Developer Note

Macintosh PowerBook 190
Computer

Macintosh PowerBook 190
Macintosh PowerBook 190cs

Developer Press
0 Apple Computer, Inc. 1995

Apple Computer, Inc.

[0 1995 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

The Apple logo is a trademark of
Apple Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, LaserWriter,
LocalTalk, Macintosh, Macintosh
Quadra, Newton, PowerBook, Power
Macintosh, and ProDOS are trademarks
of Apple Computer, Inc., registered in
the United States and other countries.
AOCE, Apple Desktop Bus,
AppleScript, Disk First Aid, Finder,
Mac, Macintosh, PC Exhange, and
QuickDraw are trademarks of Apple
Computer, Inc.

Adobe Ilustrator, Photoshop, and
PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.
Classic is a registered trademark
licensed to Apple Computer, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
IBM is a registered trademark of
International Business Machines
Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Motorola is a registered trademark of
Motorola Corporation.

NuBus is a trademark of Texas
Instruments.

PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.

Unix is a registered trademark of
Novell, Inc., in the United States and
other countries, licensed exclusively
through X/Open Company, Ltd.
Windows is a trademark of Microsoft
Corporation, and SoftWindows is a
trademark used under license by
insignia from Microsoft Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Figures and Tables ix

Preface About This Developer Note «xi

Contents of This Note ~ xi

Supplemental Reference Documents xii
Apple Publications xii
Other Publications xiii

Conventions and Abbreviations Xiv
Typographical Conventions ~ xiv
Standard Abbreviations xiv

Chapter 1 Introduction 1

Features 2

Appearance 3

Configurations 5

Peripheral Devices 6

Compeatibility Issues 6
RAM Expansion Cards 6
Number of Colors 6
Video Mirror Mode 7
Sound Sample Rates 7

Power Manager Interface 7
Chapter 2 Architecture 9
Processor/Memory Subsystem 11
Microprocessor 11
RAM 11
ROM 11

Pratt Memory Controller IC 11
Bus Bridge 12
Input/Output Subsystem 12
Whitney Peripheral Support IC 12
Combo IC 13
Singer IC 13
Power Manager IC 13
Display Controller IC 14
Baboon Custom IC 14
TREX Custom IC 15

Video Card 15
Keystone Video Controller IC 15
Ariel Video Output IC 15

Chapter 3 I/O Features 17

Internal Hard Disk Drive 18
Hard Disk Specifications 18
Hard Disk Connectors 20

Connector Location 20
Pin Assignments 21
IDE Signal Descriptions 22

Trackpad 23

Keyboard 23

Flat Panel Displays 24
Flat Panel Display Circuitry 24
Number of Colors 25

Serial Port 25

SCSI Port 26

ADBPort 28

Infrared Module 29

Sound System 29
Sound Inputs 30
Sound Outputs 30

Chapter 4 Expansion Modules 31

Expansion Bay 32
Expansion Bay Design 32
Expansion Bay Connector 33
Signals on the Expansion Bay Connector 34
Signal Definitions 35
Unused IDE Signals 37
Power on the Expansion Bay 37
User Installation of an Expansion Bay Device 38
Sequence of Control Signals 38
Guidelines for Developers 38
RAM Expansion 39
Electrical Design Guidelines for the RAM Expansion Card
Connector Pin Assignments 39
Signal Descriptions 42
Address Multiplexing 43
Banks of DRAM 44
DRAM Device Requirements 44
Expansion Card Electrical Limits 45

iv

39

Mechanical Design of the RAM Expansion Card
RAM Card Dimensions 46
RAM Card Connector 47

Video Card 48

The Apple Video Card 48
Monitors Supported 48
Video Mirroring 49
External Video Connector 50
Monitor Sense Codes 51

Video Card Design Guide 52
Video Card Connector 52
Signals on the Video Card Connector 52
Video Card Mechanical Design 54

PCMCIASlot 57

PCMCIA Features 57

Summary Specifications 58
Access Windows 58
Data Access 58
Signal Definitions 58
Power 59
Controller Interrupts 59

Chapter 5 Software Features 1

46

ROM Software 62

Machine Identification 62

Memory Controller Software 63

Power Manager Software 63

Display Controller Software 63

Sound Features 63

ATA Storage Devices 64

IDE Disk Mode 64

Ethernet Driver 64

Support for Function Keys 64

Smart Battery Support 64

Trackpad Support 65

System Software 65

Control Strip 66

Support for ATA Devices 66

Large Partition Support 66
64-Bit Volume Addresses 66
System-Level Software 66
Application-Level Software 67
Limitations 67

Drive Setup 67

Improved File Sharing 68

Math Library 68
QuickDraw Acceleration API 68
Display Manager 68

Chapter 6 Large Volume Support 69

Overview of the Large Volume File System 70
API Changes 70
Allocation Block Size 70
File Size Limits 71
Compatibility Requirements 71
The API Modifications 71
Data Structures 71
Extended Volume Parameter Block 71
Extended I/O Parameter Block 73
New Extended Function 75

Chapter 7 Software for ATA Devices 79

Introduction to the ATA Software 80
ATA Disk Driver 81
Drives on PC Cards 82
Drives in the Expansion Bay 83
ATA Manager 83
ATA Disk Driver Reference 83
Standard Device Routines 84
The Control Routine 84
The Status Routine 85
Control Functions 86
Status Functions 93
ATA Manager Reference 98
The ATA Parameter Block 99
Functions 104
Using the ATA Manager With Drivers 132
Notification of Device Events 132
Device Driver Loading 133
New API Entry Point for Device Drivers 134
Loading a Driver From the Media 135
Notify-all Driver Notification 135
ROM Diriver Notification 136
Device Driver Purging 136
Setting the I/O Speed 138
Error Code Summary 139

vi

Chapter 8

PC Card Services 143

Client Information 144
Configuration 148

Masks 155

Tuples 159

Card and Socket Status 163
Access Window Management 164
Client Registration 168
Miscellaneous Functions 170

PC Card Manager Constants 177

Glossary 181

Index 183

vii

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Figures and Tables

Introduction 1

Figure 1-1 Front view of the computer 4
Figure 1-2 Back view of the computer 5
Table 1-1 Models and configurations 5

Architecture

9

Figure 2-1

I/0 Features

Block diagram 10

17

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7

Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6

Maximum dimensions of the internal hard disk 19
Connector for the internal IDE hard disk 20
Position of the hard disk connector 20

Keyboard, U.S. layout 23

Keyboard, ISO layout 24

Serial port connector 25

ADB connector 28

Pin assignments on the hard disk connector 21
Signals on the IDE hard disk connector 22
Characteristics of the displays 24

Serial port signals 26

Signals on the SCSI connector 26

ADB connector pin assignments 28

Expansion Modules 31

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13

Expansion bay module 32

Expansion bay dimensions 33

RAM expansion card 46

Dimensions of the RAM expansion card 46
Restricted areas on the component side of the card
Video card 48

Video connectors 51

Dimensions of the video card 54

Video card and 80-pin connector 55

Video card bottom view with component restrictions

Video card top view with component restrictions 56

Video card top view 56
Detail of EMI shield mounting holes 57

a7

55

Chapter 7

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9
Table 4-10
Table 4-11
Table 4-12
Table 4-13
Table 4-14
Table 4-15

Signal assignments on the expansion bay connector 34
Control signals on the expansion bay connector 36
Floppy disk signals on the expansion bay connector 36
IDE signals on the expansion bay connector 36

Unused IDE signals 37

Power for the expansion bay 37

Configurations of RAM banks 39

Signal assignments on the RAM expansion connector 40
Descriptions of signals on the RAM expansion connector 42
Address multiplexing for some typical DRAM devices 44
Video monitors and modes 49

Signals on the video connector 50

Monitor sense codes 51

Signals on the video card connector 52

Descriptions of the signals on the video card connector 53

Software for ATA Devices 79

Figure 7-1

Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 7-7
Table 7-8
Table 7-9
Table 7-10
Table 7-11
Table 7-12
Table 7-13

ATA software model 80

Control functions 84

Status functions 85

Control bits in the at aFl ags field 101
ATA Manager functions 104

Event masks 112

Bits in pcVal i d field 119

ATA register selectors 127

Register mask bits 128

Event codes send by the ATA Manager 132
Input parameter bits for the old API 134
Input parameter bits for the new API 134
Purge permissions and responses 137
ATA driver error codes 139

PREFAUCE

About This Developer Note

This developer note describes the Macintosh PowerBook 190 computer,
emphasizing the features that are new or different from those of other
Macintosh PowerBook computers.

This developer note is intended to help hardware and software developers
design products that are compatible with the Macintosh products described in
the note. If you are not already familiar with Macintosh computers or if you
would simply like more technical information, you may wish to read the
supplementary reference documents described in this preface.

This note is published in two forms: an online version included with the Apple
Developer CD and a paper version published by APDA. For information about
APDA, see “Supplemental Reference Documents.”

Contents of This Note

The information in this note is arranged in eight chapters.

= Chapter 1, “Introduction,” introduces the Macintosh PowerBook 190
computer and describes its new features.

= Chapter 2, “Architecture,” describes the internal logic of the Macintosh
PowerBook 190 computer, including the main ICs that appear in the
block diagram.

s Chapter 3, “I/O Features,” describes the input/output features, including
both the internal I/ O devices and the external I/O ports.

= Chapter 4, “Expansion Modules,” describes the expansion features of
interest to developers: the expansion bay, the RAM expansion connector,
the video card connector, and the PCMCIA slot.

= Chapter 5, “Software Features,” describes the new features of the ROM
and system software, with the emphasis on software that is specific to
this computer.

= Chapter 6, “Large Volume Support,” describes the modifications that
enable the file system to support volumes larger than 4 GB.

= Chapter 7, “Software for ATA Devices,” describes the low-level program
interface used by utility software for the IDE hard disk drive.

= Chapter 8, “PC Card Services,” describes the new system software that
supports PC cards in the PCMCIA slot.

xi

PREFAUCE

Supplemental Reference Documents

xii

The following documents provide information that complements or extends
the information in this developer note.

Apple Publications

Developers should have copies of the appropriate Apple reference books,
including the relevant volumes of Inside Macintosh; Guide to the Macintosh
Family Hardware, second edition; and Designing Cards and Drivers for the
Macintosh Family, third edition. These Apple books are available in technical
bookstores and through APDA.

For information about the PCMCIA slot, PC cards, and the PC Card Manager,
developers should have a copy of Developing PC Card Software for the Mac OS.
That book is currently available only in draft form, but it is scheduled for
publication at about the time the Macintosh PowerBook 190 computer is
introduced.

For information about the Device Manager and the Power Manager,
developers should have a copy of Inside Macintosh: Devices. For information
about designing device drivers for Power Macintosh computers, developers
should have a copy of Designing PCI Cards and Drivers for Power Macintosh
Computers.

For information about the control strip, developers should have the Reference
Library volume of the Developer CD Series, which contains Macintosh
Technical Note OS 06 — Control Strip Modules.

For information about earlier PowerBook models, developers should also
have copies of the Macintosh Classic II, Macintosh PowerBook Family, and
Macintosh Quadra Family Developer Notes; and Macintosh Developer Notes,
numbers 1 through 5 and 9. These developer notes are available on the
Developer CD Series and through APDA.

APDA is Apple Computer’s worldwide source for hundreds of development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the APDA Tools Catalog featuring all current versions of Apple development
tools and the most popular third-party development tools. APDA offers
convenient payment and shipping options, including site licensing.

PREFAUCE

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Other Publications

To supplement the information in this developer note, developers should
have copies of the appropriate Motorola reference books for the MC68040
microprocessor. Software developers should have a copy of Motorola’s
MC68040 Programmer’s Reference Manual. Hardware developers should have
copies of Motorola’s MC68030 User’s Manual, MC68040 User’s Manual, and
MC68040 Designer’s Handbook.

For information about the IDE hard disk drive, developers should have a
copy of the ATA /IDE specification, ANSI proposal X3T10/0948D, Revision
2K or later (ATA-2).

For information about PC cards and the PCMCIA slot, developers should
refer to the PC Card Standard. You can order that book from

Personal Computer Memory Card International Association
1030G East Duane Avenue

Sunnyvale, CA 94086

Phone: 408-720-0107

Fax: 408-720-9416

xiii

PREFAUCE

Conventions and Abbreviations

This developer note uses the following typographical conventions and
abbreviations.

Typographical Conventions

Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in Cour i er font.

Hexadecimal numbers are preceded by a dollar sign ($). For example, the
hexadecimal equivalent of decimal 16 is written as $10.

Note
A note like this contains information that is of interest but is not
essential for an understanding of the text. O

IMPORTANT

A note like this contains important information that you should read
before proceeding. a

A WARNING
Warnings like this direct your attention to something that could cause
injury to the user, damage to either hardware or software, or loss of
data. a

Standard Abbreviations

Standard units of measure used in this note include

A amperes K 1024

cm centimeters KB kilobytes

dB decibels kHz kilohertz

GB gigabytes kQ kilohms

Hz hertz M 1,048,576

k 1000 mA milliamperes

continued
Sidebar

Sidebars are used for information that is not part of information about a related subject or technical details
the main discussion. A sidebar may contain that are not required reading.

Xiv

PREFAUCE

megabytes Us microseconds
megahertz ns nanoseconds
millimeters Q ohms
milliseconds pF picofarads
millivolts \Y% volts
microfarads VAC volts AC

Other abbreviations used in this note include

$n

AC
ADB
API
ATA
ATAPI
BCD
CAS
CCFL
CD
CD-ROM
CIS
CLUT
CMOS
CPU
CSC
DAC
DDM
DMA
DOS
DRAM
FIFO
FPU
FSTN
HBA
HFS
IC

IDE
I/0

hexadecimal value n

alternating current

Apple Desktop Bus

application program interface

AT attachment

ATA packet interface

binary-coded decimal

column address strobe (a memory control signal)
cold cathode fluorescent lamp

compact disc

compact-disc read-only memory

card information structure

color lookup table

complementary metal oxide semiconductor
central processing unit

color screen controller

digital-to-analog converter

driver descriptor map

direct memory access

disk operating system

dynamic RAM

first in, first out

floating-point unit

film supertwist nematic (a type of LCD)
host bus adapter

hierarchical file system

integrated circuit

integrated device electronics

input/output

XV

PREFAUCE

IR infrared
IWM Integrated Woz Machine (a custom IC that controls
the floppy disk interface)
LCD liquid crystal display
LS TTL low-power Schottky TTL (a standard type of device)
MMU memory management unit
n.c. no connection
PCMCIA Personal Computer Memory Card International Association
PWM pulse width modulation
RAM random-access memory

RAMDAC random-access memory, digital to analog converter

RAS row address strobe

RGB red-green-blue (a type of color video system)
rms root-mean-square

ROM read-only memory

SCC Serial Communications Controller

SCSI Small Computer System Interface

SNR signal-to-noise ratio

SQOJ small outline J-lead package

SOP small outline package

SRAM static RAM

SVGA super video graphics adapter

TDM time-division multiplexing

TFT thin-film transistor (a type of LCD)

TSOP thin small outline package

TTL transistor-transistor logic (a standard type of device)
VCC positive supply voltage (voltage for collectors)
VGA video graphics adapter

VRAM video RAM

xvi

CHAPTER 1

Introduction

CHAPTER 1

Introduction

The Macintosh PowerBook 190 computer is a full-featured, all-in-one notebook
computer with a 68040 microprocessor. Inside the computer’s contoured case are a
PCMCIA slot, an expansion bay for a floppy disk drive or an 8 cm CD-ROM drive, and
space for a rechargeable battery.

Features

Here is a summary of the major features of the Macintosh PowerBook 190 computer.
Each feature is described more fully later in this developer note.

Micoprocessor: The Macintosh PowerBook 190 computer has an MC68LC040
microprocessor running at a clock frequency of 66/33 MHz (see sidebar).

Upgrade path: The user can upgrade to a PowerPC" 603 processor by replacing the
main logic board.

RAM: The built-in memory consists of 4 or 8 MB of low-power, self-refreshing
dynamic RAM (DRAM).

RAM expansion: The computer accepts a RAM expansion card with up to 32 MB, for
a total of 40 MB of RAM.

Display: The computer has a built-in flat panel display, a 640-by-480 pixel LCD
backlit by a cold cathode fluorescent lamp (CCFL). The display can be one of two
types: 10.4-inch FSTN color or 9.5-inch supertwist grayscale.

Hard disk: The computer has one internal 2.5-inch IDE hard disk drive with a
capacity of 500 MB. See “Configurations” on page 5.

SCSI disk mode: With an optional HDI-30 SCSI Disk Adapter cable, the computer
allows the user to read and store data on the computer’s internal hard disk from
another Macintosh computer.

Expansion bay: The computer has an opening that accepts a plug-in module with a
1.4 MB high-density disk drive, some other IDE device, or an AC power adapter.

PCMCIA slot: The computer accepts one type III or two type Il PCMCIA cards.

Modem: The computer accepts a PCMCIA modem card or an external modem
connected to the serial port.

Processor clock speeds

The MC68LC040 uses two processor clocks: one for the bus clock of 33 MHz runs its internal processor at
system bus and another, at twice the speed, for the 66 MHz.
internal circuits. Thus, an MC68LC040 with a system

Features

CHAPTER 1

Introduction

» Standard I/O ports: The computer has all the standard Macintosh inputs and
outputs, including external video output. The I/O ports are an HDI-30 connector for
external SCSI devices, a 4-pin mini-DIN Apple Desktop Bus (ADB) port, an 8-pin
mini-DIN serial port, a stereo audio output jack, and a video output connector for an
external monitor.

= Networking: The computer has a built-in LocalTalk network interface.

= Sound: The computer has a built-in microphone and speaker as well as a stereo
headphone jack.

» Keyboard: The computer has a full-size keyboard with function keys and power on/
off control.

s Trackpad: The cursor-positioning device is an integrated flat pad that replaces the
trackball used in previous Macintosh PowerBook computers.

= Batteries: The computer has space for one Macintosh PowerBook Intelligent Battery:
a rechargeable battery with a built-in processor that communicates with the
computer’s Power Manager. The model with the color display uses a 16.8 V lithium
ion battery; the grayscale model uses a nickel metal hydride battery.

s Power supply: The computer comes with an external recharger/power adapter that
accepts any worldwide standard voltage from 100-240 VAC at 50-60 Hz.

= Security connector: The computer has a connector on the side panel that allows users
to attach a security device. The security device also secures the battery and any
module in the expansion bay.

= Weight: The computer weighs 6.5 pounds with the battery installed.

= Size: The computer is 11.3 inches wide and 8.5 inches deep. The models with
grayscale displays are 2.0 inches high; models with color displays are 2.1 inches high.

Appearance

The Macintosh PowerBook 190 computer has a streamlined case that opens up like a
clamshell. Figure 1-1 shows a front view of the Macintosh PowerBook 190 computer, and
Figure 1-2 shows a back view.

Appearance 3

CHAPTER 1

Introduction

Figure 1-1 Front view of the computer

Sleep indicator

xed Brightness control

Speaker O contrast control
e , Microphone
e

, Y i S
R) 52)
Trackpad A Q5Q$ - Floppy disk drive module
Trackpad button) ’ =) / in expansion bay

Security slot

Battery

4 Appearance

CHAPTER 1

Introduction

Figure 1-2 Back view of the computer

IO Video port

IR window

@ Reset button

¥ sound input jack

«) Sound output jack

& SCSl port (HDI-30)

Configurations

44— PC card slots

L PC card eject buttons

Power adapter jack
¥ ADB port

&/ % serial 1/0 port

The Macintosh Macintosh PowerBook 190 computer is available in four configurations,

as shown in Table 1-1.

Table 1-1 Models and configurations
Model RAM size Display type Hard disk size
Macintosh PowerBook 190 4 MB 9.5-inch supertwist grayscale 500 MB
Macintosh PowerBook 190 8 MB 9.5-inch supertwist grayscale 500 MB
Macintosh PowerBook 190cs 4 MB 10.4-inch active matrix color 500 MB
Macintosh PowerBook 190cs 8 MB 10.4-inch active matrix color 500 MB

Configurations

CHAPTER 1

Introduction

Peripheral Devices

In addition to the devices that are included with the computer, several peripheral
devices are available separately:

s The Macintosh PowerBook 8 MB Memory Expansion Kit expands the RAM to 12
or 16 MB.

s The Macintosh PowerBook 8-bit Color Video-out Upgrade Kit for the Macintosh
PowerBook 190 series provides a 256-color display on an external video monitor up
to 17 inches in screen size.

s The Macintosh PowerBook Infrared Upgrade Kit for the Macintosh PowerBook 190
sereis allows the computer to communicate with Newton PDAs and other
communications devices.

» The Macintosh PowerBook Intelligent Battery is a lithium ion battery, available
separately as an additional or replacement battery.

= The Macintosh PowerBook 45W AC Adapter, which comes with the computer, is also
available separately. The adapter can recharge one internal battery in just four hours
while the computer is running or two hours while the computer is shut down or in
sleep mode.

Compeatibility Issues

The Macintosh PowerBook 190 computer incorporates many significant changes from
earlier Macintosh PowerBook designs. This section highlights key areas you should
investigate in order to ensure that your hardware and software work properly with the
new Macintosh PowerBook models. These topics are covered in more detail in
subsequent sections.

RAM Expansion Cards

The RAM expansion card used in the Macintosh PowerBook 190 computer is the same
new design used in the Macintosh PowerBook 5300. RAM expansion cards designed for
earlier Macintosh PowerBook models will not work in the Macintosh PowerBook 190
models. See the section “RAM Expansion” beginning on page 39 for more information.

Number of Colors

The controller circuitry for the flat panel display includes a 256-entry color lookup table
(CLUT) and is compatible with software that uses QuickDraw and the Palette Manager.
The controller supports a palette of thousands of colors. However, due to the nature of
color LCD technology, some colors are dithered or exhibit noticeable flicker. Apple has

6 Peripheral Devices

CHAPTER 1

Introduction

developed a new gamma table for the color displays that minimizes flicker and
optimizes the available colors. For the active matrix color display, the effective range of
the CLUT is about 260,000 colors. For the DualScan color display, the range of the CLUT
is about 4000 colors.

See the section “Flat Panel Displays” beginning on page 24 for more information about
the internal display hardware and LCD screen.

Video Mirror Mode

When a video card is installed and an external monitor is in use, the user can select video
mirror mode, in which the external monitor mirrors (duplicates) the flat panel display.
Applications that write directly to the display buffer may not be compatible with video
mirror mode unless they take precautions to ensure that they do not write outside the
active portion of the display. That is not a problem for applications that use QuickDraw
and never write directly to the display buffer.

See the section “Video Mirroring” on page 49 for more information about video modes.

Sound Sample Rates

The Macintosh PowerBook 190 computer provides sound sample rates of 22.05 kHz,
44.1 kHz, and 48 kHz. The 22.05 kHz sample rate is slower than the 22.254 kHz sample
rate used in some older Macintosh models. The 22.254 kHz sample rate was derived
from the 16 MHz system clock; the 22.05 kHz rate was chosen for compatibility with the
44.1 kHz audio CD sample rate.

For sound samples made at the 22.254 kHz rate, playback at the 22.05 kHz rate is about 1
percent low in pitch. Furthermore, programs that bypass the Sound Manager and write
to the sound FIFOs at the older rate now write too many samples to the FIFOs, causing
some samples to be dropped. The result is a degradation in sound quality for those
programs. Programs that use the Sound Manager to generate sounds are not affected by
the change.

Power Manager Interface

Developers have written software that provides expanded Power Manager control for
some older Macintosh PowerBook models. That software will not work in the Macintosh
PowerBook 190 computer.

Until now, third-party software for the Power Manager has worked by reading and
writing directly to the Power Manager’s data structures, so it has had to be updated
whenever Apple brings out a new model with changes in its Power Manager software.
Starting with the Macintosh PowerBook 520 and 540 computers, the system software
includes interface routines for program access to the Power Manager functions, so it is
no longer necessary for applications to deal directly with the Power Manager’s data
structures. For more information, see Inside Macintosh: Devices.

Compatibility Issues 7

CHAPTER 1

Introduction

Developers should not assume that the Power Manager’s data structures are the same on
all Macintosh PowerBook models. In particular, developers should beware of the
following assumptions regarding different PowerBook models:

» assuming that timeout values such as the hard disk spindown time reside at the same
locations in parameter RAM

» assuming that the power-cycling process works the same way or uses the same
parameters

» assuming that direct commands to the Power Manager microcontroller are supported
on all models

Compatibility Issues

CHAPTER 2

Architecture

CHAPTER 2

Architecture

The architecture of the Macintosh PowerBook 190 computer is partitioned into three
subsystems: the processor/ memory subsystem, the input/output subsystem, and the
external video card. The processor/memory subsystem operates at 33 MHz on the
microprocessor bus. The input/output subsystem operates at 25 MHz on the I/O bus, a
68030-compatible bus. An Apple custom IC called the Pratt IC acts as the bridge between
the two buses, translating processor bus cycles into single or multiple I/ O bus cycles, as
needed. The video card provides the signals for an external video monitor.

The block diagram shown in Figure 2-1 shows the two subsystems along with other
modules attached to them.

Figure 2-1 Block diagram

ADB port
Processor and SRAM MPower —() Trackpad
memory 68040 anager

Keyboard
su bsystem . _:> Y
processor

I Singer —@Sound in
o J—
ROM Whitney sound IC —@Sound out
110 .
controller Combo Serlal port A
Pratt — .
. Ra'lor\:\sfl'on - RAM SCC and Serlal port B (IR)
X| i
e memory scsiic scsi
controller

Baboon

IDE drive === Media

and floppy bay
disk drive
! ! controller
: . B
, . ; amey PCMCIA
! Keystone Ariel ! lot
. VRAM | : PCMCIA siots

J—

: video video ! controller
' controller DAC '
: — :
! External video !
' Video card ! Ccsc
TTTTTToTomTmmmmmmmees ! video F_Iat panel

controller display

10

CHAPTER 2

Architecture

Processor / Memory Subsystem

The processor/ memory subsystem includes the MC68LC040 microprocessor, main RAM,
and ROM. An optional RAM expansion card can be plugged into the logic board and
becomes part of the processor/ memory subsystem.

Microprocessor

The microprocessor used in the Macintosh PowerBook 190 computer is the MC68LC040.
The MC68LC040 does not contain an FPU (floating-point unit). The MC68LC040 does
include a built-in MMU (memory management unit).

The MC68LC040 microprocessor runs at an internal clock rate that is double its external
clock rate. With an external rate of 33 MHz, the internal clock rate is 66 MHz.

For complete technical details, see the MC68040 User’s Manual and the MC68040
Designer’s Handbook.

RAM

The built-in RAM consists of 4 or 8 MB of dynamic RAM (DRAM). The RAM ICs are the
low-power, self-refreshing type with an access time of 70 ns.

An optional RAM expansion card plugs into a 120-pin connector on the logic board.
With the RAM expansion card installed, the processor/ memory subsystem supports up
to 40 MB of RAM. The RAM expansion card for the Macintosh PowerBook 190 computer
is not compatible with the RAM card used in earlier PowerBook models. See the section
“RAM Expansion” beginning on page 39 for details.

ROM

The ROM in the Macintosh PowerBook 190 computer is implemented as a 512K by 32-bit
array consisting of a 1 M by 16-bit ROM IC. The ROM supports burst mode so it does
not degrade the performance of the microprocessor. The ROM IC provides 2 MB of
storage, which is located in the system memory map between addresses $3000 0000 and
$3FFF FFFFE. The ROM data path is 32 bits wide and addressable only as longwords. See
Chapter 5, “Software Features,” for a description of the features of this new ROM.

Pratt Memory Controller IC

The Pratt IC is an Apple custom IC that provides RAM and ROM memory control and
also acts as the bridge between the MC68040 microprocessor bus and the MC68030 /0O
bus. The Pratt IC transparently translates MC68040 bus cycles into single or multiple
MC68030 dynamically sized bus cycles. Because the Pratt IC seamlessly integrates the
two buses, the microprocessor and other bus masters operate as though they were on the
same bus.

Processor/Memory Subsystem 11

CHAPTER 2

Architecture

The Pratt IC provides address multiplexing and refresh signals for the DRAM devices.
For information about the address multiplexing, see “Address Multiplexing” on page 43.
The Pratt IC supports read, write, and page mode cycles to the RAM. Pratt generates a
2048-byte CAS-before-RAS refresh cycle every 128 ms.

Bus Bridge

The Pratt IC acts as a bridge between the processor bus and the I/O bus, converting
signals on one bus to the equivalent signals on the other bus. The bridge functions are
performed by two converters. One accepts requests from the processor bus and presents
them to the I/O bus in a manner consistent with a 68030 microprocessor. The other
converter accepts requests from the I/O bus and provides access to the RAM and ROM
on the processor bus.

The bus bridge in the Pratt IC runs asynchronously so that the processor bus and the I/O
bus can operate at different rates. The processor bus operates at a clock rate of 33 MHz,
and the I/ O bus operates at 25 MHz.

Input/Output Subsystem

12

The input/output subsystem includes the components that communicate by way of
the I/O bus:

s the Whitney custom IC

s the I/O controller ICs Combo and Singer

s the Power Manager IC

= the display controller IC

» the Baboon custom IC that controls the expansion bay

s the TREX custom IC that controls the PCMCIA slots

The next few sections describe these components.

Whitney Peripheral Support IC

The Whitney IC is a custom IC that provides the interface between the system bus and
the I/O bus that supports peripheral device controllers. The Whitney IC incorporates the
following circuitry:

= VIA1 like that in other Macintosh computers
s SWIM II floppy disk controller
» CPUID register

Input/Output Subsystem

CHAPTER 2

Architecture

The Whitney IC also performs the following functions:

= bus error timing for the I /O bus

» bus arbitration for the I/O bus

= interrupt prioritization

= VIA2 functions

= sound data buffering

= clock generation

= power control signals

The Whitney IC contains the interface circuitry for the following peripheral ICs:
s Combo, which is a combination of SCC and SCSI ICs

= Singer, the sound codec IC

The Whitney IC provides the device select signals for the following ICs:
= the flat panel display controller

= the external video controller

The Whitney IC also provides the power off and reset signals to the peripheral
device ICs.

Combo IC

The Combo custom IC combines the functions of the SCC IC (85C30 Serial Communica-
tions Controller) and the SCSI controller IC (53C80). The SCC portion of the Combo IC
supports the serial I/ O port. The SCSI controller portion of the Combo IC supports the
external SCSI devices.

Singer IC

The Singer custom IC is a 16-bit digital sound codec. It conforms to the IT&T ASCO 2300
Audio-Stereo Code Specification. The Whitney IC maintains sound I/O buffers in main
memory for sound samples being send in or out through the Singer IC. For information
about the operation of the Singer IC, see the section “Sound System” on page 29.

Power Manager IC

The Power Manager IC is a 68HCO05 microprocessor that operates with its own RAM and
ROM. The Power Manager IC performs the following functions:

= controls sleep, shutdown, and on/off modes
= controls power to the other ICs
= controls clock signals to the other ICs

= supports the ADB

Input/Output Subsystem 13

14

CHAPTER 2

Architecture

= scans the keyboard
= controls display brightness
= monitoring battery charge level

= controls battery charging

Display Controller IC

A CSC (color support chip) IC provides the data and control interface to the LCD panel.
The CSC IC contains a 256-entry CLUT, RAMDAC, display buffer controller, and flat
panel control circuitry. For more information, see “Flat Panel Display Circuitry” on
page 24.

Baboon Custom IC

The Baboon custom IC provides the interface to the expansion bay. The IC performs
four functions:

= controls the expansion bay

= controls the IDE interfaces, both internal and in the expansion bay
= buffers the floppy disk signals to the expansion bay

= decodes addresses for the PCMCIA slots and the IDE controller

The Baboon IC controls the power to the expansion bay and the signals that allow the
user to insert a device into the expansion bay while the computer is operating. Those
signals are fully described in the section “Expansion Bay” beginning on page 32.

The Baboon IC controls the interface for both the internal IDE hard disk drive and a
possible second IDE drive in the expansion bay. For information about the drive, see the
section “Internal Hard Disk Drive” beginning on page 18. For information about the IDE
drive signals in the expansion bay, see the section “Signals on the Expansion Bay
Connector” beginning on page 34 and Table 4-4 on page 36.

The Baboon IC also handles the signals to a floppy disk drive installed in the expansion
bay. For more information, see the section “Signals on the Expansion Bay Connector”
beginning on page 34.

The address decode portion of the Baboon IC provides address decoding for the IDE
controller portion of the IC. It also provides the chip select decode for the TREX custom
IC and address decoding for the two PCMCIA slots.

Input/Output Subsystem

CHAPTER 2

Architecture

TREX Custom IC

The TREX custom IC provides the interface and control signals for the PCMCIA slots.
The main features of the TREX IC are

= the interrupt structure for the PCMCIA slots
= transfers of single-byte and word data to and from the PCMCIA slots

= power management for the PCMCIA slots, including
o sleep mode
o control of power to individual sockets

o support of insertion and removal of PC cards while the computer is operating
= support for software control of card ejection

» support for time-division multiplexing (TDM), Apple Computer’s technique for
implementing PC cards for telecommunications

For more information about the operation of the PCMCIA slots, see “PCMCIA Slot” on
page 57.

Video Card

The video card includes two additional components that communicate by way of the
I/O bus:

= the Keystone custom video controller IC

s the Ariel custom video output IC

Keystone Video Controller IC

The Keystone custom IC contains the timing and control circuits for the external video
circuitry. The Keystone IC has internal registers that the video driver uses to set the
horizontal and vertical timing parameters. The Keystone IC also generates the video
refresh addresses for the VRAM.

Ariel Video Output IC

The Ariel custom IC contains the video CLUT (color lookup table) and DAC
(digital-to-analog converter). The Ariel IC takes the serial video data from the VRAM
and generates the actual RGB signals for the external video monitor. The Ariel is pin and
software compatible with the AC843 but does not support 24 bits per pixel.

For more information about the operation of the video card, see the section “Video Card”
beginning on page 48.

Video Card 15

CHAPTER 3

I/O Features

CHAPTER 3

1/0 Features

This chapter describes both the built-in I/ O devices and the interfaces for external I/O
devices. Like the earlier chapters, it emphasizes the similarities and differences between
the Macintosh PowerBook 190 computer and other PowerBook models.

This chapter describes the following built-in devices and I/O ports:
» internal IDE hard disk drive

= built-in trackpad

= built-in keyboard

= built-in flat panel display

= serial port

= SCSI port

= Apple Desktop Bus (ADB) port

s IR module

sound system

Note

For information about the expansion bay and the optional video card,
see Chapter 4, “Expansion Modules.” O

Internal Hard Disk Drive

18

The Macintosh PowerBook 190 computer has an internal hard disk that uses the
standard IDE (integrated drive electronics) interface. This interface, used for IDE
drives on IBM AT-compatible computers, is also referred to as the ATA interface.

The implementation of the ATA interface on the Macintosh PowerBook 190 computer is
a subset of the ATA /IDE specification, ANSI proposal X3T10/0948D, Revision 2K or
later (ATA-2).

For information about the software interface, see Chapter 7, “Software for ATA Devices.”

Hard Disk Specifications

Figure 3-1 shows the maximum dimensions of the hard disk and the location of the
mounting holes. The minimum clearance between any conductive components on the
drive and the bottom of the mounting envelope is 0.5 mm.

Internal Hard Disk Drive

CHAPTER 3

1/0 Features

Figure 3-1 Maximum dimensions of the internal hard disk

19.25 maximum
[0.757 maximum]

4.06 61.72

—
| [0.160] [2.430]
. 70.00

[2.755]

Note: Dimensions are in millimeters [inches].

Internal Hard Disk Drive

34.93+0.38
[1.375+0.015]

38.10
[1.500]

101.60 maximum
[4.00 maximum]

\ M3, 3.5 deep,
minimum full
thread, 8X

19

CHAPTER 3

1/0 Features

Hard Disk Connectors

The internal hard disk has a 48-pin connector that carries both the IDE signals and the
power for the drive. The connector has the dimensions of a 50-pin connector, but with
one row of pins removed. The remaining pins are in two groups: pins 1-44, which carry
the signals and power, and pins 46—48, which are reserved. Figure 3-2 shows the
connector and identifies the pins. Notice that pin 20 has been removed, and that pin 1 is
located nearest the gap, rather than at the end of the connector.

Figure 3-2 Connector for the internal IDE hard disk

43 41 39 37 35 33 31 29 27 25 23 21 19 17 1513 11 9 7 5 3 1 47 45
Oo0ooo0ooooooooooooobooooaoan O 0O
Ooo0o0oooooooooan Ooo0oooooooad O 0O
44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 48 46

Note: gaps are equivalent to missing pins.

Connector Location

Figure 3-3 shows the position of the connector on the hard disk drive.

Figure 3-3 Position of the hard disk connector

Key vacant Pin 1
position pin 20 /7

3.99 ?

[0.157] 19.25 maximum
_¢ [0.757 maximum]
—_"DDDDDDDDDDD Ooooooooooao DD|

oooooOoooooo ooooooooo oo

* \— Vacant row in
— -+— 10.14+0.375 50-pin connector
[0.399+0.014]

Center line of pin 44

Note: Dimensions are in millimeters [inches].

Internal Hard Disk Drive

CHAPTER 3

1/0 Features

Pin Assignments

Table 3-1 shows the pin assignments on the 40-pin section of the hard disk connector. A
slash (/) at the beginning of a signal name indicates an active-low signal.

Table 3-1 Pin assignments on the hard disk connector
Pin Pin
number Signal name number Signal name
1 /RESET 2 GROUND
3 DD7 4 DDS8
5 DDé6 6 DD9
7 DD5 8 DD10
9 DD4 10 DD11
11 DD3 12 DD12
13 DD2 14 DD13
15 DD1 16 DD14
17 DDO0 18 DD15
19 GROUND 20 KEY
21 DMARQ 22 GROUND
23 /DIOW 24 GROUND
25 /DIOR 26 GROUND
27 IORDY 28 CSEL
29 /DMACK 30 GROUND
31 INTRQ 32 /TOCS16
33 DAl 34 /PDIAG
35 DAO 36 DA2
37 /CS0 38 /CS1
39 /DASP 40 GROUND
41 +5V LOGIC 42 +5V MOTOR
43 GROUND 44 Reserved
Note

The IDE data bus is connected to the I/ O bus through bidirectional bus
buffers. To match the big-endian format of the MC68030-compatible I/ O
bus, the bytes are swapped. The lower byte of the IDE data bus,
DD(0-7), is connected to the high byte of the upper word of the I/O bus,
I0OD(24-31). The higher byte of the IDE data bus, DD(8-15), is connected
to the low byte of the upper word of the I/O bus, IOD(16-23). O

Internal Hard Disk Drive 21

CHAPTER 3

1/0 Features

IDE Signal Descriptions

Table 3-2 describes the IDE signals on the hard disk connector.

Table 3-2 Signals on the IDE hard disk connector

Signal name Signal description

/CS0 IDE register select signal. It is asserted low to select the main task file
registers. The task file registers indicate the command, the sector
address, and the sector count.

/CS1 IDE register select signal. It is asserted low to select the additional
control and status registers on the IDE drive.

CSEL Cable select; if CSEL is asserted, the device address is 1; if negated, the
device address is 0.

DA(0-2) IDE device address; used by the computer to select one of the registers
in the IDE drive. For more information, see the descriptions of the /CS0
and /CS1 signals.

DD(0-15) IDE data bus; buffered from IOD(16-31) of the computer’s I/ O bus.
DD(0-15) are used to transfer 16-bit data to and from the drive buffer.
DD(8-15) are used to transfer data to and from the internal registers
of the drive, with DD(0-7) driven high when writing.

/DASP Device active or slave present.

/DIOR IDE 1/0O data read strobe.

/DIOW IDE 1/0O data write strobe.

/DMACK Used by the host to initiate a DMA transfer in response to DMARQ.

DMARQ Asserted by the device when it is ready to transfer data to or
from the host.

IORDY IDE I/O ready; when driven low by the drive, signals the CPU to insert
wait states into the I/O read or write cycles.

/1I0CS16 IDE I/O channel select; asserted low for an access to the data port. The
computer uses this signal to indicate a 16-bit data transfer.

INTRQ IDE interrupt request. This active-high signal is used to inform the
computer that a data transfer is requested or that a command has
terminated.

KEY This pin is the key for the connector.

/PDIAG Asserted by device 1 to indicate to device 0 that it has completed the

power-on diagnostics.

/RESET Hardware reset to the drive; an active-low signal.

Internal Hard Disk Drive

CHAPTER 3

1/0 Features

Trackpad

The pointing device in the Macintosh PowerBook 190 computer is a trackpad, an
integrated flat pad provides precise cursor positioning in response to motions of the
user’s fingertip over the surface of the pad. A single button below the trackpad is used to
make selections.

The trackpad is a solid-state device that emulates a mouse by sensing the motions of the
user’s finger over its surface and translating those motions into ADB commands. The
trackpad is lighter and more durable than the trackball used in earlier Macintosh
PowerBook computers, and it consumes less power.

Also see the section “Trackpad Support” on page 65.

Keyboard

A new keyboard design provides 76 (U.S. version) or 77 (ISO version) keys, including 12
function keys. Figure 3-4 shows the version of the keyboard used on machines sold in
the United States. Figure 3-5 shows the version of the keyboard used on machines sold in
countries that require the ISO standard.

Figure 3-4 Keyboard, U.S. layout

caps lock

ul
- t

Trackpad 23

CHAPTER 3

1/0 Features

Figure 3-5 Keyboard, ISO layout

By removing two screws, the user can lift out the keyboard to obtain access to the
internal components and expansion connectors inside the computer.

Flat Panel Displays

24

The Macintosh PowerBook 190 computer has a built-in flat panel display showing 640 by
480 pixels. Two types of flat panel display are used in the different models, as shown in
Table 3-3. Both types of display have a dot pitch of 0.30 mm and are backlit by a cold
cathode fluorescent lamp (CCFL). Both displays can show up to 8 bits per pixel, which
provides 256 colors on color displays or 256 levels of gray on grayscale displays.

Table 3-3 Characteristics of the displays

Display size Dot pitch Bits per Number of

Display type (inches) (mm) pixel colors
DualScan color 104 0.30 8 256
(FSTN)

Supertwist grayscale 9.5 0.27 8 256
(FSTN)

Flat Panel Display Circuitry

The flat panel display circuitry emulates a NuBus" video card installed in slot $0. There
is no declaration ROM as such; its functions have been incorporated into the system
ROM. The display circuitry includes the CSC controller IC and a display buffer
consisting of 512 KB of VRAM. The LCD display is compatible with software that uses
QuickDraw and the Palette Manager. The display supports color table animation.

Flat Panel Displays

CHAPTER 3

1/0 Features

Types of Displays

Flat panel displays come in two types: active matrix Passive matrix refers to a display technology that

and passive matrix. does not have individual transistors. That technology
Active matrix displays, also called thin-film is also called FSTN, for film supertwist nematic,

transistor (TFT) displays, have a driving transistor sometimes shortened to just supertwist.

for each individual pixel. The driving transistors DualScan is Apple Computer’s new type of FSTN

give active matrix displays high contrast and fast color, an improved version of the color display used in

response time. the Macintosh PowerBook 165c.

Number of Colors

The display controller IC contains a 256-entry CLUT. Although the CLUT supports a
palette of thousands of colors, many of the possible colors do not look acceptable on the
display. Due to the nature of color LCD technology, some colors are dithered or exhibit
noticeable flicker. Apple has developed new gamma tables for these displays that
minimize flicker and optimize available colors. With these gamma tables, the effective
range of the CLUT for the active matrix color display is about 260,000 colors; for the
DualScan color display, the effective range is about 4000 colors.

Serial Port

The Macintosh PowerBook 190 computer has a standard Macintosh serial port for
synchronous, asynchronous, or AppleTalk serial communication. The 8-pin mini-DIN
connector on the back panel is the same as those on other Macintosh computers. Figure
3-6 shows the connector pins and Table 3-4 shows the signal assignments.

Figure 3-6 Serial port connector

®0OE
® O
®O

Serial Port

25

CHAPTER 3

1/0 Features

Table 3-4 Serial port signals

E:Jnmber Signal name Signal description

1 HSKo Handshake output

2 HSKi Handshake input

3 TxD- Transmit data —

4 SG Signal ground

5 RxD- Receive data —

6 TxD+ Transmit data +

7 GPi General-purpose input
8 RxD+ Receive data +

SCSI Port

26

The SCSI port on the Macintosh PowerBook 190 computer supports the SCSI interface as
defined by the American National Standards Institute (ANSI) X3T9.2 committee.

The external HDI-30 connector is identical to those used in other Macintosh PowerBook
models. The SCSI portion of the Combo IC connects directly to the external SCSI
connector and can sink up to 48 mA through each of the pins connected to the SCSI bus.
The data and control signals on the SCSI bus are active low signals that are driven by
open drain outputs.

Table 3-5 shows the signal assignments for the external SCSI connector. Note that pin 1
of the external SCSI connector is the /SCSI.DISK. MODE signal.

Table 3-5 Signals on the SCSI connector

E:Jnmber Signal name Signal name

1 /SCSL.DISK.MODE SCSI disk operating mode

2 /DBO Bit 0 of SCSI data bus

3 GND Ground

4 /DB1 Bit 1 of SCSI data bus

5 TERMPWR Termination power (not used; reserved)
6 /DB2 Bit 2 of SCSI data bus

7 /DB3 Bit 3 of SCSI data bus

continued

SCSI Port

CHAPTER 3

1/0 Features

Table 3-5 Signals on the SCSI connector (continued)

Pin

number Signal name Signal name

8 GND Ground
9 /ACK Acknowledge for a REQ/ACK data

transfer handshake

10 GND Ground

11 /DB4 Bit 4 of SCSI data bus

12 GND Ground

13 GND Ground

14 /DB5 Bit 5 of SCSI data bus

15 GND Ground

16 /DB6 Bit 6 of SCSI data bus

17 GND Ground

18 /DB7 Bit 7 of SCSI data bus

19 /DBP Parity bit of SCSI data bus

20 GND Ground

21 /REQ Request for a REQ/ACK data
transfer handshake

22 GND Ground

23 /BSY Indicates whether SCSI data bus is busy

24 GND Ground

25 /ATN Indicates an attention condition

26 /C/D Indicates whether control or data is
on the SCSI bus

27 /RST SCSI data bus reset

28 /MSG Indicates the message phase

29 /SEL Selects a target or an initiator

30 /1/0 Controls the direction of data movement

SCSI Port 27

CHAPTER 3

1/0 Features

ADB Port

The Apple Desktop Bus (ADB) port on the Macintosh PowerBook 190 computer is
functionally the same as on other Macintosh computers. Figure 3-7 shows the pins on the
connector for the ADB port.

Figure 3-7 ADB connector

28

© ©
©, ®
[]

The ADB is a single-master, multiple-slave serial communications bus that uses an
asynchronous protocol and connects keyboards, graphics tablets, mouse devices, and
other devices to the computer. The custom ADB microcontroller drives the bus and reads
status from the selected external device. A 4-pin mini-DIN connector connects the ADB
controller to the outside world. Table 3-6 lists the ADB connector pin assignments.

For more information about the ADB, see Guide to the Macintosh Family Hardware,

second edition.

Table 3-6 ADB connector pin assignments

Pin

number Name Description

1 ADB Bidirectional data bus used for input and output; an

open collector signal pulled up to +5 volts through a
470-ohm resistor on the main logic board.

2 PSW Power on signal; generates reset and interrupt key
combinations.

3 +5V +5 volts from the computer.

4 GND Ground from the computer.

IMPORTANT

The total current available for all devices connected
to the +5 V pins on the ADB is 100 mA. a

ADB Port

CHAPTER 3

1/0 Features

Infrared Module

The Macintosh PowerBook 190 computer has an infrared (IR) module that can communi-
cate with Newton PDAs and other communications devices. When the computer is
placed within a few feet of another machine with an IR interface, it can send and receive
serial data using one of several standard communications protocols. The other machine
may be another IR-equipped computer, a Newton PDA, or some other IR-equipped
device such as a TV set.

The IR module supports the following communications protocols:
= LocalTalk

= Newton PDA

= HP-IRDA

= TV remote control

For LocalTalk operation, the IR module takes serial bits from the SCC and transmits
them using a modified form of pulse encoding called PPM-4. This method of encoding
uses four cycles of a 3.92 MHz carrier for each pulse, which increases the system’s
immunity to interference from fluorescent lights.

The modulation method used in the Newton PDA consists of gating a 500 kHz carrier on
and off. This method is capable of data rates up to 38.4k bits per second.

Sound System

The 16-bit stereo audio circuitry provides high-quality sound input and output through
the built-in microphone and speaker. The user can also connect external input and
output devices by way of the sound input and output jacks.

The sound system is based on the Singer codec IC along with input and output
amplifiers and signal conditioners. In the Macintosh PowerBook 190 computer, the
Singer codec supports two channels of digital sound with sample sizes up to 16 bits
and sample rates of 11 kHz, 22.05 kHz, and 44.1 kHz.

The frequency response of the sound circuits, not including the microphone and speaker,
is within plus or minus 2 dB from 20 Hz to 20 kHz. Total harmonic distortion and noise
is less than 0.05 percent with a 1 V rms sine wave input. The signal-to-noise ratio (SNR)
is 85 dB, with no audible discrete tones.

Infrared Module 29

30

CHAPTER 3

1/0 Features

Sound Inputs

The sound system accepts inputs from several sources:
» built-in microphone

= sound from the expansion bay

» 1-bit sound from the PCMCIA slot

The sound signal from the built-in microphone goes through a dedicated preamplifier
that raises its nominal 30 mV level to the 1 V level of the codec circuits in the Singer IC.

Stereo sound signals from the expansion bay go through an analog multiplexer raises the
nominal 0.5 V level of the expansion-bay sound to the 1 V input level of the codec circuits.

The sound input from the expansion bay has the following electrical characteristics:
= input impedance: 3.2kQ
= maximum level: 0.5V

Each PCMCIA card has one sound input pin, and the computer accepts either one or two
cards. The signals from the sound input pins are mixed together and passed through a
low-pass filter on their way to the codec circuits in the Singer IC. The low-pass filter has
a cutoff frequency of 5 kHz. The filter has two functions: it takes the sharp edge off any
tones sent from a PC card and serves as a reconstruction filter for PWM sounds
generated by a PC card.

The sound input from the PCMCIA slot has the following electrical characteristics:
= input impedance: 20kQ

s maximum level: 1 V rms

Sound Outputs

The sound system sends computer-generated sounds or sounds from the expansion bay
or PC card to a built-in speaker and to an external sound output jack. The sound output
jack is located on the back of the computer.

The sound output jack provides enough current to drive a pair of low-impedance
headphones. The sound output jack has the following electrical characteristics:

= output impedance: 33 Q

» minimum recommended load impedance: 32 Q
= maximum level: 1 V rms

= maximum current: 32 mA peak

The computer turns off the sound signals to the internal speaker when an external device
is connected to the sound output jack and during power cycling.

Sound System

CHAPTER 4

Expansion Modules

CHAPTER 4

Expansion Modules

This chapter describes each of the following expansion features of the Macintosh
PowerBook 190 computer:

= expansion bay
= RAM expansion
» video card (for an external monitor)

= PCMCIA slot

Expansion Bay

The expansion bay is an opening in the Macintosh PowerBook 190 computer that accepts
a plug-in disk drive such as a floppy disk. The expansion bay can also accept a power
device such as an AC adapter or a second battery.

Expansion Bay Design

Figure 4-1 shows a module designed to fit into the expansion bay. Figure 4-2 shows the
dimensions of the expansion bay.

Figure 4-1 Expansion bay module

32

Expansion Bay

CHAPTER 4

Expansion Modules

Figure 4-2 Expansion bay dimensions

18.00 é(%
[0.709]

106.00
[4.173]

- 145.75 [5.738] -

Note: Dimensions are in millimeters [inches].

Expansion Bay Connector

The expansion bay connector is a 90-pin shielded connector. The pins are divided into
two groups by a gap. Pins 1 and 46 are at the end of the connector nearest the gap; pins
45 and 90 are at the end farthest from the gap. The connector on the main logic board is
AMP part number C-93-1817-53.

A matching card connector is available as part number C-93-1817-54 from AMDP, Inc. For
a specification sheet or information about obtaining this connector, contact AMP at

AMP, Inc.

19200 Stevens Creek Blvd.
Cupertino, CA 95014-2578
408-725-4914

AppleLink: AMPCUPERTINO

IMPORTANT

The expansion bay connector is designed so that when a module is
inserted into the expansion bay, the connections are made in the
following order: first the ground by way of the connector shells, then
the power pins, and last of all the signal lines. a

Expansion Bay 33

34

CHAPTER 4

Expansion Modules

Signals on the Expansion Bay Connector

Table 4-1 shows the signal assignments on the expansion bay connector. Signal names
that begin with a slash (/) are active low.

Table 4-1 Signal assignments on the expansion bay connector
Pin Pin
number Signal name number Signal name
1 Reserved 28 IDE_D(5)
2 Reserved 29 IDE_D(7)
3 MB_+3V 30 IDE_D(8)
4 MB_SND_COM 31 IDE_D(10)
5 Reserved 32 MB_+3V
6 Reserved 33 IDE_D(13)
7 GND 34 IDE_D(15)
8 Reserved 35 /DIOR
9 /DEV_IN 36 /CS3FX
10 DEV _ID(1) 37 Reserved
11 GND 38 IDE_ADDR(1)
12 MB_+5V 39 Reserved
13 /WRREQ 40 Reserved
14 PHASE(0) 41 Reserved
15 MB_+5V 42 Reserved
16 PHASE(3) 43 Reserved
17 WRDATA 44 Reserved
18 FD_RD 45 MB_+BAT
19 HDSEL 46 Reserved
20 GND 47 Reserved
21 Reserved 48 MB _SND L
22 Reserved 49 MB_SND R
23 Reserved 50 Reserved
24 IOCHRDY 51 Reserved
25 GND 52 Reserved
26 IDE_D(2) 53 Reserved
27 MB_+3V 54 DEV_ID(0)

continued

Expansion Bay

CHAPTER 4

Expansion Modules

Table 4-1 Signal assignments on the expansion bay connector (continued)
Pin Pin

number Signal name number Signal name
55 DEV_ID(2) 73 IDE_D(6)

56 Reserved 74 GND

57 Reserved 75 IDE_D(9)

58 GND 76 IDE_D(11)
59 PHASE(1) 77 IDE_D(12)
60 PHASE(2) 78 IDE_D(14)
61 GND 79 GND

62 MB_+5V 80 /DIOW

63 /FL_ENABLE 81 /CS1FX

64 /MB_IDE_RST 82 IDE_ADDR(0)
65 Reserved 83 IDE_ADDR(2)
66 Reserved 84 GND

67 MB_+5V 85 IDE_INTRQ
68 Reserved 86 Reserved

69 IDE_D(0) 87 Reserved

70 IDE_D(1) 88 Reserved

71 IDE_D(3) 89 GND

72 IDE_D(4) 90 MB_+BAT

Signal Definitions

The signals on the expansion bay connector are of three types: expansion bay control
signals, floppy disk signals, and IDE signals. The next three tables describe the three
types of signals: Table 4-2 describes the control signals, Table 4-3 describes the floppy
disk signals, and Table 4-4 describes the IDE signals.

Note

In Tables 4-2 through 4-4, signal names that
begin with a slash (/) are active low. O

Expansion Bay

35

36

CHAPTER 4

Expansion Modules

Table 4-2 Control signals on the expansion bay connector

Signal name Signal description

DEV_ID(0-2) These three signal lines identify the type of media bay device. A
value of 000b identifies a floppy-disk drive; 011b identifies all other
IDE devices.

/DEV_IN This signal is low whenever a device is installed in the expansion

bay; it is used by the Baboon IC to determine when a device has
been inserted or removed.

MB_SND_COM Common (ground) line for expansion bay sound signals.

MB_SND_L Left channel sound signal from the expansion bay device.

MB_SND_R Right channel sound signal from the expansion bay device.

Table 4-3 Floppy disk signals on the expansion bay connector

Signal name Signal description

FD_RD Read data from the floppy disk drive.

/FL_ENABLE Floppy disk drive enable.

PHASE(0-3) Phase(0-3) are state-control lines to the drive; Phase(3) is the strobe
signal for writing to the drive’s control registers.

WRDATA Write data to the floppy disk drive.

/WRREQ Write data request signal.

Table 4-4 IDE signals on the expansion bay connector

Signal name Signal description

/ CS1FX IDE register select signal. It is asserted low to select the main task

file registers. The task file registers indicate the command, the
sector address, and the sector count.

/ CS3FX IDE register select signal. It is asserted low to select the additional
control and status registers on the IDE drive.

/DIOR IDE I/O data read strobe.

/ DIOW IDE I/O data write strobe.

IDE_ADDR(0-2) IDE device address; used by the computer to select one of the
registers in the IDE drive. For more information, see the
descriptions of the /CS1FX and /CS3FX signals.

IDE_D(0-15) IDE data bus, buffered from IOD(16-31) of the controller IC.
IDE_D(0-15) are used to transfer 16-bit data to and from the drive
buffer. IDE_D(0-7) are used to transfer data to and from the drive’s
internal registers, with IDE_D(8-15) driven high when writing.

continued

Expansion Bay

CHAPTER 4

Expansion Modules

Table 4-4 IDE signals on the expansion bay connector (continued)

Signal name Signal description

IOCHRDY IDE I/O channel ready; when driven low by the IDE drive, signals
the CPU to insert wait states into the I/O read or write cycles.

IDE_INTRQ IDE interrupt request. This active high signal is used to inform the
computer that a data transfer is requested or that a command has
terminated.

/MB_IDE_RST Hardware reset to the IDE drive.

Unused IDE Signals

Several signals defined in the standard interface for the IDE drive are not used by the
expansion bay. Those signals are listed in Table 4-5 along with any action required for the
device to operate in the media bay.

Table 4-5 Unused IDE signals

Signal name Comment

DMARQ No action required.

CSEL This signal must be tied to ground to configure the device as
the master in the default mode.

DMACK This signal must be pulled high (to the IDE device’s Vcc).

I0CS16 No action required.

PDIAG No action required; the device is never operated in

master-slave mode.

DAS No action required.

Power on the Expansion Bay

Table 4-6 describes the power lines on the expansion bay connector. The MB_+5V line is
controlled by the MB_PWR_EN signal from the Power Manager IC. The current drawn
from MB_+5V must not exceed 1.0 A.

Table 4-6 Power for the expansion bay
Signal name Signal description
GND Ground.

MB_+5V 5V power; maximum

total currentis 1.0 A.

Expansion Bay 37

38

CHAPTER 4

Expansion Modules

User Installation of an Expansion Bay Device

The user can insert a device into the expansion bay while the computer is operating. This
section describes the sequence of control events in the computer and gives guidelines for
designing an expansion bay device so that such insertion does not cause damage to the
device or the computer.

Sequence of Control Signals

Specific signals to the Baboon IC and the Power Manager IC allow the computer to
detect the insertion of a device into the expansion bay and take appropriate action. For
example, when an IDE device is inserted, the computer performs the following sequence
of events:

1. When a device is inserted, the /DEV_IN signal goes low, causing the Baboon IC to
generate an interrupt.

2. The Power Manager IC reads the three DEV_ID signals, which identify the device as
an IDE device.

3. System software responds to the interrupt and sets a signal that turns on the power to
the expansion bay.

4. When the media bay power goes high, the Baboon IC generates another interrupt.

5. System software responds to the power-on interrupt and asserts a signal to enable the
IDE bus in the expansion bay.

6. The software then releases the /MB_IDE_RST signal from the Power Manager IC,
allowing the IDE device to begin operating.

Essentially the reverse sequence occurs when a device is removed from the

expansion bay:

1. When the device is removed, the /DEV_IN signal goes high causing the Baboon IC to
generate an interrupt and disbale the IDE bus.

2. System software responds to the interrupt by reading the device ID settings in the
Power Manager IC, setting a signal to turn off the power to the expansion bay, and
asserting the /MB_IDE_RST signal to disable the IDE drive.

Guidelines for Developers

Each expansion bay device must be designed to prevent damage to itself and to
the computer when the user inserts or removes an expansion bay device with
the computer running.

The expansion bay connector is designed so that when the device is inserted the ground
and power pins make contact before the signal lines.

Even though you can design an expansion bay device that minimizes the possibility of
damage when it is inserted hot—that is, while the computer is running—your
instructions to the user should include warnings against doing so.

Expansion Bay

CHAPTER 4

Expansion Modules

RAM Expansion

This section includes electrical and mechanical guidelines for designing a RAM
expansion card for the Macintosh PowerBook 190 computer.

The RAM expansion card can contain from 8 MB to 32 MB of self-refreshing dynamic
RAM in one to four banks, with 2 MB, 4 MB, or 8 MB in each bank. Table 4-7 shows how
the banks can be implemented with standard RAM devices.

Table 4-7 Configurations of RAM banks

Number
Size of of devices
bank per bank Device size (bits)
2 MB 4 512K x 8
4 MB 8 1Mx4
4 MB 2 1M x16
8 MB 4 2Mx8
IMPORTANT

The RAM expansion card for the Macintosh PowerBook 190 computer is
a new design; cards designed for earlier PowerBook models cannot be
used in this PowerBook model. a

A WARNING
Installation of a RAM expansion card computer must be performed by
an experienced technician. Installation requires care to avoid damage to
the pins on the RAM expansion connector. a

Electrical Design Guidelines for the RAM Expansion Card

This section provides the electrical information you need to design a RAM expansion
card for the Macintosh PowerBook 190 computer. The mechanical specifications are
given in a subsequent section, beginning on page 46.

Connector Pin Assignments

Table 4-8 lists the names of the signals on the RAM expansion connector. Entries in the
table are arranged the same way as the pins on the connector: pin 1 across from pin 2,
and so on. Signal names that begin with a slash (/) are active low.

RAM Expansion 39

40

CHAPT

ER 4

Expansion Modules

Table 4-8 Signal assignments on the RAM expansion connector
Pin Signal name Pin Signal name

1 +5V_MAIN 2 +5V_MAIN

3 +3V_MAIN 4 +3V_MAIN

5 GND 6 GND

7 /RASL(2) 8 RA(11)

9 /WE 10 /RASH(2)
11 /CASL(3) 12 /CASH(3)
13 DataL.(28) 14 DataH(28)
15 DataL.(29) 16 DataH(29)
17 DataL.(30) 18 DataH(30)
19 DataL(31) 20 DataH(31)
21 Datal.(24) 22 DataH(24)
23 DataL(25) 24 DataH(25)
25 DataL.(26) 26 DataH(26)
27 DataL.(27) 28 DataH(27)
29 +5V_MAIN 30 +5V_MAIN
31 DataL.(20) 32 DataH(20)
33 GND 34 GND
35 DataL(21) 36 DataH(21)
37 Datal.(22) 38 DataH(22)
39 DataL.(23) 40 DataH(23)
41 DataL(16) 42 DataH(16)
43 DataL(17) 44 DataH(17)
45 DataL.(18) 46 DataH(18)
47 DataL(19) 48 DataH(19)
49 DataL.(12) 50 DataH(12)
51 +3V_MAIN 52 +3V_MAIN
53 DataL(13) 54 DataH(13)
55 Datal.(14) 56 DataH(14)
57 DataL(15) 58 DataH(15)
59 +5V_MAIN 60 +5V_MAIN
61 DataL(8) 62 DataH(8)

RAM Expansion

continued

CHAPT

ER 4

Expansion Modules

Table 4-8 Signal assignments on the RAM expansion connector (continued)
Pin Signal name Pin Signal name
63 GND 64 /RAM_OE

65 DataL(9) 66 DataH(9)
67 DataL(10) 68 DataH(10)
69 Datal.(11) 70 DataH(11)
71 Datal(4) 72 DataH(4)
73 DataL(5) 74 DataH(5)
75 DataL(6) 76 DataH(6)
77 DataL(7) 78 DataH(7)
79 /CASH(0) 80 /RASH(1)
81 /CASH(2) 82 /CASH(1)
83 +3V_MAIN 84 +3V_MAIN
85 DataH(3) 86 DataL(3)
87 DataH(2) 88 DataL(2)
89 +5V_MAIN 90 +5V_MAIN
91 DataH(1) 92 DataL(1)
93 GND 94 GND
95 DataH(0) 96 DataL(0)
97 RA(3) 98 RA(4)
99 RA(2) 100 RA(5)
101 RA(1) 102 RA(6)
103 RA(0) 104 RA(7)
105 RA(10) 106 RA(8)
107 RA(9) 108 /RASL(0)
109 /RASL(1) 110 /RASL(3)
111 /CASL(1) 112 +12V
113 / CASL(0) 114 /RASH(0)
115 /CASL(2) 116 /RASH(3)
117 +5V_MAIN 118 +3V_MAIN
119 GND 120 GND

RAM Expansion

41

42

CHAPTER 4

Expansion Modules

Signal Descriptions

Table 4-9 describes the signals on the RAM expansion connector. Signal names that begin
with a slash (/) are active low.

Table 4-9

Descriptions of signals on the RAM expansion connector

Signal name
+12V

+5V_MAIN
+3V_MAIN

/CASH(0-3)

/ CASL(0-3)

DataH(0-31)

DataL(0-31)

GND
RA(0-11)

/RAM_OE
/RASL(0-3)

/RASH(0-3)

/WE

RAM Expansion

Description

12.0 V for flash memory; 30 mA maximum.
5.0 V £ 5%; 500 mA maximum.

3.6 V + 5%; 500 mA maximum. Devices that use the +3V supply
must be 5-V tolerant.

Column address select signals for the individual bytes in a longword.
The signals are assigned to the bytes as follows:

/ CASH(3) selects DataH(24-31)
/CASH(2) selects DataH(16-23)
/CASH(1) selects DataH(8-15)
/ CASH(0) selects DataH(0-7)

Column address select signals for the individual bytes in a longword.
The signals are assigned to the bytes as follows:

/CASL(3) selects Datal.(24-31)
/CASL(2) selects Datal.(16-23)
/CASL(1) selects DataL.(8-15)
/ CASL(0) selects DataL(0-7)

Bidirectional 32-bit DRAM data bus. (DataH lines are connected to
corresponding DataL lines on the main logic board.)

Bidirectional 32-bit DRAM data bus. (DataL lines are connected to
corresponding DataH lines on the main logic board.)

Chassis and logic ground.

Multiplexed row and column address to the DRAM devices. (See the
section “Address Multiplexing” on page 43 to determine which bits to
use for a particular type of DRAM device.)

Output enable signal to the DRAM devices.

Row address select signals for the four banks of DRAM whose data

bytes are selected by /CASL(0-3). (Signals /RASL(1-3) are for DRAM
on the expansion card. The /RASL(0) signal selects a bank of DRAM on
the main logic board.)

Row address select signals for the four banks of DRAM whose data
bytes are selected by /CASH(0-3). (Signals /RASH(1-3) are for
DRAM on the expansion card. The /RASH(0) signal selects a bank
of DRAM on the main logic board.)

Write enable for all banks of DRAM.

CHAPTER 4

Expansion Modules

In the table, signals are specified as inputs or outputs with respect to the main logic
board that contains the CPU and memory module; for example, an input is driven by the
expansion card into the logic board.

IMPORTANT

The last letter in the names of row and column strobe signals identifies
signals that are used together: /CASL() signals are used with /RASL()
signals; / CASH() signals are used with /RASH() signals. In the
Macintosh PowerBook 190 computer, corresponding Datal and DataH
lines are connected together. a

Address signals must be stable before the falling edge of RAS. Because each address line
is connected to every DRAM device, whereas each RAS line is connected to only one
bank of devices, the difference in loading can cause the address signals to change more
slowly than the RAS signals. This situation is more likely to arise on cards with many
DRAM devices. One solution is to add 100Q damping resistors on the RAS lines.

Address Multiplexing

Signals RA(0-11) are a 12-bit multiplexed address bus and can support several different
types of DRAM devices.

Depending on their internal design and size, different types of DRAM devices require
different row and column address multiplexing. The operation of the multiplexing is
determined by the way the address pins on the devices are connected to individual
signals on the RA(0-11) bus and depends on the exact type of DRAM used.

Table 4-10 on page 44 shows how the signals on the address bus are connected for
several types of DRAM devices. The device types are specified by their size and by the
number of row and column address bits they require.

Table 4-10 also shows how the signals are multiplexed during the row and column
address phases. For each type of DRAM device, the first and second rows show the
actual address bits that drive each address pin during row addressing and column
addressing, respectively. The third row shows how the device’s address pins are
connected to the signals on the RA(0-11) bus.

IMPORTANT

Some types of DRAM devices don’t use all 12 bits in the row or column
address. The table shows the bit numbers for those unused bits in italics;
bit numbers for the bits that are used are shown in bold. a

Note

The address multiplexing scheme used in the Macintosh PowerBook 190
computer supports only the types of RAM devices shown in Table 4-10.
Other RAM types should not be used. O

RAM Expansion 43

CHAPTER 4

Expansion Modules

Table 4-10 Address multiplexing for some typical DRAM devices
Individual signals on DRAM_ADDR bus

Type of DRAM device [11] [10] [9] [8 [71 [6] [6] [4 [81 [21 [1] [0
1 M x 16, 12 row bits, 8 column bits
Row address bits 21 20 19 18 17 16 15 14 13 12 11 10
Column address bits 19 21 18 22 9 8 7 6 5 4 3 2
Device address pins 1 10 9 8 7 6 5 4 3 2 1 0
2 M x 8, 12 row bits, 9 column bits
Row address bits 21 20 19 18 17 16 15 14 13 12 11 10
Column address bits 19 21 18 22 9 8 7 6 5 4 3 2
Device address pins 1 10 9 8 7 6 5 4 3 2 1 0
2 M x 8, 11 row bits, 10 column bits
Row address bits 21 20 19 18 17 16 15 14 13 12 11 10
Column address bits 19 21 18 22 9 8 7 6 5 4 3 2
Device address pins 9 0 — 8 7 6 5 4 3 2 1 0

44

Banks of DRAM

The DRAM expansion card can have up to four banks of RAM, selected by individual
signals /RASL(2-3) and /RASH(2-3). Banks can be 2 MB, 4 MB, or 8 MB in size; on a
card with more than one bank, all banks must be the same size.

Because only one bank is active at a time, and because different-sized DRAM devices

consume about the same amount of power when active, a card having fewer devices per
bank consumes less power than a card having more devices per bank.

DRAM Device Requirements

The DRAM devices used in a DRAM expansion card must meet the following minimum
specifications:

fast page mode
self-refreshing

low-power grade

row access time (tgoc) of 70 ns or less

column access time (tcac) of 20 ns or less
page-mode cycle time (tpc) of 50 ns or less

DRAM devices that use the 3-V supply must be 5-V tolerant.

RAM Expansion

CHAPTER 4

Expansion Modules

Note

The DRAM refresh operation depends on the state of the computer.
When the computer is operating normally, the Pratt IC provides refresh
signals. When the computer goes into sleep mode, the Pratt IC switches
the DRAM devices to their self-refresh feature to save power. See also
“Pratt Memory Controller IC” on page 11. O

Expansion Card Electrical Limits

The DRAM expansion card must not exceed the following maximum current limits on
the +5V supply:

Active 500 mA
Standby 24 mA
Self-refresh 6 mA

The capacitive loading on the signal lines must not exceed the following limits:

/ CASL(0-3), / CASH(0-3) 40 pF
DataL(0-31), DataH(0-31) 70 pF

RA(0-11) 25 pF
/RASL(1-3), /RASH(1-3) 30 pF
/WE 85 pF

If the total capacitive loading for the devices on your card exceeds these guidelines, you
should use buffers (such as 244-type devices) on the address and /RAS lines. Because of
timing constraints, you cannot use buffers on the /CAS and /WE lines. If you do use
buffers, you must keep within the following delay specifications:

= maximum delay on RA(): 8 ns
» maximum delay on /RASL() and /RASH(): 10 ns

= minimum delay on /RASL() and /RASH(): greater than or equal to the actual delay
on RA()

RAM Expansion 45

CHAPTER 4

Expansion Modules

Mechanical Design of the RAM Expansion Card

All the components of the RAM expansion card, including the connector, are on the same
side of the card, as shown in Figure 4-3.

Figure 4-3 RAM expansion card

Connector

Low-profile memory ICs
(typical configuration)

IMPORTANT

The component side is the bottom side when the card is installed.
The top surface of the board must have no components or
component leads. All components must reside on the bottom of
the card, along with the connector. O

RAM Card Dimensions

Figure 4-4 is a plan view of the component side of the card showing its dimensions and
the location of the connector.

Figure 4-4 Dimensions of the RAM expansion card

46

- 89.00[3.504] — =

86.30
[3.398] _—PIN1

5.30 —
[.209]

‘ 1—6.30 [.248]

¥ 9.96 [.392] A= —r— -
f f \{
R 1.52 [.060]

R 1.52 [.060] —

—-

~—5.00[.197]

23.92 [.942] —=—w
-—54.40 [2.142] = PIN 2

Note: Dimensions are in millimeters [inches].

RAM Expansion

CHAPTER 4

Expansion Modules

Figure 4-5 shows the maximum component height and the restricted areas on the bottom
(component side) of the card. Only the connector can exceed the height limit shown.

Figure 4-5 Restricted areas on the component side of the card

~—— 77.00 [3.031] —=| |~ 2X 6.00 [.236]

-—
\ N
% T

2X 81.83
[3.22]

6.00 [.236] =

No components
or traces

Component height
restricted to 1.42
[.056] maximum

A4

Note: Dimensions are in millimeters [inches].

To keep within the component height restrictions, the DRAM devices on the RAM
expansion card must be of package type TSOP (thin small outline package) rather than
SOP or SOJ.

IMPORTANT

The thickness of the PC board is critical; it must
be within a 0.05 mm tolerance of 0.75 mm. a

WARNING
Do not exceed the dimensions shown in the drawings. Cards that
exceed these specifications may damage the computer. a

RAM Card Connector

The connector on the RAM expansion card is a 120-pin connector, part number
KX14-120K14E9, manufactured by JAE Electronics, Irvine, California.

Note

Some early prototypes of this connector had oil contamination of the
contact surfaces. Developers should avoid using those prototype
connectors in their products.

RAM Expansion 47

CHAPTER 4

Expansion Modules

Video Card

The Macintosh PowerBook 190 computer accepts an optional video card that provides
support for an external video monitor. This section describes the video card that Apple
provides and includes a design guide for developers who wish to design such a card.

The Apple Video Card

Apple provides an optional video card for the Macintosh PowerBook 190 computer.
Figure 4-6 shows its general appearance.

Figure 4-6 Video card

48

Shield

/ Foam block

connector

AN

80-pin connector

Monitors Supported

The external video card provides video output for all Apple 12-inch, 13-inch, and 16-inch
RGB monitors, the Apple Macintosh Portrait Display, and Apple Computer’s new
17-inch multiscan display. With appropriate adapter cables, the external video card can
also support a VGA display or an 800-by-600 pixel SVGA display.

The video card contains 512 KB of video RAM, which provides pixel depths of up to 8
bits per pixel on monitor screens of up to 624 by 832 pixels.

Video Card

CHAPTER 4

Expansion Modules

Table 4-11 lists the video monitors supported by the video card.

Table 4-11 Video monitors and modes

Maximum
Width Height pixel depth Frame rate
Monitor type (pixels) (pixels) (bits) (Hz)
12-inch RGB 512 384 8 60.15
13-inch RGB’ 640 480 8 66.67
Portrait 640 870 4 75.0
16-inch RGB 832 624 8 66.67
17-inch multiscan 640 480 8 66.67
17-inch multiscan 832 624 8 75.0
VGA or SVGA 640 480 8 59.95
SVGA 800 600 8 55.98

" Includes Macintosh Color Display and Apple High Resolution Monochrome Monitor.

The external video interface is enabled by attaching a monitor and restarting the
computer. During the boot process, ROM software tests the monitor sense lines and
activates the video output system if a recognized monitor is attached. If no monitor is
found, the video output system is deactivated to conserve power.

Video Mirroring

When two video displays are used, the Macintosh PowerBook 190 computer has two
video output modes: dual mode and mirror mode. In dual mode, which is the normal
Macintosh mode of operation, the external video monitor is independent of the flat panel
display and displays additional information. Alternatively, the user can select mirror
mode, in which the external monitor mirrors (duplicates) the flat panel display.

The screen of the external monitor may be larger or smaller than the flat panel display. In
mirror mode, the display on the larger screen uses only the central portion of that screen
and matches the horizontal and vertical dimensions of the smaller screen.

WARNING

Applications that write directly to the display buffer may not be
compatible with mirror mode unless they ensure that they do not write
outside the active display area. That is not a problem for applications
that use QuickDraw and never write directly to the display buffer. a

Because the video output circuitry consumes additional power, Apple recommends that
customers use the AC adapter when using an external monitor.

Video Card 49

CHAPTER 4

Expansion Modules

External Video Connector

The video card for the Macintosh PowerBook 190 computer has the same type VID-14
video output connector as the PowerBook 520 and 540 computers. An optional adapter
cable allows the user to attach a standard Apple video cable. Table 4-12 lists the signal
pin assignments for both the VID-14 connector on the card and the DB-15 connector on
the adapter cable. Figure 4-7 shows the pin configurations of the VID-14 connector and
the DB-15 connector.

Table 4-12 Signals on the video connector

50

Pin
VID-14 DB-15 Signal name Description
1 2 RED.VID Red video signal
2 1 RED.GND Red video ground
3 4 SENSEOQ Monitor sense signal 0
4 12 /VSYNC Vertical synchronization signal
5 3 /CSYNC Composite synchronization signal
6 11 GND CSYNC and VSYNC ground
7 6 GRN.GND Green video ground
8 5 GRN.VID Green video signal
9 7 SENSE1 Monitor sense signal 1
10 14 HSYNC.GND HSYNC ground
11 10 SENSE2 Monitor sense signal 2
12 15 /HSYNC Horizontal synchronization signal
13 9 BLU.VID Blue video signal
14 13 BLU.GND Blue video ground
— 8 n.c. Not connected
Shell Shell SGND Shield ground

One source for the VID-14 adapter cable is

Hosiden America Corp.

10090 Pasadena Ave., Suite B2

Cupertino, CA 95014

408-252-0541

Refer to Hosiden part number CMP1220-010100.

Video Card

CHAPTER 4

Expansion Modules

Figure 4-7 Video connectors

VID-14 connector socket

C@/ (@@@@@@@@@@@@7@

DB-15 connector socket

Monitor Sense Codes

To identify the type of monitor connected, the video card uses the Apple monitor sense
codes on the signals SENSE0-SENSE2 in Table 4-12. Table 4-13 shows the sense codes
and the extended sense codes for each of the monitors the card can support. Refer to the
Macintosh Technical Note M.HW.SenseLines for a description of the sense code system.

Table 4-13 Monitor sense codes

Standard

sense codes Extended sense codes
Monitor type (2-0) 1,2 ©, 2) ©0,1)
12-inch RGB 010 n.a. n.a. n.a.
13-inch RGB 110 n.a. n.a. n.a.
Portrait 001 n.a. n.a. n.a.
16-inch RGB 111 10 11 01
17-inch multiscan 110 11 01 00
VGA and SVGA 111 01 01 11
No monitor 111 11 11 11

Note

Both VGA and SVGA monitors have the same sense code. The first time
the user starts up with an SVGA monitor, the video card treats it as a
VGA monitor and shows a 640-by-480 pixel display. The user can switch
to the 800-by-600 pixel SVGA mode from the Monitors control panel;
when that happens, the computer changes the display to the 800-by-600
pixel display mode immediately, and continues to use that mode the
next time it is started up. O

Video Card 51

CHAPTER 4

Expansion Modules

Video Card Design Guide

This section gives electrical and mechanical specifications for developers who wish to
design a video card for the Macintosh PowerBook 190 computer.

Video Card Connector

The video card is connected to the computer’s main logic board by an 80-pin connector.
The connector on the card is a surface-mount connector with 0.8-mm pitch, part number
KX14-80K5E9 manufactured by JAE Electronics.

Signals on the Video Card Connector

Table 4-14 shows the pin assignments on the video card connector. The table is arranged
the same way as the pins on the connector, with pin 1 across from pin 2, and so on.

Table 4-14 Signals on the video card connector

Pin Pin

number Signal name number Signal name
1 +5V 2 +5V

3 n.c. 4 IO_DATA(8)
5 n.c. 6 GND

7 n.c. 8 IO_DATA(7)
9 IO_DATA(6) 10 IO_DATA(26)
11 IO_DATA(15) 12 IO_DATA(25)
13 IO_DATA(14) 14 IO_DATA(24)
15 IO_DATA(12) 16 IO_DATA(29)
17 IO_DATA(13) 18 IO_DATA(28)
19 IO_DATA(4) 20 IO_DATA(27)
21 GND 22 GND
23 IO_DATA(0) 24 IO_DATA(16)
25 IO_DATA(5) 26 IO_DATA(31)
27 IO_DATA(1) 28 IO_DATA(30)
29 IO_DATA(11) 30 I0_DATA(19)
31 IO_DATA(3) 32 IO_DATA(22)
33 IO_DATA(9) 34 IO_DATA(21)
35 IO_DATA(2) 36 IO_DATA(17)
37 IO_DATA(10) 38 I0_DATA(20)

continued

Video Card

CHAPTER 4

Expansion Modules

Table 4-14 Signals on the video card connector (continued)

Pin Pin

number Signal name number Signal name
39 IO_DATA(23) 40 IO_DATA(18)
41 /AS 42 IO_RW

43 /TIO_RESET 44 /DSACK(1)
45 +5V 46 +5V

47 SIZ(1) 48 /DSACK(0)
49 SI1Z(0) 50 IO_ADDR(0)
51 IO_ADDR(2) 52 IO_ADDR(1)
53 IO_ADDR(5) 54 IO_ADDR(3)
55 IO_ADDR(17) 56 IO_ADDR(4)
57 IO_ADDR(19) 58 IO_ADDR(7)
59 IO_ADDR(15) 60 IO_ADDR(6)
61 IO_ADDR(21) 62 IO_ADDR(10)
63 IO_ADDR(22) 64 IO_ADDR(12)
65 IO_ADDR(23) 66 IO_ADDR(13)
67 IO_ADDR(20) 68 I0_ADDR(11)
69 /KEY_CS 70 IO_ADDR(14)
71 /VID_IRQ 72 IO_ADDR(9)
73 VID_CLK 74 IO_ADDR(16)
75 +5V 76 IO_ADDR(8)
77 BUF_IOCLK 78 IO_ADDR(18)
79 GND 80 GND

Table 4-15 gives descriptions of the signals on the video card connector.

Table 4-15 Descriptions of the signals on the video card connector

Signal name
/AS

BUF_IOCLK
/DSACK(0-1)
/EXT_VID_CS

Video Card

Description
Address strobe (68030 bus)

25 MHz I/0 clock
Bus data acknowledge (68030 bus)
/ CS for locations $FDXX XXXX

continued

53

CHAPTER 4

Expansion Modules

Table 4-15 Descriptions of the signals on the video card connector (continued)

Signal name Description
I0_ADDR(0-23) Address bus (68030 bus)

10_DATA(0-31) Data bus (68030 bus)

/IO_RESET Device reset; active low

I0O_RW Read / write (68030 bus)

/KEY_CS / CS for locations $FEXX XXXX; reserved
S17(1:0) Size of video RAM

VID_CLK 16 MHz video clock

/VID_IRQ Video interrupt

Video Card Mechanical Design

Figure 4-8 shows the dimensions of the video card and the location of the external
video connector.

Figure 4-8 Dimensions of the video card

| 3020 | Video
[1.189] | /connector

| 0 = IE%—‘

y

93.98 87.68
[3.700] [3.452]

43.00
~ 1693 ™

Note: Dimensions are in millimeters [inches].

54 Video Card

CHAPTER 4

Expansion Modules

Figure 4-9 is a bottom view of the video card and shows the position of the 80-pin

connector (callout 3). Figure 4-10 and Figure 4-11 show the component restrictions on the

bottom and top of the card.

Video card and 80-pin connector

6.29 [.248]

Figure 4-9
0 o

i A
== *
vl

PIN 2 —
12223 [.875]

Note: Dimensions are in millimeters [inches].

Figure 4-10

1.71 [.067] =

29.16 [1.148]

Component
height restricted
to 2.50 [.098]

/i

S

Video card bottom view with component restrictions

39.58 [1.558]
See Figure 4-13.

.067]
147]

Component height restricted

maximum to 2.00 [.079] maximum
/— Component height restricted /
to 4.00 [.157] maximum
/— Component height restricted
54.10 4— to 2.75 [.108] maximum '
[2.130] 2794 No_components, bottom side
[1.100] 13.50 [.531 77.88
A [] [3.066]
25.98 28.12
22.78[.897] [1.023] [1.107]
/
13.15 [.518] —
16.88 [.665] 19.10 [.752]
- 31.00 [1.220]

Note: Dimensions are in millimeters [inches].

Video Card

»—38.75 [1.526]

55

CHAPTER 4

Expansion Modules

Figure 4-11 Video card top view with component restrictions

Component
height restricted
to 4.00 [.157]

maximum
1
| — Component
height restricted
to 6.50 [.256]
[353%2] maximum
- 9.90 | — No component
[.390] allowed
v 7N
16.30_| 4 ‘ 10.40
[.642] [.409]

Note: Dimensions are in millimeters [inches].

Figure 4-12 is a top view of the video card showing the position of the foam block that
helps hold the card in the proper position.

Figure 4-12 Video card top view

Foam —
block \
16.80 0.501 I

9.40 £0.50

Note: Dimensions are in millimeters [inches].

Figure 4-13 is a detail drawing showing the dimensions of the three mounting holes for
the EMI shield

Video Card

CHAPTER 4

Expansion Modules

Figure 4-13 Detail of EMI shield mounting holes

0.80 [.031] - | [=— —1.53[.060]
0.40 [.016] _>‘ +7 l, I
— 3.05[120]
}

Note: Dimensions are in millimeters [inches].

The thickness of the video card’s PC board is 1.30 mm [0.051 inches].

PCMCIA Slot

The Macintosh PowerBook 190 computer has a PCMCIA slot that can accept two type I
PC cards or one type III PC card. This section summarizes the features and specifications
of the PCMCIA slots. For a description of the PC Card Services software, see Chapter 8,
“PC Card Services.” For complete specifications and descriptions of the software
interfaces, developers should consult Developing PC Card Software for the Mac OS.

PCMCIA Features

The PCMCIA slot supports two types of PC cards: mass storage cards such as SRAM and
ATA drives (both rotating hard disk and flash media) and I/O cards such as modems,
network cards, and video cards. The Macintosh desktop metaphor includes the concept
of storage device representation, so it already supports mass storage cards. Apple
Computer has extended the metaphor to include I/O cards as well.

The user can insert or remove a PC card while the computer is operating. The user can
eject a PC card either by choosing Eject from the Special menu or by dragging the card’s
icon to the trash.

Macintosh PowerBook computers currently support PC card ejection by software
command. Software ejection is controlled by Card Services and allows Card Services to
eject a PC card after notifying all clients of the card that its ejection is about to occur. If
clients are using resources on the card, the clients have the option of refusing the request
and alerting users to the reasons why an ejection can’t take place.

Support for I/ O-oriented PC cards is provided through a Macintosh Finder extension
that is a client of the Card Services software. The Finder extension is responsible for
maintaining card icons on the desktop, providing card information in Get Info windows,
and ejecting cards when they’re dragged to the Trash. The Finder extension also helps a
client provide custom features such as icons, card names, card types, and help messages.

PCMCIA Slot 57

58

CHAPTER 4

Expansion Modules

Summary Specifications

The PCMCIA slot in the Macintosh PowerBook 190 computer contains two standard PC
card sockets. Each socket accepts either a type I or type II card. The PCMCIA slot also
accepts one type III card, which occupies both sockets.

The mechanical and electrical characteristics of the PCMCIA slot conform to the
specifications given in the PCMCIA PC Card Standard, Release 2.1.

The sockets support 16-bit PC cards. Each socket is 5-volt keyed and supports either a
memory PC card or an 1/O PC card.

Access Windows

Each socket supports the following two access windows in the computer’s address space:
= one attribute memory or common memory window
» oneI/O window

The only valid window combinations are the following:
= one attribute memory window

= one common memory window

= one common memory window and one I/0O window

Each window has a 64 MB address space. The window address spaces could be
implemented as 8 MB pages in some systems. The PCMCIA interface has the ability
to map the entire PC card’s memory space into the host system’s memory window.

Each window has its own independent access timing register.

Data Access

Each socket supports both byte and word data access in both memory and I/O modes.
The IOIS16 signal determines whether word access is single 16-bit access or two 8-bit
accesses. Byte-swapping option is always big-endian mode.

The CE1 and CE2 signals determine the type of data bus access, as follows:
= word access: CE1=L, CE2=L

= even bus access: CE1=L, CE2=H

= odd bus access (not allowed): CE1=H, CE2=L

Signal Definitions

Certain signals on the PC card sockets are defined as follows:
» BVDI1, BVD2: battery voltage signals (status and interrupt)
s WP: write protect (status and interrupt)

» RDY/BSY: ready/busy signal (status and interrupt)

» WAIT: used to delay access (maximum asserted time is 10 pis)

PCMCIA Slot

CHAPTER 4

Expansion Modules

IRQ: interrupt request, level mode only (pulse mode is not supported)

SPKR: speaker (digital audio output)

STSCHG/RI: status change and ring indicator (wakeup mode)
INPACK: not supported

Power

The PC card sockets provide power as follows:

= Vcc: programmed as either 0 Vor5V

= Vppl, Vpp2: programmed as either 5V or 12 V
Vpp1 and Vpp2 cannot be programmed independently.

The maximum current from the Vecc pin is 600 mA. The maximum current from each
Vppl or Vpp2 pin is 30 mA. The maximum current from all Vpp pins is 120 mA.

The sockets support a low-powered sleep mode.

Controller Interrupts

There is a single interrupt for both sockets. The interrupt is a combination of the status
change signal and the PC card’s interrupt request signal.

PCMCIA Slot

59

CHAPTER 5

Software Features

CHAPTER 5

Software Features

This chapter describes the new features of the software for the Macintosh PowerBook
190 computer. It describes both the built-in ROM and the system software that resides on
the hard disk.

ROM Software

62

The ROM software in the Macintosh PowerBook 190 computer is based on the ROM
used in previous PowerBook computers, with enhancements to support the many new
features of these computers. Some of the features this ROM supports include the
following:

= machine identification

= new memory controller IC
= Power Manager software
= new display controller

= new sound features

= ATA storage devices

= IDE disk mode

= Ethernet

= function keys

= smart batteries

= trackpad

The following sections describe each of these features.

Machine Identification

The ROM includes new tables and code for identifying the machine.

Applications can find out which computer they are running on by using the Gestalt
Manager. The gest al t Machi neType value returned by the Macintosh PowerBook 190
computer is 122 (hexadecimal $7A). Inside Macintosh: Overview describes the Gestalt
Manager and tells how to use the gest al t Machi neType value to obtain the machine
name string.

ROM Software

CHAPTER 5

Software Features

Memory Controller Software

The memory control routines have been rewritten to operate with the PBX memory
controller IC, which has a control register configuration different from that of the
memory controller used in earlier Macintosh PowerBook models. The memory
initialization and size code has been rewritten to deal with

» larger ROM size
= anew type of DRAM devices

= new memory configurations

Power Manager Software

Changes to the Power Manager software include
= support for the new lithium ion batteries

» support for turning on and off power to the Ethernet interface

Like other current PowerBook models, the Macintosh PowerBook 190 computer supports
the public API for power management, which is described in Inside Macintosh: Devices.

Display Controller Software

The Macintosh PowerBook 190 computer has a new custom IC, the CSC (color support
chip), that provides the data and control interface to the flat panel display. The ROM
software includes new video drivers for that IC.

The new drivers also support a wider range of external video monitors. See “Monitors
Supported” on page 48.

Sound Features

The ROM software includes new sound driver software to support the new Sound
Manager, which is part of the system software. The new driver software also supports
the following new features:

= improved sound performance by way of a new interface to the Singer sound IC
= support for 16-bit stereo sound input
= support for automatic gain control in software

= mixing of sound output from the modem

The new ROM software also includes routines to arbitrate control of the sound hardware
between the modem and the Sound Manager.

ROM Software 63

64

CHAPTER 5

Software Features

ATA Storage Devices

Support for ATA storage devices (the internal IDE drive, PCMCIA drives, and ATAPI
CD-ROM drives) is incorporated in the ROM software.

IDE Disk Mode

The ROM software also includes modifications to support disk mode. In previous
Macintosh PowerBook models, the internal hard disk was a SCSI drive and the setup for
disk access from another computer was called SCSI disk mode. In the Macintosh
PowerBook 190 computer, the internal hard disk is an IDE drive and the disk access
mode is called IDE target mode.

IDE target mode interprets SCSI commands from the external computer, translates them
into the equivalent IDE commands, and calls the ATA driver to carry them out. IDE
target mode does not support all SCSI commands; it supports the commands used in the
Apple SCSI device driver and the new Drive Setup utility.

Note
The ATA driver is described in Chapter 8, “PC Card Services.” O

Ethernet Driver

The driver for the Ethernet interface can now put a sleep task for Ethernet into the Power
Manager’s sleep table. This sleep task first makes a control call to the Ethernet driver to
prepare the Ethernet interface IC for sleep mode. The sleep task then makes a Power
Manager call to turn off power to the IC. The sleep task installs a corresponding wake
task that turns the interface power back on and reinitializes the interface IC.

Support for Function Keys

The keyboard on the Macintosh PowerBook 190 computer has a row of 12 function keys
across the top. Except for the function keys, the keyboard is similar to those on previous
Macintosh PowerBook models. The function keys are added to the key matrix in the
same way as the function keys on the Apple Extended Keyboard and return the same
key codes.

Smart Battery Support

The Power Manager IC communicates with the processors in the Macintosh PowerBook
Intelligent Batteries by means of a serial interface. The Power Manager’s command set
has been expanded to provide system access to the data from the batteries.

ROM Software

CHAPTER 5

Software Features

Trackpad Support

The trackpad hardware, the Power Manager IC, and the system software work together
to translate the movements of a finger across the surface of the trackpad into cursor
movements.

The control registers for the trackpad hardware are part of the Power Manager IC. The
Power Manager’s software takes the raw data from the trackpad hardware and converts
it to the same format as ADB mouse data before sending it on to the system software.

The ADB software that supports the trackpad includes the Cursor Device Manager,
which provides a standard interface for a variety of devices. The ADB software checks to
see whether a device connected to the ADB port is able to use the Cursor Device
Manager. For more information, see the January 1994 revision of Technical Note HW 01,
ADB—The Untold Story: Space Aliens Ate My Mouse.

System Software

The Macintosh PowerBook 190 computer is shipped with new system software based on
System 7.5 and augmented by several new features.

IMPORTANT

Even though the software for the Macintosh PowerBook 190 computer
incorporates significant changes from System 7.5, it is not a reference
release: that is, it is not an upgrade for earlier Macintosh models. a

The system software includes changes in the following areas:
= control strip support

» support for ATA devices (IDE and ATAPI)

= large partition support

= Drive Setup, a new utility

» improved file sharing

» improved math library

s QuickDraw acceleration API

= Display Manager

These changes are described in the sections that follow.

Note

For those changes that affect the software, information about new or

modified APIs is given elsewhere. Please see the cross references in the
individual sections. O

System Software 65

66

CHAPTER 5

Software Features

Control Strip

The desktop on the Macintosh PowerBook 190 computer has the status and control
element called the control strip that was introduced in the Macintosh PowerBook 280
and 500 models. It is a strip of graphics with small button controls and indicators in the
form of various icons. For a description of the control strip and guidelines for adding
modules to it, see Macintosh Technical Note OS 06 —Control Strip Modules.

Support for ATA Devices

Support for ATA devices (the internal IDE drive, PCMCIA drives, and ATAPI CD-ROM
drives) is incorporated in the ROM software.

System software for controlling the internal IDE drive and PCMCIA drives is included in
anew ATA disk driver and the ATA Manager. System software for controlling the
optional ATAPI CD-ROM drive is provided by a system extension in conjunction with
the ATA Manager. The ATA disk driver and the ATA Manager are described in Chapter

7, “Software for ATA Devices.”

Large Partition Support

The largest disk partition supported by System 7.5 is 4 GB. The new system software
extends that limit to 2 terabytes.

IMPORTANT
The largest possible file is still 2 GB. a

The changes necessary to support the larger partition size affect many parts of the
system software. The affected software includes system-level and application-level
components.

64-Bit Volume Addresses

The current disk driver API has a 32-bit volume address limitation. This limitation
has been circumvented by the addition of a new 64-bit extended volume API
(PBXCet Vol | nf 0) and 64-bit data types (ui nt 64, XVol umrePar am and XI OPar am).

For the definitions of the new API and data types, please see “The API Modifications” in
Chapter 6, “Large Volume Support.”

System-Level Software

Several system components have been modified to use the 64-bit API to correctly
calculate true volume sizes and read and write data to and from large disks. The
modified system components are

= virtual memory code
» Disk Init
s FSM Init

System Software

CHAPTER 5

Software Features

= Apple disk drivers
s HFS ROM code

Application-Level Software

Current applications do not require modification to gain access to disk space beyond the
traditional 4 GB limit as long as they do not require the true size of the large partition.
Applications that need to obtain the true partition size will have to be modified to use
the new 64-bit API and data structures. Typical applications include utilities for disk
formatting, partitioning, initialization, and backup.

The following application-level components of the system software have been modified
to use the 64-bit API:

» Finder

= Finder extensions (AppleScript, AOCE Mailbox, and Catalogs)

= HDSC Setup

= Disk First Aid

In the past, the sum of the sizes of the files and folders selected in the Finder was limited
to the largest value that could be stored in a 32-bit number—that is, 4 GB. By using the
new 64-bit API and data structures, the Finder can now operate on selections whose total
size exceeds that limit. Even with very large volumes, the Finder can display accurate
information in the Folder and Get Info windows and can obtain the true volume size for
calculating available space when copying.

The Finder extensions AppleScript, AOCE Mailbox, and Catalogs have been modified
in the same way as the Finder because their copy-engine code is similar to that in
the Finder.

A later section describes the modified Drive Setup application.

Limitations

The software modifications that support large partition sizes do not solve all the
problems associated with the use of large volumes. In particular, the modifications
do not address the following attributes of the file system:

» HFS file sizes are still limited to 2 GB or less.

» Large allocation block sizes cause inefficient storage. On a 2 GB volume, the minimum
file size is 32 KB; on a 2-terabyte volume, the minimum file size is a whopping 32 MB.

» Drives with the new large volume driver will not mount on older Macintosh models.

Drive Setup

The software for the Macintosh PowerBook 190 computer includes a new disk setup
utility named Drive Setup that replaces the old HDSC Setup utility. In addition to the

System Software 67

68

CHAPTER 5

Software Features

ability to support large volumes, the Drive Setup utility has several other enhancements,
including

= an improved user interface

= support for large volumes (larger than 2 GB)

= support for chainable drivers

= support for multiple HFS partitions

= the ability to mount volumes from within the Drive Setup applications
= the ability to start up (boot) from any HFS partition

= support for removable media drives

Improved File Sharing

Version 7.6 of the file-sharing software incorporates many of the features of AppleShare,
including an API for servers.

The user can now set up shared files on ejectable media such as cartridge drives and
CD-ROM drives. The software keeps track of the status of the shared files when the
media are inserted and removed.

Math Library

The new math library (MathLib) is an enhanced version of the floating-point library
included in the ROM in the first generation of Power Macintosh computers.

The new math library is bit compatible in both results and floating-point exceptions with
the math library in the first-generation ROM. The only difference is in the speed of
computation.

The application interface and header files for the math library have not been changed.

QuickDraw Acceleration API

The QuickDraw acceleration API is the current accelerator interface for the PowerPC
version of native QuickDraw. It allows a patch chaining mechanism for decisions on
categories of blit operations and also specifies the format and transport of the data to the
accelerator.

Display Manager

Until now, system software has used the NuBus-specific Slot Manager to get and set
information about display cards and drivers. New system software removes this explicit
software dependency on the architecture of the expansion bus. The Display Manager
provides a uniform API for display devices regardless of the implementation details of
the devices.

System Software

CHAPTER 6

Large Volume Support

CHAPTER 6

Large Volume Support

This chapter describes the large volume file system for the Macintosh PowerBook 190
computer. The large volume file system is a version of the hierarchical file system (HFS)
that has been modified to support volume sizes larger than the current 4 GB limit. It
incorporates only the changes required to achieve that goal.

Overview of the Large Volume File System

70

The large volume file system includes
» modifications to the HFS ROM code, Disk First Aid, and Disk Init

= anew extended API that allows reporting of volume size information beyond
the current 4 GB limit

» new device drivers and changes to the Device Manager API to support devices
larger than 4 GB

= anew version of HDSC Setup that supports large volumes and chainable
drivers (Chainable drivers are needed to support booting large volumes on
earlier Macintosh models.)

API Changes

The system software on the Macintosh PowerBook 190 computer allows all current
applications to work without modifications. Unmodified applications that call the file
system still receive incorrect values for large volume sizes. The Finder and other utility
programs that need to know the actual size of a volume have been modified to use the
new extended PBXGet Vol | nf o function to obtain the correct value.

The existing low-level driver interface does not support I/O to a device with a range of
addresses greater than 4 GB because the positioning offset (in bytes) for a read or write
operation is a 32-bit value. To correct this problem, a new extended I/O parameter block
record has been defined. This extended parameter block has a 64-bit positioning offset.
The new parameter block and the extended PBXGet Vol | nf o function are described in
“The API Modifications” beginning on page 71.

Allocation Block Size

The format of HFS volumes has not changed. What has changed is the way the HFS
software handles the allocation block size. Existing HFS code treats the allocation block
as a 16-bit integer. The large volume file system uses the full 32 bits of the allocation
block size parameter. In addition, any software that deals directly with the allocation
block size from the volume control block must now treat it as a true 32-bit value.

Even for the larger volume sizes, the number of allocation blocks is still defined by a
16-bit integer. As the volume size increases, the size of the allocation block also increases.
For a 2 GB volume, the allocation block size is 32 KB, and therefore the smallest file on
that disk will occupy at least 32 KB of disk space. This inefficient use of disk space is not
addressed by the large volume file system.

Overview of the Large Volume File System

CHAPTER 6

Large Volume Support

The maximum number of files will continue to be less than 65,000. This limit is directly
related to the fixed number of allocation blocks.

File Size Limits

The HFS has a maximum file size of 2 GB. The large volume file system does not remove
that limit because doing so would require a more extensive change to the current API
and would incur more compatibility problems.

Compatibility Requirements

The large volume file system requires at least a 68020 microprocessor or a Power
Macintosh model that emulates it. In addition, the file system requires a Macintosh Ilci
or more recent model. On a computer that does not meet both those requirements, the
large volume file system driver will not load.

The large volume file system requires System 7.5 or higher and a new Finder that
supports volumes larger than 4 GB (using the new extended PBXGet Vol | nf o function).

The API Modifications

The HFS API has been modified to support volume sizes larger than 4 GB. The
modifications consist of two extended data structures and a new extended
PBXGet Vol | nf o function.

Data Structures

This section describes the two modified data structures used by the large volume
file system:

= the extended volume parameter block

» the extended I/O parameter block

Extended Volume Parameter Block

In the current HVol unePar amrecord, volume size information is clipped at 2 GB.
Because HFS volumes can now exceed 4 GB, a new extended volume parameter block
is needed in order to report the larger size information. The XVol unmePar amrecord
contains 64-bit integers for reporting the total bytes on the volume and the number

of free bytes available (parameter names i oVTot al Byt es and i oVFr eeByt es). In
addition, several of the fields that were previously signed are now unsigned (parameter
namesi OVAtrb, i oVBi t Map,i oAl | ocPtr,i oVAI Bl kSi z,i oVO pSi z,i oAl Bl St,

i OVNxt CNI D, i oVW Cnt, i oVFi | Cnt, and i oVDi r Cnt).

The API Modifications 71

struct XVvol
Par anBl o
unsi gned
short
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
short
short
short
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
| ong
ui nt 64
ui nt 64

72

CHAPTER 6

Large Volume Support

urmePar am {
ckHeader
| ong

i
[

| ong i
| ong i
short i
short i
short i
short i
short i
| ong i
| ong i
short i
| ong i
short i
short i
i

[

[

i

i

i

i

i

[

i

[

| ong
short
| ong
| ong
| ong

Field descriptions

i oXVer si on; /1 XVol unePar am ver si on ==
i oVol | ndex; /1 vol une index
i oVCr Dat e; /! date and tinme of creation
i oVLsMod,; /1 date and tinme of last nodification
i OVAL T b; /1 volune attributes
i OVNFI s; /1l nunber of files in root directory
i OVBi t Map; /1 first block of volune bitmap
i OAl'l ocPtr; /1 first block of next new file
i OVNMAI Bl ks; /1 nunber of allocation blocks
i oVAI Bl kSi z; /1 size of allocation blocks
i oVC pSi z; /1 default clunp size
i oAl Bl St ; /1 first block in volunme map
oVNxt CNI D; /1 next unused node ID
i oVFr Bl k; /1l number of free allocation bl ocks
i oVSi gWor d; /1l volume signature
i oVDr vl nf 0; /1 drive nunber
i oVDRef Num /1 driver reference nunber
i oOVFSI D; /1l file systemidentifier
i oVBkUp; /'l date & time of |ast backup
i oVSegNum /1 used internally
i OVW Cnt ; /1 volume write count
i OVFi | Cnt; /1 number of files on vol unme
i ovDi r Cnt ; /1 nunmber of directories on volune
i oVFndrinfo[8]; // information used by the Finder
i oVTotal Bytes; // total nunber of bytes on vol une
i oVFr eeByt es; /'l nunmber of free bytes on vol une

i oXVer si on The version of XVol urmrePar am set to 0.

i oVol | ndex An index for use with the PBHGet VI nf o function (described in
Inside Macintosh: Files).

i oVCr Dat e The date and time of volume initialization.

i oVLsMbd The date and time the volume information was last modified. (This
field is not changed when information is written to a file and does
not necessarily indicate when the volume was flushed.)

i OVAtrb The volume attributes.

i OVNnFl s The number of files in the root directory.

i OVBi t Map The first block of the volume bitmap.

i OAl'l ocPtr The block at which the next new file starts. Used internally.

i OVNMAI BI ks The number of allocation blocks.

The API Modifications

CHAPTER 6

Large Volume Support

i oVAI Bl kSi z The size of allocation blocks.

i oVd pSi z The clump size.

i oAl Bl St The first block in the volume map.

i OVNxt CNI D The next unused catalog node ID.

i oVFr Bl k The number of unused allocation blocks.

i oVSi gWord A signature word identifying the type of volume; it's $D2D7 for
MFS volumes and $4244 for volumes that support HFS calls.

i oVDr vl nf o The drive number of the drive containing the volume.

i oVDRef Num For online volumes, the reference number of the I/O driver for the
drive identified by i oVDr vI nf 0.

i oOVFSI D The file system identifier. It indicates which file system is servicing
the volume; it’s zero for File Manager volumes and nonzero for
volumes handled by an external file system.

i oVBkUp The date and time the volume was last backed up (it’s 0 if never
backed up).

i oVSegNum Used internally.

i OVW Cnt The volume write count.

i OVFi | Cnt The total number of files on the volume.

i oVDi r Cnt The total number of directories (not including the root directory) on
the volume.

i oVFndr I nfo Information used by the Finder.

oVTot al Byt es
oVFr eeByt es

The total number of bytes on the volume.

The number of free bytes on volume.

Extended I/O Parameter Block

The extended I/O parameter block is needed for low-level access to disk addresses
beyond 4 GB. It is used exclusively by PBRead and PBW i t e calls when performing 1/O
operations at offsets greater than 4 GB. To indicate that you are using an XI OPar am
record, you should set the kUseW dePosi ti oni ng bit in the i oPosMbde field.

Because file sizes are limited to 2 GB, the regular | OPar amrecord should always be
used when performing file-level I/ O operations. The extended parameter block is
intended only for Device Manager I/O operations to large block devices at offsets
greater than 4 GB.

The only change from the parameter block defined on page 2-91 of Inside Macintosh: Files
is the parameter i OWPosOf f set, which is of type i nt 64.

Note

The first eight fields are the generic HFS parameter
block fields defined in Inside Macintosh: Files. O

struct Xl OParam {
CEl enPtr
short

gLi nk;
qType;

/1 next queue entry
/'l queue type

The API Modifications 73

74

CHAPTER 6

Large Volume Support

short
Ptr
Prochtr
OSEr r
StringPtr
short
short
char
char
Ptr

Ptr

unsi gned | ong
unsi gned | ong

short
i nt 64

}s

Field descriptions
i oRef Num

i oVer sNum

i oPer mssn
i oM sc

i oBuf f er

i oReqCount
i 0Act Count
i oPosMbde

The API Modifications

i oTrap; /1 routine trap
i oCrdAddr ; /1 routine address
i oConpl etion;// pointer to conpletion routine

i oResul t; /1 result code

i oNarmePt r; /1l pointer to pathnane

i oVRef Num /1 volume specification
i oRef Num /1 file reference nunber
i oPer mssn; /1 read/wite perm ssion
i OM sc; /1 nmiscellaneous

i oBuf f er; /1 data buffer

i oReqCount; // requested nunber of bytes
i oOAct Count; // actual nunber of bytes
i oPosMbde; /1 positioning node (w de node set)

i
i
i
i
i
i
i
i oVer sNum /1 not used
i
i
i
i
i
i
i oPosOf fset;// wi de positioning offset

The file reference number of an open file.

A version number. This field is no longer used; you should always
set it to 0.

The access mode.

Depending on the routine called, this field contains either a new
logical end-of-file, a new version number, a pointer to an access
path buffer, or a pointer to a new pathname. Because i 0M sc is of
type Pt r, you'll need to perform type coercion to interpret the value
of i oM sc correctly when it contains an end-of-file (a Longl nt
value) or version number (a Si gnedByt e value).

A pointer to a data buffer into which data is written by _Read calls
and from which data is read by _W i t e calls.

The requested number of bytes to be read, written, or allocated.
The number of bytes actually read, written, or allocated.

The positioning mode for setting the mark. Bits 0 and 1 of this field
indicate how to position the mark; you can use the following
predefined constants to set or test their value:

CONST

fsAtMark = 0; {at current mark}
fsFronttart = 1; {from beginning of file}

f sFromLECF = 2; {fromlogical end-of-file}
fsFromvark = 3; {relative to current nark}

You can set bit 4 of the i oPosMbde field to request that the data be
cached, and you can set bit 5 to request that the data not be cached.
You can set bit 6 to request that any data written be immediately

read; this ensures that the data written to a volume exactly matches

CHAPTER 6

Large Volume Support

the data in memory. To request a read-verify operation, add the
following constant to the positioning mode:

CONST
rdVerify = 64; {use read-verify node}

You can set bit 7 to read a continuous stream of bytes, and place the
ASCII code of a newline character in the high-order byte to
terminate a read operation at the end of a line.

i oPosOX f set The offset to be used in conjunction with the positioning mode.

New Extended Function

This section describes the extended PBXCet Vol | nf o function that provides volume size
information for volumes greater than 4 GB.

Before using the new extended function, you should check for availability by calling
the Gest al t function. Make your call to Gest al t with the gest al t FSAt t r selector
to check for new File Manager features. The response parameter has the

gest al t FSSuppor t s2TBVol umnes bit set if the File Manager supports large volumes
and the new extended function is available.

PBXGetVollnfo

You can use the PBXGet Vol | nf o function to get detailed information about a volume. It
can report volume size information for volumes up to 2 terabytes.

pascal OSErr PBXGet Vol | nfo (XVol umePar am par anBl ock, Bool ean async);

par anBl ock A pointer to an extended volume parameter block.

async A Boolean value that specifies asynchronous (t r ue) or synchronous
(f al se) execution.

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Arrow Meaning
- Input

- Output
o Both

The API Modifications 75

76

CHAPTER 6

Large Volume Support

Parameter block

- oConpl etion
i oResul t
i oNamePt r

i oVRef Num

!

!

i oXVer si on

!

i oVol | ndex

!

i oVCr Dat e
i oVLsMbd

1

1

ioVAtrb
i oOVNnFl s

1

1

i OVBi t Map
i oVAl | ocPtr

1

1

i OVNMAI Bl ks
i oVAI Bl kSi z
i ovd pSi z

i 0Al Bl St

1

1

1

1

i oVNxt CNI D
i oVFr Bl k

1

1

i oVSi g\Word
i oVDrvl nfo
i oVDRef Num
i oVFSI D

i oVBkUp

i 0VSeqNum
i OVW Cnt

i oOVFi | Cnt

i oVDi r Cnt

1

1

1

1

1

1

1

1

1

The API Modifications

ProcPtr
OSEr r
StringPtr
short

unsi gned | ong
short

unsi gned | ong
unsi gned | ong

unsi gned short
unsi gned short

unsi gned short
unsi gned short

unsi gned short
unsi gned | ong
unsi gned | ong
unsi gned short

unsi gned | ong
unsi gned short

unsi gned short
short
short
short
unsi gned | ong
unsi gned short
unsi gned | ong
unsi gned | ong
unsi gned | ong

Pointer to a completion routine.
Result code of the function.
Pointer to the volume’s name.

On input, a volume specification;
on output, the volume reference
number.

Version of XVol unmePar am
(value = 0).

Index used for indexing through
all mounted volumes.

Date and time of initialization.

Date and time of last
modification.

Volume attributes.

Number of files in the
root directory.

First block of the volume bitmap.

Block where the next
new file starts.

Number of allocation blocks.
Size of allocation blocks.
Default clump size.

First block in the volume
block map.

Next unused catalog node ID.

Number of unused
allocation blocks.

Volume signature.

Drive number.

Driver reference number.

File system handling this volume.
Date and time of last backup.
Used internally.

Volume write count.

Number of files on the volume.

Number of directories
on the volume.

CHAPTER 6

Large Volume Support

- i oVFndr | nf of 8] | ong Used by the Finder.

- i oVTot al Byt es ui nt 64 Total number of bytes
on the volume.

- i oVFr eeByt es ui nt 64 Number of free bytes
on the volume.

DESCRIPTION

The PBXCet Vol | nf o function returns information about the specified volume. It is
similar to the PBHGet VI nf o function described in Inside Macintosh: Files except that it
returns additional volume space information in 64-bit integers.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for PBXGet Vol | nf 0 are

Trap macro Selector
_HFSDi spat ch $0012

RESULT CODES
noErr 0 Successful completion; no error occurred
nsvErr -35 No such volume
par anerr =50 No default volume

The API Modifications

77

CHAPTER 7

Software for ATA Devices

CHAPTER 7

Software for ATA Devices

This chapter describes the system software that controls ATA devices in the Macintosh
PowerBook 190 computer. To use the information in this chapter, you should already be
familiar with writing programs for the Macintosh computer that call device drivers to
manipulate devices directly. You should also be familiar with the ATA /IDE specification,
ANSI proposal X3T10/0948D, Revision 2K or later (ATA-2).

Introduction to the ATA Software

In the Macintosh PowerBook 190 computer, the ATA software supports not only the
internal ATA hard disk drive but also ATA drives installed in the expansion bay and in
the PCMCIA slot. In addition to traditional Macintosh partitioned drives, the ATA
software also supports other file formats such as DOS through the Macintosh PC
Exchange application.

The ATA software in the Macintosh PowerBook 190 computer conforms to the Macintosh
driver model. File systems communicate with the driver by way of the Device Manager,
as shown in Figure 7-1. The ATA software consists of the ATA Manager and the ATA disk
driver. For an ATA drive in the PCMCIA slot, the ATA software uses the Card Services
software to configure the PCMCIA hardware and obtain access to the drive.

Figure 7-1 ATA software model

80

PC Other file

HFS exchange system

Device Manager

ATA disk driver

ATA Manager

Card Services

P

ATA PCMCIA
controller controller

At the system level, the ATA disk driver and the ATA Manager work in the same way
that the SCSI Manager and associated SCSI device drivers work. The ATA disk driver
provides drive partition, data management, and error-handling services for the
operating system as well as support for determining device capacity and controlling

Introduction to the ATA Software

CHAPTER 7

Software for ATA Devices

device-specific features. The ATA Manager provides data transport services between the
ATA hard disk drive and the system. The ATA Manager handles interrupts from the
drives and manages the interface timing.

ATA hard disk drives appear on the desktop the same way SCSI hard disk drives
currently do. Except for applications that perform low-level services such as formatting
and partitioning of disk drives, applications interact with the ATA hard disk drives in a
device-independent manner through the File Manager or by calling the Device Manager.

ATA Disk Driver

The ATA disk driver for the Macintosh PowerBook 190 computer has the following
features:

» supports all ATA drives that comply with the ANSI ATA specification X3T10
= uses the ATA Manager for system and bus independence

» supports multiple drives and multiple partitions (volumes)

» recognizes both partitioned and non-partitioned media

» supports Macintosh PC Exchange for DOS file compatibility

» adheres to the driver rules described in Designing PCI Cards and Drivers for Power
Macintosh Computers

» supports both synchronous and asynchronous requests from the file system

= supports manual or powered ejection of PCMCIA cards

The ATA disk driver resides in ROM and supports all ATA drives that adhere to the
ANSI ATA /IDE specification X3T10. The driver can support any number of ATA drives,
either internal or installed in the expansion bay or the PCMCIA slot.

The ATA disk driver relies on the services of the ATA Manager, which provides the ATA
protocol engine and relieves the driver of system and bus dependencies. The main
functions of the driver are managing the media and monitoring the status of the drive.

The ATA disk driver is responsible for providing block-oriented access to the storage
media. The file systems treat the media as one or more logical partitions or volumes in
which data at any address can be read or written indefinitely.

The ATA disk driver provides status and control functions. In addition, the driver’s
functionality has been augmented to support Macintosh PC Exchange and the new Drive
Setup application. The functions are described in “ATA Disk Driver Reference”
beginning on page 83.

The ATA disk driver supports both synchronous and asynchronous requests from the file
system. The driver executes synchronous requests without relinquishing control back to
the caller until completion. The driver queues asynchronous calls and returns control to
the caller; it then executes the requested task in the background during interrupt time.

Introduction to the ATA Software 81

82

CHAPTER 7

Software for ATA Devices

Drives on PC Cards

It might seem that the system should treat drives on PC cards like floppy disks because
they are removable. On closer examination, the floppy disk model is not appropriate for
such drives. The Mac OS assumes that a floppy disk is not partitioned and has a single
HFS volume. Drives on PC cards can be quite large, making multiple partitions
desirable, and they can be used in multiple platforms, so they may have formats other
than HFS. For those and other reasons having to do with the way the Mac OS works, the
ATA disk driver uses the hard disk storage model for PC card drives.

The hard disk model in the Mac OS assumes that the media is fixed, that is, not ejectable.
The Disk Eject option in the Finder’s Special menu is disabled for fixed media, but the
driver can still request that an eject call be given when a volume is unmounted from the
desktop (that is, when its icon is dragged to the Trash). The driver can use this eject call
to eject the PC card drive when the last volume on the drive has been unmounted.

Having only the single eject call is a problem for PC card drives that have removable
media because there is no way to distinguish between ejecting the media and ejecting the
drive. That being the case, the ATA disk driver does not support ejection of removable
media in PC card drives. It supports such drives as hard disks if the media is inserted
before the drive is installed in the PCMCIA socket.

Note

The hard disk model does not permit a single drive copy. This lack
should only be noticeable with single-socket systems or with a single
type III drive in a stacked type II socket configuration. O

The PC card drive media may contain one or more individual file system partitions
(volumes) displayed as icons on the desktop. The ATA disk driver mounts the volumes
automatically when the PC card is inserted into a socket.

The ATA disk driver in the Macintosh PowerBook 190 computer supports both
partitioned and nonpartitioned media. Partitioned media must contain a Macintosh
Partition Map, or the driver treats it as nonpartitioned. The driver searches the partition
map and posts disk-inserted events for all HFS, ProDOS, and other valid file system
partitions it finds. If there are no valid file system partitions in the partition map or if the
partition map itself does not exist, the disk driver posts a disk-inserted event for the
entire media as a single partition of unknown system type. The HFS file system and
installed foreign file systems such as Macintosh PC Exchange can then inspect the media
to determine whether it is formatted.

Power management for PC card drives is similar to that for the internal drive, which
uses an internal spindown timer to reduce power to the drive after a period of inactivity.
Instead of removing power to the drive, the driver’s spindown manager issues low
power commands to the drive. This approach provides power conservation without
incurring the performance slowdown associated with turning the drive on and off.

The driver maintains independent spindown timers for each PC card drive, allowing it
to provide maximum power conservation when one or more drives is inactive. The
spindown time, which can be set from the PowerBook control panel, is the same for

all drives.

Introduction to the ATA Software

CHAPTER 7

Software for ATA Devices

Control panels and control strip modules currently provide manual control of spindown
for the internal drive by means of calls to the Power Manager. That approach doesn’t
work for the PC card drives. Instead, the ATA disk driver provides a new control
function (Set Power Mbde) and a new ststaus function (Get Power Mode) that software
can use to provide manual control of spindown.

Drives in the Expansion Bay

The ATA disk driver treats drives installed in the expansion bay the same as PC card
drives except that drives in the expansion bay cannot be power ejected and the media
icon on the desktop is the generic hard disk icon.

ATA Manager

The ATA Manager manages the ATA controller and its protocol. It provides data
transport services between ATA devices and the system, directing commands to the
appropriate device and handling interrupts from the devices.

The ATA Manager schedules I/O requests from the ATA disk driver, the operating
system, and applications. The ATA Manager can handle both synchronous and
asynchronous requests. When making asynchronous requests, the calling program
must provide a completion routine.

The ATA Manager’s internal processing of requests can be either by polling or by
interrupts. When it is polling, the ATA Manager continually monitors for the next state
of the protocol by looping. When it is interrupt driven, the ATA Manager is notified of
the next protocol state by an interrupt. The ATA Manager determines which way to
process each request as it is received; if interrupts are disabled, it processes the request
by polling.

Note

The ATA Manager does not provide an access mechanism for tuples on
the PCMCIA device. Any client can request tuple information from the
Card Services software described in Chapter 8, “PC Card Services.” O

The functions and data structures of the ATA Manager are described in “ATA Manager
Reference” beginning on page 98.

ATA Disk Driver Reference

This section describes the routines provided by the ATA disk driver. The information in
this section assumes that you are already familiar with how to use device driver routines
on the Macintosh computer. If you are not familiar with Macintosh device drivers, refer
to the chapter “Device Manager” in Inside Macintosh: Devices for additional information.

ATA Disk Driver Reference 83

CHAPTER 7

Software for ATA Devices

Standard Device Routines

The ATA disk driver provides the standard control and status routines described in the
chapter “Device Manager” of Inside Macintosh: Devices. Those routines are described in
this section. The specific control and status functions supported in the ATA disk driver
are defined in “Control Functions” beginning on page 86 and “Status Functions”
beginning on page 93.

Note
The ATA disk driver resides in ROM and is not
opened or closed by applications. O

The Control Routine

84

The control routine sends control information to the ATA disk driver. The type of control
function to be performed is specified in csCode.

The ATA disk driver implements many of the control functions supported by the SCSI
hard disk device driver and defined in Inside Macintosh: Devices plus several new ones
that are defined in Designing PCI Cards and Drivers for Power Macintosh computers. The
control functions are listed in Table 7-1 and described in “Control Functions” beginning
on page 86.

Table 7-1 Control functions
Value of
csCode Definition
5 verify media
6 format media
7 eject drive
21 get drive icon
22 get media icon
23 get drive information
44 set startup partition
45 set partition mounting
46 set partition write protect
48 clear partition mounting
49 clear partition write protect
50 register partition
51 get a new drive
60 mount volume
70 set power-mode

ATA Disk Driver Reference

RESULT CODES

CHAPTER

7

Software for ATA Devices

NoErr Successful completion; no error occurred

control Err Unimplemented control call; could not
complete requested operation

nsDrvErr No such drive installed

The Status Routine

RESULT CODES

The status routine returns status information about the ATA disk driver. The type of
information returned is specified in the csCode field, and the information itself is

pointed to by the csPar anPt r field.

The ATA disk driver implements many of the status functions supported by the SCSI
hard disk device driver and defined in Inside Macintosh: Devices, plus several new ones
that are defined in Designing PCI Cards and Drivers for Power Macintosh computers. The

status functions are listed in Table 7-2 and described in “Status Functions” beginning on

page 93.
Table 7-2 Status functions
Value of
csCode Definition
8 drive status
43 driver gestalt
44 get boot partition
45 get partition mount status
46 get partition write protect status
51 get partition information
70 get power mode
NoErr Successful completion; no error occurred.
stat uskrr Unimplemented status call; could not complete
requested operation.
nsDr vErr No such drive is installed.

ATA Disk Driver Reference

85

CHAPTER 7

Software for ATA Devices

Control Functions

The Control routine in the ATA disk driver supports a standard set of control functions.
The functions are used for control, status, and power management.

In the function definitions, an arrow preceding a parameter indicates whether the
parameter is an input parameter, an output parameter, or both, as follows:

Arrow Meaning
- Input

- Output
- Both

verify
The veri fy function requests a read verification of the data on the ATA hard drive
media. This function performs no operation and returns noEr r if the logical drive
number is valid.
Parameter block
- csCode Avalue of 5.
- i oVRef Num The logical drive number.
- csPar ani] None defined.
- i oResul t See result codes.
RESULT CODES
noErr Successful completion; no error occurred.
nsDr vErr The specified logical drive number does not exist.
format
Because ATA hard drives are low-level formatted at the factory, this function does not
perform any operation. The driver returns noEr r if the logical drive number is valid.
Parameter block
- csCode Avalue of 6.
- i oVRef Num The logical drive number.
- csPar ani] None defined.
- i oResul t See result codes.
RESULT CODES
noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.
86 ATA Disk Driver Reference

CHAPTER 7

Software for ATA Devices

eject
The ej ect function notifies the driver when a volume is no longer required by the file
system. The driver performs no action unless the drive itself is ejectable (for example, a
PC card drive). If the drive is ejectable and there is no other mounted volume for the
drive, then the driver initiates the eject operation. When the driver is notified that the
drive has been removed from the bus, the driver removes all associated logical drives
from the drive queue and updates its internal records.
Parameter block
- csCode Avalue of 7.
- i oVRef Num The logical drive number.
- csPar ani] None defined.
- i oResul t See result codes.

RESULT CODES
NoErr Successful completion; no error occurred.
nsDr vErr The specified logical drive number does not exist.
of fLi nErr The specified drive is not on the bus.

get drive icon

RESULT CODES

The get drive i con function returns a pointer to the device icon and the device name
string to be displayed on the desktop when the media is initialized. If no physical icon is
available the function returns the media icon. The iconisan' | CN#' resource and varies
with the system. The device name string is in Pascal format.

Parameter block

- csCode A value of 21.

- i oVRef Num The logical drive number.

- csPar ani] None defined.

- csPar anf 0-1] Pointer to the drive icon and name string.
- i oResul t See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

ATA Disk Driver Reference

87

CHAPTER 7

Software for ATA Devices

get media icon

RESULT CODES

The get medi a i con function returns a pointer to the media icon and the device name
string to be displayed on the desktop for an HFS volume and in the Get Info command
of the Finder. The iconis an' | CN#' resource and varies with the type of drive or media.
The device name string is in Pascal format.

Parameter block

- csCode A value of 22.

- i oVRef Num The logical drive number.

- csPar ani] None defined.

- csPar anf 0-1] Address of drive icon and name string
(information is in | CN# format).

- i oResul t See result codes.

NoErr Successful completion; no error occurred.

nsDr vErr The specified logical drive number does not exist.

get drive information

RESULT CODES

88

The get drive infornmation function returns information about the specified drive
as defined on page 470 of Inside Macintosh, Volume V.

Note
This information is not in Inside Macintosh: Devices. O

Because ATA devices are not designated, all drives are designated as unspecified. Also,
all drives are specified as SCSI because the only other option is IWM, which applies only
to certain floppy disk drives. The internal ATA drive is specified as primary and all
others as secondary. Drives on PC cards and in the expansion bay are specified as
removable (meaning the drive itself, not the media).

Parameter block

- csCode A value of 23.

- i oVRef Num The logical drive number.

- csPar ani] None defined.

- csPar anf 0-1] Drive information value (long).

$0601 = primary, fixed, SCSI, internal.
$0201 = primary, removable, SCSI, internal.

- i oResul t See result codes.
nokErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

ATA Disk Driver Reference

CHAPTER 7

Software for ATA Devices

set startup partition

RESULT CODES

Theset startup partition function sets the specified partition to be the startup
partition. The partition is specified either by its logical drive or by its block address on
the media. The current startup partition is cleared. A result code of control Err is
returned if the partition does not have a partition map entry on the media or if the
partition could not be set to be the startup partition.

Parameter block

- csCode A value of 44.
5 i oVRef Num The logical drive number, or
0 if using the partition’s block address.

. csPar anf 0-1] The partition’s block address (long) if i 0VRef Numis 0.
- i oResul t See result codes.
noErr Successful completion; no error occurred.
control Err Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist.

set partition mounting

RESULT CODES

Theset partition nmounting function enables the specified partition to be
mounted. The partition is specified either by its logical drive or by its block address on
the media. A result code of cont r ol Err is returned if the partition does not have a
partition map entry on the media or if the partition could not be enabled to be mounted.

Parameter block

- csCode A value of 45.
5 i oVRef Num The logical drive number, or
0 if using the partition’s block address.

- csPar anf 0-1] The partition’s block address (long) if i 0VRef Numis 0.
- i oResul t See result codes.
noErr Successful completion; no error occurred.
control Err Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist.

ATA Disk Driver Reference 89

CHAPTER 7

Software for ATA Devices

set partition write protect

RESULT CODES

Theset partition wite protect function sets the specified partition to be
(software) write protected. The partition is specified either by its logical drive or by its
block address on the media. A result code of cont r ol Er r is returned if the partition
does not have a partition map entry on the media or if the partition could not be set to be
write protected.

Parameter block

- csCode A value of 46.
5 i oVRef Num The logical drive number, or
0 if using the partition’s block address.

. csPar anf 0-1] The partition’s block address (long) if i 0VRef Numis 0.
- i oResul t See result codes.
noErr Successful completion; no error occurred.
control Err Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist.

clear partition mounting

RESULT CODES

90

The cl ear partition mounting function prevents the specified partition from
being mounted. The partition is specified either by its logical drive or by its block
address on the media. A result code of cont r ol Er r is returned if the partition does
not have a partition map entry on the media or if the partition could not be set so as
not to be mounted.

Parameter block

- csCode A value of 48.
= i oVRef Num The logical drive number, or
0 if using the partition’s block address.

- csPar anf 0-1] The partition’s block address (long) if i 0VRef Numis 0.
- i oResul t See result codes.
nokErr Successful completion; no error occurred.
control Err Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist.

ATA Disk Driver Reference

CHAPTER 7

Software for ATA Devices

clear partition write protect

RESULT CODES

Thecl ear partition wite protect function disables the (software) write
protection on the specified partition. The partition is specified either by its logical drive
or by its block address on the media. A result code of cont r ol Err is returned if the

partition does not have a partition map entry on the media or if write protection could
not be disabled.

Parameter block

- csCode A value of 49.
5 i oVRef Num The logical drive number, or
0 if using the partition’s block address.

. csPar anf 0-1] The partition’s block address (long) if i 0VRef Numis 0.
- i oResul t See result codes.
noErr Successful completion; no error occurred.
control Err Unimplemented control call; could not

complete requested operation
nsDrvErr The specified logical drive number does not exist.

register partition

RESULT CODES

Theregi ster partition function supports Macintosh PC Exchange. It requests the
driver to redefine the starting block offset and capacity of an existing partition.

A pointer to the drive queue element is passed in along with the new physical offset and
capacity. The pointer has the following form:

struct {
DrvQEl Pte t heDri ve; /1 partition to be registered
| ong phyStart; /1 new start offset
| ong phySi ze; /1 new capacity (bl ocks)

}

Parameter block

= csCode A value of 50.

- i oVRef Num The logical drive number.

- csPar anf 0- 1] Pointer to new driver information.

- i oResul t See result codes.

noErr Successful completion; no error occurred.

nsDr vErr The specified logical drive number does not exist.

ATA Disk Driver Reference 91

CHAPTER 7

Software for ATA Devices

get a drive

The get a dri ve function supports Macintosh PC Exchange. It requests the driver to
create a new logical drive (partition) in the system drive queue. A pointer to the

Dr vQEl Pt r variable is passed in; this variable contains the pointer to a valid partition
on the physical drive to which the new partition is to be added. Upon completion, the
function returns the new Dr vQEIl Pt r in the variable. The Dr vQEl Pt r variable is
defined as follows:

DrvQEl Ptr *theDrive; //pointer to existing partition

Parameter block

- csCode A value of 51.
- i oVRef Num The logical drive number.
- csParan] Pointer to existing partition.
- csPar ani] Pointer to new partition.
- i oResul t See result codes.
RESULT CODES
NoErr Successful completion; no error occurred.
nsDr vErr The specified logical drive number does not exist.

mount volume

The nount vol une function instructs the driver to post a disk-inserted event for the
specified partition. The partition is specified either by its logical drive or by its block
address on the media.

Parameter block

- csCode A value of 48.
- i oVRef Num The logical drive number, or
0 if using the partition’s block address.
- csPar anf 0-1] The partition’s block address (long) if i 0VRef Numis 0.
- i oResul t See result codes.
RESULT CODES
noErr Successful completion; no error occurred.
control Err Unimplemented control call; could not complete
requested operation
nsDrvErr The specified logical drive number does not exist.

92 ATA Disk Driver Reference

CHAPTER 7

Software for ATA Devices

set power mode

The set power node function changes the drive’s power mode to one of four modes:

active, standby, idle, and sleep. It can be used to reduce drive power consumption and
decrease system noise levels.

IMPORTANT
Although the power modes have the same names as the ones in the
ATA /1DE specification, they do not have the same meanings. a

» Active: The fully operational state with typical power consumption.

» Standby: The state with minimal power savings. The device can return to the active
state in less than 5 seconds.

s Idle: The state with moderate power savings. The device can return to the active state

within 15 seconds.

s Sleep: The state with minimum power consumption. The device can return to the
active state within 30 seconds.

Parameter block

- csCode A value of 70.
- i oVRef Num The logical drive number.
- csPar anf 0] The most significant byte contains one of the

following codes:

0 = enable the active mode

1 = enable the standby mode

2 = enable the idle mode

3 = enable the sleep mode

(least significant byte = don’t care)

- i oResul t See result codes.
RESULT CODES
noErr Successful completion; no error occurred.
nsDr vErr The specified logical drive number does not exist.

Status Functions

The Status routine in the ATA disk driver supports a standard set of status functions.
These functions are used to obtain information about a partition (volume) in an ATA
hard disk drive.

ATA Disk Driver Reference

93

CHAPTER 7

Software for ATA Devices

drive status

The dri ve st at us function returns the same type of information that disk drivers are

required to return for the St at us routine, as described on page 215 of Inside Macintosh,
Volume II.

Note
This information is not in Inside Macintosh: Devices. O

Parameter block

N csCode A value of 8.
- i oVRef Num The logical drive number.
- csParanf] Not used.
- i oResul t See result codes.
RESULT CODES
noErr Successful completion; no error occurred.
nsDr vErr The specified logical drive number does not exist.

driver gestalt

Thedriver gestalt function provides the application with information about the
ATA hard disk driver and the attached device. Several calls are supported under this
function. A gestalt selector is used to specify a particular call.

The Dr i ver Gest al t Par amdata type defines the ATA gestalt parameter block:

struct DriverGestaltParam

{
at aPBHdr /1 see definition on page 99
SInt16 i oVRef Num /1 refNum of device
SInt16 csCode; /1 driver gestalt code
OSType driverGestaltSelector; // gestalt selector
driverCestaltlnfo driverGestaltResponse; // returned result

i

typedef struct DriverCestaltParam Driver Gestal t Param

94 ATA Disk Driver Reference

CHAPTER 7

Software for ATA Devices

The fields dri ver Gest al t Sel ect or and dri ver Gest al t Response are 32-bit fields.

Parameter block

5 csCode
o i oVRef Num
- driver GestaltSel ector

- driver Gest al t Response

- i oResul t

ATA Disk Driver Reference

A value of 43.
The logical drive number.

Gestalt function selector. This is a 32-bit
ASCII field containing one of the following
selectors:

'sync' Indicates synchronous or
asynchronous driver.

" devt' Specifies type of device the
driver is controlling.

intf' Specifies the device interface.

' boot' Specifies PRAM value to
designate this driver or device.

"vers' Specifies the version number of
the driver.

"I pwr’ Indicates support for
low-power mode.

" dAPI Indicates support for Macintosh
PC Exchange calls.

"purg' Indicates driver can be closed or
purged.

"w de' Indicates large volume support.

'ej ec’ Eject-call requirements.

Returned result based on the driver gestalt
selector. The possible return values are

' sync' TRUE (1), indicating that the
driver is synchronous.

" devt' " di sk' indicating a hard disk
driver.

intf' "ide ' for an IDE (ATA) drive,
or' pcnt' fora PC card drive.

' boot' PRAM value (long).

"vers' Current version number of the
driver.

"I pwr’ TRUE (1).

' dAPI TRUE (1)

"purg' Indicates dri.ver can be closed
or purged.

‘W de' TRUE (1).

'ej ec’ Eject call requirements (long):
bit 0: if set, don’t issue eject call
on restart.

bit 1: if set, don’t issue eject call
on shutdown.
See result codes.

95

CHAPTER 7

Software for ATA Devices

RESULT CODES
NnoErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.
stat uskrr Unknown selector was specified.

get boot partition

RESULT CODES

The get boot partition function returns 1 if the specified partition is the boot
partition, 0 if it is not. The partition is specified either by its associated logical drive or
the partition’s block address on the media.

Parameter block

- csCode A value of 44.
- i oVRef Num The logical drive number or
0 if using the partition’s block address.
- csParani] The partition’s block address (long) if
i oVRef Num= 0.
- i oResul t See result codes.
noEr r Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

get partition mount status

RESULT CODES

96

The get partition mount status function returns 1 if the specified partition has
mounting enabled and 0 if not enabled or if the partition does not have a partition map
entry on the media. The partition is specified either by its associate logical drive or the

partition’s block address on the media.

Parameter block

- csCode A value of 45.
- i oVRef Num The logical drive number or
0 if using the partition’s block address.
- csParanf] The partition’s block address (long) if
i oVRef Num= 0.
- i oResul t See result codes.
NoErr Successful completion; no error occurred.
nsDr vErr The specified logical drive number does not exist.

ATA Disk Driver Reference

CHAPTER 7

Software for ATA Devices

get partition write protect status

RESULT CODES

Theget partition wite protect status function returns 1 if the specified
partition is write protected (software) and 0 if it is not. The partition is specified either by
its associate logical drive or by the partition’s block address on the media.

Parameter block

- csCode A value of 46.
- i oVRef Num The logical drive number or
0 if using the partition’s block address.
- csParanf] The partition’s block address (long) if
i oVRef Num= 0.
- i oResul t See result codes.
noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

get partition information

RESULT CODES

Theget partition infornation function supports Macintosh PC Exchange. It
requests the driver to return information about the partition specified by i 0VRef Num

The csPar amfield contains a pointer to the device information element for the return
information. The pointer has the following form:

struct {
Devi cel dent SCSl | b /1 device ID
/1l physical start of partition
unsi gned | ong physPartiti onLoc;
/1 partition identifier
unsi gned | ong partitionNunber;
} partlinfoRec, *partlnfoRecPtr;

Parameter block

- csCode A value of 51.

- i oVRef Num The logical drive number.

= csParani] The information data structure.

- i oResul t See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

ATA Disk Driver Reference 97

CHAPTER 7

Software for ATA Devices

get power mode

RESULT CODES

The get power node function returns the current power mode state of the internal
hard disk. The power modes are defined on page 93.

Parameter block

- csCode A value of 70.

- i oVRef Num The logical drive number.

S csPar ani] None defined.

- csParan] The most significant byte contains one of the

following codes:

0 = active mode

1 = standby mode

2 =idle mode

3 =sleep mode

(least significant byte = don’t care)

- i oResul t See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.
stat uskrr The power management information couldn’t be

returned, due to a manager error.

ATA Manager Reference

98

This section defines the data structures and functions that are specific to the
ATA Manager.

The ATA Manager has a single entry point through the trap $AAF1. Functions are
dispatched within the ATA Manager based on the manager function code defined in
the parameter block header.

When making calls to the ATA Manager, you have to pass and retrieve parameter
information through a parameter block. The size and content of the parameter block
depend on the function being called. However, all calls to the ATA Manager have a
common parameter block header structure. The structure of the at aPBHdr parameter
block is common to all ATA parameter block data types. Several additional ATA
parameter block data types have been defined for the various functions of the

ATA Manager.

ATA Manager Reference

CHAPTER 7

Software for ATA Devices

The ATA Parameter Block

This section defines the fields that are common to all ATA Manager functions that use the
ATA parameter block. The fields used for specific functions are defined in the description
of the functions to which they apply. You use the ATA parameter block for all calls to the
ATA Manager. The at aPBHdr data type defines the ATA parameter block.

The parameter block includes a field, Mgr FCode, in which you specify the function
selector for the particular function to be executed; you must specify a value for this field.
Each ATA function may use different fields of the ATA parameter block for parameters
specific to that function.

An arrow preceding the comment indicates whether the parameter is an input parameter,
an output parameter, or both, as follows:

Arrow Meaning
- Input

- Output
- Both

The ATA parameter block header structure is defined as follows:

struct at aPBHdr /1 ATA Manager paraneter bl ock
header structure
{
Ptr at aLi nk; /1 reserved
SInt16 at aQrlype; /1 type byte
unt8 at aPBVer s; /1 - paraneter block version nunber
unt8 hdr Reser ved; /1 reserved
Ptr hdr Reserved2; // reserved
ProcPtr ataConpletion; // conpletion routine
OSEr r ataResul t ; /1l « returned result
U nt8 Myr FCode; /1 - manager function code
unt8 at al OSpeed,; /1 - 1/Otimng class
Ul nt 16 at aFl ags; /!l - control options
SInt16 hdr Reserved3; // reserved
Ul nt 32 devi cel D /1 - device ID
Ul nt 32 Ti meQut ; /1l - transaction tinmeout val ue
Ptr ataPtr1,; /Il client storage pointer 1
Ptr ataPtr2; /1 client storage pointer 2
U nt 16 at aSt at e; /'l reserved, initialize to O
SInt16 i nt Semaphores; // internal semaphores
Si nt 32 hdr Reserved4; // reserved
};

typedef struct ataPBHdr ataPBHdr;

ATA Manager Reference 99

100

CHAPTER 7

Software for ATA Devices

Field descriptions
at aLi nk

at aQlype

at aPBVer s

hdr Reser ved
hdr Reser ved2

at aConpl eti on

at aResul t

Mgr FCode

at al OSpeed

at aFl ags

hdr Reser ved3

This field is reserved for use by the ATA Manager. It is used
internally for queuing I/O requests. It must be initialized to 0
before calling the ATA Manager.

This field is the queue type byte. It should be initialized to 0 before
calling the ATA Manager.

This field contains the parameter block version number. Values of 1
and 2 are the only values currently supported. Any other value
results in a result code of par antr r. For individual differences
between versions 1 and 2, refer to the individual functions.

Reserved for future use. To ensure future compatibility, all reserved
fields should be set to 0.

Reserved for future use. To ensure future compatibility, all reserved
fields should be set to 0.

This field contains the completion routine pointer to be called upon
completion of the request. When this field is set to zero, it indicates
a synchronous I/O request; a nonzero value indicates an
asynchronous I/O request. The routine this field points to is called
when the request has finished without error or when the request
has terminated due to an error. This field is valid for any manager
request. The completion routine is called as follows:

pascal void (*RoutinePtr) (atal OPB *);

The completion routine is called with the associated manager
parameter block in the stack.

Completion status. This field is returned by the ATA Manager after
the request has been completed. Refer to Table 7-13 on page 139 for
a list of the possible error codes returned in this field.

This field is the function selector for the ATA Manager. The
functions are defined in Table 7-4 on page 104. An invalid code in
this field results in an ATAFuncNot Suppor t ed error.

This field specifies the I/ O cycle timing requirement of the specified
ATA drive. This field should contain word 51 of the drive
identification data. Currently values 0 through 3 are supported, as
defined in the ATA /IDE specification. See the ATA /IDE
specification for the definitions of the timing values. If a timing
value higher than one supported is specified, the manager operates
in the fastest timing mode supported by the manager. Until the
timing value is determined by examining the drive identification
data returned by the ATA | dent i fy function, the client should
request operations using the slowest mode (mode 0).

This 16-bit field contains control settings that indicate special
handling of the requested function. The control bits are defined in
Table 7-3 on page 101.

Reserved for future use. To ensure future compatibility, all reserved
fields should be set to 0.

ATA Manager Reference

CHAPTER 7

Software for ATA Devices

devi cel D

Ti meCQut
ataPtrl
ataPtr2
ataState

i nt Senaphor es

hdr Reser ved4

A short word that uniquely identifies an ATA device. The field
consists of the following structure:

struct deviceldentification

{

U nt 16 Reserved; /1 the upper word is reserved

U nt 16 devi ceNum /! consists of device ID and bus ID
b

typedef struct deviceldentification
devi celdentification;

Bit 15 of the devi ceNumfield indicates master (=0) /slave (=1)
selection. Bits 14 through 0 contain the bus ID (for example,

$0 = master unit of bus 0, $80 = slave unit of bus 0). The present
implementation allows only one device in the master configuration.
This value is always 0.

This field specifies the transaction timeout value in milliseconds. A
value of 0 disables the transaction timeout detection.

This pointer field is available for application use. It is not modified
by the ATA Manager.

This pointer field is available for application use. It is not modified
by the ATA Manager.

This field is used by the ATA Manager to keep track of the current
bus state. This field must contain 0 when calling the ATA Manager.
This field is used internally by the ATA Manager. It should be set to
0 before calling the ATA Manager.

Reserved for future use. To ensure future compatibility, all reserved
fields should be set to 0.

Table 7-3 describes the functions of the control bits in the at aFl ags field.

Table 7-3 Control bits in the at aFl ags field

Name

LED Enabl e

Bit Definition

0 Some systems are equipped with an activity LED
controlled by software. Setting this bit to 1 indicates
that the LED should be turned on for this transaction.
The LED is automatically turned off at the end of the
transaction. Setting the bit to 0 indicates that the LED
should not be turned on for this transaction. This bit
has no effect in systems with no activity LED.

1-2 Reserved.

continued

ATA Manager Reference 101

CHAPTER 7

Software for ATA Devices

Table 7-3 Control bits in the at aFl ags field (continued)

Name Bit Definition

RegUpdat e 3 When set to 1, this bit indicates that a set of device
registers should be reported back upon completion of
the request. This bit is valid for the ATA_Execl O
function only. Refer to the description on page 113
for details. The following device registers are
reported back:
sector count register
sector number register
cylinder register(s)
SDH register

Prot ocol Type 4-5 These 2 bits specify the type of command. The
following command types are defined:
$0 = standard ATA
$1 = reserved
$2 = ATAPI
These bits are used to indicate special protocol
handling.

For ATA command values of $A0 or $A1, this field
must contain the ATAPI setting. For all other ATA
commands, this field must contain the standard ATA

setting.

— 67 Reserved.

SGType 8-9 This 2-bit field specifies the type of scatter gather list
passed in. This field is only valid for read / write
operations.

The following types are defined:

00 = scatter gather disabled

01 = scatter gather type I enabled
10 = reserved

11 = reserved

When set to 0, this field indicates that the i oBuf f er
field contains the host buffer address for this transfer,
and the i oReqCount field contains the byte transfer
count.

When set to 1, this field indicates that the i oBuf f er
and the i oReqCount fields of the parameter block for
this request point to a host scatter-gather list and the
number of scatter-gather entries in the list,
respectively.

continued

102 ATA Manager Reference

CHAPTER 7

Software for ATA Devices

Table 7-3 Control bits in the at aFl ags field (continued)

Name Bit Definition

The format of the scatter-gather list is a series of the
following structure definition:

struct |1 0OBl ock /1l SG entry structure

Ul nt8* ioBuffer; /1 - data buffer pointer
U nt 32 i oReqCount;// - byte count

}1
t ypedef struct 10Bl ock | OBl ock;

Q_ockOnErr or 10 When set to 0, this bit indicates that an error during
the transaction should not freeze the I/ O queue for
the device. When an error occurs on an I/O request
with this bit set to 0, the next queued request is
processed without interruption. If an error occurs
when this bit is set, however, any subsequent request
without the Immediate bit set is held off until an I/ O
Queue Release command is received. This allows the
ATA Manager to preserve the error state so that a
client can examine it.

When this bit is set, only those requests with the
Immediate bit set are processed. Use this bit with
caution; it can cause the system to hang if not handled
correctly.

| medi at e 11 When this bit is set to 1, it indicates that the request
must be executed as soon as possible and that the
status of the request must be returned. It forces the
request to the head of the I/O queue for immediate
execution. When this bit is set to 0, the request is
queued in the order it is received and is executed
according to that order.

ATAi oDi rection 12-13 This bit field specifies the direction of data transfer. Bit
values are binary and are defined as follows:

00 = no data transfer

10 = data direction in (read)
01 = data direction out (write)
11 = reserved

Note: These bits do not need to be set to reflect the
direction of the command packet bytes.

continued

ATA Manager Reference 103

Functions

CHAPTER 7

Software for ATA Devices

Table 7-3 Control bits in the at aFl ags field (continued)

Name Bit Definition
— 14 Reserved.
Byt eSwap 15 When set to 1, this bit indicates that every byte of data

prior to transmission on write operations and upon
reception on read operations is to be swapped. When
this bit is set to 0, it forces bytes to go out in the
LSB-MSB format that is compatible with IBM clones.
Typically, this bit should be set to 0. Setting this bit has
performance implications because the byte swap is
performed by the software. Use this bit with caution.

Caution: Setting this bit to 1 causes the bytes in ATAPI
command packets to be swapped.

104

This section describes the ATA Manager functions that are used to manage and perform
data transfers. Each function is requested through a parameter block specific to that
service. A request for an ATA function is specified by a function code within the
parameter block. The entry point for all the functions is the same.

The function names and ATA Manager function codes are shown in Table 7-4.

Table 7-4 ATA Manager functions

Function name Code Description

ATA Abort $10 Terminate the command.

ATA Busl nquiry $03 Get bus information.

ATA Drvr Regi ster $85 Register the driver reference number.

ATA Drvr Der egi ster $87 Deregister the driver reference number.

ATA EjectDrive $89 Auto-eject the drive.

ATA_Execl O $01 Execute ATAT/O.

ATA_Fi ndRef Num $86 Look up the driver reference number.

ATA Get DevConfi g $8A Get the device configuration.

ATA_Get DevLocati onl con $8C Get the device location icon and string.

ATA Identify $13 Get the drive identification data.

ATA Myrlnquiry $90 Get information about the ATA Manager
and the system configuration.

ATA Modi f yDr vr Event Mask $88 Modify the driver event mask.

continued

ATA Manager Reference

CHAPTER 7

Software for ATA Devices

Table 7-4 ATA Manager functions (continued)

Function name Code Description

ATA_NOP $00 Perform no operation.

ATA_QRel ease $04 Release the I/O queue.

ATA RegAccess $12 Obtain access to an ATA device register.
ATA Reset Bus $11 Reset the ATA bus.

ATA_Set DevConfi g $8B Set the device configuration.

ATA_Abort

You can use the ATA_Abor t function to terminate a queued I/O request. This function
applies to asynchronous I/O requests only. The ATA_Abort function searches through
the I/O queue associated with the selected device and aborts the matching I/ O request.
The current implementation does not abort if the found request is in progress. If the
specified I/ O request is not found or has started processing, an ATAUnabl eToAbor t
status is returned. If aborted, the ATARegAbor t ed status is returned.

It is up to the application that called the ATA_Abor t function to clean up the aborted
request. Cleaning up includes deallocation of the parameter block and OS reporting.

The manager function code for the ATA_Abor t function is $10.

The parameter block associated with this function is defined as follows:

struct ATA Abort /1 ATA abort structure
{
at aPBHdr /1l see definition on page 99
ATA PB* Abort PB /1 address of the paraneter
/1 block to be aborted
U nt16 Reserved /'l reserved
b

typedef struct ATA Abort ATA Abort;

Field descriptions

at aPBHdr See the definition of the at aPBHdr parameter block on page 99.
Abor t PB This field contains the address of the I/O parameter block to
be aborted.
Reser ved This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

ATA Manager Reference 105

RESULT CODES

CHAPTER 7

Software for ATA Devices

noErr

nsDrvErr
ATAMgrNot I nitialized
ATARegAbort ed
ATAUnabl eToAbor t

ATA_BusInquiry

Successful completion; no error occurred
Specified device is not present

ATA Manager not initialized

The request was aborted

Request to abort couldn’t be honored

106

You can use the ATA_Busl nqui ry function to gets information about a specific ATA
bus. This function is provided for possible future expansion of the Macintosh ATA

architecture.

The manager function code for the ATA_Busl nqui ry function is $03.

The parameter block associated with this function is defined below:

struct ATA _Buslnquiry

{
at aPBHdr
U nt16 at aEngi neCount ;
untl6 at aReser ved;
Ul nt 32 at aDat aTypes;
U nt 16 at al OpbSi ze;
U nt16 at aMax!| OpbSi ze;
Ul nt 32 at aFeat ur eFl ags;
unt8 at aVer si onNum
unt8 at aHBAI nqui ry;
Ul nt 16 at aReserved?2
Ul nt 32 at aHBAPri vPtr;
Ul nt 32 at aHBAPri vSi ze
Ul nt 32 at aAsyncFl ags;
Ul nt 32 at aReserved3[4] ;
Ul nt 32 at aReser ved4;
SInt8 at aReserved5[16] ;
SInt8 at aHBAVendor [16] ;
SInt8 ataContrl Fam | y[16];
SInt8 ataContrl Type[16];
SInt8 at aXPTver si on[4] ;
SInt8 at aReserved6[4] ;
SInt8 at aHBAver si on[4] ;
unt8 at aHBAsI ot Type;
U nt8 at aHBAsI ot Num
U nt 16 at aReserved7
Ul nt 32 at aReserved8

s

11

/1
/1
11
/1
/1
/1
/1
11
11
/1
/11
11
11
11
11
11
11
/11
11
11
11
11
11
11
11
/11

ATA bus inquiry structure

see definition on page 99

~ TBD; 0 for now
reserved
~ TBD;, 0 for now

~ size of ATA1/O PB

~ TBD; 0 for now

~ TBD

~ HBA Version nunber

~ TBD; 0 for now

reserved

~ pointer to HBA private data
~ size of HBA private data
~ capability for callback
reserved

reserved

TBD

~ HBA Vendor | D

~ family of ATA controller
~ controller nodel nunber

— version nunber of XPT
reserved

~ version nunber of HBA

~ type of slot
~ slot nunber
reserved
reserved

of the HBA

typedef struct ATA Buslnquiry ATA Buslnquiry;

ATA Manager Reference

RESULT CODES

CHAPTER 7

Software for ATA Devices

Field descriptions
at aPBHdr

at aEngi neCount
at aReser ved
at aDat aTypes

at al OpbSi ze
at avax| OpbSi ze

at aFeat ur eFl ags

at aVer si onNum

at aHBAI nqui ry
at aHBAPr i vPt r

at aHBAPri vSi ze

at aAsyncFl ags

at aHBAVendor

ataContrl Fanmi |y

ataContrl Type
at aXPTver si on
at aHBAver si on

at aHBAsI ot Type

at aHBAs| ot Num

noErr

See the definition of at aPBHdr on page 99.
Currently set to 0.
Reserved. All reserved fields are set to 0.

Returns a bitmap of data types supported by this host bus adapter
(HBA). The data types are numbered from 0 to 30; 0 through 15

are reserved for Apple definition, and 16 through 30 are available
for vendor use. This field is currently not supported; it returns a
value of 0.

This field contains the size of the I/ O parameter block supported.
This field specifies the maximum I/O size for the HBA. This field is
currently not supported and returns 0.

This field specifies supported features. This field is not supported; it
returns a value of 0.

The version number of the HBA is returned. The current version
returns a value of 1.

Reserved.

This field contains a pointer to the HBA’s private data area. This
field is not currently supported; it contains a value of 0.

This field contains the byte size of the HBA’s private data area. This
field is currently not supported; it contains a value of 0.

These flags indicate which types of asynchronous events the HBA is
capable of generating. This field is currently not supported; it
contains a value of 0.

This field contains the vendor ID of the HBA. This is an ASCII text
field.

Reserved.
This field identifies the specific type of ATA controller.
Reserved.

This field specifies the version of the HBA. This field is currently
not supported; it contains a value of 0.

This field specifies the type of slot. This field is currently not
supported; it contains a value of 0.

This field specifies the slot number of the HBA. This field is
currently not supported; it contains a value of 0.

Successful completion; no error occurred

ATAMgr Not I niti alized ATA Manager not initialized

ATA Manager Reference 107

CHAPTER 7

Software for ATA Devices

ATA_DrvrDeregister

You can use the ATA_Dr vr Der egi st er function to deregister the selected drive. After
successful completion of this function, the driver reference number for the drive is set to
0, indicating that no driver is in control of this device.

This function should be called when the controlling device is no longer available to the
registered driver (device ejection) or the device driver is being closed down. Typically,
this call is embedded in the O ose() function of the driver.

The manager function code for the ATA_Dr vr Der egi st er function is $87.

There are two versions of the data structure for registration. The version is identified by
the at aPBVer s field in the parameter block.

Two versions of the parameter block associated with this function are defined below:
/1 version 1 (ataPBVers = 1)

struct at aDr vr Regi st er /1 parameter block structure
Il for ataPBVers =1

{

at aPBHdr /'l header informtion

SInt16 dr vr Ref Num /1 not used

U nt 16 Fl agReser ved; /1 reserved

U nt16 devi ceNext | D /1l not used

SInt16 Reserved|[21] ; /'l reserved for future expansion
1

typedef struct ataDrvrRegister ataDrvrRegister;

/1 version 2(ataPBVers = 2)
struct at aDr vr Regi st er /1 paraneter block structure
/1l for ataPBVers = 2

{
at aPBHdr /1 header infornmation
SInt 16 dr vr Ref Num /[l - driver reference nunber
U nt 16 drvr Fl ags; I/l - driver flags; set to O
Ul nt 16 devi ceNext | D /1 not used
SInt 16 Reserved; /!l reserved -> should be 0
ProcPtr ataEHandl erPtr /1l - event handler routine ptr
Sl nt 32 drvr Cont ext ; /1l - value to pass in along
/1 with the event handl er
Ul nt 32 at aEvent Mask; /1 - masks of various events
/1 for event handl er
SInt16 Reserved|[14] ; /'l reserved for future expansion
b

typedef struct ataDrvrRegister ataDrvrRegister;

108 ATA Manager Reference

RESULT CODES

CHAPTER 7

Software for ATA Devices

In deregistration of a notify-all driver, the at aEHandl er Pt r field is used to match the
entry (because the devi cel Dfield is invalid for registration and deregistration of the
notify-all driver). If the driver is registered as both notify-all and for a specific device, the
driver must deregister for each separately.

IMPORTANT
Notify-all device drivers must deregister using parameter version 2. a

Field descriptions

at aPBHdr See the at aPBHdr parameter block definition on page 99.
dr vr Ref Num This field is not used with the deregister function.
drvr Fl ags No bit definition has been defined for the field. This field shall be

set to 0 to ensure compatibility in the future.
devi ceNext | D Not used for this function.
Reser ved Reserved. Should be set to 0

at aEHandl er Pt r A pointer to driver’s event handler routine. This field is only used
for notify-all driver deregistration. This field is not used for all other
deregistration. Because this field is used to identify the correct
notify-all driver entry, this field must be valid for notify-all driver
deregistration.

dr vr Cont ext Not used for this function.
at aEvent Mask Not used for this function.

noErr Successful completion; no error occurred
nsDr vErr Specified device is not present

ATA_DrvrRegister

You can use the ATA_Dr vr Regi st er function to register the driver and an event
handler for the drive whose reference number is passed in. Any active driver that
controls one or more devices through the ATA Manager must register with the manager
to insure proper operation and notification of events. The ATA_Dr vr Regi st er function
should be called only at noninterrupt time.

The first driver to register for the device gets it. All subsequent registrations for the
device are rejected. The registration mechanism is used for manager to notify the
appropriate driver when events occur. Refer to Table 7-5 on page 112 for possible events.

The manager function code for the ATA_Dr vr Regi st er function is $85.

There are two versions of the data structure for registration. The version is identified by
the at aPBVer s field in the parameter block.

Version two allows a driver to register as a notify-all driver. Registration of a notify-
all driver is signaled by a value of —1 in the devi cel Dfield of the header and bit 0 of

ATA Manager Reference 109

CHAPTER 7

Software for ATA Devices

drvrFlags set to 0. Notify-all driver registration is used if notification of all device
insertions is desired. Registered default drivers will be called if no media driver is found
on the media. Typically, an INIT driver registers as a notify-all driver. The single driver
may register as a notify-all driver, then later register for one or more devices on the bus.

Note

To ensure proper operation, all PCMCIA / ATA and notify-all
device drivers must register using version two, which provides
event-handling capability. O

Two versions of the parameter block associated with this function are defined below:
/1 version 1 (ataPBVers = 1)

st ruct at aDr vr Regi st er /1 paraneter block structure
/1 for ataPBVers =1

{

at aPBHdr /1 header infornmation

SInt 16 dr vr Ref Num /[l - driver reference nunber

Ul nt 16 Fl agReser ved,; /'l reserved -> should be O

U nt 16 devi ceNext | D /1 not used

SInt16 Reserved|[21] ; /1 reserved for future expansion
b

typedef struct ataDrvrRegister ataDrvrRegister;

/1 version 2(ataPBVers = 2)
st ruct at abDr vr Regi st er /1 paraneter block structure
/1 for ataPBVers = 2

{
at aPBHdr /1 header information
SInt16 dr vr Ref Num /1l - driver reference nunber
U nt16 drvr Fl ags; /[l - driver flags; set to O
U ntl6 devi ceNext | D /1 not used
SInt 16 Reserved; /1 reserved; set to O
ProcPtr ataEHandl erPtr /1l - event handl er routine pointer
Sl nt 32 drvr Cont ext ; /'l - value to pass in along with
/1 the event handl er
Ul nt 32 at aEvent Mask; /1 - masks of various events for
/1 the event handl er
SInt 16 Reserved[14] ; /1 reserved for future expansion
b

typedef struct ataDrvrRegi ster ataDrvrRegister;

110 ATA Manager Reference

CHAPTER 7

Software for ATA Devices

Field descriptions

at aPBHdr See the at aPBHdr parameter block definition on page 99.

drvr Ref Num This field specifies the driver reference number to be registered.
This value must be less than 0 to be valid. This field is a don’t-care
field for registration of a notify-all driver.

Fl agReser ved Reserved.

devi ceNext I D Not used by this function.

Reserved[21] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

at aEHandl er Ptr A pointer to driver’s event handler routine. This routine will be
called whenever an event happens, and the mask bit for the
particular event is set in the at aEvent Mask field. The calling
convention for the event handler is

pascal SInt16 (ataEHandlerPtr) (ATAEvent Rec*);

where ATAEvent Rec is defined as follows:

t ypedef struct
{
U nt 16 event Code; /1 - ATA event code
U nt 16 phyDrvRef; /1 - 1D associated with
/1 the event
SInt32 drvrContext; [// - context passed in
/1 by the driver
} ATAEvent Rec;

See “Notification of Device Events” beginning on page 132 for a list
of the ATA event codes.

dr vr Cont ext A value to be passed in when the event handler is called. This value
will be loaded into ATAEvent Rec before calling the event handler.

at aEvent Mask The mask defined in this field is used to indicate whether the event
handler should be called or not, based on the event. The event
handler will be called only if the mask for the event has been set. If
the mask is not set for an event, the ATA Manager will take no
action. Table 7-5 lists the masks have been defined.

ATA Manager Reference 111

CHAPTER 7

Software for ATA Devices
Table 7-5 Event masks
Bits Event mask
$00 Null event
$01 Online event: a device has come online
$02 Offline event: a device has gone offline
$03 Device removed event: a device has been removed (taken out)
$04 Reset event: a device has been reset
$05 Offline request event: a request to take the drive offline
$06 Eject request event: a request to eject the drive
$07 Configuration update event: the system configuration has changed
$08-%$1F Reserved for future expansion
RESULT CODES
NnoErr Successful completion; no error occurred
nsDrvErr Specified device is not present
par anerr Parameter error detected

ATA _EjectDrive

You can use the ATA_Ej ect Dri ve function to eject a device from a selected socket. You
must make sure that all partitions associated with the device have been dismounted
from the desktop.

The manager function code for the ATA_Ej ect Dri ve function is $89.

The data structure of the function is as follows:

struct atakgj ect /1 configuration paraneter bl ock
{

at aPBHdr /1 header informtion

U ntl6 Reserved[24] ; /1 reserved
1

typedef struct ataEj ect atakj ect;

Field descriptions
at aPBHdr See the at aPBHdr parameter block definition on page 99.

Reserved[24] Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

RESULT CODES

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

112 ATA Manager Reference

CHAPTER 7

Software for ATA Devices

ATA_ExeclO

You can use the ATA_Execl Ofunction to perform data I/O transfers to or from an ATA
device. Your application must provide all the parameters needed to complete the
transaction prior to calling the ATA Manager. Upon return, the parameter block contains
the result of the request.

The manager function code for the ATA_Exec| Ofunction is $01.

The parameter block associated with the ATA_Execl Ofunction is defined below:

struct ATA Execl O /1 ATA Execl O structure
{
at aPBHdr /1 see definition on page 99
SInt8 ataStatusReg; // ~ last device status register inage
SInt8 at aErr or Reg; /1l « last device error register
/1 (valid if bit 0 of status field set)
SInt16 at aReser ved; /'l reserved
Ul nt 32 Bl i ndTxSi ze; /1l - data transfer size
Ul nt 8* i oBuf fer; /! ~ data buffer ptr

Ul nt 32 ataActual TxCnt;// ~ actual nunber of bytes

/!l transferred

Ul nt 32 at aReserved2; // reserved

devi cePB RegBl ock; /1l - device register imges

Ul nt 8* packet CDBPtr; // ATAPI packet command bl ock pointer
U nt16 at aReserved3[6];// Reserved

}s

typedef struct ATA Execl O ATA Execl G

Field descriptions
at aPBHdr

at aSt at usReg

at aError Reg

at aReser ved
Bl i ndTxSi ze

i oBuf fer

See the parameter block definition on page 99.

This field contains the last device status register image. See the
ATA /1DE specification for status register bit definitions.

This field contains the last device error register image. This field is
valid only if the error bit (bit 0) of the status register is set. See the
ATA /1IDE specification for error register bit definitions.

Reserved. All reserved fields are set to 0 for future compatibility.

This field specifies the maximum number of bytes that can be
transferred for each interrupt or detection of a data request. Bytes
are transferred in blind mode (no byte-level handshake). Once an
interrupt or a data request condition is detected, the ATA Manager
transfers up to the number of bytes specified in the field from or to
the selected device. The typical number is 512 bytes.

This field contains the host buffer address for the number of bytes
specified in the i oReqCount field. Upon returning, this field is
updated to reflect data transfers. When the SGType bits of the

ATA Manager Reference 113

CHAPTER 7

Software for ATA Devices

at aFl ags field are set, this field points to a scatter gather list. The
scatter gather list consists of series of | OBl k entries defined as
follows:

struct 10Bl k

{
Ul nt 8*i oBuff er; /Il o data buffer ptr

Ul nt 32i oReqCount ; /'l o transfer length
H
typedef struct 10BIk | OBl Kk;

i oRegCount This field contains the number of bytes to transfer either from or to
the buffer specified in i oBuf f er . Upon returning, the
i oRegCount field is updated to reflect data transfers (0 if
successful; otherwise, the number of bytes that remained to be
transferred prior to the error condition). When the SGTy pe bits of
the at aFl ags field are set, the i oReqCount field contains the
number of scatter gather entries in the list pointed to by the
i oBuf f er field.

at aAct ual TxCnt This field contains the total number of bytes transferred for this
request.

at aReser ved2 This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RegBl ock This field contains the ATA device register image structure. Values
contained in this structure are written out to the device during the
command delivery state. The caller must provide the image before
calling the ATA Manager. The ATA device register image structure
is defined as follows:

struct Device PB /1 device register images

{
Unt8 Features; [// - features register inage
unt8 Count; /'l & sector count
Uunt8 Sector; I/l o sector start/finish

Unt8 Reserved; // reserved
Untl6 Cylinder; // cylinder 68000 format
Uunt8 SDH; /! ~ SDH register inmage
U nt8 Command; /1 - Command register imge
b
t ypedef struct Device PB Device PB;

For ATAPI commands, the cylinder image must contain the

preferred PIO DRQ packet size to be writtern out to the cylinder
high/low registers during the command phase.

114 ATA Manager Reference

RESULT CODES

CHAPTER 7

Software for ATA Devices

packet CDBPt r This field contains the packet pointer for ATAPI. The ATAPI bit of
the protocol type field must be set for this field to be valid. Setting

the ATAPI protocol bit also signals the manager to initiate the
transaction without the DRDY bit set in the status register of the
device. For ATA commands, this field should contain 0 to ensure

future compatibility. The packet structure for the ATAPI command
is defined as follows:

struct ATAPI CrdPacket// ATAPI

{

SInt16 packetSize;// size of command packet
/1 in bytes (exclude size)
SInt16 comand[8]; // the ATAPI comand packet

s

typedef struct ATAPI CndPacket ATAPI CrdPacket ;

at aReser ved3[6] These fields are reserved. To ensure future compatibility, all

reserved fields should be set to 0.

nokErr

nsDrvErr
AT_AbortErr

AT _Recal Err
AT WFItErr

AT _SeekErr
AT_UncDat aErr
AT_Cor Dat aErr
AT_BadBl KErr

AT _DMar KEr r

AT _| DNFEr r
ATABuUSYy

ATAMgr Not I niti alized
ATAPBI nval i d
ATAQ.ocked
ATAReql nPr og
ATATr ansTi neCut
ATAUnknownSt at e

ATA Manager Reference

Successful completion; no error occurred
Specified logical drive number does not exist
Command aborted bit set in error register
Track 0 not found bit set in error register
Write fault bit set in status register

Seek complete bit not set upon completion
Uncorrected data bit set in error register
Data corrected bit set in status register

Bad block bit set in error register

Data mark not found bit set in error register
ID-not-found bit set in error register
Selected device busy (BUSY bit set)

ATA Manager not initialized

Invalid device base address detected (= 0)
I/O queue locked—cannot proceed

I/0O channel in use—cannot proceed
Timeout: transaction time-out detected
Device in unknown state

conmand packet structure

115

CHAPTER 7

Software for ATA Devices

ATA_FindRefNum

You can use the ATA_Fi ndRef Numfunction to determine whether a driver has been
installed for a given device. You pass in a device ID, and the function returns the current
driver reference number registered for the given device. A value of 0 indicates that no
driver has been registered. The devi ceNext | Dfield contains a device ID of the next
device in the list. The end of the list is indicated with a value of $FF.

To create a list of all drivers for the attached devices, pass in $FF for devi cel D. This
causes devi ceNext | Dto be filled with the first device in the list. Each successive driver
can be found by moving the value returned in devi ceNext | Dinto devi cel Duntil the
function returns $FF in devi ceNext | D, which indicates the end of the list.

The manager function code for the ATA_Fi ndRef Numfunction is $86.
Two versions of the parameter block associated with this function are defined below:
/1 version 1 (ataPBVers = 1)

struct at aDr vr Regi st er /1 paraneter block structure
/1 for ataPBVers = 1

{

at aPBHdr /1 header information

Sl nt 16 drvr Ref Num Il < driver reference nunber

U nt 16 Fl agReser ved; /1 reserved; set to O

U nt16 devi ceNext | D I/l ~ used to specify the

/1 next drive ID

SInt16 Reserved|[21] ; /1 reserved for future expansion

b

typedef struct ataDrvrRegi ster ataDrvrRegister;

/1 version 2(ataPBVers = 2)
struct at aDr vr Regi st er /| parameter block structure
/1l for ataPBVers = 2

{
at aPBHdr /'l header information
SInt16 dr vr Ref Num [/l < driver reference nunber
U nt16 drvr Fl ags; I/l - reserved; set to O
U ntl6 devi ceNext | D I/l ~ used to specify the
/'l next drive ID
SInt16 Reserved,; /'l reserved -> should be O
ProcPtr ataEHandl erPtr /'l ~ event handler routine pointer
Sl nt 32 drvr Cont ext ; Il < value to pass in along with
/1 the event handl er
Ul nt 32 at aEvent Mask; /'l < current setting of the mask
/1l of events for the event handl er
SInt16 Reserved[14] ; /1 reserved for future expansion
1

typedef struct ataDrvrRegi ster ataDrvrRegister;

116 ATA Manager Reference

CHAPTER 7

Software for ATA Devices

Field descriptions
at aPBHdr See the at aPBHdr parameter block definition on page 99.

drvr Ref Num Upon return, this field contains the reference number for the device
specified in the devi cel Dfield of the at aPBHdr data.

FI agReser ved This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

devi ceNext I D Upon return, this field contains the devi cel Dvalue of the next
device on the list.

Reserved[21] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.
RESULT CODES
noErr Successful completion; no error occurred
nsDr vErr Specified device is not present

ATA_GetDevConfig

You can use the ATA_Get DevConf i g function to get the current configuration of a
device. The configuration includes current voltage settings and access characteristics.
This function can be issued to any bus that the ATA Manager supports. However, some
fields returned may not be valid for the particular device type (for example, the voltage
settings for the internal device are invalid).

The manager function code for the ATA_Get DevConfi g function is $8A.

The data structure for the function is as follows:

struct at aCGet DevConfig /'l paraneter block

{
at aPBHdr /'l header information
Sl nt 32 Confi gSetti ng; /'l « socket configuration setting
U nt8 at al OSpeedMbde; /'l reserved for future expansion
unt8 Reserveds; /1 reserved for word alignnent
U nt16 pcVal i d; /'l o mask indicating which

/1 PCMCI A-uni que fields

I/ are valid, when set
U nt16 RWWI ti pl eCount; // reserved for future expansion
U nt 16 SectorsPerCylinder;// reserved for future expansion

U nt16 Heads; /1 reserved for future expansion
U nt16 SectorsPer Track; // reserved for future expansion
U ntl6 socket Num /'l ~ socket nunber used by

/] Card Services
U nt8 socket Type,; Il ~ specifies the socket type

ATA Manager Reference 117

118

CHAPTER 7

Software for ATA Devices

unt8 devi ceType; I/l ~ specifies the active

/1 device type

/1 fields below are valid according to the bit mask
/1 in pcvalid (PCMCI A unique fields)

unt8 pcAccessMode; /'l o access node of the socket:
/1 mermory or |/0O
unt8 pcVcc; /Il o~ Vcc voltage in tenths
unt8 pcVppl; /Il « Vpp 1 voltage in tenths
unt8 pcVpp2; Il « Vpp 2 voltage in tenths
unt8 pcSt at us; I/l o card status register setting
unt8 pcPi n; /Il & card pin register setting
unt8 pcCopy; I/l o card socket/copy register
/1 setting
unt8 pcConfi gl ndex; /Il & card option register setting
U nt16 Reserved[10] ; /1 reserved

}s

typedef struct ataGetDevConfiguration ataGetDevConfiguration;

Field descriptions
at aPBHdr

ConfigSetting

at al OSpeedMode
pcVvalid

See the at aPBHdr parameter block definition on page 99.

This field indicates various configuration settings. The following
bits have been defined:

Bits 5-0: Reserved for future expansion (set to 0)

Bit 6: ATAPI packet DRQ handling setting (only applies to ATAPI)

1: The function waits for an interrupt to happen before sending the
ATAPI command packet.

0: The function waits for the assertion of DRQ bit in the status
register before sending the ATAPI command packet. This is the
default setting.

Bits 7-31: Reserved (set to 0)

This field is reserved for future expansion.

This field indicates which of the PCMCIA unique fields contain
valid values. Table 7-6 on page 119 lists the fields corresponding to
each bit.

RWwWUI t i pl eCount This field is reserved for future expansion.
Sect or sPer Cyl i nder

Heads

Sect or sPer Tr ack

socket Num

This field is reserved for future expansion.

This field is reserved for future expansion.

This field is reserved for future expansion.

This field contains the socket number used by Card Services for the
device. This value will be needed to request services directly from
Card Services (such as Get Tupl e). A value of $FF indicates that the
selected device is not a Card Services client.

ATA Manager Reference

CHAPTER 7

Software for ATA Devices

socket Type

devi ceType

pcAccessMde

pcVcc
pcVppl
pcVpp2
pcSt at us
pcPi n

pcCopy

pcConfi gl ndex

This field specifies the type of the socket. Possible values are
$00 = unknown socket type

$01 = internal ATA bus

$02 = media bay socket

$03 = PCMCIA socket

This field specifies the type of the device. Possible values are
$00 = unknown type or no device present

$01 = standard ATA device

$02 = ATAPI device

$03 = PCMCIA ATA device

This field specifies the current access mode of the device; it is valid
only if bit 0 of the pcVal i d field is set, and only for

ATA Get Devi ceConfi gurati on, not for

ATA Set Devi ceConfi gur at i on. Possible values are:

0=1/O mode

1 = memory mode

This field indicates the current voltage setting of Vcc in tenths of a
volt. It is valid only if bit 1 of the pcVal i d field is set.

This field indicates the current voltage setting of Vppl in tenths of a
volt. It is valid only if bit 2 of the pcVal i d field is set.

This field indicates the current voltage setting of Vpp2 in tenths of a
volt. It is valid only if bit 3 of the pcVal i d field is set.

This field indicates the current card register setting of the PCMCIA
device. It is valid only if bit 4 of the pcVal i d field is set.

This field indicates the current card pin register setting of the
PCMCIA device. It is valid only if bit 5 of the pcVal i d field is set.

This field indicates the current card socket/ copy register setting of
the PCMCIA device. It is valid only if bit 6 of the pcVal i d field is
set.

This field indicates the current card option register setting of the
PCMCIA device. It is valid only if bit 7 of the pcVal i d field is set.

Table 7-6 Bits in pcVal i d field

Bits Field validity indicated

g = W N = O

pcAccessMde field is valid, when set
pcVcc field is valid, when set

pcVppl field is valid, when set
pcVpp?2 field is valid, when set

pcSt at us field is valid, when set

pcPi n field is valid, when set

continued

ATA Manager Reference 119

CHAPTER 7

Software for ATA Devices

Table 7-6 Bits in pcVal i d field (continued)

Bits Field validity indicated
6 pcCopy field is valid, when set
7 pcConfi gl ndex field is valid, when set
8-14 Reserved (set to 0)
15 Reserved
RESULT CODES
noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

ATA_GetDevLocationIcon

You can use the ATA_Get DevLocat i onl con function to get the location icon data and

the icon string for the selected device. The length of the icon data returned is fixed at 256
bytes; the string is delimited by the null character. Both the icon data and location string
are copied to buffers pointed to by the structure. Data is not copied if the corresponding

pointer is set to 0.

The | ocati onStri ng field is in C string format. You may have to call c2pst r ()
function to convert to a Pascal string before returning the string to the operating system.

The manager function code for the ATA_Get DevLocat i onl con function is $8C.

The data structure for the Dr vLocat i onl con function is as follows:

struct DrvLocati onl con

{
at aPBHdr /1l see above definition
Sl nt 16 at al conType; /1l - icon type specifier
Sl nt 16 atal conReserved; // reserved; set to O
SInt8 *at aLocationl conPtr;
/[l - pointer to icon data buffer
SInt8 *atalLocationStringPtr;
/[l - pointer to location string
/1 data buffer
SInt16 Reserved[18] ; /1 reserved
b

t ypedef struct DrvLocationlcon DrvLocati onl con;

120 ATA Manager Reference

RESULT CODES

CHAPTER 7

Software for ATA Devices

Field descriptions

at aPBHdr See the at aPBHdr parameter block definition on page 99.

at al conType This field defines the type of icon desired as follows:
$01 = large black-and-white icon with mask
$81 = same as 1, but ProDOS icon

at al conReser ved Reserved to be longword aligned. This field should be set to 0 for
future compatibility.

atalocationl conPtr
A pointer to the location icon buffer. When the pointer is nonzero,
the function copies the icon data to the buffer.

atalLocationStringPtr
A pointer to the location string buffer. When the pointer is nonzero,
the function copies the string data to the buffer.

noErr Successful completion; no error occurred
ATAI nternal Err The icon data and string could not be found

ATA_Identify

You can use the ATA | dent i fy function to obtain device identification data from the
selected device. The identification data contains information necessary to perform I/Oto
the device. Refer to the ATA /IDE specification for the format and the information
description provided by the data.

The manager function code for the ATA | dent i fy function is $13.

If the ATAPI Dbit is set in the protocol type field of the header, the ATA Manager performs
the ATAPI identify command ($A1).

The parameter block associated with this function is defined below:

struct ataldentify /1 parameter block structure
{
at aPBHdr /1l see definition on page 99
SInt8 at aSt at usReg; /1l ~ last ATA status image
SInt8 at aErr or Reg; /1l ~ last ATA error inage;
/1 valid if error bit set
SInt16 at aReser ved; /1 reserved
Ul nt 32 Bl i ndTxSi ze; /[l « this field is set to 512
/1 upon returning
unt8 * Dat aBuf ; /1 buffer for the identify data

/1 (512 bytes)

ATA Manager Reference 121

RESULT CODES

CHAPTER 7

Software for ATA Devices

Ul nt 32 at aRequest Count ;

Ul nt 32 at aAct ual TxCnt ;
Ul nt 32 at aReserved2
devi cePB RegBl ock;

Ul nt 16 Reserved3[8] ;
s

11
/1
11
11
/1
11
11

~ indicates renmining
byt e count

~ actual transfer count
reserved

~ task file inmage sent for
t he conmmand
used internally by ATA Manager

typedef struct ataldentify ataldentify;

Field descriptions

at aPBHdr See the definition of the at aPBHdr parameter block on page 99.
at aSt at usReg Status register image for the last ATA task file.

at aError Reg Error register image for the last ATA task file. This field is only valid
if the LSB (error bit) of the at aSt at usReg field is set.

Bl i ndTxSi ze Byte size of the identifying data.

Dat aBuf Pointer to the data buffer for the device identifying data. The length
of the buffer must be at least 512 bytes.

at aReserved, ataReserved2, Reserved3][8]
These fields are reserved. To ensure future compatibility, all
reserved fields should be set to 0.

NoErr Successful completion; no error occurred
nsDr vErr Specified device is not present

ATA_MgrInquiry

122

You can use the ATA_Myr | nqui ry function to get information, such as the version
number, about the ATA Manager. This function may be called before initialization of
the manager; however, the system configuration information may be invalid.

The manager function code for the ATA_Mgr | nqui ry function is $90.

The parameter block associated with this function is defined below:

struct ATA Mgrinquiry
{

at aPBHdr

NunVer si on Mgr Ver si on
Ul nt8 MGRPBVer s;
Ul nt8 Reservedl
Ul nt16 at aBusCnt ;

ATA Manager Reference

I

/1
11
/1
/1
/1
/1

ATA inquiry structure

see definition on page 99

~ manager version numnber

~ manager PB version nunber
supported

reserved

~ nunber of ATA buses in system

RESULT CODES

CHAPTER 7

Software for ATA Devices
U nt16 at aDev(Cnt ; /1 « nunber of ATA devices detected
unt8 at aMaxMbde; /'l <« maxi mum |1/ O speed node
Ul nt 8 Reserved?; /'l reserved
U nt16 | OCl kResol ution; // « 1/Oclock resolution in ns

Ul nt 16
}s

Reserved[17]; [// reserved

typedef struct ATA Myrlnquiry ATA Mrlnquiry;

Field descriptions

See the at aPBHdr parameter block definition on page 99.
Upon return, this field contains the version number of the

This field contains the number corresponding to the latest version
of the parameter block supported. A client may use any parameter

Reserved. All reserved fields are set to 0 for future compatibility.

Upon return, this field contains the total number of ATA buses in
the system. This field contains 0 if the ATA Manager has not been

Upon return, this field contains the total number of ATA devices
detected on all ATA buses. The current architecture allows only one
device per bus. This field will contain 0 if the ATA Manager has not

at aPBHdr
Mgr Ver si on

ATA Manager.
MGERPBVer s

block definition up to this version.
Reservedl
at aBusCnt

initialized.
at aDevCnt

been initialized.
at aMaxMbde

This field specifies the maximum I/O speed mode that the ATA
Manager supports. Refer to the ATA /IDE specification for
information on mode timing.

| OCl kResol uti on

Reserved[17]

noErr

This field contains the I/O clock resolution in nanoseconds. The
current implementation doesn’t support the field (returns 0).

This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

0 Successful completion; no error occurred

ATA_ModifyDrvrEventMask

You can use the ATA_Mdi f yDr vr Event Mask function for modifying an existing driver
event mask that has been specified by the ATA_Dr vr Regi st er function. Modifying the

mask for a nonregistered bus has no effect.

This function is only available with at aPBVer s of two (2).

The manager function code for the ATA_Modi f yDr vr Event Mask function is $88.

ATA Manager Reference

123

RESULT CODES

CHAPTER 7

Software for ATA Devices

The data structure of the function is as follows:

struct ataModi f yEvent Mask

{
at aPBHdr /'l header information
Ul nt 32 nmodi fi edEvent Mask; // - new event mask val ue
SInt16 Reserved[22] ; /] reserved for future expansion
b

typedef struct ataModi fyEvent Mask at aMbdi f yEvent Mask;

Field descriptions
at aPBHdr See the at aPBHdr parameter block definition on page 99.
nmodi fi edEvent Mask

New event mask setting. The definitions of the subfields are given
in Table 7-5 on page 112.

Reserved[22] Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

noErr Successful completion; no error occurred
ATAI nt ernal Err The icon data and string could not be found

ATA_NOP
The ATA_NOP function performs no operation across the interface and does not
change the state of either the manager or the device. It returns noEr r if the drive
number is valid.
The manager function code for the ATA_NOP function is $00.
The parameter block associated with this function is defined below:
| struct at aNOP /1 parameter block structure
{
at aPBHdr /1 see definition on page 99
U nt 16 Reserved[24] ; /'l reserved
b
t ypedef struct ataNOP ataNOP
Field descriptions
at aPBHdr See the definition of at aPBHdr on page 99.
There are no additional function-specific variations on at aPBHdr for this function.
124 ATA Manager Reference

RESULT CODES

CHAPTER 7

Software for ATA Devices
NnoErr Successful completion; no error occurred
nsDrvErr Specified device is not present

ATA_QRelease

RESULT CODES

You can use the ATA_QRel ease function to release a frozen I/O queue.

When the ATA Manager detects an I/O error and the QLockOnEr r or bit of the
parameter block is set for the request, the ATA Manager freezes the queue for the
selected device. No pending or new requests are processed or receive status until the
queue is released through the ATA_QRel ease command. Only those requests with
the | mredi at e bit set in the ATAFI ags field of the at aPBHdr parameter block are
processed. Consequently, for the ATA /O queue release command to be processed, it
must be issued with the | medi at e bit set in the parameter block. An ATA I/O queue
release command issued while the queue isn’t frozen returns the noEr r status.

The manager function code for the ATA_QRel ease function is $04.

The parameter block associated with this function is defined as follows:

struct ataQRel ease /1 paraneter block structure
{
at aPBHdr /1 see definition on page 99
U nt16 Reserved[24] ; /1 reserved
b

typedef struct ataQRel ease ataQRel ease;

Field descriptions
at aPBHdr See the definition of at aPBHdr on page 99.

There are no additional function-specific variations on at aPBHdr for this function.

noErr Successful completion; no error occurred
nsDr vErr Specified device is not present
ATAMgrNot I nitialized ATA Manager not initialized

ATA_RegAccess

You can use the ATA_RegAccess function to gain access to a particular device register
of a selected device. This function is used for diagnostic and error recovery processes.

The manager function code for the ATA_RegAccess function is $12.

ATA Manager Reference 125

CHAPTER 7

Software for ATA Devices

Two versions of the parameter block associated with this function are defined below:

/1 version 1 (ataPBVers = 1)
st ruct at aRegAccess /1 parameter block structure
/1 for ataPBVers of 1

{
at aPBHdr /1 see definition on page 99
Ul nt 16 RegSel ect ; /1l - device register selector
uni on {
Unt8 byteRegValue; // ~ byte register value read
/1 or to be witten
U nt16 wordRegValue; // « word register value read
/1l or to be witten
} registerVal ue;
U nt 16 Reserved[22] ; /'l reserved
1

typedef struct ataRegAccess ataRegAccess;

/1l version 2 (ataPBVers = 2)
st ruct at aRegAccess /1 parameter block structure
/1 for ataPBVers of 2

{

at aPBHdr /1 see definition on page 99

Ul nt 16 RegSel ect ; /1l - device register selector

uni on {

Unt8 byteRegValue; // ~ register value read or
/1 to be witten
U nt16 wordRegValue; // « word register value read

/1l or to be witten

} registerVal ue;

/1 The following fields are valid only if RegSel ect = $FFFF

U nt16 r egMask; /1 - mask indicating which
/1 conbination of registers
/1 to access.

devicePB ri; /'l « register images
/1 (feature - conmand)

unt8 al t St at DevCnt r Reg; /Il - alternate status (R) or
/! device control (W register

unt8 Reserveds3; /1l reserved (set to 0)

Ul nt 16 Reserved[16] ; /'l reserved

1

typedef struct ataRegAccess ataRegAccess;

126 ATA Manager Reference

CHAPTER 7

Software for ATA Devices

Field descriptions
at aPBHdr

RegSel ect

regi st erVal ue

Reserved[22]

regMask

ri

See the definition of the at aPBHdr parameter block on page 99.

This field specifies which of the device registers to access. The
selectors for the registers supported by the ATA_RegAccess
function are listed in Table 7-7.

This field represents the value to be written (ATAI oDi r ecti on =
01 binary) or the value read from the selected register

(ATAi oDi rect i on =10 binary). For the data register, this field is a
16-bit field; for other registers, an 8-bit field. In the case where the
RegSel ect field is set to $FFFF (ataPBVers = 2 or higher), this field
is sued to store the upper byte of the data register image.

This field is unused except in the cases where RegSel ect is set to
either 0 (data register selected) or $FFFF (more than one register
selected). In those two cases, this field contains the lower byte of the
data register image.

This field is only valid for an at aPBVer s value of 2 or higher. This
field indicates what combination of the taskfile registers should be
accessed. A bit set to one indicates either a read or a write to the
register. A bit set to zero performs no operation to the register. Bit
assignments are as shown in Table 7-8.

This field is only valid for an at aPBVer s value of 2 or higher. This
field contains register images for error/features, sector count, sector
number, cylinder low, cylinder high, SDH, and status/command.
Only those register images indicated in the r egMask field are
valid. See “ATA_ExeclO” on page 113 for the structure definition.

al t St at DevCnt r Reg

This field is only valid for at aPBVer s value of 2 or higher. This
field contains the register image for alternate status (R) or device
control (W) register. This field is valid if the alternate status/device
control register bit in the r egMask field is set to 1.

Table 7-7 ATA register selectors

Selector name
Dat aReg

Error Reg
SecCnt Reg
SecNunReg
Cyl LoReg
Oyl Hi Reg
SDHReg

St at usReg
CnmdReg

Selector Register description

0 Data register (16-bit access only)

Error register (R) or features register (W)
Sector count register

Sector number register

Cylinder low register

Cylinder high register

SDH register

N N O s W -

Status register (R) or command register (W)

continued

ATA Manager Reference 127

RESULT CODES

128

CHAPTER 7

Software for ATA Devices
Table 7-7 ATA register selectors (continued)
Selector name Selector Register description
Al t St at us $0E Alternate status (R) or device control (W)
DevCntr
$FFFF More than one register access (valid only for

at aPBVer s =2 or higher)

Table 7-8 Register mask bits

Bit

number Definition

0 Data register

1 Error register (R) or feature register (W)

2 Sector count register

3 Sector number register

4 Cylinder low register

5 Cylinder high register

6 SDH register

7 Status register (R) or command register (W)
8-13 Reserved (set to 0)

14 Alternate status register (R) or device control register (W)
15 Reserved (set to 0)

When reading or writing ATA registers, use the following order:

® N o U WD R

noErr
nsDr vErr

. Data register

. Alternate status register (R) or device control register (W)
. Error register (R) or feature register (W)

. Sector count register

. Sector number register

. Cylinder low register

. Cylinder high register

. Status register (R) or command register (W)

Successful completion; no error occurred
Specified device is not present

ATA Manager Reference

CHAPTER 7

Software for ATA Devices

ATA_ResetBus

You can use the ATA_Reset Bus function to reset the specified ATA bus. This function
performs a soft reset operation to the selected ATA bus. The ATA interface doesn’t
provide a way to reset individual units on the bus. Consequently, all devices on the
bus will be reset.

The manager function code for the ATA_Reset Bus function is $11.

IMPORTANT

You should avoid calling this function under interrupt because it may
take up to several seconds to complete. a

A WARNING
Use this function with caution; it may terminate
any active requests to devices on the bus. a

If the ATAPI bit is set in the protocol type field of the header, the ATA Manager will
perform the ATAPI reset command ($08).

Upon completion, this function flushes all I/O requests for the bus in the queue. Pending
requests are returned to the client with the ATAAbor t edDueToRst status.

The parameter block associated with this function is defined below:

struct ATA Reset Bus /1l ATA reset structure

{
at aPBHdr /1l see definition on page 99
SInt8 St at us; /Il ~ last ATA status register inage
SInt8 Reserved,; /'l reserved

U nt 16 Reserved[23]; // reserved
1
typedef struct ATA ResetBus ATA Reset Bus;

Field descriptions
at aPBHdr See the definition of the at aPBHdr parameter block on page 99.
St at us This field contains the last device status register image following

the bus reset. See the ATA /IDE specification for definitions of the
status register bits.

Reser ved[23] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.
RESULT CODES
noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

ATA Manager Reference 129

CHAPTER 7

Software for ATA Devices

ATA_SetDevConfig

You can use the ATA_Set DevConf i g function to set the configuration of a device. It
contains the current voltage setting and access characteristics. This function can be
issued to any bus that the ATA Manager controls. However, some field settings may be
inappropriate for the particular device type (for example, setting the voltage for the
internal device).

The manager function code for the ATA_Set DevConf i g function is $8B.

The at aSet DevConf i gur at i on data structure of the ATA_Set DevConf i g function is
as follows:

struct ataSetDevConfiguration // configuration paraneter bl ock

{
at aPBHdr /1 header information
Sl nt 32 ConfigSetting; /'l « socket configuration setting
U nt8 at al OSpeedMode; /1 reserved for future expansion
unt8 Reserveds3; /1 reserved for word alignnent
Ul nt 16 pcVal i d; /1l « mask indicating which
/1 PCMClI A-uni que fields are valid
U nt 16 RWuIl tipleCount; // reserved for future expansion
U nt 16 SectorsPerCylinder;// reserved for future expansion
U nt16 Heads; /1 reserved for future expansion
U nt 16 SectorsPerTrack; // reserved for future expansion
U nt 16 Reserved4[2] ; /1 reserved
/1 fields below are valid according to the bit nask
/1 in pcVvalid (PCMCI A unique fields)
unt8 pcAccessMode; /'l « access node of the socket:
/1 memory or 1/0O
U nt8 pcVcce; /'l & Vcc vol tage
unt8 pcVppl; [l « Vpp 1 voltage
U nt8 pcVpp2; Il o Vpp 2 voltage
unt8 pcSt at us; I/l o card status register setting
unt8 pcPi n; /[l « card pin register setting
U nt8 pcCopy; /'l « card socket/copy register
/] setting
unt8 pcConfi gl ndex; /Il « card option register setting
U nt16 Reserved[10] ; /1 reserved
b

typedef struct ataSetDevConfiguration ataSet DevConfi guration;

130 ATA Manager Reference

RESULT CODES

CHAPTER 7

Software for ATA Devices

Field descriptions

at aPBHdr See the at aPBHdr parameter block definition on page 99.
ConfigSetting This field controls various configuration settings. The following bits
have been defined:

Bits 0-5: Reserved for future expansion (set to 0)
Bit 6: ATAPI packet DRQ handling setting (applies only to ATAPI)

1 = The function waits for an interrupt to happen before sending the
ATAPI command packet.

0 = The function waits for the assertion of the DRQ bit in the status
register before sending the ATAPI command packet. This is the
default setting.

Bits 7-31: Reserved (set to 0)
at al OSpeedMbde This field is reserved for future expansion.

pcvalid This field indicates which of the PCMCIA unique fields contain
valid values. Table 7-6 on page 119 lists the fields corresponding to
each bit.

RWWUI ti pl eCount This field is reserved for future expansion.

Sect or sPer Cyl i nder
This field is reserved for future expansion.

Heads This field is reserved for future expansion.

Sect or sPer Tr ack
This field is reserved for future expansion.

pcAccessMode This field is valid only if the bit 0 of the pcVal i d field is set. The
value is written to the access mode control. Possible values are

0=1/0 mode
1 = memory mode

pcVecce This field indicates the new voltage setting of Vcc in tenths of a volt.
It is valid only if bit 1 of the pcVal i d field is set.

pcVppl This field indicates the new voltage setting of Vppl in tenths of a
volt. It is valid only if bit 2 of the pcVal i d field is set.

pcVpp2 This field indicates the new voltage setting of Vpp2 in tenths of a
volt. It is valid only if bit 3 of the pcVal i d field is set.

pcSt at us This field indicates the new card register setting of the PCMCIA
device. It is valid only if bit 4 of the pcVal i d field is set.

pcPin This field indicates the new card pin register setting of the PCMCIA
device. It is valid only if bit 5 of the pcVal i d field is set.

pcCopy This field indicates the new card socket/copy register setting of the

PCMCIA device. It is valid only if bit 6 of the pcVal i d field is set.

pcConfi gl ndex This field indicates the new card option register setting of the
PCMCIA device. It is valid only if bit 7 of the pcVal i d field is set.

noErr Successful completion; no error occurred
nsDr vErr Specified device is not present

ATA Manager Reference 131

CHAPTER 7

Software for ATA Devices

Using the ATA Manager With Drivers

132

This section describes several operations dealing with drivers:
= notification of device events

» loading a device driver

= old and new driver entry points

» loading a driver from the media

= notification of notify-all drivers

» notification of the ROM driver

Notification of Device Events

Due to the asynchronous event-reporting mechanism of the Card Services Manager, the
ATA Manager notifies its clients by a callback mechanism using the client’s event
handler. Each client that is to be notified of device events must register its event handler
at the time of driver registration. Refer to the section “ATA_DrvrRegister” beginning on
page 109 for the calling convention of the event handler.

The event codes that have been defined are listed in Table 7-9.

Table 7-9 Event codes send by the ATA Manager

Event
code Event description

$00 Null event; signifies no real event. The client should simply return with no
error code.

$01 Online event; signifies that a device has come online. This event may happen
as a result of the following actions:
» A device has been inserted into the socket.
= A device has been repowered from sleep /low power.

The client should let the operating system know about the presence of the
device (if it has not done so already), verify the device type, and upload any
device characteristics.

$02 Offline event; signifies that the device has gone offline. This event may
happen as a result of a device being manually removed from the socket.

The client should let the operating system know that the device has gone
offline by setting the offline bit, if appropriate.

$03 Device-removed event; signifies that the device has been ejected gracefully.
The client should clean up the internal variables to reflect
the latest state of the socket. The client may notify the operating system
of the event.

continued

Using the ATA Manager With Drivers

CHAPTER 7

Software for ATA Devices

Table 7-9 Event codes send by the ATA Manager (continued)

Event

code Event description

$04 Reset event; signifies that the device has been reset. This indicates that any
pending request or the settings may have been aborted.

$05 Offline request event; requests permission for the device to go offline.

$06 Eject request event; requests permission to eject the drive.

$07 Configuration update event; signifies that the system configuration related to

I/O subsystems may have changed. This event may imply that the number of
ATA buses and devices has changed. Consequently, if the client is a driver
capable of handling more than one device, it may want to query the manager
for the current configuration.

Device Driver Loading

This section describes the sequence and method of driver installation and the
recommended driver initialization sequence.

The operating system attempts to install a device driver for a given ATA device in the
following instances:

s during system startup or restart
s during accRun, following the drive insertion
» each time it is called to register a notify-all driver

Three classes of drivers are identified and discussed below. The driver loading and
initialization sequence is as follows:

1. Media driver. The driver on the media is given the highest priority.
2. notify-all drivers. Any INIT drivers are given the next priority.
3. ROM driver. The built-in ROM driver is loaded if no other driver is found.

The initialization sequences for the three driver classes are described in “Loading a
Driver From the Media” on page 135.

Once the driver loading and intitialization sequence has been performed for a particular
device, the process is not repeated until one of the following situations occurs:

system restart
= device ejection followed by an insertion

» shutdown and reinitialization of the manager; but only if the exi sti ngd obal Pt r
field of the parameter block is invalid

» anotify-all driver registration occurs. In this case, only the registering driver is
notified of the drive online.

Using the ATA Manager With Drivers 133

CHAPTER 7

Software for ATA Devices

New API Entry Point for Device Drivers

Two entry points into each ATA driver are currently defined, for the old API and the new
API. Use of the new API is strongly recommended. The differences between the two
APIs are as follows:

» Entry point: In the old API, the entry point is offset 0 bytes from the start of the driver;

in the new AP], it is offset 8 bytes from the start of the driver (the same as with SCSI
drivers).

= D5 register: In the old AP]J, the input parameter in the D5 register contains just the bus
ID; in the new API, the D5 register contains the devl dent parameters.

Table 7-10 shows the contents of the D5 register, high-order bits first, for the old API
(calls offset 0 bytes into the driver).

Table 7-10 Input parameter bits for the old API

Bits Value Definition

31-24 0 Reserved; set to 0.

23-16 0 Reserved; set to 0.

15-8 0 Reserved; set to 0.

7-0 ATA bus ID The bus ID where the device resides. This is the ID used to

communicate with the ATA Manager.

Table 7-11 shows the contents of the D5 register, high-order bits first, for the new API
(calls offset 8 bytes into the driver).

Table 7-11 Input parameter bits for the new API

Bits Value Definition
31-24 Reserved In this byte, bits 29-31 are currently defined. All other bits
should be set to 0.
Bit 31 1 =1load at run time (RAM based)
0 =load at startup time (ROM based)
Bit 30 1 = mount volumes associated with this drive
0 = don’t mount any volume associated with
this drive
Bit 29 1 =new API entry (use 8-byte offset)
0 = old API entry (use 0-byte offset)
This bit is set internally by each driver.
23-16 ATA bus ID The bus ID where the device resides. This is the ID used to
communicate with the ATA Manager.
15-8 Device ID The device ID within the given bus. This field is used to

identify the device on a particular bus. The current and
previous ATA Manager implementations assume that the
device ID field is always 0.

7-0 Reserved Reserved; set to 0.

134 Using the ATA Manager With Drivers

CHAPTER 7

Software for ATA Devices

IMPORTANT

ATA Manager version 1.0 uses the old API; the ATA Manager
version 2.0 uses the new APL. a

Loading a Driver From the Media

Upon detection of a device insertion, the driver loader, an extension of the ATA Manager,
initiates a driver load operation during accRun time. The driver loader searches the
DDM and partition maps of the media. If an appropriate driver is found, the driver
loader allocates memory in the system heap and loads the driver.

For the old AP, the driver is opened by jumping to the first byte of the driver code with

the D5 register containing the bus ID of the device. For the new AP, the driver is opened
by jumping to the eighth byte of the driver code with the D5 register containing the new

API definition.

The appropriate driver is identified by following fields:
» ddType = $701 for Mac OS
» partition name = Appl e_Dri ver _ATA

The media driver should be capable of handling both old and new APIs. The Macintosh
Quadra 630 uses the old API; other Macintosh models use the new API.

The typical sequence of the media driver during the Open() call is as follows:
1. Allocate driver globals.
2. Initialize the globals.

3. Install any system tasks, such as VBL, time manager, shutdown procedure, and the
like. Initialize the device and its parameters.

4. Register the device with the ATA Manager. The driver is expected to fail the Open()
operation if an error is returned from the driver registration call for a given device.

The installed driver is expected to return the following information in DO:

s The upper 16-bit word contains the driver reference number corresponding to the unit
table entry. This field is only valid when the lower 16-bits of D0 is 0. The reference
number returned must be less than 0 to be valid.

= The lower 16-bit word contains the status of the driver Open() operation. A value of
0 indicates no error.

Notify-all Driver Notification

When an error is returned from the media driver loading, the driver load function then
calls the notify-all drivers, one by one. This driver type is determined from the driver
registration (-1 in the devi cel Dfield of the driver registration parameter block). Unlike
the media driver, this driver is notified of a device insertion by means of the callback
mechanism at accRun time, when the manager calls the driver with an online event.
Consequently, each notify-all driver must provide a callback routine pointer in the driver
registration. The driver may get a series of online event notifications during the notify-all
registration. The driver is assumed to be installed in system (for example, the INIT

Using the ATA Manager With Drivers 135

136

CHAPTER 7

Software for ATA Devices

driver). Refer to “Notification of Device Events” on page 132 for the event opcode and
the definition of the structure passed in.

Upon returning from the call, each notify-all driver must provide a status indicating
whether the driver controls the specified device or not. A status of 0 indicates that the
driver controls the device; a nonzero status indicates that the driver doesn’t control
the device.

The calling of the notify-all drivers continues until a 0 status is received from one of the
registered drivers or until the end of the list is reached.

The typical sequence of the notify-all driver during the online event handling is
as follows:

1. Check for the presence and the device type.

2. If the driver controls this device, allocate and initialize global variables.
3. Initialize the device and its parameters.
4

. Perform driver registration for the device with the manager. The driver should release
its ownership of the device and return a nonzero status if the driver registration fails.

ROM Diriver Notification

If no driver indicates that it controls the device, the ATA Manager calls the ATA hard
disk driver in the system ROM. The ROM driver is called only for a hard disk device. For
the Macintosh Quadra and LC 630 models, as in the case of the media driver, the called
address is the first byte of the driver. For all other Macintosh models, the called address
is offset by 8 bytes. The input and the output of the driver and the Open() sequence are
the same for both the media driver and the ROM driver.

Device Driver Purging

When a device removal event is detected, an attempt is made to close the device, to
remove it from the unit table, and to dispose of the corresponding driver in memory. A
key function in supporting this feature is a new driver gestalt call. Driver support for
this call is strongly recommended.

The driver gestalt selector for the function is ' pur g' . The call provides following
information to the driver loader:

= the starting location of the driver

= the purge permissions: cl ose(), Drvr Renmove(), and Di sposePtr ()

Using the ATA Manager With Drivers

CHAPTER 7

Software for ATA Devices

The following structure describes the response associated with the purge call. The
description of this and other driver gestalt calls can be found in the Driver Gestalt
documentation in Designing PCI Cards and Drivers for Power Macintosh computers.

struct Driver GestaltPurgeResponse
/1 driver purge permi ssion structure

SInt16 purgePerm ssion; // <--: purge response
/1 0 = do not change the
/] state of the driver
/1 3 = close and renove
// this driver refnum
/1 but don't deallocate
/1 driver code
/1 7 = cl ose, renove, and
/1 di spose of pointer
SInt16 pur geReser ved;
Uni versal ProcPtr purgeDrvrPointer;// <--: starting address
/1 of the driver
/1 (valid only if disposePtr
/1 permission is given)

}s

The driver must either return a status error indicating that the call is not supported, or
return one of the three values defined in the pur gePer mi ssi on field of the response
structure described above. If an error or an illegal value is returned in response to the
call, then the manager treats as if the response of 0 is received. The three possible purge
permissions are listed in Table 7-12. All other response values are reserved and should
not be used.

Table 7-12 Purge permissions and responses

Purge permissions

Response Cl ose() Dr vr Renove() Di sposePtr ()
7 v v v

3 v v

0

Using the ATA Manager With Drivers 137

CHAPTER 7

Software for ATA Devices

Upon receiving a response, the manager purge sequence is as follows:

if a response of 3 or 7
if ((err = PBAose()) == noErr)
/* close the driver down*/

{
if (aresponse of 7)
Di sposePtr (); /* di spose the driver menory*/
Drvr Renove (); /* renove the driver from
the unit table*/
}

The driver Cl ose() permission applies only to the corresponding unit table entry. In
other words, if the driver is used to control multiple devices (such as multiple unit table
entries), then Cl ose() should apply only to the particular device with the matching
driver reference number. The other devices must remain operational.

The registered driver must make the decision as to what value to return in response to
the call. Some examples are listed below:

» If the driver is in control of any other device, it should return a response of 3; the
driver closes the particular device down, but the driver stays resident for other
devices.

s If the driver must remain available for other potential device insertion, it should
return a response of 3.

» If the driver is a media driver controlling the particular device, it should return a
response of 7. Another media driver will become active when a device is inserted.

Setting the 1/0 Speed

The ATA controllers used in Macintosh systems have their I/O cycle time adjustable to
optimize data transfers. There are two mechanisms for setting the I/O cycle time: the
at al OSpeed field of the parameter block header (this field is only valid when a data
transfer is involved: and the at al OSpeedMbde field of the ATA Set DevConfi g
function. The speed setting via the ATA_Set DevConf i g function is considered the
default setting. In other words, if the current speed bit of the at aFl ags field in the
parameter block header is set, then the default speed setting previously set through
the ATA_Set DevConf i g function is used as the I/ O speed mode of the particular
transaction.

If the current speed bit is cleared, then the speed setting specified in the at al OSpeed
field of the transaction parameter block is used. The initial speed setting prior to the first
call to ATA_Set DevConf i g is mode 0.

Because the current PC card specification defines the ATAI/O timing of 0 for all
PCMCIA / ATA devices, the speed setting field has no effect on the I/O speed for those
devices. Currently the field is hard-coded to mode 0.

138 Using the ATA Manager With Drivers

CHAPTER 7

Software for ATA Devices

Error Code Summary

Table 7-13 lists two sets of error codes for ATA drivers: old error codes, used with the
Macintosh PowerBook 150 and the Macintosh Quadra and LC 630 series computers; and
new error codes, to be used with all future Macintosh models. The choice of error codes
is determined by the at aPBVer s field in the at aPBHdr structure, defined on page 99. If
at aPBVer s is set to 1, then the old error codes are used; if at aPBVer s is set to 2, then
the new error codes are used.

Table 7-13 ATA driver error codes
Error code Error code
(new) (old) Error name Error description
0 0 noErr No error was detected on the

requested operation.

$FFCE $FFCE par antrr Error in parameter block.
(-50) (-50)
$FFC8 $FFCS8 nsDrvErr No such drive; no device is attached to
(-56) (-56) the specified port.
$DB43 $F901 AT_NRdyErr Drive ready condition was not detected.
(-9405) (<1791)
$DB44 $F904 AT | DNFErr Sector ID not-found error reported
(-9404) (-1788) by device.
$DB45 $F905 AT_DMar KEr r Data mark not-found error was
(-9403) (-1787) reported by the device.
$DB46 $F906 AT_BadBl KEr r A bad block was detected by the device.
(-9402) (-1786)
$DB47 $F907 AT_Cor Dat aErr Notification that data was corrected
(-9401) (-1785) (good data).
$DB48 $F906 AT_UncDat aErr Unable to correct data (possibly
(-9400) (-1784) bad data).
$DB49 $F909 AT_SeekErr A seek error was detected by the device.
(-9399) (-1783)
$DB4A $FI90A AT WFItErr A write fault was detected by the device.
(-9398) (-1782)
$DB4B $F90B AT _Recal Err A recalibration failure was detected
(-9397) (-1781) by the device.
$DB4C $F90C AT_AbortErr A command was aborted by the device.
(-9396) (-1780)

Error Code Summary

continued

139

CHAPTER 7

Error code
(new)

$DB4D
(-9395)

$DB4E
(-9394)

$DB70
(-9360)

$DB71
(-9359)

$DB72
(-9358)

$DB73
(-9357)

$DB74
(-9356)

$DB75
(-9355)

$DB76
(-9354)

$DB77
(-9353)

$DB78
(-9352)

$DB79
(-9351)

$DB7A
(-9350)

$DB7B
(-9349)

$DB7C
(-9348)

$DB7D
(-9347)

140

Software for ATA Devices

Table 7-13 ATA driver error codes (continued)
Error code

(old) Error name

$F90E AT _MCErr

(-1778)

$F90F ATAPI| CheckErr
(-1777)

$F8F6 ATAMgr Not I niti alized
(-1802)

$F8F5 ATAPBI nval i d
(-1803)

$F8F4 ATAFuncNot Support ed
(-1804)

$F8F3 ATABuUsYy

(-1805)

$F8F2 ATATr ansTi neQut
(-1806)

$F8F1 ATAReq! nPr og
(-1807)

$E8FO0 ATAUnknownSt at e
(-1808)

$ESEF ATAQLocked

(-1809)

$FSEE ATARegAbort ed
(-1810)

$FSED ATAUnabl eToAbor t
(-1811)

$FSEC ATAAbor t edDueToRst
(-1812)

$FSEB ATAPI PhaseErr
(-1813)

$FSEA ATAPI EXCnt Er r
(-1814)

$F8E9 ATANoCl i ent Err
(-1815)

Error Code Summary

Error description

Media-changed error detected
by the device.

The ATAPI check condition was detected.

ATA Manager has not been initialized.
The request function cannot be
performed until the manager has
been initialized.

An invalid ATA port address was
detected (ATA Manager initialization
problem).

An unknown ATA Manager function
code has been specified.

The selected device is busys; it is not
ready to go to the next phase yet.

A timeout condition was detected. The
operation had not completed within
the user-specified time limit.

Device busy; the device on the port is
busy processing another command.

The device status register reflects an
unknown state.

I/0O queue for the port is locked due to a
previous I/O error. It must be unlocked
prior to continuing,.

The I/O queue entry was aborted due to
an abort command.

The I/ O queue entry could not be
aborted. It was too late to abort or the
entry was not found.

The I/O queue entry aborted due to a
bus reset.

Unexpected phase detected.
Warning: overrun/underrun condition
detected (the data is valid).

No client present to handle the event.

continued

CHAPTER 7

Software for ATA Devices

Table 7-13 ATA driver error codes (continued)

Error code Error code

(new) (old) Error name Error description

$DB7E $F8E8 ATAI nternal Err Card Services returned an error.
(-9346) (-1816)

$DB7F $FSE7 ATABUSErr A bus error was detected on I/0O.
(-9345) (-1817)

$DB80 $F90D AT_NoAddr Err The task file base address is not valid.
(-9344) (-1818)

$DB81 $F8F9 Dri ver Locked The current driver must be removed
(-9343) (<1799) before adding another.

$DB8&2 $F8F8 Cant Handl eEvent Particular event could not be handled.
(-9342) (-=1800)

$DB83 — ATAMgr Memor yEr r ATA Manager memory allocation error.
(-9341)

$DB84 — ATASDFai | Err ATA Manager shutdown process failed.
(-9340)

$DB90 — ATAI nval i dDr vNum Invalid drive number from event.
(-9328)

$DB91 — ATAMenor yErr Memory allocation error.

(-9327)

$DB92 — ATANoDDVET r No driver descriptor map (DDM) was
(-9326) found on the media.

$DB93 — ATANoDr i ver Err No driver was found on the media.
(-9325)

Error Code Summary 141

CHAPTER 8

PC Card Services

CHAPTER 8

PC Card Services

This chapter describes the Card Services part of the PC Card Manager in the Macintosh
PowerBook 190 computer.

The PC Card Manager is a new part of Mac OS that lets software use PC cards. The PC
Card Manager helps client software recognize, configure, and view PC cards that are
inserted into PC card sockets on Macintosh PowerBook computers.

The PC Card Manager comprises two sets of system software:
= Card Services, used by all PC card client software

» Socket Services, used primarily by developers of new PC card hardware

This chapter covers only the Card Services functions. For descriptions of the other
functions of the PC Card Manager, see Developing PC Card Software for the Mac OS.

Client Information

You can use the functions described in this section to get information about Card
Services clients.

The Card Services software keeps information about all its clients in a first-in, first-out
queue called the global client queue. You can use the CSCGet Fi r st O i ent and

CSCet Next O i ent functions to iterate through all the registered clients. Either of those
functions returns a handle that you can then use with the CSGet O i ent | nf o function
to obtain the corresponding client information.

In the definitions that follow, an arrow preceding a parameter indicates whether the
parameter is an input parameter, an output parameter, or both.

Arrow Meaning

- Input

- Output

- Both
CSGetFirstClient

144

You can use the CSGet Fi r st C i ent function to find the first client in the Card
Service’s global client queue.

pascal OSErr CSGetFirstCient(CGetdientPB *pb);

The parameter block associated with this function is as follows:

t ypedef struct GetCientPB GetCientPB;
struct GetdientPB

{
U nt32 clientHandl e; /!l <« clientHandle for this client

Client Information

DESCRIPTION

RESULT CODES

CHAPTER 8

PC Card Services

U nt16 socket; /1 - logical socket nunber
Untlé attributes; /1 - bitmap of attributes

}s
// "attributes' field val ues

enum

{
csd i entsFor Al | Sockets = 0x0000,

csCd i ent sThi sSocket Onl y = 0x0001
b

The CSGet Fi r st C i ent function returns a ¢l i ent Handl e value to the first client in
Card Services’ global client queue. If the caller specifies csT i ent sThi sSocket Onl y
and passes in a valid socket number, Card Services returns the first client whose event
mask for the given socket is not NULL.

SUCCESS No error
BAD_SOCKET Invalid socket specified
NO MORE_I TEMS No clients registered

CSGetNextClient

You can use the CSGet Next i ent function to find the next client in the Card Service’s
global client queue.

pascal OSErr CSGetNextClient(GetdientPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetCientPB GetdientPB;
struct GetdientPB

{
U nt32 clientHandl e; |/ o clientHandle for this client
U ntl6 socket; /1 - logical socket nunber
Untl6é attributes; /1 - bitmap of attributes

}

For at t ri but es field values, see “CSGetFirstClient” on page 144.

Client Information 145

CHAPTER 8

PC Card Services

DESCRIPTION
The CSGet Next Cl i ent function returns the next ¢l i ent Handl e value in Card
Services’ global client queue. If the caller specifies csC i ent sThi sSocket Onl y and
passes in a valid socket number, Card Services returns the next client whose event mask
for the given socket is not NULL.

RESULT CODES
SUCCESS No error
BAD_SCCKET Invalid socket specified
NO _MORE_| TEMS No clients registered
BAD_HANDLE Invalid cl i ent Handl e
CSGetClientInfo

You can use the CSGet C i ent | nf o function to get information from the Card Service’s
global client queue.

pascal OSErr CSGetCdientlnfo(GetdientlnfoPB *pb);
The parameter block associated with this function is as follows:

typedef struct GetdientlnfoPB GetdientlnfoPB,;

struct GetdientlnfoPB

{
Unt32clientHandle; // - clientHandl e returned by Registerdient
Untl6 attributes; // o subfunction + bitmapped client attributes

uni on
{
struct /1 upper byte of attributes is
/1 csdientlnfoSubfunction
{
Untl6é revision; /1l ~ BCD value of client's revision
Untl6é cslLevel; /'l ~ BCD val ue of CS release
Untl6é revDate; /'l < revision date:
/1 y[15-9], n{8-5], d[4-0]
SInt16 nanelLen; /Il o in: maximum | ength of
/1 client nane string,
/1 out: actual length
SInt16 vStringlLen; /Il « in: max length of vendor string,
/1 out: actual length
U nt8 *nameStri ng; /! ~ pointer to client nane string
/1 (zero-term nated)
U nt8 *vendorString; // ~ pointer to vendor string
/1 (zero-term nated)
}

Clientlnfo;

146 Client Information

CHAPTER 8

PC Card Services

I

/1

struct /1

{ /1!
untl6é socket; [/
U ntl6é reserved;
SInt16 |ength;
unt8 *text;

}

Al ternat eText Stri ng;

struct

{
U ntl6 socket;
Handl e iconSuite;

}

Al t er nat eCar dl con;

struct

{
U ntl6 socket;

}

Cust omAct i onPr oc;

}ous

}s

/1 "attributes'

enum {

cshenoryd i ent
csl Od i ent

csd i ent TypeMask
csShar eabl eCar dl nsert Event s
csExcl usi veCardl nsert Event s

csl nf oSubf uncti onMask
csd i ent | nfoSubfunction
csCar dNameSubf uncti on
csCar dTypeSubfuncti on
csHel pStri ngSubfuncti on
csCar dl conSubfunction
csActi onProcSubfunction

Client Information

field val ues

upper

byte of attributes is
csCar dNameSubf uncti on,

csCar dTypeSubf uncti on,

csHel pSt ri ngSubf unction

i cons

- logical socket number
!/l - zero
/Il o in: max length of string,
/1 out: actual length
/'l <- pointer to string (zero-termn nated)
/1 upper byte of attributes is
/'l csCardl conSubfunction
/1 - logical socket nunber
/! < handle to suite containing all
/1 upper byte of attributes is
/1 csActionProcSubfunction
/1 - logical socket nunber

= 0x0001,

= 0x0004,

= 0x0007,

= 0x0008,

= 0x0010,

= OxFFO00,

= 0x0000,

= 0x8000,

= 0x8100,

= 0x8200,

= 0x8300,

= 0x8400

147

CHAPTER 8

PC Card Services

DESCRIPTION

The CSCGet C i ent | nf o function is used to obtain information about a client from the
Card Service’s global client queue. The client is specified by passing in a cl i ent Handl e
value previously obtained using Get Fi r st O i ent or Get Next Cl i ent .

Note that in this case the caller does not pass in its own cl i ent Handl e value, but that
of the client whose information is being requested.

The caller of the CSGet Cl i ent | nf o function specifies the type of information being
requested by setting the requested information subfunction in the upper byte of the
attri but es field. The Card Services software passes a CLI ENT_I NFOmessage to the
client pointed to by cl i ent Handl e. Called clients are expected to respond to the

CLI ENT_I NFOmessage by providing the data requested. When a client receives a

CLI ENT_I NFOmessage to perform a custom action, it needs to be aware that it is being
called from the Finder or a similar process environment.

Each time the Card Services software calls a client with a CLI ENT_| NFOmessage, Card
Services passes a client callback parameter block (O i ent Cal | backPB). The buffer field
of the Cl i ent Cal | backPB structure contains a pointer to the get client info parameter
block (Get C i ent | nf 0PB), which has the following structure:

dientCall backPB. function = CLI ENT_I NFQ,

d i ent Cal | backPB. socket = 0;

dientCall backPB.info = 0;

ClientCall backPB. nm sc = 0;

Client Cal | backPB. buf f er (Ptr) GetdientlnfoPB;

ClientCall backPB. clientData
= ((dientQRecPtr) GetdientlnfoPB->clientHandl e)->clientDataPtr;

Before calling the CSGet O i ent | nf o function, you should use Get Fi r st O i ent and
Cet Next Cl i ent to iterate through the registered clients. Card Services returns
cl i ent Handl e to the caller of either function.

RESULT CODES

SUCCESS No error
BAD_ HANDLE Invalid cl i ent Handl e value

Configuration

The functions described in this section help you configure cards and sockets.

148 Configuration

CHAPTER 8

PC Card Services

CSGetConfigurationInfo

You can use the CSGet Conf i gur at i onl nf o function to get the information needed to
initialize a CSMbdi f yConf i gur at i on parameter block.

pascal OSErr

CSGet Confi gur ati onl nf o(Get ModRequest Confi gl nf oPB *pb) ;

The parameter block associated with this function is as follows:

t ypedef struct Get ModRequest Confi gl nf oPB Get MbdRequest Confi gl nf oPB;
struct Get ModRequest Confi gl nf oPB

{
U nt32 clientHandl e;
U ntl1l6 socket;
Untl6é attributes;
unt8 vce;
unt8 vppl;
unt8 vpp2;
U nt8 i nt Type;
U nt32 configBase;
unt8 st at us;
ulnt8 pi n;
unt8 copy;
U nt8 confi gl ndex;
Ul nt8 present;
U nt8 firstDevType;
Ul nt8 f uncCode;
ulnt8 sysl ni t Mask;
U nt16 manuf Code;
U nt16 manuflnfo;
U nt8 car dVval ues;
Ui nt8 paddi ng[1] ;
}

/1
/1
/1
/1
/1
/1
/1
Il
11
Il
11
11
11
11
11
Il
11
11
11

/]l "attributes' field values

enum

{
csExcl usi vel yUsed
csEnabl el REQs
csVccChangeVval i d
csVpplChangeValid
csVpp2ChangeVval i d
csValiddient

/'l request that power be

csSl eepPower

Configuration

- clientHandl e returned by Registerdient
- logical socket nunber

~ bitmap of configuration attributes

~ Vcc setting

~ Vppl setting

~ Vpp2 setting

~ interface type (menory or menory+l /O

~ card base address of config registers

~ card status register setting, if present
~ card pin register setting, if present

~ card socket/copy reg setting, if present
~ card option register setting, if present
~ bitmap of which config regs are present
~ fromDevicelD tuple

~ from Funcl D tuple

~ from Funcl D tuple

~ from Manufacturer!I D tuple

~ from ManufacturerlI D tuple

~ valid card register val ues

0x0001,
0x0002,
0x0004,
0x0008,
0x0010,
0x0020,
applied to socket during sleep
0x0040,

149

CHAPTER 8

PC Card Services

csLockSocket = 0x0080,
csTur nOnl nUse = 0x0100
s
/1l 'intType' field val ues
enum
{
cshMenoryl nterface = 0x01,

cshenory_And_I O Interface 0x02

}s

/1l ‘'present' field val ues

enum
{
csOpti onRegi st er Present = 0x01,
csSt at usRegi st er Present = 0x02,
csPi nRepl acenment Regi st er Present = 0x04,
csCopyRegi st er Present = 0x08

}s

// ‘'cardVal ues' field val ues

enum
{
csOptionVal uevalid = 0x01,
csStatusVal uevalid = 0x02,
csPi nRepl acenent Val ueVal i d = 0x04,
csCopyVal ueval i d = 0x08

DESCRIPTION

The CSCet Conf i gur ati onl nf o function is generally called after a client has parsed a
tuple stream, identified an inserted card as its card, and is ready to initialize a
CSModi f yConfi gur at i on parameter block.

RESULT CODES

SUCCESS No error
BAD HANDLE Invalid cl i ent Handl e value

150 Configuration

CHAPTER 8

PC Card Services

CSRequestConfiguration

DESCRIPTION

You can use the CSRequest Conf i gur at i on function to establish yourself as the
configuring client for a card and socket and to lock the configuration.

pascal OSErr
CSRequest Conf i gur ati on(Get ModRequest Confi gl nf oPB *pb) ;

The parameter block associated with this function is as follows:

t ypedef struct Get ModRequest Confi gl nf oPB Get MbdRequest Confi gl nf oPB;
struct Get ModRequest Confi gl nf oPB

{
Unt32 clientHandle;// - clientHandl e returned by RegisterCient
Ul nt 16 socket; /1 - logical socket nunber
Untl6 attributes; // - bitmap of configuration attributes
unt8 vcc; /'l - Vcc setting
unt8 vppl; /Il - Vppl setting
unt8 vpp2; /Il - Vpp2 setting
unt8 intType; /Il - interface type (nenory or nenory+l/O
U nt32 configBase; // - card base address of configuration registers
U nt8 status; /1l - card status register setting, if present
Unt8 pin; /[l - card pin register setting, if present
U nt8 copy; /1l - card socket/copy reg. setting, if present
Unt8 configlndex; // - card option register setting, if present
unt8 present; /1l - bitmap of which config registers are present
Unt8 firstDevType;// ~ from DevicelD tuple
U nt8 funcCode; /'l <« from FunclD tuple
Unt8 syslnitMask; // ~ from FunclD tuple
U nt 16 nmanuf Code; /1l « from Manufacturerl D tuple
U nt 16 manuf | nf o; /'l « from ManufacturerlD tuple
Unt8 cardValues; // « valid card register val ues
Unt8 padding[l]; //
b

Forattri butes,int Type, present, and car dVal ues field values, see
“CSGetConfigurationInfo” beginning on page 149.

The CSRequest Conf i gur at i on function is used by a client to establish a locked
configuration on a socket and its card. A client calls CSRequest Conf i gur at i on after it
has parsed an inserted and ready card and has recognized the card as being usable.

Card Services uses cl i ent Handl e to lock in the configuration until the same client calls
CSRel easeConf i gur ati on. Once a socket and card are configured no other client may
alter their configuration.

Configuration 151

RESULT CODES

CHAPTER 8

PC Card Services

Configuring a socket and card consists of three operations:
= establishing Vcc and Vpp for the socket
» establishing the socket interface definition (memory only or I/O and memory)

= writing the configuration registers on the card

When Card Services receives a CARD_I NSERTI ON and subsequent CARD_READY event
for a socket, it configures the socket by setting Vec, Vppl, and Vpp2 to 5 volts;
configuring the interface to be memory only; and issuing RESET to the card. Card
Services then parses the CIS (card information structure) of the card. Once Card Services
has finished parsing the CIS, it issues a CARD_READY message to all registered clients. (It
has previously delivered a CARD_| NSERTI ON message to the same clients.) Even if a
client parses and recognizes a card and intends to use the card without altering the
configuration, it should call CSRequest Conf i gur at i on to establish itself as the
configuring client.

SUCCESS No error
BAD HANDLE Invalid cl i ent Handl e value
BAD_SOCKET Invalid socket number

CONFI GURATI ON_LOCKED Another client has already
locked a configuration

NO_CARD No card

QUT_OF_RESOURCE Card Services lacks enough resources
to complete this request

BAD_BASE Invalid base entered

CSModifyConfiguration

152

You can use the CSModi f yConf i gur at i on function to alter the configuration of a
socket or card.

pascal OSErr CSModifyConfiguration(Get ModRequest Confi gl nf oPB *pb);

The parameter block associated with this function is as follows:

t ypedef struct Get ModRequest Confi gl nf oPB Get MbdRequest Confi gl nf oPB;
struct Get ModRequest Confi gl nf oPB

{
U nt32 clientHandl e; /1 - clientHandl e returned by Registerdient
Ul nt 16 socket; /1 - logical socket nunber
U ntl6 attributes; /1 - bitmap of configuration attributes
unt8 vcc; /'l - Vcc setting
unt8 vppl; /Il - Vppl setting
unt8 vpp2; /Il - Vpp2 setting
unt8 intType; /Il - interface type (nenory or nenory+l/0O

Configuration

DESCRIPTION

RESULT CODES

CHAPTER 8

PC Card Services

Ul nt 32 confi gBase; /1 - card base address of config registers

U nt8 status; /Il - card status register setting, if present
unt8 pin; /!l - card pin register setting, if present
unt8 copy; /'l - card socket/copy reg. setting, if present
U nt8 confi gl ndex; I/l - card option register setting, if present
U nt8 present; /1 - bitmap of which config regs. are present
Unt8 firstDevType; Il —~ from DevicelD tuple

U nt8 funcCode; /Il « from FunclD tuple

U nt8 syslnitMsk; /1 < fromFunclD tuple

Ul nt 16 manuf Code; /[l < from Manufacturerl D tuple

U nt 16 manuf | nf o; Il ~ from ManufacturerlD tuple

U nt8 cardVal ues; /1l < valid card register val ues

U nt8 padding[1]; I

b

Forattri butes,int Type, present, and car dVal ues field values, see
“CSGetConfigurationInfo” beginning on page 149.

The CSModi f yConf i gur at i on function is used by clients to alter any of the three
configuration elements of a socket or card. Only a client that has previously succeeded in
calling CSRequest Conf i gur at i on may call CSModi f yConfi gurati on.

SUCCESS No error
BAD HANDLE Invalid cl i ent Handl e value
BAD SOCKET Invalid socket number

CONFI GURATI ON_LOCKED Another client has already
locked a configuration

NO_CARD No card

QUT_OF_RESOURCE Card Services lacks enough resources
to complete this request

BAD BASE Invalid base entered

CSReleaseConfiguration

You can use the CSRel easeConf i gur at i on function to release a previously locked
configuration.

pascal OSErr CSRel easeConfi gurati on(Rel easeConfi gurati onPB *pb);

Configuration 153

DESCRIPTION

RESULT CODES

CHAPTER 8

PC Card Services

The parameter block associated with this function is as follows:

typedef struct Rel easeConfigurati onPB Rel easeConfi gurati onPB;
struct Rel easeConfi gurati onPB
{

U nt32 clientHandl e;

U ntl6 socket;

}s

The CSRel easeConf i gur at i on function is used by clients to release a configuration
previously locked for a socket and card.

SUCCESS No error
BAD HANDLE Invalid cl i ent Handl e value
BAD_SOCKET Invalid socket number

CONFI GURATI ON_LOCKED Another client has already
locked a configuration
NO_CARD No card in specified socket

CSAccessConfigurationRegister

154

You can use the CSAccessConf i gur at i onRegi st er function to modify a single
configuration register. This function is not normally used by clients.

pascal OSErr
CSAccessConfi gurati onRegi st er (AccessConfi gurati onRegi sterPB *pb);

The parameter block associated with this function is as follows:

t ypedef struct AccessConfigurati onRegi sterPB
AccessConfi gur ati onRegi st er PB;

struct AccessConfigurati onRegi sterPB

{
U nt 16 socket; /'l - gl obal socket nunber
U nt8 action; /Il - read/wite
unt8 offset; /1 - offset fromconfig register base
U nt8 val ue; /! o value to read/wite
U nt8 padding[1];
}

Configuration

DESCRIPTION

RESULT CODES

Masks

CHAPTER 8

PC Card Services

[/l "action' field values

enum {
CS_ReadConfi gRegi ster = 0x00,
CS_WiteConfigRegister 0x01

}s

The CSAccessConf i gur ati onRegi st er function lets a client modify a single
configuration register. The location of the register is defined by adding
AccessConfi gur ati onRegi st er PB. of f set to the configuration base address
(see CSModi f yConf i gur ati on on page 152). If the act i on parameter is set to
CS_ReadConf i gRegi st er, then the configuration register value is returned in
AccessConfi gurati onRegi st er PB. val ue.If the act i on parameter is set to
CS_WiteConfi gRegi st er, then the configuration register is written with
AccessConfi gurati onRegi st er PB. val ue.

IMPORTANT

The CSAccessConfi gur ati onRegi st er function is not
normally used by clients. When clients want to set configuration
registers they usually call CSRequest Conf i gur ati on or
CsSModi f yConf i gur at i on and set the appropriate registers

at that time. a

SUCCESS No error
BAD SOCKET Invalid socket number

The functions described in this section get and set client event and socket masks.

CSGetClientEventMask

You can use the CSGetClientEventMask function to obtain your current event mask.

pascal OSErr CSGet i ent Event Mask(Get Set i ent Event MaskPB *pb) ;

Masks

155

DESCRIPTION

156

CHAPTER 8

PC Card Services

The parameter block associated with this function is as follows:

typedef struct GetSetdient Event MaskPB Get Set Cl i ent Event MaskPB;
struct GetSetd i ent Event MaskPB

{
Unt32 clientHandle; // - clientHandl e returned by RegisterCient
Untl6é attributes; /1 - bitmap of attributes
U ntl6 eventMsk; /1 < bitmap of events to be passed to
/1 client for this socket
U ntl6 socket; /'l - logical socket nunber
b

[/l "attributes' field values

enum

{
csEvent MaskThi sSocket Only = 0x0001

b

/1l 'eventMask' field values

enum

{
csWiteProtect Event = 0x0001,
csCar dLockChangeEvent = 0x0002,
csEj ect Request Event = 0x0004,
csl nsert Request Event = 0x0008,
csBatt eryDeadEvent = 0x0010,
csBatterylLowEvent = 0x0020,
csReadyChangeEvent = 0x0040,
csCar dDet ect ChangeEvent = 0x0080,
csPMChangeEvent = 0x0100,
csReset Event = 0x0200,
csSSUpdat eEvent = 0x0400,
csFuncti onl nterrupt = 0x0800,
csAl | Events = OxFFFF

s

The CSCet Cl i ent Event Mask function is used by a client to obtain its current

event mask. If the Get Set Cl i ent Event MaskPB. att ri but es field has

csEvent MaskThi sSocket Onl y reset, the CSGet O i ent Event Mask function
returns the client’s global event mask. If Get Set Ol i ent Event MaskPB. attri but es
has csEvent MaskThi sSocket Onl y set, then the event mask for the given socket
number is returned.

Masks

RESULT CODES

CHAPTER 8

PC Card Services

SUCCESS No error
BAD HANDLE Invalid cl i ent Handl e value
BAD SOCKET Invalid socket number

CSSetClientEventMask

DESCRIPTION

RESULT CODES

You can use the CSSetClientEventMask function to establish your event mask.
pascal OSErr CSSet i ent Event Mask(Get Set d i ent Event MaskPB *pb) ;

The parameter block associated with this function is as follows:

typedef struct GetSetd ient Event MaskPB Get Set Cl i ent Event MaskPB;
struct GCet Setd i ent Event MaskPB

{
Unt32 clientHandle; // - clientHandl e returned by RegisterCient
Untl6é attributes; /1 - bitmap of attributes
U ntl6 eventMsk; /1 - bitmap of events to pass to client
/1 for this socket
U ntl6 socket; /'l - logical socket nunber
3

For event Mask field values, see “CSGetClientEventMask” on page 155.

The CSSet C i ent Event Mask function is used by a client to establish its
event mask. If the Get Set C i ent Event MaskPB. at t ri but es field is reset,
CSSet C i ent Event Mask sets the client’s global event mask. If the

Cet Set A i ent Event MaskPB. at tri but es field has

csEvent MaskThi sSocket Onl y set, then the event mask for the given
socket number is set.

After processing CARD_READY and determining that the card is not usable, clients
should clear their global event masks so that message processing with the system
is streamlined.

SUCCESS No error

BAD HANDLE The cl i ent Handl e field of
Get d i ent | nf oPBis invalid

BAD_ SOCKET Invalid socket number

Masks 157

CHAPTER 8

PC Card Services

CSRequestSocketMask

You can use the CSRequestSocketMask function to establish an event mask for a
specified socket.

pascal OSErr CSRequest Socket Mask(RegRel Socket MaskPB * pb) ;

The parameter block associated with this function is as follows:

t ypedef struct RegRel Socket MaskPB ReqRel Socket MaskPB;
struct ReqRel Socket MaskPB

{
Unt32 clientHandle; // - clientHandl e returned by Registerdient
U nt16 socket; /'l - 1ogical socket
U ntl6 event Mask; /1 - bitmap of events to pass to client
/1 for this socket
3

For event Mask field values, see “CSGetClientEventMask” on page 155.

DESCRIPTION
The CSRequest Socket Mask function is used to establish an event mask for the given
socket number.
RESULT CODES
SUCCESS No error
BAD_HANDLE The cl i ent Handl e field of
Get Qi ent | nf oPBis invalid
CSReleaseSocketMask

You can use the CSReleaseSocketMask function to clear the event mask for a PC card
that you are no longer using.

pascal OSErr CSRel easeSocket Mask(RegRel Socket MaskPB *pb) ;
The parameter block associated with this function is as follows:

typedef struct RegRel Socket MaskPB ReqRel Socket MaskPB;
struct ReqRel Socket MaskPB

{
Unt32 clientHandle; // - clientHandl e returned by RegisterCient
U ntl6é socket; /'l - 1ogical socket

158 Masks

CHAPTER 8

PC Card Services

U ntl6 event Mask; /1 - bitmap of events to pass to client
/1 for this socket

}s

For event Mask field values, see “CSGetClientEventMask” on page 155.

DESCRIPTION

The CSRel easeSocket Mask function is used to clear the event mask for the specified
socket. This is the recommended way for clients to clear socket events when they are not
using a particular PC card.

RESULT CODES

SUCCESS No error
BAD HANDLE The cl i ent Handl e field of
Get d i ent | nf oPBis invalid

Tuples

You can use the functions described in this section to obtain PC card information from
the corresponding tuples.

CSGetFirstTuple

You can use the CSCet Fi r st Tupl e function to obtain access to the first tuple associated
with a particular socket.

pascal OSErr CSGet First Tupl e(Get Tupl ePB *pb);

The parameter block associated with this function is as follows:

t ypedef struct Get Tupl ePB Get Tupl ePB;
struct Get Tupl ePB
{
Ul nt 16 socket; /1 - logical socket nunber
Untl6 attributes; // - bitmap of attributes
Unt8 desiredTuple;// - desired tuple code value, or $FF for all
Unt8 tupleOfset; // - offset into tuple fromlink byte

U ntl1l6 flags; /Il o reserved for internal use
U nt32 |inkOfset /!l o reserved for internal use
U nt32 cisOfset; /'l o reserved for internal use

Tuples 159

RESULT CODES

CHAPTER 8

PC Card Services

uni on

{
struct
{

U nt8 tupl eCode; /1l < tuple code found
U nt8 tuplelink; /'l < link value for tuple found

} Tupl ePB;

struct

{
Ui nt16 tupl eDat aMax; // - maxi mum si ze of tuple data area
U nt 16 tupl eDat aLen;// ~ number of bytes in tuple body

Tupl eBody tupleData; // ~ tuple data
} Tupl eDat aPB;

Py
b
[/l ‘"attributes' field values
enum
{
csRet urnLi nkTupl es = 0x0001
b
SUCCESS No error
BAD SOCKET Invalid socket number
NO_CARD No card in specified socket
I N_USE Card is configured and being used
by another client
READ_FAI LURE Card cannot be read
BAD CI' S Card Services has encountered a
bad CIS structure

QUT_OF_RESOURCE Card Services is not able to obtain
resources to complete
NO_MORE_I TEMS There are no more tuples to process

CSGetNextTuple

160

You can use the CSGet Next Tupl e function to obtain access to each tuple associated
with a particular socket after you have used the CSGet Fi r st Tupl e function to obtain
access to the first tuple associated with that socket.

pascal OSErr CSGet Next Tupl e(Get Tupl ePB *pb);

Tuples

RESULT CODES

CHAPTER 8

PC Card Services

The parameter block associated with this function is as follows:

t ypedef struct Get Tupl ePB Get Tupl ePB;
struct GCet Tupl ePB

{

b

Forattri but es field values, see “CSGetFirstTuple” on page 159.

Ul nt 16 socket;

U ntl6 attributes;
U nt8 desiredTupl
unt8
U ntl1l6 flags;

U nt32 linkOfset;
U nt32 cisOfset;

uni on
{
struct
{
unt8 tupl
unt8 tupl
} Tupl ePB;
struct
{
ulnt 16 t
Ul nt 16 t
Tupl eBody t

} Tupl eDat aPB
Py

SUCCESS
BAD_SOCKET
NO_CARD

| N_USE

READ_FAI LURE
BAD CI'S

OUT_OF RESOURCE

NO_MORE_| TEMB

Tuples

tupl eOfset;

or $FF for all

/1 - logical socket nunber
/1 - bitmap of attributes
e;// - desired tuple code val ue,
/Il - offset into tuple fromlink byte
/Il o reserved for internal use
/Il o reserved for internal use
/! o reserved for internal use
eCode; /1l < tuple code found
elLi nk; /1

upl eDat aMax; //
upl eDat aLen; //
upl eDat a; /1

~ nunber of bytes
~ tuple data

No error

Invalid socket number

No card in specified socket

Card is configured and being used
by another client

Card cannot be read

Card Services has encountered a
bad CIS structure

Card Services is not able to obtain
resources to complete function
There are no more tuples to process

~ link value for tuple found

- maxi mum si ze of tuple data area

in tuple body

161

CHAPTER 8

PC Card Services

CSGetTupleData

You can use the CSGet Tupl eDat a function to obtain information for the tuple
previously found using either the CSGet Next Tupl e or CSGet Fi r st Tupl e function.

pascal OSErr CSGet Tupl eDat a(Get Tupl ePB *pb);

The parameter block associated with this function is as follows:

t ypedef struct Get Tupl ePB Get Tupl ePB;
struct GCet Tupl ePB

{
U nt 16 socket; /1 - logical socket nunber
Untl6 attributes; // - bitmap of attributes
Unt8 desiredTuple;// - desired tuple code value, or $FF for all
Uunt8 tupleOfset; // - offset into tuple fromlink byte
U ntl6 fl ags; /'l « internal use
Unt32 IinkOfset; // ~ internal use
U nt32 cisOfset; /'l o internal use
uni on
{
struct
{
U nt8 tupl eCode; /1l < tuple code found
U nt8 tuplelink; /Il < link value for tuple found
} Tupl ePB;
struct
{
U nt16 tupl eDat aMax; // - maxi mum si ze of tuple data area
U nt 16 tupl eDat aLen; // < nunber of bytes in tuple body
Tupl eBody tupl eDat a; I/l < tuple data
} Tupl eDat aPB;
o
b
[/ ‘'attributes' field values
enum
{

csRet ur nLi nkTupl es = 0x0001

162 Tuples

RESULT CODES

CHAPTER 8

PC Card Services

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket

QUT_OF_RESOURCE Card Services is not able to obtain
resources to complete function

Card and Socket Status

The CSGet St at us function gets card and socket status information.

CSGetStatus

You can use the CSGet St at us function to get status information for the specified socket.
pascal OSErr CSCet St at us(Cet St atusPB *pb);

The parameter block associated with this function is as follows:

t ypedef struct Get StatusPB Get St at usPB;

struct Get St atusPB

{
U nt 16 socket; /1 - logical socket nunber
U nt1l6 cardState; /!l < current state of installed card
U nt16 socketState; // ~ current state of the socket

}s

// 'cardState' field val ues

enum

{
csWiteProtected 0x0001,
csCardLocked = 0x0002,

csEj ect Request = 0x0004,
csl nsert Request = 0x0008,
csBatt eryDead = 0x0010,
csBatterylLow = 0x0020,
csReady = 0x0040,
csCardDetected = 0x0080

}s

/1l 'socketState' field val ues

Card and Socket Status 163

CHAPTER 8

PC Card Services

enum

{

csWiteProtect Changed = 0x0001,
csCar dLockChanged = 0x0002,

csEj ect Request Pendi ng = 0x0004,
csl nsert Request Pendi ng = 0x0008,
csBat t er yDeadChanged = 0x0010,
csBat t er yLowChanged = 0x0020,

csReadyChanged = 0x0040,

csCar dDet ect Changed = 0x0080
i
RESULT CODES
SUCCESS No error
BAD SOCKET Invalid socket number

Access Window Management

The functions described in this section help you manage access windows.

CSRequestWindow

You can use the CSRequest W ndow function to establish a new access window.
pascal OSErr CSRequest W ndow(RegMbdRel W ndowPB * pb) ;

The parameter block associated with this function is as follows:

t ypedef struct RegMbdRel W ndowPB RegqMbdRel W ndowPB;
struct RegMddRel W ndowPB

{
Unt32 clientHandle;// - clientHandl e returned by Registerdient
U nt 32 wi ndowHandl e;// « w ndow descri ptor
U nt 16 socket; /1 - logical socket nunber
Untl6 attributes; // - wndow attributes (bitmap)
Ul nt 32 base; /'l o system base address
U nt 32 size; /!l o nenory wi ndow size
U nt8 accessSpeed; // - w ndow access speed (bitnap)
/1 (not applicable for 1/0 node)
U nt8 padding[1];
b

[/l "attributes' field values

164 Access Window Management

CHAPTER 8

PC Card Services

enum

{

csMenor yW ndow =
csl OW ndow =
CSAttri buteWndow =

0x0001,
0x0002,

0x0004, // not nornmally used by Card Services

/1
csW ndowTypeMask = 0x0007,
csEnabl eW ndow = 0x0008,
csAccessSpeedvalid = 0x0010,
csLittl eEndi an = 0x0020, //

/1
cs16Bit Dat aPat h = 0x0040,
csW ndowPaged = 0x0080,
csW ndowshar ed = 0x0100,
csW ndowFi r st Shar ed = 0x0200,
csW ndowPr ogr anmabl e = 0x0400

s

/1l 'accessSpeed' field val ues

enum

{
csDevi ceSpeedCodeMask = 0x07,
csSpeedExponent Mask = 0x07,
csSpeedMant i ssaMask = 0x78,
csUseWai t = 0x80,
csAccessSpeed250nsec = 0x01,
csAccessSpeed200nsec = 0x02,
csAccessSpeedl50nsec = 0x03,
csAccessSpeedl00nsec = 0x04,
csExt AccSpeedMant 1pt0 = 0x01,
csExt AccSpeedMant 1pt2 = 0x02,
csExt AccSpeedMant 1pt3 = 0x03,
csExt AccSpeedMant 1pt5 = 0x04,
csExt AccSpeedMant 2pt 0 = 0xO05,
csExt AccSpeedMant 2pt5 = 0x06,
csExt AccSpeedMant 3pt0 = 0x07,
csExt AccSpeedMant 3pt5 = 0x08,
csExt AccSpeedMant 4pt 0 = 0x09,
csExt AccSpeedMant 4pt5 = OxO0A,
csExt AccSpeedMant 5pt 0 = 0xO0B,
csExt AccSpeedMant 5pt5 = 0x0C,
csExt AccSpeedMant 6pt 0 = 0x0D,
csExt AccSpeedMant 7pt 0 = OxOE,
csExt AccSpeedMvant 8pt 0 = OxOF,

Access Window Management

clients

configure socket for
little-endi anness

165

CHAPTER 8

PC Card Services

csExt AccSpeedExplns = 0x00,
csExt AccSpeedExpl0ns = 0x01,
csExt AccSpeedExpl00ns = 0x02,
csExt AccSpeedExplus = 0x03,
csExt AccSpeedExpl0Ous = 0x04,
csExt AccSpeedExpl100us = 0xO05,
csExt AccSpeedExplns = 0x06,
csExt AccSpeedExpl0ms = 0x07

DIVERGENCE FROM PCMCIA STANDARD

Apple has added another attribute (cs| OTypeW ndow) that lets a client request that

its new access window be an I/O cycle window. For an I/ O cycle window, speed
characteristics are fixed and any speed-related parameters are ignored. Speed parameters
are only effective if the access window is of type Menory or Attri but e.

In the PCMCIA standard, there is an implied window assignment when a client calls
CSRequest Confi gur at i on because the client must have called Request | / Ofirst.
This assures the client that there is I/O cycle window support for the change.

RESULT CODES

SUCCESS No error

BAD_SOCKET Invalid socket number

QUT_OF_RESOURCE Card Services is unable to obtain
resources to complete function

BAD_BASE Invalid base address
BAD ATTRI BUTE Invalid window attributes
CSModifyWindow

You can use the CSMbdi f yW ndow function to modify information about an
access window.

pascal OSErr CSModi f yW ndow(ReqMbdRel W ndowPB * pb) ;

The parameter block associated with this function is as follows:

t ypedef struct RegMbdRel W ndowPB RegqMbdRel W ndowPB;
struct RegModRel W ndowPB
{
U nt32 clientHandl e;//
Ul nt 32 wi ndowHandl e; //

clientHandl e returned by Registerdient
wi ndow descri ptor

l

!

U nt 16 socket; /1 - logical socket nunber
Untl6 attributes; // - wndow attributes (bitmap)
U nt 32 base; I/l o system base address

166 Access Window Management

CHAPTER 8

PC Card Services

Ul nt 32 size; /!l o nmenory wi ndow size
U nt8 accessSpeed; // - w ndow access speed (bitnap)
/1 (not applicable for I/0O node)

U nt8 padding[1];
}

Forattri but es and accessSpeed field values, see “CSRequestWindow” on page 164.

DIVERGENCE FROM PCMCIA STANDARD

RESULT CODES

The CSModi f yW ndow function must have a valid cl i ent Handl e value (the one
passed in on CSRequest W ndow); otherwise a BAD_HANDLE error is returned.

SUCCESS No error

BAD SOCKET Invalid socket number

QUT_OF RESCURCE Card Services is unable to obtain
resources to complete function

BAD_BASE Invalid base address

BAD_ATTRI BUTE Invalid window attributes

BAD HANDLE invalid cl i ent Handl e value
CSReleaseWindow

You can use the CSRel easeW ndow function to clear an access window that is not
longer needed.

pascal OSErr CSRel easeW ndow(ReqModRel W ndowPB *pb) ;

The parameter block associated with this function is as follows:

t ypedef struct RegMbdRel W ndowPB RegMbdRel W ndowPB;
struct RegMddRel W ndowPB

{
Unt32 clientHandle;// - clientHandl e returned by RegisterCient
U nt 32 wi ndowHandl e;// - w ndow descri ptor
U nt 16 socket; /1 - logical socket nunber
Untl6 attributes; // not used
Ul nt 32 size; // not used
U nt8 accessSpeed; // not used
Unt8 padding[1l]; // not used
3

Forattri but es and accessSpeed field values, see “CSRequestWindow” on page 164.

Access Window Management 167

CHAPTER 8

PC Card Services

DIVERGENCE FROM PCMCIA STANDARD

The CSRel easeW ndow function must have a valid ¢l i ent Handl e value (the one
passed in on CSRequest W ndow); otherwise a BAD_HANDLE error is returned.

RESULT CODES
SUCCESS No error
BAD SOCKET Invalid socket number
BAD HANDLE invalid cl i ent Handl e value

Client Registration

The functions described in this section help you get information about Card Services and
register and deregister clients.

CSGetCardServicesInfo

You can use the CSGet Car dSer vi cesl nf o function to get information from the Card
Services software about the PC cards currently installed.

pascal OSErr CSGet CardServi cesl nfo(Get CardServi cesl nfoPB *pb);

The parameter block associated with this function is as follows:

t ypedef struct Get CardServiceslnfoPB Get CardServi cesl nf oPB;
struct Get CardServi cesl nf oPB

{
Unt8 signature[2]; /! « two ASCII chars 'CS
U nt16 count; /Il < total nunber of sockets installed
Ul nt 16 revision; // ~ BCD
Ul nt 16 csLevel ; // « BCD
Ul nt 16 reserved; /Il - zero
U ntl6é vStrlLen; /Il o in: client's buffer size
out: vendor string length
Unt8 *vendorString; // o in: pointer to buffer to hold CS vendor
/1 string (zero-term nated)
/1 out: CS vendor string copied to buffer
}
RESULT CODES
SUCCESS No error

168 Client Registration

CHAPTER 8

PC Card Services

CSRegisterClient

DESCRIPTION

You can use the CSRegi st er C i ent function to register yourself as a client of the Card
Services software.

pascal OSErr CSRegisterCient(RegisterdientPB *pb);

The parameter block associated with this function is as follows:

typedef struct RegisterdientPB RegisterdientPB;
struct RegisterdientPB

{
Ul nt 32 clientHandle; // ~ client descriptor
PCCar dCSC i ent UPPcl i entEntry; // - UPP to client's event handl er
Ul nt 16 attri butes; /1 - bitmap of client attributes
U nt 16 event Mask; /1l - bitmap of events to notify client
Ptr clientData;, // - pointer to client's data
U nt 16 ver sion; /[l - Card Services version
/1 client expects
}s

/1 "attributes' field values (see Getdientlnfo)

/1 csMenorydient = 0x0001,
/1l cslOQient = 0x0004,
/'l csShar eabl eCardl nsert Event s= 0x0008,
/1 csExcl usiveCardl nsert Event s= 0x0010

Observe these cautions when using CSRegi ster Cl i ent :
= [t must not be called at interrupt time.
= You must specify the type of client for event notification order.

= You must set the event mask for types of events client is interested in. The event mask
passed in during this call will be set for the global mask and all socket event masks.

DIVERGENCE FROM PCMCIA STANDARD

The CSRegi st er d i ent function is synchronous. On returning from

CSRegi sterd i ent, the cl i ent Handl e field is valid. Once this call is successful,
all clients are expected to support reentrancy. After CSRegi st er Cl i ent, clients
normally call CSVendor Speci f i ¢ with vsCode set to vsEnabl eSocket Event s.

Client Registration 169

CHAPTER 8

PC Card Services

RESULT CODES

SUCCESS No error

QUT_OF_RESOURCE Card Services is unable to obtain
resources to complete function

BAD_ATTRI BUTE Invalid window attributes

CSDeregisterClient

You can use the CSDer egi st er C i ent function to clear client information previously
registered with the Card Services software.

pascal OSErr CSDeregi sterdient(RegisterdientPB *pb);

The parameter block associated with this function is as follows:

typedef struct RegisterdientPB RegisterdientPB;
struct RegisterdientPB

{
Ul nt 32 cli ent Handl e; /1 < client descriptor
PCCardCsCl i ent UPP clientEntry; /1 - UPP to client's event handl er
U nt 16 attributes; /1 - bitmap of client attributes
U nt16 event Mask; /1 - bitmap of events to notify
/1 client
Ptr clientData; /! - pointer to client's data
Ul nt 16 ver si on; // - Card Services version
/1 client expects
3

Forattri but es field values, see “CSRegisterClient” on page 169.

RESULT CODES
SUCCESS No error
BAD ATTRI BUTE Invalid window attributes
BAD_HANDLE Invalid cl i ent Handl e value

Miscellaneous Functions

The functions described in this section help you with various Card Services
management tasks.

170 Miscellaneous Functions

CHAPTER 8

PC Card Services

CSResetCard

You can use the CSReset Car d function to reset a PC card in a specified socket.
pascal OSErr CSReset Card(Reset CardPB *pb);

The parameter block associated with this function is as follows:

t ypedef struct Reset CardPB Reset Car dPB;
struct Reset CardPB

{
Unt32 clientHandle; // - clientHandl e returned by RegisterCient
U ntl6 socket; /1l - socket nunber
Untlé attributes; /1 not used

s

DESCRIPTION

Calling clients will receive RESET_COVPLETE messages regardless of whether or not
their socket event mask and global event mask have csReset Event set.

DIVERGENCE FROM PCMCIA STANDARD

Card Services does not issue CARD_RESET in place of CARD_READY. If a client is issuing
a reset to a card, then it should know whether the card will generate a CARD_READY or
not. If the card transitions from BSY to RDY, then the client will also know that it
shouldn’t access the card until it receives the CARD READY event.

RESULT CODES
SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
BAD_ HANDLE Invalid cl i ent Handl e value or cl i ent Handl e
does not match configuring cl i ent Handl e
CSValidateCIS

You can use the CSVal i dat eCl S function to find out whether a socket has a valid CIS.

pascal OSErr CSval i dat eCl S(Val i dateCl SPB *pb) ;

Miscellaneous Functions 171

CHAPTER 8

PC Card Services

The parameter block associated with this function is as follows:

typedef struct ValidateCl SPB Val i dat eCl SPB;
struct Validat eCl SPB
{
U ntl1l6 socket; /'l - socket nunber
U ntl1l6 chains; /1 - whether link/null tuples should be included

}s

DIVERGENCE FROM PCMCIA STANDARD

The PCMCIA standard specifies that a BAD_Cl S result is to be returned by setting the
pb- >chai ns element to 0. To accommodate cards that don’t have any tuples, Card
Services uses the result code to return BAD _Cl S (if the CIS is bad). If SUCCESS is
returned, then the value in pb- >chai ns reflects the number of valid tuples, with link
tuples not counted.

RESULT CODES

SUCCESS No error

BAD_ SOCKET Invalid socket number

NO_CARD No card in specified socket

BAD CI' S Card Services has detected a bad CIS
CSVendorSpecific

172

You can use the CSVendor Speci fi ¢ function to perform certain elements that are
Mac OS specific.

pascal OSErr CSVendor Speci fi c(Vendor Specifi cPB *pb);
The parameter block associated with this function is as follows:

t ypedef struct Vendor Specifi cPB Vendor Speci fi cPB;
struct Vendor SpecificPB

{
Unt32 clientHandle; // - clientHandl e returned by RegisterCient
U ntl6 vsCode;
U nt16 socket;
U nt32 datalen; /Il - length of buffer pointed to by vsDataPtr
U nt8 *vsDat aPtr; /Il - Card Services version this client expects
3
/[l 'vsCode' field val ues

Miscellaneous Functions

CHAPTER 8

PC Card Services

enum

{
vsAppl eReser ved = 0x0000,
VsEj ect Card = 0x0001,
vsGet Cardl nfo = 0x0002,
vsEnabl eSocket Event s = 0x0003,
vsGet CardLocati onl con = 0x0004,
vsGet Car dLocat i onText = 0x0005,
vsCGet Adapt er | nf o = 0x0006

DESCRIPTION
The CSVendor Speci fi ¢ function is provided to allow Apple Computer to extend the
interface definition of Card Services for elements that are Mac OS specific. This function
requires two parameters, cl i ent Handl e and vsCode. For each vsCode there may be
additional parameters required. The following sections describe the additional
parameters required for each vsCode selector.

RESULT CODES

SUCCESS No error
UNSUPPORTED_FUNCTI ON The vsCode value is invalid

EjectCard Parameter Block

You can use vendor-specific call #1 to eject a card.
/'l vendor-specific call #1

The parameter block associated with this function is as follows:

t ypedef struct Vendor Specifi cPB Vendor Speci fi cPB;
struct Vendor SpecificPB

{
Unt32 clientHandle; // - clientHandl e returned by RegisterCient
U ntl6 vsCode; /' - vsCode =1
U ntl6 socket; /1l - desired socket nunber to eject
U nt32 datalen; /1 not used
U nt8 *vsDat aPtr; // not used
s

Miscellaneous Functions 173

DESCRIPTION

RESULT CODES

CHAPTER 8

PC Card Services

Clients must pass in their cl i ent Handl e value to eject cards that they have configured.
Clients may not be able to eject cards that they did not configure unless the card is
previously unconfigured.

SUCCESS No error
BAD SOCKET Invalid socket number
NO_CARD No card in specified socket

I N_USE Another client refused the ejection request

GetCardInfo Parameter Block

174

You can use vendor-specific call #2 to get information about a card in a socket.
/'l vendor-specific call #2
The parameter block associated with this function is as follows:

t ypedef struct Get Cardl nfoPB Get Cardl nf oPB;
struct Get Cardl nf oPB

{

U nt8 cardType; /Il ~ type of card in socket
/1 (defined at top of file)

U nt8 subType; /Il «~ detailed card type (defined at top of file)
U nt 16 reserved, /Il o reserved (should be set to 0)
U nt 16 cardNanmeLen; // - maximumlength of card nane to be returned
U nt 16 vendor NanmeLen;// - max. length of vendor nane to be returned
U nt8 *cardNaneg; /!l - ptr to card nanme string (fromcC'S), or nil
Uunt8 *vendorName; // - ptr to vendor name (fromdC'S), or nil

s

/1l GetCardinfo card types

#define csUnknownCar dType 0
#define csMiltiFunctionCardType 1
#define csMenoryCardType 2

#define csSerial PortCardType 3
#define csSerial OnlyType 0
#define csDataMbdenilype 1
#define csFaxMbdenType 2
#define csFaxAndDat aMbdenmivask (
#defi ne csVoi ceEncodi ngType 4

csDat aMbdeniType | csFaxMbdeniType)

#define csParallel PortCardType 4

Miscellaneous Functions

CHAPTER 8

PC Card Services

#define csFixedDi skCardType 5
#define csUnknownFi xedDi skType O
#define csATAInterface 1
#define csRotatingDevice (0<<7)
#define c¢sSiliconDevice (1<<7)

#define csVi deoAdaptorCardType 6

#define csNetwor kAdapt or CardType 7
#define csAl MsCardType 8
#define csNuntCardTypes 9

RESULT CODES

SUCCESS No error
BAD_ SOCKET Invalid socket number
NO_CARD No card in specified socket

EnableSocketEvents Parameter Block

You can use vendor-specific call #3 to enable events on every socket in the system.
/'l vendor-specific call #3
The parameter block associated with this function is as follows:

t ypedef struct Vendor Specifi cPB Vendor Speci fi cPB;
struct Vendor Speci fi cPB

{
Unt32 clientHandle;// - clientHandl e returned by RegisterCient
Ul nt 16 vsCode; // - vsCode = 3
U nt 16 socket; /1 not used
U nt 32 dat alen; /1 not used
Unt8 *vsbDataPtr; // not used
}s

DESCRIPTION

Calling this function is like calling the CSRequest Socket Mask function for every
socket in the system, using the global event mask as the starting socket event mask.

DIVERGENCE FROM PCMCIA STANDARD

This function is not in the PCMCIA specification. After reentrancy into a client is
available, calling this function to enable events is better than making repeated calls to the
Request Socket Mask function.

Miscellaneous Functions 175

CHAPTER 8

PC Card Services

RESULT CODES
SUCCESS

BAD_HANDLE

No error

Invalid cl i ent Handl e value

GetAdapterInfo Parameter Block

You can use vendor-specific call #6 to get information about an adapter that interfaces to
a specified socket.

/'l vendor-specific call #6

The parameter block associated with this function is as follows:

t ypedef struct Vendor Specifi cPB Vendor Speci fi cPB;
struct Vendor Speci fi cPB

{
Ul nt 32
U nt 16
Ul nt 16
Ul nt 32
unt8
b

cli ent Handl e; 1/

vsCode; 1/
socket ; /1
dat aLen; /1

/1
*vsDat aPtr; /1

typedef struct Get AdapterlnfoPB

struct GCet Adapterl nfoPB

{
Ul nt 32
Ul nt 16
Ul nt 16
Ul nt 16
ulnt8
b

attri butes; 1/
revision; 1/
reserved; /1
numVol t Entries; //
*vol t ages; I

/]l "attributes' field values

enum

{

csLevel Model nterrupts
csPul seModel nterrupts
csProgr ammabl eW ndowAddr
csProgramuabl eW ndowSi ze
csSocket Sl eepPower

176 Miscellaneous Functions

—

clientHandl e returned by Registerdient

vsCode = 6

socket number

| ength of Get Adapter!|nfoPB plus space for
vol t ages

Get Adapteri nfoPB * (supplied by client)

Get Adapt er | nf oPB;

capabilities of socket's adapter
revision | D of adapter

nunber of valid voltage val ues

<-> array of BCD voltage val ues

0x00000001,
0x00000002,
0x00000004,
0x00000008,
0x00000010,

CHAPTER 8

PC Card Services

csSof t war eEj ect = 0x00000020,
csLockabl eSocket = 0x00000040,
csl nUsel ndi cat or = 0x00000080

}s

DESCRIPTION

There are many instances where Socket Services API elements are not brought out to the
Card Services API but the elements are required for normal card operation. This call
allows clients to query the capabilities of an adapter that interfaces to a given socket.
This information may be used to improve the operation of a client with a given socket

and card.
RESULT CODES
SUCCESS No error
BAD SOCKET Invalid socket number

CSRequestExclusive and CSReleaseExclusive

The functions CSRequest Excl usi ve and CSRel easeExcl usi ve are not not
supported by the Macintosh PowerBook Card Services software.

PC Card Manager Constants

This section lists all the constants used by the PC Card Manager.
/1 mscell aneous
#define CS_MAX_SOCKETS 32 // along is used as a socket bitmap

enum

{

gestal t CardServi cesAttr
gest al t CardSer vi cesPresent
present

}s

"pced', // Card Services attributes
0 /1l if set, Card Services is

enum

{
_PCCardDi spatch = OxAAFO // Card Services entry trap

}s

PC Card Manager Constants 177

178

CHAPTER 8

PC Card Services

/*

The PC Card Manager will migrate toward a conpl ete Maci ntosh nane
space very soon. Part of that process will be to reassign result codes
to a range reserved for the PC Card Manager. The range will be -9050 to
-9305 (decimal inclusive).

*/

/!l result codes

enum
{
SUCCESS = 0x00, /'l request succeeded
BAD ADAPTER = 0x01, /1 invalid adapter nunber
BAD_ATTRI BUTE = 0x02, // attributes field value is invalid
BAD_BASE = 0x03, /1 base system nenory address is invalid
BAD_EDC = 0x04, /1 EDC generator specified is invalid
RESERVED 5 = 0x05, /'l «reserved for historical purposes»
BAD | RQ = 0x06, /1 specified IRQlevel is invalid
BAD_OFFSET = 0x07, /1 PC card nenory array offset is invalid
BAD_PAGE = 0x08, /1 specified page is invalid
READ FAI LURE = 0x09, /1 unable to conplete read request
BAD_SI ZE = OxO0A, /'l specified size is invalid
BAD_SOCKET = 0x0B,// specified physical socket nunber is invalid
RESERVED C = 0x0C, /'l «reserved for historical purposes»
BAD TYPE = 0x0D, /'l window or interface type is invalid
BAD VCC = OxOE, /1l Vcc power level index is invalid
BAD_VPP = OxOF,// Vppl or Vpp2 power level index is invalid
RESERVED 10 = 0x10, /'l «reserved for historical purposes»
BAD_W NDOW = 0x11, /1 specified windowis invalid
WRI TE_FAI LURE = 0x12, /1 unable to conplete wite request
RESERVED 13 = 0x13, /'l «reserved for historical purposes»
NO_CARD = 0x14, // no PC card in the socket

UNSUPPORTED_FUNCTI ON= 0x15,// not supported by this inplenentation
UNSUPPORTED _MODE = 0x16, /1 nmode is not supported

BAD_SPEED = 0x17, /1 specified speed is unavail abl e

BUSY = 0x18, /1 unable to process request at this tine
GENERAL_FAI LURE = 0x19, /1 an undefined error has occurred

WRI TE_PROTECTED = Ox1A, /!l mediais wite protected

BAD ARG LENGTH = O0x1B, /1 ArgLength argurent is invalid

BAD_ARGS = 0x1C, /1 values in argument packet are invalid
CONFI GURATI ON_LOCKED= 0x1D,// a configuration has already been | ocked
I N_USE = Ox1E, /1 resource is being used by a client
NO_MORE_| TEMS = Ox1F, /1 there are no nore of the requested item
QUT_OF_RESOURCE = 0x20, /1 Card Services has exhausted the resource
BAD_HANDLE = 0x21, /!l clientHandl e value is invalid

0x22 // CSoncardis invalid

BAD CI S

PC Card Manager Constants

CHAPTER 8

PC Card Services

/1 nmessages sent to client's event handl er

enum
{

NULL_NMESSAGE = 0x00,
CARD | NSERTION = 0x01,
CARD_REMOVAL = 0x02,
CARD_LOCK = 0x03,
CARD_UNLOCK = 0x04,
CARD_READY = 0x05,
CARD_RESET = 0x086,

| NSERTI ON_REQUEST = 0x07,
| NSERTI ON_COVPLETE = 0x08,
EJECTI ON_REQUEST = 0x09,
EJECTI ON_FAI LED = OXO0A,
PM_RESUVE = 0x0B,
PM_SUSPEND = 0x0C,
EXCLUSI VE_REQUEST = OxOD,
EXCLUSI VE_COVPLETE = OxOE,
RESET_PHYSI CAL = OXOF,
RESET_REQUEST = 0x10,
RESET_COMPLETE = 0x11,
BATTERY_DEAD = 0x12,
BATTERY_LOW = 0x13,
VR TE_PROTECT = 0x14,
VR TE_ENABLED = 0x15,
ERASE_COMPLETE = 0x16,
CLI ENT_I NFO = 0x17,
SS_UPDATED = 0x18,
FUNCTI ON_| NTERRUPT = 0x19,

PC Card Manager Constants

/1
/1
/1
/1
11
/11
/1
/1
/1

no nessages pendi ng

(not sent to clients)
card has been inserted into the socket
card has been renoved fromthe socket
card is locked into the socket with

a mechanical |atch
card is no longer |ocked into the socket
card is ready to be accessed
physi cal reset has conpl eted
/1 request to insert a card using

/1 i nsertion notor
// insertion notor has finished
/1 i nserting

/1 a card

/1 user or other client is requesting a
/1 card ejection

/1 eject failure due to electrical or
/1 nmechani cal probl ens

/1l power managenent resume (TBD)

/1 power managenent suspend (TBD)

/1 client is trying to obtain exclusive
/1 card access

/'l indicates whether or not

/1 Request Excl usi ve succeeded

/'l physical reset is about to occur

/1 client has requested physical reset
/1l ResetCard() background reset has

/1 conpl et ed

/! battery is no |onger usable

I data will be |ost

/1 battery is weak and shoul d

/1 be repl aced

// card is now write protected

/1 card is now write enabl ed

/1l queued background erase request

/1 has conpl et ed

[/l client is to return

I client information

/1 AddSocket Ser vi ces/ Repl aceSocket

/1 servi ces has changed SS support
/1 card function interrupt

179

180

CHAPTER 8

PC Card Services

ACCESS_ERRCR

CARD_UNCONFI GURED

STATUS_CHANGED
}s

PC Card Manager Constants

Ox1A,

0x1B,

0x1C

/1 client bus errored on access

/1 to socket

/1 a CARD READY was delivered to all

/1 clients and no client requested
/1 a configuration for the socket

/1 status change for cards in |I/O node

Glossary

ADB See Apple Desktop Bus.

APDA Apple Computer’s worldwide direct
distribution channel for Apple and third-party
development tools and documentation products.

API See application programming interface.

Apple Desktop Bus (ADB) An asynchronous
bus used to connect relatively slow user-input
devices to Apple computers.

AppleTalk Apple Computer’s local area
networking protocol.

application programming interface (API)
The calls and data structures that allow
application software to use the features of the
operating system.

Baboon The custom IC that provides the
interface to the expansion bay in an Omega
computer.

big-endian Data formatting in which each field
is addressed by referring to its most significant
byte. See also little-endian.

blit Block transfer operations, often used in
graphics software (from the opcode BLT).

Card Services The part of the Macintosh PC
Card Manager that provides system services for
control software in PCMCIA cards.

client A device driver or application program
that uses the Card Services software.

codec A digital encoder and decoder.

color depth The number of bits required to
encode the color of each pixel in a display.

Combo The custom IC that supports the serial
I/O port and the external SCSI devices in an
Omega computer.

DAC See digital-to-analog converter.

data burst Multiple longwords of data sent
over a bus in a single, uninterrupted stream.

digital-to-analog converter (DAC) A device
that produces an analog electrical signal in
response to digital data.

direct memory access (DMA) A process for
transferring data rapidly into or out of RAM
without passing it through a processor or buffer.

DLPI Data Link Provider Interface, the
standard networking model used in Open
Transport.

DMA See direct memory access.
DRAM See dynamic random-access memory.

dynamic random-access memory (DRAM)
Random-access memory in which each storage
address must be periodically interrogated
(“refreshed”) to maintain its value.

ECSC The enhanced color support chip, a
custom IC that provides the data and control
interface to the flat panel display.

Ethernet A high-speed local area network
technology that includes both cable standards
and a series of communications protocols.

GCR See group code recording.

global client queue The first-in, first-out queue
where the Card Services software keeps
information about all its clients.

group code recording (GCR) An Apple
recording format for floppy disks.

input/output (I/O) Parts of a computer system
that transfer data to or from peripheral devices.

I/O See input/output.

little-endian Data formatting in which each
field is addressed by referring to its least
significant byte. See also big-endian.

LocalTalk The cable terminations and other
hardware that Apple supplies for local area
networking from Macintosh serial ports.

181

GLOSSARY

Macintosh PC Exchange An application that
runs on Macintosh computers and reads other
floppy disk formats, including DOS and ProDOS.

mini-DIN An international standard form of
cable connector for peripheral devices.

nonvolatile RAM RAM that retains its contents
even when the computer is turned off; also
known as parameter RAM.

NuBus A bus architecture in Apple computers
that supports plug-in expansion cards.

PCcard An expansion card that conforms to
the PCMCIA standard.

PC Card Manager The part of Mac OS that
supports PC cards in Macintosh PowerBook
computers.

PCMCIA standard An industry standard for
computer expansion cards.

pixel Contraction of picture element; the smallest
dot that can be drawn on a display.

Power Manager IC A 68HCO05 microprocessor
that provides several utility functions in the
Omega computer, including ADB support, power
control, and keyboard scanning.

Pratt The custom IC that provides memory
control and also acts as the bridge between the
microprocessor bus on the secondary logic board
and the I/ O bus on the main logic board.

SCC See Serial Communications Controller.

182

SCSI See Small Computer System Interface.

Serial Communications Controller (SCC)
Circuitry on the Curio IC that provides an
interface to the serial data ports.

Small Computer System Interface (SCSI)

An industry standard parallel bus protocol for
connecting computers to peripheral devices such
as hard disk drives.

socket The hardware receptacle into which a
PC Card is inserted.

Socket Services The layer of software that is
responsible for communication between Card
Services and the socket controller hardware.

TREX The custom IC that provides the
interface and control signals for the PCMCIA
slots in the Omega computer.

tuple A parsable data group containing
configuration information for a PCMCIA card.

Versatile Interface Adapter (VIA) The interface
for system interrupts that is standard on most
Apple computers.

VIA See Versatile Interface Adapter.

video RAM (VRAM) Random-access memory
used to store both static graphics and video
frames.

VRAM See video RAM.

Index

Numerals

68HCO05 microprocessor 13

A

AC adapter 6

access to internal components 24

access windows 164

active matrix display 25

ADB connector 28

ADB port 28

appearance 3

Apple Desktop Bus. See ADB

Ariel CLUT-DACIC 15

ATA Abort function 105

ATA Busl nqui ry function 106

ATA disk driver 81, 83-98
control functions 86-93
Control routine 84
Device Manager routines 84-85
driver Gest al t parameter block 94
status functions 93-98
Status routine 85

ATA disk driver functions
clear partition rmounting 90
clear partition wite protect 91
driver gestalt 94
drive status 94
ej ect 87
format 86
get a drive 92
get boot partition 96
get drive icon 87
get drive information 88
get nmedia i con 88
get partition information 97
get partition nmount status 96
get partition wite protect status 97
get power node 98
nmount vol une 92
register partition 91
set partition nmounting 89
set partition wite protect 90
set power node 93
set startup partition 89
verify 86

ATA_Dr vr Der egi st er function 108

ATA Drvr Regi st er function 109

ATA _Ej ect Dri ve function 112
ATA_Execl Ofunction 113

ATA_Fi ndRef Numfunction 116

ATA_Get DevConfi g function 117

ATA GCet DevLocat i onl con function 120

ATA hard disk drives, compared with SCSI drives 81

ATA I dentify function 121
ATA /IDE specification 80
ATA interface 18
ATA Manager 98-139
making calls to 99
purpose of 81, 83
ATA Manager functions
ATA Abort 105
ATA_Busl nqui ry 106
ATA DrvrDeregi ster 108
ATA DrvrRegi ster 109
ATA Ej ectDrive 112
ATA Execl O 113
ATA_Fi ndRef Num 116
ATA_Get DevConfig 117
ATA Cet DevLocati onl con 120
ATA Identify 121
ATA Mgrlnquiry 122
ATA_NOP 124
ATA_(Rel ease 125
ATA_RegAccess 125
ATA Reset Bus 129
ATA_Set DevConfig 130
ATA Myr | nqui ry function 122
ATA_NOP function 124
ATA parameter block header 99
at aPBHdr structure 99-104
ATA QRel ease function 125
ATA RegAccess function 125
ATA Reset Bus function 129
ATA_Set DevConf i g function 130
ATA software
ATA disk driver 81
ATA Manager 83
error codes 139

183

INDEX

B

Baboon custom IC 14
back view 5
batteries 5, 6

C

Card Services software 144-180

access window functions
CShbdi f yW ndow 166
CSRel easeW ndow 167
CSRequest W ndow 164

client information functions
CSGetd i entlnfo 146
CSCGetFirstCient 144
CSGet Next Cl i ent 145

client registration functions
CSDer egi sterdient 170
CSGet Car dSer vi cesl nfo 168
CSRegi sterCl i ent 169

clients 144

configuration functions

CSAccessConfi gurati onRegi ster 154

CSGet Confi gurati onl nfo 149
CSMbdi f yConfi gurati on 152
CSRel easeConfi guration 153
CSRequest Conf i guration 151
gestalt constant 177
masking functions
CSGet d i ent Event Mask 155
CSRel easeSocket Mask 158
CSRequest Socket Mask 158
CSSet d i ent Event Mask 157
messages 179
miscellaneous functions
CSReset Card 171
CSval i dateCl S 171
CSVendor Speci fic 172
result codes 178
status function, CSGet St at us 163
tuples functions
CSGet Fi r st Tupl e 159
CSGet Next Tupl e 160
CSGet Tupl eDat a 162
unsupported functions
CSRel easeExcl usi ve 177
CSRequest Excl usi ve 177
vendor-specific calls
Ej ect Card 173
Enabl eSocket Event s 175
Get Adapt erI nfo 176
Get Cardl nfo 174
clear partition nounting function 90

184

clear partition wite protect function 91

clients, registration of 168
Combo custom IC 13
compatibility 6

sound sample rates 7
configurations 5
connectors

ADB 28

expansion bay 33

external video 50, 51

hard disk 21

RAM expansion 39, 42

RAM expansion card 47

SCSI 26

serial port 25

video 50
control functions, of the ATA disk driver 86-93
Control routine 84

CSAccessConfi gurati onRegi st er function 154

CSC custom IC 14, 24
CSDer egi st erd i ent function 170
CSGet Car dSer vi cesl nf o function 168
CSGet d i ent Event Mask function 155
CSGet d i ent | nf o function 146
CSGet Confi gur ati onl nf o function 149
CSGet Fi rst d i ent function 144
CSGet Fi r st Tupl e function 159
CSGet Next d i ent function 145
CSGet Next Tupl e function 160
CSCet St at us function 163
CSGet Tupl eDat a function 162
CSModi f yConf i gur ati on function 152
CSMbdi f yW ndow function 166
CSRegi sterd i ent function 169
CSRel easeConfi gurati on function 153
CSRel easeExcl usi ve function 177
CSRel easeSocket Mask function 158
CSRel easeW ndowfunction 167
CSRequest Conf i gur ati on function 151
CSRequest Excl usi ve function 177
CSRequest Socket Mask function 158
CSRequest W ndow function 164
CSReset Car d function 171
CSSet d i ent Event Mask function 157
CSval i dat eCl S function 171
CSVendor Speci fi ¢ function 172
custom ICs

Ariel 15

Baboon 14

Combo 13

CSC 14,24

Keystone 15

Pratt 10, 11

Singer 13, 29

TREX 15

Whitney 12

INDEX

D

G

Device Manager 73
display controller IC 14
Display Manager 68
displays
active matrix 24, 25
backlighting 24
dual mode 49
DualScan 25
external video monitors 48, 49
adapter cable 50
flat panel types 24
FSTN 25
mirror mode 7, 49
NuBus card emulation 24
number of colors 7, 25
passive matrix 24
supertwist 24, 25
TFT 25
driver gestalt function 94
driver Gestal t parameter block 94
Drive Setup, modifications to 68
drive st atus function 94
dual mode 49
DualScan display 25

E

Ej ect Car d vendor-specific call 173
ej ect function 87
Enabl eSocket Event s vendor-specific call 175
error codes 139
Ethernet driver 64
event mask 155
expansion bay 32-38
device installation 38
expansion bay connector 33-37
signal assignments 34
signal definitions 35-37
expansion bay controller IC 14
external video port 49

F

features summary 2

Finder modifications for large volume support 67, 70
flat panel displays 24

format function 86

FPU (floating-point unit) 11

front view 4

function-key software 64

Gest al t function 75

gest al t Machi neType value 62

Get Adapt er | nf o vendor-specific call 176

get a drive function 92

get boot partition function 96

Get Car dI nf o vendor-specific call 174

get drive icon function 87

get drive information function 88

get nedi a i con function 88

get partition information function 97

get partition mount status function 96

get partition wite protect status
function 97

get power node function 98

H

hard disk 18
dimensions 18
IDE data bus 21

hard disk capacity 5

hard disk connector 21
pin assignments on 21
signals on 22

HDI-30 connector 26

HFS volume format 70

I, J

IDE disk interface 18
IDE hard disk 18
connector 20
data bus 21
dimensions 18
signals 22
identifying the computers 62
IDE specification 80
infrared module 29
input/output subsystem 10
MC68030 bus 11
I/0 ports
SCSI 26
serial 25
video 49, 50

185

INDEX

K

keyboards 23

function keys 64

ISO layout 24

removing 24

United States layout 23
Keystone video timing IC 15

L

large partition support 66

large volume support 66, 70
allocation blocks 70
extended API 66
extended data structures 71
extended parameter block 71, 73
limitations 67
maximum file size 71
modified applications 67
requirements 71

M, N, O

MC68040 microprocessor 11
MC68LC040 microprocessor 11
memory controller software 63
memory expansion 6, 11
microprocessor

clock speed 11

type 11
mirror mode 7, 49
monitor sense codes 51
mount vol une function 92

P

PBXGet Vol | nf o function 75
PC cards 57, 144
Finder extension for 57
software eject 57
PCMCIA cards. See PC cards
PCMCIA slots 15, 57-59
access windows 58
data access modes 58
features 57
power 59
signal definitions 58
specifications 58-59

186

peripheral devices 6
peripheral support IC 12
pointing device 23
Power Manager IC 13

trackpad registers in 65
Power Manager software 63

data structures 7

unsafe assumptions 8
Pratt custom IC, as bus bridge 12
Pratt memory controller 11
processor clock speed 5
processor/ memory subsystem 10, 11

Q

QuickDraw acceleration API 68

R

RAM
expansion 39-47
addressing 43
DRAM devices 44
RAM banks 44
signals 39, 42
expansion card 11
refresh 12
size of 5
RAM expansion 6
RAM expansion card 39-47
connector 47
dimensions 46
DRAM devices 44
electrical limits 45
mechanical design of 46—47
RAM banks 44
reference documents xii
regi ster partition function 91
ROM
address range 11
implementation of 11
software features 62
ROM software features 62

S

SCCIC 13
SCSI controller IC 13
SCSI port 26

INDEX

secondary logic board 11 W
serial port 25
set partition nounting function 89 Whitney custom IC 12

set partition wite protect function 90
set power node function 93
set startup partition function 89

Singer custom IC 13 XY, Z

Singer sound IC 29

68HCO05 microprocessor 13 Xl OPar amdata structure 73

socket mask 155 XVol urrePar amparameter block 71

sound circuits 29
sound features 63
sound IC 29

sound sample rates 7
status functions 93-98
Status routine 85
Supertwist display 25
System 7.5 66

T, U

TFT display 25
trackball 23
trackpad 23
software support for 65
TREX custom IC 15
tuple information 83, 159

Vv

VCB allocation block size 70
veri fy function 86
video adapter cable 50
video card 15, 48-57
video connector 50
video controller IC 15
video mirror mode 7, 49
video modes

dual 49

mirror 7, 49
video monitors 48, 49

adapter cable for 50

sense codes 51

VGA and SVGA 51
video output IC 15
video port 49

187

T H E A PPLE PUBLISHTING

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages and final pages were created
on an Apple LaserWriter Pro printer.
Line art was created using

Adobe Tllustrator” and

Adobe Photoshop" . PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino” and display type is
Helvetica"”. Bullets are ITC Zapf
DingbatsD. Some elements, such as
program listings, are set in Apple Courier.

WRITER
Allen Watson

DEVELOPMENTAL EDITORS
Wendy Krafft, Beverly Zegarski

ILLUSTRATOR
Sandee Karr

PRODUCTION EDITOR
Rex Wolf

	Macintosh PowerBook 190 Computer
	Contents
	Figures and Tables
	About This Developer Note
	Contents of This Note
	Supplemental Reference Documents
	Apple Publications
	Other Publications

	Conventions and Abbreviations
	Typographical Conventions
	Standard Abbreviations

	Introduction
	Features
	Appearance
	Configurations
	Peripheral Devices
	Compatibility Issues
	RAM Expansion Cards
	Number of Colors
	Video Mirror Mode
	Sound Sample Rates
	Power Manager Interface

	Architecture
	Processor/Memory Subsystem
	Microprocessor
	RAM
	ROM
	Pratt Memory Controller IC

	Input/Output Subsystem
	Whitney Peripheral Support IC
	Combo IC
	Singer IC
	Power Manager IC
	Display Controller IC
	Baboon Custom IC
	TREX Custom IC

	Video Card
	Keystone Video Controller IC
	Ariel Video Output IC

	I/O Features
	Internal Hard Disk Drive
	Hard Disk Specifications
	Hard Disk Connectors

	Trackpad
	Keyboard
	Flat Panel Displays
	Flat Panel Display Circuitry
	Number of Colors

	Serial Port
	SCSI Port
	ADB Port
	Infrared Module
	Sound System
	Sound Inputs
	Sound Outputs

	Expansion Modules
	Expansion Bay
	Expansion Bay Design
	Expansion Bay Connector
	User Installation of an Expansion Bay Device

	RAM Expansion
	Electrical Design Guidelines for the RAM Expansion Card
	Mechanical Design of the RAM Expansion Card

	Video Card
	The Apple Video Card
	Video Card Design Guide

	PCMCIA Slot
	PCMCIA Features
	Summary Specifications

	Software Features
	ROM Software
	Machine Identification
	Memory Controller Software
	Power Manager Software
	Display Controller Software
	Sound Features
	ATA Storage Devices
	IDE Disk Mode
	Ethernet Driver
	Support for Function Keys
	Smart Battery Support
	Trackpad Support

	System Software
	Control Strip
	Support for ATA Devices
	Large Partition Support
	Drive Setup
	Improved File Sharing
	Math Library
	QuickDraw Acceleration API
	Display Manager

	Large Volume Support
	Overview of the Large Volume File System
	API Changes
	Allocation Block Size
	File Size Limits
	Compatibility Requirements

	The API Modifications
	Data Structures
	New Extended Function

	Software for ATA Devices
	Introduction to the ATA Software
	ATA Disk Driver
	ATA Manager

	ATA Disk Driver Reference
	Standard Device Routines
	Control Functions
	Status Functions

	ATA Manager Reference
	The ATA Parameter Block
	Functions

	Using the ATA Manager With Drivers
	Notification of Device Events
	Device Driver Loading
	Device Driver Purging
	Setting the I/O Speed

	Error Code Summary

	PC Card Services
	Client Information
	Configuration
	Masks
	Tuples
	Card and Socket Status
	Access Window Management
	Client Registration
	Miscellaneous Functions
	PC Card Manager Constants

	Glossary
	Index

