■ Even bus access: CE1=L, CE2=H

■ Odd bus access (not allowed): CE1=H, CE2=L

C H A P T E R 4

Expansion Modules

60 PCMCIA Slot

Signal Definitions 4

Certain signals on the PC card sockets are defined as follows:

■ BVD1, BVD2: Battery voltage signals (status and interrupt)

■ WP: Write protect (status and interrupt)

■ RDY/BSY: Ready/Busy signal (status and interrupt)

■ WAIT: Used to delay access (maximum asserted time is 10 µS)

■ IRQ: Interrupt request, level mode only (pulse mode is not supported)

■ SPKR: Speaker (digital audio output)

■ STSCHG/RI: Status change and ring indicator (wake-up mode)

■ INPACK: This signal is not supported

Power 4

The PC card sockets provide power as follows:

■ Vcc: Programmed as either 0 V or 5 V

■ Vpp1, Vpp2: Programmed as either 5 V or 12 V

Vpp1 and Vpp2 cannot be programmed independently.

The maximum current from the Vcc pin is 600 mA. The maximum current from each
Vpp1 or Vpp2 pin is 30 mA. The maximum current from all Vpp pins is 120 mA.

The sockets support a low-powered sleep mode.

Controller Interrupts 4

There is a single interrupt for both sockets. The interrupt is a combination of the Status
Change signal and the PC card’s interrupt request signal.

C H A P T E R 5

Software Features 5Figure 5-0
Listing 5-0
Table 5-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 5

Software Features

62

ROM Software

This chapter describes the new features of the software for the Macintosh PowerBook
5300 computer. It describes both the built-in ROM and the system software that resides
on the hard disk.

ROM Software 5

The ROM software in the Macintosh PowerBook 5300 computer is based on the ROM
used in previous PowerBook computers, with enhancements to support the new
features. Some of the features this ROM supports include the following:

■

PowerPC 603 microprocessor

■

machine identification

■

new memory controller IC

■

Power Manager software

■

new display controller

■

new sound features

■

ATA storage devices

■

IDE disk mode

■

Ethernet

■

function keys

■

smart batteries

■

trackpad

The following sections describe each of these features.

PowerPC 603 Microprocessor 5

The PowerPC 603 microprocessor has power saving modes similar to the power cycling
and sleep modes of earlier PowerBook models. The ROM has been modified to include
the additional traps needed to control the power modes of the microprocessor.

The Macintosh PowerBook 5300 computer does not provide the economode reduced
speed feature found on the Macintosh PowerBook 160 and 180 models.

Machine Identification 5

The ROM includes new tables and code for identifying the machine.

Applications can find out which computer they are running on by using the Gestalt
Manager. The

gestaltMachineType

 value returned by the Macintosh PowerBook
5300 computer is 128 (hexadecimal $80).

Inside Macintosh: Overview

 describes the Gestalt
Manager and tells how to use the

gestaltMachineType

 value to obtain the machine
name string.

C H A P T E R 5

Software Features

ROM Software

63

Memory Controller Software 5

The memory control routines have been rewritten to operate with the PBX memory
controller IC, which has a control register configuration different from that of the
memory controller used in earlier PowerBook models. The memory initialization and
size code have been rewritten to deal with

■

larger ROM size

■

a new type of DRAM device

■

new memory configurations

Power Manager Software 5

Changes to the Power Manager software include

■

power cycling and sleep mode for the PowerPC 603 microprocessor

■

support for the new lithium ion batteries

■

support for turning on and off power to the Ethernet interface

The Macintosh PowerBook 5300 computer uses a modified version of the public API for
power management described in

Inside Macintosh: Devices.

See Chapter 7, “Power
Manager Interface.”

Display Controller Software 5

The Macintosh PowerBook 5300 computer has a new custom IC, the ECSC

(enhanced

color support chip), that provides the data and control interface to the flat panel display.
The ROM software includes new video drivers for that IC.

The new drivers also support a wider range of external video monitors. See “Monitors
Supported” on page 49.

Sound Features 5

The ROM software includes new sound driver software to support the new Sound
Manager, which is part of the system software. The new driver software also supports
the following new features:

■

improved sound performance by way of a new interface to the Singer sound IC

■

support for 16-bit stereo sound input

■

support for automatic gain control in software

■

mixing of sound output from the modem

The new ROM software also includes routines to arbitrate the control of the sound
hardware between the modem and the Sound Manager.

C H A P T E R 5

Software Features

64

ROM Software

ATA Storage Devices 5

Support for ATA storage devices (the internal IDE drive, PCMCIA drives, and ATAPI
CD-ROM drives) is incorporated in the ROM software.

IDE Disk Mode 5

The ROM software also includes modifications to support disk mode. In previous
PowerBook models, the internal hard disk was a SCSI drive and the setup for disk access
from another computer was called SCSI disk mode. In the Macintosh PowerBook 5300
computer, the internal hard disk is an IDE drive and the disk access mode is called IDE
target mode.

IDE target mode interprets SCSI commands from the external computer, translates them
into the equivalent IDE commands, and calls the ATA driver to carry them out. IDE
target mode does not support all SCSI commands; it does support the commands used in
the Apple SCSI device driver and the new Drive Setup utility.

Note

The ATA driver is described in Chapter 8, “Software for ATA Devices.”

◆

Ethernet Driver 5

The driver for the Ethernet interface can now put a sleep task for Ethernet into the Power
Manager’s sleep table. This sleep task first makes a control call to the Ethernet driver to
prepare the Ethernet interface IC for sleep mode. The sleep task then makes a Power
Manager call to turn off power to the IC. The sleep task installs a corresponding wake
task that turns the interface power back on and reinitializes the interface IC.

Support for Function Keys 5

The keyboard on the Macintosh PowerBook 5300 computer has a row of 12 function keys
across the top. Except for the function keys, the keyboard is similar to those on previous
PowerBook models. The function keys are added to the key matrix in the same way as
the function keys on the Apple Extended Keyboard and return the same key codes.

Smart Battery Support 5

The Power Manager IC communicates with the processors in the PowerBook Intelligent
Batteries by means of a serial interface. The Power Manager’s command set has been
expanded to provide system access to the data from the batteries.

C H A P T E R 5

Software Features

System Software

65

Trackpad Support 5

The trackpad hardware, the Power Manager IC, and the system software work together
to translate the movements of a finger across the surface of the trackpad into cursor
movements.

The control registers for the trackpad hardware are part of the Power Manager IC. The
Power Manager’s software takes the raw data from the trackpad hardware and converts
it to the same format as ADB mouse data before sending it on to the system software.

The ADB software that supports the trackpad includes the Cursor Device Manager,
which provides a standard interface for a variety of devices. The ADB software checks to
see whether a device connected to the ADB port is able to use the Cursor Device
Manager. For more information, see the January 1994 revision of Technical Note HW 01,

ADB—The Untold Story: Space Aliens Ate My Mouse.

System Software 5

The Macintosh PowerBook 5300 computer is shipped with new system software based
on Mac OS version 7.5 and augmented by several new features.

IMPORTANT

Even though the software for the Macintosh PowerBook 5300 computer
incorporates significant changes from System 7.5, it is not a reference
release: that is, it is not an upgrade for earlier Macintosh models.

▲

The system software includes changes in the following areas:

■

control strip support

■

support for ATA devices (IDE and ATAPI)

■

large partition support

■

Drive Setup, a new utility

■

improved file sharing

■

a new Dynamic Recompilation Emulator

■

a Resource Manager completely in native code

■

improved math library

■

POWER-clean native code

■

POWER emulation

■

QuickDraw acceleration API

■

Display Manager

These changes are described in the sections that follow.

C H A P T E R 5

Software Features

66

System Software

Note

For those changes that affect the software, information about new or
modified APIs is given elsewhere. Please see the cross references in the
individual sections.

◆

Control Strip 5

The desktop on the Macintosh PowerBook 5300 computer has the status and control
element called the control strip that was introduced in the PowerBook 280 and the
PowerBook 500 models. It is a strip of graphics with small button controls and indicators
in the form of various icons. For a description of the control strip and guidelines for
adding modules to it, see Macintosh Technical Note

OS 06 - Control Strip Modules.

Support for ATA Devices 5

Support for ATA devices (the internal IDE drive, PCMCIA drives, and ATAPI CD-ROM
drives) is incorporated in the ROM software.

System software for controlling the internal IDE drive and PCMCIA drives is included in
a new ATA Hard Disk device driver and the ATA Manager. System software for
controlling the optional ATAPI CD-ROM drive is provided by a system extension in
conjunction with the ATA Manager. The ATA Hard Disk device driver and the ATA
Manager are described in Chapter 8, “Software for ATA Devices.”

Large Partition Support 5

The largest disk partition supported by System 7.5 is 4 GB. The new system software
extends that limit to 2 terabytes.

IMPORTANT

The largest possible file is still 2 GB.

▲

The changes necessary to support the larger partition size affect many parts of the
system software. The affected software includes system-level and application-level
components.

64-Bit Volume Addresses 5

The current disk driver API has a 32-bit volume address limitation. This limitation
has been circumvented by the addition of a new 64-bit extended volume API
(

PBXGetVolInfo

) and 64-bit data types (

uint64

,

XVolumeParam

, and

XIOParam

).

For the definitions of the new API and the three data types, please see “The API
Modifications” beginning on page 77.

C H A P T E R 5

Software Features

System Software

67

System-Level Software 5

Several system components have been modified to use the 64-bit API to correctly
calculate true volume sizes and read and write data to and from large disks. The
modified system components are

■

virtual memory code

■

Disk Init

■

FSM Init

■

Apple disk drivers

■

HFS ROM code

Application-Level Software 5

Current applications do not require modification to gain access to disk space beyond the
traditional 4 GB limit as long as they do not require the true size of the large partition.
Applications that need to obtain the true partition size will have to be modified to use
the new 64-bit API and data structures. Typical applications include utilities for disk
formatting, partitioning, initialization, and backup.

The following application-level components of the system software have been modified
to use the 64-bit API:

■

Finder

■

Finder Extensions (AppleScript, AOCE Mailbox, and Catalogs)

■

Drive Setup

■

Disk First Aid

In the past, the sum of the sizes of the files and folders selected in the Finder was limited
to the largest value that could be stored in a 32-bit number—that is, 4 GB. By using the
new 64-bit API and data structures, the Finder can now operate on selections whose total
size exceeds that limit. Even with very large volumes, the Finder can display accurate
information in the Folder and Get Info windows and obtain the true volume size for
calculating available space when copying.

The Finder extensions AppleScript, AOCE Mailbox, and Catalogs have been modified
in the same way as the Finder because their copy-engine code is similar to that in
the Finder.

A later section describes the modified Drive Setup application.

C H A P T E R 5

Software Features

68

System Software

Limitations 5

The software modifications that support large partition sizes do not solve all the
problems associated with the use of large volumes. In particular, the modifications do
not address the following:

■

HFS file sizes are still limited to 2 GB or less.

■

Large allocation block sizes cause inefficient storage. On a 2 GB volume, the minimum
file size is 32 KB; on a 2 terabyte volume, the minimum file size is a whopping 32 MB.

■

Drives with the new large volume driver will not mount on older Macintosh models.

Drive Setup 5

The software for the Macintosh PowerBook 5300 computer includes a new disk setup
utility named Drive Setup that replaces the old HDSC Setup utility. The Drive Setup
utility has several other enhancements, including

■

an improved user interface

■

support for large volumes (larger than 2 GB)

■

support for chainable drivers

■

support for multiple HFS partitions

■

the ability to mount volumes from within the Drive Setup applications

■

the ability to start up (boot) from any HFS partition

■

support for removable media drives

Improved File Sharing 5

Version 7.6 of the file sharing software incorporates many of the features of AppleShare,
including an API for servers.

The user can now set up shared files on ejectable media such as cartridge drives and
CD-ROM drives. The software keeps track of the status of the shared files when the
media are inserted and removed.

Dynamic Recompilation Emulator 5

The Dynamic Recompilation Emulator (or DR Emulator) is an extension to the current
interpretive emulator providing on-the-fly translation of 680x0 instructions into
PowerPC instructions for increased performance. The DR Emulator operates as an
enhancement to a modified version of the existing interpretive emulator.

The design of the DR Emulator mimics a hardware instruction cache and employs a
variable size translation cache. Each compiled 680x0 instruction requires on average
fewer than four PowerPC instructions. In operation, the DR Emulator depends on
locality of execution to make up for the extra cycles used in translating the code.

C H A P T E R 5

Software Features

System Software 69

The DR Emulator provides a high degree of compatibility for 680x0 code. One area
where compatibility will be less than that of the current interpretive emulator is for
self-modifying code that does not call the cache flushing routines. Such code also has
compatibility problems on Macintosh Quadra models with the cache enabled.

Resource Manager in Native Code 5
The Resource Manager in the software for the Macintosh PowerBook 5300 computer is
similar to the one in the earlier Power Macintosh computers except that it is completely
in native PowerPC code. Because the Resource Manager is used intensively by both
system software and applications, the native version provides an improvement in
system performance.

The Process Manager has been modified to remove patches it formerly made to the
Resource Manager.

Math Library 5
The new math library (MathLib) is an enhanced version of the floating-point library
included in the ROM in the first generation of Power Macintosh computers.

The new math library is bit compatible in both results and floating-point exceptions with
the math library in the first-generation ROM. The only difference is in the speed of
computation.

The new math library has been improved to better exploit the floating-point features of
the PowerPC microprocessor. The math library now includes enhancements that assist
the compiler in carrying out its register allocation, branch prediction, and overlapping of
integer and floating-point operations.

Compared with the previous version, the new math library provides much improved
performance without compromising its accuracy or robustness. It provides performance
gains for often-used functions of up to 15 times.

The application interface and header files for the math library have not been changed.

New BlockMove Extensions 5
The system software for the Macintosh PowerBook 5300 computer includes new
extensions to the BlockMove routine. The extensions provide improved performance
for programs running in native mode.

The new BlockMove extensions provide several benefits for developers.

■ They’re optimized for the PowerPC 603 and PowerPC 604 processors, rather than the
PowerPC 601.

■ They’re compatible with the new Dynamic Recompilation Emulator.

■ They provide a way to handle cache-inhibited address spaces.

■ They include new high-speed routines for setting memory to zero.

C H A P T E R 5

Software Features

70 System Software

Note
The new BlockMove extensions do not use the string instructions,
which are fast on the PowerPC 601 but slow on other PowerPC
implementations. ◆

Some of the new BlockMove extensions can be called only from native code; see
Table 5-1.

Except for BlockZero and BlockZeroUncached, the new BlockMove extensions use
the same parameters as BlockMove. Calls to BlockZero and BlockZeroUncached
have only two parameters, a pointer and a length; refer to the header file (Memory.h).

Table 5-1 summarizes the BlockMove routines and according to three criteria: whether
the routine can be called from 680x0 code, whether it is okay to use for moving 680x0
code, and whether it is okay to use with buffers or other uncacheable destination
locations.

The fastest way to move data is to use the BlockMoveData routine. It is the
recommended method whenever you are certain that the data is cacheable and
does not contain executable 680x0 code.

The BlockMove routine is slower than the BlockMoveData routine only because it has
to clear out the software cache used by the DR Emulator. If the DR EMulator is not in
use, the BlockMove routine and the BlockMoveData routine are the same.

IMPORTANT

The versions of BlockMove for cacheable data use the dcbz instruction
to avoid unnecessary pre-fetch of destination cache blocks. For
uncacheable data, you should avoid using those routines because the
dcbz instruction faults and must be emulated on uncacheable or
write-through locations, making execution extremely slow. ▲

Table 5-1 Summary of BlockMove routines

BlockMove version

Can be
called from
680x0 code

Okay to use
for moving
680x0 code

Okay to
use with
buffers

BlockMove Yes Yes No

BlockMoveData Yes No No

BlockMoveDataUncached No No Yes

BlockMoveUncached No Yes Yes

BlockZero No — No

BlockZeroUncached No — Yes

C H A P T E R 5

Software Features

System Software 71

IMPORTANT

Driver software cannot call the BlockMove routines directly. Instead,
drivers must use the BlockCopy routine, which is part of the Driver
Services Library. The BlockCopy routine is an abstraction that allows
you to postpone binding the specific type of BlockMove operation until
implementation time. ▲

The Driver Services Library is a collection of useful routines that Apple Computer
provides for developers working with the new Power Macintosh models. For
more information, please refer to Designing PCI Cards and Drivers for Power
Macintosh Computers.

POWER-Clean Native Code 5
The instruction set of the PowerPC 601 microprocessor included some of the same
instructions as those found in the instruction set of the POWER processor, and the
compiler used to generate native code for the system software in the previous Power
Macintosh models generated some of those POWER-only instructions. However, the
PowerPC 603 microprocessor used in the Macintosh PowerBook 5300 computer does not
support the POWER-only instructions, so a new POWER-clean version of the compiler is
being used to compile the native code fragments.

Note
The term POWER-clean refers to code that is free of the POWER
instructions that would prevent it from running correctly on a
PowerPC 603 or PowerPC 604 microprocessor. ◆

Here is a list of the POWER-clean native code elements in the system software for the
Macintosh PowerBook 5300 computer.

■ interface library

■ private interface library

■ native QuickDraw

■ MathLib

■ Mixed Mode Manager

■ Code Fragment Manager

■ Font Dispatch

■ Memory Manager

■ standard text

■ the FMSwapFont function

■ Standard C Library

C H A P T E R 5

Software Features

72 System Software

POWER Emulation 5
Earlier Power Macintosh computers included emulation for certain PowerPC 601
instructions that would otherwise cause an exception. The emulation code dealt with
memory reference instructions to handle alignment and data storage exceptions. It also
handled illegal instruction exceptions caused by some PowerPC instructions that were
not implemented in the PowerPC 601. In the Macintosh PowerBook 5300 computer,
the emulation code has been enhanced to include the POWER instructions that are
implemented on the PowerPC 601 but not on the PowerPC 603.

Note
Although the term POWER emulation is often used, a more appropriate
name for this feature is PowerPC 601 compatibility. Rather than
supporting the entire POWER architecture, the goal is to support those
features of the POWER architecture that are available to programs
running in user mode on the PowerPC 601-based Power Macintosh
computers. ◆

POWER-Clean Code 5

Because the emulation of the POWER-only instructions degrades performance, Apple
Computer recommends that developers revise any applications that use those
instructions to conform with the PowerPC architecture. POWER emulation works, but
at a significant cost in performance; POWER-clean code is preferable.

Emulation and Exception Handling 5

When an exception occurs, the emulation code first checks to see whether the instruction
encoding is supported by emulation. If it is not, the code passes the original cause of
the exception (illegal instruction or privileged instruction) to the application as a native
exception.

If the instruction is supported by emulation, the code then checks a flag bit to see
whether emulation has been enabled. If emulation is not enabled at the time, the
emulator generates an illegal instruction exception.

Code Fragments and Cache Coherency 5

Whereas the PowerPC 601 microprocessor has a single cache for both instructions and
data, the PowerPC 603 has separate instruction and data caches. As long as applications
deal with executable code by using the Code Fragment Manager, cache coherency is
maintained. Applications that bypass the Code Fragment Manager and generate
executable code in memory, and that do not use the proper cache synchronization
instructions or Code Fragment Manager calls, are likely to encounter problems when
running on the PowerPC 603.

C H A P T E R 5

Software Features

System Software 73

IMPORTANT

The emulation software in the Macintosh PowerBook 5300 computer
cannot make the separate caches in the PowerPC 603 behave like the
combined cache in the PowerPC 601. Applications that generate
executable code in memory must be modified to use the Code Fragment
Manager or maintain proper cache synchronization by other means. ▲

Limitations of PowerPC 601 Compatibility 5

The emulation code in the Macintosh PowerBook 5300 computer allows programs
compiled for the PowerPC 601 to execute without halting on an exception whenever
they use a POWER-only feature. For most of those features, the emulation matches the
results that are obtained on a Power Macintosh computer with a PowerPC 601. However,
there are a few cases where the emulation is not an exact match; those cases are
summarized here.

■ MQ register. Emulation does not match the undefined state of this register after
multiply and divide instructions.

■ div and divo instructions. Emulation does not match undefined results after
an overflow.

■ Real-time clock registers. Emulation matches the 0.27 percent speed discrepancy of
the Power Macintosh models that use the PowerPC 601 microprocessor, but the values
of the low-order 7 bits are not 0.

■ POWER version of dec register. Emulation includes the POWER version, but
decrementing at a rate determined by the time base clock, not by the real-time clock.

■ Cache line compute size (clcs) instruction. Emulation returns values appropriate
for the type of PowerPC microprocessor.

■ Undefined SPR encodings. Emulation does not ignore SPR encodings higher than 32.

■ Invalid forms. Invalid combinations of register operands with certain instructions
may produce results that do not match those of the PowerPC 601.

■ Floating-point status and control register (FPSCR). The FPSCR in the PowerPC 601
does not fully conform to the PowerPC architecture, but the newer PowerPC
processors do.

QuickDraw Acceleration API 5
The QuickDraw acceleration API is the current accelerator interface for the PowerPC
version of native QuickDraw. It allows a patch chaining mechanism for decisions on
categories of blit operations, and also specifies the format and transport of the data to the
accelerator.

C H A P T E R 5

Software Features

74 System Software

Display Manager 5
Until now, system software has used the NuBus-specific Slot Manager to get and set
information about display cards and drivers. New system software removes this explicit
software dependency on the architecture of the expansion bus. The Display Manager
provides a uniform API for display devices regardless of the implementation details of
the devices.

C H A P T E R 6

Large Volume Support 6Figure 6-0
Listing 6-0
Table 6-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 6

Large Volume Support

76

Overview of the Large Volume File System

This chapter describes the large volume file system for the Macintosh PowerBook 5300
computer. The large volume file system is a version of the hierarchical file system (HFS)
that has been modified to support volume sizes larger than the current 4 GB limit. It
incorporates only the changes required to achieve that goal.

Overview of the Large Volume File System 6

The large volume file system includes

■

modifications to the HFS ROM code, Disk First Aid, and Disk Init

■

a new extended API that allows reporting of volume size information beyond the
current 4 GB limit

■

new device drivers and changes to the Device Manager API to support devices
that are greater than 4 GB

■

a new version of HDSC Setup that supports large volumes and chainable drivers
(Chainable drivers are needed to support booting large volumes on earlier
Macintosh models.)

API Changes 6

The system software on the Macintosh PowerBook 5300 computer allows all current
applications to work without modifications. Unmodified applications that call the file
system still receive incorrect values for large volume sizes. The Finder and other utility
programs that need to know the actual size of a volume have been modified to use the
new extended

PBXGetVolInfo

 function to obtain the correct value.

The existing low-level driver interface does not support I/O to a device with a range of
addresses greater than 4 GB because the positioning offset (in bytes) for a read or write
operation is a 32-bit value. To correct this problem, a new extended I/O parameter block
record has been defined. This extended parameter block has a 64-bit positioning offset.
The new parameter block and the extended

PBXGetVolInfo

 function are described in
“The API Modifications” beginning on page 77.

Allocation Block Size 6

The format of HFS volumes has not changed. What has changed is the way the HFS
software handles the allocation block size. Existing HFS code treats the allocation block
as a 16-bit integer. The large volume file system uses the full 32 bits of the allocation
block size parameter. In addition, any software that deals directly with the allocation
block size from the volume control block must now treat it as a true 32-bit value.

Even for the larger volume sizes, the number of allocation blocks is still defined by a
16-bit integer. As the volume size increases, the size of the allocation block also increases.
For a 2 GB volume, the allocation block size is 32 KB and therefore the smallest file on
that disk will occupy at least 32 KB of disk space. This inefficient use of disk space is not
addressed by the large volume file system.

C H A P T E R 6

Large Volume Support

The API Modifications

77

The maximum number of files will continue to be less than 65,000. This limit is directly
related to the fixed number of allocation blocks.

File Size Limits 6

The HFS has a maximum file size of 2 GB. The large volume file system does not remove
that limit because doing so would require a more extensive change to the current API
and would incur more compatibility problems.

Compatibility Requirements 6

The large volume file system requires at least a 68020 microprocessor or a Power
Macintosh model that emulates it. In addition, the file system requires a Macintosh IIci
or more recent model. On a computer that does not meet both those requirements, the
large volume file system driver will not load.

The large volume file system requires System 7.5 or higher and a new Finder that
supports volumes larger than 4 GB (using the new extended

PBXGetVolInfo

 function).

The API Modifications 6

The HFS API has been modified to support volume sizes larger than 4 GB. The
modifications consist of two extended data structures and a new extended

PBXGetVolInfo

 function.

Data Structures 6

This section describes the two modified data structures used by the large volume
file system:

■

the extended volume parameter block

■

the extended I/O parameter block

Extended Volume Parameter Block 6

In the current

HVolumeParam

 record, volume size information is clipped at 2 GB.
Because HFS volumes can now exceed 4 GB, a new extended volume parameter block
is needed in order to report the larger size information. The

XVolumeParam

 record
contains 64-bit integers for reporting the total bytes on the volume and the number
of free bytes available (parameter names

ioVTotalBytes

 and

ioVFreeBytes

). In
addition, several of the fields that were previously signed are now unsigned (parameter
names

ioVAtrb

,

ioVBitMap

,

ioAllocPtr

,

ioVAlBlkSiz

,

ioVClpSiz

,

ioAlBlSt

,

ioVNxtCNID

,

ioVWrCnt

,

ioVFilCnt

, and

ioVDirCnt

).

C H A P T E R 6

Large Volume Support

78

The API Modifications

struct XVolumeParam {

ParamBlockHeader

unsigned long ioXVersion; // XVolumeParam version == 0

short ioVolIndex; // volume index

unsigned long ioVCrDate; // date & time of creation

unsigned long ioVLsMod; // date & time of last modification

unsigned short ioVAtrb; // volume attributes

unsigned short ioVNmFls; // number of files in root directory

unsigned short ioVBitMap; // first block of volume bitmap

unsigned short ioAllocPtr; // first block of next new file

unsigned short ioVNmAlBlks; // number of allocation blocks

unsigned long ioVAlBlkSiz; // size of allocation blocks

unsigned long ioVClpSiz; // default clump size

unsigned short ioAlBlSt; // first block in volume map

unsigned long ioVNxtCNID; // next unused node ID

unsigned short ioVFrBlk; // number of free allocation blocks

unsigned short ioVSigWord; // volume signature

short ioVDrvInfo; // drive number

short ioVDRefNum; // driver reference number

short ioVFSID; // file-system identifier

unsigned long ioVBkUp; // date & time of last backup

unsigned short ioVSeqNum; // used internally

unsigned long ioVWrCnt; // volume write count

unsigned long ioVFilCnt; // number of files on volume

unsigned long ioVDirCnt; // number of directories on volume

long ioVFndrInfo[8]; // information used by the Finder

uint64 ioVTotalBytes; // total number of bytes on volume

uint64 ioVFreeBytes; // number of free bytes on volume

};

Field descriptions

ioVolIndex

An index for use with the

PBHGetVInfo

 function.

ioVCrDate

The date and time of volume initialization.

ioVLsMod

The date and time the volume information was last modified. (This
field is not changed when information is written to a file and does
not necessarily indicate when the volume was flushed.)

ioVAtrb

The volume attributes.

ioVNmFls

The number of files in the root directory.

ioVBitMap

The first block of the volume bitmap.

ioAllocPtr

The block at which the next new file starts. Used internally.

ioVNmAlBlks

The number of allocation blocks.

ioVAlBlkSiz

The size of allocation blocks.

ioVClpSiz

The clump size.

ioAlBlSt

The first block in the volume map.

C H A P T E R 6

Large Volume Support

The API Modifications

79

ioVNxtCNID

The next unused catalog node ID.

ioVFrBlk

The number of unused allocation blocks.

ioVSigWord

A signature word identifying the type of volume; it’s $D2D7 for
MFS volumes and $4244 for volumes that support HFS calls.

ioVDrvInfo

The drive number of the drive containing the volume.

ioVDRefNum

For online volumes, the reference number of the I/O driver for the
drive identified by

ioVDrvInfo

.

ioVFSID

The file-system identifier. It indicates which file system is servicing
the volume; it’s zero for File Manager volumes and nonzero for
volumes handled by an external file system.

ioVBkUp

The date and time the volume was last backed up (it’s 0 if never
backed up).

ioVSeqNum

Used internally.

ioVWrCnt

The volume write count.

ioVFilCnt

The total number of files on the volume.

ioVDirCnt

The total number of directories (not including the root directory) on
the volume.

ioVFndrInfo

Information used by the Finder.

Extended I/O Parameter Block 6

The extended I/O parameter block is needed for low-level access to disk addresses
beyond 4 GB. It is used exclusively by

PBRead

 and

PBWrite

 calls when performing I/O
operations at offsets greater than 4 GB. To indicate that you are using an

XIOParam

record, you should set the

kUseWidePositioning

 bit in the

ioPosMode

 field.

Because file sizes are limited to 2 GB, the regular

IOParam

 record should always be used
when performing file level I/O operations. The extended parameter block is intended
only for Device Manager I/O operations to large block devices at offsets greater
than 4 GB.

The only change in the parameter block is the parameter

ioWPosOffset

, which is of
type

int64

.

struct XIOParam {

QElemPtr qLink; // next queue entry

short qType; // queue type

short ioTrap; // routine trap

Ptr ioCmdAddr; // routine address

ProcPtr ioCompletion;// pointer to completion routine

OSErr ioResult; // result code

StringPtr ioNamePtr; // pointer to pathname

short ioVRefNum; // volume specification

short ioRefNum; // file reference number

char ioVersNum; // not used

C H A P T E R 6

Large Volume Support

80 The API Modifications

char ioPermssn; // read/write permission

Ptr ioMisc; // miscellaneous

Ptr ioBuffer; // data buffer

unsigned long ioReqCount; // requested number of bytes

unsigned long ioActCount; // actual number of bytes

short ioPosMode; // positioning mode (wide mode set)

int64 ioWPosOffset;// wide positioning offset

};

Field descriptions

ioRefNum The file reference number of an open file.
ioVersNum A version number. This field is no longer used and you should

always set it to 0.
ioPermssn The access mode.
ioMisc Depends on the routine called. This field contains either a new

logical end-of-file, a new version number, a pointer to an access
path buffer, or a pointer to a new pathname. Because ioMisc is of
type Ptr, you’ll need to perform type coercion to interpret the value
of ioMisc correctly when it contains an end-of-file (a LongInt
value) or version number (a SignedByte value).

ioBuffer A pointer to a data buffer into which data is written by _Read calls
and from which data is read by _Write calls.

ioReqCount The requested number of bytes to be read, written, or allocated.
ioActCount The number of bytes actually read, written, or allocated.
ioPosMode The positioning mode for setting the mark. Bits 0 and 1 of this field

indicate how to position the mark; you can use the following
predefined constants to set or test their value:

CONST

fsAtMark = 0; {at current mark}

fsFromStart = 1; {from beginning of file}

fsFromLEOF = 2; {from logical end-of-file}

fsFromMark = 3; {relative to current mark}

You can set bit 4 of the ioPosMode field to request that the data be
cached, and you can set bit 5 to request that the data not be cached.
You can set bit 6 to request that any data written be immediately
read; this ensures that the data written to a volume exactly matches
the data in memory. To request a read-verify operation, add the
following constant to the positioning mode:

CONST

rdVerify = 64; {use read-verify mode}

You can set bit 7 to read a continuous stream of bytes, and place
the ASCII code of a newline character in the high-order byte to
terminate a read operation at the end of a line.

ioPosOffset The offset to be used in conjunction with the positioning mode.

C H A P T E R 6

Large Volume Support

The API Modifications 81

New Extended Function 6
This section describes the extended PBXGetVolInfo function that provides volume size
information for volumes greater than 4 GB.

Before using the new extended call, you should check for availability by calling
the Gestalt function. Make your call to Gestalt with the gestaltFSAttr selector
to check for new File Manager features. The response parameter has the
gestaltFSSupports2TBVolumes bit set if the File Manager supports large volumes
and the new extended function is available.

PBXGetVolInfo 6

You can use the PBXGetVolInfo function to get detailed information about a volume. It
can report volume size information for volumes up to 2 terabytes.

pascal OSErr PBXGetVolInfo (XVolumeParam paramBlock, Boolean async);

paramBlock A pointer to an extended volume parameter block.
async A Boolean value that specifies asynchronous (true) or synchronous

(false) execution.

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Parameter block

Arrow Meaning

→ Input

← Output

↔ Both

→ ioCompletion ProcPtr Pointer to a completion routine.

← ioResult OSErr Result code of the function.

↔ ioNamePtr StringPtr Pointer to the volume’s name.

↔ ioVRefNum short On input, a volume
specification; on output, the
volume reference number.

→ ioXVersion unsigned long Version of XVolumeParam
(value = 0).

→ ioVolIndex short Index used for indexing
through all mounted volumes.

← ioVCrDate unsigned long Date and time of initialization.

← ioVLsMod unsigned long Date and time of last
modification.

C H A P T E R 6

Large Volume Support

82 The API Modifications

DESCRIPTION

The PBXGetVolInfo function returns information about the specified volume. It is
similar to the PBHGetVInfo function described in Inside Macintosh: Files except that it
returns additional volume space information in 64-bit integers.

← ioVAtrb unsigned short Volume attributes.

← ioVNmFls unsigned short Number of files in the
root directory.

← ioVBitMap unsigned short First block of the volume
bitmap.

← ioVAllocPtr unsigned short Block where the next new
file starts.

← ioVNmAlBlks unsigned short Number of allocation blocks.

← ioVAlBlkSiz unsigned long Size of allocation blocks.

← ioVClpSiz unsigned long Default clump size.

← ioAlBlSt unsigned short First block in the volume
block map.

← ioVNxtCNID unsigned long Next unused catalog node ID.

← ioVFrBlk unsigned short Number of unused
allocation blocks.

← ioVSigWord unsigned short Volume signature.

← ioVDrvInfo short Drive number.

← ioVDRefNum short Driver reference number.

← ioVFSID short File system handling
this volume.

← ioVBkUp unsigned long Date and time of last backup.

← ioVSeqNum unsigned short Used internally.

← ioVWrCnt unsigned long Volume write count.

← ioVFilCnt unsigned long Number of files on the volume.

← ioVDirCnt unsigned long Number of directories on
the volume.

← ioVFndrInfo[8] long Used by the Finder.

← ioVTotalBytes uint64 Total number of bytes on
the volume.

← ioVFreeBytes uint64 Number of free bytes
on the volume.

C H A P T E R 6

Large Volume Support

The API Modifications 83

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBXGetVolInfo are:

RESULT CODES

Trap macro Selector

_HFSDispatch $0012

noErr 0 Successful completion, no error occurred
nsvErr –35 No such volume
paramErr –50 No default volume

C H A P T E R 7

Power Manager Interface 7Figure 7-0
Listing 7-0
Table 7-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 7

Power Manager Interface

86

About the Power Manager Interface

This chapter describes the new application programming interface (API) to the Power
Manager control software in the Macintosh PowerBook 5300 computer.

About the Power Manager Interface 7

Developers have written control panel software for previous Macintosh PowerBook
models to give the user more control over the power management settings than is
provided in the PowerBook control panel. Because that software reads and writes
directly to the Power Manager’s private data structures and parameter RAM, the
software needs to be updated any time Apple Computer makes a change to the internal
operation of the Power Manager.

System software for the Macintosh PowerBook 5300 computer and for future Macintosh
PowerBook models includes interface routines for program access to the Power Manager
functions, so it is no longer necessary for applications to deal directly with the Power
Manager’s data structures. The new routines provide access to most of the Power
Manager’s parameters. Some functions will be reserved because of their overall effect on
the system. The interface is extensible; it will probably grow over time to acccommodate
new kinds of functions.

Things That May Change 7

By using the Power Manager interface, developers can isolate themselves from future
changes to the internal operation of the Power Manager software.

IMPORTANT

Apple Computer reserves the right to change the internal operation of
the Power Manager software. Developers should not make their
applications depend on the Power Manager’s internal data structures or
parameter RAM.

▲

As new PowerBook models appear, developers should not depend on the Power
Manager’s internal data structures staying the same. In particular, developers should
beware of the following assumptions regarding different PowerBook models:

■

assuming that timeout values such as the hard disk spindown time reside at the same
locations in parameter RAM

■

assuming that the power cycling process works the same way or uses the same
parameters

■

assuming that direct commands to the Power Manager microcontroller are supported
on all models

C H A P T E R 7

Power Manager Interface

About the Power Manager Interface

87

Checking for Routines 7

Before calling any of the Power Manager interface routines, it’s always a good idea to
call the Gestalt Manager to see if they’re present on the computer. The Gestalt Manager
is described in

Inside Macintosh: Overview.

A new bit has been added to the

gestaltPowerMgrAttr

 selector:

#define gestaltPMgrDispatchExists 4

If that bit is set to 1, then the routines are present.

Because more routines may be added in the future, one of the new routines simply
returns the number of routines that are implemented. The following code fragment
determines both that the routines in general exist and that at least the hard disk
spindown routine exists.

long pmgrAttributes;

Boolean routinesExist;

routinesExist = false;

if (! Gestalt(gestaltPowerMgrAttr, &pmgrAttributes))

if (pmgrAttributes & (1<<gestaltPMgrDispatchExists))

if (PMSelectorCount() >= 7)

routinesExist = true;

▲ W A R N I N G

If you call a routine that does not exist, the call to the public Power
Manager trap (if the trap exists) will return an error code, which your
program could misinterpret as data.

▲

Power Manager Interface Routines 7

This section tells you how to call the interface routines for the Power Manager software.

The interface routines are listed here in the order of their routine selector values, as
shown in Table 7-1

.

C H A P T E R 7

Power Manager Interface

88

About the Power Manager Interface

Table 7-1

Interface routines and their selector values

Routine name

Selector value

Decimal Hexadecimal

PMSelectorCount

0 $00

PMFeatures

1 $01

GetSleepTimeout

2 $02

SetSleepTimeout

3 $03

GetHardDiskTimeout

4 $04

SetHardDiskTimeout

5 $05

HardDiskPowered

6 $06

SpinDownHardDisk

7 $07

IsSpindownDisabled

8 $08

SetSpindownDisable

9 $09

HardDiskQInstall

10 $0A

HardDiskQRemove

11 $0B

GetScaledBatteryInfo

12 $0C

AutoSleepControl

13 $0D

GetIntModemInfo

14 $0E

SetIntModemState

15 $0F

MaximumProcessorSpeed

16 $10

CurrentProcessorSpeed

17 $11

FullProcessorSpeed

18 $12

SetProcessorSpeed

19 $13

GetSCSIDiskModeAddress

20 $14

SetSCSIDiskModeAddress

21 $15

GetWakeupTimer

22 $16

SetWakeupTimer

23 $17

IsProcessorCyclingEnabled

24 $18

EnableProcessorCycling

25 $19

BatteryCount

26 $1A

GetBatteryVoltage

27 $1B

GetBatteryTimes

28 $1C

C H A P T E R 7

Power Manager Interface

About the Power Manager Interface

89

Assembly-language note

All the routines share a single trap,

_PowerMgrDispatch

 ($A09E). The
trap is register based; parameters are passed in register D0 and
sometimes also in A0. A routine selector value passed in the low word of
register D0 determines which routine is executed.

◆

PMSelectorCount 7

You can use the

PMSelectorCount

 routine to determine which routines are
implemented.

short PMSelectorCount();

DESCRIPTION

The

PMSelectorCount

 routine returns the number of routine selectors present. Any
routine whose selector value is greater than the returned value is not implemented.

ASSEMBLY-LANGUAGE INFORMATION

The trap is

_PowerMgrDispatch

 ($A09E). The selector value for

PMSelectorCount

 is
0 ($00) in the low word of register D0. The number of selectors is returned in the low
word of register D0.

PMFeatures 7

You can use the

PMFeatures

 routine to find out which features of the Power Manager
are implemented.

unsigned long PMFeatures();

DESCRIPTION

The

PMFeatures

 routine returns a 32-bit field describing hardware and software
features associated with the Power Manager on a particular machine. If a bit value is 1,
that feature is supported or available; if the bit value is 0, that feature is not available.
Unused bits are reserved by Apple for future expansion.

C H A P T E R 7

Power Manager Interface

90

About the Power Manager Interface

Field descriptions

ASSEMBLY-LANGUAGE INFORMATION

The trap is

_PowerMgrDispatch

 ($A09E). The selector value for

PMFeatures

 is 1 ($01)
in the low word of register D0. The 32-bit field of supported features is returned in
register D0.

GetSleepTimeout 7

You can use the

GetSleepTimeout

 routine to find out how long the computer will wait
before going to sleep.

unsigned char GetSleepTimeout();

DESCRIPTION

The

GetSleepTimeout

 routine returns the amount of time that the computer will wait
after the last user activity before going to sleep. The value of

GetSleepTimeout is
expressed as the number of 15-second intervals that the computer will wait before going
to sleep.

Bit name
Bit
number Description

hasWakeupTimer 0 The wakeup timer is supported.

hasSharedModemPort 1 The hardware forces exclusive access to either
SCC port A or the internal modem. (If this
bit is not set, then typically port A and the
internal modem may be used simultaneously
by means of the Communications Toolbox.)

hasProcessorCycling 2 Processor cycling is supported; that is, when
the computer is idle, the processor power is
cycled to reduce the power usage.

mustProcessorCycle 3 The processor cycling feature must be left on
(turn it off at your own risk).

hasReducedSpeed 4 Processor can be started up at a reduced
speed in order to extend battery life.

dynamicSpeedChange 5 Processor speed can be switched dynamically
between its full and reduced speed at any
time, rather than only at startup time.

hasSCSIDiskMode 6 The SCSI disk mode is supported.

canGetBatteryTime 7 The computer can provide an estimate of the
battery time remaining.

canWakeupOnRing 8 The computer supports waking up from the
sleep state when an internal modem is
installed and the modem detects a ring.

C H A P T E R 7

Power Manager Interface

About the Power Manager Interface 91

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetSleepTimeout is
2 ($02) in the low word of register D0. The sleep timeout value is returned in the low
word of register D0.

SetSleepTimeout 7

You can use the SetSleepTimeout routine to set how long the computer will wait
before going to sleep.

void SetSleepTimeout(unsigned char timeout);

DESCRIPTION

The SetSleepTimeout routine sets the amount of time the computer will wait after the
last user activity before going to sleep. The value of SetSleepTimeout is expressed as
the number of 15-second intervals that make up the desired time. If a value of 0 is passed
in, the routine sets the timeout value to the default value (currently equivalent to
8 minutes).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetSleepTimeout is
3 ($03) in the low word of register D0. The sleep timeout value to set is passed in the
high word of register D0.

GetHardDiskTimeout 7

You can use the GetHardDiskTimeout routine to find out how long the computer will
wait before turning off power to the internal hard disk.

unsigned char GetHardDiskTimeout();

DESCRIPTION

The GetHardDiskTimeout routine returns the amount of time the computer will wait
after the last use of a SCSI device before turning off power to the internal hard disk. The
value of GetHardDiskTimeout is expressed as the number of 15-second intervals the
computer will wait before turning off power to the internal hard disk.

C H A P T E R 7

Power Manager Interface

92 About the Power Manager Interface

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetHardDiskTimeout
is 4 ($04) in the low word of register D0. The hard disk timeout value is returned in the
low word of register D0.

SetHardDiskTimeout 7

You can use the SetHardDiskTimeout routine to set how long the computer will wait
before turning off power to the internal hard disk.

void SetHardDiskTimeout(unsigned char timeout);

DESCRIPTION

The SetHardDiskTimeout routine sets how long the computer will wait after the last
use of a SCSI device before turning off power to the internal hard disk. The value of
SetHardDiskTimeout is expressed as the number of 15-second intervals the computer
will wait before turning off power to the internal hard disk. If a value of 0 is passed in,
the routine sets the timeout value to the default value (currently equivalent to
4 minutes).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetHardDiskTimeout
is 5 ($05) in the low word of register D0. The hard disk timeout value to set is passed in
the high word of register D0.

HardDiskPowered 7

You can use the HardDiskPowered routine to find out whether the internal hard disk
is on.

Boolean HardDiskPowered();

DESCRIPTION

The HardDiskPowered routine returns a Boolean value indicating whether the internal
hard disk is powered up. A value of true means that the hard disk is on, and a value of
false means that the hard disk is off.

C H A P T E R 7

Power Manager Interface

About the Power Manager Interface 93

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskPowered is
6 ($06) in the low word of register D0. The Boolean result is returned in the low word of
register D0.

SpinDownHardDisk 7

You can use the SpinDownHardDisk routine to force the hard disk to spin down.

void SpinDownHardDisk();

DESCRIPTION

The SpinDownHardDisk routine immediately forces the hard disk to spin down and
power off if it was previously spinning. Calling SpinDownHardDisk will not spin
down the hard disk if spindown is disabled by calling SetSpindownDisable (defined
later in this section).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SpinDownHardDisk
is 7 ($07) in the low word of register D0.

IsSpindownDisabled 7

You can use the IsSpindownDisabled routine to find out whether hard disk
spindown is enabled.

Boolean IsSpindownDisabled();

DESCRIPTION

The IsSpindownDisabled routine returns a Boolean value of true if hard disk
spindown is disabled, or false if spindown is enabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for IsSpindownDisabled
is 8 ($08) in the low word of register D0. The Boolean result is passed in the low byte of
register D0.

C H A P T E R 7

Power Manager Interface

94 About the Power Manager Interface

SetSpindownDisable 7

You can use the SetSpindownDisable routine to disable hard disk spindown.

void SetSpindownDisable(Boolean setDisable);

DESCRIPTION

The SetSpindownDisable routine enables or disables hard disk spindown, depending
on the value of setDisable. If the value of setDisable is true, hard disk spindown
will be disabled; if the value is false, spindown will be enabled.

Disabling hard disk spindown affects the SpinDownHardDisk routine, defined earlier,
as well as the normal spindown that occurs after a period of hard disk inactivity.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetSpindownDisable
is 9 ($09) in the low word of register D0. The Boolean value to set is passed in the high
word of register D0.

HardDiskQInstall 7

You can use the HardDiskQInstall routine to notify your software when power to the
internal hard disk is about to be turned off.

OSErr HardDiskQInstall(HDQueueElement *theElement);

DESCRIPTION

The HardDiskQInstall routine installs an element into the hard disk power-down
queue to provide notification to your software when the internal hard disk is about to be
powered off. For example, this feature might be used by the driver for an external
battery-powered hard disk. When power to the internal hard disk is turned off, the
external hard disk could be turned off as well.

The structure of HDQueueElement is as follows.

typedef pascal void (*HDSpindownProc)(HDQueueElement *theElement);

struct HDQueueElement {

Ptr hdQLink; /* pointer to next queue element */

short hdQType; /* queue element type (must be HDQType) */

short hdFlags; /* miscellaneous flags (reserved) */

HDSpindownProc hdProc; /* pointer to routine to call */

long hdUser; /* user-defined (variable storage, etc.) */

} HDQueueElement;

C H A P T E R 7

Power Manager Interface

About the Power Manager Interface 95

When power to the internal hard disk is about to be turned off, the software calls the
routine pointed to by the hdProc field so that it can do any special processing. The
software passes the routine a pointer to its queue element so that, for example, the
routine can reference its variables.

Before calling HardDiskQInstall, the calling program must set the hdQType field to

#define HDPwrQType 'HD' /* queue element type */

or the queue element won’t be added to the queue and HardDiskQInstall will return
an error.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskQInstall
is 10 ($0A) in the low word of register D0. The pointer to the HDQueue element is passed
in register A0. The result code is returned in the low word of register D0.

HardDiskQRemove 7

You can use the HardDiskQRemove routine to discontinue notifying your software
when power to the internal hard disk is about to be turned off.

OSErr HardDiskQRemove(HDQueueElement *theElement);

DESCRIPTION

The HardDiskQRemove routine removes a queue element installed by
HardDiskQInstall. If the hdQType field of the queue element is not set to
HDPwrQType, HardDiskQRemove simply returns an error.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskQRemove is
11 ($0B) in the low word of register D0. The pointer to the HDQueue element is passed in
register A0. The result code is returned in the low word of register D0.

GetScaledBatteryInfo 7

You can use the GetScaledBatteryInfo routine to find out the condition of the
battery or batteries.

void GetScaledBatteryInfo(short whichBattery, BatteryInfo *theInfo);

C H A P T E R 7

Power Manager Interface

96 About the Power Manager Interface

DESCRIPTION

The GetScaledBatteryInfo routine provides a generic means of returning
information about the battery or batteries in the system. Instead of returning a voltage
value, the routine returns the battery level as a fraction of the total possible voltage.

Note
New battery technologies such as NiCad (nickel cadmium) and nickel
metal hydride (NiMH) have replaced the sealed lead acid batteries of
the original Macintosh Portable. The algorithm for determining the
battery voltage documented in the Power Manager chapter of Inside
Macintosh, Volume VI, is no longer correct for all PowerBook models. ◆

The value of whichBattery determines whether GetScaledBatteryInfo returns
information about a particular battery or about the total battery level. The value of
GetScaledBatteryInfo should be in the range of 0 to BatteryCount(). If the value
of whichBattery is 0, GetScaledBatteryInfo returns a summation of all the
batteries, that is, the effective battery level of the whole system. If the value of
whichBattery is out of range, or the selected battery is not installed,
GetScaledBatteryInfo returns a result of 0 in all fields. Here is a summary of the
effects of the whichBattery parameter:

The GetScaledBatteryInfo routine returns information about the battery in the
following data structure:

typedef struct BatteryInfo {

unsigned char flags; /* misc flags (see below) */

unsigned char warningLevel; /* scaled warning level (0-255) */

char reserved; /* reserved for internal use */

unsigned char batteryLevel; /* scaled battery level (0-255) */

} BatteryInfo;

The flags character contains several bits that describe the battery and charger state. If a
bit value is 1, that feature is available or is operating; if the bit value is 0, that feature is
not operating. Unused bits are reserved by Apple for future expansion.

Value of whichBattery Information returned

0 Total battery level for all batteries

From 1 to BatteryCount() Battery level for the selected battery

Less than 0 or greater
than BatteryCount 0 in all fields of theInfo

C H A P T E R 7

Power Manager Interface

About the Power Manager Interface 97

Field descriptions

The value of warningLevel is the battery level at which the first low battery warning
message will appear. The routine returns a value of 0 in some cases when it’s not
appropriate to return the warning level.

The value of batteryLevel is the current level of the battery. A value of 0 represents
the voltage at which the Power Manager will force the computer into sleep mode; a
value of 255 represents the highest possible voltage.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
GetScaledBatteryInfo is 12 ($0C) in the low word of register D0. The
BatteryInfo data are returned in the low word of register D0 as follows:

AutoSleepControl 7

You can use the AutoSleepControl routine to turn the automatic sleep feature on
and off.

void AutoSleepControl(Boolean enableSleep);

DESCRIPTION

The AutoSleepControl routine enables or disables the automatic sleep feature that
causes the computer to go into sleep mode after a preset period of time. When
enableSleep is set to true, the automatic sleep feature is enabled (this is the normal
state). When enableSleep is set to false, the computer will not go into the sleep
mode unless it is forced to either by some user action—for example, by the user’s
selecting Sleep from the Special menu of the Finder—or in a low battery situation.

Bit name
Bit
number Description

batteryInstalled 7 A battery is installed.

batteryCharging 6 The battery is charging.

chargerConnected 5 The charger is connected.

Bits 31–24 Flags

Bits 23–16 Warning level

Bits 15–8 Reserved

Bits 7–0 Battery level

C H A P T E R 7

Power Manager Interface

98 About the Power Manager Interface

IMPORTANT

Calling AutoSleepControl with enableSleep set to false multiple
times increments the auto sleep disable level so that it requires the same
number of calls to AutoSleepControl with enableSleep set to
true to reenable the auto sleep feature. If more than one piece of
software makes this call, auto sleep may not be reenabled when you
think it should be. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for AutoSleepControl
is 13 ($0D) in the low word of register D0. The Boolean value is passed in the high word
of register D0.

GetIntModemInfo 7

You can use the GetIntModemInfo routine to find out information about the
internal modem.

unsigned long GetIntModemInfo();

DESCRIPTION

The GetIntModemInfo routine returns a 32-bit field containing information that
describes the features and state of the internal modem. It can be called whether or not a
modem is installed and will return the correct information.

If a bit is set, that feature or state is supported or selected; if the bit is cleared, that feature
is not supported or selected. Undefined bits are reserved by Apple for future expansion.

Field descriptions

Bit name
Bit
number Description

hasInternalModem 0 An internal modem is installed.

intModemRingDetect 1 The modem has detected a ring on the
telephone line.

intModemOffHook 2 The internal modem has taken the telephone
line off hook (that is, you can hear the dial
tone or modem carrier).

intModemRingWakeEnb 3 The computer will come out of sleep mode if
the modem detects a ring on the telephone
line and the computer supports this feature
(see the canWakeupOnRing bit in
PMFeatures).

C H A P T E R 7

Power Manager Interface

About the Power Manager Interface 99

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetIntModemInfo is
14 ($0E) in the low word of register D0. The bit field to set is passed in the high word of
register D0.

SetIntModemState 7

You can use the SetIntModemState routine to set some parts of the state of the
internal modem.

void SetIntModemState(short theState);

DESCRIPTION

The SetIntModemState routine configures some of the internal modem’s state
information. Currently the only items that can be changed are the internal/external
modem selection and the wakeup-on-ring feature.

To change an item of state information, the calling program sets the corresponding bit in
theState. In other words, to change the internal/external modem setting, set bit 4 of
theState to 1. To select the internal modem, bit 15 should be set to 0; to select the
external modem, bit 15 should be set to 1. Using this method, the bits may be set or
cleared independently, but they may not be set to different states at the same time.

extModemSelected 4 The external modem is selected (if this bit is
set, then the modem port will be connected to
port A of the SCC; if the modem port is not
shared by the internal modem and the SCC,
then this bit can be ignored).

Bits 15–31 contain the modem type, which will take on one of the following values:

–1 Modem is installed but type not recognized.

0 No modem is installed.

1 Modem is a serial modem.

2 Modem is a PowerBook Duo–style Express
Modem.

3 Modem is a PowerBook 160/180–style
Express Modem.

Bit name
Bit
number Description

C H A P T E R 7

Power Manager Interface

100 About the Power Manager Interface

Note
In some PowerBook computers, there is a hardware switch to connect
either port A of the SCC or the internal modem to the modem port. The
two are physically separated, but software emulates the serial port
interface for those applications that don’t use the Communications
Toolbox. You can check the hasSharedModemPort bit returned by
PMFeatures to determine which way the computer is set up. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetIntModemState
is 15 ($0F) in the low word of register D0. The bit field is returned in register D0.

MaximumProcessorSpeed 7

You can use the MaximumProcessorSpeed routine to find out the maximum speed of
the computer’s microprocessor.

short MaximumProcessorSpeed();

DESCRIPTION

The MaximumProcessorSpeed routine returns the maximum clock speed of the
computer’s microprocessor, in MHz.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
MaximumProcessorSpeed is 16 ($10) in the low word of register D0. The processor
speed value is returned in the low word of register D0.

CurrentProcessorSpeed 7

You can use the CurrentProcessorSpeed routine to find out the current clock speed
of the microprocessor.

short CurrentProcessorSpeed();

DESCRIPTION

The CurrentProcessorSpeed routine returns the current clock speed of the
computer’s microprocessor, in MHz. The value returned is different from the maximum
processor speed if the computer has been configured to run with a reduced processor
speed to conserve power.

C H A P T E R 7

Power Manager Interface

About the Power Manager Interface 101

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
CurrentProcessorSpeed is 17 ($11) in the low word of register D0. The processor
speed value is returned in the low word of register D0.

FullProcessorSpeed 7

You can use the FullProcessorSpeed routine to find out whether the computer will
run at full speed the next time it restarts.

Boolean FullProcessorSpeed();

DESCRIPTION

The FullProcessorSpeed routine returns a Boolean value of true if, on the next
restart, the computer will start up at its maximum processor speed; it returns false if
the computer will start up at its reduced processor speed.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
FullProcessorSpeed is 18 ($12) in the low word of register D0. The Boolean
result is returned in the low byte of register D0.

SetProcessorSpeed 7

You can use the SetProcessorSpeed routine to set the clock speed the microprocessor
will use the next time the computer is restarted.

Boolean SetProcessorSpeed(Boolean fullSpeed);

DESCRIPTION

The SetProcessorSpeed routine sets the processor speed that the computer will use
the next time it is restarted. If the value of fullSpeed is set to true, the processor will
start up at its full speed (the speed returned by MaximumProcessorSpeed, described
on page 100). If the value of fullSpeed is set to false, the processor will start up at its
reduced speed.

For PowerBook models that support changing the processor speed dynamically, the
processor speed will also be changed. If the speed is actually changed,
SetProcessorSpeed will return true; if the speed isn’t changed, it will return false.

C H A P T E R 7

Power Manager Interface

102 About the Power Manager Interface

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
SetProcessorSpeed is 19 ($13) in the low word of register D0. The Boolean
value to set is passed in the high word of register D0. The Boolean result is
returned in register D0.

GetSCSIDiskModeAddress 7

You can use the GetSCSIDiskModeAddress routine to find out the SCSI ID the
computer uses in SCSI disk mode.

short GetSCSIDiskModeAddress();

DESCRIPTION

The GetSCSIDiskModeAddress routine returns the SCSI ID that the computer uses
when it is started up in SCSI disk mode. The returned value is in the range 1 to 6.

Note
When the computer is in SCSI disk mode, the computer
appears as a hard disk to another computer. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
GetSCSIDiskModeAddress is 20 ($14) in the low word of register D0. The
SCSI ID is returned in the low word of register D0.

SetSCSIDiskModeAddress 7

You can use the SetSCSIDiskModeAddress routine to set the SCSI ID for the
computer to use in SCSI disk mode.

void SetSCSIDiskModeAddress(short scsiAddress);

DESCRIPTION

The SetSCSIDiskModeAddress routine sets the SCSI ID that the computer will use if
it is started up in SCSI disk mode.

The value of scsiAddress must be in the range of 1 to 6. If any other value is given, the
software sets the SCSI ID for SCSI disk mode to 2.

C H A P T E R 7

Power Manager Interface

About the Power Manager Interface 103

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
SetSCSIDiskModeAddress is 21 ($15) in the low word of register D0. The
SCSI ID to set is passed in the high word of register D0.

GetWakeupTimer 7

You can use the GetWakeupTimer routine to find out when the computer will wake up
from sleep mode.

void GetWakeupTimer(WakeupTime *theTime);

DESCRIPTION

The GetWakeupTimer routine returns the time when the computer will wake up from
sleep mode.

If the PowerBook model doesn’t support the wakeup timer, GetWakeupTimer returns a
value of 0. The time and the enable flag are returned in the following structure:

typedef struct WakeupTime {

unsigned long wakeTime; /* wakeup time (same format as the time) */

char wakeEnabled; /* 1=enable timer, 0=disable timer */

} WakeupTime;

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetWakeupTimer
is 22 ($16) in the low word of register D0. The pointer to WakeupTime is passed in
register A0.

SetWakeupTimer 7

You can use the SetWakeupTimer routine to set the time when the computer will wake
up from sleep mode.

void SetWakeupTimer(WakeupTime *theTime);

DESCRIPTION

The SetWakeupTimer routine sets the time when the computer will wake up from
sleep mode and enables or disables the timer. On a PowerBook model that doesn’t
support the wakeup timer, SetWakeupTimer does nothing.

C H A P T E R 7

Power Manager Interface

104 About the Power Manager Interface

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetWakeupTimer
is 23 ($17) in the low word of register D0. The pointer to WakeupTime is passed in
register A0.

IsProcessorCyclingEnabled 7

You can use the IsProcessorCyclingEnabled routine to find out whether processor
cycling is enabled.

Boolean IsProcessorCyclingEnabled();

DESCRIPTION

The IsProcessorCyclingEnabled routine returns a Boolean value of true if
processor cycling is currently enabled, or false if it is disabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
IsProcessorCyclingEnabled is 24 ($18) in the low word of register D0.
The Boolean result is returned in register D0.

EnableProcessorCycling 7

You can use the EnableProcessorCycling routine to turn the processor cycling
feature on and off.

void EnableProcessorCycling(Boolean enable);

DESCRIPTION

The EnableProcessorCycling routine enables processor cycling if a value of true is
passed in, and disables it if false is passed.

▲ W A R N I N G

You should follow the advice of the mustProcessorCycle bit in the
feature flags when turning processor cycling off. Turning processor
cycling off when it’s not recommended can result in hardware failures
due to overheating. ▲

C H A P T E R 7

Power Manager Interface

About the Power Manager Interface 105

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
EnableProcessorCycling is 25 ($19) in the low word of register D0.
The Boolean value to set is passed in the high word of register D0.

BatteryCount 7

You can use the BatteryCount routine to find out how many batteries the
computer supports.

short BatteryCount();

DESCRIPTION

The BatteryCount routine returns the number of batteries supported internally by the
computer. The return value of BatteryCount may not be the same as the number of
batteries currently installed.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for BatteryCount is 26
($1A) in the low word of register D0. The number of batteries supported is returned in
the low word of register D0.

GetBatteryVoltage 7

You can use the GetBatteryVoltage routine to find out the battery voltage.

Fixed GetBatteryVoltage(short whichBattery);

DESCRIPTION

The GetBatteryVoltage routine returns the battery voltage as a fixed-point number.

The value of whichBattery should be in the range 0 to BatteryCount()–1. If the
value of whichBattery is out of range, or the selected battery is not installed,
GetBatteryVoltage will return a result of 0.0 volts.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
GetBatteryVoltage is 27 ($1B) in the low word of register D0. The battery
number is passed in the high word of register D0. The 32-bit value of the battery
voltage is returned in register D0.

C H A P T E R 7

Power Manager Interface

106 About the Power Manager Interface

GetBatteryTimes 7

You can use the GetBatteryTimes routine to find out about how much battery
time remains.

void GetBatteryTimes (short whichBattery, BatteryTimeRec *theTimes);

DESCRIPTION

The GetBatteryTimes routine returns information about the time remaining on the
computer’s battery or batteries. The information returned has the following data
structure:

typedef struct BatteryTimeRec {

unsigned long expectedBatteryTime; /* estimated time remaining */

unsigned long minimumBatteryTime; /* minimum time remaining */

unsigned long maximumBatteryTime; /* maximum time remaining */

unsigned long timeUntilCharged; /* time until full charge */

} BatteryTimeRec;

The time values are in seconds. The value of expectedBatteryTime is the estimated
time remaining based on current usage patterns. The values of minimumBatteryTime
and maximumBatteryTime are worst-case and best-case estimates, respectively. The
value of timeUntilCharged is the time that remains until the battery or batteries are
fully charged.

The value of whichBattery determines whether GetBatteryTimes returns the time
information about a particular battery or the total time for all batteries. The value of
GetScaledBatteryInfo should be in the range of 0 to BatteryCount(). If the value
of whichBattery is 0, GetBatteryTimes returns a total time for all the batteries, that
is, the effective battery time for the whole system. If the value of whichBattery is out
of range, or the selected battery is not installed, GetBatteryTimes returns a result of 0
in all fields. Here is a summary of the effects of the whichBattery parameter:

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetBatteryTimes is
28 ($1C) in the low word of register D0. The pointer to BatteryTimeRec is passed in
register A0.

Value of whichBattery Information returned

0 Total battery time for all batteries

From 1 to BatteryCount() Battery time for the selected battery

Less than 0 or greater than
BatteryCount 0 in all fields of theTimes

C H A P T E R 7

Power Manager Interface

About the Power Manager Interface 107

Header File for Power Manager Dispatch 7
Here is a sample header file for access to the Power Manager.

/**

file: PowerMgrDispatch.h

contains: header file for access to the Power Manager

Copyright  1992-1993 by Apple Computer, Inc. All rights reserved.

**/

#ifndef __PowerMgrDispatch__

#define __PowerMgrDispatch__

#ifndef __TYPES__

#include <Types.h>

#endif

#ifndef gestaltPMgrDispatchExists

#define gestaltPMgrDispatchExists 4 /* gestaltPowerMgrAttr bit:

 1=PowerMgrDispatch exists */

#endif

/* bits in bitfield returned by PMFeatures */

#define hasWakeupTimer 0 /* 1=wakeup timer is supported */

#define hasSharedModemPort 1 /* 1=modem port shared by SCC and internal modem */

#define hasProcessorCycling 2 /* 1=processor cycling is supported */

#define mustProcessorCycle 3 /* 1=processor cycling should not be turned off */

#define hasReducedSpeed 4 /* 1=processor can be started up at reduced speed */

#define dynamicSpeedChange 5 /* 1=processor speed can be switched dynamically */

#define hasSCSIDiskMode 6 /* 1=SCSI disk mode is supported */

#define canGetBatteryTime 7 /* 1=battery time can be calculated */

#define canWakeupOnRing 8 /* 1=can wake up when the modem detects a ring */

C H A P T E R 7

Power Manager Interface

108 About the Power Manager Interface

/* bits in bitfield returned by GetIntModemInfo and set by SetIntModemState */

#define hasInternalModem 0 /* 1=internal modem installed */

#define intModemRingDetect 1 /* 1=internal modem has detected a ring */

#define intModemOffHook 2 /* 1=internal modem is off hook */

#define intModemRingWakeEnb3 /* 1=wake up on ring is enabled */

#define extModemSelected 4 /* 1=external modem selected */

#define modemSetBit 15 /* 1=set bit, 0=clear bit (SetIntModemState) */

/* information returned by GetScaledBatteryInfo */

struct BatteryInfo {

unsigned charflags; /* misc flags (see below) */

unsigned charwarningLevel; /* scaled warning level (0-255) */

char reserved; /* reserved for internal use */

unsigned charbatteryLevel; /* scaled battery level (0-255) */

};

typedef struct BatteryInfo BatteryInfo;

/* bits in BatteryInfo.flags */

#define batteryInstalled 7 /* 1=battery is currently connected */

#define batteryCharging 6 /* 1=battery is being charged */

#define chargerConnected 5 /* 1=charger is connected to the PowerBook */

/* (this doesn't mean the charger is plugged in) */

/* hard disk spindown notification queue element */

typedef struct HDQueueElement HDQueueElement;

C H A P T E R 7

Power Manager Interface

About the Power Manager Interface 109

typedef pascal void (*HDSpindownProc)(HDQueueElement *theElement);

struct HDQueueElement {

Ptr hdQLink; /* pointer to next queue element */

short hdQType; /* queue element type (must be HDQType) */

short hdFlags; /* miscellaneous flags */

HDSpindownProc hdProc; /* pointer to routine to call */

long hdUser; /* user-defined (variable storage, etc.) */

};

#define HDPwrQType'HD' /* queue element type */

/* wakeup time record */

typedef struct WakeupTime {

unsigned long wakeTime; /* wakeup time (same format as current time) */

char wakeEnabled; /* 1=enable wakeup timer, 0=disable wakeup timer */

} WakeupTime;

/* battery time information (in seconds) */

typedef struct BatteryTimeRec {

unsigned long expectedBatteryTime; /* estimated battery time remaining */

unsigned long minimumBatteryTime; /* minimum battery time remaining */

unsigned long maximumBatteryTime; /* maximum battery time remaining */

unsigned long timeUntilCharged; /* time until battery is fully charged */

} BatteryTimeRec;

#ifdef __cplusplus

extern "C" {

#endif

C H A P T E R 7

Power Manager Interface

110 About the Power Manager Interface

#pragma parameter __D0 PMSelectorCount(__D0)

short PMSelectorCount()

= {0x7000, 0xA09E};

#pragma parameter __D0 PMFeatures

unsigned long PMFeatures()

= {0x7001, 0xA09E};

#pragma parameter __D0 GetSleepTimeout

unsigned char GetSleepTimeout()

= {0x7002, 0xA09E};

#pragma parameter __D0 SetSleepTimeout(__D0)

void SetSleepTimeout(unsigned char timeout)

= {0x4840, 0x303C, 0x0003, 0xA09E};

#pragma parameter __D0 GetHardDiskTimeout

unsigned char GetHardDiskTimeout()

= {0x7004, 0xA09E};

#pragma parameter __D0 SetHardDiskTimeout(__D0)

void SetHardDiskTimeout(unsigned char timeout)

= {0x4840, 0x303C, 0x0005, 0xA09E};

#pragma parameter __D0 HardDiskPowered

Boolean HardDiskPowered()

= {0x7006, 0xA09E};

C H A P T E R 7

Power Manager Interface

About the Power Manager Interface 111

#pragma parameter __D0 SpinDownHardDisk

void SpinDownHardDisk()

= {0x7007, 0xA09E};

#pragma parameter __D0 IsSpindownDisabled

Boolean IsSpindownDisabled()

= {0x7008, 0xA09E};

#pragma parameter __D0 SetSpindownDisable(__D0)

void SetSpindownDisable(Boolean setDisable)

= {0x4840, 0x303C, 0x0009, 0xA09E};

#pragma parameter __D0 HardDiskQInstall(__A0)

OSErr HardDiskQInstall(HDQueueElement *theElement)

= {0x700A, 0xA09E};

#pragma parameter __D0 HardDiskQRemove(__A0)

OSErr HardDiskQRemove(HDQueueElement *theElement)

= {0x700B, 0xA09E};

#pragma parameter __D0 GetScaledBatteryInfo(__D0,__A0)

void GetScaledBatteryInfo(short whichBattery, BatteryInfo *theInfo)

= {0x4840, 0x303C, 0x000C, 0xA09E, 0x2080};

#pragma parameter __D0 AutoSleepControl(__D0)

void AutoSleepControl(Boolean enableSleep)

= {0x4840, 0x303C, 0x000D, 0xA09E};

C H A P T E R 7

Power Manager Interface

112 About the Power Manager Interface

#pragma parameter __D0 GetIntModemInfo(__D0)

unsigned long GetIntModemInfo()

= {0x700E, 0xA09E};

#pragma parameter __D0 SetIntModemState(__D0)

void SetIntModemState(short theState)

= {0x4840, 0x303C, 0x000F, 0xA09E};

#pragma parameter __D0 MaximumProcessorSpeed

short MaximumProcessorSpeed()

= {0x7010, 0xA09E};

#pragma parameter __D0 CurrentProcessorSpeed

short CurrentProcessorSpeed()

= {0x7011, 0xA09E};

#pragma parameter __D0 FullProcessorSpeed

Boolean FullProcessorSpeed()

= {0x7012, 0xA09E};

#pragma parameter __D0 SetProcessorSpeed(__D0)

Boolean SetProcessorSpeed(Boolean fullSpeed)

= {0x4840, 0x303C, 0x0013, 0xA09E};

#pragma parameter __D0 GetSCSIDiskModeAddress

short GetSCSIDiskModeAddress()

= {0x7014, 0xA09E};

C H A P T E R 7

Power Manager Interface

About the Power Manager Interface 113

#pragma parameter __D0 SetSCSIDiskModeAddress(__D0)

void SetSCSIDiskModeAddress(short scsiAddress)

= {0x4840, 0x303C, 0x0015, 0xA09E};

#pragma parameter __D0 GetWakeupTimer(__A0)

void GetWakeupTimer(WakeupTime *theTime)

= {0x7016, 0xA09E};

#pragma parameter __D0 SetWakeupTimer(__A0)

void SetWakeupTimer(WakeupTime *theTime)

= {0x7017, 0xA09E};

#pragma parameter __D0 IsProcessorCyclingEnabled

Boolean IsProcessorCyclingEnabled()

= {0x7018, 0xA09E};

#pragma parameter __D0 EnableProcessorCycling(__D0)

void EnableProcessorCycling(Boolean enable)

= {0x4840, 0x303C, 0x0019, 0xA09E};

#pragma parameter __D0 BatteryCount

short BatteryCount()

= {0x701A, 0xA09E};

#pragma parameter __D0 GetBatteryVoltage(__D0)

Fixed GetBatteryVoltage(short whichBattery)

= {0x4840, 0x303C, 0x001B, 0xA09E};

C H A P T E R 7

Power Manager Interface

114 About the Power Manager Interface

#pragma parameter __D0 GetBatteryTimes(__D0,__A0)

void GetBatteryTimes(BatteryTimeRec *theTimes)

= {0x4840, 0x303C, 0x001C, 0xA09E};

#ifdef __cplusplus

}

#endif

#endif

C H A P T E R 8

Software for ATA Devices 8Figure 8-0
Listing 8-0
Table 8-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 8

Software for ATA Devices

116

Introduction to the ATA Software

This chapter describes the system software that controls ATA devices in the Macintosh
PowerBook 5300 computer. To use the information in this chapter, you should already be
familiar with writing programs for the Macintosh computer that call device drivers to
manipulate devices directly. You should also be familiar with the ATA/IDE specification,
ANSI proposal X3T10/0948D, Revision 2K or later (ATA-2).

Introduction to the ATA Software 8

In the Macintosh PowerBook 5300 computer, the ATA software supports not only the
internal ATA (IDE) hard disk drive, but also ATA drives installed in the expansion bay
and in the PCMCIA slot. In addition to traditional Macintosh partitioned drives, the ATA
software also supports other file formats such as DOS through the PC Exchange system
extension.

The ATA software in the Macintosh PowerBook 5300 computer conforms to the
Macintosh driver model. File systems communicate with the driver by way of the Device
Manager, as shown in Figure 8-1. The ATA software consists of the ATA Manager and the
ATA Disk Driver. For an ATA drive in the PCMCIA slot, the ATA software uses the Card
Services software to configure the PCMCIA hardware and obtain access to the drive. See
Chapter 9, “PC Card Services.”

Figure 8-1

ATA software model

HFS
PC

exchange

Device Manager

ATA disk driver

ATA Manager

Card Services

ATA

controller

PCMCIA

controller

Other file

system

C H A P T E R 8

Software for ATA Devices

Introduction to the ATA Software

117

At the system level, the ATA disk driver and the ATA Manager work in the same way
that the SCSI Manager and associated SCSI device drivers work. The ATA disk driver
provides drive partition, data management, and error-handling services for the
operating system as well as support for determining device capacity and controlling
device-specific features. The ATA Manager provides data transport services between the
ATA hard disk drive and the system. The ATA Manager handles interrupts from the
drives and manages the interface timing.

ATA hard disk drives appear on the desktop the same way SCSI hard disk drives
currently do. Except for applications that perform low-level services such as formatting
and partitioning of disk drives, applications interact with the ATA hard disk drives in a
device-independent manner through the File Manager or by calling the Device Manager.

ATA Disk Driver 8

The ATA disk driver for the Macintosh PowerBook 5300 computer has the
following features:

■

Supports all ATA drives that comply with the ANSI ATA specification X3T10.

■

Uses the ATA Manager for system and bus independence.

■

Supports multiple drives and multiple partitions (volumes).

■

Recognizes both HFS hard disk and floppy disk formats.

■

Supports PC Exchange for DOS file compatibility.

■

Adheres to the driver rules described in

Designing PCI Cards and Drivers for Power
Macintosh Computers

.

■

Supports both synchronous and asynchronous requests from the file system.

■

Supports manual or powered ejection of PCMCIA cards.

The ATA disk driver resides in ROM and supports all ATA drives that adhere to the
ANSI ATA specification X3T10. The driver can support any number of ATA drives, either
internal or installed in the expansion bay or the PCMCIA slot.

The ATA disk driver relies on the services of the ATA Manager, which provides the ATA
protocol engine and relieves the driver of system and bus dependencies. The main
functions of the driver are managing the media and monitoring the status of the drive.

The ATA disk driver is responsible for providing block-oriented access to the storage
media. The file systems treat the media as one or more logical partitions or volumes in
which data at any address can be read or written indefinitely.

The ATA disk driver provides status and control functions. In addition, the driver’s
functionality has been augmented to support PC Exchange and the new Drive Setup
application. The functions are described in “ATA Disk Driver Reference” beginning on
page 120.

The ATA disk driver supports both synchronous and asynchronous requests from the file
system. The driver executes synchronous requests without relinquishing control back to

C H A P T E R 8

Software for ATA Devices

118

Introduction to the ATA Software

the caller until completion. The driver queues asynchronous calls and returns control to
the caller; it then executes the requested task in the background during interrupt time.

Drives on PC Cards 8

It might seem that the system should treat drives on PC cards like floppy disks because
they are removable. On closer examination, the floppy-disk model is not appropriate for
such drives. The Mac OS assumes that a floppy disk is not partitioned and has a single
HFS volume. Drives on PC cards can be quite large, making multiple partitions
desirable, and they can be used in multiple platforms, so they may have formats other
than HFS. For those and other reasons having to do with the way the Mac OS works, the
ATA disk driver uses the hard disk storage model for PC card drives.

The hard disk model in the Mac OS assumes that the media is fixed, that is, not ejectable.
The Disk Eject option in the Special menu of the Finder is disabled for fixed media, but
the driver can still request that an eject call be given when a volume is unmounted from
the desktop (that is, when its icon is dragged to the trash). The driver can use this eject
call to eject the PC card drive when the last volume on the drive has been unmounted.

Having only the single eject call is a problem for PC card drives that have removable
media because there is no way to distinguish between ejecting the media and ejecting the
drive. That being the case, the ATA disk driver in the Macintosh PowerBook 5300
computer does not support ejection of removable media in PC card drives. It supports
drives such as hard disks if the media is inserted before the drive is installed in the
PCMCIA socket.

Note

The hard disk model does not permit a single drive copy. This lack
should only be noticeable with single-socket systems or with a single
Type III drive in a stacked Type II socket configuration.

◆

The PC card drive media may contain one or more individual pile system partitions
(volumes) displayed as icons on the desktop. The ATA disk driver mounts the volumes
automatically when the PC card is inserted into a socket.

The ATA disk driver in the Macintosh PowerBook 5300 supports both partitioned and
nonpartitioned media. Partitioned media must contain a Macintosh Partition Map or the
driver treats it as nonpartitioned. The driver searches the partition map and posts disk
inserted events for all HFS, ProDOS, and other valid file system partitions it finds. If
there are no valid file system partitions in the partition map or if the partition map itself
does not exist, the disk driver posts a disk inserted event for the entire media as a single
partition of unknown system type. The HFS file system and installed foreign file systems
such as PC Exchange can then inspect the media to determine whether it is formatted.

Power management for PC card drives is similar to that for the internal drive, which
uses an internal spindown timer to reduce power to the drive after a period of inactivity.
Instead of removing power to the drive, the driver’s spindown manager issues low
power commands to the drive. This approach provides power conservation without
incurring the performance slowdown associated with turning the drive on and off.

C H A P T E R 8

Software for ATA Devices

Introduction to the ATA Software

119

The driver maintains independent spindown timers for each PC card drive, allowing
it to provide maximum power conservation with one or more drives is inactive. The
spindown time, which can be set from the PowerBook control panel, is the same for
all drives.

Control panels and control strip modules currently provide manual control of spindown
for the internal drive by means of calls to the Power Manager. That approach doesn’t
work for the PC card drives. Instead, the ATA disk driver provides a new control
function (

SetPowerMode

) and a new status function (

GetPowerMode

) that software
can use to provide manual control of spindown.

Drives in the Expansion Bay 8

The ATA disk driver treats drives installed in the expansion bay the same as PC card
drives except that drives in the expansion bay cannot be power ejected and the media
icon on the desktop is the generic hard disk icon.

ATA Manager 8

The ATA Manager manages the ATA controller and its protocol. It provides data
transport services between ATA devices and the system, directing commands to the
appropriate device and handling interrupts from the devices.

The ATA Manager schedules I/O requests from the ATA hard disk driver, the operating
system, and applications. The ATA Manager can handle both synchronous and asynchro-
nous requests. When making asynchronous requests, the calling program must provide a
completion routine.

The ATA Manager’s internal processing of requests can be either by polling or by
interrupts. When it is polling, the ATA Manager continually monitors for the next state
of the protocol by looping. When it is interrupt-driven, the ATA Manager is notified of
the next protocol state by an interrupt. The ATA Manager determines which way to
process each request as it is received; if interrupts are disabled, it processes the request
by polling.

Note

The ATA Manager does not provide an access mechanism for tuples on
the PCMCIA device. Any client can request tuple information from the
Card Services software described in Chapter 9, “PC Card Services.”

◆

The functions and data structures of the ATA Manager are described in “ATA Manager
Reference” beginning on page 135.

C H A P T E R 8

Software for ATA Devices

120

ATA Disk Driver Reference

ATA Disk Driver Reference 8

This section describes the routines provided by the ATA disk driver. The information in
this section assumes that you are already familiar with how to use device driver routines
on the Macintosh computer. If you are not familiar with Macintosh device drivers, refer
to the chapter “Device Manager” in

Inside Macintosh: Devices

 for additional information.

Standard Device Routines 8

The ATA disk driver provides the standard control and status routines described in the
chapter “Device Manager” of

Inside Macintosh: Devices

. Those routines are described in
this section. The specific control and status functions supported in the ATA disk driver
are defined in “Control Functions” beginning on page 122 and “Status Functions”
beginning on page 130.

Note

The ATA disk driver resides in ROM and is
not opened or closed by applications.

◆

The Control Routine 8

The control routine sends control information to the ATA disk driver. The type of control
function to be performed is specified in

csCode

.

The ATA disk driver implements many of the control functions supported by the SCSI
hard disk device driver and defined in

Inside Macintosh: Devices

. The ATA disk driver
also implements several new ones that are defined in

Designing PCI Cards and Drivers for
Power Macintosh Computers

. The control functions are listed in Table 8-1 and described in
“Control Functions” beginning on page 122.

Table 8-1

Control functions

Value of

csCode

Definition

5 Verify media

6 Format media

7 Eject drive

17 Enable or disable physical I/O access

21 Get drive icon

22 Get media icon

continued

C H A P T E R 8

Software for ATA Devices

ATA Disk Driver Reference

121

RESULT CODES

The Status Routine 8

The status routine returns status information about the ATA disk driver. The type of
information returned is specified in the

csCode

 field and the information itself is
pointed to by the

csParamPtr

 field.

The ATA disk driver implements many of the status functions supported by the SCSI
hard disk device driver and defined in

Inside Macintosh: Devices

. The ATA disk driver
also implements several new ones that are defined in

Designing PCI Cards and Drivers for
Power Macintosh Computers

. The status functions are listed in Table 8-2 and described in
“Status Functions” beginning on page 130.

23 Drive information

44 Set startup partition

45 Set partition mounting

46 Set partition write protect

48 Clear partition mounting

49 Clear partition write protection

50 Register partition

51 Add a new drive to the drive queue

60 Mount volume

65 Driver-specific need-time code (system task time)

70 Power-mode status management control

noErr

Successful completion, no error occurred

controlErr

Unimplemented control call; could not complete
requested operation

nsDrvErr

No such drive installed

Table 8-1

Control functions (continued)

Value of

csCode

Definition

C H A P T E R 8

Software for ATA Devices

122

ATA Disk Driver Reference

RESULT CODES

Control Functions 8

The control routine in the ATA disk driver supports a standard set of control functions.
The functions are used for control, status, and power management.

In the definitions that follow, an arrow preceding a parameter indicates whether the
parameter is an input parameter, an output parameter, or both.

verify 8

The

verify

 function requests a read verification of the data on the ATA hard drive
media. This function performs no operation and returns

noErr

 if the logical drive
number is valid.

Parameter block

Table 8-2

Status functions

Value of

csCode

Definition

8 Return drive status information

43 Return driver Gestalt information

44 Return partition boot status

45 Return partition mount status

46 Return partition write protect status

51 Return partition information

70 Power mode status information

noErr

Successful completion, no error occurred

statusErr

Unimplemented status call; could not complete
requested operation

nsDrvErr

No such drive installed

Arrow Meaning

→

Input

←

Output

↔

Both

→

csCode

A value of 5.

→

ioVRefNum

The logical drive number.

→

csParam[]

None defined.

←

ioResult

See result codes.

C H A P T E R 8

Software for ATA Devices

ATA Disk Driver Reference

123

RESULT CODES

format 8

Because ATA hard drives are low-level formatted at the factory, this function does not
perform any operation. The driver returns

noErr

 if the logical drive number is valid.

Parameter block

RESULT CODES

eject 8

The

eject

 function notifies the driver when a volume is no longer required by the file
system. The driver performs no action unless the drive itself is ejectable (for example, a
PC card drive). If the drive is ejectable and there is no other mounted volume for the
drive, then the driver initiates the eject operation. When the driver is notified that the
drive has been removed from the bus, the driver removes all associated logical drives
from the drive queue and updates its internal records.

Parameter block

RESULT CODES

noErr

Successful completion, no error occurred

nsDrvErr

The specified logical drive number does not exist

→

csCode

A value of 6.

→

ioVRefNum

The logical drive number.

→

csParam[] None defined.
← ioResult See result codes.

noErr Successful completion, no error occurred.
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 7.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← ioResult See result codes.

noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist
offLinErr The specified drive is not on the bus

C H A P T E R 8

Software for ATA Devices

124 ATA Disk Driver Reference

get drive icon 8

The get drive icon function returns a pointer to the device icon and the device name
string to be displayed on the desktop when the media is initialized. If no physical icon is
available the function returns the media icon. The icon is an 'ICN#' resource and varies
with the system. The device name string is in Pascal format.

Parameter block

RESULT CODES

get media icon 8

The get media icon function returns a pointer to the media icon and the device name
string to be displayed on the desktop for an HFS volume and in the Get Info command
of the Finder. The icon is an 'ICN#' resource and varies with the type of drive or media.
The device name string is in Pascal format.

Parameter block

RESULT CODES

→ csCode A value of 21.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Pointer to the drive icon and name string.
← ioResult See result codes.

noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

→ csCode A value of 22.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Address of drive icon and name string

(information is in ICN# format).
← ioResult See result codes.

noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

C H A P T E R 8

Software for ATA Devices

ATA Disk Driver Reference 125

get drive information 8

The get drive information function returns information about the specified drive
as defined on page 470 of Inside Macintosh, Volume V.

Note
This information is not in Inside Macintosh: Devices. ◆

Because ATA devices are not designated, all drives are designated as unspecified. Also,
all drives are specified as SCSI because the only other option is IWM, which applies only
to certain floppy disk drives. The internal ATA drive is specified as primary and all
others as secondary. Drives on PC cards and in the expansion bay are specified as
removable (meaning the drive itself, not the media).

Parameter block

RESULT CODES

set startup partition 8

The set startup partition function sets the specified partition to be the startup
partition. The partition is specified either by its logical drive or by its block address on
the media. The current startup partition is cleared. A result code of controlErr is
returned if the partition does not have a partition map entry on the media or if the
partition could not be set to be the startup partition.

Parameter block

→ csCode A value of 23.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Drive information value (long).

$0601 = primary, fixed, SCSI, internal.
$0201 = primary, removable, SCSI, internal.

← ioResult See result codes.

noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

→ csCode A value of 44.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

C H A P T E R 8

Software for ATA Devices

126 ATA Disk Driver Reference

RESULT CODES

set partition mounting 8

The set partition mounting function enables the specified partition to be
mounted. The partition is specified either by its logical drive or by its block address on
the media. A result code of controlErr is returned if the partition does not have a
partition map entry on the media or if the partition could not be enabled to be mounted.

Parameter block

RESULT CODES

set partition write protect 8

The set partition write protect function sets the specified partition to be
(software) write protected. The partition is specified either by its logical drive or by its
block address on the media. A result code of controlErr is returned if the partition
does not have a partition map entry on the media or if the partition could not be set to be
write protected.

Parameter block

noErr Successful completion, no error occurred
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist

→ csCode A value of 45.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

noErr Successful completion, no error occurred
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist

→ csCode A value of 46.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

C H A P T E R 8

Software for ATA Devices

ATA Disk Driver Reference 127

RESULT CODES

clear partition mounting 8

The clear partition mounting function prevents the specified partition from
being mounted. The partition is specified either by its logical drive or by its block
address on the media. A result code of controlErr is returned if the partition does
not have a partition map entry on the media or if the partition could not be set so as
not to be mounted.

Parameter block

RESULT CODES

clear partition write protect 8

The clear partition write protect function disables the (software) write
protection on the specified partition. The partition is specified either by its logical drive
or by its block address on the media. A result code of controlErr is returned if the
partition does not have a partition map entry on the media or if write protection could
not be disabled.

Parameter block

noErr Successful completion, no error occurred
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist

→ csCode A value of 48.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

noErr Successful completion, no error occurred
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist

→ csCode A value of 49.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

C H A P T E R 8

Software for ATA Devices

128 ATA Disk Driver Reference

RESULT CODES

register partition 8

The register partition function supports PC Exchange. It requests the driver to
redefine the starting block offset and capacity of an existing partition.

A pointer to the drive queue element is passed in along with the new physical offset and
capacity. The pointer has the following form:

struct {

DrvQElPte theDrive; // Partition to be registered

long phyStart; // New start offset

long phySize; // New capacity (blocks)

}

Parameter block

RESULT CODES

get a drive 8

The get a drive function supports PC Exchange. It requests the driver to create a new
logical drive (partition) in the System Drive Queue. A pointer to the DrvQElPtr
variable is passed in; this variable contains the pointer to a valid partition on the
physical drive to which the new partition is to be added. Upon completion, the function
returns the new DrvQElPtr in the variable. The DrvQElPtr variable is defined as
follows:

DrvQElPtr *theDrive; //Pointer to existing partition

noErr Successful completion, no error occurred
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist

→ csCode A value of 50.
→ ioVRefNum The logical drive number.
→ csParam[0–1] Pointer to new driver information.
← ioResult See result codes.

noErr Successful completion, no error occurred.
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 8

Software for ATA Devices

ATA Disk Driver Reference 129

Parameter block

RESULT CODES

mount volume 8

The mount volume function instructs the driver to post a disk inserted event for the
specified partition. The partition is specified either by its logical drive or by its block
address on the media.

Parameter block

RESULT CODES

set power mode 8

The set power mode function changes the drive’s power mode to one of four modes:
active, standby, idle, or sleep. It can be used to reduce drive power consumption and
decrease system noise levels.

IMPORTANT

Although the power modes have the same names as the ones in the
ATA/IDE specification, they do not have the same meanings. ▲

■ Active: The fully operational state with typical power consumption.

■ Standby: The state with minimal power savings. The device can return to the active
state in less than 5 seconds.

→ csCode A value of 51.
→ ioVRefNum The logical drive number.
→ csParam[] Pointer to existing partition.
← csParam[] Pointer to new partition.
← ioResult See result codes.

noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

→ csCode A value of 48.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

noErr Successful completion, no error occurred
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist

C H A P T E R 8

Software for ATA Devices

130 ATA Disk Driver Reference

■ Idle: The state with moderate power savings. The device can return to the active state
within 15 seconds.

■ Sleep: The state with minimum power consumption. The device can return to the
active state within 30 seconds.

Parameter block

RESULT CODES

Status Functions 8
The Status routine in the ATA disk driver supports a standard set of status functions.
These functions are used to obtain information about a partition (volume) in an ATA
hard disk drive.

drive status 8

The drive status function returns the same type of information that disk drivers are
required to return for the status routine, as described on page 215 of Inside Macintosh,
Volume II.

Note
This information is not in Inside Macintosh: Devices. ◆

Parameter block

→ csCode A value of 70.
→ ioVRefNum The logical drive number.
→ csParam[0] The most significant byte contains one of the

following codes:
0 = enable the active mode
1 = enable the standby mode
2 = enable the idle mode
3 = enable the sleep mode
(least significant byte = don’t care)

← ioResult See result codes.

noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

→ csCode A value of 8.
→ ioVRefNum The logical drive number.
→ csParam[] Not used.
← ioResult See result codes.

C H A P T E R 8

Software for ATA Devices

ATA Disk Driver Reference 131

RESULT CODES

driver gestalt 8

The driver gestalt function provides the application with information about the
ATA hard disk driver and the attached device. Several calls are supported under this
function. A Gestalt selector is used to specify a particular call.

The DriverGestaltParam data type defines the ATA driver gestalt parameter block:

struct DriverGestaltParam

{

ataPBHdr // See definition on page 136

SInt16 ioVRefNum; // refNum of device

SInt16 csCode; // Driver Gestalt code

OSType driverGestaltSelector; // Gestalt selector

driverGestaltInfo driverGestaltResponse; // Returned result

};

typedef struct DriverGestaltParam DriverGestaltParam;

The fields driverGestaltSelector and driverGestaltResponse are 32-bit fields.

Parameter block

noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

→ csCode A value of 43.
→ ioVRefNum The logical drive number.
→ driverGestaltSelector Gestalt function selector. This is a 32-bit

ASCII field containing one of the following
selectors:
'sync' Indicates synchronous or

asynchronous driver.
'devt' Specify type of device the driver

is controlling.
'intf' Specify the device interface.
'boot' Specify PRAM value to

designate this driver or device.
'vers' Specify the version number of

the driver.
'lpwr' Indicates support for

low-power mode.
'dAPI' Indicates support for calls to

PC Exchange.
'purg' Indicates driver can be closed

or purged.
'wide' Indicates large volume support.
'ejec' Eject call requirements.

C H A P T E R 8

Software for ATA Devices

132 ATA Disk Driver Reference

RESULT CODES

get boot partition 8

The get boot partition function returns 1 if the specified partition is the boot
partition, 0 if it is not. The partition is specified either by its associated logical drive or
the partition’s block address on the media.

Parameter block

RESULT CODES

← driverGestaltResponse Return value based on the driver gestalt
selector. The possible return values are:
'sync' true (1), indicating that the

driver is synchronous.
'devt' 'disk' indicating a hard disk

driver.
'intf' 'ide ' for an IDE (ATA) drive,

or 'pcmc' for a PC card drive.
'boot' PRAM value (long).
'vers' Current version number

of the driver.
'lpwr' true (1)
'dAPI' true (1)
'purg' Indicates driver can be closed or

purged.
'wide' true (1)
'ejec' Eject call requirements (long):

bit 0: if set, don’t issue eject call
on Restart.
bit 1: if set, don’t issue eject call
on Shutdown.

← ioResult See result codes.

noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist
statusErr Unknown selector was specified

→ csCode A value of 44.
→ ioVRefNum The logical drive number or

0 if using the partition’s block address.
→ csParam[] The partition’s block address (long) if

ioVRefNum = 0.
← ioResult See result codes.

noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

C H A P T E R 8

Software for ATA Devices

ATA Disk Driver Reference 133

get partition mount status 8

The get partition mount status function returns 1 if the specified partition has
mounting enabled, 0 if not enabled or if the partition does not have a partition map entry
on the media. The partition is specified either by its associate logical drive or the
partition’s block address on the media.

Parameter block

RESULT CODES

get partition write protect status 8

The get partition write protect status function returns 1 if the specified
partition is write protected (software), 0 if it is not. The partition is specified either by its
associate logical drive or the partition’s block address on the media.

Parameter block

RESULT CODES

→ csCode A value of 45.
→ ioVRefNum The logical drive number or

0 if using the partition’s block address.
→ csParam[] The partition’s block address (long) if

ioVRefNum = 0.
← ioResult See result codes.

noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

→ csCode A value of 46.
→ ioVRefNum The logical drive number or

0 if using the partition’s block address.
→ csParam[] The partition’s block address (long)

if ioVRefNum = 0.
← ioResult See result codes.

noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

C H A P T E R 8

Software for ATA Devices

134 ATA Disk Driver Reference

get partition information 8

The get partition information function supports PC Exchange. It requests the
driver to return information about the partition specified by ioVRefNum.

The csParam field contains a pointer to the device information element for the return
information. The pointer has the following form:

struct {

DeviceIdent SCSIID; // Device ID

// Physical start of partition

unsigned long physPartitionLoc;

// Partition identifier

unsigned long partitionNumber;

} partInfoRec, *partInfoRecPtr;

Parameter block

RESULT CODES

get power mode 8

The get power mode function returns the current power mode state of the internal
hard disk. The power modes are defined on page 129.

Parameter block

→ csCode A value of 51.
→ ioVRefNum The logical drive number.
→ csParam[] The information data structure.
← ioResult See result codes.

noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist

→ csCode A value of 70.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[] The most significant byte contains one of the

following codes:
0 = active mode
1 = standby mode
2 = idle mode
3 = sleep mode
(least significant byte = don’t care)

← ioResult See result codes.

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 135

RESULT CODES

ATA Manager Reference 8

This section defines the data structures and functions that are specific to the
ATA Manager.

The ATA Manager has a single entry point through the trap $AAF1. Functions are
dispatched within the manager based on the manager function code defined in the
parameter block header.

When making calls to the ATA Manager you have to pass and retrieve parameter
information through a parameter block. The size and content of the parameter
block depends on the function being called. However, all calls to the ATA Manager
have a common parameter block header structure. The structure of the ataPBHdr
parameter block is common to all ATA parameter block data types. Several additional
ATA parameter block data types have been defined for the various functions of
the ATA Manager.

The ATA Parameter Block 8
This section defines the fields common to all ATA Manager functions that use the ATA
parameter block. The fields used for specific functions are defined in the description of
the functions to which they apply. You use the ATA parameter block for all calls to the
ATA Manager. The ataPBHdr data type defines the ATA parameter block.

The parameter block includes a field, MgrFCode, in which you specify the function
selector for the particular function to be executed; you must specify a value for this field.
Each ATA function may use different fields of the ATA parameter block for parameters
specific to that function.

An arrow preceding the comment indicates whether the parameter is an input parameter,
an output parameter, or both.

noErr Successful completion, no error occurred
nsDrvErr The specified logical drive number does not exist
statusErr The power management information couldn’t be

returned due to a manager error

Arrow Meaning
→ Input
← Output
↔ Both

C H A P T E R 8

Software for ATA Devices

136 ATA Manager Reference

The ATA parameter block header structure is defined as follows:

struct ataPBHdr // ATA Manager parameter block

 header structure

{

Ptr ataLink; // Reserved

SInt16 ataQType; // Type byte

UInt8 ataPBVers; // → Parameter block version number

UInt8 hdrReserved; // Reserved

Ptr hdrReserved2; // Reserved

ProcPtr ataCompletion; // Completion routine

OSErr ataResult; // ← Returned result

UInt8 MgrFCode; // → Manager function code

UInt8 ataIOSpeed; // → I/O timing class

UInt16 ataFlags; // → Control options

SInt16 hdrReserved3; // Reserved

UInt32 deviceID; // → Device ID

UInt32 TimeOut; // → Transaction timeout value

Ptr ataPtr1; // Client storage Ptr 1

Ptr ataPtr2; // Client storage Ptr 2

UInt16 ataState; // Reserved, init to 0

SInt16 intSemaphores; // internal semaphores

Sint32 hdrReserved4; // Reserved

};

typedef struct ataPBHdr ataPBHdr;

Field descriptions

ataLink This field is reserved for use by the ATA Manager. It is used
internally for queuing I/O requests. It must be initialized to 0
before calling the ATA Manager.

ataQType This field is the queue type byte. It should be initialized to 0 before
calling the ATA Manager.

ataPBVers This field contains the parameter block version number. Values of 1
and 2 are the only values currently supported. Any other value
results in a paramErr. For individual differences between versions
1 and 2, refer to the individual functions.

hdrReserved Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

hdrReserved2 Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

ataCompletion This field contains the completion routine pointer to be called upon
completion of the request. When this field is set to 0, it indicates
a synchronous I/O request; a non-zero value indicates an
asynchronous I/O request. The routine this field points to is called

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 137

when the request has finished without error, or when the request
has terminated due to an error. This field is valid for any manager
request. The completion routine is called as follows:

pascal void (*RoutinePtr) (ataIOPB *)

The completion routine is called with the associated manager
parameter block in the stack.

ataResult Completion status. This field is returned by the ATA Manager after
the request has been completed. Refer to Table 8-13 on page 175 for
a list of the possible error codes returned in this field.

MgrFCode This field is the function selector for the ATA Manager. The
functions are defined in Table 8-4 on page 141. An invalid code in
this field results in an ATAFuncNotSupported error.

ataIOSpeed This field specifies the I/O cycle timing requirement of the specified
ATA drive. This field should contain word 51 of the identify drive
data. Currently values 0 through 3 are supported, as defined in the
ATA/IDE specification. See the ATA/IDE specification for the
definitions of the timing values. If a timing value higher than one
supported is specified, the manager operates in the fastest timing
mode supported by the manager. Until the timing value is
determined by examining the identify drive data returned by the
ATA_Identify function, the client should request operations using
the slowest mode (mode 0).

ataFlags This 16-bit field contains control settings that indicate special
handling of the requested function. The control bits are defined in
Table 8-3 on page 138.

hdrReserved3 Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

deviceID A short word that uniquely identifies an ATA device. The field
consists of the following structure:

struct deviceIdentification

{

UInt16 Reserved; // The upper word is reserved

UInt16 deviceNum; // Consists of device ID and bus ID

};

typedef struct deviceIdentification

deviceIdentification;

Bit 15 of the deviceNum field indicates master (=0) /slave (=1)
selection. Bits 14 through 0 contain the bus ID (for example,
$0 = master unit of bus 0, $80 = slave unit of bus 0). The present
implementation allows only one device in the master configuration.
This value is always 0.

TimeOut This field specifies the transaction timeout value in milliseconds. A
value of 0 disables the transaction timeout detection.

C H A P T E R 8

Software for ATA Devices

138 ATA Manager Reference

ataPtr1 This pointer field is available for application use. It is not modified
by the ATA Manager.

ataPtr2 This pointer field is available for application use. It is not modified
by the ATA Manager.

ataState This field is used by the ATA Manager to keep track of the current
bus state. This field must contain 0 when calling the manager.

intSemaphores This field is used internally by the ATA Manager. It should be set to
0 before calling the ATA Manager.

hdrReserved4 Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

Table 8-3 describes the functions of the control bits in the ataFlags field.

Table 8-3 Control bits in the ataFlags field

Name Bit Definition

LED Enable 0 Some systems are equipped with an activity LED
controlled by software. Setting this bit to 1 indicates
that the LED should be turned on for this transaction.
The LED is automatically turned off at the end of the
transaction. Setting the bit to 0 indicates that the LED
should not be turned on for this transaction. This bit
has no effect in systems with no activity LED.

— 1–2 Reserved.

RegUpdate 3 When set to 1 this bit indicates that a set of device
registers should be reported back upon completion of
the request. This bit is valid for the ATA_ExecI/O
function only. Refer to the description on page 149
for details. The following device registers are
reported back:

■ Sector count register

■ Sector number register

■ Cylinder register(s)

■ SDH register

continued

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 139

ProtocolType 4–5 These two bits specify the type of command. The
following command types are defined:

$0 = standard ATA

$1 = PCMCIA/ATA

$2 = ATAPI

These bits are used to indicate special protocol
handling.

For ATA command values of $A0 or $A1, this field
must contain the ATAPI setting. For all other ATA
commands, this field must contain the standard ATA
setting.

— 6–7 Reserved.

SGType 8, 9 This 2-bit field specifies the type of scatter gather list
passed in. This field is only valid for read/write
operations.

The following types are defined:

00 = scatter gather disabled

01 = scatter gather type I enabled

10 = reserved

11 = reserved

When set to 0, this field indicates that the ioBuffer
field contains the host buffer address for this transfer,
and the ioReqCount field contains the byte transfer
count.

When set to 1, this field indicates that the ioBuffer
and the ioReqCount fields of the parameter block for
this request point to a host scatter gather list and the
number of scatter gather entries in the list, respectively.

The format of the scatter gather list is a series of the
following structure definition:

struct IOBlock // SG entry structure
{

UInt8* ioBuffer; // → Data buffer pointer
UInt32 ioReqCount;// → Byte count

};
typedef struct IOBlock IOBlock;

continued

Table 8-3 Control bits in the ataFlags field (continued)

Name Bit Definition

C H A P T E R 8

Software for ATA Devices

140 ATA Manager Reference

QLockOnError 10 When set to 0, this bit indicates that an error during
the transaction should not freeze the I/O queue for
the device. When an error occurs on an I/O request
with this bit set to 0, the next queued request is
processed without interruption. If an error occurs
when this bit is set, however, any subsequent request
without the 'Immediate' bit set is held off until an 'I/O
Queue Release' command is received. This allows the
ATA Manager to preserve the error state so that a
client can examine it.

When this bit is set, only those requests with the
'Immediate' bit set are processed. Use this bit with
caution; it can cause the system to hang if not handled
correctly.

Immediate 11 When this bit is set to 1, it indicates that the request
must be executed as soon as possible and the status of
the request must be returned. It forces the request to
the head of the I/O queue for immediate execution.
When this bit is set to 0, the request is queued in the
order it is received and is executed according to
that order.

ATAioDirection 12, 13 This bit field specifies the direction of data transfer. Bit
values are binary and defined as follows:

00 = no data transfer

10 = data direction in (read)

01 = data direction out (write)

11 = reserved

Note: These bits do not need to be set to reflect the
direction of the command packet bytes.

— 14 Reserved.

ByteSwap 15 When set to 1, this bit indicates that every byte of data
prior to transmission on write operations and upon
reception on read operations is to be swapped. When
this bit is set to 0, it forces bytes to go out in the
LSB-MSB format that is compatible with IBM clones.
Typically, this bit should be set to 0. Setting this bit has
performance implications because the byte swap is
performed by the software. Use this bit with caution.

Caution: Setting this bit to 1 causes the bytes in ATAPI
command packets to be swapped.

Table 8-3 Control bits in the ataFlags field (continued)

Name Bit Definition

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 141

Functions 8
This section describes the ATA Manager functions that are used to manage and perform
data transfers. Each function is requested through a parameter block specific to that
service. A request for an ATA function is specified by a function code within the
parameter block. The entry point for all the functions is the same.

The function names and ATA Manager function codes are shown in Table 8-4.

ATA_Abort 8

You can use the ATA_Abort function to terminate a queued I/O request. This function
applies to asynchronous I/O requests only. The ATA_Abort function searches through
the I/O queue associated with the selected device and aborts the matching I/O request.
The current implementation does not abort if the found request is in progress. If the
specified I/O request is not found or has started processing, an ATAUnableToAbort
status is returned. If aborted, the ATAReqAborted status is returned.

Table 8-4 ATA Manager functions

Function name Code Description

ATA_Abort $10 Terminate the command.

ATA_BusInquiry $03 Get bus information.

ATA_DrvrDeregister $87 Deregister the driver reference number.

ATA_DrvrRegister $85 Register the driver reference number.

ATA_ExecIO $01 Execute ATA I/O.

ATA_EjectDrive $89 Auto-eject the drive.

ATA_FindRefNum $86 Look up the driver reference number.

ATA_GetDevConfig $8A Get the device configuration.

ATA_GetLocationIcon $8C Get the device location icon and string.

ATA_Identify $13 Get the drive identification data.

ATA_MgrInquiry $90 Get information about the ATA Manager
and the system configuration.

ATA_ModifyDrvrEventMask $88 Modify the driver event mask.

ATA_NOP $00 Perform no operation.

ATA_QRelease $04 Release the I/O queue.

ATA_RegAccess $12 Obtain access to an ATA device register.

ATA_ResetBus $11 Reset the ATA bus.

ATA_SetDevConfig $8B Set the device configuration.

C H A P T E R 8

Software for ATA Devices

142 ATA Manager Reference

It is up to the application that called the ATA_Abort function to clean up the aborted
request. Clean up includes parameter block deallocation and O/S reporting.

The manager function code for the ATA_Abort function is $10.

The parameter block associated with this function is defined as follows:

struct ATA_Abort // ATA abort structure

{

ataPBHdr // See definition on page 136

ATA_PB* AbortPB // Address of the parameter

// block to be aborted

UInt16 Reserved // Reserved

};

typedef struct ATA_Abort ATA_Abort;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 136.
AbortPB This field contains the address of the I/O parameter block to

be aborted.
Reserved This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.

RESULT CODES

ATA_BusInquiry 8

You can use the ATA_BusInquiry function to gets information about a specific ATA
bus. This function is provided for possible future expansion of the Macintosh ATA
architecture.

The manager function code for the ataBusInquiry function is $03.

The parameter block associated with this function is defined below:

struct ATA_BusInquiry // ATA bus inquiry structure

{

ataPBHdr // See definition on page 136

UInt16 ataEngineCount; // ← TBD; zero for now

UInt16 ataReserved; // Reserved

UInt32 ataDataTypes; // ← TBD; zero for now

noErr Successful completion, no error occurred
nsDrvErr Specified device is not present
ATAMgrNotInitialized ATA Manager not initialized
ATAReqAborted The request was aborted
ATAUnableToAbort Request to abort couldn’t be honored

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 143

UInt16 ataIOpbSize; // ← Size of ATA I/O PB

UInt16 ataMaxIOpbSize; // ← TBD; zero for now

UInt32 ataFeatureFlags; // ← TBD

UInt8 ataVersionNum; // ← HBA Version number

UInt8 ataHBAInquiry; // ← TBD; zero for now

UInt16 ataReserved2; // Reserved

UInt32 ataHBAPrivPtr; // ← Ptr to HBA private data

UInt32 ataHBAPrivSize; // ← Size of HBA private data

UInt32 ataAsyncFlags; // ← Capability for callback

UInt32 ataReserved3[4]; // Reserved

UInt32 ataReserved4; // Reserved

SInt8 ataReserved5[16]; // TBD

SInt8 ataHBAVendor[16]; // ← HBA Vendor ID

SInt8 ataContrlFamily[16]; // ← Family of ATA controller

SInt8 ataContrlType[16]; // ← Controller model number

SInt8 ataXPTversion[4]; // ← Version number of XPT

SInt8 ataReserved6[4]; // Reserved

SInt8 ataHBAversion[4]; // ← Version number of HBA

UInt8 ataHBAslotType; // ← Type of slot

UInt8 ataHBAslotNum; // ← Slot number of the HBA

UInt16 ataReserved7; // Reserved

UInt32 ataReserved8; // Reserved

};

typedef struct ATA_BusInquiry ATA_BusInquiry;

Field descriptions

ataPBHdr See the definition of the ataPBHdr on page 136.
ataEngineCount Currently set to 0.
ataReserved Reserved. All reserved fields are set to 0.
ataDataTypes Returns a bit map of data types supported by this host bus adapter

(HBA). The data types are numbered from 0 to 30; 0 through 15 are
reserved for Apple definition and 16 through 30 are available for
vendor use. This field is currently not supported; it returns a value
of 0.

ataIOpbSize This field contains the size of the I/O parameter block supported.
ataMaxIOpbSize This field specifies the maximum I/O size for the HBA. This field is

currently not supported and returns 0.
ataFeatureFlags This field specifies supported features. This field is not supported; it

returns a value of 0.
ataVersionNum The version number of the HBA is returned. The current version

returns a value of 1.
ataHBAInquiry Reserved.
ataHBAPrivPtr This field contains a pointer to the HBA’s private data area. This

field is not currently supported; it contains a value of 0.

C H A P T E R 8

Software for ATA Devices

144 ATA Manager Reference

ataHBAPrivSize This field contains the byte size of the HBA’s private data area. This
field is currently not supported; it contains a value of 0.

ataAsyncFlags These flags indicate which types of asynchronous events the HBA is
capable of generating. This field is currently not supported; it
contains a value of 0.

ataHBAVendor This field contains the vendor ID of the HBA. This is an ASCII
text field.

ataContrlFamilyReserved.
ataContrlType This field identifies the specific type of ATA controller.
ataXPTversion Reserved.
ataHBAversion This field specifies the version of the HBA. This field is currently

not supported; it contains a value of 0.
ataHBAslotType This field specifies the type of slot. This field is currently not

supported; it contains a value of 0.
ataHBAslotNum This field specifies the slot number of the HBA. This field is

currently not supported; it contains a value of 0.

RESULT CODES

ATA_DrvrRegister 8

You can use the ATA_DrvrRegister function to register the driver and an event
handler for the drive whose reference number is passed in. Any active driver that
controls one or more devices through the ATA Manager must register with the manager
to insure proper operation and notification of events. The ATA_DrvrRegister function
should be called only at non-interrupt time.

The first driver to register for the device gets the device. All subsequent registrations for
the device are rejected. The registration mechanism is used for manager to notify the
appropriate driver when events occur. Refer to Section 6 of this document for possible
events and their definition.

The manager function code for the ATA_DrvrRegister function is $85.

There are two versions of the data structure for registration. The version is identified by
the ataPBVers field in the parameter block.

Version two allows a driver to register as a Notify-all driver. Registration of a Notify-all
driver is signalled by a value of –1 in the deviceID field of the header and the bit 0 of
'drvrFlags' set to 0. Notify-all driver registration is used if notification of all device
insertions is desired. Registered default drivers will be called if no media driver is found
on the media. Typically, an INIT driver registers as a Notify-all driver. The single driver
may register as a Notify-all driver, then later register for one or more devices on the bus.

noErr Successful completion, no error occurred
ATAMgrNotInitialized ATA Manager not initialized

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 145

Note
To insure proper operation, all PCMCIA/ATA and Notify-all
device drivers must register using version two, which provides
event handling capability.

Two versions of the parameter block associated with this function are defined below:

// Version 1 (ataPBVers = 1)

struct ataDrvrRegister // Parameter block structure

// for ataPBVers = 1

{

ataPBHdr // Header information

SInt16 drvrRefNum; // → Driver reference number

UInt16 FlagReserved; // Reserved -> should be zero

UInt16 deviceNextID; // Not used

SInt16 Reserved[21]; // Reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

// Version 2(ataPBVers = 2)

struct ataDrvrRegister // Parameter block structure

// for ataPBVers = 2

{

ataPBHdr // Header information

SInt16 drvrRefNum; // → Driver reference number

UInt16 drvrFlags; // → Driver flags; set to 0

UInt16 deviceNextID; // Not used

SInt16 Reserved; // Reserved; set to zero

ProcPtr ataEHandlerPtr // → Event handler routine ptr

SInt32 drvrContext; // → Value to pass in along with

// the event handler

UInt32 ataEventMask; // → masks of various events for

// the event handler

SInt16 Reserved[14]; // Reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 136.
drvrRefNum This field specifies the driver reference number to be registered.

This value must be less than 0 to be valid. This field is a don't-care
field for registration of a Notify-all driver.

FlagReserved Reserved.
deviceNextID Not used by this function.

C H A P T E R 8

Software for ATA Devices

146 ATA Manager Reference

Reserved[21] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

ataEHandlerPtr A pointer to driver's event handler routine. This routine will be
called whenever an event happens, and the mask bit for the
particular event is set in the ataEventMask field is set. The calling
convention for the event handler is as follows:

pascal SInt16 (ataEHandlerPtr) (ATAEventRec*);

where the ATAEventRec is defined as follows:

typedef struct

{

UInt16 eventCode; // → ATA event code

UInt16 phyDrvRef; // → ID associated with

// the event

SInt32 drvrContext;// → context passed in

// by the driver

} ATAEventRec;

See “Notification of Device Events” beginning on page 168 for a list
of the ATA event codes.

drvrContext A value to be passed in when the event handler is called. This value
will be loaded in the ATAEventRec before calling the event handler.

ataEventMask The mask defined in this field is used to indicate whether the event
handler should be called or not, based on the event. The event
handler will only be called if the mask for the event has been set(1).
If the mask is not set(0) for an event, the ATA Manager will take no
action. Table 8-5 lists the masks have been defined.

Table 8-5 Event masks

Bits Event Mask

$00 Null event

$01 Online event: a device has come on line

$02 Offline event: a device has gone off line

$03 Device removed event: a device has been removed (taken out)

$04 Reset event: a device has been reset

$05 Offline request event: a request to take the drive off line

$06 Eject request event: a request to eject the drive

$07 Configuration update event: the system configuration has changed

$08–$1F Reserved for future expansion

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 147

RESULT CODES

ATA_DrvrDeregister 8

You can use the ATA_DrvrDeRegister function to deregister the selected drive. After
successful completion of this function, the driver reference number for the drive is set to
0, which indicates that there is no driver in control of this device.

This function should be called when the controlling device is no longer available to the
registered driver (device ejection) or the device driver is being closed down. Typically,
this call is embedded in the Close() function of the driver.

The manager function code for the ATA_DrvrDeRegister function is $87.

There are two versions of the data structure for registration. The version is identified by
the ataPBVers field in the parameter block.

Two versions of the parameter block associated with this function are defined below:

// Version 1 (ataPBVers = 1)

structataDrvrRegister // Parameter block structure

// for ataPBVers = 1

{

ataPBHdr // Header information

SInt16 drvrRefNum; // Not used

UInt16 FlagReserved; // Reserved

UInt16 deviceNextID; // Not used

SInt16 Reserved[21]; // Reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

// Version 2(ataPBVers = 2)

structataDrvrRegister // Parameter block structure

// for ataPBVers = 2

{

ataPBHdr // Header information

SInt16 drvrRefNum; // → Driver reference number

UInt16 drvrFlags; // → driver flags; set to 0

UInt16 deviceNextID; // Not used

SInt16 Reserved; // Reserved -> should be zero

ProcPtr ataEHandlerPtr // → Event handler routine ptr

SInt32 drvrContext; // → Value to pass in along

// with the event handler

noErr Successful completion, no error occurred
nsDrvErr Specified device is not present
paramErr Parameter error detected

C H A P T E R 8

Software for ATA Devices

148 ATA Manager Reference

UInt32 ataEventMask; // → Masks of various events

// for event handler

SInt16 Reserved[14]; // Reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

In deregistration of a Notify-all driver, the ataEHandlerPtr field is used to match the
entry (because the deviceID field is invalid for registration and deregistration of the
Notify-all driver). If the driver is registered as both Notify-all and for a specific device,
the driver must deregister for each separately.

IMPORTANT

Note: Notify-all device drivers must deregister
using the parameter version two. ▲

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 136.
drvrRefNum This field is not used with the deregister function.
drvrFlags No bit definition has been defined for the field. This field shall be

set to 0 in order to insure compatibility in the future.
deviceNextID Not used for this function.
Reserved Reserved. Should be set to 0
ataEHandlerPtr A pointer to driver's event handler routine. This field is only used

for Notify-all driver deregistration. This field is not used for all
other deregistration. Because this field is used to identify the correct
Notify-all driver entry, this field must be valid for Notify-all driver
deregistration.

drvrContext Not used for this function.
ataEventMask Not used for this function.

RESULT CODES

ATA_EjectDrive 8

You can use the ATA_EjectDrive function to eject a device from a selected socket. You
must insure that all partitions associated with the device have been dismounted from
the desktop.

noErr Successful completion, no error occurred
nsDrvErr Specified device is not present

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 149

The data structure of the function is as follows:

struct ataEject // configuration parameter block

{

ataPBHdr // Header information

UInt16 Reserved[24]; // Reserved

};

typedef struct ataEject ataEject;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 136.
Reserved[24] Field reserved for future use. To ensure future compatibility, all

reserved fields should be set to 0.

RESULT CODES

ATA_ExecIO 8

You can use the ATA_ExecIO function to perform data I/O transfers to or from an ATA
device. Your application must provide all the parameters needed to complete the
transaction prior to calling the ATA Manager. Upon return, the parameter block contains
the result of the request.

The manager function code for the ATA_ExecIO function is $01.

The parameter block associated with the ATA_ExecIO function is defined below:

struct ATA_ExecIO // ATA_ExecIO structure

{

ataPBHdr // See definition on page 136

SInt8 ataStatusReg; // ← Last device status register image

SInt8 ataErrorReg; // ← Last device error register

// (valid if bit 0 of Status field set)

SInt16 ataReserved; // Reserved

UInt32 BlindTxSize; // → Data transfer size

UInt8* ioBuffer; // ↔ Data buffer ptr

UInt32 ataActualTxCnt;// ← Actual number of bytes

// transferred

UInt32 ataReserved2; // Reserved

noErr Successful completion, no error occurred
nsDrvErr Specified device is not present

C H A P T E R 8

Software for ATA Devices

150

ATA Manager Reference

devicePB RegBlock; //

→

 Device register images

UInt8* packetCDBPtr; // ATAPI packet command block pointer

UInt16 ataReserved3[6];// Reserved

};

typedef struct ATA_ExecIO ATA_ExecIO;

Field descriptions

ataPBHdr

See the parameter block definition on page 136.

ataStatusReg

This field contains the last device status register image. See the ATA
specification for status register bit definitions.

ataErrorReg

This field contains the last device error register image. This field is
valid only if the error bit (bit 0) of the

Status

 register is set. See the
ATA/IDE specification for error register bit definitions.

ataReserved

Reserved. All reserved fields are set to 0 for future compatibility.

BlindTxSize

This field specifies the maximum number of bytes that can be
transferred for each interrupt or detection of a data request. Bytes
are transferred in blind mode (no byte level handshake). Once an
interrupt or a data request condition is detected, the ATA Manager
transfers up to the number of bytes specified in the field from or to
the selected device. The typical number is 512 bytes.

ioBuffer

This field contains the host buffer address for the number of bytes
specified in the 'ioReqCount' field. Upon returning, this field is
updated to reflect data transfers. When the 'SGType' bits of the
'ataFlags' field are set, this field points to a scatter gather list.
The scatter gather list consists of series of 'IOBlk' entries defined
as follows:

struct IOBlk

{

UInt8* ioBuffer; //

↔

 Data buffer ptr

UInt32 ioReqCount; //

↔

 Transfer length

};

typedef struct IOBlk IOBlk;

ioReqCount

This field contains the number of bytes to transfer either from or to
the buffer specified in ioBuffer. Upon returning, the ioReqCount
field is updated to reflect data transfers (0 if successful; otherwise,
the number of bytes that remained to be transferred prior to the
error condition). When the SGType bits of the ataFlags field are set,
the ioReqCount field contains the number of scatter gather entries
in the list pointed to by the ioBuffer field.

ataActualTxCnt

This field contains the total number of bytes transferred for
this request.

ataReserved2

This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 151

RegBlock This field contains the ATA device register image structure. Values
contained in this structure are written out to the device during the
command delivery state. The caller must provide the image prior to
calling the ATA Manager. The ATA device register image structure
is defined as follows:

struct Device_PB // Device register images

{

UInt8 Features;// → Features register image

UInt8 Count; // ↔ Sector count

UInt8 Sector; // ↔ Sector start/finish

UInt8 Reserved;// Reserved

UInt16 Cylinder;// ↔ Cylinder 68000 format

UInt8 SDH; // ↔ SDH register image

UInt8 Command; // → Command register image

};

typedef struct Device_PB Device_PB;

For ATAPI commands, the cylinder image must contain the
preferred PIO DRQ packet size to be written out to the Cylinder
High/Low registers during the command phase.

packetCDBPtr This field contains the packet pointer for ATAPI. The ATAPI bit of
the ProtocolType field must be set for this field to be valid. Setting
the ATAPI protocol bit also signals the Manager to initiate the
transaction without the DRDY bit set in the status register of the
device. For ATA commands, this field should contain 0 in order to
insure compatibility in the future. The packet structure for the
ATAPI command is defined as follows:

struct ATAPICmdPacket// ATAPI Command packet structure

{

SInt16 packetSize;// Size of command packet

// in bytes (exclude size)

SInt16 command[8]; // The ATAPI command packet

};

typedef struct ATAPICmdPacket ATAPICmdPacket;

ataReserved3[6] These fields are reserved. To ensure future compatibility, all
reserved fields should be set to 0.

RESULT CODES

noErr Successful completion, no error occurred
nsDrvErr Specified logical drive number does not exist
AT_AbortErr Command aborted bit set in error register
AT_RecalErr Track 0 not found bit set in error register

C H A P T E R 8

Software for ATA Devices

152 ATA Manager Reference

ATA_FindRefNum 8

You can use the ATA_FindRefNum function to determine whether a driver has been
installed for a given device. You pass in a device ID and the function returns the current
driver reference number registered for the given device. A value of 0 indicates that no
driver has been registered. The deviceNextID field contains a device ID of the next
device in the list. The end of the list is indicated with a value of $FF.

To create a list of all drivers for the attached devices, pass in $FF for deviceID. This
causes deviceNextID to be filled with the first device in the list. Each successive driver
can be found by moving the value returned in deviceNextID into deviceID until the
function returns $FF in deviceNextID, which indicates the end of the list.

The manager function code for the ATA_FindRefNum function is $86.

Two versions of the parameter block associated with this function are defined below:

// Version 1 (ataPBVers = 1)

structataDrvrRegister // Parameter block structure

// for ataPBVers = 1

{

ataPBHdr // Header information

SInt16 drvrRefNum; // ← Driver reference number

UInt16 FlagReserved; // Reserved; set to 0

UInt16 deviceNextID; // ← used to specify the

// next drive ID

SInt16 Reserved[21]; // Reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

AT_WrFltErr Write fault bit set in status register
AT_SeekErr Seek complete bit not set upon completion
AT_UncDataErr Uncorrected data bit set in error register
AT_CorDataErr Data corrected bit set in status register
AT_BadBlkErr Bad block bit set in error register
AT_DMarkErr Data mark not found bit set in error register
AT_IDNFErr ID not found bit set in error register
ATABusy Selected device busy (BUSY bit set)
ATAMgrNotInitialized ATA Manager not initialized
ATAPBInvalid Invalid device base address detected (= 0)
ATAQLocked I/O queue locked—cannot proceed
ATAReqInProg I/O channel in use—cannot proceed
ATATransTimeOut Timeout: transaction timeout detected
ATAUnknownState Device in unknown state

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 153

// Version 2(ataPBVers = 2)

structataDrvrRegister // Parameter block structure

// for ataPBVers = 2

{

ataPBHdr // Header information

SInt16 drvrRefNum; // ← Driver reference number

UInt16 drvrFlags; // → Reserved; set to 0

UInt16 deviceNextID; // ← used to specify the

// next drive ID

SInt16 Reserved; // Reserved -> should be zero

ProcPtr ataEHandlerPtr // ← An event handler routine ptr

SInt32 drvrContext; // ← a value to pass in along with

// the event handler

UInt32 ataEventMask; // ← current setting of the mask

// of events for the event handler

SInt16 Reserved[14]; // Reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 136.
drvrRefNum Upon return, this field contains the reference number for the device

specified in the deviceID field of the ataPBHdr data.
FlagReserved This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.
deviceNextID Upon return, this field contains the deviceID of the next device on

the list.
Reserved[21] This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.

RESULT CODES

ATA_Get Device Configuration 8

You can use the ATA_GetDevConfig function to get the current configuration of a
device. The configuration includes current voltage settings and access characteristics.
This function can be issued to any bus that the ATA Manager supports. However, some
fields returned may not be valid for the particular device type (for example, the voltage
settings for the internal device are invalid).

noErr Successful completion, no error occurred
nsDrvErr Specified device is not present

C H A P T E R 8

Software for ATA Devices

154 ATA Manager Reference

The data structure for the function is as follows:

struct ataGetDevConfiguration// Parameter block

{

ataPBHdr // Header information

SInt32 ConfigSetting // ↔ socket configuration setting

UInt8 ataIOSpeedMode // Reserved for future expansion

UInt8 Reserved3; // Reserved for word alignment

UInt16 pcValid; // ↔ Mask indicating which

// PCMCIA-unique fields

// are valid, when set.

UInt16 RWMultipleCount; // Reserved for future expansion

UInt16 SectorsPerCylinder; // Reserved for future expansion

UInt16 Heads; // Reserved for future expansion

UInt16 SectorsPerTrack; // Reserved for future expansion

UInt16 socketNum; // ← socket number used by

// CardServices

UInt8 socketType; // ← Specifies the socket type

UInt8 deviceType; // ← Specifies the active

// device type

// Fields below are valid according to the bit mask

// in pcValid (PCMCIA unique fields)

UInt8 pcAccessMode; // ↔ Access mode of the socket:

// Memory vs. I/O

UInt8 pcVcc; // ↔ Vcc voltage in tenths

UInt8 pcVpp1; // ↔ Vpp 1 voltage in tenths

UInt8 pcVpp2; // ↔ Vpp 2 voltage in tenths

UInt8 pcStatus; // ↔ Card Status register setting

UInt8 pcPin; // ↔ Card Pin register setting

UInt8 pcCopy; // ↔ Card Socket/Copy register

// setting

UInt8 pcConfigIndex; // ↔ Card Option register setting

UInt16 Reserved[10]; // Reserved

};

typedef struct ataGetDevConfiguration ataGetDevConfiguration;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 136.
ConfigSetting This field indicates various configuration settings. The following

bits have been defined:
Bits 5 - 0: Reserved for future expansion (set to 0)
Bit 6: ATAPI packet DRQ handling setting (only applies to ATAPI)
1: The function waits for an interrupt to happen before sending the
ATAPI command packet.

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 155

0: The function waits for the assertion of DRQ bit in the status
register before sending the ATAPI command packet. This is the
default setting.
Bits 7–31: Reserved (set to 0)

ataIOSpeedMode This field is reserved for future expansion.
pcValid This field indicates which of the PCMCIA unique fields contain

valid values. Table 8-6 on page 156 lists the fields corresponding to
each bit.

RWMultipleCount This field is reserved for future expansion.
SectorsPerCylinder

This field is reserved for future expansion.
Heads This field is reserved for future expansion.
SectorsPerTrack This field is reserved for future expansion.
socketNum This field contains the socket number used by Card Services for the

device. This value will be needed to request services directly from
Card Services (such as GetTuple). A value of $FF indicates that the
selected device is not a Card Services client.

socketType This field specifies the type of the socket. Possible values are:
$00 = unknown socket type
$01 = Internal ATA bus
$02 = Media Bay socket
$03 = PCMCIA socket

deviceType This field specifies the type of the device. Possible values are:
$00 = unknown type or no device present
$01 = standard ATA device
$02 = ATAPI device
$03 = PCMCIA ATA device

pcAccessMode This field specifies the current access mode of the device; it is valid
only if bit 0 of the pcValid field is set, and only for
ATA_GetDeviceConfiguration, not for
ATA_SetDeviceConfiguration. Possible values are:
0 = I/O mode
1 = Memory mode

pcVcc This field indicates the current voltage setting of Vcc in tenths of a
volt. It is valid only if bit 1 of the pcValid field is set.

pcVpp1 This field indicates the current voltage setting of Vpp1 in tenths of a
volt. It is valid only if bit 2 of the pcValid field is set.

pcVpp2 This field indicates the current voltage setting of Vpp2 in tenths of a
volt. It is valid only if bit 3 of the pcValid field is set.

pcStatus This field indicates the current Card register setting of the PCMCIA
device. It is valid only if bit 4 of the pcValid field is set.

pcPin This field indicates the current Card Pin Register setting of the
PCMCIA device. It is valid only if bit 5 of the pcValid field is set.

C H A P T E R 8

Software for ATA Devices

156 ATA Manager Reference

pcCopy This field indicates the current Card Socket/Copy register setting of
the PCMCIA device. It is valid only if bit 6 of the pcValid field is set.

pcConfigIndex This field indicates the current Card Option register setting of the
PCMCIA device. It is valid only if bit 7 of the pcValid field is set.

RESULT CODES

ATA_GetDevLocationIcon 8

You can use the ATA_GetDevLocationIcon function to get the location icon data and the
icon string for the selected device. The length of the icon data returned is fixed at 256
bytes; the string is delimited by the null character. Both the icon data and location string
are copied to buffers pointed to by the structure. Data is not copied if the corresponding
pointer is set to zero.

The locationString field is in C string format. You may have to call c2pstr() function to
convert to a Pascal string before returning the string to the operating system.

The data structure for the DrvLocationIcon function is as follows:

struct DrvLocationIcon

{

ataPBHdr // see above definition

SInt16 ataIconType; // → Icon type specifier

SInt16 ataIconReserved; // Reserved; set to zero

Table 8-6 Bits in pcValid field

Bits Field validity indicated

0 pcAccessMode field is valid, when set

1 pcVcc field is valid, when set

2 pcVpp1 field is valid, when set

3 pcVpp2 field is valid, when set

4 pcStatus field is valid, when set

5 pcPin field is valid, when set

6 pcCopy field is valid, when set

7 pcConfigIndex field is valid, when set

8–14 Reserved (set to 0)

15 Reserved

noErr Successful completion, no error occurred
nsDrvErr Specified device is not present

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 157

SInt8 *ataLocationIconPtr;

// → Pointer to icon data buffer

SInt8 *ataLocationStringPtr;

// → Pointer to location string

// data buffer

SInt16 Reserved[18]; // Reserved

};

typedef struct DrvLocationIcon DrvLocationIcon;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 136.
ataIconType This field defines the type of icon desired as follows:

$01 - large B&W icon with mask
$81 - same as 1, but ProDOS icon

ataIconReservedReserved to be long-word aligned. This field should be set to zero
for future compatibility.

ataLocationIconPtr
A pointer to the location icon buffer. When the pointer is non-zero,
the function copies the icon data to the buffer.

ataLocationStringPtr
A pointer to the location string buffer. When the pointer is non-zero,
the function copies the string data to the buffer.

RESULT CODES

ATA_Identify 8

You can use the ATA_Identify function to obtain device identification data from the
selected device. The identification data contains information necessary to perform I/O
to the device. Refer to the ATA/IDE specification for the format and the information
description provided by the data.

The manager function code for the ATA_Identify function is $13.

If the ATAPI bit is set in the protocol type field of the header, the ATA Manager performs
the ATAPI Identify command ($A1).

The parameter block associated with this function is defined below:

struct ataIdentify // Parameter block structure

{

ataPBHdr // See definition on page 136

SInt8 ataStatusReg; // ← Last ATA status image

noErr Successful completion, no error occurred
ATAInternalErr The icon data and string could not be found

C H A P T E R 8

Software for ATA Devices

158

ATA Manager Reference

SInt8 ataErrorReg; //

←

 Last ATA error image;

// valid if error bit set

SInt16 ataReserved; // Reserved

UInt32 BlindTxSize; //

←

 this field is set to 512

// upon returning

UInt8 *DataBuf; // Buffer for the identify data

// (512 bytes)

UInt32 ataRequestCount; //

←

 indicates remaining

// byte count

UInt32 ataActualTxCnt; //

←

 actual transfer count

UInt32 ataReserved2; // Reserved

devicePB RegBlock; //

←

 taskfile image sent for

// the command

UInt16 Reserved3[8]; // Used internally by ATA Manager

};

typedef struct ataIdentify ataIdentify;

Field descriptions

ataPBHdr

See the definition of the

ataPBHdr

 parameter block on page 136.

ataStatusReg

Status register image for the last ATA taskfile.

ataErrorReg

Error register image last ATA taskfile. This field is only valid if the
LSB (error bit) of the 'ataStatusReg' field is set.

ataReserved

 Reserved. To ensure future compatibility, all reserved fields should
be set to 0.

BlindTxSize

Byte size of the Identify data.

DataBuf

Pointer to the data buffer for the device identify data. The length of
the buffer must be at least 512 bytes.

ataRequestCount

Byte count of the remaining data.

ataActualTxCnt

Byte count of the data actually transferred.

ataReserved2

Reserved. To ensure future compatibility, all reserved fields should
be set to 0.

RegBlock

Taskfile image sent for the command.

Reserved3[8]

 Reserved. To ensure future compatibility, all reserved fields should
be set to 0.

RESULT CODES

noErr

Successful completion, no error occurred

nsDrvErr

Specified device is not present

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 159

ATA_MgrInquiry 8

You can use the ATA_MgrInquiry function to get information, such as the version
number, about the ATA Manager. This function may be called prior to the manager
initialization, however the system configuration information may be invalid.

The manager function code for the ATA_MgrInquiry function is $90.

The parameter block associated with this function is defined below:

struct ATA_MgrInquiry // ATA inquiry structure

{

ataPBHdr // See definition on page 136

NumVersion MgrVersion // ← Manager version number

UInt8 MGRPBVers; // ← Manager PB version number

// supported

UInt8 Reserved1; // Reserved

UInt16 ataBusCnt; // ← Number of ATA buses in system

UInt16 ataDevCnt; // ← Number of ATA devices detected

UInt8 ataMaxMode; // ← Maximum I/O speed mode

UInt8 Reserved2; // Reserved

UInt16 IOClkResolution; // ← I/O clock resolution in nsec

UInt16 Reserved[17]; // Reserved

};

typedef struct ATA_MgrInquiry ATA_MgrInquiry;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 136.
MgrVersion Upon return, this field contains the version number of the

ATA Manager.
MGRPBVers This field contains the number corresponding to the latest version

of the parameter block supported. A client may use any parameter
block definition up to this version.

Reserved Reserved. All reserved fields are set to 0 for future compatibility.
ataBusCnt Upon return, this field contains the total number of ATA buses in

the system. This field contains a zero if the ATA Manager has not
been initialized.

ataDevCnt Upon return, this field contains the total number of ATA devices
detected on all ATA buses. The current architecture allows only one
device per bus. This field will contain a zero if the ATA Manager
has not been initialized.

ataMaxMode This field specifies the maximum I/O speed mode that the ATA
Manager supports. Refer to the ATA specification for information
on mode timing.

C H A P T E R 8

Software for ATA Devices

160 ATA Manager Reference

IOClkResolution
This field contains the I/O clock resolution in nanoseconds. The
current implementation doesn’t support the field (returns 0).

Reserved[17] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RESULT CODES

ATA_ModifyDrvrEventMask 8

You can use the ATA_ModifyDrvrEventMask function for modifying an existing driver
event mask that has been specified by the ATA_DrvrRegister function. Modifying the
mask for a non-registered bus has no effect.

This function is only available with ataPBVers of two (2).

The data structure of the function is as follows:

struct ataModifyEventMask

{

ataPBHdr // Header information

UInt32 modifiedEventMask;// → new event mask value

SInt16 Reserved[22]; // Reserved for future expansion

};

typedef struct ataModifyEventMask ataModifyEventMask;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 136.
modifiedEventMask

New event mask setting. The definitions of the subfields are given
in Table 8-5 on page 146.

Reserved[24] Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

RESULT CODES

noErr 0 Successful completion, no error occurred

noErr Successful completion, no error occurred
ATAInternalErr The icon data and string could not be found

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 161

ATA_NOP 8

The ATA_NOP function performs no operation across the interface and does not
change the state of either the manager or the device. This function returns noErr if the
drive number is valid.

The manager function code for the ATA_NOP function is $00.

The parameter block associated with this function is defined below:

lstruct ataNOP // Parameter block structure
{

ataPBHdr // See definition on page 136
UInt16 Reserved[24]; // Reserved

};
typedef struct ataNOP ataNOP;

Field descriptions

ataPBHdr See the definition of the ataPBHdr on page 136.

There are no additional function-specific variations on ataPBHdr for this function.

RESULT CODES

ATA_QRelease 8

You can use the ATA_QRelease function to release a frozen I/O queue.

When the ATA Manager detects an I/O error and the QLockOnError bit of the
parameter block is set for the request, the ATA Manager freezes the queue for the
selected device. No pending or new requests are processed or receive status until the
queue is released through the ATA_QRelease command. Only those requests with
the Immediate bit set in the ATAFlags field of the ataPBHdr parameter block are
processed. Consequently, for the ATA I/O queue release command to be processed, it
must be issued with the Immediate bit set in the parameter block. An ATA I/O queue
release command issued while the queue isn’t frozen returns the noErr status.

The manager function code for the ATA_QRelease function is $04.

The parameter block associated with this function is defined as follows:

struct ataQRelease // Parameter block structure
{

ataPBHdr // See definition on page 136
UInt16 Reserved[24]; // Reserved

};
typedef struct ataQRelease ataQRelease;

noErr Successful completion, no error occurred
nsDrvErr Specified device is not present

C H A P T E R 8

Software for ATA Devices

162 ATA Manager Reference

Field descriptions

ataPBHdr See the definition of the ataPBHdr on page 136.

There are no additional function-specific variations on ataPBHdr for this function.

RESULT CODES

ATA_RegAccess 8

You can use the ATA_RegAccess function to gain access to a particular device register
of a selected device. This function is used for diagnostic and error recovery processes.

The manager function code for the ATA_RegAccess function is $12.

Two versions of the parameter block associated with this function are defined below:

// Version 1 (ataPBVers = 1)

struct ataRegAccess // Parameter block structure

// for ataPBVers of 1

{

ataPBHdr // See definition on page 136

UInt16 RegSelect; // → Device Register Selector

union {

UInt8 byteRegValue; // ↔ Register value read or

// to be written

UInt16 wordRegValue; // ↔ Word register value read

// or to be written

} registerValue;

UInt16 Reserved[22]; // Reserved

};

typedef struct ataRegAccess ataRegAccess;

// Version 2 (ataPBVers = 2)

struct ataRegAccess // Parameter block structure

// for ataPBVers of 2

{

ataPBHdr // See definition on page 136

UInt16 RegSelect; // → Device Register Selector

union {

UInt8 byteRegValue; // ↔ Register value read or

// to be written

noErr Successful completion, no error occurred
nsDrvErr Specified device is not present
ATAMgrNotInitialized ATA Manager not initialized

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 163

UInt16 wordRegValue; // ↔ Word register value read

// or to be written

} registerValue;

// The following fields are valid only if RegSelect = $FFFF

UInt16 regMask; // → Mask indicating which

// combination of registers

// to access.

devicePB ri; // ↔ register images

// (Feature - Command)

UInt8 altStatDevCntrReg; // ↔ Alternate Stat (R) or

// Device Cntl (W) register

UInt8 Reserved3; // Reserved (set to 0)

UInt16 Reserved[16]; // Reserved

};

typedef struct ataRegAccess ataRegAccess;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 136.
RegSelect This field specifies which of the device registers to access. The

selectors for the registers supported by the ATA_RegAccess
function are listed in Table 8-7.

RegValue This field represents the value to be written (ATAioDirection =
01 binary) or the value read from the selected register
(ATAioDirection = 10 binary). For the Data register, this field is a
16-bit field; for other registers, an 8-bit field. In the case where the
RegSelect field is set to $FFFF (ataPBVers = 2 or higher), this field
is sued to store the upper byte of the Data Register image.

Reserved[2] This field is unused except in the cases where the RegSelect is set to
either 0 (Data register) or $FFFF (more than one register selected).
In those two cases, this field contains the lower byte of the Data
register image.

regMask This field is only valid for ataPBVers field of 2 or higher. This field
indicates what combination of the taskfile registers should be
accessed. A bit set to one indicates either a read or a write to the
register. A bit set to zero performs no operation to the register. Bit
assignments are as shown in Table 8-8.

ri This field is only valid for ataPBVers field of 2 or higher. This field
contains register images for Error/Features, Sector Count, Sector
Number, Cylinder Low, Cylinder High, SDH, and Status/Command.
Only those register images indicated in the regMask field are valid.
Refer to 'ATA Execute I/O' section above for the structure definition.

altStatDevCntrReg
This field is only valid for ataPBVers value of 2 or higher. This
field contains the register image for Alternate Status (R) or Device
Control (W) register. This field is valid if the Alternate Status/
Device Control Register bit in the regMask field is set to one.

C H A P T E R 8

Software for ATA Devices

164 ATA Manager Reference

When reading or writing ATA registers, use the following order:

1. Data register

2. Alternate Status register (R) or Device Control register (W)

3. Error register (R) or Feature register (W)

Table 8-7 ATA register selectors

Selector name Selector Register description

DataReg 0 Data register (16-bit access only)

ErrorReg 1 Error register (R) or features register (W)

SecCntReg 2 Sector count register

SecNumReg 3 Sector number register

CylLoReg 4 Cylinder low register

CylHiReg 5 Cylinder high register

SDHReg 6 SDH register

StatusReg
CmdReg

7 Status register (R) or command register (W)

AltStatus
DevCntr

$0E Alternate status (R) or device control (W)

$FFFF More than one register access (valid only for
ataPBVers = 2 or higher)

Table 8-8 Register mask bits

Bit
number Definition

0 Data register

1 Error register (R) or Feature register (W)

2 Sector Count register

3 Sector Number register

4 Cylinder Low register

5 Cylinder High register

6 SHD register

7 Status register (R) or Command register (W)

8–13 Reserved (set to 0)

14 Alternate Status register (R) or Device Control register (W)

15 Reserved (set to 0)

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 165

4. Sector Count register

5. Sector Number register

6. Cylinder Low register

7. Cylinder High register

8. Status register (R) or Command register (W)

RESULT CODES

ATA_ResetBus 8

You can use the ATA_ResetBus function to reset the specified ATA bus. This function
performs a soft reset operation to the selected ATA bus. The ATA interface doesn’t
provide a way to reset individual units on the bus. Consequently, all devices on the
bus will be reset.

The manager function code for the ATA_ResetBus function is $11.

IMPORTANT

You should avoid calling this function under interrupt because
it may take up to several seconds to complete. ▲

▲ W A R N I N G

Use this function with caution; it may terminate any
active requests to devices on the bus. ▲

If the ATAPI bit is set in the protocol type field of the header, the Manager will perform
the ATAPI reset command ($08).

Upon completion, this function flushes all I/O requests for the bus in the queue. Pending
requests are returned to the client with the 'ATAAbortedDueToRst' status.

The parameter block associated with this function is defined below:

struct ATA_ResetBus // ATA reset structure

{

ataPBHdr // See definition on page 136

SInt8 Status; // ← Last ATA status register image

SInt8 Reserved; // Reserved

UInt16 Reserved[23]; // Reserved

};

typedef struct ATA_ResetBus ATA_ResetBus;

noErr Successful completion, no error occurred
nsDrvErr Specified device is not present

C H A P T E R 8

Software for ATA Devices

166 ATA Manager Reference

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 136.
Status This field contains the last device status register image following

the bus reset. See the ATA/IDE specification for definitions of the
status register bits.

Reserved[23] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RESULT CODES

ATA_SetDevConfiguration 8

You can use the ATA_SetDevConfig function to set the configuration of a device. It
contains the current voltage setting and access characteristics. This function can be
issued to any bus that the ATA Manager controls. However, some field settings may be
inappropriate for the particular device type (for example, setting the voltage for the
internal device).

The data structure of the ataSetDevConfiguration function is as follows:

struct ataSetDevConfiguration // configuration parameter block

{

ataPBHdr // Header information

SInt32 ConfigSetting // ↔ socket configuration setting

UInt8 ataIOSpeedMode // Reserved for future expansion

UInt8 Reserved3; // Reserved for word alignment

UInt16 pcValid; // ↔ Mask indicating which

// PCMCIA-unique fields are valid

UInt16 RWMultipleCount; // Reserved for future expansion

UInt16 SectorsPerCylinder;// Reserved for future expansion

UInt16 Heads; // Reserved for future expansion

UInt16 SectorsPerTrack; // Reserved for future expansion

UInt16 Reserved4[2]; // Reserved

// Fields below are valid according to the bit mask

// in pcValid (PCMCIA unique fields)

UInt8 pcAccessMode; // ↔ Access mode of the socket:

// Memory or I/O

UInt8 pcVcc; // ↔ Vcc voltage

UInt8 pcVpp1; // ↔ Vpp 1 voltage

UInt8 pcVpp2; // ↔ Vpp 2 voltage

UInt8 pcStatus; // ↔ Card Status register setting

noErr Successful completion, no error occurred
nsDrvErr Specified device is not present

C H A P T E R 8

Software for ATA Devices

ATA Manager Reference 167

UInt8 pcPin; // ↔ Card Pin register setting

UInt8 pcCopy; // ↔ Card Socket/Copy register

// setting

UInt8 pcConfigIndex; // ↔ Card Option register setting

UInt16 Reserved[10]; // Reserved

};

typedef struct ataSetDevConfiguration ataSetDevConfiguration;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 136.
ConfigSetting This field controls various configuration settings. The following bits

have been defined:
Bits 0–5: Reserved for future expansion (set to 0)
Bit 6: ATAPI packet DRQ handling setting (only applies to ATAPI)
1 = The function waits for an interrupt to happen before sending the
ATAPI command packet.
0 = The function waits for the assertion of DRQ bit in the status
register before sending the ATAPI command packet. This is the
default setting.
Bits 7–31: Reserved (set to 0)

ataIOSpeedMode This field is reserved for future expansion.
pcValid This field indicates which of the PCMCIA unique fields contain

valid values. Table 8-6 on page 156 lists the fields corresponding to
each bit.

RWMultipleCount This field is reserved for future expansion.
SectorsPerCylinder

This field is reserved for future expansion.
Heads This field is reserved for future expansion.
SectorsPerTrack This field is reserved for future expansion.
pcAccessMode This field is valid only if the bit 0 of the pcValid field is set. The

value is written to the access mode control. Possible values are:
0 = I/O mode
1 = Memory mode

pcVcc This field indicates the new voltage setting of Vcc in tenths of a volt.
It is valid only if the bit 1 of the pcValid field is set.

pcVpp1 This field indicates the new voltage setting of Vpp1 in tenths of a
volt. It is valid only if the bit 2 of the pcValid field is set.

pcVpp2 This field indicates the new voltage setting of Vpp2 in tenths of a
volt. It is valid only if the bit 3 of the pcValid field is set.

pcStatus This field indicates the new Card Register setting of the PCMCIA
device. It is valid only if the bit 4 of the pcValid field is set.

pcPin This field indicates the new Card Pin Register setting of the
PCMCIA device. It is valid only if the bit 5 of the pcValid field is set.

C H A P T E R 8

Software for ATA Devices

168 Using the ATA Manager With Drivers

pcCopy This field indicates the new Card Socket/Copy Register setting of
the PCMCIA device. It is valid only if the bit 6 of the pcValid field
is set.

pcConfigIndex This field indicates the new Card Option Register setting of the
PCMCIA device. It is valid only if the bit 7 of the pcValid field is set.

RESULT CODES

Using the ATA Manager With Drivers 8

This section describes several operations dealing with drivers:

■ notification of device events

■ loading a device driver

■ old and new driver entry points

■ loading a driver from the media

■ notification of Notify-all drivers

■ notification of the ROM driver

Notification of Device Events 8
Due to asynchronous event reporting mechanism of the Card Services Manager, the ATA
Manager notifies its clients by a callback mechanism using the client’s event handler.
Each client that is to be notified of device events must register its event handler at the
time of driver registration. Refer to the section “ATA_DrvrRegister” beginning on
page 144 for the calling convention of the event handler.

The following event codes have been defined:

noErr Successful completion, no error occurred
nsDrvErr Specified device is not present

Table 8-9 Event codes send by the ATA Manager

Event
code Event description

$00 Null event; signifies no real event. The client should simply return with no
error code.

$01 Online event; signifies that a device has come online. This event may happen
as a result of several actions:
■ A device has been inserted into the socket.
■ A device has been re-powered from sleep/low power.

continued

C H A P T E R 8

Software for ATA Devices

Using the ATA Manager With Drivers 169

Device Driver Loading 8
This section describes the sequence and method of driver installation, and the
recommended driver initialization sequence.

The operating system attempts to install a device driver for a given ATA device in the
following instances:

■ during system startup or restart

■ during accRun, following the drive insertion

■ each time it is called to register a Notify-all driver

Three classes of drivers are identified and discussed below. The driver loading and
initialization sequence is as follows:

1. Media driver. The driver on the media is given the highest priority.

2. Notify-all drivers. Any INIT drivers are given the next priority.

3. ROM driver. The built-in ROM driver is loaded if no other driver is found.

The initialization sequences for the three driver classes are described in “Loading a
Driver From the Media” on page 171.

The client should let the O/S know about the presence of the device, if not
done so already, verify the device type, and upload any device characteristics.

$02 Offline event; signifies that the device has gone offline. This event may
happen as a result of several actions:
■ A device has been manually removed from the socket.

The client should let the operating system know that the device has gone
offline by setting the offline bit, if appropriate.

$03 Device removed event; signifies that the device has been ejected gracefully.
The client should clean up the internal variables to reflect the latest state of
the socket. The client may notify the O/S of the event.

$04 Reset event; signifies that the device has been reset. This indicates that any
pending request or the settings may have been aborted.

$05 Offline request event; requests permission for the device to go offline.

$06 Eject request event; requests permission to eject the drive.

$07 Configuration update event; signifies that the system configuration related to
I/O subsystems may have changed. This event may imply that the number of
ATA buses and devices has changed. Consequently, if the client is a driver
capable of handling more than one device, it may want to query the manager
for the current configuration.

Table 8-9 Event codes send by the ATA Manager (continued)

Event
code Event description

C H A P T E R 8

Software for ATA Devices

170 Using the ATA Manager With Drivers

Once the driver loading and initialization sequence has been performed for a particular
device, the process is not repeated until one of the following situations occurs:

■ system restart

■ device ejection followed by an insertion

■ shutdown and re-initialization of the manager; but only if the existingGlobalPtr
field of the parameter block is invalid.

■ a Notify-all driver registration occurs. In this case, only the registering driver is
notified of the drive online.

New API Entry Point for Device Drivers 8

Two entry points into each ATA driver are currently defined, for the old API and the new
API. Use of the new API is strongly recommended. The differences between the two
APIs are as follows:

■ Entry point: in the old API, the entry point is offset 0 bytes from the start of the driver;
in the new API, it is offset 8 bytes from the start of the driver (the same as with
SCSI drivers).

■ D5 register: In the old API, the input parameter in the D5 register contains just the bus
ID; in the new API, the D5 register contains the devIdent parameters.

Table 8-10 shows the contents of the D5 register, high order bits first, for the old API
(calls offset 0 bytes into the driver).

Table 8-11 shows the contents of the D5 register, high order bits first, for the new API.
(calls offset 8 bytes into the driver)

Table 8-10 Input parameter bits for the old API

Bits Value Definition

31-24 0 Reserved; set to 0

23-16 0 Reserved; set to 0

15-8 0 Reserved; set to 0

7-0 ATA bus ID The bus ID where the device resides. This is the ID used to
communicate with the ATA Manager.

C H A P T E R 8

Software for ATA Devices

Using the ATA Manager With Drivers 171

IMPORTANT

ATA Manager version 1.0 uses the old API; the ATA
Manager version 2.0 uses the new API. ▲

Loading a Driver From the Media 8

Upon detection of a device insertion, the driver loader, an extension of the ATA Manager,
initiates a driver load operation during accRun time. The driver loader searches the
DDM and partition maps of the media. If an appropriate driver is found, the driver
loader allocates memory in the system heap and loads the driver.

For the old API, the driver is opened by jumping to the first byte of the driver code with
the D5 register containing the bus ID of the device. For the new API, the driver is opened
by jumping to the eighth byte of the driver code with the D5 register containing the new
API definition.

The appropriate driver is identified by following fields:

■ ddType = $701 for Mac O/S

■ partition name = Apple_Driver_ATA

The media driver should be capable of handling both old and new APIs. The Quadra 630
uses the old API; other Macintosh models use the new API.

Table 8-11 Input parameter bits for the new API

Bits Value Definition

31-24 Reserved In this byte, bits 29–31 are currently defined. All other bits
should be set to 0.

Bit 31 1 =Load at run time (RAM based)
 0 = Load at startup time (ROM based)

Bit 30 1 = Mount volumes associated with this drive
0 = Don't mount any volume associated with

this drive

Bit 29 1 = New API entry (use 8-byte offset)
 0 = Old API entry (use 0-byte offset)

This bit is set internally by each driver

23-16 ATA bus ID The bus ID where the device resides. This is the ID used
to communicate with the ATA Manager.

15-8 Device ID The device ID within the given bus. This field is used to
identify the device on a particular bus. The current and
previous ATA Manager implementations assume that the
device ID field is always zero.

7-0 Reserved Reserved; set to 0

C H A P T E R 8

Software for ATA Devices

172 Using the ATA Manager With Drivers

The typical sequence of the media driver during the Open() call is as follows:

1. Allocate driver globals

2. Initialize the globals

3. Install any system tasks, such as VBL, time manager, shutdown procedure, and the
like. Initialize the device and its parameters

4. Register the device with the ATA Manager. The driver is expected to fail the Open()
operation if an error is returned from the driver registration call for a given device.

The installed driver is expected to return the following information in D0:

■ The upper 16-bit word contains the driver reference number corresponding to the
Unit Table entry. This field is only valid when the lower 16-bits of D0 is zero. The
reference number returned must be less than 0 to be valid.

■ The lower 16-bit word contains the status of the driver Open() operation. A value of
zero indicates no error.

Notify-All Driver Notification 8

When an error is returned from the media driver loading, the driver load function then
calls the Notify-all drivers, one by one. This driver type is determined from the driver
registration (–1 in the deviceID field of the driver registration parameter block). Unlike
the media driver, this driver is notified of a device insertion by means of the callback
mechanism at accRun time, when the manager calls the driver with an online event.
Consequently, each Notify-all driver must provide a callback routine pointer in the
driver registration. The driver may get a series of online event notifications during the
Notify-all registration. The driver is assumed to be installed in system (for example, the
INIT driver). Refer to “Notification of Device Events” on page 168 for the event opcode
and the definition of the structure passed in.

Upon returning from the call, each Notify-all driver must provide a status indicating
whether the driver controls the specified device or not. A status of zero indicates that the
driver controls the device; a non-zero status indicates that the driver doesn't control
the device.

The calling of the Notify-all drivers continues until a zero status is received from one of
the registered drivers or until the end of the list is reached.

The typical sequence of the notify-all driver during the online event handling is
as follows:

1. Check for the presence and the device type.

2. If the driver controls this device, allocate and initialize global variables.

3. Initialize the device and its parameters.

4. Perform driver registration for the device with the manager. The driver should release
its ownership of the device and return a non-zero status if the driver registration fails.

C H A P T E R 8

Software for ATA Devices

Using the ATA Manager With Drivers 173

ROM Driver Notification 8

If no driver indicates that it controls the device, the ATA Manager calls the ATA HD
driver in the system ROM. The ROM driver is called only for an HD device. For the
Macintosh 630 models, as in the case of the media driver, the called address is the first
byte of the driver. For all other Macintosh models, the called address is offset by 8 bytes.
The input and the output of the driver and the Open() sequence are the same for both the
media driver and the ROM driver.

Device Driver Purging 8
When a device removal event is detected, an attempt is made to close() the device, to
remove it from the unit table, and to dispose of the corresponding driver in memory. A
key function in supporting this feature is a new driver Gestalt call. Driver support for
this call is strongly recommended.

The driver Gestalt selector for the function is 'purg'. The call provides following
information to the driver loader:

■ The starting location of the driver

■ The purge permission: close(), DrvrRemove(), and DisposePtr()

The following structure describes the response associated with the purge call. The
description of this and other driver gestalt calls can be found in the Driver Gestalt
documentation in Designing PCI Cards and Drivers for Power Macintosh Computers.

struct DriverGestaltPurgeResponse

// Driver purge permission structure

{

SInt16 purgePermission; // <--: purge response

// 0 = Do not change the

// state of the driver

// 3 = Do Close() and

// DrvrRemove() this driver

// refnum, but don't

// deallocate driver code

// 7 = Do Close(),

// DrvrRemove(), and

// DisposePtr()

SInt16 purgeReserved;

UniversalProcPtr purgeDrvrPointer;// <--: starting address

// of the driver

// (valid only if disposePtr

// permission is given)

};

C H A P T E R 8

Software for ATA Devices

174

Using the ATA Manager With Drivers

The driver must either return a

statusErr

 indicating that the call is not supported or
return one of the three values defined in the

purgePermission

 field of the response
structure described above. If an error or an illegal value is returned in response to the
call, then the manager treats as if the response of 0 is received. The three possible purge
permissions are listed in Table 8-12. All other response values are reserved and should
not be used.

Upon receiving of a response, the manager purge sequence is as follows:

if a response of 3 or 7

if ((err = PBClose()) == noErr)

/* Close the driver down*/

{

if (a response of 7)

DisposePtr (); /* Dispose the driver memory*/

DrvrRemove (); /* Remove it from the UTable*/

}

The driver

Close()

 call applies only to the corresponding Unit Table entry. In other
words, if the driver is used to control multiple devices (such as multiple Unit Table
entries), then the

Close()

 should apply only to the particular device with the matching
driver refnum. The other devices must remain operational.

The registered driver must make the decision as to what value to return in response to
the call. Some examples are listed below:

■

If the driver is in control of any other device, it should return a response of 3: The
driver closes the particular device down, but the driver stays resident for other
devices.

■

If the driver must remain available for other potential device insertion, it should
return a response of 3.

■

If the driver is a media driver controlling the particular device, then it should return a
response of 7. Another media driver will become active when a device is inserted.

Table 8-12

Purge permissions and responses

Purge permissions

Response

Close() DrvrRemove() DisposePtr()

7

√

√

√

3

√

√

0

C H A P T E R 8

Software for ATA Devices

Error Code Summary 175

Setting the I/O Speed 8
The ATA controllers used in Macintosh systems have their I/O cycle time adjustable to
optimize the data transfers. There are two mechanisms for setting the I/O cycle time: the
ataIOSpeed field of the parameter block header (this field is only valid when a data
transfer is involved) and the ataIOSpeedMode field of the ATA Set Socket Configuration
function. The speed setting via the ATA Set Socket Configuration function is considered
the default setting. In other words, if the Current Speed bit of the ataFlags field in the
parameter block header is set, then the default speed setting previously set through the
ATA Set Socket Configuration function is used as the I/O speed mode of the particular
transaction.

If the Current Speed bit is cleared, then the speed setting specified in the ataIOSpeed
field of the transaction parameter block is used. The initial speed setting prior to the first
'ATA Set Socket Configuration' is mode 0.

Because the current PC Card specification defines the ATA I/O timing of 0 for all
PCMCIA/ATA devices, the speed setting field has no effect on the I/O speed for those
devices. Currently the field is hard coded to mode 0.

Error Code Summary 8

Table 8-13 lists two sets of error codes for ATA drivers: old error codes, used with the
Macintosh PowerBook 150 and the Macintosh 630 series computers; and new error
codes, to be used with all future Macintosh models. The choice of error codes is
determined by the ataPBVers field in the ataPBHdr structure, defined on page 136. If
ataPBVers is set to 1, then the old error codes are used; if ataPBVers is set to 2, then
the new error codes are used.

Table 8-13 ATA driver error codes

Error code
(new)

Error code
(old) Error name Error description

0 0 noErr No error detected on the
requested operation.

$FFCE
(–50)

$FFCE
(–50)

paramErr Error in parameter block.

$FFC8
(–56)

$FFC8
(–56)

nsDrvErr No such drive; no device is attached to
the specified port.

$DB43
(–9405)

$F901
(–1791)

AT_NRdyErr Drive ready condition not detected.

$DB44
(–9404)

$F904
(–1788)

AT_IDNFErr Sector ID not found error reported
by device.

continued

C H A P T E R 8

Software for ATA Devices

176 Error Code Summary

$DB45
(–9403)

$F905
(–1787)

AT_DMarkErr Data mark not found reported by device.

$DB46
(–9402)

$F906
(–1786)

AT_BadBlkErr Bad block detected by device.

$DB47
(–9401)

$F907
(–1785)

AT_CorDataErr Notification that data was corrected
(good data).

$DB48
(–9400)

$F906
(–1784)

AT_UncDataErr Unable to correct data (possibly
bad data).

$DB49
(–9399)

$F909
(–1783)

AT_SeekErr Seek error detected by device.

$DB4A
(–9398)

$F90A
(–1782)

AT_WrFltErr Write fault detected by device.

$DB4B
(–9397)

$F90B
(–1781)

AT_RecalErr Recalibrate failure detected by device.

$DB4C
(–9396)

$F90C
(–1780)

AT_AbortErr Command was aborted by device.

$DB4D
(–9395)

$F90E
(–1778)

AT_MCErr Media-changed error.

$DB4E
(–9394)

$F90F
(–1777)

ATAPICheckErr ATAPI Check Condition detected.

$DB70
(–9360)

$F8F6
(–1802)

ATAMgrNotInitialized ATA Manager has not been initialized.
The request function can not be
performed until the manager has
been initialized.

$DB71
(–9359)

$F8F5
(–1803)

ATAPBInvalid Invalid ATA port address detected (ATA
Manager initialization problem).

$DB72
(–9358)

$F8F4
(–1804)

ATAFuncNotSupported An unknown ATA Manager function
code specified.

$DB73
(–9357)

$F8F3
(–1805)

ATABusy Selected device is busy; it is not ready to
go to the next phase yet.

$DB74
(–9356)

$F8F2
(–1806)

ATATransTimeOut Time-out condition detected. The
operation had not completed within the
user-specified time limit.

$DB75
(–9355)

$F8F1
(–1807)

ATAReqInProg Device busy; the device on the port is
busy processing another command.

$DB76
(–9354)

$F8F0
(–1808)

ATAUnknownState The device status register reflects an
unknown state.

continued

Table 8-13 ATA driver error codes (continued)

Error code
(new)

Error code
(old) Error name Error description

C H A P T E R 8

Software for ATA Devices

Error Code Summary 177

$DB77
(–9353)

$F8EF
(–1809)

ATAQLocked I/O queue for the port is locked due to a
previous I/O error. It must be unlocked
prior to continuing.

$DB78
(–9352)

$F8EE
(–1810)

ATAReqAborted The I/O queue entry was aborted due to
an abort command.

$DB79
(–9351)

$F8ED
(–1811)

ATAUnableToAbort The I/O queue entry could not be
aborted. It was too late to abort or the
entry was not found.

$DB7A
(–9350)

$F8EC
(–1812)

ATAAbortedDueToRst The I/O queue entry aborted due
to a bus reset.

$DB7B
(–9349)

$F8EB
(–1813)

ATAPIPhaseErr Unexpected phase detected.

$DB7C
(–9348)

$F8EA
(–1814)

ATAPIExCntErr Warning: overrun/underrun condition
detected (the data is valid).

$DB7D
(–9347)

$F8E9
(–1815)

ATANoClientErr No client present to handle the event.

$DB7E
(–9346)

$F8E8
(–1816)

ATAInternalErr Card Services returned an error.

$DB7F
(–9345)

$F8E7
(–1817)

ATABusErr Bus error detected on I/O.

$DB80
(–9344)

$F90D
(–1818)

AT_NoAddrErr Invalid taskfile base address.

$DB81
(–9343)

$F8F9
(–1799)

DriverLocked The current driver must be removed
before adding another.

$DB82
(–9342)

$F8F8
(–1800)

CantHandleEvent Particular event could not be handled.

$DB83
(–9341)

— ATAMgrMemoryErr ATA Manager memory allocation error.

$DB84
(–9340)

— ATASDFailErr ATA Manager shutdown process failed.

$DB90
(–9328)

— ATAInvalidDrvNum Invalid drive number from event.

$DB91
(–9327)

— ATAMemoryErr Memory allocation error.

$DB92
(–9326)

— ATANoDDMErr No DDM found on the media.

$DB93
(–9325)

— ATANoDriverErr No driver found on the media.

Table 8-13 ATA driver error codes (continued)

Error code
(new)

Error code
(old) Error name Error description

C H A P T E R 9

PC Card Services 9Figure 9-0
Listing 9-0
Table 9-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 9

PC Card Services

180

Client Information

This chapter describes the Card Services part of the PC Card Manager.

The PC Card Manager is a new part of Mac OS that lets software use PC cards. The PC
Card Manager helps client software recognize, configure, and view PC cards that are
inserted into PC card sockets on PowerBook computers.

The PC Card Manager comprises two sets of system software:

■

Card Services, used by all PC card client software

■

Socket Services, used primarily by developers of new PC card hardware

This chapter covers only the Card Services functions. For descriptions of the other
functions of the PC Card Manager, see

Developing PC Card Software for the Mac OS.

Client Information 9

You can use the functions described in this section to get information about Card
Services clients.

The Card Services software keeps information about all its clients in a first-in, first-
out queue called the global client queue. You can use the

CSGetFirstClient

 and

CSGetNextClient

 functions to iterate through all the registered clients. Either of
those functions returns a handle that you can then use with the

CSGetClientInfo

function to obtain the corresponding client information.

In the definitions that follow, an arrow preceding a parameter indicates whether the
parameter is an input parameter, an output parameter, or both.

CSGetFirstClient 9

You can use the

CSGetFirstClient

 function to find the first client in the Card
Service’s global client queue.

pascal OSErr CSGetFirstClient(GetClientPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetClientPB GetClientPB;

struct GetClientPB

{

UInt32 clientHandle;//

←

 clientHandle for this client

Arrow Meaning

→

Input

←

Output

↔

Both

C H A P T E R 9

PC Card Services

Client Information

181

UInt16 socket; //

→

 logical socket number

UInt16 attributes; //

→

 bitmap of attributes

};

// 'attributes' field values

enum

{

csClientsForAllSockets= 0x0000,

csClientsThisSocketOnly= 0x0001

};

DESCRIPTION

The

CSGetFirstClient

 function returns a

clientHandle

 value to the first client in
Card Services’ global client queue. If the caller specifies

csClientsThisSocketOnly

and passes in a valid socket number, Card Services returns the first client whose event
mask for the given socket is not

NULL

.

RESULT CODES

CSGetNextClient 9

You can use the

CSGetNextClient

 function to find the next client in the Card Service’s
global client queue.

pascal OSErr CSGetNextClient(GetClientPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetClientPB GetClientPB;

struct GetClientPB

{

UInt32 clientHandle;//

↔

 clientHandle for this client

UInt16 socket; //

→

 logical socket number

UInt16 attributes; //

→

 bitmap of attributes

};

For

attributes

 field values, see “CSGetFirstClient” on page 180.

SUCCESS

No error

BAD_SOCKET

Invalid socket specified

NO_MORE_ITEMS

No clients registered

C H A P T E R 9

PC Card Services

182

Client Information

DESCRIPTION

The

CSGetNextClient

 function returns the next

clientHandle

 in Card Services’
global client queue. If the caller specifies

csClientsThisSocketOnly

 and passes in a
valid socket number, Card Services returns the next client whose event mask for the
given socket is not

NULL

.

RESULT CODES

CSGetClientInfo 9

You can use the

CSGetClientInfo

 function to get information from the Card Service’s
global client queue.

pascal OSErr CSGetClientInfo(GetClientInfoPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetClientInfoPB GetClientInfoPB;

struct GetClientInfoPB

{

UInt32clientHandle;//

→

 clientHandle returned by RegisterClient

UInt16attributes; //

↔

 subfunction + bitmapped client attributes

union

{

struct // upper byte of attributes is

// csClientInfoSubfunction

{

UInt16 revision; //

←

 BCD value of client's revision

UInt16 csLevel; //

←

 BCD value of CS release

UInt16 revDate; //

←

 revision date:

// y[15-9], m[8-5], d[4-0]

SInt16 nameLen; //

↔

 in: maximum length of

// client name string,

// out: actual length

SInt16 vStringLen; //

↔

 in: max length of vendor string,

// out: actual length

UInt8 *nameString; //

←

 pointer to client name string

// (zero-terminated)

SUCCESS

No error

BAD_SOCKET

Invalid socket specified

NO_MORE_ITEMS

No clients registered

BAD_HANDLE

Invalid

clientHandle

C H A P T E R 9

PC Card Services

Client Information

183

UInt8 *vendorString;//

←

 pointer to vendor string

// (zero-terminated)

}

ClientInfo;

struct // upper byte of attributes is

// csCardNameSubfunction,

{ // csCardTypeSubfunction,

// csHelpStringSubfunction

UInt16 socket; //

→

 logical socket number

UInt16 reserved; //

→

 zero

SInt16 length; //

↔

 in: max length of string,

// out: actual length

UInt8 *text; // <- pointer to string (zero-terminated)

}

AlternateTextString;

struct // upper byte of attributes is

// csCardIconSubfunction

{

UInt16 socket; //

→

 logical socket number

Handle iconSuite;//

←

 handle to suite containing all icons

}

AlternateCardIcon;

struct // upper byte of attributes is

// csActionProcSubfunction

{

UInt16 socket; //

→

 logical socket number

}

CustomActionProc;

} u;

};

// 'attributes' field values

enum {

csMemoryClient = 0x0001,

csIOClient = 0x0004,

csClientTypeMask = 0x0007,

csShareableCardInsertEvents= 0x0008,

csExclusiveCardInsertEvents= 0x0010,

C H A P T E R 9

PC Card Services

184

Client Information

csInfoSubfunctionMask = 0xFF00,

csClientInfoSubfunction = 0x0000,

csCardNameSubfunction = 0x8000,

csCardTypeSubfunction = 0x8100,

csHelpStringSubfunction = 0x8200,

csCardIconSubfunction = 0x8300,

csActionProcSubfunction = 0x8400

};

DESCRIPTION

The

CSGetClientInfo

 function is used to obtain information about a client from the
Card Service’s global client queue. The client is specified by passing in a

clientHandle

value previously obtained using

GetFirstClient or GetNextClient.

Note that in this case the caller does not pass in its own clientHandle value, but that
of the client whose information is being requested.

The caller of the CSGetClientInfo function specifies the type of information being
requested by setting the requested information subfunction in the upper byte of the
attributes field. The Card Services software passes a CLIENT_INFO message to the
client pointed to by clientHandle. Called clients are expected to respond to the
CLIENT_INFO message by providing the data requested. When a client receives a
CLIENT_INFO message to perform a custom action, it needs to be aware that it is being
called from the Finder or a similar process environment.

Each time the Card Services software calls a client with a CLIENT_INFO message, Card
Services passes a client callback parameter block (ClientCallbackPB). The buffer field
of the ClientCallbackPB structure contains a pointer to the get client info parameter
block (GetClientInfoPB), which has the following structure:

ClientCallbackPB.function = CLIENT_INFO;

ClientCallbackPB.socket = 0;

ClientCallbackPB.info = 0;

ClientCallbackPB.misc = 0;

ClientCallbackPB.buffer = (Ptr) GetClientInfoPB;

ClientCallbackPB.clientData

= ((ClientQRecPtr)

GetClientInfoPB->clientHandle)->clientDataPtr;

Before calling the CSGetClientInfo function, you should use GetFirstClient and
GetNextClient to iterate through the registered clients. Card Services returns
clientHandle to the caller of either function.

C H A P T E R 9

PC Card Services

Configuration 185

RESULT CODES

Configuration 9

The functions described in this section help you configure cards and sockets.

CSGetConfigurationInfo 9

You can use the CSGetConfigurationInfo function to get the information needed to
initialize a CSModifyConfiguration parameter block.

pascal OSErr

CSGetConfigurationInfo(GetModRequestConfigInfoPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetModRequestConfigInfoPB GetModRequestConfigInfoPB;

struct GetModRequestConfigInfoPB

{

UInt32 clientHandle;// → clientHandle returned by RegisterClient

UInt16 socket; // → logical socket number

UInt16 attributes; // ← bitmap of configuration attributes

UInt8 vcc; // ← Vcc setting

UInt8 vpp1; // ← Vpp1 setting

UInt8 vpp2; // ← Vpp2 setting

UInt8 intType; // ← interface type (memory or memory+I/O)

UInt32 configBase; // ← card base address of config registers

UInt8 status; // ← card status register setting, if present

UInt8 pin; // ← card pin register setting, if present

UInt8 copy; // ← card socket/copy reg setting, if present

UInt8 configIndex; // ← card option register setting, if present

UInt8 present; // ← bitmap of which config regs are present

UInt8 firstDevType;// ← from DeviceID tuple

UInt8 funcCode; // ← from FuncID tuple

UInt8 sysInitMask; // ← from FuncID tuple

UInt16 manufCode; // ← from ManufacturerID tuple

UInt16 manufInfo; // ← from ManufacturerID tuple

SUCCESS No error
BAD_HANDLE Invalid clientHandle value

C H A P T E R 9

PC Card Services

186 Configuration

UInt8 cardValues; // ← valid card register values

UInt8 padding[1];

};

// 'attributes' field values

enum

{

csExclusivelyUsed = 0x0001,

csEnableIREQs = 0x0002,

csVccChangeValid = 0x0004,

csVpp1ChangeValid = 0x0008,

csVpp2ChangeValid = 0x0010,

csValidClient = 0x0020,

// request that power be applied to socket during sleep

csSleepPower = 0x0040,

csLockSocket = 0x0080,

csTurnOnInUse = 0x0100

};

// 'intType' field values

enum

{

csMemoryInterface = 0x01,

csMemory_And_IO_Interface = 0x02

};

// 'present' field values

enum

{

csOptionRegisterPresent = 0x01,

csStatusRegisterPresent = 0x02,

csPinReplacementRegisterPresent = 0x04,

csCopyRegisterPresent = 0x08

};

// 'cardValues' field values

enum

{

csOptionValueValid = 0x01,

csStatusValueValid = 0x02,

csPinReplacementValueValid = 0x04,

csCopyValueValid = 0x08

};

C H A P T E R 9

PC Card Services

Configuration 187

DESCRIPTION

The CSGetConfigurationInfo function is generally called after a client has parsed a
tuple stream, identified an inserted card as its card, and is ready to initialize a
CSModifyConfiguration parameter block.

RESULT CODES

CSRequestConfiguration 9

You can use the CSRequestConfiguration function to establish yourself as the
configuring client for a card and socket and to lock the configuration.

pascal OSErr

CSRequestConfiguration(GetModRequestConfigInfoPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetModRequestConfigInfoPB GetModRequestConfigInfoPB;

struct GetModRequestConfigInfoPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt16 socket; // → logical socket number

UInt16 attributes; // → bitmap of configuration attributes

UInt8 vcc; // → Vcc setting

UInt8 vpp1; // → Vpp1 setting

UInt8 vpp2; // → Vpp2 setting

UInt8 intType; // → interface type (memory or memory+I/O)

UInt32 configBase; // → card base address of configuration registers

UInt8 status; // → card status register setting, if present

UInt8 pin; // → card pin register setting, if present

UInt8 copy; // → card socket/copy reg. setting, if present

UInt8 configIndex; // → card option register setting, if present

UInt8 present; // → bitmap of which config registers are present

UInt8 firstDevType; // ← from DeviceID tuple

UInt8 funcCode; // ← from FuncID tuple

UInt8 sysInitMask; // ← from FuncID tuple

UInt16 manufCode; // ← from ManufacturerID tuple

UInt16 manufInfo; // ← from ManufacturerID tuple

UInt8 cardValues; // ← valid card register values

UInt8 padding[1]; //

};

SUCCESS No error
BAD_HANDLE Invalid clientHandle value

C H A P T E R 9

PC Card Services

188 Configuration

For attributes, intType, present, and cardValues field values see
“CSGetConfigurationInfo” beginning on page 185.

DESCRIPTION

The CSRequestConfiguration function is used by a client to establish a locked
configuration on a socket and its card. A client calls CSRequestConfiguration after it
has parsed an inserted and ready card and has recognized the card as being usable.

Card Services uses clientHandle to lock in the configuration until the same client calls
CSReleaseConfiguration. Once a socket and card are configured no other client may
alter their configuration.

Configuring a socket and card consists of three operations:

■ establishing Vcc and Vpp for the socket

■ establishing the socket interface definition (memory only or I/O and memory)

■ writing the configuration registers on the card

When Card Services receives a CARD_INSERTION and subsequent CARD_READY event
for a socket, it configures the socket by setting Vcc, Vpp1, and Vpp2 to 5 volts; configuring
the interface to be memory only; and issuing RESET to the card. Card Services then
parses the CIS (card information structure) of the card. Once Card Services has finished
parsing the CIS, it issues a CARD_READY message to all registered clients. (It has
previously delivered a CARD_INSERTION message to the same clients.) Even if a
client parses and recognizes a card and intends to use the card without altering
the configuration, it should call CSRequestConfiguration to establish itself as the
configuring client.

RESULT CODES

SUCCESS No error
BAD_HANDLE Invalid clientHandle value
BAD_SOCKET Invalid socket number
CONFIGURATION_LOCKED Another client has already locked

a configuration
NO_CARD No card
OUT_OF_RESOURCE Card Services lacks enough resources to

complete this request
BAD_BASE Invalid base entered

C H A P T E R 9

PC Card Services

Configuration 189

CSModifyConfiguration 9

You can use the CSModifyConfiguration function to alter the configuration of a
socket or card.

pascal OSErr CSModifyConfiguration(GetModRequestConfigInfoPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetModRequestConfigInfoPB GetModRequestConfigInfoPB;

struct GetModRequestConfigInfoPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt16 socket; // → logical socket number

UInt16 attributes; // → bitmap of configuration attributes

UInt8 vcc; // → Vcc setting

UInt8 vpp1; // → Vpp1 setting

UInt8 vpp2; // → Vpp2 setting

UInt8 intType; // → interface type (memory or memory+I/O)

UInt32 configBase; // → card base address of config registers

UInt8 status; // → card status register setting, if present

UInt8 pin; // → card pin register setting, if present

UInt8 copy; // → card socket/copy reg. setting, if present

UInt8 configIndex; // → card option register setting, if present

UInt8 present; // → bitmap of which config regs. are present

UInt8 firstDevType; // ← from DeviceID tuple

UInt8 funcCode; // ← from FuncID tuple

UInt8 sysInitMask; // ← from FuncID tuple

UInt16 manufCode; // ← from ManufacturerID tuple

UInt16 manufInfo; // ← from ManufacturerID tuple

UInt8 cardValues; // ← valid card register values

UInt8 padding[1]; //

};

For attributes, intType, present, and cardValues field values see
“CSGetConfigurationInfo” beginning on page 185.

DESCRIPTION

The CSModifyConfiguration function is used by clients to alter any of the three
configuration elements of a socket or card. Only a client that has previously succeeded in
calling CSRequestConfiguration may call CSModifyConfiguration.

C H A P T E R 9

PC Card Services

190 Configuration

RESULT CODES

CSReleaseConfiguration 9

You can use the CSReleaseConfiguration function to release a previously locked
configuration.

pascal OSErr CSReleaseConfiguration(ReleaseConfigurationPB *pb);

The parameter block associated with this function is as follows:

typedef struct ReleaseConfigurationPB ReleaseConfigurationPB;

struct ReleaseConfigurationPB

{

UInt32 clientHandle;

UInt16 socket;

};

DESCRIPTION

The CSReleaseConfiguration function is used by clients to release a configuration
previously locked for a socket and card.

RESULT CODES

SUCCESS No error
BAD_HANDLE Invalid clientHandle value
BAD_SOCKET Invalid socket number
CONFIGURATION_LOCKED Another client has already locked

a configuration
NO_CARD No card
OUT_OF_RESOURCE Card Services lacks enough resources

to complete this request
BAD_BASE Invalid base entered

SUCCESS No error
BAD_HANDLE Invalid clientHandle value
BAD_SOCKET Invalid socket number
CONFIGURATION_LOCKED Another client has already locked

a configuration
NO_CARD No card in specified socket

C H A P T E R 9

PC Card Services

Configuration 191

CSAccessConfigurationRegister 9

You can use the CSAccessConfigurationRegister function to modify a single
configuration register. This function is not normally used by clients.

pascal OSErr

CSAccessConfigurationRegister(AccessConfigurationRegisterPB *pb);

The parameter block associated with this function is as follows:

typedef struct AccessConfigurationRegisterPB

AccessConfigurationRegisterPB;

struct AccessConfigurationRegisterPB

{

UInt16 socket; // → global socket number

UInt8 action; // → read/write

UInt8 offset; // → offset from config register base

UInt8 value; // ↔ value to read/write

UInt8 padding[1];

};

// 'action' field values

enum {

CS_ReadConfigRegister= 0x00,

CS_WriteConfigRegister= 0x01

};

DESCRIPTION

The CSAccessConfigurationRegister function lets a client modify a single
configuration register. The location of the register is defined by adding
AccessConfigurationRegisterPB.offset to the configuration base address (see
CSModifyConfiguration on page 189). If the action parameter is set to
CS_ReadConfigRegister, then the configuration register value is returned in
AccessConfigurationRegisterPB.value. If the action parameter is set to
CS_WriteConfigRegister, then the configuration register is written with
AccessConfigurationRegisterPB.value.

IMPORTANT

The CSAccessConfigurationRegister function is not
normally used by clients. When clients want to set configuration
registers they usually call CSRequestConfiguration or
CSModifyConfiguration and set the appropriate registers
at that time. ▲

C H A P T E R 9

PC Card Services

192 Masks

RESULT CODES

Masks 9

The functions described in this section get and set client event and socket masks.

CSGetClientEventMask 9

You can use the CSGetClientEventMask function to obtain your current event mask.

pascal OSErr CSGetClientEventMask(GetSetClientEventMaskPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetSetClientEventMaskPB GetSetClientEventMaskPB;

struct GetSetClientEventMaskPB

{

UInt32 clientHandle;// → clientHandle returned by

RegisterClient

UInt16 attributes; // → bitmap of attributes

UInt16 eventMask; // ← bitmap of events to be passed to

 // client for this socket

UInt16 socket; // → logical socket number

};

// 'attributes' field values

enum

{

csEventMaskThisSocketOnly= 0x0001

};

// 'eventMask' field values

enum

{

csWriteProtectEvent = 0x0001,

csCardLockChangeEvent = 0x0002,

csEjectRequestEvent = 0x0004,

csInsertRequestEvent = 0x0008,

SUCCESS No error
BAD_SOCKET Invalid socket number

C H A P T E R 9

PC Card Services

Masks 193

csBatteryDeadEvent = 0x0010,

csBatteryLowEvent = 0x0020,

csReadyChangeEvent = 0x0040,

csCardDetectChangeEvent = 0x0080,

csPMChangeEvent = 0x0100,

csResetEvent = 0x0200,

csSSUpdateEvent = 0x0400,

csFunctionInterrupt = 0x0800,

csAllEvents = 0xFFFF

};

DESCRIPTION

The CSGetClientEventMask function is used by a client to obtain its current
event mask. If the GetSetClientEventMaskPB.attributes field has
csEventMaskThisSocketOnly reset, the CSGetClientEventMask function returns
the client’s global event mask. If GetSetClientEventMaskPB.attributes has
csEventMaskThisSocketOnly set, then the event mask for the given socket number
is returned.

RESULT CODES

CSSetClientEventMask 9

You can use the CSSetClientEventMask function to establish your event mask.

pascal OSErr CSSetClientEventMask(GetSetClientEventMaskPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetSetClientEventMaskPB GetSetClientEventMaskPB;

struct GetSetClientEventMaskPB

{

UInt32 clientHandle;// → clientHandle returned by RegisterClient

UInt16 attributes; // → bitmap of attributes

UInt16 eventMask; // → bitmap of events to pass to client

// for this socket

UInt16 socket; // → logical socket number

};

For eventMask field values, see “CSGetClientEventMask” on page 192.

SUCCESS No error
BAD_HANDLE Invalid clientHandle value
BAD_SOCKET Invalid socket number

C H A P T E R 9

PC Card Services

194 Masks

DESCRIPTION

The CSSetClientEventMask function is used by a client to establish its event
mask. If the GetSetClientEventMaskPB.attributes field is reset,
CSSetClientEventMask sets the client’s global event mask. If the
GetSetClientEventMaskPB.attributes field has csEventMaskThisSocketOnly
set, then the event mask for the given socket number is set.

After processing CARD_READY and determining that the card is not usable, clients
should clear their global event masks so that message processing with the system
is streamlined.

RESULT CODES

CSRequestSocketMask 9

You can use the CSRequestSocketMask function to establish an event mask for a
specified socket.

pascal OSErr CSRequestSocketMask(ReqRelSocketMaskPB *pb);

The parameter block associated with this function is as follows:

typedef struct ReqRelSocketMaskPB ReqRelSocketMaskPB;

struct ReqRelSocketMaskPB

{

UInt32 clientHandle;// → clientHandle returned by RegisterClient

UInt16 socket; // → logical socket

UInt16 eventMask; // → bitmap of events to pass to client

// for this socket

};

For eventMask field values, see “CSGetClientEventMask” on page 192.

DESCRIPTION

The CSRequestSocketMask function is used to establish an event mask for the given
socket number.

SUCCESS No error
BAD_HANDLE The clientHandle field of GetClientInfoPB

is invalid
BAD_SOCKET Invalid socket number

C H A P T E R 9

PC Card Services

Masks 195

RESULT CODES

CSReleaseSocketMask 9

You can use the CSReleaseSocketMask function to clear the event mask for a PC card
that you are no longer using.

pascal OSErr CSReleaseSocketMask(ReqRelSocketMaskPB *pb);

The parameter block associated with this function is as follows:

typedef struct ReqRelSocketMaskPB ReqRelSocketMaskPB;

struct ReqRelSocketMaskPB

{

UInt32 clientHandle;// → clientHandle returned by RegisterClient

UInt16 socket; // → logical socket

UInt16 eventMask; // → bitmap of events to pass to client

// for this socket

};

For eventMask field values, see “CSGetClientEventMask” on page 192.

DESCRIPTION

The CSReleaseSocketMask function is used to clear the event mask for the specified
socket. This is the recommended way for clients to clear socket events when they are not
using a particular PC card.

RESULT CODES

SUCCESS No error
BAD_HANDLE The clientHandle field of GetClientInfoPB

is invalid

SUCCESS No error
BAD_HANDLE The clientHandle field of GetClientInfoPB

is invalid

C H A P T E R 9

PC Card Services

196 Tuples

Tuples 9

You can use the functions described in this section to obtain PC card information from
the corresponding tuples.

CSGetFirstTuple 9

You can use the CSGetFirstTuple function to obtain access to the first tuple associated
with a particular socket.

pascal OSErr CSGetFirstTuple(GetTuplePB *pb);

The parameter block associated with this function is as follows:

typedef struct GetTuplePB GetTuplePB;

struct GetTuplePB

{

UInt16 socket; // → logical socket number

UInt16 attributes; // → bitmap of attributes

UInt8 desiredTuple; // → desired tuple code value, or $FF for all

UInt8 tupleOffset; // → offset into tuple from link byte

UInt16 flags; // ↔ reserved for internal use

UInt32 linkOffset // ↔ reserved for internal use

UInt32 cisOffset; // ↔ reserved for internal use

union

{

struct

{

UInt8 tupleCode; // ← tuple code found

UInt8 tupleLink; // ← link value for tuple found

} TuplePB;

struct

{

UInt16 tupleDataMax; // → maximum size of tuple data area

UInt16 tupleDataLen; // ← number of bytes in tuple body

TupleBody tupleData; // ← tuple data

} TupleDataPB;

} u;

};

C H A P T E R 9

PC Card Services

Tuples 197

// 'attributes' field values

enum

{

csReturnLinkTuples= 0x0001

};

RESULT CODES

CSGetNextTuple 9

You can use the CSGetNextTuple function to obtain access to each tuple associated
with a particular socket after you have used the CSGetFirstTuple function to obtain
access to the first tuple associated with that socket.

pascal OSErr CSGetNextTuple(GetTuplePB *pb);

The parameter block associated with this function is as follows:

typedef struct GetTuplePB GetTuplePB;

struct GetTuplePB

{

UInt16 socket; // → logical socket number

UInt16 attributes; // → bitmap of attributes

UInt8 desiredTuple; // → desired tuple code value, or $FF for all

UInt8 tupleOffset; // → offset into tuple from link byte

UInt16 flags; // ↔ reserved for internal use

UInt32 linkOffset; // ↔ reserved for internal use

UInt32 cisOffset; // ↔ reserved for internal use

union

{

struct

{

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
IN_USE Card is configured and being used

by another client
READ_FAILURE Card cannot be read
BAD_CIS Card Services has encountered a

bad CIS structure
OUT_OF_RESOURCE Card Services is not able to obtain resources

to complete function
NO_MORE_ITEMS There are no more tuples to process

C H A P T E R 9

PC Card Services

198 Tuples

UInt8 tupleCode; // ← tuple code found

UInt8 tupleLink; // ← link value for tuple found

} TuplePB;

struct

{

UInt16 tupleDataMax; // → maximum size of tuple data area

UInt16 tupleDataLen; // ← number of bytes in tuple body

TupleBody tupleData; // ← tuple data

} TupleDataPB;

} u;

};

For attributes field values, see “CSGetFirstTuple” on page 196.

RESULT CODES

CSGetTupleData 9

You can use the CSGetTupleData function to obtain information for the tuple
previously found using either the CSGetNextTuple or CSGetFirstTuple function.

pascal OSErr CSGetTupleData(GetTuplePB *pb);

The parameter block associated with this function is as follows:

typedef struct GetTuplePB GetTuplePB;

struct GetTuplePB

{

UInt16 socket; // → logical socket number

UInt16 attributes; // → bitmap of attributes

UInt8 desiredTuple; // → desired tuple code value, or $FF for all

UInt8 tupleOffset; // → offset into tuple from link byte

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
IN_USE Card is configured and being used

by another client
READ_FAILURE Card cannot be read
BAD_CIS Card Services has encountered a

bad CIS structure
OUT_OF_RESOURCE Card Services is not able to obtain

resources to complete function
NO_MORE_ITEMS There are no more tuples to process

C H A P T E R 9

PC Card Services

Tuples 199

UInt16 flags; // ↔ internal use

UInt32 linkOffset; // ↔ internal use

UInt32 cisOffset; // ↔ internal use

union

{

struct

{

UInt8 tupleCode; // ← tuple code found

UInt8 tupleLink; // ← link value for tuple found

} TuplePB;

struct

{

UInt16 tupleDataMax; // → maximum size of tuple data area

UInt16 tupleDataLen; // ← number of bytes in tuple body

TupleBody tupleData; // ← tuple data

} TupleDataPB;

} u;

};

// 'attributes' field values

enum

{

csReturnLinkTuples= 0x0001

};

RESULT CODES

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
OUT_OF_RESOURCE Card Services is unable to obtain

resources to complete function

C H A P T E R 9

PC Card Services

200 Card and Socket Status

Card and Socket Status 9

The CSGetStatus function gets card and socket status information.

CSGetStatus 9

You can use the CSGetStatus function to get status information for the specified socket.

pascal OSErr CSGetStatus(GetStatusPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetStatusPB GetStatusPB;

struct GetStatusPB

{

UInt16 socket; // → logical socket number

UInt16 cardState; // ← current state of installed card

UInt16 socketState; // ← current state of the socket

};

// 'cardState' field values

enum

{

csWriteProtected = 0x0001,

csCardLocked = 0x0002,

csEjectRequest = 0x0004,

csInsertRequest = 0x0008,

csBatteryDead = 0x0010,

csBatteryLow = 0x0020,

csReady = 0x0040,

csCardDetected = 0x0080

};

// 'socketState' field values

C H A P T E R 9

PC Card Services

Access Window Management 201

enum

{

csWriteProtectChanged = 0x0001,

csCardLockChanged = 0x0002,

csEjectRequestPending = 0x0004,

csInsertRequestPending = 0x0008,

csBatteryDeadChanged = 0x0010,

csBatteryLowChanged = 0x0020,

csReadyChanged = 0x0040,

csCardDetectChanged = 0x0080

};

RESULT CODES

Access Window Management 9

The functions described in this section help you manage access windows.

CSRequestWindow 9

You can use the CSRequestWindow function to establish a new access window.

pascal OSErr CSRequestWindow(ReqModRelWindowPB *pb);

The parameter block associated with this function is as follows:

typedef struct ReqModRelWindowPB ReqModRelWindowPB;

struct ReqModRelWindowPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt32 windowHandle; // ↔ window descriptor

UInt16 socket; // → logical socket number

UInt16 attributes; // → window attributes (bitmap)

UInt32 base; // ↔ system base address

UInt32 size; // ↔ memory window size

UInt8 accessSpeed; // → window access speed (bitmap)

// (not applicable for I/O mode)

UInt8 padding[1];

};

SUCCESS No error
BAD_SOCKET Invalid socket number

C H A P T E R 9

PC Card Services

202 Access Window Management

// 'attributes' field values

enum

{

csMemoryWindow = 0x0001,

csIOWindow = 0x0002,

csAttributeWindow = 0x0004,// not normally used by Card Services

// clients

csWindowTypeMask = 0x0007,

csEnableWindow = 0x0008,

csAccessSpeedValid= 0x0010,

csLittleEndian = 0x0020,// configure socket for

// little-endianness

cs16BitDataPath = 0x0040,

csWindowPaged = 0x0080,

csWindowShared = 0x0100,

csWindowFirstShared = 0x0200,

csWindowProgrammable = 0x0400

};

// 'accessSpeed' field values

enum

{

csDeviceSpeedCodeMask= 0x07,

csSpeedExponentMask = 0x07,

csSpeedMantissaMask = 0x78,

csUseWait = 0x80,

csAccessSpeed250nsec = 0x01,

csAccessSpeed200nsec = 0x02,

csAccessSpeed150nsec = 0x03,

csAccessSpeed100nsec = 0x04,

csExtAccSpeedMant1pt0= 0x01,

csExtAccSpeedMant1pt2= 0x02,

csExtAccSpeedMant1pt3= 0x03,

csExtAccSpeedMant1pt5= 0x04,

csExtAccSpeedMant2pt0= 0x05,

csExtAccSpeedMant2pt5= 0x06,

csExtAccSpeedMant3pt0= 0x07,

csExtAccSpeedMant3pt5= 0x08,

csExtAccSpeedMant4pt0= 0x09,

csExtAccSpeedMant4pt5= 0x0A,

csExtAccSpeedMant5pt0= 0x0B,

C H A P T E R 9

PC Card Services

Access Window Management 203

csExtAccSpeedMant5pt5= 0x0C,

csExtAccSpeedMant6pt0= 0x0D,

csExtAccSpeedMant7pt0= 0x0E,

csExtAccSpeedMant8pt0= 0x0F,

csExtAccSpeedExp1ns = 0x00,

csExtAccSpeedExp10ns = 0x01,

csExtAccSpeedExp100ns= 0x02,

csExtAccSpeedExp1us = 0x03,

csExtAccSpeedExp10us = 0x04,

csExtAccSpeedExp100us= 0x05,

csExtAccSpeedExp1ms = 0x06,

csExtAccSpeedExp10ms = 0x07

};

DIVERGENCE FROM PCMCIA STANDARD

Apple has added another attribute (csIOTypeWindow) that lets a client request that its
new access window be an I/O cycle window. For an I/O cycle window, speed
characteristics are fixed and any speed-related parameters are ignored. Speed parameters
are only effective if the access window is of type Memory or Attribute.

In the PCMCIA standard, there is an implied window assignment when a client calls
CSRequestConfiguration because the client must have called RequestI/O first.
This assures the client that there is I/O cycle window support for the change.

RESULT CODES

CSModifyWindow 9

You can use the CSModifyWindow function to modify information about an
access window.

pascal OSErr CSModifyWindow(ReqModRelWindowPB *pb);

SUCCESS No error
BAD_SOCKET Invalid socket number
OUT_OF_RESOURCE Card Services is unable to obtain

resources to complete function
BAD_BASE Invalid base address
BAD_ATTRIBUTE Invalid window attributes

C H A P T E R 9

PC Card Services

204 Access Window Management

The parameter block associated with this function is as follows:

typedef struct ReqModRelWindowPB ReqModRelWindowPB;

struct ReqModRelWindowPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt32 windowHandle; // ↔ window descriptor

UInt16 socket; // → logical socket number

UInt16 attributes; // → window attributes (bitmap)

UInt32 base; // ↔ system base address

UInt32 size; // ↔ memory window size

UInt8 accessSpeed; // → window access speed (bitmap)

// (not applicable for I/O mode)

UInt8 padding[1];

};

For attributes and accessSpeed field values, see “CSRequestWindow” on page 201.

DIVERGENCE FROM PCMCIA STANDARD

The CSModifyWindow function must have a valid clientHandle value (the one
passed in on CSRequestWindow); otherwise a BAD_HANDLE error is returned.

RESULT CODES

CSReleaseWindow 9

You can use the CSReleaseWindow function to clear an access window that is not
longer needed.

pascal OSErr CSReleaseWindow(ReqModRelWindowPB *pb);

SUCCESS No error
BAD_SOCKET Invalid socket number
OUT_OF_RESOURCE Card Services is unable to obtain

resources to complete function
BAD_BASE Invalid base address
BAD_ATTRIBUTE Invalid window attributes
BAD_HANDLE Invalid clientHandle value

C H A P T E R 9

PC Card Services

Client Registration 205

The parameter block associated with this function is as follows:

typedef struct ReqModRelWindowPB ReqModRelWindowPB;

struct ReqModRelWindowPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt32 windowHandle; // → window descriptor

UInt16 socket; // → logical socket number

UInt16 attributes; // not used

UInt32 size; // not used

UInt8 accessSpeed; // not used

UInt8 padding[1]; // not used

};

For attributes and accessSpeed field values, see “CSRequestWindow” on page 201.

DIVERGENCE FROM PCMCIA STANDARD

The CSReleaseWindow function must have a valid clientHandle value (the one
passed in on CSRequestWindow); otherwise a BAD_HANDLE error is returned.

RESULT CODES

Client Registration 9

The functions described in this section help you get information about Card Services and
register and deregister clients.

CSGetCardServicesInfo 9

You can use the CSGetCardServicesInfo function to get information from the Card
Services software about the PC cards currently installed.

pascal OSErr CSGetCardServicesInfo(GetCardServicesInfoPB *pb);

SUCCESS No error
BAD_SOCKET Invalid socket number
BAD_HANDLE Invalid clientHandle value

C H A P T E R 9

PC Card Services

206 Client Registration

The parameter block associated with this function is as follows:

typedef struct GetCardServicesInfoPB GetCardServicesInfoPB;

struct GetCardServicesInfoPB

{

UInt8 signature[2]; // ← two ASCII chars 'CS'

UInt16 count; // ← total number of sockets installed

UInt16 revision; // ← BCD

UInt16 csLevel; // ← BCD

UInt16 reserved; // → zero

UInt16 vStrLen; // ↔ in: client's buffer size

out: vendor string length

UInt8 *vendorString;// ↔ in: pointer to buffer to hold CS vendor

// string (zero-terminated)

// out: CS vendor string copied to buffer

};

RESULT CODES

CSRegisterClient 9

You can use the CSRegisterClient function to register yourself as a client of the Card
Services software.

pascal OSErr CSRegisterClient(RegisterClientPB *pb);

The parameter block associated with this function is as follows:

typedef struct RegisterClientPB RegisterClientPB;

struct RegisterClientPB

{

UInt32 clientHandle; // ← client descriptor

PCCardCSClientUPPclientEntry; // → UPP to client's event handler

UInt16 attributes; // → bitmap of client attributes

UInt16 eventMask; // → bitmap of events to notify client

Ptr clientData; // → pointer to client's data

UInt16 version; // → Card Services version

// client expects

};

// 'attributes' field values (see GetClientInfo)

SUCCESS No error

C H A P T E R 9

PC Card Services

Client Registration 207

// csMemoryClient = 0x0001,

// csIOClient = 0x0004,

// csShareableCardInsertEvents= 0x0008,

// csExclusiveCardInsertEvents= 0x0010

DESCRIPTION

Observe these cautions when using CSRegisterClient:

■ It must not be called at interrupt time.

■ You must specify the type of client for event notification order.

■ You must set the event mask for types of events client is interested in. The event mask
passed in during this call will be set for the global mask and all socket event masks.

DIVERGENCE FROM PCMCIA STANDARD

The CSRegisterClient function is synchronous. On returning from
CSRegisterClient, the clientHandle field is valid. Once this call is successful,
all clients are expected to support reentrancy. After CSRegisterClient, clients
normally call CSVendorSpecific with vsCode set to vsEnableSocketEvents.

RESULT CODES

CSDeregisterClient 9

You can use the CSDeregisterClient function to clear client information previously
registered with the Card Services software.

pascal OSErr CSDeregisterClient(RegisterClientPB *pb);

The parameter block associated with this function is as follows:

typedef struct RegisterClientPB RegisterClientPB;

struct RegisterClientPB

{

UInt32 clientHandle; // ← client descriptor

PCCardCSClientUPP clientEntry; // → UPP to client's event handler

UInt16 attributes; // → bitmap of client attributes

UInt16 eventMask; // → bitmap of events to notify

// client

SUCCESS No error
OUT_OF_RESOURCE Card Services is unable to obtain

resources to complete function
BAD_ATTRIBUTE Invalid window attributes

C H A P T E R 9

PC Card Services

208 Miscellaneous Functions

Ptr clientData; // → pointer to client's data

UInt16 version; // → Card Services version

// client expects

};

For attributes field values, see “CSRegisterClient” on page 206.

RESULT CODES

Miscellaneous Functions 9

The functions described in this section help you with various Card Services
management tasks.

CSResetCard 9

You can use the CSResetCard function to reset a PC card in a specified socket.

pascal OSErr CSResetCard(ResetCardPB *pb);

The parameter block associated with this function is as follows:

typedef struct ResetCardPB ResetCardPB;

struct ResetCardPB

{

UInt32 clientHandle;// → clientHandle returned by RegisterClient

UInt16 socket; // → socket number

UInt16 attributes; // not used

};

DESCRIPTION

Calling clients will receive RESET_COMPLETE messages regardless of whether or not
their socket event mask and global event mask have csResetEvent set.

SUCCESS No error
BAD_ATTRIBUTE Invalid window attributes
BAD_HANDLE Invalid clientHandle value

C H A P T E R 9

PC Card Services

Miscellaneous Functions 209

DIVERGENCE FROM PCMCIA STANDARD

Card Services does not issue CARD_RESET in place of CARD_READY. If a client is issuing
a reset to a card, then it should know whether the card will generate a CARD_READY or
not. If the card transitions from BSY to RDY, then the client will also know that it
shouldn’t access the card until it receives the CARD_READY event.

RESULT CODES

CSValidateCIS 9

You can use the CSValidateCIS function to find out whether a socket has a valid CIS.

pascal OSErr CSValidateCIS(ValidateCISPB *pb);

The parameter block associated with this function is as follows:

typedef struct ValidateCISPB ValidateCISPB;

struct ValidateCISPB

{

UInt16 socket; // → socket number

UInt16 chains; // → whether link/null tuples should be

included

};

DIVERGENCE FROM PCMCIA STANDARD

The PCMCIA standard specifies that a BAD_CIS result is to be returned by setting the
pb->chains element to 0. To accommodate cards that don’t have any tuples, Card
Services uses the result code to return BAD_CIS (if the CIS is bad). If SUCCESS is
returned, then the value in pb->chains reflects the number of valid tuples, with link
tuples not counted.

RESULT CODES

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
BAD_HANDLE Invalid clientHandle value or clientHandle

does not match configuring clientHandle

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
BAD_CIS Card Services has detected a bad CIS

C H A P T E R 9

PC Card Services

210 Miscellaneous Functions

CSVendorSpecific 9

You can use the CSVendorSpecific function to perform certain elements that are
Mac OS specific.

pascal OSErr CSVendorSpecific(VendorSpecificPB *pb);

The parameter block associated with this function is as follows:

typedef struct VendorSpecificPB VendorSpecificPB;

struct VendorSpecificPB

{

UInt32 clientHandle;// → clientHandle returned by RegisterClient

UInt16 vsCode;

UInt16 socket;

UInt32 dataLen; // → length of buffer pointed to by vsDataPtr

UInt8 *vsDataPtr; // → Card Services version this client expects

};

// 'vsCode' field values

enum

{

vsAppleReserved = 0x0000,

vsEjectCard = 0x0001,

vsGetCardInfo = 0x0002,

vsEnableSocketEvents = 0x0003,

vsGetCardLocationIcon= 0x0004,

vsGetCardLocationText= 0x0005,

vsGetAdapterInfo = 0x0006

};

DESCRIPTION

The CSVendorSpecific function is provided to allow Apple Computer to extend the
interface definition of Card Services for elements that are Mac OS specific. This function
requires two parameters, clientHandle and vsCode. For each vsCode there may be
additional parameters required. The following sections describe the additional
parameters required for each vsCode selector.

RESULT CODES

SUCCESS No error
UNSUPPORTED_FUNCTION The vsCode value is invalid

C H A P T E R 9

PC Card Services

Miscellaneous Functions 211

EjectCard Parameter Block 9

You can use vendor-specific call #1 to eject a card.

// vendor-specific call #1

The parameter block associated with this function is as follows:

typedef struct VendorSpecificPB VendorSpecificPB;

struct VendorSpecificPB

{

UInt32 clientHandle;// → clientHandle returned by RegisterClient

UInt16 vsCode; // → vsCode = 1

UInt16 socket; // → desired socket number to eject

UInt32 dataLen; // not used

UInt8 *vsDataPtr; // not used

};

DESCRIPTION

Clients must pass in their clientHandle value to eject cards that they have configured.
Clients may not be able to eject cards that they did not configure unless the card is
previously unconfigured.

RESULT CODES

GetCardInfo Parameter Block 9

You can use vendor-specific call #2 to get information about a card in a socket.

// vendor-specific call #2

The parameter block associated with this function is as follows:

typedef struct GetCardInfoPB GetCardInfoPB;

struct GetCardInfoPB

{

UInt8 cardType; // ← type of card in socket

// (defined at top of file)

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
IN_USE Another client refused the

ejection request

C H A P T E R 9

PC Card Services

212 Miscellaneous Functions

UInt8 subType; // ← detailed card type (defined at top of file)

UInt16 reserved; // ↔ reserved (should be set to 0)

UInt16 cardNameLen; // → maximum length of card name to be returned

UInt16 vendorNameLen;// → max. length of vendor name to be returned

UInt8 *cardName; // → ptr to card name string (from CIS), or nil

UInt8 *vendorName; // → ptr to vendor name (from CIS), or nil

};

// GetCardInfo card types

#define csUnknownCardType 0

#define csMultiFunctionCardType 1

#define csMemoryCardType 2

#define csSerialPortCardType 3

#define csSerialOnlyType 0

#define csDataModemType 1

#define csFaxModemType 2

#define csFaxAndDataModemMask (csDataModemType | csFaxModemType)

#define csVoiceEncodingType 4

#define csParallelPortCardType 4

#define csFixedDiskCardType 5

#define csUnknownFixedDiskType 0

#define csATAInterface 1

#define csRotatingDevice (0<<7)

#define csSiliconDevice (1<<7)

#define csVideoAdaptorCardType 6

#define csNetworkAdaptorCardType7

#define csAIMSCardType 8

#define csNumCardTypes 9

RESULT CODES

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket

C H A P T E R 9

PC Card Services

Miscellaneous Functions 213

EnableSocketEvents Parameter Block 9

You can use vendor-specific call #3 to enable events on every socket in the system.

// vendor-specific call #3

The parameter block associated with this function is as follows:

typedef struct VendorSpecificPB VendorSpecificPB;

struct VendorSpecificPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt16 vsCode; // → vsCode = 3

UInt16 socket; // not used

UInt32 dataLen; // not used

UInt8 *vsDataPtr; // not used

};

DESCRIPTION

Calling this function is like calling the CSRequestSocketMask function for every
socket in the system, using the global event mask as the starting socket event mask.

DIVERGENCE FROM PCMCIA STANDARD

This function is not in the PCMCIA specification. After reentrancy into a client is
available, calling this function to enable events is better than making repeated calls to the
RequestSocketMask function.

RESULT CODES

GetAdapterInfo Parameter Block 9

You can use vendor-specific call #6 to get information about an adapter that interfaces to
a specified socket.

// vendor-specific call #6

SUCCESS No error
BAD_HANDLE Invalid clientHandle value

C H A P T E R 9

PC Card Services

214 Miscellaneous Functions

The parameter block associated with this function is as follows:

typedef struct VendorSpecificPB VendorSpecificPB;

struct VendorSpecificPB

{

UInt32 clientHandle;// → clientHandle returned by RegisterClient

UInt16 vsCode; // → vsCode = 6

UInt16 socket; // → socket number

UInt32 dataLen; // → length of GetAdapterInfoPB plus space for

// voltages

UInt8 *vsDataPtr; // → GetAdapterInfoPB * (supplied by client)

};

typedef struct GetAdapterInfoPB GetAdapterInfoPB;

struct GetAdapterInfoPB

{

UInt32 attributes; // ← capabilities of socket's adapter

UInt16 revision; // ← revision ID of adapter

UInt16 reserved; //

UInt16 numVoltEntries;// ← number of valid voltage values

UInt8 *voltages; // <-> array of BCD voltage values

};

// 'attributes' field values

enum

{

csLevelModeInterrupts = 0x00000001,

csPulseModeInterrupts = 0x00000002,

csProgrammableWindowAddr= 0x00000004,

csProgrammableWindowSize= 0x00000008,

csSocketSleepPower = 0x00000010,

csSoftwareEject = 0x00000020,

csLockableSocket = 0x00000040,

csInUseIndicator = 0x00000080

};

DESCRIPTION

There are many instances where Socket Services API elements are not brought out to the
Card Services API but the elements are required for normal card operation. This call
allows clients to query the capabilities of an adapter that interfaces to a given socket.
This information may be used to improve the operation of a client with a given socket
and card.

C H A P T E R 9

PC Card Services

PC Card Manager Constants 215

RESULT CODES

CSRequestExclusive and CSReleaseExclusive 9

The functions CSRequestExclusive and CSReleaseExclusive are not not
supported by the Macintosh PowerBook Card Services software.

PC Card Manager Constants 9

This section lists all the constants used by the PC Card Manager.

// miscellaneous

#define CS_MAX_SOCKETS 32 // a long is used as a socket bitmap

enum

{

gestaltCardServicesAttr = 'pccd',// Card Services attributes

gestaltCardServicesPresent= 0 // if set, Card Services is present

};

enum

{

_PCCardDispatch= 0xAAF0 // Card Services entry trap

};

/*

The PC Card Manager will migrate toward a complete Macintosh name space

very soon. Part of that process will be to reassign result codes to a range

reserved for the PC Card Manager. The range will be -9050 to -9305 (decimal

inclusive).

*/

// result codes

enum

{

SUCCESS = 0x00, // request succeeded

BAD_ADAPTER = 0x01, // invalid adapter number

BAD_ATTRIBUTE = 0x02, // attributes field value is invalid

BAD_BASE = 0x03, // base system memory address is invalid

SUCCESS No error
BAD_SOCKET Invalid socket number

C H A P T E R 9

PC Card Services

216 PC Card Manager Constants

BAD_EDC = 0x04, // EDC generator specified is invalid

RESERVED_5 = 0x05, // «reserved for historical purposes»

BAD_IRQ = 0x06, // specified IRQ level is invalid

BAD_OFFSET = 0x07, // PC card memory array offset is invalid

BAD_PAGE = 0x08, // specified page is invalid

READ_FAILURE = 0x09, // unable to complete read request

BAD_SIZE = 0x0A, // specified size is invalid

BAD_SOCKET = 0x0B, // specified physical socket number is invalid

RESERVED_C = 0x0C, // «reserved for historical purposes»

BAD_TYPE = 0x0D, // window or interface type is invalid

BAD_VCC = 0x0E, // Vcc power level index is invalid

BAD_VPP = 0x0F, // Vpp1 or Vpp2 power level index is invalid

RESERVED_10 = 0x10, // «reserved for historical purposes»

BAD_WINDOW = 0x11, // specified window is invalid

WRITE_FAILURE = 0x12, // unable to complete write request

RESERVED_13 = 0x13, // «reserved for historical purposes»

NO_CARD = 0x14, // no PC card in the socket

UNSUPPORTED_FUNCTION= 0x15,// not supported by this implementation

UNSUPPORTED_MODE= 0x16, // mode is not supported

BAD_SPEED = 0x17, // specified speed is unavailable

BUSY = 0x18, // unable to process request at this time

GENERAL_FAILURE= 0x19, // an undefined error has occurred

WRITE_PROTECTED= 0x1A, // media is write protected

BAD_ARG_LENGTH = 0x1B, // ArgLength argument is invalid

BAD_ARGS = 0x1C, // values in argument packet are invalid

CONFIGURATION_LOCKED= 0x1D,// a configuration has already been locked

IN_USE = 0x1E, // resource is being used by a client

NO_MORE_ITEMS = 0x1F, // there are no more of the requested item

OUT_OF_RESOURCE= 0x20, // Card Services has exhausted the resource

BAD_HANDLE = 0x21, // clientHandle value is invalid

BAD_CIS = 0x22 // CIS on card is invalid

};

// messages sent to client's event handler

enum

{

NULL_MESSAGE = 0x00, // no messages pending

// (not sent to clients)

CARD_INSERTION = 0x01, // card has been inserted into the socket

CARD_REMOVAL = 0x02, // card has been removed from the socket

CARD_LOCK = 0x03, // card is locked into the socket with

// a mechanical latch

CARD_UNLOCK = 0x04, // card is no longer locked into the socket

CARD_READY = 0x05, // card is ready to be accessed

C H A P T E R 9

PC Card Services

PC Card Manager Constants 217

CARD_RESET = 0x06, // physical reset has completed

INSERTION_REQUEST = 0x07, // request to insert a card using

// insertion motor

INSERTION_COMPLETE= 0x08, // insertion motor has finished

// inserting

// a card

EJECTION_REQUEST = 0x09, // user or other client is requesting a

// card ejection

EJECTION_FAILED = 0x0A, // eject failure due to electrical or

// mechanical problems

PM_RESUME = 0x0B, // power management resume (TBD)

PM_SUSPEND = 0x0C, // power management suspend (TBD)

EXCLUSIVE_REQUEST = 0x0D, // client is trying to obtain exclusive

// card access

EXCLUSIVE_COMPLETE= 0x0E, // indicates whether or not

// RequestExclusive succeeded

RESET_PHYSICAL = 0x0F, // physical reset is about to occur

RESET_REQUEST = 0x10, // client has requested physical reset

RESET_COMPLETE = 0x11, // ResetCard() background reset has

// completed

BATTERY_DEAD = 0x12, // battery is no longer usable;

// data will be lost

BATTERY_LOW = 0x13, // battery is weak and should

// be replaced

WRITE_PROTECT = 0x14, // card is now write protected

WRITE_ENABLED = 0x15, // card is now write enabled

ERASE_COMPLETE = 0x16, // queued background erase request

// has completed

CLIENT_INFO = 0x17, // client is to return

// client information

SS_UPDATED = 0x18, // AddSocketServices/ReplaceSocket

// services has changed SS support

FUNCTION_INTERRUPT= 0x19, // card function interrupt

ACCESS_ERROR = 0x1A, // client bus errored on access

// to socket

CARD_UNCONFIGURED = 0x1B, // a CARD_READY was delivered to all

// clients and no client requested

// a configuration for the socket

STATUS_CHANGED = 0x1C // status change for cards in I/O mode

};

219

680x0 code

Instructions that can run on a
PowerPC microprocessor only by means of an
emulator. See also

native code.

ADB

See

Apple Desktop Bus.

APDA

Apple Computer’s worldwide direct
distribution channel for Apple and third-party
development tools and documentation products.

API

See

application programming interface.

Apple Desktop Bus (ADB)

An asynchronous
bus used to connect relatively slow user-input
devices to Apple computers.

Apple SuperDrive

Apple Computer’s disk
drive for high-density floppy disks.

AppleTalk

Apple Computer’s local area
networking protocol.

application programming interface (API)

The calls and data structures that allow
application software to use the features of the
operating system.

big-endian

Data formatting in which each field
is addressed by referring to its most significant
byte. See also

little-endian.

Card Services

The part of the Macintosh PC
Card Manager that provides system services for
control software in PCMCIA cards.

client

A device driver or application program
that uses the Card Services software.

codec

A digital encoder and decoder.

color depth

The number of bits required to
encode the color of each pixel in a display.

DAC

See

digital-to-analog converter.

data burst

Multiple longwords of data sent
over a bus in a single, uninterrupted stream.

data cache

In a PowerPC microprocessor, the
internal registers that hold data being processed.

digital-to-analog converter (DAC)

A device
that produces an analog electrical signal in
response to digital data.

direct memory access (DMA)

A process for
transferring data rapidly into or out of RAM
without passing it through a processor or buffer.

DLPI

Data Link Provider Interface, the standard
networking model used in Open Transport.

DMA

See

direct memory access.

DRAM

See

dynamic random-access memory.

DR Emulator

The Dynamic Recompilation
Emulator, an improved 680x0-code emulator for
the PowerPC microprocessor.

dynamic random-access memory (DRAM)

Random-access memory in which each storage
address must be periodically interrogated
(“refreshed”) to maintain its value.

Ethernet

A high-speed local area network
technology that includes both cable standards
and a series of communications protocols.

GCR

See

group code recording.

Grand Central

A custom IC that provides
core I/O services in second-generation
Power Macintosh computers.

Group Code Recording (GCR)

An Apple
recording format for floppy disks.

input/output (I/O)

Parts of a computer system
that transfer data to or from peripheral devices.

I/O

See

input/output.

little-endian

Data formatting in which each
field is addressed by referring to its least
significant byte. See also

big-endian.

LocalTalk

The cable terminations and other
hardware that Apple supplies for local area
networking from Macintosh serial ports.

mini-DIN

An international standard form of
cable connector for peripheral devices.

Glossary

Thi d t t d ith F M k 4 0 4

G L O S S A R Y

220

native code

Instructions that run directly on a
PowerPC microprocessor. See also

680x0 code.

nonvolatile RAM

RAM that retains its contents
even when the computer is turned off; also
known as parameter RAM.

NuBus

A bus architecture in Apple computers
that supports plug-in expansion cards.

NuBus adapter card

A card for the Power
Macintosh 6100/60 that gives the computer
NuBus capability. It plugs into the PDS connector
and accepts short NuBus cards.

PBX

The custom IC that provides the interface
between the PowerPC 603 bus and the I/O bus in
a Macintosh PowerBook 5300 computer.

PC card

An expansion card that conforms to
the PCMCIA standard.

PC Card Manager

The part of the Mac OS that
supports PC cards in PowerBook computers.

PC Exchange

A utility program that runs on
Macintosh computers and reads other floppy
disk formats, including DOS and ProDOS.

PCMCIA standard

An industry standard for
computer expansion cards.

pixel

Contraction of

picture element

; the smallest
dot that can be drawn on a display.

POWER-clean

Refers to PowerPC code free of
instructions that are specific to the PowerPC 601
and Power instruction sets and are not found on
the PowerPC 603 and PowerPC 604
microprocessors.

PowerPC

Trade name for a family of RISC
microprocessors. The PowerPC 601, 603, and 604
microprocessors are used in Power Macintosh
computers.

reduced instruction set computing (RISC)

A
technology of microprocessor design in which all
machine instructions are uniformly formatted
and are processed through the same steps.

RISC

See

reduced instruction set computing.

SCC

See

Serial Communications Controller.

SCSI

See

Small Computer System Interface.

Serial Communications Controller (SCC)

Circuitry on the Combo IC that provides an
interface to the serial data ports.

SIMM

See

Single Inline Memory Module.

Single Inline Memory Module (SIMM)

A
plug-in card for memory expansion, containing
several RAM ICs and their interconnections.

Small Computer System Interface (SCSI)

An industry standard parallel bus protocol for
connecting computers to peripheral devices such
as hard disk drives.

socket

The hardware receptacle that a PC Card
is inserted into.

Socket Services

The layer of software that is
responsible for communication between Card
Services and the socket controller hardware.

tuple

 A parsable data group containing config-
uration information for a PCMCIA card.

Versatile Interface Adapter (VIA)

The interface
for system interrupts that is standard on most
Apple computers.

VIA

See

Versatile Interface Adapter

.

video RAM (VRAM)

Random-access memory
used to store both static graphics and video
frames.

VRAM

See

video RAM

.

221

Index

Numerals

68HC05 microprocessor 14

A

AC adapter 4
access to internal components 24
access windows 201
active matrix display 25
ADB (Apple Desktop Bus) port 27
ADB connector 27
appearance 3
Ariel CLUT-DAC IC 16

ATA_Abort

 function 141

ATA_BusInquiry

 function 142
ATA disk driver 117, 120–135

clear partition mounting

 function 127

clear partition write protect

 function 127
control functions 122–130
control routine 120
Device Manager routines 120–122

driver gestalt

 function 131

driverGestaltParam

 parameter block 131

drive status

 function 130

eject

 function 123

format

 function 123

get a drive

 function 128

get drive icon

 function 124

get drive information

 function 125

get media icon

 function 124

get partition information

 function 134

get partition mount status

 function 133

get partition write protect status

function 133

get power mode

 function 134

mount volume

 function 129

register partition

 function 128

set partition mounting

 function 126

set partition write protect

 function 126

set power mode

 function 129

set startup partition

 function 125
status functions 130–135
status routine 121

verify

 function 122

ATA_DrvrDeregister

 function 147

ATA_DrvrRegister

 function 144

ATA_ExecIO

 function 149

ATA_FindRefNum

 function 152
ATA hard disk drives, compared with SCSI drives 117

ATA_Identify

 function 157
ATA IDE specification 116
ATA interface 18
ATA Manager 135–177

making calls to 135
purpose of 117, 119

ATA Manager functions

ATA_Abort

141

ATA_BusInquiry

142

ATA_DrvrDeregister

147

ATA_DrvrRegister

144

ATA_ExecIO

149

ATA_FindRefNum

152

ATA_Identify

157

ATA_MgrInquiry

159

ATA_NOP

161

ATA_QRelease

161

ATA_RegAccess

162

ATA_ResetBus

165

ATA_MgrInquiry

 function 159

ATA_NOP

 function 161
ATA parameter block header 136

ataPBHdr

 structure 136–140

ATA_QRelease

 function 161

ATA_RegAccess

 function 162

ATA_ResetBus

 function 165
ATA software

ATA disk driver 117
ATA Manager 119
error codes 175

AutoSleepControl

 routine 97

B

Baboon custom IC 15
back view 4
batteries 4

BatteryCount

 routine 105

BlockCopy

 routine 71

BlockMoveData

 routine 70

BlockMoveDataUncached

 routine 70

BlockMove

 extensions 69–70

Thi d t t d ith F M k 4 0 4

I N D E X

222

BlockMove

 routine 70

BlockMoveUncached

 routine 70

BlockZero

 routine 70

BlockZeroUncached

 routine 70

C

cache coherency 7, 72
Card Services software 180–217

access window functions

CSModifyWindow

203

CSReleaseWindow

204

CSRequestWindow

201
client information functions

CSGetClientInfo

182

CSGetFirstClient

180

CSGetNextClient

181
client registration functions

CSDeregisterClient

207

CSGetCardServicesInfo

205

CSRegisterClient

206
clients 180
configuration functions

CSAccessConfigurationRegister

191

CSGetConfigurationInfo

185

CSModifyConfiguration

189

CSReleaseConfiguration

190

CSRequestConfiguration 187
gestalt constant 215
masking functions
CSGetClientEventMask 192
CSReleaseSocketMask 195
CSRequestSocketMask 194
CSSetClientEventMask 193

messages 216
miscellaneous functions
CSResetCard 208
CSValidateCIS 209
CSVendorSpecific 210

result codes 215
status functions, CSGetStatus 200
tuples functions
CSGetFirstTuple 196
CSGetNextTuple 197
CSGetTupleData 198

unsupported functions
CSReleaseExclusive 215
CSRequestExclusive 215

vendor-specific calls
EjectCard 211
EnableSocketEvents 213
GetAdapterInfo 213
GetCardInfo 211

clear partition mounting function 127
clear partition write protect function 127
clients, registration of 205
Code Fragment Manager 7, 72
Combo custom IC 13, 14
compatibility 5

with the PowerPC 601 72, 73
sound sample rates 6

configurations 5
connectors

ADB 27
expansion bay 33
external video 51, 52
hard disk 20
RAM expansion 40, 42
RAM expansion card 48
SCSI 25
serial port 25
video 51

control routine 120
CSAccessConfigurationRegister function 191
CSDeregisterClient function 207
CSGetCardServicesInfo function 205
CSGetClientEventMask function 192
CSGetClientInfo function 182
CSGetConfigurationInfo function 185
CSGetFirstClient function 180
CSGetFirstTuple function 196
CSGetNextClient function 181
CSGetNextTuple function 197
CSGetStatus function 200
CSGetTupleData function 198
CSModifyConfiguration function 189
CSModifyWindow function 203
CSRegisterClient function 206
CSReleaseConfiguration function 190
CSReleaseExclusive function 215
CSReleaseSocketMask function 195
CSReleaseWindow function 204
CSRequestConfiguration function 187
CSRequestExclusive function 215
CSRequestSocketMask function 194
CSRequestWindow function 201
CSResetCard function 208
CSSetClientEventMask function 193
CSValidateCIS function 209
CSVendorSpecific function 210
CurrentProcessorSpeed routine 100
custom ICs

Ariel 16
Baboon 15
Combo 14
ECSC 14
Keystone 16
PBX 12

I N D E X

223

custom ICs (continued)
Pratt 10
Singer 14, 28
TREX 15
Whitney 13

D

dcbz instruction 70
Device Manager 79
display controller IC 14
Display Manager 74
displays

active matrix 24, 25
backlighting 24
dual mode 50
DualScan 25
external video monitors 49, 50

adapter cable 51
flat panel types 24
FSTN 25
mirror mode 6, 50
NuBus card emulation 24
number of colors 6, 24
passive matrix 24
supertwist 24, 25
TFT 25

driver gestalt function 131
driverGestaltParam parameter block 131
Driver Services Library 71
Drive Setup, modifications to 68
drive status function 130
dual mode 50
DualScan display 25
Dynamic Recompilation Emulator 68

E

ECSC custom IC 14
EjectCard vendor-specific call 211
eject function 123
Emulator, Dynamic Recompilation 68
EnableProcessorCycling routine 104
EnableSocketEvents vendor-specific call 213
error codes 175
Ethernet driver 64
event mask 192
expansion bay 32–39

device installation 38
expansion bay connector 33–38

signal assignments 34
signal definitions 36–37

expansion bay controller IC 15
extended I/O parameter block 79–80
extended volume parameter block 77–79
external video port 50

F

features summary 2
Finder modifications for large volume support 67, 76
flat panel displays 24
format function 123
front view 3
FullProcessorSpeed routine 101
function-key software 64

G

Gestalt function 81
gestaltMachineType value 62
gestaltPowerMgrAttr selector 87
GetAdapterInfo vendor-specific call 213
get a drive function 128
GetBatteryTimes routine 106
GetBatteryVoltage routine 105
get boot partition function 132
GetCardInfo vendor-specific call 211
get drive icon function 124
get drive information function 125
GetHardDiskTimeout routine 91
GetIntModemInfo routine 98
get media icon function 124
get partition information function 134
get partition mount status function 133
get partition write protect status

function 133
get power mode function 134
GetScaledBatteryInfo routine 95
GetSCSIDiskModeAddress routine 102
GetSleepTimeout routine 90
GetWakeupTimer routine 103

H

hard disk 18
dimensions 18
IDE data bus 22

hard disk capacity 5
hard disk connector 20

pin assignments on 20
signals on 21

I N D E X

224

HardDiskPowered routine 92
HardDiskQInstall routine 94
HardDiskQRemove routine 95
HDI-30 connector 25
HFS volume format 76

I, J

IDE disk interface 18
IDE hard disk 18

connector 20
pin assignments on 20

data bus 22
dimensions 18
signals 21

identifying the computers 62
IDE specification 116
infrared module 28
input/output subsystem 10
interpretive emulator 68
I/O ports

SCSI 25
serial 25
video 50, 51

IsProcessorCyclingEnabled routine 104
IsSpindownDisabled routine 93

K

keyboards 23
function keys 64
ISO layout 23
removing 24
United States layout 23

Keystone video timing IC 16

L

large partition support. See large volume support
large volume support 66, 76

allocation blocks 76
extended API 66
extended data structures 77
extended parameter block 77, 79
limitations 68
maximum file size 77
modified applications 67
requirements 77

M, N, O

main processor 11
MaximumProcessorSpeed routine 100
MC68LC040 microprocessor support 62
memory controller IC 12
memory controller software 63
memory expansion 4, 11
mirror mode 6, 50
monitor sense codes 52
mount volume function 129

P

PBX custom IC 12
as bus bridge 12

PBXGetVolInfo function 81
PC cards 58, 180

Finder extension for 59
software eject 58

PCMCIA cards. See PC cards
PCMCIA slot 58–60

access windows 59
data access modes 59
features 58
power 60
signal definitions 60
specifications 59–60

PCMCIA slots 15
peripheral devices 4
peripheral support IC 13
PMFeatures routine 89
PMSelectorCount routine 89
pointing device 22
POWER-clean code 72
POWER-clean native code 71
POWER emulation 72

exception handling 72
POWER instructions

emulation of 72
Power Manager IC 14

trackpad registers in 65
Power Manager interface routines 87–106
AutoSleepControl 97
BatteryCount 105
CurrentProcessorSpeed 100
EnableProcessorCycling 104
FullProcessorSpeed 101
GetBatteryTimes 106
GetBatteryVoltage 105
GetHardDiskTimeout 91
GetIntModemInfo 98
GetScaledBatteryInfo 95

I N D E X

225

Power Manager interface routines (continued)
GetSCSIDiskModeAddress 102
GetSleepTimeout 90
GetWakeupTimer 103
HardDiskPowered 92
HardDiskQInstall 94
HardDiskQRemove 95
IsProcessorCyclingEnabled 104
IsSpindownDisabled 93
MaximumProcessorSpeed 100
PMFeatures 89
PMSelectorCount 89
SetHardDiskTimeout 92
SetIntModemState 99
SetProcessorSpeed 101
SetSCSIDiskModeAddress 102
SetSleepTimeout 91
SetSpindownDisable 94
SetWakeupTimer 103
SpinDownHardDisk 93

Power Manager software 63, 86
checking for routines 87
data structures 6
dispatching 107
interface routines 86, 87–106
unsafe assumptions 7, 86

PowerPC 601 microprocessor 72
compatibility limitations 73
compatibility with 72

PowerPC 603 microprocessor 11, 71, 72
PowerPC 604 microprocessor 72
processor clock speed 2, 5, 11
processor/memory subsystem 10, 11

Q

QuickDraw acceleration API 73

R

RAM
contiguous banks of 12
expansion 4, 11, 39–48

addressing 43
DRAM devices 45
RAM banks 45
signals 40, 42

size of 5
RAM expansion card 39–48

connector 48
dimensions 47

DRAM devices 45
electrical limits 46
mechanical design of 47–48
RAM banks 45

reference documents xii
register partition function 128
Resource Manager in native code 69
ROM

address range 12
implementation of 12
software features 62

ROM software features 62

S

SCC IC 14
SCSI controller IC 14
SCSI port 25

connector 25
secondary logic board 11
serial port 25
SetHardDiskTimeout routine 92
SetIntModemState routine 99
set partition mounting function 126
set partition write protect function 126
set power mode function 129
SetProcessorSpeed routine 101
SetSCSIDiskModeAddress routine 102
SetSleepTimeout routine 91
SetSpindownDisable routine 94
set startup partition function 125
SetWakeupTimer routine 103
Singer custom IC 13, 14, 28
socket mask 192
sound

input sources 29
built-in microphone 29
CD-ROM drive 29
PCMCIA slot 29
sound input jack 29

output devices 29
sound circuits 29

characteristics 29, 30
sound features 63
sound IC 14, 28
sound sample rates 6, 28
sound specifications 28
SpinDownHardDisk routine 93
status routine 121
Supertwist display 25
System 7.5 66

I N D E X

226

T, U

TFT display 25
trackball 22
trackpad 22

software support for 65
TREX custom IC 15
tuple information 196
tuples 119

V

VCB allocation block size 76
verify function 122
video adapter cable 51
video card 16, 49–58
video connector 51
video controller IC 16
video modes

dual 50
mirror 6, 50

video monitors 49, 50
adapter cable for 51
sense codes 52
VGA and SVGA 52

video output IC 16
video port 50

W

Whitney custom IC 13

X, Y, Z

XIOParam data structure 79
XVolumeParam parameter block 77

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages and final pages were created
on an Apple LaserWriter Pro printer.
Line art was created using
Adobe Illustrator



 and
Adobe Photoshop



. PostScript



, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino



 and display type is
Helvetica



. Bullets are ITC Zapf
Dingbats



. Some elements, such as
program listings, are set in Apple Courier.

WRITER

Allen Watson

DEVELOPMENTAL EDITOR

Wendy Krafft

ILLUSTRATORS

Deb Dennis, Sandee Karr,
Shawn Morningstar

PRODUCTION EDITOR

Rex Wolf

Special thanks to Mark Baumwell,
John Howard, Tom Llewellyn,
Richard Schnell, Mark Seibert,
George Towner, and Markus Wallgren

Thi d t t d ith F M k 4 0 4

	Macintosh PowerBook 5300 Computer
	Contents
	Figures and Tables
	About This Developer Note
	Contents of This Note
	Supplemental Reference Documents
	Apple Publications
	Other Publications

	Conventions and Abbreviations
	Typographical Conventions
	Standard Abbreviations

	Introduction
	Features
	Appearance
	Peripheral Devices
	Configurations
	Compatibility Issues
	RAM Expansion Cards
	Number of Colors
	Video Mirror Mode
	Sound Sample Rates
	Power Manager Interface
	Microprocessor Differences
	POWER-Clean Code

	Architecture
	Processor/Memory Subsystem
	Main Processor
	RAM
	ROM
	PBX Memory Controller IC

	Input/Output Subsystem
	Whitney Peripheral Support IC
	Combo IC
	Singer IC
	Power Manager IC
	Display Controller IC
	Baboon Custom IC
	TREX Custom IC

	Video Card
	Keystone Video Controller IC
	Ariel Video Output IC

	I/O Features
	Internal IDE Hard Disk Drive
	Hard Disk Specifications
	Hard Disk Connector

	Trackpad
	Keyboard
	Flat Panel Display
	Flat Panel Display Circuitry
	Number of Colors

	Serial Port
	SCSI Port
	ADB Port
	Infrared Module
	Sound System
	Sound Inputs
	Sound Outputs

	Expansion Modules
	Expansion Bay
	Expansion Bay Design
	Expansion Bay Connector
	User Installation of an Expansion Bay Device

	RAM Expansion
	Electrical Design Guidelines for the RAM Expansion Card
	Mechanical Design of the RAM Expansion Card

	Video Card
	The Apple Video Card
	Video Card Design Guide

	PCMCIA Slot
	PCMCIA Features
	Summary Specifications

	Software Features
	ROM Software
	PowerPC 603 Microprocessor
	Machine Identification
	Memory Controller Software
	Power Manager Software
	Display Controller Software
	Sound Features
	ATA Storage Devices
	IDE Disk Mode
	Ethernet Driver
	Support for Function Keys
	Smart Battery Support
	Trackpad Support

	System Software
	Control Strip
	Support for ATA Devices
	Large Partition Support
	Drive Setup
	Improved File Sharing
	Dynamic Recompilation Emulator
	Resource Manager in Native Code
	Math Library
	New BlockMove Extensions
	POWER-Clean Native Code
	POWER Emulation
	QuickDraw Acceleration API
	Display Manager

	Large Volume Support
	Overview of the Large Volume File System
	API Changes
	Allocation Block Size
	File Size Limits
	Compatibility Requirements

	The API Modifications
	Data Structures
	New Extended Function

	Power Manager Interface
	About the Power Manager Interface
	Things That May Change
	Checking for Routines
	Power Manager Interface Routines
	Header File for Power Manager Dispatch

	Software for ATA Devices
	Introduction to the ATA Software
	ATA Disk Driver
	ATA Manager

	ATA Disk Driver Reference
	Standard Device Routines
	Control Functions
	Status Functions

	ATA Manager Reference
	The ATA Parameter Block
	Functions

	Using the ATA Manager With Drivers
	Notification of Device Events
	Device Driver Loading
	Device Driver Purging
	Setting the I/O Speed

	Error Code Summary

	PC Card Services
	Client Information
	Configuration
	Masks
	Tuples
	Card and Socket Status
	Access Window Management
	Client Registration
	Miscellaneous Functions
	PC Card Manager Constants

	Glossary
	Index

