Developer Note

Macintosh Quadra 840Av and
Macintosh Centris 660Av
Computers

[

Developer Press
© Apple Computer, Inc. 1993

[Apple Computer, Inc.

© 1993, Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Simultaneously published in the United
States and Canada.

Apple, the Apple logo, APDA,
AppleTalk, EtherTalk, LaserWriter,
LocalTalk, Macintosh, MPW, and
TokenTalk are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

Apple Desktop Bus, AppleScript, Apple
SuperDrive, A/ROSE, Finder, GeoPort,
Macintosh Centris, Macintosh Quadra,
MacroMaker, PlainTalk, PowerBook,
QuickTime, and ResEdit are trademarks
of Apple Computer, Inc.

Adobe and PostScript are trademarks of
Adobe Systems Incorporated, which
may be registered in certain
jurisdictions.

Classic is a registered trademark
licensed to Apple Computer, Inc.
DSP3210 is a registered trademark of
AT&T Corporation.

FileMaker and MacWrite are registered
trademarks of Claris Corporation.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Excel and Microsoft are registered
trademarks of Microsoft Corporation.
Motorola is a registered trademark of
Motorola Corporation.

NuBus is a trademark of

Texas Instruments.

QuicKeys is a trademark of

CE Software, Inc.

UNIX is a registered trademark of
UNIX System Laboratories, Inc.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THEENTIRERISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Figures, Tables, and Listings

Preface About This Developer Note [xxi]
Contents of This Note xxi
Hardware Overview Xxiii

Software Overview m
Digital Signal Processing
Text-to-Speech Conversion
Speech Recognition | xxv
New SCSI Manager
Other System Software Changes

Supplementary Documents [xxvi]

Standard Abbreviations xXviii

Part 1 Hardware

The Macintosh Quadra 840Av and
Chapter 1 Macintosh Centris 660Av Computers f

Models and Accessories El
Summary of Features

Differences Between Models El
System Software

Compatibility Issues ﬁ
Machine Identification

Chapter 2 Hardware Details [

Physical Forms

Parts Layout

System Architecture

Functional Units
Main Processor
Read-Only Memory
Random-Access Memory
Memory Controller and Arbiter
Digital Signal Processor

Peripheral Subsystem Controller

Macintosh Universal NuBus Interface

Cyclone Integrated Video Interfaces Controller
Sebastian

Video Data Path Chip

Mickey
New Age
Curio m

Apple Telecom External Clock Synchronizer
Cuda
Singer
Endeavor
Digital Multistandard Decoder
System Clocks
Signal Buses m
Bus Arbitration @
Bus Timeouts
ROM and RAM Management @l
DRAM Configurations
Startup Memory Addressing @l
Access Timing
External Device Interfaces
Apple Desktop Bus
Ethernet Port
Serial Ports
SCSI Connection
Power Budgets
Internal SCSI Locations
Pin Assignments
Automatic SCSI Termination
Installing Internal SCSI Devices
Floppy Disk Drive Connection
PSC Functions
DMA Channels Controlled by the PSC |29
Bus Arbitration Performed by the PSC D9

Video and Graphics I/O
External Video Input 3
Video RAM Usage 33

Video Monitor Interface
Video Output Timing
Miniature Videocam W
Sound I/O

NuBus Interface

Slot Connections m

Digital Audio/Video Expansion Connector
DAV Sound Interface M
DAV Video Interface |45

Processor-Direct Cards for the Macintosh Centris 660AV @l
The Macintosh Centris 660Av PDS Connector
Processor Bus Burst Write Timing

RAM Expansion Cards

VRAM Expansion Cards

Part 2 Real-Time Data Processing

Chapter 3 Introduction to Real-Time Data Processing

Introduction to Digital Signal Processors {60
Concepts of Digital Signal Processing 60)
Real-Time Processing Capability

Real-Time Processing Architecture @

Software Model
Dual Programming Model @

Real Time Manager

DSP Operating System

DSP Driver @
Other Software Components @l
Software Layers
DSP-Aware Applications

Software Architecture
Frame Organization
Frame Size Selection
Visible Caching

DSP and Main Processor Addressing
Containers
Primary and Secondary Pointers
One-Container Sections @
Two-Container Sections m
On-Chip and Off-Chip Addressing
Guaranteed Processing Bandwidth
Smooth and Lumpy Algorithms [80
Calculating GPB
GPB for Lumpy Algorithms ~ [81]
Fast Execution Versus Real-Time Execution @
Processor Allocation for Timeshare Tasks @
Frame Overruns
Category One Frame Overrun
Category Two Frame Overrun
Category Three Frame Overrun

Data Structures
Sections Defined
AutoCache
DemandCache
Sections and Caching (8§
Container Memory Allocation @
A Complete Software Example w
Data Buffering [90)
FIFO Buffers |92
AIAO Buffers (94
Buffer Connections Between Modules
Buffer Connections Between Tasks
Unified I/O Architecture m
Execution Models
Section Control Flags 102
Setting Up Input and Output for Connections
AutoCache Execution Model
DemandCache Execution Model
DemandCache for Dynamic Sections
DemandCache for Static Sections 108
Connections in DemandCache m
FIFO Connections 111
Grouped Modules 112
GPB for Grouped Modules
Module Scaling m
Selecting Module Scale Factor 116
Standard Sound m
Sound Manager Interface
Standard Sound Task List 117
Sample Rate and Frame Rate Changes 121

Chapter 4 Real Time Manager [123

About the Real Time Manager (124
Real Time Manager Structure
Guaranteed Processing Bandwidth 126
Devices and Clients
Tasks 130
Modules
Module Definition 131
Execution Flow for Modules 131
Sections
Section Definition

Section Flags and Data Types 134
Connecting Sections

vi

Using the Real Time Mana 136
Accessing the DSP
Creating a Task
Loading a Module
Getting Data m
Putting the Task to Work
Getting Off the DSP Task List

Sending Messages 152
From DSP to Host 152
From Host to DSP
Message Action Procedure
Message Format

Real Time Manager Reference 155
Client Routines
Device Routines
Task API Routines
Module API Routines
Section API Routines
FIFO API Routines

Summary of the Real Time Manager 184
Constants M
Data Types @

Data Structures
Trap Macros and Routine Selectors

Chapter 5 DSP Operating System

About DSP Modules
DSP3210 Register Model
32-Bit Data Transfers 206

DSP Program Information for the Macintosh Programmer
Input and Output Sections
Parameter Sections .

GPB Scaling Vectors 07
Grouping Assumptions |20
Run-Time Environment 207
DSP Operating System Reference 207
Creating a Module 08
Building a Section
Code and Variables 212
Data Input
Data Output

DSP Operating System Macros
General Manipulation Macros
Section Manipulation Macros
Module Manipulation Macro

vii

Task Manipulation Macros @
FIFO Manipulation Macros m
GPB Manipulation Macros @
Semaphore Manipulation Macros 237
Message Manipulation Macro 239
Summary of the DSP Operating System 040
Constants m
Routines 252

Part 3 Speech Synthesis and Recognition

Chapter 6 Speech Manager ps3

Speech Manager Overview P64
Speech Manager Concepts
Using the Speech Manager [266
Getting Started
Determining If the Speech Manager Is Available |266
Determining Which Version of the Speech Manager Is Running
Making Some Noise
Determining If Speaking Is Complete
A Simple Example
Essential Calls—Simple and Useful
Working With Voices
Managing Connections to Speech Synthesizers P73
Starting and Stopping Speech D75
Using Basic Speech Controls 276
Putting It All Together
Advanced Routines
Advanced Speech Controls
Converting Text Into Phonemes
Getting Information About a Speech Channel 286
Advanced Control Routines
Application-Defined Pronunciation Dictionaries 298
Associating a Dictionary With a Speech Channel 299
Creating and Editing Dictionaries 301
Advanced Voice Information Routine
Embedded Speech Commands
Embedded Speech Command Syntax
Embedded Speech Command Set
Embedded Speech Command Error Reportin
Summary of Phonemes and Prosodic Controls g@
Phoneme Set
Prosodic Controls

viii

Chapter 7

Summary of the Speech Manager
Constants m
Data Types
Speech Manager Routines
Callback Prototypes
Error Return Codes M

Introduction to Speech Recognition

Chapter 8

How Does Casper Work? 318
Software Installation 319
Using the Microphone 321
Getting Started m
Setting Your Computer’s Name 322
Choosing Speech Feedback
Setting the Attention Key
The Casper User Interface
Operational Control 324
Feedback Control 325
Speech Macro Editor ~ [326
Scripting Tool Requirements
AppleScript
QuicKeys
User Requirements
Using the Speech Macro Editor __ [328
Recording a New Macro
Renaming a Macro
Saving Macro Changes
Loading Macros
Built-in Speech Rules and Grammar 331
Performance
Real-Time Response
Types of Errors
Acceptable Limits or Constraints

Speech Rules [s35

Overview

Speech Rules Files

Speech Rules File Syntax
Command Rules
Phrases and AppleScript Clauses
Internal Category Rules 348
External Category Rules 348

ix

Context Specifiers @

Default Statements 350

Global Scripts
CompileRules Error Messages 352
Apple Events Speech Events
An Example: A Simple Checkbook

Part 4 System Software Modifications 359
Chapter 9 SCSI Manager 4.3

SCSI Manager @.3|Features 362
Compatibility
System Performance Impact
Impact on Developers
Design Overview B65)
General Concepts B65
Transport Layer
SCSI Interface Modules
CAM Deviations m
Implementation 368
Optional Features Not Supported in the SIM
Compeatibility and Emulation
Virtual Bus ﬂ
Data Transfer Descriptions 372
Guidelines for SCSI Device Driver Developers
Booting and Drive Mounting
Asynchronous Behavior 374
Virtual Memory Operation
Guidelines for SIM/HBA Developers
SIM Initialization and General Operation
Support for the Old SCSI Manager
Interrupt Support
Handshaking of Data Bytes
DMA Support
SCSI Manager @.3| Reference
Data Structure
SCSI Manager Parameter Block 382
Routines @
Driver Routines
SCSI Interface Module Calls to Transport
Transport Calls to SCSI Interface Modules ~ [399

Chapter 10

Summary of the SCSI Manager

Constants
Data Type
Routines

DMA Serial Driver [405

Chapter 11

Architecture

Changes in Implementation
Interrupt Handling
DMA Versus Non-DMA Transmissions
PollProc Mechanism
DMA Use

Video Driver

Chapter 12

Video Television Output 410

New Control and Status Routines 411

NuBus Block Moves
Configuration ROM Programming 412
Using the Trap Macro SlotBlockXferCtl 412

New Age Floppy Disk Driver

Chapter 13

Floppy Disk Support 414
Programming Interface Changes
Operational Compatibility 415

Virtual Memory Manager

Appendix A

DSP d Commands for MacsBug

Getting Started 421
Using the d Commands 421
d Commands Reference 423

xi

Appendix B

BugLite User’'s Guide [7

Appendix C

Getting Started
Installation
What You See When You Launch BugLite

Tools of the Trade

Using BuglLite 430

Getting Information
Task Info Window
Module Info Window
Section Information

Snoopy User’s Guide [37

xii

Getting Started

Installation M

What You See When You Launch Snoopy
Task/Module/Section Lists ~ |438
The Data Display Window 438
Run/Store Address Pop-up Menu
PC Column
The Breakpoint Column 440
Pane Resizers

Using Snoopy 440)

Menu Bar 441

Control Menu 441
Setting and Clearing Breakpoints
Breakpoint Restrictions
Single Stepping

Inspect Menu
Formatting
Editing Data

Windows Menu

Additional Information Windows 445
Current PC
The DSP Operating System Routines 446
The EVT
On-Chip SRAM
Registers

Standard Menus m

Find Menu 449

Module Menu 451

Appendix D Mechanical Details

Glossary

Index |[4s83

xiii

Chapter 1

Chapter 2

Figures, Tables, and Listings

The Macintosh Quadra 840Av and
Macintosh Centris 660Av Computers 3

Table 1-1

Gestalt values for the Macintosh Quadra 840av and
Macintosh Centris 660Av 8

Hardware Details 9

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6

Figure 2-7

Figure 2-8

Figure 2-9

Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Figure 2-17
Figure 2-18
Figure 2-19
Figure 2-20
Figure 2-21

Table 2-1
Table 2-2
Table 2-1
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10
Table 2-11
Table 2-12
Table 2-13

Functional diagram 11

ADB socket 21

Serial port connectors 23

Macintosh Centris 660Av internal SCSI device space 24
Macintosh Quadra 840av internal SCSI device space 25

SCSI bus terminators in a typical Macintosh Quadra 840av
configuration 27

Video and graphics output system block diagram 31
Video input subsystem 32

Video input connector 33

Video monitor connector 35

Video timing diagram 36

Sound I/O components 39

Macintosh Centris 660Av accessory card mounting 40
DAV connection on a NuBus card 43

Singer sound frame 44

Sound frame and word synchronization 45

Sound subframe synchronization 45

DAV video timing 46

Burst write timing 51

RAM SIMM mechanical dimensions 53

VRAM SIMM mechanical dimensions 54

External dimensions 10

Clock frequencies 17

DRAM configurations 19

DRAM access times 20

ADB pin assignments 22

Ethernet port pin assignments 22

Serial port pin assignments 23

SCSI power budgets 24

SCSI pin assignments 26

Floppy disk drive connector pin assignments 28
PSC DMA channels 29

Priority of DMA channel access 30

Video input connector pin assignments 33
VRAM sizes and monitor color depths 34

XV

Chapter 3

xvi

Table 2-14 Apple monitor timing values 37

Table 2-15 Sound I/O signals 38

Table 2-16 MUNI buffer capacities 40

Table 2-17 NuBus pin assignments 41

Table 2-18 Power budget for each slot card 42

Table 2-19 DAV connector pin assignments 43

Table 2-20 DAV connector sound signals 44

Table 2-21 Macintosh Centris 660Av PDS connector pin assignments
Table 3-22 Restricted microprocessor signals on the PDS connector
Table 3-23 Nonmicroprocessor signals on the PDS connector 50
Table 3-24 RAM SIMM pin assignments 52

Table 3-25 VRAM SIMM pin assignments 55

Table 3-26 VRAM access times 56

Introduction to Real-Time Data Processing 59

a7
49

Figure 3-1 Frames 62

Figure 3-2 Real-time and timeshare tasks 62

Figure 3-3 Task list 63

Figure 3-4 Real-time data processing organization 65
Figure 3-5 Four-layer Macintosh model 67

Figure 3-6 Six-layer model 68

Figure 3-7 Example of toolbox and driver layers 69
Figure 3-8 Seven-layer real-time model 70

Figure 3-9 Real-time software organization 72
Figure 3-10 Sound player example data flow 72
Figure 3-11 Frame-based processing 73

Figure 3-12 Multiple code module processing 74
Figure 3-13 Process data flow 74

Figure 3-14 DSPAddr ess structure 77

Figure 3-15 Smooth and lumpy DSP algorithms 80
Figure 3-16 Timeshare capacity figures 83

Figure 3-17 Task with two modules 85

Figure 3-18 The module data structure 86

Figure 3-19 The section data structure 86

Figure 3-20 Dual-container AutoCache example 88
Figure 3-21 Data structure overview 91

Figure 3-22 Example of FIFO buffers 92

Figure 3-23 The FIFO and its data header 93

Figure 3-24 Code module data flow with AIAOs 94
Figure 3-25 Connections between modules 95

Figure 3-26 ITB connections for previous and next tasks 98
Figure 3-27 ITB open and close task configuration 99
Figure 3-28 Example of intertask buffers 100

Figure 3-29 Example of DSP task for telephone answering 112
Figure 3-30 Controlling GPB in grouped modules 113
Figure 3-31 DSP Sound Manager and Sound Driver 116
Figure 3-32 Sound Manager processing 117

Figure 3-33 Standard sound task list 118

Figure 3-34 Equalizer used as a recorder task 119

Chapter 4

Chapter 5

Figure 3-35
Figure 3-36

Table 3-1
Table 3-2
Table 3-3
Table 3-4

Equalizer used as a player task 120
Equalizer used as a preprocess task 121

Primary and secondary pointers 78

On-chip and off-chip addresses 79

Run-time AutoCache flag combinations 105
Run-time DemandCache flag combinations 110

Real Time Manager 123

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6

Listing 4-1
Listing 4-2
Listing 4-3
Listing 4-4
Listing 4-5
Listing 4-6
Listing 4-7
Listing 4-8
Listing 4-9

DSP subsystem overview 125

Examples of different GPB values 127
Examples of different execution paths 132
Section interconnection 136

Task example 137

Task after loading the CD-XA player module 142
CD-XA player module structure 142

Module structure after DSPNewFl FOcall 144
Task structure after DSPLoadModul e call 144
Sections contained in the equalizer module 145
CD-XA player with DSPConnect Sect i ons to equalizer
Message passing from DSP to host 153

FIFO threshold 184

Section flags 134

Section data-type flags 135
Setting up a task 138

Task insertion locations 148
Removing a task 149
Message masks 182

DSP bandwidth structure 126

DSP device parameter block structure 128

CPU device parameter block structure 129

Client information parameter block structure 129
Task information parameter block structure 130
Module information parameter block structure 131
Section information parameter block structure 133
Message action procedure 154

DSP message format 154

DSP Operating System 203

147

Figure 5-1
Figure 5-2
Figure 5-3

Table 5-1
Table 5-2

DSP programming model 205
DSP module structure 208
DSP message structure 240

DSP3210 register assignments 205
Section flags 211

xvii

Chapter 6

Chapter 7

Chapter 9

Appendix A

xviii

Table 5-3
Table 5-4
Table 5-5

DSP3210 bank preferences section flags 211
Buffer type section flags 211
Data type flags 212

Speech Manager 263

Figure 6-1

Table 6-1
Table 6-2
Table 6-3

Listing 6-1
Listing 6-2
Listing 6-3
Listing 6-4

Speech synthesis components 264

Embedded speech commands 304
American English phoneme symbols 308
Prosodic control symbols 309

Determining if the Speech Manager is available 266
Elementary Speech Manager calls 269

Getting information about a voice 273

Putting it all together 279

Introduction to Speech Recognition 317

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6

Table 7-1

Speech Setup control panel 322

Setting your computer’s name 323

Choosing feedback signals 323

Setting the attention key 324

Typical Speech Macro document window 328
Typical New Macro window 329

Grammatical naming conventions 333

SCSI Manager 4.3 361

Figure 9-1

Table 9-1
Table 9-2
Table 9-3

Listing 9-1
Listing 9-2

SCSI Manager software hierarchy 366

CAM to ACAM terminology conversion 366
Old call parameter conversion 379
SCSI Manager 4.3 function codes 388

Supported old SCSI Manager routines 371
SIM initialization information structure 377

DSP d Commands for MacsBug 421

Table A-1
Table A-2
Table A-3
Table A-4
Table A-5

d commands 423
Task flags 423

Module flags 425
Section flags 425
Section types 426

Appendix B

Appendix C

Appendix D

BugLite User's Guide 427

Figure B-1
Figure B-2
Figure B-3
Figure B-4
Figure B-5
Figure B-6
Figure B-7
Figure B-8
Figure B-9
Figure B-10
Figure B-11
Figure B-12
Figure B-13

Task window 428

Open File dialog box 429

Graphical representation of a task 430
Graphical representation of a module 431
Task connected to a module 431

Disk play of “funky” file 432

Disk player connected to input buffer 432
Speaker connection icon 432

Data output buffers connected to speakers 433
Task with task active indicator 433

Task Get Info window 434

Module Get Info window 435

Section Get Info window 436

Snoopy User’s Guide 437

Figure C-1
Figure C-2
Figure C-3
Figure C-4
Figure C-5
Figure C-6
Figure C-7
Figure C-8
Figure C-9
Figure C-10
Figure C-11
Figure C-12
Figure C-13
Figure C-14
Figure C-15
Figure C-16
Figure C-17
Figure C-18
Figure C-19
Figure C-20
Figure C-21
Figure C-22
Figure C-23
Figure C-24
Figure C-25
Figure C-26

DSP Control window 438

Real Time Tasks window 439
Run/Store Address pop-up menu 439
Vertical and horizontal pane resizers 440
Menu bar 441

Control menu 441

Control commands after break 441
Setting breakpoints 442

Setting the breakpoint counter 442
Inspect menu 443

Data display format menu 443

Data editing window 444

Defined data types 444

Windows menu 445

Current PC window 446

DSP Operating System Routines window 447
EVT window 447

On-Chip SRAM window 448
Example of SRAM layout 448
Registers window 449

Find menu 449

Find Command dialog box 450

Find Data Types menu 450

Search In selection menu 451
Module menu 451

Error in loading symboalic table 452

Mechanical Details 453

Figure D-1
Figure D-2
Figure D-3

CD bezel for the Macintosh Centris 660Av 455
Blank bezel for the Macintosh Centris 660Av 457
Mounting sled for 5.25-inch SCSI devices 459

Xix

XX

Figure D-4
Figure D-5
Figure D-6
Figure D-7
Figure D-8
Figure D-9

Figure D-10

Figure D-11

Shield for the CD bezel in the Macintosh Centris 660Av 461
Magnetic shield for CD-ROM drives 463

Blank bezel for the Macintosh Quadra 840av 465

CD bezel for the Macintosh Quadra 840av 467
Accessory-card bracket for the Macintosh Centris 660Av 469

Insulator for the Macintosh Centris 660Av accessory-
card bracket 471

EMI shield for the Macintosh Centris 660Av accessory-
card bracket 473

NuBus adapter card for the Macintosh Centris 660Av 475

PREFAUCE

About This Developer Note

This developer note introduces the Macintosh Quadra 840Av and the
Macintosh Centris 660AV, Apple’s newest extensions to the Macintosh family
of personal computers. It is written primarily for experienced Macintosh
hardware and software engineers who want to create products that are
compatible with these computers.

This note assumes that you are already familiar with both the functionality
and programming requirements of Macintosh computers. If you are
unfamiliar with Macintosh computers or would like more technical informa-
tion, you may want to obtain copies of the related technical manuals listed in
“Supplementary Documents,” later in this preface.

Contents of This Note

This developer note is divided into four main parts, containing a total of
13 chapters.

Part 1, “Hardware,” describes the Macintosh Quadra 840Av and Macintosh
Centris 660AV computers from a hardware viewpoint. It contains two chapters:

s Chapter 1, “The Macintosh Quadra 840Av and Macintosh Centris 660AV
Computers,” gives you an overview of the configurations and features of
these products.

» Chapter 2, “Hardware Details,” describes the circuit boards for the
computers, including their physical layout, functional units, signal
timing and other electronic characteristics, input and output connectors,
and interfaces with other equipment.

Part 2, “Real-Time Data Processing,” describes the software technology of the
digital signal processing (DSP) facilities in the Macintosh Quadra 840Av and
Macintosh Centris 660AV. It contains three chapters:

s Chapter 3, “Introduction to Real-Time Data Processing,” summarizes the
software architecture of their real-time data processing facility. This facility
consists of an AT&T DSP3210 chip that performs data-processing
operations for applications that contain DSP code.

= Chapter 4, “Real Time Manager,” describes a new part of the Macintosh
system software that supplies all the services an application requires to use
the digital signal processor, including loading and running DSP code and
performing DSP memory management.

= Chapter 5, “DSP Operating System,” covers the DSP operating system,
contained in the DSP chip. It provides the services every DSP program
needs to work with the Macintosh Operating System.

xxi

xxii

PREFAUCE

Part 3, “Speech Synthesis and Recognition,” explains the capabilities of the
Macintosh Quadra 840Av and Macintosh Centris 660AV system software for
generating and understanding human speech. It contains three chapters:

Chapter 6, “Speech Manager,” describes a new Macintosh system software
manager that provides a standardized way for applications to generate
synthesized speech. The Speech Manager also lets an application control
one or more speech synthesizers, which generate spoken sound in specific
languages, intonations, and speaking styles.

Chapter 7, “Introduction to Speech Recognition,” contains a basic tutorial
for the Speech Setup control panel. This control panel provides commands
for controlling the speech recognition function.

Chapter 8, “Speech Rules,” explains the speech rules that are built into the
Macintosh Quadra 840Av and Macintosh Centris 660AV system software.

Part 4, “System Software Modifications,” describe miscellaneous changes to
the Macintosh Quadra 840Av and Macintosh Centris 660AV system software,
including a new manager for the internal and external SCSI (Small Computer
System Interface) ports. It contains five chapters:

Chapter 9, “SCSI Manager 4.3,” describes the new SCSI Manager.

Chapter 10, “DMA Serial Driver,” details the new hardware-independent
serial driver that uses direct memory access (DMA).

Chapter 11, “Video Driver,” describes changes to the video driver.

Chapter 12, “New Age Floppy Disk Driver,” lists changes to the floppy
disk driver and tells you how they affect floppy disk compatibility with
other Macintosh computers.

Chapter 13, “Virtual Memory Manager,” details how the Virtual Memory
Manager no longer disables interrupts when performing certain tasks.

Four appendixes follow the main parts of this note. They contain information
that can help you with specific development tasks:

Appendix A, “DSP d Commands for MacsBug,” describes three new d
commands added to Macsbug that help in debugging DSP code.

Appendix B, “BugLite User’s Guide,” describes a DSP module installer
with a graphical user interface. It helps programmers create and install
tasks to be executed by the DSP.

Appendix C, “Snoopy User’s Guide,” tells you how to use a browser and
debugger for the DSP. It helps programmers debug real-time tasks that run
on the DSP.

Appendix D, “Mechanical Details” contains foldout drawings of the
physical mounting facilities that are provided for internal SCSI devices and
accessory cards in the Macintosh Quadra 840Av and Macintosh

Centris 660AV.

PREFAUCE

At the end of this developer note are a glossary and an index. Terms listed in
the glossary are printed in boldface where they are first defined in the text.

Hardware Overview

The Macintosh Quadra 840Av and Macintosh Centris 660AV have the most
features of any models in the Macintosh family of desktop computers. The
Macintosh Quadra 840AvV is also the fastest Macintosh computer. The two
models have nearly identical electronic circuitry. Their differences are that the
Macintosh Quadra 840Av is housed in a minitower enclosure with more room
for internal disk drives and accessory cards, while the Macintosh

Centris 660AV is housed in a low-profile enclosure designed to be placed
under the user’s monitor. The Macintosh Centris 660AV also offers somewhat
lower speed and performance than the Macintosh Quadra 840Av and sells for
a lower price.

Principal new hardware features of these computers include

» digital signal processing, using an AT&T DSP3210 chip

» video input and output facilities in NTSC, PAL, and SECAM formats
s high-quality sound processing

= direct memory access for peripheral devices

» integrated telephone I/O for ISDN, fax, and other signal forms

Chapter 1, “The Macintosh Quadra 840Av and Macintosh Centris 660AV
Computers,” describes these and other hardware features; Chapter 2,
“Hardware Details,” provides deeper technical information.

Software Overview

The Macintosh Quadra 840Av and Macintosh Centris 660AV are supplied with
essentially identical versions of the Macintosh System 7.1 software, in

ROM and on the internal hard disk. For technical information about standard
System 7.1 software, see Inside Macintosh, listed in “Supplementary
Documents,” later in this preface. However, the system software in the
Macintosh Quadra 840Av and Macintosh Centris 660AV also contains
significant changes and additions to System 7.1. This section summarizes
those changes and additions, which are described in greater detail in
Chapters 3 through 13.

xxiii

XXiv

PREFAUCE

Digital Signal Processing

The Macintosh Quadra 840Av and Macintosh Centris 660AV use a digital
signal processor (DSP) chip separate from the main microprocessor to
perform real-time data processing, such as playing sound files. In addition,
the DSP chip can perform processing-intensive operations that do not require
real-time execution, such as file compression and three-dimensional drawing.
Chapter 3, “Introduction to Real-Time Data Processing,” explains this
capability in more detail.

To take advantage of the DSP capability, you must write and compile DSP
code and include it with your application. A new addition to the Macintosh
system software, the Real Time Manager, supplies the services your
application needs to handle DSP code. It contains the calls needed to access
the DSP, load and run DSP code, and transfer data to and from the DSP. The
Real Time Manager also handles system memory management for the DSP
and automatically locks and unlocks memory that is accessed by both DSP
and Macintosh software. Chapter 4, “Real Time Manager,” describes these
functions in detail.

The Real Time Manager coordinates usage of the DSP chip through a new
concept called guaranteed processing bandwidth (GPB). This type of control
guarantees that any application that is granted access to the DSP will always
process the needed data at the time required.

The DSP operating system, contained in the DSP chip, provides the services
that DSP code needs to drive the chip and work with the Macintosh
Operating System. The DSP operating system’s application programming
interface (API) defines how you can create a resource that can be loaded and
run on the DSP chip. It automatically handles on-chip memory management
to minimize recaching of code and data used by more than one DSP code
module. For real-time applications, actual GPB requirements are determined
and saved automatically in the DSP Preferences file. For timeshare
applications, the program context is automatically saved when execution
switches to real-time code.

The DSP operating system provides a run-time environment for the DSP code
modules that minimizes programmer difficulties while providing robust
support for a variety of tasks. Caching and saving of data and variables can
be handled by the DSP operating system or can be explicitly controlled by the
programmer. You can exercise complete control over running DSP code or, by
setting a counter, can cause code execution to be determined dynamically at
run time. For further information, see Chapter 5, “DSP Operating System.”

Text-to-Speech Conversion

A new Macintosh manager, the Speech Manager, provides a standardized API
for applications to generate synthesized speech. A single call provides simple
text-to-speech operation. Other API calls provide more detailed speech

PRETFAUCE

features. Word pronunciation can also be defined by means of embedded
commands within the text string being spoken. Chapter 6, “Speech Manager,”
provides full details of these new capabilities.

Speech Recognition

A new Macintosh system feature, the Speech Recognition Control Panel,
provides start, stop, and parameter setup commands for controlling speech
recognition behavior. In the Macintosh Quadra 840Av and Macintosh
Centris 6604V, built-in speech recognition is provided for many Macintosh
system operations. The standard File and Edit menu commands are fully
supported, as are the Finder operations. For example, opening the Control
Panels folder is as easy as saying open control panels.

User-defined speech macros let you customize the speech recognition
software to recognize application-specific speech input for performing
common tasks. A 60,000-word dictionary allows selection from a wide variety
of words to define spoken phrases that trigger user-defined operations by
means of speech macros.

Chapter 7, “Introduction to Speech Recognition,” describes the current user
controls for speech command in the Macintosh Quadra 840Av and Macintosh
Centris 660AV. Chapter 8, “Speech Rules,” provides information about further
programmable controls for speech recognition.

New SCSI Manager

SCSI Manager 4.3 incorporates a new multilevel architecture that affects

all modes of Small Computer System Interface (SCSI) operation. It uses

a parameter-block-based programming interface for executing SCSI input-
output (I/O) requests, which contains all the information required to
complete each I/O operation. The new architecture provides a hardware-
independent interface to the SCSI Manager. The SCSI driver layer passes the
hardware support it provides to the SCSI Manager for complete hardware
support. The SCSI Manager follows the phases driven by the target and
eliminates the need to track the SCSI bus phases.

SCSI Manager 4.3 supports SCSI connect/ disconnect, parity transmission and
parity error detection, all SCSI-2 mandatory messages, SCSI Fast or Wide, and
autosense. The SCSI DMA supports asynchronous protocols using both
multiple bus and multiple logic units on each target.

Besides supporting these new features, SCSI Manager 4.3 also supports the
existing SCSI device drivers with little or no modification. However, you
should evaluate your existing drivers for compatibility and incorporate
the new features where possible. See Chapter 9, “SCSI Manager 4.3,” for
further details.

XXV

PREFAUCE

Other System Software Changes

The DMA serial driver was completely rewritten internally. However, there
are no API changes. The major operational changes affect interrupt handling
and DMA versus non-DMA transmissions, elimination of the Pol | Pr oc
mechanism, and use of the new DMA chip. For technical details, see
Chapter 10, “DMA Serial Driver.”

The video driver has been modified as a result of new video capabilities.
Changes and additions to the video driver are described in Chapter 11,
“Video Driver.”

The floppy disk driver has been modified to work with the New Age floppy
disk drive controller. This has resulted in minor changes to the floppy disk
drive control AP], as described in Chapter 12, “New Age Floppy Disk Driver.”

The Virtual Memory Manager has been changed so that it no longer disables
interrupts when performing certain tasks. These tasks are listed in Chapter 13,
“Virtual Memory Manager.”

Supplementary Documents

Xxvi

The following documents provide information that complements or extends
the information in this developer note:

Apple Computer:

Inside Macintosh is a collection of books, organized by topic, that describe the
system software of Macintosh computers. Together, these books provide the
essential reference for programmers, software designers, and engineers.
Current volumes include the following titles:

Inside Macintosh: Overview

Inside Macintosh: Toolbox Essentials

Inside Macintosh: More Macintosh Toolbox

Inside Macintosh: Files

Inside Macintosh: Processes

Inside Macintosh: Memory

Inside Macintosh: Operating System Utilities

Inside Macintosh: Imaging

Inside Macintosh: Text

Inside Macintosh: Interapplication Communication

Inside Macintosh: Devices

Inside Macintosh: QuickTime

Inside Macintosh: QuickTime Components

Inside Macintosh: Networking

Technical Introduction to the Macintosh Family, second edition, surveys the
complete Macintosh family of computers from the developer’s point of view.

PRETFAUCE

Macintosh Human Interface Guidelines provides authoritative information on
the theory behind the Macintosh “look and feel” and Apple’s standard ways
of using individual interface components.

Designing Cards and Drivers for the Macintosh Family, third edition, explains the
hardware and software requirements for drivers and NuBus "90 accessory
cards compatible with Macintosh computers, including the Macintosh
Quadra 840Av and Macintosh Centris 660AV.

Technical Note 144 (Macintosh Color Monitor Connections) and Technical Note
326 (M.HW.SenseLines) provide technical details of the interfaces to various
Apple and third-party monitors.

The NuBus Block Transfers technical note provides information about block
data transfers to and from accessory cards.

Macintosh Classic 11, Macintosh PowerBook Family, Macintosh Quadra Family,
Macintosh Centris 610, Macintosh Centris 650, and Macintosh Quadra 800
Developer Notes include hardware details for these computers.

The Apple publications listed above are available from APDA, Apple’s source
for development tools and publications. APDA offers convenient worldwide
access to over three hundred Apple and third-party development tools,
resources, and information for anyone interested in developing applications
on Apple platforms. For a free copy of the APDA Tools Catalog, call
1-800-282-2732 (United States), 1-800-637-0029 (Canada), or 716-871-6555
(International).

The following documents are available from the organizations listed:

AT&T:
WEDSP3210 Digital Signal Processor Information Manual

Comité Consultatif International Radio (CCIR):
Recommended Standard 601-2.

IT&T Semiconductors:
ASCO 2300 Audio-Stereo Codec Specification

Motorola:

MC68040 32-Bit Microprocessor User’s Manual

MC68040 32-Bit Microprocessor Programmer’s Reference Manual
MC68040 32-Bit Microprocessor Designer’s Handbook

Phillips:

7169 Video Data Path Chip data sheet

7191B Digital Multistandard Decoder data sheet

XXVii

PREFAUCE

Standard Abbreviations

Acronyms and abbreviations that are specific to Macintosh technology are
spelled out in the text where they first occur and are listed in the glossary.
Other contractions commonly used in the electronics industry are not spelled
out. They include the following:

XXViii

A amperes mm millimeters
cm centimeters ms milliseconds
dB decibels mV millivolts

GB gigabytes NC no connection
KB kilobytes ns nanoseconds
Kbit kilobits pF picofarads
kHz kilohertz rms root mean square
kQ kilohms \Y volts

mA milliamperes pF microfarads
MB megabytes Hs microseconds
Mbit megabits Q ohms

MHz megahertz

PART O N E

Hardware

This part of the Macintosh Quadra 840Av and Macintosh Centris 660Av Developer
Note describes these computers from a hardware viewpoint. It contains two
chapters:

Chapter 1, “The Macintosh Quadra 840Av and Macintosh Centris 660AV
Computers,” gives you an overview of the configurations and features of
these products.

Chapter 2, “Hardware Details,” describes the Macintosh Quadra 840Av and
Macintosh Centris 660AV circuit boards, including their physical layout,
functional units, signal timing and other electronic characteristics, input
and output connectors, and interfaces with other equipment.

Other parts of this developer note cover the following topics:

Part 2, “Real-Time Data Processing,” covers the software technology of the
Macintosh Quadra 840Av and Macintosh Centris 660av DSP facilities.

Part 3, “Speech Synthesis and Recognition,” explains the capabilities of the
Macintosh Quadra 840Av and Macintosh Centris 660AV system software for
generating and understanding human speech.

Part 4, “System Software Modifications,” covers miscellaneous changes to
the Macintosh Quadra 840Av and Macintosh Centris 660AV system
software, including a new manager for the internal and external SCSI ports.

CHAPTER 1

The Macintosh Quadra 840av
and Macintosh Centris 660av
Computers

CHAPTER 1

The Macintosh Quadra 840AV and Macintosh Centris 660AV Computers

The Macintosh Quadra 840Av and Macintosh Centris 660AV represent new advances in
the Macintosh family of high-performance desktop computers. Both models contain an
input/output (I/O) subsystem that runs independently of the main processor and an
independent digital signal processor (DSP) subsystem that supports real-time processing
of data. These facilities, combined with a 32-bit MC68040 main processor running at
either 40 MHz (the Macintosh Quadra 840Av) or 25 MHz (the Macintosh Centris 660AV),
let these computers perform sophisticated manipulation of sound, graphics, video, and
analog modem signals.

Both models bring advanced application performance into the mainstream of desktop
computing. Potential application features include real-time speech recognition and
synthesis, compression and decompression of sound, complex graphics and video
processing, widely compatible telephone networking, and three-dimensional graphics
rendering. With Apple’s mini-videocam (sold separately), both models can also support
videophone and desktop photography software. Many of these application features are
unattainable on other personal computing platforms.

This chapter describes the computers in general terms and lists some of their features,
differences, and compatibility issues.

Models and Accessories

The Macintosh Quadra 840Av and the Macintosh Centris 660AvV have many common
features. They differ mainly in physical form, speed, and expansion facilities:

s The Macintosh Quadra 840Av is housed in the same minitower configuration as the
Macintosh Quadra 800. It runs at 40 MHz and has three NuBus" slots for expansion
cards. The base configuration for this model includes 8 MB of random-access memory
(RAM) and a 230 MB internal hard disk.

» The Macintosh Centris 660AV is a less expensive desktop version of the Macintosh
Quadra 840Av in the same low-profile enclosure as the Macintosh Centris 610. It runs
at 25 MHz and has only one NuBus expansion slot. The base configuration for this
model includes 4 MB of RAM and an 80 MB internal hard disk.

The user can expand the RAM capacity of either model by installing expansion cards.
The Macintosh Quadra 840Av has an ultimate RAM capacity of 128 MB; the Macintosh
Centris 660AV, 68 MB.

Both models include an Apple SuperDrive floppy disk drive, capable of accepting

1.4 MB floppy disks. The Macintosh Quadra 840Av accepts up to three removable SCSI
devices inside its case; the Macintosh Centris 660AV can accept two. Besides the base
configuration disk drives, internal data storage options include

= a 500 MB internal hard disk
= a 1000 MB internal hard disk (in the Macintosh Quadra 840Av only)

» an internal compact disc read-only memory (CD-ROM) drive

4 Models and Accessories

CHAPTER 1

The Macintosh Quadra 840AV and Macintosh Centris 660AV Computers

The user can add a variety of external disk drives to either model, using the external
SCSI port. For details of the possible SCSI configurations, see “SCSI Connection,” in
Chapter 2. For information about new SCSI software, see Chapter 9, “SCSI Manager 4.3.”

Apple offers the following separate accessories for both models:

= an inexpensive mini-videocam that captures monochrome video action in an image
360 pixels wide by 288 pixels high

» a high-quality microphone specifically designed for speech recording and recognition
= an analog telecom adapter
= an Ethernet cable adapter

Apple will sell the Macintosh Quadra 840Av and Macintosh Centris 660AV in all domestic
and international markets for Apple computers.

Summary of Features

Besides standard features common to the Macintosh family of computers, the Macintosh
Quadra 840Av and the Macintosh Centris 660AV have these new or improved capabilities:

s Direct memory access. A Peripheral Subsystem Controller (PSC) provides direct
memory access (DMA) between the main processor buses and peripheral devices.
DMA permits very fast transfers of large amounts of data without burdening the main
processor.

» Widely compatible video input. Both models can process a YUV 4:2:2 video input from
internal accessory cards. These computers can also process composite or S-video
inputs in NTSC, PAL, and SECAM formats from external sources, using standard
television-type connectors. Both models store video information in RGB form in a
video frame buffer separate from main memory.

s Flexible video output. Both models supply video signals to the full range of Apple
monitors as well as many third-party monitors. These computers also provide NTSC
and PAL composite and S-video outputs for other kinds of video equipment. The
Macintosh Quadra 840Av supports color depths up to 24 bits for graphics and 16 bits
for video; the Macintosh Centris 660AV supports up to 16 bits for both.

» Digital signal processing. A built-in digital signal processor provides fast processing
of data in real time. The principles of digital signal processing are discussed in
Chapter 3, “Introduction to Real-Time Data Processing.”

s Improved NuBus interface. Both models use the Macintosh Universal NuBus Interface
(MUNI) for accessory cards. This interface supports block transfers and data bursts to
and from the main processor bus. MUNI capability is optional in the Macintosh
Centris 660AV.

= New floppy disk support. A new controller for the built-in Apple SuperDrive disk drive
is based upon Industry Standard 765, supporting both Apple’s Group Code
Recording (GCR) format and DOS-compatible Modified Frequency Modulation
(MFM) format.

Summary of Features 5

CHAPTER 1

The Macintosh Quadra 840AV and Macintosh Centris 660AV Computers

Built-in Ethernet support. Both models contain built-in circuitry for Ethernet I/O.

Enhanced serial ports. Two serial ports both support RS-232, RS-422, and AppleTalk I/O
and offer improved system performance with LocalTalk networks.

Integrated telephone I/O. Both models provide Apple’s high-performance serial I/O
capability (called GeoPort) on one serial port, permitting connection to analog, ISDN,
facsimile (fax), and data telephone lines. These computers support full-duplex
telephone I/O at transmission rates up to 9600 bits per second.

Enhanced sound I/O. Using the DSP, both models provide 16-bit digital stereo sound
I/0O at sample rates up to 48 kHz, including the standard rate of 44.1 kHz.

Large-capacity ROM. Identical ROM chips totaling 2 MB are provided with both
models. These chips contain some of the system software that is on the hard disk in
other Apple computers.

Expansion slots. The Macintosh Quadra 840Av contains three NuBus slots for long or
short Macintosh expansion cards; the Macintosh Centris 660AV accepts one short card
using an optional angle adapter. All slots carry a 32-bit data and address bus; in
addition, a digital audio/video (DAV) expansion connector in line with one slot gives
an accessory card direct access to YUV video data and digital sound.

Mass media support. Both models support up to a total of seven SCSI devices. Within
this limit, the user can connect up to six external devices to either model’s SCSI port in
addition to internal hard disk drives and CD-ROM drives.

Advanced processor features. The MC68040 main processor in both models performs
32-bit paged memory management and has internal 4 KB data and instruction caches.
The MC68040 processor also performs high-speed, high-accuracy coprocessing of
floating-point numeric data.

Software on/off power control. The Macintosh Quadra 840AV provides power control
service to its expansion slots, so plug-in cards can turn the computer on and off.

Replaceable real-time clock battery. The real-time clock and parameter RAM in both
models are powered by a long-life plug-in battery.

Automatic SCSI termination. Built-in circuitry provides automatic termination of the
internal and external SCSI cables if no SCSI devices are connected.

Differences Between Models

Besides the distinctions of speed, physical form, and base memory configuration cited in
“Models and Accessories,” earlier in this chapter, the Macintosh Quadra 840Av and the
Macintosh Centris 660AV contain the following detailed hardware differences:

The maximum video window size at a color depth of 16 bits is 640 by 480 pixels for
the Macintosh Quadra 840Av and 512 by 384 pixels for the Macintosh Centris 660AV.

The Macintosh Quadra 840Av computer’s VRAM is expandable from 1 MB to 2 MB;
the Macintosh Centris 660AV computer’s is not.

6 Differences Between Models

CHAPTER 1

The Macintosh Quadra 840AV and Macintosh Centris 660AV Computers

= The Macintosh Quadra 840Av supports 21-inch RGB monitors; the Macintosh Centris
660AV does not.

= The Macintosh Quadra 840Av can accept up to three long (4 by 13 inches) or short
(4 by 7 inches) NuBus accessory cards; the Macintosh Centris 660AV accepts only one
short card, using an optional angle adapter card.

= The Macintosh Quadra 840AV lets a plug-in card turn the computer on and off. The
Macintosh Centris 660AvV does not.

= The Macintosh Centris 660AV can accept an accessory card that connects directly to the
main processor bus; the Macintosh Quadra 840Av cannot.

= The Macintosh Quadra 840Av requires 60 ns DRAM chips; the Macintosh Centris
660AV can use 70 ns DRAM chips.

System Software

The Macintosh Quadra 840Av and the Macintosh Centris 660AV contain the same ROM
and support the same set of system calls, instructions, and data structures (the same
application programming interface, or API). Hence, an application that runs on one
model will run on the other. However, the system software API includes access to several
new managers in addition to the familiar Macintosh Toolbox. Applications that are
written to use these managers can offer valuable new features and capabilities.

For complete information about the system software features that are new with the
Macintosh Quadra 840Av and the Macintosh Centris 660AV, see Chapters 3 through 13.

Compeatibility Issues

Products that are designed for other computers in the Macintosh family and are
compatible with Macintosh system software release 7.0 or 7.1 should work with the
Macintosh Quadra 840Av and the Macintosh Centris 660AV, provided they follow
Apple’s current design guidelines (such as being 32-bit clean). Of course, such products
normally will not take advantage of the unique capabilities of these new computers.

Developers who want to design new products that make use of the features of the
Macintosh Quadra 840Av and the Macintosh Centris 660AV, while remaining compatible
with other Apple computers, should keep these compatibility pointers in mind:

= Use only system API calls to access hardware; never try to modify or program the
serial, SCSI, ADB, sound, or video subsystems directly.

= Never change the processor status register directly.
= Do not disable interrupts for longer than 0.5 ms.

= Do not assume any fixed addresses for global variables or ROM routines. You can use
the Get Tr apAddr ess and Set Tr apAddr ess functions to get and set these
addresses.

System Software 7

CHAPTER 1

The Macintosh Quadra 840AV and Macintosh Centris 660AV Computers

Machine Identification

By using the Gestalt Manager and the SysEnvi r ons function, an application can
determine which features exist on the user’s system. Table 1-1 lists the relevant machine

identification values.

Table 1-1 Gestalt values for the Macintosh Quadra 840Av and Macintosh Centris 660AV

Identifier Value Description

SysEnvi rons 78 Macintosh Quadra 840AV processor
(40 MHz)

SysEnvi rons 60 Macintosh Centris 660AV processor
(25 MHz)

gest al t NuBus S| ot Count ' nubs' Count of logical NuBus slots

gestaltSlotAttr "slot' Slot attributes

gestal t Sl ot Mgr Exi st's 0 True if Slot Manager exists

gest al t NuBusPr esent 1 NuBus slots are present

gest al t SESI ot Pr esent 2 SE PDS slot present

gest al t SE30SI ot Present 3 SE/30 slot present

gestal t Port abl eS| ot Present 4 Portable’s slot present

gestal t Fi r st SI ot Nunber "sltl Returns first physical slot

gestaltlconUtilities "icon' Icon utilities attributes

gestaltlconUtilitiesPresent 0 Icon utilities present

gestal tReal ti meMgr Attr ‘rtm' Real Time Manager attributes

gest al t Real ti meMgr Pr esent 0 True if Real Time Manager present

gest al t SoundHar dwar e ' snhw Get the sound hardware

gestal t ASC "asc ' Component type of sound chip

gest al t DSP "dsp ' Component type of DSP

gestal t d assi cSound 'cl as' Macintosh Classic” sound

gest al t VI ALAddr "vial' VIA-1 base address

gest al t VI A2Addr 'via2' VIA-2 base address

gestal t VMAt tr ‘vm ' Virtual memory attributes

gest al t VMPr esent 0 True if virtual memory present

gestal t VMNot I nstal | ed 0 True if virtual memory not installed

Machine Identification

CHAPTER 2

Hardware Details

CHAPTER 2

Hardware Details

The Macintosh Quadra 840Av and Macintosh Centris 660AV computers are shipped with
built-in floppy disk drives and removable internal hard disk drives. For each model, the
addition of an external monitor, a keyboard, and a mouse forms a complete personal
computing system.

This chapter provides details of the Macintosh Quadra 840Av and Macintosh
Centris 660AV physical equipment.

Physical Forms

The Macintosh Quadra 840Av and Macintosh Centris 660AV computers are generally
described in “Models and Accessories,” in Chapter 1. The external dimensions of their
enclosures are shown in Table 2-1.

Table 2-1 External dimensions

Dimension Macintosh Quadra 840Av Macintosh Centris 660AV
Width 7.81in. (19.7 cm) 16.3 in. (41.4 cm)

Depth 16.0 in. (40.6 cm) 14.8 in. (37.6 cm)
Height 14.3 in. (36.2 cm) 3.2in. (8.1 cm)

Both models contain essentially the same circuit board and system components, with
variations as noted in this chapter. Drawings of certain Macintosh Quadra 840Av and
Macintosh Centris 660AV parts that support the mounting of peripheral devices are given
in Appendix D, “Mechanical Details.”

Parts Layout

All the Macintosh Quadra 840Av and Macintosh Centris 660AV circuitry, except for the
power supply, is contained on a single multilayer circuit board. The chips listed in
“Functional Units,” later in this chapter, can be identified by markings on the board.

System Architecture

10

The overall data flow relations among the hardware units of the Macintosh Quadra
840Av and Macintosh Centris 660AV computers are summarized by the block diagram in
Figure 2-1. Parts omitted in the Macintosh Centris 660AV are enclosed in dotted lines.

The units shown in Figure 2-1 are described in more detail in the next section.

Physical Forms

CHAPTER 2

Hardware Details

Figure 2-1 Functional diagram
(" NuBus connectors ~ Opti i Macintosh) S-video
ptional with SAAT7197 '
Macintosh Quadra | camera
. clock 840Av onl i
MUNI Centris 660av i o TDA8709y Input
custom | (NUADO-31)|[: SAA7191 ABD v ©
NuBus . YUV DMSD 8 5
controller Serial 4:2:2] ks AE?DOS Composi
sound 16 video ir
a0-31) |(Do-31) AV expansion | v 4ﬂﬁ@)}
_ P VDC |RrcB (2-32 bit graphics
(D0-31) E\ Y or 16-bit video)
. ! >
_ A V [Macintosh J A
DSP (A0-31) (A2-31) Quadra I
AT&T 840av only fm— |
DSP3210 | 2031 DRAM 3MDRAM 7]~ VRAM VRAM VRAM VRAM
[DRAMZHFORAMEI =) | SPLE ||| Sioke | || sizke | || sizke
] (A0-31) Bgﬁm é Bsﬁm i:: (onboard) onboard) (onboard) | ||(onboard)
Main CPU| Address bus Macintosh A Macintosh
Motorola DRAM addresses Quadra Quadra
MC68040 | _(DO-31) & controls 840av only 840av only
J Data bus MCA VRAM addresses CI\I/IC < Monitor ID
custom memory custom . Sync signals
controller & arbiter video controller | _Video clock
(A0-31) ‘ D31 A
68040 interrupts - DO
IPLO~ — 2~
() —O) cp-ROM audio
DSP interrupts PSC VIAL /O o AppBle Desktop
=1 custom h uaa us port ine-
ATECS peripheral ASIgnaIS‘ MCG68HCO05 @ A _@ Line-outheadphones
1 —=| subsystem RTC, PRAM, = Isinger| » M“Jf(
clock sync controller ADB, & Reset AID & otor Internal speaker
/0 and NuBus — - Serial sound | D/A |~ -©) Line-inmicrophone
slotinterrupts . o o~y [(PD0-15) DotL>To AV expansion
Endeavor | 5ok
™ | programmable v
o clock .
. C S-video
> Video clock Nys'(ék/ﬁyAL Comp Composite
Sync signals »~| encoder [RGB out video out
Sebastion R, G, & B analog video L KXXXXXIY)
- CLUT N
- DAC Video or graphics data (VD0-31) Monitor port
Graphics data (GD0-31)
Internal flo disk port
Ethernet Pby P
- ID ROM Internal
32 bytes oo SCSI port External
New Age SCSI port
cstor, —o | SCsl53c94
- : Ethernet port
| flo| disk - | Apple AUI
ccf)npt%loller L | Ethernet MACE P x0T
- ch. A Serial ports
"l—,:ESCC L LEh-A) Drivers HLTPC LB @
and (printer)
Ch.B ; Port A
External sychronization receivers I (modem/GeoPort)@

System Architecture

11

CHAPTER 2

Hardware Details

Functional Units

12

Features of the major functional hardware units shown in Figure 2-1 are summarized in
the next sections.

Main Processor

The main processor of the Macintosh Quadra 840Av and Macintosh Centris 660AV is a
Motorola MC68040 microprocessor. This unit has

= an integer processing unit whose instruction set in user mode is compatible with the
MC68030 processor

= a floating-point processing unit compatible with the MC68881 and MC68882 processors
» independent demand-paged memory management units for instructions and data

= independent 4 KB instruction and data caches

= multiple execution pipelines and full internal Harvard processing architecture

Neither model uses the optional bus-snooping feature of the MC68040 design.

Read-Only Memory

Both models contain 2 MB of ROM. For details of ROM access timing, see “ROM and
RAM Management,” later in this chapter.

Random-Access Memory

RAM consists of dynamic random-access memory (DRAM) on 72-pin Single Inline
Memory Modules (SIMMs). Each SIMM contains one or two banks of DRAM with up
to 16 MB of capacity per bank. In the Macintosh Centris 660AV, 4 MB of RAM capacity is
soldered to the board and there are slots for two expansion SIMMs. In the Macintosh
Quadra 8404V, all RAM is on SIMMs, with space for four expansion SIMMs. Thus
maximum possible RAM capacity (using 16 MB RAM chips) is 128 MB for the Macintosh
Quadra 840Av and 68 MB for the Macintosh Centris 660AV.

The DRAM in the Macintosh Quadra 840AvV must have an access time of not more than
60 ns. The DRAM in the Macintosh Centris 660AV may have an access time up to 70 ns.
DRAM compatible with either model must accept the column address strobe (CAS)
before the row address strobe (RAS) for refresh and may not have more than eight chips
per bank. Both models ignore the parity connection on DRAM SIMMs.

RAM addressing and RAM access timing are discussed in “ROM and RAM
Management,” later in this chapter. Certain changes to virtual memory management
are described in Chapter 13, “Virtual Memory Manager.”

Functional Units

CHAPTER 2

Hardware Details

Memory Controller and Arbiter

The Memory Controller and Arbiter (MCA) is a complementary metal-oxide
semiconductor (CMOS) chip in a 160-pin package. It

supports the bus interface between RAM and ROM memory and the main processor,
DSP, MUNI, and PSC

controls access to eight banks of DRAM with up to 16 MB capacity per bank
controls access to ROM

performs arbitration for control of the CPU bus between the main processor, PSC,
MUNI, and DSP

furnishes bus timeout signals for the main processor, I/ O, MUNI, and DSP buses

For details of MCA operation, see “ROM and RAM Management,” later in this chapter.

Digital Signal Processor

The Macintosh Quadra 840Av and Macintosh Centris 660AV computers include an AT&T
DSP3210 32-bit floating-point digital signal processor (DSP). The DSP gives these
computers the ability to perform fast, complex real-time data processing tasks, such

as speech recognition, audio compression, analog modem signal processing, and so

on. In the Macintosh Quadra 840Av, the DSP runs at 66.6667 MHz; in the Macintosh
Centris 6604V, it runs at 55.5000 MHz. The DSP chip contains its own 8 KB of internal
RAM, which minimizes its use of system memory. A summary of DSP operation and
programming is given in Chapter 3, “Introduction to Real-Time Data Processing,” with
further details in Chapters 4 and 5.

Peripheral Subsystem Controller

The Peripheral Subsystem Controller (PSC) is a CMOS chip in a 208-pin package.
The PSC

provides nine dedicated DMA channels

decodes the I/ O memory mapping

handles all internal system interrupts

handles system interrupts from the Versatile Interface Adapter (VIA) inputs

contains 16-byte buffers for sound data to and from the Singer sound encoder and
decoder (codec)

For details of PSC operation, see “PSC Functions,” later in this chapter.

Functional Units

13

14

CHAPTER 2

Hardware Details

Macintosh Universal NuBus Interface

The Macintosh Universal NuBus Interface (MUNI) is a CMOS chip in a 208-pin
package. For a general discussion of NuBus, including its software details, see Designing
Cards and Drivers for the Macintosh Family, third edition. The MUNI version of NuBus

supports the full range of NuBus master/slave transactions with single or block
moves, including dumps and runs in which the main processor is master and NuBus
is slave

supports faster data transfer rates to and from the CPU bus
supports NuBus '90 data transfers between cards at a clock rate of 20 MHz

provides first-in, first-out (FIFO) buffering of data between the CPU bus and
accessory cards

In the Macintosh Quadra 840Av, the MUNI is mounted on the main circuit board; in the
Macintosh Centris 6604V, it is on an optional NuBus adapter card. Details of the MUNI
operation are given in “NuBus Interface,” later in this chapter.

Cyclone Integrated Video Interfaces Controller

The Cyclone Integrated Video Interfaces Controller (CIVIC), used in both computers,
is a CMOS chip in a 144-pin package. The CIVIC

manages either 1 MB or 2 MB of video RAM (VRAM)

controls data transfers between VRAM and the Video Data Path Chip and between
VRAM and the Sebastian video color palette chip (described next)

provides 32-bit or 64-bit data paths between VRAM and the main processor or a slot
card; supports data bursts from the main processor in all transfer modes

performs convolution of graphics data for line-interlaced displays
provides NTSC and PAL timing signals (see Table 2-2)

generates vertical blanking and video-in interrupt signals

For details of CIVIC operation, see “Video and Graphics I/O,” later in this chapter.

Sebastian

The Sebastian is a video color palette and video digital-to-analog converter (DAC) in a
100-pin CMOS chip. The Sebastian

accepts up to 64 bits of digital input, either as one 64-bit port or as one or two
32-bit ports

lets one 32-bit port handle digital video while the other processes graphics (including
QuickTime), using the same or different color lookup tables

supports mixing video with still graphics, even with different color depths

Functional Units

CHAPTER 2

Hardware Details

= supports both Truecolor and pseudocolor with alpha color lookup

= supports a transparency effect when blending video with still graphics under the
control of alpha bits

= uses a convolution filter to minimize flicker in line-interlaced displays
= supports displays with dot clocks up to 100 MHz

For details of Sebastian operation, see “Video and Graphics I/O,” later in this chapter.

Video Data Path Chip

The Video Data Path Chip (VDCQ) is a Phillips CMOS chip in a 100-pin package.
The VDC

» performs input video window scaling with horizontal and vertical filtering

= accepts YUV 4:2:2 color-encoded input from the Digital Multistandard Decoder or the
digital audio/video (DAV) expansion slot card bus

= produces 16-bit 1:5:5:5 RGB, 8-bit grayscale, or YUV 4:2:2 output

For details of VDC operation, see “Video and Graphics I/O,” later in this chapter, and
the Phillips 7169 data sheet.

Mickey

The Mickey is a composite video encoder in a 28-pin advanced bipolar CMOS chip.
The Mickey

= accepts analog video signals from the Sebastian video color palette chip
= encodes to NTSC or PAL digital format
= produces S-video, composite, and RGB video outputs

For details of Mickey operation, see “Video and Graphics I/O,” later in this chapter.

New Age
The New Age is a floppy disk controller in a 64-pin CMOS chip. The New Age

= controls an Apple SuperDrive for all its recording densities

= uses a command set compatible with MFM and Apple GCR formats
= generates an interrupt on disk insertion

= performs 16-byte first-in, first-out data buffering

» supports full asynchronous operation for DMA

The New Age supports the standard Macintosh floppy disk software interface, as
described in Inside Macintosh.

Functional Units 15

16

CHAPTER 2

Hardware Details

Curio

The Curio is a multipurpose I/O chip that contains a Media Access Controller for
Ethernet (MACE), a SCSI controller, and a Serial Communications Controller (SCC).
New serial driver code in the Macintosh Quadra 840Av and Macintosh Centris 660AV
system software is discussed in Chapter 10, “DMA Serial Driver.”

The SCC section of the Curio includes 8-byte FIFO buffers for both transmit and receive
data streams.

Curio functions are discussed in “External Device Interfaces” and “PSC Functions,” later
in this chapter.

Apple Telecom External Clock Synchronizer

The Apple Telecom External Clock Synchronizer (ATECS) is a control chip that can
synchronize the DSP and sound subsystems to an external clock signal received through
the Apple GeoPort serial port connector. In the absence of an external clock, it generates
crystal-controlled 49.152 MHz timing signals for 48 KHz operation or 45.1584 MHz
timing signals for 44.1 KHz operation. For a description of Apple GeoPort, see “Serial
Ports,” later in this chapter.

Cuda

The Cuda is a microcontroller chip. It

= turns system power on and off

= manages system resets from various commands
= maintains parameter RAM

= manages the Apple Desktop Bus (ADB)

= manages the real-time clock

= lets an external signal through the Apple GeoPort serial port control system power

Cuda functions are discussed in more detail in “External Device Interfaces,” later in this
chapter. For a description of Apple GeoPort, see “Serial Ports,” later in this chapter.

Singer

The Singer is an I/O chip that constitutes a 16-bit digital sound codec. It conforms to the
IT&T ASCO 2300 Audio-Stereo Codec Specification. For details of its operation, see “Sound
I/0O,” later in this chapter.

Functional Units

CHAPTER 2

Hardware Details

Endeavor

The Endeavor is a programmable video clock chip used in the Macintosh Quadra 840Av;
the equivalent in the Macintosh Centris 660AV is called Clifton Plus. For details of the
operation of these chips, see “Video and Graphics I/O,” later in this chapter.

Digital Multistandard Decoder

The Digital Multistandard Decoder (DMSD) is a Phillips chip that decodes the color
information in NTSC, PAL, and SECAM video formats using a clock synchronized to
their line frequency. For details of DMSD operation, see “Video and Graphics I/O,” later
in this chapter, and the Phillips 7191B data sheet.

System Clocks

Operation of the Macintosh Quadra 840Av and Macintosh Centris 660AV is driven
by several different clocks running at different frequencies. These clocks are listed in
Table 2-2, where their frequencies are given in MHz.

Table 2-2 Clock frequencies
Location Signal name Frequency (MHz) Source Usage
CPU bus PClk 80.0000/50.0000" Divider Main processor, MCA, cvict
BClk 40.0000/25.0000" Divider Main processor, MCA, CIVIC, PSC,
MUNI
PClk/4 20.0000/12.5000" Oscillator Divider
I/Obus C22_5792M 22.5792 PSC Singer (44.1 KHz)
C24_576M 24.5760 PSC Singer (48 KHz)
Cl6M 15.6672 PSC New Age, Curio
C32M 31.3344 Oscillator PSC
C25M 25.0000 Oscillator SCSI
C15_0528M 15.0528 Crystal ATECS (44.1 KHz)
Cl6_384M 16.3840 Crystal ATECS (48 KHz)
C45_1584M 45.1584 ATECS PSC (44.1 KHz)
C49_1520M 49.1520 ATECS PSC (48 KHz)
C20M 20.0000 Crystal MACE Ethernet
CudaClk 0.032768 Crystal Cuda

continued

System Clocks 17

CHAPTER 2

Hardware Details

Table 2-2 Clock frequencies (continued)
Location Signal name Frequency (MHz) Source Usage
DspP CKI 66.6667 /555000 Oscillator DSP, MCA
NuBus C40M 40.0000 Oscillator MUNI
C20M 20.0000 MUNI Accessory card slots
CN10M 10.0000 MUNI Accessory card slots
Video Video in 26.8000 Crystal DMSD
Video Dot clock Various* Endeavor Sebastian
NTSC 14.31818 Oscillator Sebastian, Mickey
PAL 17.734475 Oscillator Sebastian, Mickey

* The two values are the frequencies in the Macintosh Quadra 840AV and Macintosh
Centris 660AV, respectively.
In the Centris 660AV only.

¥ Up to 100 MHz maximum, depending on the monitor; see Table 2-14.

Signal Buses

18

The Macintosh Quadra 840Av and Macintosh Centris 660AV contain several internal
signal buses. The principal ones are shown in Figure 2-1. They are

» the CPU bus, containing 32 address lines and 32 data lines
= NuBus, containing 32 combined data and address lines

» the digital audio/video (DAV) expansion connector bus, containing 16 video data
lines and five audio data lines

» the video bus, containing two sets of 32 lines each (or a combined set of 64 lines) for
video or graphics

» theI/O bus, containing five address lines and 16 data lines

For detailed information about NuBus, see Designing Cards and Drivers for the Macintosh

Family, third edition. In the Macintosh Centris 660Av, NuBus exists only if an adapter

card has been installed in the PDS connector. The PDS connector is described in
“Processor-Direct Cards for the Macintosh Centris 660AV,” later in this chapter.

Bus Arbitration

Four chips are able to take control of the CPU bus: the main processor, the MUNI, the
PSC, and the DSP (which is asynchronous with respect to the main processor). The MCA
performs arbitration between these chips for control of the CPU bus.

Priority among accessory cards for control of NuBus depends on which slots they
occupy. Lower-numbered slots have higher priority.

Signal Buses

CHAPTER 2

Hardware Details

Control of the I/O bus is managed by the PSC chip, as described in “Bus Arbitration
Performed by the PSC,” later in this chapter.

Bus Timeouts

The MCA chip performs two timeout functions for the CPU bus:

s If the CPU, PSC, or MUNI does not respond to a cycle start signal within a critical
time, the MCA terminates that chip’s bus control and issues a bus error signal. The
critical time is 32 ps for NuBus address space ($6000 0000 to $FFFF FFFF) and 16 ps for
the rest of the address space ($0000 0000 to $5FFF FFFF).

» If the DSP does not issue a cycle start signal within 16 DSP clock cycles after it is
granted bus control, the MCA terminates the DSP’s control and issues a bus error
signal.

The MUNI chip generates a bus error if any Nubus transaction takes longer than 25.6 ps.

ROM and RAM Management

During the system startup process, the system software programs the MCA for the
configuration of ROM and RAM actually present in the user’s hardware.

The CPU bus can read from and write to RAM, as well as read from ROM, in either
single-address accesses or four-address bursts.

DRAM Configurations
Possible DRAM configurations are shown in Table 2-1.

Table 2-1 DRAM configurations

Bank Row Column
size (MB) Organization address bits address bits
1 256 Kbit x 4 9 9
1 1 Mbit x 4 10 10
2 512 Kbit x 8 10 9
4 4 Mbit x 4 11 11
8 2 Mbit x 8 11 10
4 4 Mbit x 4 12 10
8 2 Mbit x 8 12 9
16 1Mbx16 11 9

ROM and RAM Management 19

CHAPTER 2

Hardware Details

Startup Memory Addressing

At the beginning of the system startup process, the MCA maps the ROM code to the
lower end of the RAM address space, starting at address $0000 0000. When the main
processor is reset, it sets the program counter to the 32-bit address found at $0000 0004,
which transfers execution to the actual system software entry point in the space

$4000 0000 to $4FFF FFFE. After this first access, ROM is no longer mapped to the bottom
of the RAM space.

Access Timing

The Macintosh Quadra 840Av and Macintosh Centris 660AV use 60-ns DRAM chips.
Access to RAM in both models may occur under either of two conditions:

= Multiple access occurs when the CPU bus requests a new access immediately after the
end of the previous access.

= Single access occurs when there is an interval of at least one main processor clock
cycle after the previous access.

The number of clock cycles required for various chips to access RAM under these two
conditions in various read and write modes is shown in Table 2-3. The clock rate for
determining cycle times is BClk for the main processor, the MUNI, and the PSC; it is CKI
for the DSP. These clock rates are listed in Table 2-2.

Table 2-3 DRAM access times

Access type
Single read

Single write

Burst read

Burst write

20

Main processor MUNI and PSC

Macintosh Macintosh Macintosh Macintosh

Quadra Centris Quadra Centris
Condition 840av 660AV 840av 660AV DsP
Single 6 4 5 4 9
Multiple 7 5 6 5 11
Single 6 3 4 3 8
Multiple 7 5 6 5 11
Single 6-3-3-3 4-2-2-2 5-3-3-3 4-2-2-2 9-4-4-4
Multiple 7-3-3-3 4-2-2-2 6-3-3-3 4-2-2-2 11-4-4-4
Single 6-2-2-2 3-2-2-2 4-3-3-3 3-2-2-2 8-7-7-7
Multiple 7-2-2-2 4-2-2-2 6-3-3-3 4-2-2-2 11-7-7-7

The DRAM refresh cycle takes eight main processor clock cycles, but does not affect
RAM access timing. DRAM refresh does not occur when the DSP controls the CPU bus.

ROM and RAM Management

CHAPTER 2

Hardware Details

Both computers use 120-ns ROM chips. CPU bus accesses to ROM take five bus clock
cycles in the Macintosh Centris 660Av and seven bus clock cycles in the Macintosh
Quadra 840Av.

For additional information about burst write actions on the processor bus, see “Processor
Bus Burst Write Timing,” later in this chapter.

External Device Interfaces

This section discusses the interfaces between the Macintosh Quadra 840Av and
Macintosh Centris 660AV computers and external devices through

= the ADB, which supports keyboards, mouse devices, trackballs, and so on
= an Ethernet port for wide area network access

» two serial ports for printers, modems, AppleTalk, and other serial I/O

= a SCSI connection for devices such as hard disk drives

= an interface to the Apple SuperDrive floppy disk drive

For video interface information, see “Video and Graphics I/O,” later in this chapter. For
sound interface information, see “Sound I/0O,” later in this chapter.

Apple Desktop Bus

The Apple Desktop Bus (ADB) is an asynchronous serial communication bus used
to connect relatively slow user-input devices to Macintosh computers. Its software
characteristics are described in Inside Macintosh. One ADB connector is located on the
back panel. It is a mini-DIN 4-pin socket, as shown in Figure 2-2.

Figure 2-2 ADB socket

® ©
©) ®
]

External Device Interfaces 21

22

CHAPTER 2

Hardware Details

The ADB pin assignments are shown in Table 2-4.

Table 2-4 ADB pin assignments

Pin Description

1 Data; grounded by an open collector or pulled to +5 V
through 470 Q

2 Power on, fed by +5 V through 100 kQ; connect to pin 4 to

turn on the system

3 +5 V at 500 mA maximum drain; protected by a 1.25-A
circuit breaker

4 Ground return

Ethernet Port

Both the Macintosh Quadra 840Av and Macintosh Centris 660AV contain built-in support
for Ethernet. The user can plug a drop-box cable available from Apple or from
third-party vendors into a standard Ethernet connector on the back panel.

The Ethernet port pin assignments are shown in Table 2-5.

Table 2-5 Ethernet port pin assignments

Pin Description Pin Description
1 +5V 8 +HV

2 DI+ 9 DO+

3 DI- 10 DO-

4 Ground 11 Ground

5 CI+ 12 NC

6 CI- 13 NC

7 +5V 14 +HV
Serial Ports

The back panel on both the Macintosh Quadra 840Av and Macintosh Centris 660AV
contains two serial data I/O ports. An 8-pin mini-DIN socket is marked as a printer port,
and a 9-pin mini-DIN socket is marked as a modem port. Both sockets accept 8-pin
plugs, but only the modem port accepts 9-pin plugs.

The physical patterns for the serial port sockets are shown in Figure 2-3.

External Device Interfaces

CHAPTER 2

Hardware Details

Figure 2-3 Serial port connectors

Printer Modem

Either port can be independently programmed for asynchronous or synchronous
communication formats up to 9600 baud, including AppleTalk. The printer port supports
LocalTalk hardware protocols by means of a LocalTalk Patch Chip (LTPC). In addition,
the port marked “Modem” supports the full range of Apple GeoPort protocols, helping
the computer communicate with a variety of ISDN and other telephone transmission
means by using external pods.

For information about serial driver software in the Macintosh Quadra 840Av and
Macintosh Centris 660AV, see Chapter 10, “DMA Serial Driver.”

Table 2-6 gives the pin assignments for the two serial ports. The Both ports column
shows how both connectors support AppleTalk and common serial communications;
the GeoPort columns show how the 9-pin connector can also support Apple GeoPort
protocols.

Table 2-6 Serial port pin assignments

Pin Both ports GeoPort Special GeoPort functions

1 HSK, SCLK ¢ Reset pod or get pod attention

2 HSK; Sync;,/SCLK;, Serial clock from pod (up to 920 Kbits/sec)
3 TxD- TxD-

4 Gnd /shield Gnd/shield

5 RxD- RxD-

6 TxD+ TxD+

7 GP; Wakeup / TxHS Wake up CPU or do DMA handshake
8 RxD+ RxD+

9 +5V Power to pod

External Device Interfaces 23

CHAPTER 2

Hardware Details

SCSI Connection

The SCSI interface in the Macintosh Quadra 840Av and Macintosh Centris 660AV exists in
two forms: an internal 50-pin ribbon connector for internal devices and an external
DB-25 connector for external devices. Internal device mounting is shown in Appendix D,
“Mechanical Details.”

The Macintosh Centris 660AV can support one 3.5-inch internal hard disk and an optional
5.25-inch CD-ROM drive. The Macintosh Quadra 840AV can support an additional
internal disk drive. Both models accept up to a total of seven SCSI devices, internally
and externally.

The SCSI interface in the Macintosh Quadra 840Av and Macintosh Centris 660AV is
electrically and mechanically compatible with SCSI interfaces on other computers of the
Macintosh family. For information about SCSI Manager software in the Macintosh
Quadra 840Av and Macintosh Centris 660AV, see Chapter 9, “SCSI Manager 4.3.”

Power Budgets

The maximum continuous power budgets available for each SCSI device attached to a
Macintosh Quadra 840AvV or Macintosh Centris 660AV computer are shown in Table 2-7.

Table 2-7 SCSI power budgets

Computer +5V +12V
Macintosh Quadra 840Av 15A 43 A
Macintosh Centris 660AV 15A 15A

Internal SCSI Locations

The locations of the Macintosh Centris 660AV computer’s internal SCSI devices are
shown in Figure 2-4.

Figure 2-4 Macintosh Centris 660AV internal SCSI device space

24

3.5-inch hard disk

5.25-inch device bay

Floppy disk drive

External Device Interfaces

CHAPTER 2

Hardware Details

The locations of the Macintosh Quadra 840Av computer’s internal SCSI devices are
shown in Figure 2-5.

Figure 2-5 Macintosh Quadra 840Av internal SCSI device space

5.25-inch device

Floppy disk drive

3.5-inch device

Bay for 3.5-inch
double-high device

External Device Interfaces

25

26

CHAPTER 2

Hardware Details

Pin Assignments

The standard internal and external SCSI pin assignments are shown in Table 2-8.

Table 2-8 SCSI pin assignments

Pin number Pin number
Internal External Description Internal External Description
1 7 Ground 2 8 /DATAQ
3 9 Ground 4 21 /DATA1
5 14 Ground 6 22 /DATA2
7 16 Ground 8 10 /DATA3
9 18 Ground 10 23 /DATA4
11 24 Ground 12 11 /DATA5
13 Ground 14 12 /DATA6
15 Ground 16 13 /DATA7
17 Ground 18 20 /DATAP
19 Ground 20 Ground
21 Ground 22 Ground
23 NC 24 NC
25 NC 26 25 TERMPWR
27 NC 28 NC
29 Ground 30 Ground
31 Ground 32 17 /ATN
33 Ground 34 Ground
35 Ground 36 6 /BUSY
37 Ground 38 5 / ACK
39 Ground 40 4 /RST
41 Ground 42 2 /MSG
43 Ground 44 19 /SEL
45 Ground 46 15 /C/D
47 Ground 48 1 /REQ
49 Ground 50 3 /1/0

" Aslash before a signal name indicates that it is in the low state when active.

External Device Interfaces

CHAPTER 2

Hardware Details

Automatic SCSI Termination

Because the internal portion of the SCSI bus must be long enough to connect multiple
devices, the bus requires termination at both ends. As on other Macintosh models,

the external end of the bus is normally terminated at the last external device. On the
Macintosh Quadra 840Av and Macintosh Centris 6604V, the internal end of the bus—the
end at the last internal hard disk drive—is terminated in the drive itself.

Figure 2-6 shows the arrangement of the SCSI cables in a typical Macintosh Quadra
840AvV configuration. The bus is continuous across the internal SCSI cable, the SCSI bus
traces on the logic board, and the external SCSI cable (if any). The boxes with the letter T
represent terminators. The Macintosh Centris 660AV has a similar arrangement, but
contains a maximum of two internal SCSI devices.

Figure 2-6 SCSI bus terminators in a typical Macintosh Quadra 840Av configuration

Internal - A
(CD-ROM)

Internal SCSI cable

Floppy disk
drive

Terminator on E External
last external j SCsl

SCSI device device

Internal - B
(second)
(removable)

Internal - C

(hard disk)

Terminator in
internal hard
disk drive

External
SCsSI
device

10

External
U SCSI bus I:-| SCSI cable
| L
+— Automatic

termination device
on logic board

Main logic board

Both computers include a new feature that automatically provides the proper
termination when no external device is connected, that is, when the SCSI bus ends

at the external connector. When no external device is connected, special circuitry
terminates the bus on the logic board near the external connector. When one or

more external SCSI devices are connected, the circuitry detects the external termination
during system reset and disconnects the termination on the logic board. In Figure 2-6,
the box marked AT on the logic board indicates the automatic termination device.

External Device Interfaces 27

28

CHAPTER 2

Hardware Details

Signals on the SCSI bus are usually connected to open-collector devices that can pull the
line low but that depend on external power to pull it high. The bus includes a line called
TERMPWR that provides pull-up power. The standard Macintosh terminator block used
at the last external SCSI device terminates each line with a 220 Q pull-up resistor and a
330 Q resistor to ground.

Installing Internal SCSI Devices

In the Macintosh Quadra 840Av and Macintosh Centris 6604V, the device at the end of
the internal SCSI cable includes terminators; all other internal devices do not. When
installing internal SCSI devices, the installer must make sure that the device at the
end of the cable has terminators and must remove terminators from any other internal
SCSI devices.

SCSI termination can be present on only the last internal device—the one at the end

of the internal SCSI cable. If none of the internal devices is terminated, the computer will
malfunction; if more than one internal device includes terminators, the computer

will malfunction and the logic board may be damaged.

Physical provisions for internal SCSI device mounting are given in Appendix D,
“Mechanical Details.”

As in all SCSI installations, all devices on the SCSI bus must have different ID numbers.

Floppy Disk Drive Connection

Both models contain one internal Apple SuperDrive floppy disk drive. Table 2-9 gives
the pin assignments for the 20-pin floppy disk drive connector.

Table 2-9 Floppy disk drive connector pin assignments

Pin Signal Description Pin Signal Description
1 GND Ground 11 +5V +5V
2 PHO Phase 0 state control 12 SEL Head select
3 GND Ground 13 +12V +12V
4 PH1 Phase 1 state control 14 JENBL" Drive enable
5 GND Ground 15 +12V +12V
6 PH2 Phase 2 state control 16 RD Read data
7 GND Ground 17 +12V +12V
8 PH3 Phase 3 register 18 WR Write data

write strobe

9 NC NC 19 +12V +12V

10 /WRREQ Write data request 20 NC NC

" Aslash before a signal name indicates that it is in the low state when active.

External Device Interfaces

CHAPTER 2

Hardware Details

PSC Functions

The PSC contains nine programmable DMA channels that transfer data between
random-access memory and various I/O interfaces. The PSC also performs address
decoding for many I/O memory allocations.

DMA Channels Controlled by the PSC

The PSC provides nine DMA channels that can access RAM or ROM but cannot access
the I/O or NuBus address spaces. The characteristics and uses of these DMA channels
are shown in Table 2-10. The “Width” column lists the number of bits of data that the
PSC transfers over the I/O bus during each transaction. The “Buffer” column lists the
capacity of the PSC’s internal FIFO buffer for each DMA channel.

Table 2-10 PSC DMA channels

Width Buffer
Name (bits) (bytes) 1/0 function served
SCSI 16 16 SCSI port
ENetRd 16 16 Ethernet read
ENetWr 16 16 Ethernet write
FDC 8 4 Floppy disk controller
SCCA 8 4 SCC Channel A (SCC Rx or Tx, GeoPort)
SCCB 8 4 SCC Channel B (SCC Rx or Tx)
SCCATx 8 4 SCC Channel A (Scc Tx, GeoPort)
SndIn 1 16 Singer sound input
SndOut 1 16 Singer sound output

Each DMA channel is controlled by two sets of programming registers. Using two
register sets helps software optimize data transfers to and from physical memory and
increases the limit of system interrupt latency when the data input is continuous (such as
from Ethernet). In a virtual memory environment, software must guarantee that memory
pages are contiguous when DMA transfers controlled by the PSC cross a page boundary.

Bus Arbitration Performed by the PSC

The PSC controls access to the I/O bus by the main processor and by the DMA channels
described in the previous section. At the first level of arbitration, the PSC grants its DMA
channels two accesses for every one access granted to the main processor. When DMA

PSC Functions 29

CHAPTER 2

Hardware Details

channels contend with one another, the PSC grants them access to the I/ O bus in the
order of priority shown in Table 2-11. This table also shows the order of priority in which
the PSC controls access by its DMA channels to the CPU bus.

Table 2-11 Priority of DMA channel access

Priority To the I/O bus To the CPU bus
Highest FDC SndOut

SCCA SndIn

SCCA Tx FDC

SCCB SCCA

ENetRd SCCA Tx

ENetWr SCCB

SCSI ENetRd

ENetWr

Lowest SCSI

Video and Graphics I/O

30

The Macintosh Quadra 840Av and Macintosh Centris 660AV contain a sophisticated video
and graphics I/O system that handles video input and output signals and supports a
wide variety of Apple and third-party monitors.

The video I/O system also lets the user connect a television set as a monitor, using either
NTSC or PAL format. For further information, see “Video Television Output,” in
Chapter 11.

Some monitors go into power-saving mode when the sync signals are disabled. New
routines in the video driver support this feature, as described in “New Control and
Status Routines,” in Chapter 11.

The output part of the video system is shown in Figure 2-7.

As shown in Figure 2-7, the video and graphics I/O system is built around two banks of
VRAM. Each bank holds 512 KB and is expandable in the Macintosh Quadra 840Av to

1 MB. Thus, total VRAM capacity in the Macintosh Quadra 840AvV may be either 1 MB or
2 MB; in the Macintosh Centris 660AV it is limited to 1 MB. The VRAM is controlled by
the CIVIC chip. By programming the CIVIC, an application can configure it in either of
the following two ways:

= as a single frame buffer that uses all the VRAM capacity

= as two frame buffers, one for video and one for graphics

Video and Graphics 1/0

CHAPTER 2

Hardware Details

Figure 2-7 Video and graphics output system block diagram

From
VDC

VRAM
Video or graphics
frame buffer

Macintosh
VRAM
bank D Quadra 840av
512KB W20
32 (2 SIMMS) |~ 32,
2 x 16-bit VRAM VD31-VDO Endeavor
RGB bank B
1:5:5:5 (c?nlbzo';?d) - Dot clock R _
B monitor
R
A8-AQ —
El - CIvIC Sebastian G Mickey .
B —» To composite
A8-A0 - NTSC/PAL
. - S To S-video
(T VRAM | e '\é'ac'd”m%t‘m C w NTSCIPAL
bank C uadra AV
*="| 512KB only
(2 SIMMs) 32
T VRAM | GD31-GD0
bank A |__
512 KB
(onboard)

68040 data bus VRAM
(D31-D0) graphics

frame buffer

If the VRAM is configured as a single video frame buffer, it can all be used for graphics
and the video input can be disabled. In this case, the CIVIC controls data access to
VRAM from the following sources:

» the main processor
s the PSC, using I/O direct memory access

= the MUNI chip

If the VRAM is configured as two frame buffers, it can store video as well as graphics. In
Figure 2-7, the VRAM banks shown at the top of the figure can store video frames and
the lower banks can store only graphics. In this configuration, the CIVIC can provide
access to all VRAM from the sources just listed and it can also store video data from the
VDC in the video VRAM. The video input subsystem that provides data to the VDC is
described in the next section.

Video images and graphics images stored in VRAM may have different color depths.
The two images exit VRAM through its serial access memory port and pass to the
Sebastian color palette chip. Sebastian provides independent color lookup tables for
video and graphics images and mixes them into a single digital RGB data stream. The
Sebastian then converts the result into analog RGB video, using internal DAC circuits.

Analog RGB data passes to the Mickey encoder chip. Mickey either sends RGB directly
to the monitor connector or encodes it into NTSC or PAL video signals in composite or

Video and Graphics 1/0 31

CHAPTER 2

Hardware Details

S-video format and sends it to other connectors located on the back panel. Monitors
available for the Macintosh Quadra 840Av and Macintosh Centris 660AV are discussed in
“Video Monitor Interface,” later in this chapter.

External Video Input

Figure 2-8 shows details of the processing of video input from an external source such as
a videocam or videocassette deck.

Figure 2-8 Video input subsystem

S-video in

Composite
video in
NTSC,
PAL, or
SECAM

32

A/V expansion
SAA7197 VRAM
clock ! frame buffer
= - VRAM gacic?tosh
bank D uadra
9 C TDA8€09 8 y ‘ 512 KB []840av only
AD
Y 7 saarior | 16V | oo 32, L2 s
8 DMSD Yuv 2 x 16-bit VRAM 32
F——————- #
TDA8708 Digital 4:2:2 - RGB bank B |_
Comp ADC moosite NTSC>YUV Resize 1555 512 KB To
o — (IIO posite YUV->RGB (onboard) Sebastian
nalog-digital FIFO VD31-VD0
Fs =12.27 MHz NTSC E

Fs =14.75 MHZ PAL

68040 data bus
(D31-D0)

The input signal, which may be analog composite or S-video in NTSC, PAL, or SECAM
format, enters through an external 7-pin mini-DIN socket. A cable adapter is provided to
receive composite video from external devices that have RCA connectors. TDA8708 and
TDAB8709 video ADC chips digitize the composite video waveform, and the DMSD chip
decodes the result into YUV format. This common digital video format, also known as
YCrCb, is described in CCIR Recommended Standard 601-2.

Digital video in YUV format then passes to the digital audio/video (DAV) expansion
connector, where it may be picked up by a NuBus expansion card, and to the VDC. A
slot card that uses the DAV connector may disable the DMSD and feed its own YUV
video to the VDC—for example, a slot card containing a video decompression engine.
The DAV connector is described in “Digital Audio/Video Expansion Connector,” later in
this chapter.

The VDC scales down the video image and converts its format to either 8-bit grayscale,
15-bit RGB, or 16-bit YUV. It stores the result in the VRAM buffer under the control of
the CIVIC chip. The video input connector is shown in Figure 2-9.

The pin assignments for the video input connector are shown in Table 2-12.

Video and Graphics 1/0

CHAPTER 2

Hardware Details

Figure 2-9 Video input connector

OO
@O
[]

Table 2-12 Video input connector pin assignments

Pin Description
AGND (signal)

AGND (power)

Video Y

Video C

I2C clock (Phillips serial bus)
+12 V at 20 mA maximum drain

I2C data (Phillips serial bus)

N S G ok W N =

The data rate for full-screen NTSC video (640 by 480 pixels at 30 frames per second) is
18.43 MB per second. The data rate for full-screen PAL video (768 by 576 pixels at

25 frames per second) is 22.12 MB per second. This means that it is practical to record
a video image up to one-quarter screen in size on an output device such as a hard disk
drive in real time, without data compression.

Video RAM Usage

Each computer is delivered with two banks of VRAM soldered in, each bank providing
0.5 MB of storage. One of the two banks can supply a graphics screen image for monitors
of small size or low color depths, letting the other bank supply live video to be mixed
with the graphic image. Two banks together can support graphics alone on monitors
that are larger or use more bits per pixel. The maximum video window size on

the Macintosh Quadra 840Av is 640 by 480 pixels; the maximum video window size

on the Macintosh Centris 660AV is 512 by 384 pixels.

Video and Graphics 1/0 33

CHAPTER 2

Hardware Details

The Macintosh Quadra 840Av also contains provision for VRAM expansion. When the
user installs two more banks of VRAM in the SIMM expansion sockets, the resulting
VRAM capacity can support mixed video and graphics in full 24-bit color on small and
medium-sized monitors and in 16-bit or 8-bit color on larger monitors.

The color depths available when the Macintosh Quadra 840Av drives Apple monitors
with and without VRAM expansion are listed in Table 2-13. Expanded VRAM is
available only in the Macintosh Quadra 840Av; color depths and monitor configurations
that are also supported by the Macintosh Centris 660AV (using standard VRAM) are
printed in boldface.

Table 2-13 VRAM sizes and monitor color depths

Screen size Standard VRAM (1 MB) Expanded VRAM (2 MB)
Monitor type Hor. x vert. Graphics Graphics/video Graphics Graphics/video
12-inch RGB* 512 x 384 32 8/16 32 8/16

560 x 384 32 8/16 32 8/16
13-inch RGB or 512 x 384 32 8/16 32 8/16
12-inch mono*

640 x 400 32 8/16 32 8/16

640 x 480 16 8/16 32 8/16
Full-page mono* 640 x 870 8 4/16 8 8/16
Full-page RGB 640 x 870 8 4/8 16 8/ 16*
16-inch RGB* 832 x 624 16 8/16 32 8/16
19-inch RGB 1024 x 768 8 4/8 16 8/8
Two-page mono 1152 x 870 8 4/8 8 8/8
Two-page RGB 1152 x 870 8 4/8 16 8/8
VGA* 640 x 480 16 8/16 32 8/16
Super VGA 56 Hz* 800 x 600 16 8/16 32 8/16
Super VGA 72 Hz* 800 x 600 16 8/16 32 8/16
Super VGA 60 Hz 1024 x 768 8 4/8 16 8/8
Super VGA 70 Hz 1024 x 768 8 4/8 16 8/8
NTSC 640 x 480 16 8/16 32 8/16

512 x 384 32 8/16* 32 8/ 16
Convolved NTSC 640 x 480 8 n.a. 8 n.a.

512 x 384 8 n.a. 8 n.a.

continued

34 Video and Graphics 1/0

CHAPTER 2

Hardware Details

Table 2-13 VRAM sizes and monitor color depths (continued)

Screen size Standard VRAM (1 MB) Expanded VRAM (2 MB)
Monitor type Hor. x vert. Graphics Graphics/video Graphics Graphics/video
PAL 768 x 576 16 8/16* 32 8/16

640 x 480 16 8/16* 32 8/16
Convolved PAL 768 x 576 8 n.a. 8 n.a.

640 x 480 8 n.a. 8 n.a.

" With a color depth of 16 bits in these configurations, the maximum video window size is
limited. If the video window width is 512 pixels or less, the height may be as large as 512
pixels; if the video window width is more than 512 pixels, the height is limited to 340 pixels.

The color depths in Table 2-13 are shown as the number of bits in which the color or
grayscale value of each pixel can be encoded. The refresh rates and pixel clocking rates at
which these monitors run are shown in Table 2-14, later in this chapter.

VRAM expansion requires 80-ns chips, using the same configuration of SIMM cards
as VRAM expansion in other Macintosh Quadra computers. Mechanical details, timing,
and pin assignments are given in “VRAM Expansion Cards,” at the end of this chapter.

Video Monitor Interface

Either computer can be connected to a wide variety of external monitors by means of a
DB-15 socket located on their back panel. Some popular monitor types are listed in the
left column of Table 2-13. Signal timing diagrams for certain of these monitors are given
in “Video Output Timing,” later in this chapter.

Apple Technical Note 326 contains full information about connecting various monitors
to the video monitor interface, including details of connector pin assignments and ID
codes assigned to Apple and some third-party monitors. It also describes hard-wire
connections that allow monitors to assert their ID codes and therefore automatically
configure the system when they are connected. Apple Technical Note 144 contains
additional information about color monitors.

Figure 2-10 shows the physical form of the DB-15 video monitor connector.

Figure 2-10 Video monitor connector

OlGJ0010O010X0,
OIDIOROYDEOYO)

Video and Graphics 1/0 35

CHAPTER 2

Hardware Details

Video Output Timing

Figure 2-11 shows a general video timing diagram for Apple monitors.

Figure 2-11 Video timing diagram

36

Horizontal timing

White

|—§ Black

Video
IH sync spacel H image space I
™ \
BLANK —
A H line length _
4ASYNC

T— H back porch

H sync pulse

H front porch

Vertical timing

Video §

IV sync space| V image space
™

BLANK

V screen length

A

White

M Black

VSYNC

T— V back porch

V sync pulse

V front porch

Video and Graphics 1/0

CHAPTER 2

Hardware Details

Table 2-14 gives monitor timing values. Some of these values are shown in Figure 2-11.

Table 2-14 Apple monitor timing values
Parameter 640 x 480 VGA 640 x 870 1024 x 768 1152 x 870
Dot clock, MHz 30.240 25.175 57.273 80.000 99.958
Dot interval, ns 33.069 39.722 17.460 12.500 10.004
Line rate, kHz 35.00 31.469 68.837 60.241 68.652
Line interval, s 28.571 31.778 14.527 16.600 14.566
Frame rate, Hz 66.67 59.94 74.99 74.93 75.03
Frame interval, ms 15.000 16.683 13.336 13.346 13.328
H sync space, dots 224 160 192 304 304
H image space, dots 640 640 640 1024 1152
H line length, dots 864 800 832 1328 1456
H front porch, dots 64 16 32 32 32
H sync pulse, dots 64 96 80 96 128
H back porch, dots 96 48 80 176 144
V sync space, lines 45 45 48 36 45
V image space, lines 480 480 870 768 870
V screen length, lines 525 525 918 804 915
V front porch, lines 3 10 3 3 3
V sync pulse, lines 3 2 3 3 3
V back porch, lines 39 33 42 30 39

Miniature Videocam

Apple offers an inexpensive miniature videocam for the Macintosh Quadra 840Av and
Macintosh Centris 660AvV computers that uses a light-sensitive matrix on a chip with a
built-in lens. The user can mount the mini-videocam above the monitor for videophone
imaging or can move it about on the end of its cable to take pictures of objects or
documents. With supplementary lenses, the videocam can make images of detail as fine

as the wire bonds on an integrated circuit.

The mini-videocam has these general characteristics:

Video and Graphics 1/0

image: 360 by 288 pixels, monochrome with 256 gray levels
nominal view angle: 66°
sensitivity: adequate for use in a dimly lit office

depth of field (without supplementary lenses): 45 cm to infinity

37

CHAPTER 2

Hardware Details

= outputsignal: 1V, 75 Q composite video with PAL or NTSC timing
= software controls: exposure, gamma, image capture interval, video timing
» unit identification in firmware: camera type and features

= power drain: 50 mA at 12 V

Sound I/0O

38

The system contains external ministereo sockets for sound I/O, connected through
amplifiers to the Singer codec. The Singer uses only frame 0, leaving other frames
available for other sound processing (for example, through the DAV connector). External
plugs carry the left channel on the tip and the right channel on the ring, with the sleeve
common. Sound I/O signals are described in Table 2-15.

Table 2-15 Sound I/O signals

Panel label Description
Audio In 8 kQ impedance, 2 V rms maximum, 22.5 dB gain available
Audio Line Out 37 Q impedance, 0.9 V rms maximum, attenuated —22.5 dB

(crosstalk degrades from —80 dB to —32 dB when the audio output
is connected to 32 Q headphones)

Sound I/O bandwidth is 20 Hz to 20 kHz, plus or minus 2 dB. Total harmonic distortion
and noise is less than 0.05% over the bandwidth with a 1 V rms sine wave input. The
input signal-to-noise ratio (SNR) is 82 dB and the output SNR is 85 dB, with no audible
discrete tones.

Both models are supplied with built-in speakers. Apple also offers a compatible high-
quality microphone that is specifically designed for speech recognition applications. The
components that support sound I/O are shown in Figure 2-12.

For details of speech generation and recognition in the Macintosh Quadra 840Av
and Macintosh Centris 660AV, see Chapter 6, “Speech Manager,” and Chapter 7,
“Introduction to Speech Recognition.”

Sound I/O

CHAPTER 2

Hardware Details

Figure 2-12 Sound I/O components

Analog -
?utgiron?:loﬁr?ection 2oes front - AV
end connector

Microphone/ ©) _ | Analog - -
stereo line input - fgrjlr(;t = Singer PSC
Stereo headphone/ -
line output m -

A A
Internal speaker Amplifier Mix |--—— ‘ ‘
(L & R mixed) = P | RIL |

Singer serial bus

NuBus Interface

The NuBus expansion card interface provides access between RAM or ROM and plug-in
accessory cards. It is not designed to let plug-in cards access peripheral devices directly.
The Macintosh Quadra 840AV accepts up to three cards; the Macintosh Centris 660AV
accepts one. The expansion card implementation is based on the NuBus "90 specification
(ANSI/IEEE Std 1196-1990) and has the following new features:

» Each of the three Macintosh Quadra 840AV slots has a 4-bit geographic address. The
addresses are $C, $D, and $E, corresponding to slots 4, 5, and 6 in the Macintosh II
family of computers. The Macintosh Centris 660AV slot is address $C.

» All data transfers on NuBus are synchronized by a 10 MHz clock. An additional
20 MHz clock supports burst transfers in cards that conform to the NuBus "90
specification. This permits faster data transfers than are possible with earlier
NuBus designs.

= NuBus supports a 32-bit addressing space (4 GB), accessible through justified 8-bit,
16-bit, and 32-bit data transfers.

= MUNI generates a bus error if any transaction takes longer than 25.6 ps.

For full technical details about NuBus, including NuBus "90, see Designing Cards and
Drivers for the Macintosh Family, third edition. For information about enabling NuBus
block moves, see “NuBus Block Moves,” in Chapter 11.

NuBus Interface 39

CHAPTER 2

Hardware Details

The NuBus interface supports several address ranges for data transfer between the 32-bit
NuBus address space and the 32-bit physical address space (which may be different from
the logical space used by software).

MUNI provides separate FIFO buffers for data on the CPU bus and on NuBus. These
buffers can operate concurrently. Buffer capacities are shown in Table 2-16.

Table 2-16 MUNI buffer capacities

Buffer Read capacity Write capacity
CPU bus 4 longwords (1 burst) 16 longwords (4 bursts)
NuBus 16 longwords (1 block 16) 32 longwords (2 block 16s)

Slot Connections

Macintosh Quadra 840Av NuBus slots accept both long (4 by 13 inches) and short

(4 by 7 inches) accessory cards of the same physical configuration as those used with
the Macintosh II and Macintosh Quadra families. The Macintosh Centris 660AV accepts
only short accessory cards, which may be the same as short Macintosh Quadra 840Av
cards. For mechanical details of long and short accessory cards, see Designing Cards and
Drivers for the Macintosh Family, third edition.

The single Macintosh Centris 660AV NuBus slot requires an adapter card that places

its NuBus accessory card parallel to the main circuit board, as shown in Figure 2-13. The
adapter card carries the MUNI chip, so this chip is present in the system only when

the adapter card is installed. For card mounting information, see Appendix D,
“Mechanical Details.”

Figure 2-13 Macintosh Centris 660Av accessory card mounting

ﬂ I | I | I |

Adapter card 7-inch NuBus card
(end view)

MUNI chip

Main circuit board

NuBus Interface

CHAPTER 2

Hardware Details

The pin assignments for the 96-pin Euro-DIN NuBus accessory card connectors in the
NuBus interface are shown in Table 2-17.

Table 2-17 NuBus pin assignments

Pin Name Pin Name Pin Name
al -12V bl -12V cl /RESET
a2 SBO b2 GND 2 GND
a3 /SPV b3 GND c3 +5V

a4 /SP b4 +5V c4 +5V

a5 /TM1 b5 +5V 5 / TMO
a6 /AD1 b6 +5V c6 / ADO
a7 /AD3 b7 +5V 7 /AD2
a8 / AD5 b8 /TMO02 c8 / AD4
a9 /| AD7 b9 /CMO 9 / AD6
al0 / AD9 b10 /CM1 c10 /AD8
all /AD11 b1l /CM2 cll /AD10
al2 /AD13 b12 GND cl2 /AD12
al3 /AD15 b13 GND c13 /AD14
al4 /AD17 b14 GND cl4 /AD16
al5 /AD19 b15 GND cl5 /AD18
al6 /AD21 b16 GND clé / AD20
al7 /AD23 b17 GND cl7 /AD22
al8 / AD25 b18 GND c18 /AD24
al9 /AD27 b19 GND c19 / AD26
a20 /AD29 b20 GND c20 /AD28
a2l /AD31 b21 GND 21 /AD30
a22 GND b22 GND 22 GND
a23 GND b23 GND 23 /PFW
a24 / ARB1 b24 /CLK2X c24 / ARBO
a25 / ARB3 b25 STDBYPWR' 25 / ARB2
a26 /GA1 b26 /CLK2XEN c26 /GAO
a27 /GA3 b27 /CBUSY c27 /GA2
a28 /ACK b28 +5V 28 /START

NuBus Interface

continued

41

42

CHAPTER 2

Hardware Details

Table 2-17 NuBus pin assignments (continued)

Pin Name Pin Name Pin Name
a29 +5V b29 +5V c29 +5V
a30 /RQST b30 GND c30 +5V
a3l /NMRQx b31 GND c31 GND
a32 +12V b32 +12V c32 /CLK

" Aslash before a signal name indicates that it is in the low state when active.
t Trickle +5 V supply.

The power available and maximum capacitance loading for each expansion card are
shown in Table 2-18.

Table 2-18 Power budget for each slot card

Maximum Maximum
Voltage (V) current (A) capacitance (uF)
+5 2.0 1513
+12 0.175 536
-12 0.15 698

Digital Audio/Video Expansion Connector

In the Macintosh Quadra 840Av, a digital audio/video (DAV) expansion connector is
mounted on the main circuit board in line with NuBus slot address $C (the slot nearest
the center of the computer), to let an accessory card access sound and video data directly.
In the Macintosh Centris 6604V, the DAV connector is mounted on the optional NuBus
adapter card (shown in Figure 2-13). Both models can accept a short NuBus accessory
card that accesses the DAV connector; the Macintosh Quadra 840Av can also accept a
long card.

Figure 2-14 illustrates the lower-right portion of a standard short or long NuBus card
that has a connector added to plug into the DAV connector. It shows the mechanical
relation between the DAV connector and the normal NuBus connector, with dimensions
given in inches.

The DAV connector provides access to the system’s 4:2:2 unscaled YUV video input
signal and to the digital audio signal input for the Singer codec. One use for this feature
is to provide a hardware audio or video compression capability on an accessory card,
which could write out compressed data to NuBus. The DAV connector is a 40-pin type,
model KEL 8801-40-170L. Table 2-19 gives its pin assignments.

NuBus Interface

CHAPTER 2

Hardware Details

Figure 2-14 DAV connection on a NuBus card
12.689
7.000
O I;J* 3.800
Long board Short board
+.003
, o
!Sll Ell—mssssssssﬁ _3? 200
o N

Table 2-19 DAV connector pin assignments
Pin Signal Pin Signal Pin Signal

1 Y bit7 15 Y bit 0 29 UV bit 1

2 LLClk 16 Ground 30 NC (reserved)

3 Y bit 6 17 UV bit 7 31 UV bit 0

4 Ground 18 FEI~ 32 Ground

5 Y bit 5 19 UV bit 6 33 SingerSync

6 VS 20 Ground 34 Ground

7 Y bit 4 21 UV bit 5 35 SingerSerOut

8 Ground 22 iicSDA 36 SingerBitClk

9 Y bit 3 23 UV bit 4 37 SingerSerIn
10 HRef 24 Ground 38 Ground
11 Y bit 2 25 UV bit 3 39 Ground
12 Ground 26 iicSCL 40 SingerMClk
13 Y bit 1 27 UV bit 2
14 vdcCRef 28 Ground

NuBus Interface

43

CHAPTER 2

Hardware Details

DAV Sound Interface

The Singer sound codec uses time-division multiplexing to transfer multiple audio
channels between the DAV connector, the Singer chip, and the PSC for DMA transfers to
and from RAM memory. The sound signals that appear at the DAV connector are listed
in Table 2-20. These signals have a minimum setup time of 10 ns and a minimum hold
time of 8 ns; they can tolerate a maximum load of 20 pF.

Table 2-20 DAV connector sound signals

Signal Description

singerMClk 24.576 MHz master clock

singerBitClk Bit clock that clocks serial data on singerSerOut and singerSerIn;
256 times the sample rate; also used to clock singerSync

singerSync Signal that marks the beginning of a frame and a word

singerSerOut Sound output from PSC to DAV connector

singerSerIn Sound input from DAV connector to PSC

The Singer codec transfers data in 256-bit frames, each of which contains four subframes
of 64 bits each. Each subframe carries two 32-bit audio samples, one left and one right.
Each sample contains 20 data bits and 12 auxiliary bits. Subframe 1 is reserved for the
Macintosh system sound I/O; the other subframes are available for applications and
accessory cards to use. The Singer frame structure is shown in Figure 2-15

Figure 2-15 Singer sound frame

44

256 bits
\
()
Subframe 1 Subframe 2 Subframe 3 Subframe 4
Frame R Word syncs -

sync

Left channel (20) bits | (aux. 12 bits) | Right channel (20 bits) | (aux. 12 bits)

NuBus Interface

CHAPTER 2

Hardware Details

The signals singerSync, singerSerOut, and singerSerIn are clocked by the singerBitClk
signal. The falling edge of the clock is used to clock the signals, and the rising edge is
used to sample them. As shown in Figure 2-16, a frame sync is marked by a pulse two
singerBitClk cycles wide; a word sync is marked by a pulse one singerSync cycle wide.

Figure 2-16 Sound frame and word synchronization

256 1 2 3

singerBitClk
singerSync N
TC

| |

Frame Word
sync sync

The singerSync synchronization signals for each subframe are shown in Figure 2-17.

Figure 2-17 Sound subframe synchronization

Frame = 256 singerBitClk cycles

\
Subframe 1 Subframe 2 Subframe 3 Subframe 4
64 bits 64 bits 64 bits 64 bits
\ \ \ \
[Y e e A
singerSync [[[[[[[
Frame Word syncs
sync
DAV Video Interface
At the DAV connector, the digital video signal data format conforms to CCIR
Specification 601 and is compatible with most video compression chips. In the DAV
interface, video lines are defined by the HRef signal; it goes high during the image
transmission and low during the blanking interval. The DAV video signal timing
relations are shown in Figure 2-18.
NuBus Interface 45

CHAPTER 2

Hardware Details

Figure 2-18 DAV video timing

Start of a video line

conLLClk

viecref | [[[L[L[L[L[]
HRef J
Y 7:0 0 X X va X X v2 X X v X X va X X vs XS

uv 7.0

g¢

0 XX XXz XX vz XX ua XX va X

L—» Y and UV data valid on the rising edge of conLLCIk
when HRef and CRef are high

End of avideo line

1 B
wecret | [[L[L[L[L L]
HRef |
Y70
uv 7:0

Processor-Direct Cards for the Macintosh Centris 660AvV

The Macintosh Centris 660AV (but not the Macintosh Quadra 840Av) can accept an
accessory card that plugs directly into the main circuit board instead of into the adapter
card shown in Figure 2-13. An accessory card plugged into the main circuit board can
gain access to the processor as well as to the DAV bus. The resulting processor-direct slot
(PDS) capability is similar to that of the Macintosh Centris 610 computer, described in
the Macintosh Centris 610 Developer Note.

The Macintosh Centris 610 computer uses an AMP type 650231-5 connector for PDS
cards; the Macintosh Centris 660AV uses an AMP type 650231-3 connector. Because
the corresponding pins are aligned, it is possible to design PDS cards that work on
both models.

46 Processor-Direct Cards for the Macintosh Centris 660AV

CHAPTER 2

Hardware Details

The Macintosh Centris 660Av PDS Connector

The pin assignments for the Macintosh Centris 660Av PDS connector are given in

Table 2-21. Pin numbers preceded by an asterisk have signals that are different from
those in the Macintosh Centris 610. Pin numbers preceded by a minus sign are not used
by the Macintosh Centris 660AV.

Table 2-21 Macintosh Centris 660Av PDS connector pin assignments

Pin number Signal name Pin number Signal name
1 GND 26 +5V
2 A1) 27 D(19)
3 A(3) 28 D(17)
4 A(4) 29 GND
5 A(6) 30 D(14)
6 A(7) 31 D(13)
7 AQ9) 32 D(11)
8 A(11) 33 D(9)
9 A(13) 34 D(8)
10 A(15) 35 D(6)
11 GND 36 D(4)
12 A(18) 37 +5V
13 A(19) 38 D(1)
14 A(21) 39 GND
15 A(23) 40 SIZE(1)
16 A(24) 41 RW
17 A(26) —42 /TIP.CPU"
18 A(29) *43 GND'
19 A(31) 44 /TEA
20 D(31) *45 /NC
21 D(29) 46 GND
22 D(27) 47 / TRST
23 D(25) 48 /CLOUT
24 D(24) 49 GND
25 D(22) *50 NC

continued

Processor-Direct Cards for the Macintosh Centris 660AV 47

CHAPTER 2

Hardware Details

Table 2-21

Macintosh Centris 660Av PDS connector pin assignments (continued)

Pin number

51
52
53
54
55
56

*57
58
59
60
61
62
63
64

*65

*66

*67

*68

*69
70
71
72
73
74
75
76
77
78
79
80
81

Signal name
/BR.40SLOT

/BB
/LOCK
/MEM.RESET
/CPURESETOUT
+5V
040INPROGRESS
/NMRQ(6)

GND

/IPL(0)

/IPL(1)

/IPL(2)

-12V

GND

NC

NC

/NMRQ(5)
/NMRQ(4)
/040LOCKE

+5V
AUX.CPUCLK
A(0)

A(2)

+5V

A(5)

GND

A(8)
A(10
A(12
A(14

)
)
)
A(16)

Pin number
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

*112

48 Processor-Direct Cards for the Macintosh Centris 660AV

Signal name
A(17)
+5V
A(20)
A(22)
GND
A(25)
A(27)
A(28)
A(30)
D(30)
D(28)
D(26)
GND
D(23)
D(21)
D(20)
D(18)
D(16)
D(15)
+5V
D(12)
D(10)
GND
D(7)
D(5)
D(3)
D(2)
D(0)
SIZE(0)
+5V
+5V

continued

CHAPTER 2

Hardware Details

Table 2-21 Macintosh Centris 660Av PDS connector pin assignments (continued)

Pin number Signal name Pin number Signal name
113 /TA 127 /SYS.RESET
114 GND -128 TM(0)

115 /TS -129 TM(1)

*116 GND -130 TM(2)

*117 +5V 131 +5V

*118 +5V *132 NC

-119 /BG.40SLOT 133 +12V
120 /BG.CPU 134 GND
121 +5V 135 BS.CLK
122 TT(0) 136 /BS.MODE
123 TT(1) *137 MUNI/RQ
124 GND *138 NC

-125 TLN(0) 139 reserved

-126 TLN(1) 140 +5V

" Aslash before a signal name indicates that it is in the low state when active.
* GND on pin 43 identifies the Macintosh Centris 660AV; on the Macintosh Centris 610 pin 43 is
not connected.

Most of the signals listed in Table 2-21 are connected directly to the computer’s
processor. Table 3-22 lists the PDS signals that are connected to the computer’s processor
but that should not be connected to a processor on a PDS card. Table 3-23 lists the PDS
signals that are not directly connected to the computer’s processor.

Table 3-22 Restricted microprocessor signals on the PDS connector

Signal name Direction Function

/IPL(0-2) I Interrupt priority lines from the PSC; not to be used as
wire-OR lines; can be monitored by a PDS card

/TIP.CPU I From the MC68040 on the main circuit board; not

connected to any other part of the computer

“Tindicates input to the PDS card.

Observe the following additional cautions when designing PDS cards for the Macintosh
Centris 660AV:

Processor-Direct Cards for the Macintosh Centris 660AV 49

50

CHAPTER 2

Hardware Details

Table 3-23 Nonmicroprocessor signals on the PDS connector

Signal name Direction Function

*

/SYS.RESET I/0 Enables PDS to drive system reset signal; used only
for testing

AUX.CPU.CLK I Buffered version of main processor’s bus clock (BClk)
/BG.CPU @) Bus grant for main processor
/BG.40SLOT | Bus grant for PDS card
/BR.40SLOT (@) Bus request for PDS card
/MEM.RESET I Fast reset generated for memory controller IC
/MLSLOT O Memory inhibit from PDS card to memory
controller IC
/NMRQ(6) O NuBus slot $E interrupt; also connected to

NuBus slot $E

" Iindicates input to the PDS card; O indicates output from the PDS card.

= Most signals on the PDS connector are connected directly to the main processor
with no buffers. Therefore, the PDS card must present capacitive loads of not more
than 40 pF on the address, data, and clock lines and not more than 20 pF on the
control lines.

s The AUX.CPUCLK line (pin 71) is terminated with a series resistor. To reduce
reflections on this line, all loads on the card should be lumped.

» /DLE (pin 45) is not connected because DLE-type read actions are not supported by
some Macintosh Centris 660AV bus masters.

= The Macintosh Centris 660AV does not support snooping; pins 46 and 116 are
grounded.

= /BR.CPU (pin 50) is not connected because the Macintosh Centris 660AV system bus
arbiter always grants bus control to the microprocessor when there are no other
high-priority bus requests.

s The Macintosh Centris 660AvV does not support /BG.40SLOT (pin 119) and /
BR.40SLOT (pin 51) because it does not support using an accessory card as a bus
master in addition to the existing bus masters (the processor, the DSP, the PSC, and
the MUNI).

= /TBI (pin 112) is connected to +5 V because the TBI signal is not allowed by some
bus masters.

» /PDS.SLOT.E.EN (pin 132) is not connected because the MUNI is programmed to
decode or ignore individual slots.

The 040INPROGRESS signal (pin 57) is high when the main processor is the bus master.
When this signal is low, a different bus master can use the alternate burst write timing
protocol described in the next section.

Processor-Direct Cards for the Macintosh Centris 660AV

CHAPTER 2

Hardware Details

Processor Bus Burst Write Timing

The Macintosh Centris 660AV computer’s processor bus supports two different timing
protocols for burst write actions. When pin 57 of the PDS connector is high, the main
processor is bus master and burst write actions must use the timing shown in the

top half of Figure 2-19. When pin 57 of the PDS connector is low, an alternate bus
master may perform burst write actions using the timing shown in the bottom half

of Figure 2-19.

Figure 2-19 Burst write timing

Motorola 68040 burst write timing

SIZ[1:0] (burst)

O S R O I

D[31:0] Valid | Valid | valid | valid |
Cyclone alternate bus master burst write timing

BCLK

TS

RW

SIZ[1:0] (burst)

TA

D[31:0]

Processor-Direct Cards for the Macintosh Centris 660AV

51

CHAPTER 2

Hardware Details

RAM Expansion Cards

The user can expand RAM capacity by inserting 72-pin SIMM cards in RAM expansion
slots. Table 3-24 shows the RAM SIMM pin assignments.

Table 3-24 RAM SIMM pin assignments

Pin Name Pin Name Pin Name

1 GND 25 DQ22 49 DQ8

2 DQO 26 DQ7 50 DQ24

3 DQI6 27 DQ23 51 DQY

4 DQ1 28 A7 52 DQ25

5 DQ17 29 NC 53 DQ10

6 DQ2 30 +5V 54 DQ26

7 DQ18 31 A8 55 DQ11

8 DQ3 32 A9 56 DQ27

9 DQI19 33 /RAS3 57 DQI2
10 +5V 34 /RAS2 58 DQ28
11 NC 35 Reserved 59 +5V
12 A0 36 Reserved 60 DQ29
13 Al 37 Reserved 61 DQ13
14 A2 38 Reserved 62 DQ30
15 A3 39 GND 63 DQ14
16 A4 40 /CASO 64 DQ31
17 A5 41 /CAS2 65 DQ15
18 Ab 42 /CAS3 66 NC
19 NC 43 /CAS1 67 Reserved
20 DQ4 44 /RASO 68 Reserved
21 DQ20 45 /RAS1 69 Reserved
22 DQ5 46 NC 70 Reserved
23 DQ21 47 WE 71 Reserved
24 DQ6 48 NC 72 GND

" Aslash before a signal name indicates that it is in the low state when active.

52 RAM Expansion Cards

CHAPTER 2

Hardware Details

Figure 2-20 shows the mechanical dimensions of SIMM modules for expanding RAM.

Dimensions are given in millimeters, with inch equivalents in brackets.

RAM SIMM mechanical dimensions

Figure 2-20
- B -
- 32.0[1.26]
R1.57+0.1 -—=—10.16 + 0.20 MAX
[.062 + .004] [.400 + .008]
— 6.35+0.20 3.38
i | [.250 + .008] [-133]
(6.35) 7 “A-
[.250] 1 T
L 2.03+0.20
[.080 + .008]
/ 101.19+ 0.20
SEE DETAIL A [3.98 + .008]
35 X 1.27 [.050] =
44.45 1 0.20
[1.75 + .008] 107.95 + 0.20
[4.25 + .008]
635005 & 010[.004]M A B
[.250 + .002]
R1.57+0.12
[.062 + .005]
35 X 1.27 [.050] =
44.45 1 0.20
[1.75 + .008]
\
2X @3.18 £ 0.1
)os [.125 + .004]
—2. +0.17
[i\cl)llsl\(l)] »‘ 090 _ 508
+.003
] . 035 *- 003}
| 1| 2.54[.100] i1
¢ MIN : :
vy ¥ [I
b | Coaran N
0.25 ~—12720.10 MAX Device on this
.050 + .004] i :
[Ntl)kg)(] [side optional.
DETAIL A

ROTATED 90°CCW

RAM Expansion Cards

+0.10
—-0.08
+.004
—-.003

J

CHAPTER 2

Hardware Details

Because of signal loading limits, there may not be more than eight chips per bank of
RAM; composite SIMM cards cannot be used.

The Macintosh Quadra 840Av also accepts SIMM cards of a different configuration to
expand its VRAM, as shown in the next section.

VRAM Expansion Cards

The Macintosh Quadra 840AV lets the user expand VRAM capacity by inserting 68-pin
SIMM cards in its two VRAM expansion slots. Figure 2-21 shows the mechanical
dimensions of SIMM modules for expanding VRAM, which are different from the RAM
cards discussed in the previous section. Dimensions are given in millimeters, with inch
equivalents in brackets.

Figure 2-21 VRAM SIMM mechanical dimensions

\ 1 I <
— sozorioso [Bomsione @[a]s] —
96.11 + 0.10 [3.784 +.004]
2X3.15[124] —| |[=—
MIN
R 157+ 0.05
[.062 +.002]
6.35 ONG 2X @3.18 £ 0.05
[.250] [.125 + .002]
f } | ‘ | 20.10[.004] W|A|B
X
19.05 & ‘ ‘ ‘ V ‘ ‘ ‘$
[700] 10.16 + 0.08 —— v | r 2.54[.100]
[.400 + .003] 1 MIN
BT Sl
—| |=——2.03[.080] ‘ SEE
DETAIL A
R157 —| |~ 6.35£0.03[.250 + .001]
[.062] ﬂ}‘ 0.10 [.004] M| A | B
-~ 2X 34 EQ.SPACES |
@ 1.27 £ 0.03 [.050 + .001]
= 41.92 [1.650]
TOL NON-ACCUM
~————— 90.17 £ 0.05 [3.550 + .002] ————*

[©] o0.10100q @[A [B]

—| |=—— 68X 1.04 £ 0.03
[.041 £ .001]

[@] 01010041 ©[c[A E)8]

Contact zone
must be free

of holes l
Card D —

edge H
0.20[.008] —=Il~— j
MIN 0.25 [.010]

MAX
2,54 .100] MIN

DETAIL A

54 VRAM Expansion Cards

CHAPTER 2

Hardware Details

VRAM SIMM pin assignments are shown in Table 3-25.

Table 3-25 VRAM SIMM pin assignments

Pin Name Pin Name Pin Name
1 +5V 25 DQ5 49 A7
2 DSF 26 SDQ7 50 A8
3 SDQO 27 SDQ6 51 NC
4 SDQ1 28 NC 52 +5V
5 /DT-OE0 29 45V 53 GND
6 DQO 30 DQ7 54 GND
7 DQ1 31 DQé6 55 SDQ12
8 SDQ3 32 /CASO 56 SDQ13
9 SDQ2 33 A4 57 NC
10 /WEQ 34 A5 58 DQ12
11 /RAS 35 GND 59 DQ13
12 /SEO 36 SC 60 SDQ15
13 DQ3 37 SDQ8 61 SDQ14
14 DQ2 38 SDQ9 62 NC
15 AQ 39 /DT-OE1 63 NC
16 Al 40 DQ8 64 DQ15
17 A2 41 DQ9 65 DQ14
18 A3 42 SDQ11 66 /CAS1
19 GND 43 SDQ10 67 GND
20 GND 44 /WE1 68 GND
21 SDQ4 45 /SE1
22 SDQ5 46 DQ11
23 NC 47 DQ10
24 DQ4 48 A6

" Aslash before a signal name indicates that it is in the low state when active.

VRAM Expansion Cards 55

CHAPTER 2

Hardware Details

VRAM access times in numbers of clock cycles are shown in Table 3-26. The Random
columns in Table 3-26 show the times required for random accesses; the Second columns
show the times required for immediately succeeding accesses.

Table 3-26 VRAM access times

Macintosh Quadra 840Av Macintosh Centris 660AV
Access type Random Second Random Second
Single write 5 7 3 4
Burst write 5-3-3-3 7-3-3-3 3-2-2-2 4-2-2-2
Single read 7 7 4 4
Burst read 7-3-3-3 7-3-3-3 4-2-2-2 4-2-2-2
VDC write 19 20 19 20

VRAM Expansion Cards

PART T WO

Real-Time Data Processing

This part of the Macintosh Quadra 840Av and Macintosh Centris 660Av Developer
Note covers the software technology of the Macintosh Quadra 840Av and
Macintosh Centris 660AV digital signal processing facilities. It contains

three chapters:

Chapter 3, “Introduction to Real-Time Data Processing,” describes the
software architecture of the real-time data processing facility in the
Macintosh Quadra 840Av and Macintosh Centris 660Av. This facility
consists of an AT&T DSP3210 chip that performs data-processing
operations for applications that contain digital signal processor (DSP) code.

Chapter 4, “Real Time Manager,” describes a new part of the Macintosh
system software that supplies all the services an application requires to use
the DSP, including loading and running DSP code and performing DSP
memory management.

Chapter 5, “DSP Operating System,” covers the DSP operating system,
contained in the DSP chip. It provides the services every DSP program
needs to work with the Macintosh Operating System.

CHAPTER 3

Introduction to Real-Time
Data Processing

CHAPTER 3

Introduction to Real-Time Data Processing

This chapter describes the new real-time data processing software architecture for the
Macintosh Quadra 840Av and Macintosh Centris 660AV computers, including the
functional specifications, features, programming interface, capabilities, and performance.
For hardware information about these computers’ DSP implementation, see Chapter 2,
“Hardware Details.”

For the novice in digital signal processing, this chapter begins with an overview of the
AT&T DSP3210 digital signal processor and the architecture of real-time data processing.
It provides the basics for understanding the rest of the chapter, which provides a more
complete discussion of all the concepts and fuller architectural details.

The serious programmer of real-time data processing should read this entire chapter. You
must understand several concepts introduced in the section “Real-Time Processing
Architecture” to handle real-time programming and data flow properly.

Other parts of this book supplement this chapter. Chapter 4, “Real Time Manager,”
provides information to the Macintosh programmer and can be skipped by the DSP
programmer. Chapter 5, “DSP Operating System,” provides information to the DSP
programmer and can be skipped by the Macintosh programmer. However, for a
complete understanding of the interrelationships and dependencies between the two
types of programming anyone doing system debugging or integration should read both
chapters. For information about installing and debugging DSP programs in the
Macintosh Quadra 840Av and Macintosh Centris 660AV, see Appendix A, “DSP d
Commands for MacsBug,” Appendix B, “BugLite User’s Guide,” and Appendix C,
“Snoopy User’s Guide.”

Introduction to Digital Signal Processors

60

Real-time data processing requires a hardware and software architecture for integrating
digital signal processing technology into the Macintosh Quadra 840Av and Macintosh
Centris 660AV computers. The architecture supports the computer’s digital signal
processor as a coprocessor that has its own operating system but is capable of accessing
the same data memory as the main processor.

Concepts of Digital Signal Processing

Digital signal processing is the manipulation and conversion of digitized data. Digitized
data are digital representations of analog signals, which may represent sounds, images,
speech, or other analog forms. To correctly process these signals it is necessary to know
at what rate they were converted (the sample rate) and the format of the digital bits used
to represent the original data. With this information the signal can be manipulated by a
conventional program using the digitized data as its input. The result can then be stored
on disk or converted back into an analog signal.

Introduction to Digital Signal Processors

CHAPTER 3

Introduction to Real-Time Data Processing

All such processing accomplished by a computer is called digital signal processing. The
digital signal processor supports the math routines required in a special chip designed
specifically for signal processing applications. The multiply /accumulate operation is the
basic ingredient of signal processing programs. The digital signal processor is designed
to perform this operation very rapidly.

The equivalent of digital signal processing in the analog domain is accomplished using
electronic components, such as inductors, capacitors, resistors, and transistors. The
advantage of doing the processing in the digital domain is that the functions can be very
precise, reliable, elaborate, and software-configurable. It is difficult and costly to achieve
these same goals in the analog domain.

Real-Time Processing Capability

The Macintosh Quadra 840Av and Macintosh Centris 660AV computers’ real-time
capability uses a multi-tasking coprocessor to give high-performance processing of
sound, communications, speech, and images (both graphic and video) while utilizing
the system’s low-cost dynamic random-access memory (DRAM) for primary storage

of data and code. The standard hardware is the AT&T DSP3210 and the audio and
telephone input/output (I/O) ports. The software is a custom operating system
designed to perform isochronous (real-time) and asynchronous (timeshare) algorithms.
The operating system is based on a team processing approach where the work of the total
system is carefully separated and delegated between the main processor and the digital
signal processor.

This approach has the benefit of
s greatly reducing implementation and hardware costs

= simplifying and speeding up interprocessor communications and data sharing or data
streaming

= allowing flexible dynamic load sharing between the main processor and the DSP on
selected algorithms

= maximizing the potential to meet future needs for higher performance and multiple
COpProcessors

» increasing the range of possible application functions the DSP can provide

The DSP software architecture supports dual threaded processing streams. Real-time
processing uses interrupt-level isochronous algorithms with guaranteed processing
bandwidth to execute real-time functions requiring precisely timed signal generation or
inputs such as sound and communications. (Guaranteed processing bandwidth is
defined in the next section.) Timeshare processing uses asynchronous algorithms that
employ the excess DSP bandwidth for functions not requiring time-correlated
processing, such as still image decompression or scientific computing.

Additionally, the architecture supports the implementation of NuBus cards to make
configurations of multiple DSPs possible.

Introduction to Digital Signal Processors 61

CHAPTER 3

Introduction to Real-Time Data Processing

Real-Time Processing Architecture

Program execution on the DSP is divided into segments of time called frames, typically
10 ms in length, as diagrammed in Figure 3-1. During each frame an attempt is made to
run all of the code that is installed on the DSP. Tasks are blocks of DSP code that are
grouped together by the programmer to perform a specific function.

Figure 3-1 Frames
Time
. >
Frame n -2 Framen-1 Frame n Framen +1 Frame n + 2

There are two types of tasks: real-time and timeshare. During each frame all of the
real-time tasks are executed and then any remaining time in the frame is used for
executing timeshare tasks, as diagrammed in Figure 3-2. Real-time tasks are useful for
sound, modem, and video processing where there is a fixed amount of data that must be
processed during each frame; if more processing time were available it would not be
used. However, timeshare tasks use as much processing power as they can get each
frame. Image decompression is an example of a timeshare task, since it should
decompress the image as fast as possible. This means that when a faster version of the
DSP3210 is available timeshare tasks run faster but real-time tasks continue to process
the same amount of data.

Figure 3-2 Real-time and timeshare tasks

10 ms frame

Task 1

Task 2 Task 3 Task 4

}<}:|

62

Real-time tasks [>}<] Timeshare tasks I::>}

Each task is assembled out of modules, which are the functions that the DSP
programmer creates, and each module is composed of sections. This relationship is
shown in Figure 3-3.

Real-Time Processing Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-3 Task list

DSP task :%ﬂ DSP task n—l—l—:> DSP task

Module

Module Module Module Module

Section

Section| Section Section Section| Section| Section| Section

To understand the need for sections, it is necessary to understand how the memory
system of the DSP works. To keep hardware costs down, the DSP uses the same DRAM
as the main processor. Because the DSP can access memory at a much higher rate than
the RAM can provide, and must also compete with the main processor for RAM access,
some type of caching on the DSP is needed. The DSP does not have a hardware cache
like that in the 68040 main processor. It has a small amount of memory on the DSP

chip that is accessed in the same way as main RAM. It is called on-chip memory, in
contrast to main memory, which is off-chip. The lack of DSP hardware caching means
that caching must be managed by the DSP program and the DSP operating system.
This is called visible caching as opposed to the transparent operation of most main
processor caches.

To accomplish visible caching, the DSP programmer must mark which sections of the
code are loaded in on-chip memory before execution and which sections are saved
off-chip after execution. Visible caching operates in one of two modes. In AutoCache
mode, loading and saving are controlled by the DSP operating system; there is only

one set of sections on-chip during the execution of a module. In DemandCache mode,
loading and saving are controlled by the DSP program, so sections can be moved on and
off-chip during the execution of the module. Caching modes are discussed in more detail
in “Visible Caching” and “Execution Models,” later in this chapter.

To make modules slightly more general, a mechanism is provided for a single module

to work at different frame rates and sample rates. This is done by making sections
individually scalable. The DSP programmer has the option of saying which sections are
scalable and the possible sizes of the scalable sections. For example, if a reverberation
module works with both 24k Hz and 48k Hz sound at a 10 millisecond frame rate it
would have an input and an output section, both of which would be scalable to either
240 or 480 samples per frame. When the Macintosh program loads the module from disk,
it specifies the module scale of operation.

To ensure that all of the real-time tasks are executed during each frame, the DSP
programmer must specify an upper bound for the execution time of the module. If there
is enough processing power on the DSP, the task that contains this module will be
installed and executed. As long as every module’s estimate is correct, the DSP will
execute frames evenly. However, if a module’s estimate is not its upper bound, the DSP

Real-Time Processing Architecture 63

CHAPTER 3

Introduction to Real-Time Data Processing

could take more time to execute the real-time tasks than is available in a given frame.
When this frame overrun occurs the DSP operating system will find the module that
specified its incorrect upper bound, remove the task that contains this module from the
execution stream, and then resume execution. This procedure is called guaranteed
processing bandwidth (GPB).

Since a task is made up of modules which typically share data, optimization is provided
to keep the data on-chip between modules, instead of saving it off-chip in one module
and then loading it back on-chip for the next module. This is accomplished by
connecting sections from one module to another, letting the DSP operating system
decide if data saving and loading is required. Data that must be shared between tasks,
such as the sound going to the speaker, is passed between tasks in intertask buffers
(ITBs). The only logical difference between ITBs and connected sections is that the
sections are in different tasks for ITBs and in the same task for connected sections. Both
ITBs and connected sections are managed by the Macintosh programmer, as described in
“Data Buffering,” later in this chapter.

Software Model

64

The software model for real-time data processing in the Macintosh Quadra 840Av and
Macintosh Centris 660AV computers consists of three distinct pieces:

» The host toolbox is the Real Time Manager. The Real Time Manager runs on the main
processor and is written in C for portability.

s The DSP Driver contains both main processor code and DSP code components. All
hardware-dependent functions are included in the drivers. They are written in the
68000 and DSP assembly languages for efficiency.

s The DSP toolbox is called the DSP operating system. The DSP operating system runs
on the DSP, and is written in DSP assembly language for efficiency.

Almost all routines in the Real Time Manager are reentrant and callable from interrupt
level. This is necessary, since communications between the DSP and main processor
often take the form of interrupt messages.

A major component of the model is a shared block of memory. This memory consists of
local memory as well as main memory. The local memory is either in system DRAM or
in optional card memory. It is through data structures and semaphores in this shared
memory that the main processor and DSP toolboxes communicate. A more complete
diagram of the software model is shown in Figure 3-4.

Dual Programming Model

Figure 3-4 shows the dual programming interface for real-time data processing: the
application programming interface (API) in the Real Time Manager, and the module
programming interface (MPI) in the DSP operating system. These two interfaces are
completely separate, and designed to be used by different programmers. It is not
necessary for a programmer to be both a Macintosh programmer and a DSP programmer.

Software Model

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-4 Real-time data processing organization

DSP module
Host application/client
DSP Manager H DSP Operating System
v
Application programming interface Module programming interface
Client and 110 Data /10 GPB/control Caching
device services structure services services services
managers managers
Allocation managers &) Executive
[[

! !

Shared s .
DSP host driver | <> sen?;%hg?g?%rgta {Z——>| DSP OS driver

Interrupts Interrupts

It is usually better to have two programmers involved when programming an application
that requires DSP modules. This is because the two types of programming are very
different, and very specialized. The two programmers communicate with each other

by creating a DSP Module Specification document. This document provides a vehicle

for transferring all the information necessary to ensure a correct interface between the
main processor program and each DSP module. For more information about the data

this document should contain see “DSP Program Information for the Macintosh
Programmer,” in Chapter 5.

Real Time Manager

The Real Time Manager uses the standard trap interface to call the Macintosh Toolbox.
The set of calls accessible to an application are labeled as the application programming
interface layer in Figure 3-4.

Three major functions of the Real Time Manager support I/O services, client and device
management, and data structure management. These functions make calls on the Real
Time Manager’s allocation routines at the lowest level.

The allocation layer is responsible for DSP cache and local memory allocation, for GPB
allocation, and for I/O resource allocation.

Software Model 65

66

CHAPTER 3

Introduction to Real-Time Data Processing

DSP Operating System

The DSP operating system also has an interface layer. This layer works in a similar
fashion to the Real Time Manager: a trap mechanism is used to make calls on the DSP
operating system from the DSP module.

The DSP operating system also provides services to the DSP module: I/O services,
including FIFO management, GPB and control services, and caching operations on the
DSP. The underlying function of the DSP operating system is contained in an executive
layer, which is responsible for managing task-sequencing and frame-handling functions.

DSP Driver

The DSP Driver has two distinct components. One works exactly like a standard
Macintosh driver, and is written in 68000 code. The other component performs a similar
function for the DSP operating system. It contains all DSP code that is hardware-
dependent, as well as booting and restart code These two components are stored
together as one driver. The DSP driver also controls the I/O drivers for any serial or
parallel I/O ports included as part of the DSP system. These resources are accessed
using the Real Time Manager services.

Other Software Components

Additional system software that supports real-time data processing includes:

» Asound driver provides the interface between the Macintosh Sound Manager and the
Real Time Manager by means of a set of standard sound modules, including sound
input and output, compression, filtering, sample rate conversion, and mixing.

» A telecom driver provides the interface between the telecommunications Manager /
Communications Toolbox and the Real Time Manager, including a set of standard
telecom modules, plus modem, fax, and speech.

» Development tools include a DSP C compiler, assembler, libraries, linker, resource
generator, and include-files with macros and definitions.

» Debugging and test tools include a graphical module installer, DSP code debugger, and
MacsBug extensions.

The purpose of the various toolbox drivers is to provide access to the capability of the
DSP at the highest possible toolbox level. This allows applications that are not written
for the DSP to use it automatically when it is available. Even with this level of toolbox
support, it is clear that many applications will work better by directly accessing the DSP
using the DSP API. Such applications provide significantly more functionality or speed
when a DSP is available. However, an application that uses the DSP API either cannot
run on a platform without the DSF, or must provide alternative main processor
programming if a DSP is not available.

Software Model

CHAPTER 3

Introduction to Real-Time Data Processing

Software Layers

The basic Macintosh software model has four primary conceptual layers: the application
layer on top, the toolbox layer, the driver layer, and finally the hardware layer. The
separation of system software into toolbox and driver layers allows the separation of
hardware dependencies from the major system functions, and makes revisions in the
hardware easier to support. If this model is followed correctly, major changes in the
hardware can be made without breaking applications. For this reason, Apple encourages
developers to access functions at the highest possible toolbox layer, even if they could be
more efficient writing directly to the hardware. This separation allows Apple to improve
the hardware base without disrupting the application base. A diagram of the four-layer
Macintosh model is shown in Figure 3-5.

Figure 3-5 Four-layer Macintosh model

Applications

g

System software

Toolbox

g

Driver

g

Hardware

As shown in Figure 3-5, an application that accesses the Real Time Manager is
hardware-dependent. This means the application would require that a DSP coprocessor
be present in the system in order for it to operate. This is true even though the Real Time
Manager is hardware-independent. The emphasis here is on implementation. The Real
Time Manager assumes that there is a DSP available, otherwise there is no reason for
the manager to be installed. Additionally, it provides the necessary isolation from the
specific implementation details. By accessing a higher toolbox layer the application also
becomes DSP-independent and will operate across multiple Macintosh platforms.

Software Model 67

CHAPTER 3

Introduction to Real-Time Data Processing

If the original Macintosh model is combined with the DSP model, the DSP software and
hardware must be viewed as virtual hardware. This concept is illustrated in Figure 3-6.

Figure 3-6 Six-layer model

68

Applications

J

System software

Toolbox

g

Driver

Virtual DSP hardware

DSP Manager

g

DSP Driver

g

DSP hardware

The model shown in Figure 3-6 is used for the DSP software. Notice that the driver layer
is specific for the virtual hardware. If the DSP is available, this layer must be able to
install tasks in the task list and must deal with any specific characteristics of this
machine that may affect its operation. If there are no such characteristics, then the driver
is not dependent on the machine implementation, but only on the availability of the DSP.
In either case, the driver is specific for the virtual hardware.

Figure 3-7 shows two sample toolbox/driver combinations for the Real Time Manager.

In the case of sound, there are no hardware-specific features that the Sound Driver needs
to deal with. Hence only a single-layer driver is needed. The driver is capable of working
with the DSP in any supported configuration, and does not need to deal with specific
implementation details. This results in a six-layer model.

Software Model

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-7 Example of toolbox and driver layers

Applications

I

{)

System software System software
Sound Toolbox Comm. Toolbox
Sound Driver Telecom Driver

U U

Virtual DSP hardware

For the communications case, the Telecom Driver deals specifically with the way that the
DSP I/O subsystem is connected to the telephone line. Thus, specific bit input and
output (BIO) pins on the DSP perform functions that the Telecom Driver uses. The driver
takes control of these functions if the appropriate external hardware is present on the
telecom port. This makes the Telecom Driver hardware-specific relative to the telecom
subsystem. It is also hardware-dependent on the DSP virtual hardware.

To the extent that the same configurations are used for all CPUs and cards, the Telecom
Driver becomes universal, and seemingly hardware-independent. However, different
arrangements of telecom subsystems for different implementations of the DSP will
require a different telecom driver. Notice that a different telecom driver must be
supplied for a NuBus card and for a CPU, even if the configuration is identical. This is
because the CPU Driver can recognize a specific CPU but cannot recognize a specific
NuBus card. If the wiring of the I/ O subsystem is identical in both cases, then the only
change to the driver is the hardware recognition code.

To facilitate this, the driver layer should be divided into two separate parts: the DSP-
handling layer on top that uses Real Time Manager routines, and the hardware-specific
layer on the bottom that deals with specific hardware wiring. This allows simple
modification of the driver to support different hardware platforms. This arrangement
is shown in Figure 3-8.

Software Model 69

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-8 Seven-layer real-time model

Applications

d

System software

Toolbox Hardware independent
Driver
(DSP aware) Hardware dependent
(Hardware aware) Hardware implementation dependent

Virtual DSP hardware

DSP Manager DSP implementation independent
DSP Driver DSP implementation dependent

g

DSP hardware

The addition of this seventh “H/W driver” layer is only necessary if the driver requires
specific access to I/ O subsystems.

DSP-Aware Applications

A DSP-aware application can be designed to operate in two different ways:

= to recognize and use the DSP if it is there, for enhanced performance of specific
application functions

= to require the DSP and not run at all if no DSP is available

There are many interesting applications in both categories. It is important to realize that
the Real Time Manager’s implementation independence makes it possible to write a
DSP-aware application that will run, without change, on different DSP implementations,

Software Model

CHAPTER 3

Introduction to Real-Time Data Processing

assuming the same (instruction set compatible) DSP is used. Such an application can
make direct calls to the Real Time Manager for service. Different instruction sets can be
supported by the appropriate processing modules.

It is important to note that if a desired function is available from a high-level toolbox
then the DSP connection will be made automatically, providing enhanced performance
without the application being written for the DSP. A good example of this is any
application that plays sound. If it calls the Sound Manager then the processing will be
handed over to the DSP. However, if a sound application needs more service than the
Sound Manager provides then the application should directly access the Real Time
Manager. Depending on the application, either of these DSP-aware models could be used.

Software Architecture

The real-time data processing software is based on a data flow model. It is important for
a real-time signal processing system to accept and process incoming samples at the
average rate that they are being produced by the input process. It is equally important
for it to create outgoing samples at the average rate that they are being consumed by the
output process.

By buffering the samples, it is possible to process groups of samples at a time rather than
single samples at a time. This approach is called frame-based processing. During each
frame the application loads the required program code, variables, and input data into a
high-speed cache on the DSP. The program code is executed from this cache, and the
resulting output data is dumped from the cache back into off-chip memory. Alternately,
the input data may already be in the cache from a previous operation, and the output
data may be kept in the cache if it is needed for following operations.

The operating software for real-time data processing works on a team processing basis.
In particular, careful attention has been paid to the division of labor between the main
processor and the DSP. The goal is to maximize the processing throughput of the DSP
while minimizing the processing requirements and bus loading of the main processor.
The operating software consists of a part of the Macintosh toolbox (the Real Time
Manager and its driver) and a DSP control program (the DSP operating system and its
driver). A block diagram of this concept is shown in Figure 3-9.

These two programs interact with one another through shared memory, interrupt
processing, and semaphores. The Real Time Manager supports application software on
the main processor, while the DSP operating system supports DSP program modules
on the DSP. Thus, there are two completely separate application program interfaces

in real-time data processing: one for the main processor program and one for the

DSP program.

Software Architecture 71

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-9 Real-time software organization

DSP module

Host application/client

N
DSP Manager

N\

DSP Operating System

N
DSP host driver

N
DSP OS Driver

Shared memory,
semaphores, data

Interrupts Interrupts

In most applications the DSP will need to run several different code modules or
algorithms in sequence to process blocks of data. For example, five different DSP
modules are required for a sound player to mix the following three channels of sound:

= compressed music requiring data decompression

= compressed speech requiring a subband decoder and an 8-to-24 kHz sample
rate converter

= sound effects requiring a 22.2545-to-24 kHz sample rate converter

Each module must be cached and executed in the proper order to accomplish the desired
results. See Figure 3-10 for a diagram of the data flow in this process.

Music
FIFO

Speech
FIFO

Sound effect
FIFO

72

Figure 3-10 Sound player example data flow
> CD-XA >
decompressor
) Subband 24 kHz Speaker
decoder — 81024 SRC = audio mixer = FIFO

> | 22.254t0 24 SRC

A\

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

Frame Organization

Figure 3-11 shows the processing divisions that occur during a frame. Each frame begins
with the frame interrupt. If a timeshare task is running, its context is saved in external
memory. Then the list of real-time tasks is parsed and each of the active tasks are
executed in sequence. When all real-time tasks are completed, the timeshare processing
is resumed. If there was a task being executed when the frame interrupt occurred, it is
reloaded; otherwise, the list of timeshare tasks is checked. The next active task is located
using a round-robin scheduling algorithm. This selected task is then loaded and
executed. Processing continues until the next frame interrupt or until all timeshare tasks
are completed or become inactive.

Figure 3-11 Frame-based processing

10 ms frame

L ‘ J| ‘ J

. Interrupt) Timeshare
Timeshare isochronous I‘I’m&eshare asynchronous Sleep
save processing 04 processing

If there are no active timeshare tasks to be done, the DSP goes into sleep mode (shuts
itself down), using the wait-for-interrupt instruction. The DSP will then be brought back
online automatically at the next frame interrupt. This provides automatic power control
for portable computers based on the DSP’s processing load. If no DSP tasks are active,
the Real Time Manager will go even further and shut down all DSP-related circuits,
including the timer, serial ports, and other related hardware.

Note

During a frame all real-time tasks are executed once and only once.
Timeshare tasks use cooperative multitasking, similar to Macintosh
applications, and are executed in sequence until all timeshare tasks
become inactive or the end of the frame is reached. O

Using the sound player example given earlier, a detailed diagram of a frame is shown in
Figure 3-12. This figure is not to scale and shows only general content.

Software Architecture 73

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-12 Multiple code module processing

10 ms frame

Timeshare Caching Processing Sleep
swap

N

J ‘ JL__ ‘ J U ‘ J L ‘ J L ‘)
Subband 81024 22to 24 Mixer Finish old Timeshare
SRC SRC timeshare
task

As Figure 3-12 shows, the five required real-time processing modules are run in
sequence. The timeshare algorithm that was running when the frame started is reloaded
and completed. One more timeshare algorithm is run, and since no more timeshare
algorithms are active in this example, the DSP goes to sleep and waits for the next
frame interrupt.

Frame Size Selection

Frame-based processing requires some latency in the data flow. In particular, the input
port must collect a full frame’s worth of samples before the DSP can process them.
Likewise, the DSP must generate a full frame’s worth of samples before the output port
can start transmitting them. This requires a latency of two frames between input and
output data. Figure 3-13 illustrates this basic concept.

Figure 3-13 Process data flow

74

Frame n Framen +1 Frame n + 2

Input data n Inputdatan + 1 Input data n + 2

Process datan -1 Process data n Process datan + 1

o pd
Output datan — 2 Outputdatan—1 Output data n

There are four factors that influence the selection of the time interval of the frame.
They are:

= Size of buffer. This is proportional to the frame time interval. The longer the frame, the
more cache memory is needed for each buffer.

s Overhead reduction. This is inversely proportional to the frame time interval. The
shorter the frame, the greater percentage of DSP processing time is used in overhead.
For example, if the frame represents 240 samples then the overhead is 1/240 of the
algorithm on a sample-by-sample basis. Algorithm caching is needed only once for
every 240 samples or 0.42% compared to processing a single sample at a time.

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

» Granularity of access. During a frame the processing sequence cannot be interrupted.
Changes in process configurations must happen on frame boundaries.

s Inputfoutput latency for important algorithms. The longer the frame the higher the
latency between input to output data streams.

Buffer size and overhead reduction pull in opposite directions. Granularity of access

is dependent on the application; sound synthesis with MIDI is probably the most

demanding potential application, putting the lower limit at approximately 2 to 4 ms

per frame. Input/output latency sets the upper limit on the frame time. The most

demanding known algorithm for latency is the V.32 data protocol, which sets an upper

limit of 13 ms per frame.

The default frame time for the Macintosh Quadra 840Av and Macintosh Centris 660AV
is 10 ms. This is a convenient value for the following reasons:

» many common sample rates have an integer number of samples in 10 ms

= the buffers are small enough to have several in the cache at the same time (only 240
samples for 24 kHz)

= a decimal-based frame time is easier to work with
= a 10 ms frame time reduces the DSP operating system overhead

The software architecture of the Macintosh Quadra 840Av and Macintosh Centris 660AV
is flexible and supports multiple frame rates up to four. The standard alternate frame
rate is 5 ms. In the Macintosh Quadra 840Av and Macintosh Centris 660AV implemen-
tation, the frame rate can be changed only when no programs are using the DSP.

Visible Caching

The basic assumption for visible caching is that there is not enough high-speed cache

to hold all of the code the DSP must execute each frame. This difficulty is overcome
without increasing hardware costs by caching each algorithm (module) from external
memory into high-speed cache when it is needed. Because most algorithms for the

DSP consist of some set-up code and a compact set of loops that take up most of

the processing time, this method of visible caching results in only a small fraction of the
total main processor bus bandwidth being used by the DSP.

WARNING

If you are writing a system extension that uses real-time processing, be
aware there is only a limited amount of memory available because the
system heap is not expandable. You will need to include a 'zsys' resource
in your system extension to enlarge the system heap before the system
extensions run. The amount of memory needed may be more than
required by your system extension because some of the memory may be
used by LocalTalk, EtherTalk, TokenTalk, and A/ROSE. a

The visible caching approach works for many signal processing algorithms. The
assumption is that only a small processing loop is needed with a small amount of data
per frame, resulting in a fairly short caching time overhead. The loop is run many times
per sample and takes considerable processing time. For audio and telecommunication

Software Architecture 75

76

CHAPTER 3

Introduction to Real-Time Data Processing

algorithms, the ratio of processing instruction cycles to caching cycles is often in the 40:1
range. Hence, the caching overhead cost in processing power is in the 10 percent range.
This is a fairly low impact considering the cost savings from eliminating fast SRAM and
its related support circuitry. However, this processing model does not work well for
applications where these assumptions do not hold.

The signal processing algorithms, variables, and data tables are all stored in locked
contiguous memory blocks (called sections) and are loaded into cache memory either
automatically or by calls to the DSP operating system’s visible caching routines. With
this approach the DSP programmer has complete control of the caching process, unlike
most hardware caches that are invisible to the programmer and to the executing
program.

Code can also be executed directly from external memory. This is useful for small code
blocks, such as set-up and control code, or blocks that contain only single instruction
loops that are cached automatically on the DSP chip. It also allows very large code blocks
to be run by the DSP, although the execution speed will be substantially lower.

Assuming support for DRAM page mode is provided in the hardware, the caching
function (block move) is likely to be three times more efficient than single accesses.
Single external accesses are used when executing from external memory or when
fetching or updating data in external memory. Even for fairly short control and set-up
code blocks it is often faster to cache them before execution. The break-even point can be
calculated based on the cache speed, single access speed, and block move speed of any
given implementation, and is often as low as 25 instructions. For information about
DRAM timing, see “Access Timing,” in Chapter 2.

Under normal circumstances, the DSP should demand only a low percentage of the CPU
bus bandwidth. This allows graphics and other main processor functions to proceed as
rapidly as possible. However, there are DSP applications that take a significant amount
of the CPU bus time, in which case the main processor runs slower. But since much of
the work is being done on the DSP, the total system runs faster than a computer without
a DSP.

As explained in “Real-Time Processing Architecture,” earlier in this chapter, here are two
visible caching execution models that are supported by the DSP operating system:
AutoCache and DemandCache. With AutoCache the programmer specifies which code
and data blocks are to be loaded and saved. The DSP operating system performs all load
and save functions automatically. In DemandCache the programmer explicitly moves
code and data blocks on and off-chip whenever needed by making the appropriate calls
to the DSP operating system from the module. Both models have advantages and
disadvantages.

The AutoCache model provides a simple easy-to-use method of visible caching for small
DSP algorithms (for example, sample rate converters, compressors and expanders,
filters, and others). Whenever possible, the AutoCache model should be used, for
simplicity of operation and programming.

In the DemandCache model, caching is explicitly handled by the DSP programmer. In
the simple case, the programmer provides a single main program and one or more
cacheable functions. A cacheable function is made up of one or more code blocks. The

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

main program resides in external memory and calls the DSP operating system to cache
functions on-chip and run them. The programmer can thus select functions in any order
and can repeat functions as needed, at the cost of increased program size and complexity.

DemandCache is used for algorithms that must select different signal processing
functions depending on conditions or commands. A good example of such an algorithm
is a multimode modem program. The actual data processing program selected depends
on the kind of modem on the other end of the telephone line. The required program
would be cached explicitly by the main program.

Another way to build complex functions is by combining multiple simple modules and
using the skip function. This is described in “Grouped Modules,” later in this chapter.

DSP and Main Processor Addressing

Real-time data processing is designed for systems that include a memory management
unit (MMU). However, the DSP3210 does not use an MMU to translate logical addresses
to physical addresses. As a result, the main processor uses logical addresses for all of its
memory accesses while the DSP uses physical addresses. Addresses that are used by
both the Macintosh and DSP operating systems are stored in DSPAddr ess structures
that contain both the logical and physical form of the address. A diagram of the structure
is shown in Figure 3-14.

Figure 3-14 DSPAddr ess structure

DSPAddress

Logical

Lo .
Memory location
J

Physical

Note

The Real Time Manager is responsible for setting up and maintaining
these DSPAddr ess data structures. Since the DSP uses locked—down
memory, this approach allows the DSP to operate in a virtual memory
(VM) system without actually having an MMU. The local memory
addresses are translated from logical to physical form by the Real Time
Manager before the DSP chip uses them. O

All blocks of memory indicated by a DSPAddr ess data structure are by definition
locked contiguous and non-cacheable. They are locked contiguous so that the DSP does
not have to worry about scatter/ gather operations when using a DSPAddr ess data
structure. The blocks are locked non-cacheable to eliminate conflicts that would occur
when the DSP modifies a memory location that the main processor had cached.

The DSPAddr ess is a general type. There are also specific types, including
DSPFI FOAddr ess, DSPTaskAddr ess, DSPMbdul eAddr ess, and

DSPSect i onAddr ess. Each has the same data structure as a DSPAddr ess but
points to a specific structure.

Software Architecture 77

78

CHAPTER 3

Introduction to Real-Time Data Processing

Containers

Each memory location that a given section may occupy is called a container. For
example, if a section can be cached on-chip from an off-chip location it has two
containers—one in main memory and one in the DSP’s on-chip memory. Containers are
fully discussed in “Sections Defined,” later in this chapter. The DSP operating system
keeps track of the active container by means of data structure called a section table.

Primary and Secondary Pointers

Each section has a primary and a secondary pointer. There are two possible values for
these pointers, depending on whether the section uses one container or two containers.
You must be careful when examining or using these pointers when DSP code is running
because in DemandCache the DSP operating system can change the sections from
one-container to two-container when caching sections on-chip, and from two-container
to one-container when moving sections off-chip. The pointers are summarized in

Table 3-1, where X and Y are pointers to sections.

Table 3-1 Primary and secondary pointers

Primary Secondary Where applicable

X nil One-container section
X Y Two-container section
X X Not applicable

ni | X Not applicable

nil nil Not applicable

The pointer to the section in the exception vector table is always the same as the primary
pointer. This invariant is maintained by the DSP operating system during both
AutoCache and DemandCache.

One-Container Sections

Sections that have only one container have a primary address and a ni | secondary
address. The primary address can point either on-chip or off-chip. Whenever the section
data is accessed by the DSPF, the primary address is used.

Two-Container Sections

Sections that have two containers are slightly more complicated. There are valid
addresses in both the primary and secondary pointers. The primary pointer is where the
DSP user code will access the section. The secondary pointer is where the DSP operating
system will load the section from and save it to. Both the primary and the secondary
address may point on-chip or off-chip.

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

On-Chip and Off-Chip Addressing

Initially the application will want to find out if the addresses discussed in the previous
section point to locations that are on-chip or off-chip. The following rules apply:

» The application can tell if the address points on-chip by looking at the physical and
logical components of DSPAddr ess. If the logical value is ni | and the physical value
is not ni |, the address points to on-chip memory.

» Pointers to off-chip memory can be recognized because the logical and physical
pointers are both not ni | .

» [tis not valid to have a logical address without a physical address.

» If the logical and physical components of DSPAddr ess are both ni | , the pointer
isnil.

These rules are summarized in Table 3-2, where X and Y are addresses.

Table 3-2 On-chip and off-chip addresses

Physical Logical

address address Where located
X nil On-chip

X Y Off-chip

X X Off-chip

nil X Not valid

nil nil Not valid

Guaranteed Processing Bandwidth

A system of measuring and controlling execution time guarantees that real-time tasks
will execute completely every frame. This system is called guaranteed processing
bandwidth (GPB).

GPB is measured in processor instruction cycles. For example, with 10 ms frames,
166,666 cycles are available for a 60 ns instruction cycle and 125,000 cycles for an 80 ns
instruction cycle. Therefore, if a processor is running 60 ns instruction cycles instead of
80 ns instruction cycles, more instruction cycles are available for a given frame time.

Each code module is assigned a GPB number during development by the DSP
programmer. This number is called the GPB estimate. It is an estimate because certain
portions of the processing time depend on bus latency and other factors that are not the
same for different machines or implementations.

When the DSP program tries to install a task in the real-time task list, its estimated GPB
requirement is compared with the remaining GPB available (calculated by subtracting
the GPB values for real-time tasks already installed from the total available GPB). If there
is enough time available, the new real-time task is installed. Otherwise, an error message
is sent back to the application attempting to do the installation.

Software Architecture 79

CHAPTER 3

Introduction to Real-Time Data Processing

Each time a real-time task runs, the DSP operating system calculates the GPB actual value
for the task. This actual value is used for future calculations in determining if additional
real-time tasks can be installed. Also, this revised GPB actual value can be used to
update the modules value in the DSP Prefs file to improve the GPB estimate for the
current target machine. In this way, the estimate becomes adapted to faster or slower
hardware implementations.

Smooth and Lumpy Algorithms

The simple model described above works well for smooth DSP algorithms. A smooth
algorithm is one that always takes the same or almost the same time to execute every
frame. The “almost” comes from variations outside the control of the algorithm,
including I/ O time handled by the DSP operating system, and bus overhead, which may
vary depending on other bus traffic. There can also be minor variations within the
algorithm, but these must be kept to a small percentage if the model is to work correctly.

The other type of DSP algorithm is called a lumpy algorithm. In this case, the algorithm
uses various levels of processing for each frame This may depend on the data being
processed, the status of the function it is controlling, or other variables. A diagram
comparing the two types of algorithms is shown in Figure 3-15.

Figure 3-15 Smooth and lumpy DSP algorithms

80

GPB estimate

Il alilln

GPB estimate

[0} m
[N o
] > O
) Time) Time
Smooth DSP algorithm Lumpy DSP algorithm

As you can see from the diagram, the GPB estimate for the smooth algorithm is also the
GPB actually used on a regular basis. On the other hand, the GPB estimate for the lumpy
algorithm must indicate the maximum level of processing required. To guarantee DSP
processing availability, the maximum level of processing must always be used in GPB
calculations. Thus there is often additional timeshare processing available when a lumpy
algorithm is running. The DSP programmer must indicate whether each module is using
a smooth or lumpy algorithm.

Calculating GPB

For real-time algorithms, the actual GPB is recalculated by the DSP operating system
every frame. If the new GPB actual value is larger than the stored GPB actual value from
previous frames, the new value is stored. This is called the peak detection algorithm. It is
designed to maintain the actual maximum GPB used, including any bus or I/O
variations. The GPB actual value starts off at zero when the real-time task is installed.

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

When the Real Time Manager wants to determine if there is enough processing time still
available to install a new task, it uses a simple algorithm to decide which of the two
available values, the GPB estimate or the GPB actual value, it should use for each
module in its calculations. This selection is based on the state of the UseAct ual GPB flag
in each module header.

For smooth algorithms, this flag is always set. The selection algorithm is this: if the actual
value is non-zero and the flag is set, use the GPB actual value as the current value;
otherwise, use the GPB estimate. This algorithm is designed to give the most accurate
accounting of the available GPB at any given time. However, the estimated value is used
until the module has a chance to run at least once. After that, the actual value is

used, whether it is smaller or larger than the estimate. This is how the GPB system
automatically adapts to different CPU configurations.

GPB for Lumpy Algorithms

The simple approach to GPB used for smooth algorithms does not work for lumpy
algorithms. A somewhat different approach is required for this case. First, it is necessary
to separate lumpy algorithms into two different classes: smart lumpy algorithms and
dumb lumpy algorithms. A smart lumpy algorithm determines cases when it is
executing code that will result in maximum utilization of GPB. A dumb lumpy algorithm
cannot determine when this may be the case.

An example of a smart lumpy algorithm is a multirate modem. There are various stages
of the modem, including initialization, setup, and data transfer. The maximum GPB use
is usually taken by one of the steady-state data processing programs. When this
algorithm is reached, the DSP program calls the GPBSet UseAct ual routine.

An example of a dumb lumpy algorithm is a Huffman decoder. This decoder takes
longer to decode some bit streams than others, and there is no way to tell beforehand
how long it will take. In fact, the processing time can grow without limit in the case of
random noise input.

Two different mechanisms handle these two cases. For smart lumpy algorithms, the DSP
program knows where the maximum GPB usage is in the code, and so is required to set
the UseAct ual GPB flag with the GPBSet UseAct ual routine. The DSP operating
system does not actually set the flag until the GPB calculations for this module are
completed. This forces the Real Time Manager to continue using the estimated value
until after the peak use frame has occurred. After that, the actual value correctly reflects
the processing needed by this module on this hardware configuration. The DSP
operating system continues to use the peak detection algorithm for computing the actual
value, so future peaks may slightly increase the actual value because of variations in I/O
and bus utilization.

For dumb lumpy algorithms, the DSP program can check on the available processing
time left in the real-time frame, and shut down the process if an overrun is about to
happen or has already happened.

There are two macro calls to the DSP operating system that support the dumb lumpy
algorithm. The GPBExpect edCycl es macro returns the expected processing time;
the GPBEl apsedCycl es macro returns the amount of processing time used so far. If

Software Architecture 81

82

CHAPTER 3

Introduction to Real-Time Data Processing

the amount used so far is getting close to the expected time, the module must execute
its processing termination procedure. This procedure should end the processing in
whatever manner is appropriate for this algorithm. If the processing duration has
exceeded the time, the UseAct ual GPB flag should be set, and the processing termina-
tion procedure should be followed.

If the dumb lumpy algorithm exceeds its GPB estimate, it may cause a frame overrun. If
this happens, the offending real-time task that includes this module is set inactive by the
DSP operating system, and the application is notified by an interrupt. This process is
described in “Frame Overruns,” later in this chapter.

Dumb lumpy algorithms are tricky to program correctly. If at all possible, such
algorithms should not be done in real time, but in timeshare, where length of execution
is not a vital factor.

Fast Execution Versus Real-Time Execution

A task executes faster as a real-time task than as a timeshare task only if the real-time
task list is using most of the processing bandwidth of the DSP. In many cases, running in
the timeshare list will yield more processing time. By carefully analyzing what
applications need real-time processing and what need “run as fast as you can go”
processing, you can decide which tasks should go into the timeshare list. Candidates for
timesharing normally include tasks such as lossless compression of disk files, graphics
animation, and video decompression. All such tasks should use as much DSP bandwidth
as possible, because the more they run the sooner they finish. Such tasks must not be
confused with real-time tasks, which require a specific amount of data be processed
during a specific time period.

Processor Allocation for Timeshare Tasks

Timeshare processing is considerably different than real-time processing. A timeshare
task often has no way to determine how much processing time it will have in a given
frame. It is even possible to load the real-time task list so that no timeshare task
execution is possible. Bear in mind that it takes a significant amount of processing time
to load and unload a timeshare task. If there is not sufficient time to perform both
operations the task will not execute during that frame.

Two numbers can help an application determine if it is worth installing a timeshare task
in a given DSP task list. The two numbers are

= Average timeshare available (ATA). This is effectively the average sleep time that the
DSP is getting per frame. It represents actual unused DSP processing, averaged over
several frames.

» Average timeshare used (ATU). This number is effectively the average amount of
timeshare being consumed by timeshare tasks that are already installed.

Adding the two numbers above yields the average total timeshare (ATT) available.
Figure 3-16 diagrams this concept.

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

Note

The application calculates the ATA and ATU using the maximum
number of cycles for the processor, the number of real-time cycles
allocated, the number of real-time cycles used during the last frame,
and the number of timeshare cycles used during the last frame. O

Figure 3-16 Timeshare capacity figures

10 ms frame

Allocated real-time GPB ‘

>\

}<}:|

Realtime | >K] Timeshare (ATU) I >K] Sleep (ATU) I:>}

As shown in Figure 3-16, the ATT value is not necessarily the difference between the
frame processing capacity and the GPB allocated to real-time tasks. It is often the case
that real-time tasks are inactive, or not running at full processing bandwidth. This makes
additional timeshare processing available.

The averaging process is used to calculate the timeshare processing numbers because
they will usually fluctuate with time. The numbers are provided to allow an application
to determine if installing a timeshare task is effective at any given time.

Once a timeshare task is installed, it is recommended that the application check the value
of the ATT every so often to make sure that it is still getting service from its timeshare
task. Alternatively, the timeshare task itself can report to the application on its activity
level. The Real Time Manager does not warn the application when timeshare tasks are
not being executed.

Frame Overruns

When several tasks have been installed on the DSP, or if one large and lumpy task is
installed, and if the estimated GPB requirements are not accurate, it is possible for the
DSP to still be processing data when the next frame interrupt is received. This results in a
frame overrun. There are three categories of frame overrun:

» Category one: the DSP acknowledges the current frame interrupt after the next
interrupt is received, but before a second interrupt. The DSP misses only one interrupt.

s Category two: the DSP acknowledges the frame interrupt after two interrupts have
been received, but before a third interrupt. The DSP misses two interrupts.

» Category three: the DSP has not acknowledged the frame interrupt for five successive
interrupts. The DSP misses five or more interrupts.

Software Architecture 83

84

CHAPTER 3

Introduction to Real-Time Data Processing

Category One Frame Overrun

The DSP operating system detects a frame overrun if the interrupt line is asserted before
it has been acknowledged. When a category one frame overrun occurs the DSP operating
system attempts to recover during the next frame. Since the DSP operating system
cannot tell if one or more frames has passed it assumes only one frame has been skipped.
To recover, the DSP operating system checks all modules for their current GPB usage, the
task with the module having the worst overage is set inactive, and the application is
notified. All other clients (such as toolbox routines) are notified that the DSP has skipped
a frame.

When an application receives a task inactive message from the Real Time Manager it
should deallocate the offending module. This will update the DSP Prefs file with the
correct GPB value for that module. The application can then reallocate the module and
attempt to reinstall the task. When an application receives a skipped frame message it
can do anything from ignoring it to removing and reinstalling the task.

Category Two Frame Overrun

Since the DSP cannot determine how many frames have passed, the external interrupt
logic must detect a category two frame overrun. To recover, the interrupt logic sends a
hardware interrupt to the main processor and the Real Time Manager executes its DSP
overrun recovery code. The Real Time Manager checks with the DSP operating system
for the offending module and sets it inactive. If the DSP operating system cannot identify
the worst-case module then the Real Time Manager will determine which module is at
fault. The Real Time Manager then issues the DSP a reset command and the application
that installed the offending module is notified that the task is inactive. All other clients
(such as Toolbox routines) are notified that the DSP has been restarted.

The application that receives the task inactive message should respond in the same way
as for a category one overrun. When an application receives the DSP restart message it
should check the task’s memory for possibly corrupted data or code. The recommended
response is to remove, rebuild, and reinstall the task.

Category Three Frame Overrun

In the event that the DSP does not respond to interrupts by the sixth frame, the frame
overrun logic will issue a hardware reset to the DSP and I/O subsystems. In this case
it is assumed that both the DSP and the main processor have crashed. It is important

that the DSP and I/O subsystems be reset to prevent possible problems in the output
subsystems—for example, a fixed sound on the speaker or the telecom system

left offhook.

Recovery from a category three frame overrun is impossible. All clients, including
application and Toolbox routines, must start over and install their tasks from
the beginning.

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

Data Structures

As explained in “Real-Time Processing Architecture,” earlier in this chapter, it is
important to distinguish DSP modules from DSP tasks:

s DSP modules are the basic building blocks of digital signal processing software. They
always include DSP code. They also usually include some data, input and output
buffers, and parameter blocks. There are an infinite number of combinations possible,
depending on the desired function.

= A DSP task is made up of one or more DSP modules. The purpose of this grouping
is to place together, in the appropriate order and with the appropriate I/O buffer
connections, all of the DSP modules needed to complete a particular job. A DSP task
will frequently contain only one DSP module.

The DSP module is provided to the Macintosh program as a resource, and is loaded into
a DSP task using the Real Time Manager. A DSP task is constructed by the Macintosh
application using a series of calls to the Real Time Manager. These calls create the task
structure, load and connect modules in the desired arrangement, allocate the required
memory, and install the completed task into the DSP task list. The reason for combining
modules into tasks is to ensure that the combined function is always executed as a set.

A good example of a task is one that plays compressed speech that was recorded via the
telecom subsystem. The data is recorded via the subband decoder at 8 kHz sample rate
and compressed before being stored on a disk drive. To play the data over the speaker,
it must be decompressed back to 8 kHz samples, and then the sample rate must be
converted to 24 kHz data to match the sample rate of the speaker system. A diagram

of this example is shown in Figure 3-17.

This task is executed by following the chain of modules from left to right. The task is
activated or deactivated as a single unit. It is also installed and removed from the DSP
task list as a unit.

Figure 3-17 Task with two modules

Previous task

Task
Next task

DSP task I:::‘::) Play speech task > DSP task

Module Subband 1to 3 sample Module Module
decoder convertor
Section Section| Section Section| Section| Section| Section

Software Architecture 85

CHAPTER 3

Introduction to Real-Time Data Processing

Sections Defined

The internal structure of the DSP module is compartmentalized into code and data
blocks. It is this design of the DSP module that gives the real-time data processing
architecture its real power and flexibility. Each module is made up of a header and one
or more sections, as shown in Figure 3-18.

Figure 3-18 The module data structure

Module

Header

Section 0

Section 1

Section 2

Section 3

The header contains information about the entire module, such as its name, GPB
information, and control flags. Also included in the header is a count of the number of
sections in the module. This allows the module data structure to be of variable length.

Each section also has a name, flags, and data-type fields. In addition, each section has
pointers to two containers. It is the containers that actually hold the data or code for the
section. The sections are the building blocks of the module. A section can point to code,
data tables, variables, buffers, parameters, work space, or any other resource needed to
provide the desired function. The only requirement is that the first section must always
point to code. A simplified diagram of a section is shown in Figure 3-19.

Figure 3-19 The section data structure

Section

Name pointer

Flags

Type

Primary Primary container
container I — pointer

Secondary container Optional
pointer secondary

container

Connections

86 Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

Note

The section does not contain the actual code or data used by the DSP
chip. Rather, it is a data structure that contains pointers to the code or
data block. The DSP operating system uses the section structure and
flags to cache the actual code or data block as required. O

The Section Control Flags and Data Types are used to control caching and manage
buffers. The connection data is also used for buffer management internally to the Real
Time Manager. These operations are discussed in “Buffer Connections Between
Modules,” later in this chapter.

The two containers are called the primary container and the secondary container. A primary
container is always required. The secondary container is optional. The primary container
is usually allocated in the cache, but can also be in local memory. The secondary
container is usually allocated in local memory, but in special cases can be allocated in the
cache. Allocated memory for the containers must be in either local or cache memory.

The visible caching system moves data from the secondary container to the primary
container, which is usually moving the contents from local memory to cache memory.
This is called a cache load. The visible caching system also moves data from the primary
container to the secondary container, which is usually moving the contents from cache
memory to local memory. This is called a cache save.

In cases where no caching is required, only one container is needed. The primary
container in this case is located in local memory if it contains fixed data or parameters
for communication between the main processor application and the module, or in cache
memory if it is simply work space.

The section concept was developed to facilitate creating modules with generic functions
that can be used in many different applications. It also forms the basis of the plug-and-
play module architecture, where input and output data streams can be interconnected
between off-the-shelf modules to create new functions. In addition, it supports several
different execution models and is easily adapted to future hardware advances, such as
significantly larger cache memories and hardware instruction caches.

AutoCache

With the AutoCache caching model (discussed in “Visible Caching,” earlier in this
chapter), the section data is moved from the secondary to the primary container, before
the module runs, if the Load flag is set. Likewise, the section data is moved from the
primary to the secondary location after the module runs if the Save flag is set. During
execution of an AutoCache module, the primary and secondary pointers never change.

DemandCache

With the DemandCache caching model, two container sections are used much the same
way as they are used in AutoCache. The only difference occurs when a section is pushed
or popped.

Software Architecture 87

CHAPTER 3

Introduction to Real-Time Data Processing

When a section is pushed it changes from a one-container to a two-container section.
Data is moved from the secondary to the primary location if the Load flag is set. When a
section is popped it changes from a two-container to a one-container section. Again, data
is moved from the primary to the secondary container if the Save flag is set.

Sections and Caching

The actual operation, with either AutoCache or DemandCache, loads code or data by
section into the cache prior to its use, and then saves data back from the cache when
completed. The section data structure contains flags, pointers, and other information to
support these functions.

For every section there are two possible containers (buffers): the primary container and
the secondary container. The caching function moves data between the secondary and
primary containers prior to module execution, and moves data between the primary and
secondary containers after module execution. Only the minimum required moves are
made. For example, it is only necessary to move code into the cache from the secondary
container. It is not necessary to move it back, assuming the code is not self-modifying.

A diagram of a sample AutoCache module, including its primary and secondary
containers, is shown in Figure 3-20. This example shows five sections in the module: the
program (code) section, state variables, a data table, an input buffer, and an output
buffer. The first three sections have two containers each, while the last two have only a
primary container.

Figure 3-20 Dual-container AutoCache example

88

Module
Primary “Equalizer” Secondary
containers 5 sections containers
Section 0
] ———— - -
Program program Code
Variables - Section 1 - Variables
variables
Section 2
Tabl B B
able tables [Tables
Z / Section 3
input buffer
Input Section 4
J output buffer

Sound PRB

In the example, the code, variables, and table sections are loaded into the cache before
the code section is executed. After execution completes, only the variables are saved back
to local memory. It is important to recognize that the input and output buffers are not
moved, but exist in the cache. This buffer mechanism is described in “Buffer Connections
Between Modules” and “Buffer Connections Between Tasks,” later in this chapter.

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

Note

This discussion of the caching system is primarily applicable to
AutoCache. More detailed information about AutoCache and
DemandCache, including the differences between them, is presented in
“Execution Models,” later in this chapter. O

Container Memory Allocation

The structure of modules and sections requires several different blocks of memory. The
example shown in Figure 3-20 uses nine different blocks: the module itself, five primary
containers, and three secondary containers. The module and the secondary containers
are in local RAM, and the primary containers are in the cache.

Substantial memory management and allocation effort is needed to support this type of
data structure. Fortunately for the programmer, the work is done automatically by the
DSP operating system. The allocation and memory management is done in two phases.
When the client loads the module into memory from a resource file, the Real Time
Manager allocates all the required blocks in local memory to hold the structure. In the
example shown in Figure 3-20, the allocation includes the module itself and three
secondary containers. The containers are then loaded with data from the resource file.
This completes the first phase of memory allocation.

The application must also specify the I/ O connections for the module, a process covered
in “Buffer Connections Between Modules,” later in this chapter. Once all of this is done,
the Real Time Manager calls one of its routines to take care of cache allocation; this is the
second phase of allocation. The task is now ready to install. For DemandCache,
additional allocation is performed by the DSP operating system at run time.

There are many factors that the Real Time Manager must take into consideration when
placing section containers in the cache. First, it must be aware of any reserved memory
in the cache. This includes areas for the DSP operating system as well as buffers. Next, it
must be aware of the bank configuration of the cache. For some DSP implementations, it
is important to locate different sections in different banks to ensure highest performance
operation. This is not true for the DSP3210, but it was for the DSP32C and will be true for
future versions of the DSP3200 family.

It is important to properly mark the sections for bank preference to ensure correct
placement for all future DSP3200 processors. This takes the form of Bank A and Bank B
preference flags. If both are set, this indicates that any bank will do. If neither are set, it
indicates the section should be located outside of the cache. In the example above, the
program, variables, and table sections (primary containers) are located in Bank A. The
I/0O sections (primary containers) are located in Bank B. The architectural concept
behind this bank organization is explained in the AT&T DSP3210 manual.

Other allocation decisions are related to the connections between module I/O buffers.
The Real Time Manager attempts to arrange the sections in the cache in such a way as to
eliminate as much buffer movement as possible. If a buffer can be set and left in one
place without being moved between modules or tasks, it reduces the overhead for
maintaining the buffer.

Software Architecture 89

90

CHAPTER 3

Introduction to Real-Time Data Processing

A Complete Software Example

Figure 3-21 diagrams a typical structure of digital signal processing software with
sections, modules, and tasks. It shows a dual task list (real-time and timeshare) and adds
multiple DSPs and DSP client controls.

Figure 3-21 shows two DSP devices (two separate DSP subsystems), where the structure
detail is shown only for the first device. The first device might be a DSP located on the
main logic board and the second device might be a DSP located on either a PDS or
NuBus card. In machines not having a DSP on the main logic board both DSPs would be
located on accessory cards.

For each device, there can be a number of clients. A DSP client is either a system Toolbox
routine or an application that wishes to use a DSP. An application cannot use a DSP
without first signing in as a client. The client must sign in to each device that it intends
to use.

Each device has two task lists. The primary one is for real-time task execution; it is
executed once and only once in each frame. The Real Time Manager ensures that the
clients do not install too much work in this list, so that the entire list can always be
executed by the end of the frame.

The second list is the timeshare task list. It is executed using any time left over in each
frame after all real-time tasks have been run. The DSP operating system will repeatedly
execute timeshare tasks until it either runs out of time (the next frame begins) or until it
makes it through the list once without finding anything to do. If the DSP operating
system does not find an active task prior to the frame ending, the DSP is put into sleep
mode until the start of the next frame.

Data Buffering

In digital signal processing it is often desirable to connect input and output buffers from
several different algorithms, using signal flow techniques. There are routines in the Real
Time Manager that accomplish this. The programmer needs to specify the number and
format of these buffers (for example, input or output buffers, 32-bit floating-point
format, other formats). The buffers can be connected at run time to similar buffers in
other, separately designed, algorithms. The application makes calls to the Real Time
Manager to specify which connections are desired. The Real Time Manager must attempt
to connect these buffers in an efficient manner to minimize the loss of DSP time used in
moving buffers around.

Software Architecture

C

HAPTER 3

Introduction to Real-Time Data Processing

F

igure 3-21

DSP globals

!

DSP device

Data structure overview

DSP device

=

@ DSPclient |CZ—=>| DSP client ﬂ ﬁ ﬁ ﬂ
]
Real-time task list
\o——°>| DsSPtask |C———»| DSP module
ﬁ Section | Section
DSPtask |C=——)| DSPmodule |Z=—=)| DSPmodule |C=——")| DSP module
ﬁ Section | Section Section | Section Section | Section
DSPtask |m=——=»| DSPmodule |E===)>| DSP module
ﬁ Section | Section Section | Section
DSPtask |C———=»| DSPmodule |Z=—=)>| DSP module
Section | Section Section | Section
Time share task list
\&—————"")>| DSPtask |E===)>| DSP module
ﬁ Section | Section
DSPtask |E===)| DSPmodule |z===)>| DSPmodule |E===)| DSP module
ﬁ Section | Section Section | Section Section | Section
DSP task [C——>| DSPmodule |——=>| DSP module
Section | Section Section | Section

Software Architecture

91

CHAPTER 3

Introduction to Real-Time Data Processing

FIFO Buffers

First-in, first-out (FIFO) buffers are used to buffer data between processors or processes.
Essentially a FIFO is an asynchronous buffer. In the sound player example (see “Software
Architecture,” earlier in this chapter), FIFOs are used as buffers between the main
processor application and the DSP system for music, speech, and sound-effect data.
Likewise, a FIFO is used between the DSP and the speaker I/O port, as shown in

Figure 3-22.

Figure 3-22 Example of FIFO buffers

Music
FIFO

Speech
FIFO

Sound effect
FIFO

92

> CD-XA >

Subband 24 kHz Speaker
| Siband)| sw2asRe [| apdommer || SRS

decompressor

> | 22.254 t0 24 SRC

A\

Figure 3-22 shows how FIFOs can be used in a typical application. The speaker FIFO is
required because the DSP must keep one frame ahead of the audio serial DMA port. The
data FIFOs are necessary because of the slow response time of the disk drive and main
processor application. Typically, a buffer in the range of 20 KB to 40 KB is used to buffer
the disk to the DSP, depending on the data rate. The disk fills the buffer, and the DSP
removes a block every frame. When the FIFO is half empty, the DSP operating system,
which handles the FIFO for the DSP module, sends a message to the main processor
application. This message tells the main processor application to refill the FIFO from

the disk.

FIFOs are also used to buffer output from the DSP to a main processor application—in
sound recorders, for example. They work exactly like the FIFOs described above, except
in the opposite direction.

Another use for FIFOs is to handle data that is not synchronized to the frame rate. For
example, if data is produced at a rate of 22,254.54 samples per second, the amount of
data per frame is either 222 or 223 samples (at 100 frames per second). Using a FIFO
allows the processes that are filling and emptying the buffer to read or write exactly the
amount of data they need. One prime characteristic of any FIFO is its status. It can be
empty or full, half empty or half full, or it can be overrun (following an attempt to put
more data into the FIFO than it can contain). An overrun happens if the data consumer
cannot keep up with the data producer. It is important to make the FIFO large enough to
prevent this from occurring or provide a mechanism in the application to halt data
production.

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

Note

Large FIFOs are usually placed in main memory, because
local memory is limited and the data rate is usually small.
Small FIFOs can be located in DSP local memory. O

FIFOs can also be underrun. This happens when the data receiver is not able to read as
much data from the FIFO as it needs to produce one frame’s worth of data. The FIFO
routines help by automatically doing a zero fill of the unused buffer. For sound, either in
DSP floating-point format, 8-bit integer packed format, or 16-bit integer packed format, a
zero fill is equivalent to silence. For those functions that require it, the actual amount of
data retrieved is reported.

FIFOs are accessed by making DSPFI FORead and DSPFI FON i t e calls to the DSP
operating system. The DSP operating system is responsible for handling status
conditions, such as empty or full, half-empty or half-full, and overrun or underrun. The
DSP operating system is also responsible for updating the FIFO pointers, and sending
messages to the client as required. Typical messages include FIFO Empty (DSP is reading
from the FIFO) and FIFO Full (DSP is writing to the FIFO). In order for the DSP
operating system to manage this, the FIFO has a header block called DSPFI FO. This data
structure is shown in Figure 3-23.

Figure 3-23 The FIFO and its data header

DSP FIFO FIFO

FIFO address and size

Read pointer

Write pointer

7T,

Flags

Each FIFO requires two separate blocks of memory: the DSPFI FOstructure located in
local memory and the FIFO itself located in either local memory or main memory.
Usually, large FIFOs are placed in main memory by the client, to conserve the limited
local memory space.

You must write to a FIFO to add data to it and you must read from a FIFO to look

at the data in it. Hence you need two separate move operations for each datum: a
DSPFI FOW i t e and a DSPFI FORead. Usually, two different processors or processes
are responsible for the two operations. For example, the application playing the
sound writes to the FIFO, while the sound player task reads from the FIFO.

Software Architecture 93

CHAPTER 3

Introduction to Real-Time Data Processing

Real-time data processing FIFOs can read from or write to the DSP side only in
longwords. This restriction is necessary because of the real-time cost of reading bytes
and reordering them. However, the Real Time Manager supports byte reads and writes
to FIFOs from the main processor side. It is also important to note that the DSP operating
system masks the lower two bits of the main processor write pointer (for DSP FIFO
reads) before using the value to determine the amount of data available in the FIFO.
Thus, if the main processor writes six bytes to the FIFO, the DSP will process only four
of them. If the main processor writes another three bytes, the DSP will process four

more bytes, and so on. This forces all FIFO read / write operations from the DSP to

use longwords.

While the FIFO algorithm is ideal for many buffering operations, it requires the DSP
operating system to manage the DSPFI FOstructure and its flags and pointers and also
requires dual data movements. These operations make it inefficient for many common
buffering operations. It was this realization that resulted in the creation of a new type of
buffer, called an AIAO buffer, described in the next section.

AIAO Buffers

ATAO stands for all-in/all-out, a naming convention derived from FIFO. AIAO buffers
transfer data from one module to another during a given frame. The buffer is transient
and acts like a data bucket between modules; the first module fills the buffer, the
following module empties it. Another way of thinking about an AIAO is as a frame-
synchronous buffer containing only one frame of data.

To understand the need for AIAO buffers, consider the sound player example shown
in Figure 3-10. The expanded diagram in Figure 3-24 shows the addition of the
AIAO blocks.

Figure 3-24 Code module data flow with AIAOs

94

Music

FIFO >| CcD-xA >| AlAo >

Speech 24 kHz Speaker

FIFO :>‘ Subband [==) | AIAO |=)>| 81024 SRC |E=) | AIAO |=0 | udio mixer | FIFO
Sound effect 22.254 to

FFo | >l Zasre | V| ARO [E=>

AIAO bulffers are structured differently from FIFO buffers; they do not contain the
header block found in the FIFO. They have a standard section structure and can be used
in place, without being moved. It is these characteristics that make the AIAO buffer

so efficient.

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

Each module in the example has a fixed number of input and output data streams. These
data streams are connected to one another through AIAO buffers. These connections

are made between modules by appropriate calls to the Real Time Manager when the
task is built. In effect the modules are wired together in a processing network. This
plug-and-play module architecture is an important feature of Macintosh real-time data
processing.

ATAO bulffers can be used to pass data between modules within a task, or to pass data
between tasks. The latter case is called an intertask buffer (ITB). The buffers are handled
in a similar way, but additional calls are necessary to support them. ITBs require setting
aside DSP on-chip memory to pass the data between tasks. See “Buffer Connections
Between Tasks,” later in this chapter, for more information about ITBs.

Buffer Connections Between Modules

As previously described, AIAO buffers allow very efficient buffering between modules
and tasks. To illustrate how they are used in this context, the speech player task shown
in Figure 3-17 is expanded in Figure 3-25.

Figure 3-25 Connections between modules

Previous task

Task
Module Module
Subband 1 to 3 sample
Pl h task
ay speech tas > decoder convertor

Disk I:; Input | Output I:; Input | Output :t Sound
FIFO buffer | buffer buffer | buffer buffer

Next task

Notice that there are two types of connections in the diagram. First is the control flow,
indicated with solid arrows. These are the connections that the DSP operating system
follows to execute the real-time task list. The second type is the data flow connection,
indicated by shaded arrows. In this example, data flows from the disk FIFO to the
subband decoder module, from the decoder to the sample rate converter module, and
from the converter module to the sound buffer.

If FIFOs were used for all of these transactions, a total of six DSPFI FORead and
DSPFI FOW i t e calls would be needed, not including the FIFO I/ O needed to get
data into the disk buffer from the disk or to get the sound data into the sound
output DMA channel. These six data moves would be:

= read the disk FIFO to cache (10 samples)
= write the decoded data to a connection FIFO (80 samples)

= read the decoded data from the connection FIFO to cache (80 samples)

Software Architecture 95

96

CHAPTER 3

Introduction to Real-Time Data Processing

= write converted data to the sound buffer FIFO (240 samples)
= read the sound buffer FIFO to cache for mixing (240 samples)
= write the mixed sound to the speaker FIFO (240 samples)

The output data from the decoder would be collected in the cache and then written to
the FIFO as a single block, for efficiency. This is because the FIFO would usually be in
local memory, which would take advantage of the multiple byte move hardware
mechanism described in “Access Timing,” in Chapter 2. Also, there is considerable
overhead for each FIFO DSP operating system call, so it would be time-consuming to
make a call for each data point.

Likewise, the data would have to be read from the FIFO into a cache buffer where it
could be directly accessed by the conversion algorithm. Once the conversion process was
completed, the results would have to be written to the sound buffer FIFO. This process
would require a separate stage mixer for the sound buffer. Each sound player would
have to feed to a separate sound buffer FIFO, which in turn would have to be read by a
mixer and summed, then written to the speaker FIFO. This FIFO would have to be in
local memory, since an unknown number of channels of sound must be mixed. The
cache is too small to maintain very many buffers and leave enough room for the code
and data for the module.

All of this data movement would eat up enormous amounts of DSP processing
bandwidth. This would be especially true since many of the FIFOs would be located
outside the high-speed cache. Using FIFO buffers would reduce the processing capacity
by at least half, due to the relatively slow external memory access.

The enormous FIFO overhead just described is eliminated by using AIAO buffers. Using
ATAO buffers in this example, the software needs move the data only once, resulting in
a sixfold reduction in buffer overhead. The single move is the initial DSPFI FORead by
the subband decoder module. Only 10 samples are moved between external memory
and the cache with AIAOs, but 890 samples must be moved without AIAOs. This
represents an 89 to 1 improvement in bus bandwidth utilization.

This model assumes that the output data from the decoder module is left in the cache,
and becomes the input data for the rate converter module. The converter samples the
data, summing the results to the on-chip sound buffer.

Note

This interconnection of on-chip buffers is accomplished by the Real Time
Manager using the DSPConnect Sect i ons routine. In effect, this
routine sets the section pointers for both AIAOs to the same primary
container in cache memory, which flags the DSP Manager to reserve the
memory space and not to move the data off-chip between modules. O

Notice two important points in the example just given:
» First, the input data is directly available to the sample rate conversion algorithm. The
converter can access the data as many times as it needs in the high speed cache

without a memory-access speed penalty. Multiple accesses are often required for
filtering algorithms, such as rate converters.

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

= Second, it uses a partial result buffer (PRB) for the sound buffer. A PRB is a buffer that
contains a partial mix, and must be summed into, thereby adding to the mix. This is
different than a complete result buffer (CRB), which is written into rather than
summed into.

The application can directly access the on-chip PRB sound output buffer in the high
speed cache. It can read, add to the signal, and write the new results with very little
processing impact. This eliminates the entire mixer chain; the mixing function becomes
part of the output architecture for the module.

Note

This particular use of AIAOs is specifically for sound functions. It is not
a general requirement that ATAO buffers have summing outputs, nor
that they have any particular data format. However, if an AIAO is to

be connected to the ATAO of another module, the size and data type
must match. The specifics of the sound architecture for Macintosh
real-time data processing are covered in “Standard Sound Task List,”
later in this chapter. O

The method of operation just described depends heavily on connections being made
between the I/O sections of modules. The connection process is handled by the Real
Time Manager under the direction of the client. The client specifies what connections are
to be made, using calls to the Real Time Manager. Once all connections are completed,
Real Time Manager allocation routines place each section in the cache in an appropriate
location that ensures the best use of available resources. Every attempt is made to

avoid moving buffers. If this is not possible, an attempt is made to move them within the
cache between module execution. If all else fails, buffers are temporarily moved into
local memory.

It is this connection mechanism that makes it possible to create generic modules that
can be connected in various configurations, depending on the function desired. It is
possible to create completely new functions by connecting together existing modules in
novel ways.

Buffer Connections Between Tasks

In the speech player task example described in the previous section, the sound buffer is
an intertask buffer (ITB). In operation, the AIAO buffer connection between the two
modules is an intermodule buffer. The Real Time Manager also allows similar
connections between tasks, using ITBs.

When the Real Time Manager installs a task, it automatically connects the task to

any existing ITBs. The outgoing ITB list from the previous task becomes the incoming
ITB list for the new task. Likewise, the incoming ITB list from the next task now becomes
the outgoing ITB list for the new task. A diagram of this arrangement is shown in

Figure 3-26.

Software Architecture 97

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-26 ITB connections for previous and next tasks

98

ITBs
In Previous
task
ITBs
Out
ITBs
In New
task
ITBs
Out
ITBs
In Next
task
ITBs
Out

Notice that the diagram above does not represent the data structures associated with the
task list, but rather the concept of ITB handling. As shown, each task can import ITBs
from previous tasks, and can export ITBs to the next task. Usually, the import and export
lists are identical. For sound tasks installed at the appropriate location in the task list, the
ITBs are used for stereo PRBs. If a task is installed at the end or beginning of the task list,
there will be no ITBs—the ITB pointers will be ni | .

When the Real Time Manager is asked to create a new ITB, it adds the new ITB to the ITB
out list. There is then a mismatch between the output list of the new task and the input
list of the next task, because the new ITB was installed prior to the creation of the next
task. This new task thus opens a new ITB.

The next task the application should install is the close task, directly after the first new
task. Using the same approach for creating the ITB lists, this task will have the same
input list as the previously installed task’s output list, and should have the original list
as its output list. This concept is illustrated in Figure 3-27.

In Figure 3-27, any additional tasks installed between the open ITB and close ITB tasks
will have the additional ITB in both its input and output ITB list. This ITB can be used to
pass data between the tasks without requiring off-chip memory. Multiple ITBs can be
added in this same way.

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-27 ITB open and close task configuration

ITBs
In Previous
task
ITBs
Out
ITBs
In Open ITB
task
ITBs
Out
ITBs
In Close ITB
task
ITBs
Out
ITBs
In Next
task
ITBs
Out
Note

Intertask buffers should be created by the first task installed by an
application and should always be deleted by the last task installed. An
application installing tasks does not have any information about existing
ITBs and cannot pass along information about ITBs that it creates.

The application must keep track of creating and deleting ITBs.
Subsequent applications installing tasks must assume that only system
ITBs are available and cannot use ITBs created by other applications. O

IMPORTANT

Each ITB uses additional on-chip memory. Installing ITBs can cause

a section to be saved and restored between modules because of a lack
of on-chip memory. ITBs should only be allocated when absolutely
necessary and should be removed as soon as they are not needed. a

Software Architecture 99

CHAPTER 3

Introduction to Real-Time Data Processing

In the sound player example, a sound output buffer is required to pass the summed
output data between all sound player tasks. At the beginning of the chain of sound
player tasks, the buffer must be opened and cleared. Then, the output buffer of each
player must be connected in turn to this buffer. This is accomplished by reserving cache
memory for the buffer using the mechanism described above. A structure called the DSP
map is used to contain the ITB information. The DSP map provides information to the
Real Time Manager’s cache allocation routines to make the ITB connections and forestall
overruning reserved memory.

During initialization, the Sound Driver automatically signs in to the DSP subsystem and
installs the standard sound task list. This creates system ITBs that can be used by other
tasks inserted into the standard sound task list. Once the last sound task has finished its
operation on the ITB, the ITB can be sent to the speaker FIFO. Once the ITB is dumped to
the output FIFO, it must be closed so subsequent tasks will have access to the cache
memory that the ITB had been using.

Figure 3-28 is a diagram illustrating this concept. This diagram includes an open buffer
task that defines the intertask buffer and clears it, followed by two sound player tasks,
and then the close task that closes the ITB after dumping the results to the speaker FIFO.

Figure 3-28 Example of intertask buffers

J

No ITBs
DSPmap |{=)| ClearPRB
Open
DSPmap |<J
AIAO
DSPmap | {3)| Decoder |mmmm) | Converter
Player #1
DSPmap |<m
ﬁ ﬁ FIFO AIAO AIAO
DSPmap [{=2 —————"")| Decoder
Player #2
DSPmap |<J
ﬁ ﬂ FIFO AIAO
DSPmap |<{) Speaker
Close output
DSPmap |<m
AIAO FIFO
No ITBs

100

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

The intertask sound AIAO buffers in Figure 3-28 are shown in gray. They are connected
as the input and output sections of the modules using the ITB connection mechanism.
This results in the DSP maps that are used to define the ITBs. There is always an input
DSP map and an output DSP map for every task. An open task always has more buffers
in the output DSP map than in the input DSP map. Likewise, a close task always has
more buffers in the input DSP map than are in the output DSP map.

Note

In Figure 3-28 the open and close operations have been shown as
separate tasks. These operations could also be included as part of
player 1 and player 2, respectively. O

Routines are provided in the Real Time Manager to open and close ITBs. ITBs are also
used as the backbone of the sound subsystem, as described in “Standard Sound,” later in
this chapter.

Unified I/O Architecture

There are many cases where a DSP module could be connected to either an AIAO buffer
or a FIFO buffer. For example, the CD-XA decompressor module can be used to supply
the input to another module, using an AIAO buffer, but can also be used to create a disk
file of uncompressed sound, using a FIFO buffer.

For a module with one input and one output buffer, there are four possible cases for
using FIFOs and AIAOs: FIFO to FIFO, AIAO to AIAO, FIFO to AIAO, and AIAO to
FIFO. There are two ways to avoid having four different modules to support these
four cases:

» A standard FIFO-to-AIAO and AIAO-to-FIFO module can be used whenever an
application needs to connect a module to a FIFO.

» A mechanism can be provided to allow either a FIFO or AIAO connection to an AIAO
input or output buffer. This has the advantage of reducing the overhead associated
with parsing and loading a module. It also provides a somewhat more general unified
I/O concept.

The Real Time Manager provides the second capability, by letting a FIFO section be
connected to an AIAQO section. In this case, the AIAO section is “converted” to a FIFO
section. Likewise, an AIAQO section can be connected to a FIFO rather than another
ATAO section, by creating a FIFO with the DSPNewF| FOroutine. This mechanism
operates without requiring control by the module. Data appears in the input buffer
automatically (having been piped from the output AIAO of the previous module) or by
having been read from a FIFO by the DSP operating system. This works equally well for
output buffers.

This automatic connection feature provides a powerful generic I/O system for DSP
modules. It allows modules to be used in many different ways without having to add
“helper” modules. It also results in substantially less processing overhead.

Another extension of the FIFO system is the support of linked buffers, which allow the
DSP to work in a virtual memory environment. When data is being passed from the disk
file system, it is also not necessary to move the data from the disk buffer to a separate
FIFO to play it. This reduces the overhead for disk-related I/O.

Software Architecture 101

102

CHAPTER 3

Introduction to Real-Time Data Processing

Execution Models

As explained in “Software Architecture,” earlier in this chapter, there are two different
execution models for real-time data processing: AutoCache and DemandCache.
AutoCache works for many types of functions and is easier to program and use, making
it the model of choice in most cases.

DemandCache is the more general model, and can be used to implement very complex
functions. Unlike AutoCache modules, DemandCache modules can generate run-time
errors. In general, the DemandCache model requires more work from the programmer.

The difference between the two models is in the caching mechanism. For AutoCache,
the caching is done automatically, based on source-code flags the programmer sets

up for each section in the module. Caching is further supported by a series of
“standard” section macros, such as Newl nput FI FOAndScal abl eBuf f er Secti on,
NewCachedPr ogr anSect i on, NewQut put PRBSect i on, NewPar anet er Secti on,
and others. Each macro sets all the necessary flags for the proper caching operation
for the section, making it much less likely for errors to be made. For example, the
NewCachedPr ogr anSect i on macro sets up caching for a load operation, but not for
a save operation. It also specifies the correct cache bank (Bank A) and the section data
type (code).

DemandCache, on the other hand, requires that the program explicitly activate the
caching functions for each section in the module, using DSP operating system routines.
The programmer is responsible for the proper sequencing of these routines. This adds to
the workload but also allows various combinations of sections to be cached as needed.

Both models require that the first section be a code section. However, in DemandCache,
this section is in off-chip memory when called, and therefore will run much slower than
in AutoCache. Normally only a small bootstrap program should be included in this
section, which caches the “real” code section and calls it once it is in on-chip memory. It
is often more efficient to cache even small code sections on-chip rather than executing
them off-chip.

Both models use a section table that is constructed by the Real Time Manager’s
allocation routines during the installation process. This table contains a list of pointers to
appropriate containers, and is used to determine the active location of each section by
the module code. These pointers provide the basis for section-relative addressing for the
Real Time Manager. Relative addressing is required to allow the Real Time Manager the
freedom to locate sections in the cache in the most efficient manner. The program must
find the location of the sections by using the appropriate macros.

Section Control Flags

The flags that affect how a section is handled by AutoCache and DemandCache are
listed below. It is important to distinguish the difference between source-code flags and
the run-time flags. Since the Real Time Manager can clear some of the flags when making
connections, the flag settings may be different at run time than are indicated by the
source code.

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

s The Load flag indicates that a section should be loaded on-chip. In the general case,
this flag indicates a move from one container to another, and can be cleared by the
Real Time Manager to eliminate a buffer move. This is useful if the buffer is already
on-chip from the module that generated the data.

» The Clear flag indicates that a section should be zeroed before use. This flag should
not be set if the Load flag is set, since loading a section and then clearing it does not
make sense. It is normally used in conjunction with the Save flag. The Real Time
Manager can clear this flag if data already exists in a PRB, and will leave it set if this
module is the first to be connected to a PRB.

s The Save flag indicates that a section should be saved off-chip. In the general case, this
flag indicates a reverse move from one container to another, and can be cleared by the
Real Time Manager to prevent a buffer move. This would be the case if a following
module wanted to use the on-chip buffer as input data.

s The Static flag indicates that a section is to be allocated using the static allocation
method rather than the dynamic allocation method. Static allocation is done at
installation time by the Real Time Manager. Dynamic allocation is done at run
time by the module program. This flag facilitates connected buffer management
for DemandCache. It is ignored in AutoCache modules; the Real Time Manager
will always set the Static flag for AutoCache sections, so its setting doesn’t matter
in the source code when using AutoCache.

= Bank flags include two preference flags, the Bank A flag and the Bank B flag. If neither
are set, this condition specifies external memory for the primary container. If either
flag is set, it specifies a cached section and which on-chip bank is preferred. If both
flags are set it also indicates a cached section; however, either bank may be used.
Notice that it is an error if you specify a Static flag section with no Bank flags set. It
is also illegal to specify a Load flag or Save flag with no Bank flags set. For a better
understanding of the purpose of banked memory for DSP’s, refer to the AT&T
DSP3210 manual or other signal processing literature.

It is very important to correctly understand these flags and how they operate. One of the
most common errors in programming the DSP is setting an illegal or inappropriate
combination of flags. Table 3-3 and Table 3-4, later in this chapter, list combinations of
flag settings to watch out for.

Setting Up Input and Output for Connections

When specifying a section as an input buffer, the Load flag should be set, along with
a Bank flag (usually Bank B). If you connect this section to another module’s section
using the Real Time Manager, the Load flag will be cleared if the section is already
on-chip from a previous module. On the other hand, if the section is off-chip, or has
to be moved off-chip to make room in the cache for an intervening module, the flag
will not be cleared.

When specifying a section as a partial result buffer, the Clear flag and Save flag should
be set, along with a Bank flag (usually Bank B). If the buffer is connected to another
module and will remain on-chip, the Real Time Manager will clear the Save flag. The
Clear flag is always cleared except for the first module summing into a PRB. The PRB
operations pertaining to sound are covered in “Standard Sound Task List,” later in
this chapter.

Software Architecture 103

104

CHAPTER 3

Introduction to Real-Time Data Processing

When specifying a section as a complete result buffer, only the Save flag should be set.
This is the usual setting for modules other than sound modules.

AutoCache Execution Model

The AutoCache function is activated by a flag in the module header. When the DSP
operating system prepares to execute the module it begins with a pre-cache process

that preloads any sections indicated by the Load flag in the section data structures.
Likewise, any section having the Clear flag set in the section structure is cleared. This

is accomplished by the DSP operating system during the parsing of the section structure.
This process supports up to 32 sections.

In the example shown in Figure 3-20, the program, variables, and table sections are
loaded into the cache. The input buffer is connected to an existing AIAO buffer in the
cache, so the Load flag is cleared by the Real Time Manager. Since the output buffer is
not the first to connect to the sound output PRB, the Clear flag is cleared. The Save flag is
also cleared, since the buffer is to remain on-chip after the module completes execution.

The section table for AutoCache always contains the primary container pointers. These
pointers are on-chip for cached sections and workspace, and off-chip for noncached
sections, such as parameter buffers used for main processor/DSP interaction. The section
table does not change during the execution of the module and is always on-chip.

Once the precache process is complete the first section is called. The first section must
always be a code or program section. The code section uses the section table to access
information in the other sections. Programmers should use the standard macros to
obtain the base address of the section (Get Sect i onAddr ess) or the address of a label
within a section (Get Sect i onLabel). When execution is complete, the module returns
control to the DSP operating system.

At this point, the postcache process occurs. All sections with Save flags are copied back
to their secondary sections. In the example shown in Figure 3-20, only the variables
section must be cached back to local memory. The output buffer is left on-chip. It is
important to keep in mind that the Real Time Manager can clear only unneeded flags,
based on the connections made. This prevents the Real Time Manager from overriding
cases where the programmer decides that a section should always be off-chip to
conserve cache space.

Table 3-3 summarizes all the possible flag combinations for AutoCache at run time. The
three groups of cases are for one-container sections, two-container sections, and illegal
combinations. The Real Time Manager uses the Bank flags to determine the number of
containers. If no Bank flags are set, there is a single container off-chip. If one or more
Bank flags are set, and either the Load flag or Save flag is set, then two containers are
used: one off-chip and one on-chip. If a connection is made which eliminates the need
for a secondary container, it is deleted, and the section becomes a one-container section.

The Real Time Manager can also set up cases where both primary and secondary
containers are on-chip. It uses this mechanism to automatically move sections to
conserve cache space.

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

Table 3-3 Run-time AutoCache flag combinations
Flags
Bank Static Load Save Clear Comments

n n — —
n n — —
n n —_ n
n n —_ n
| | [| [| —_
| | [| [| | |
? - ? ?
— [] [] ?
_ [] ?]
n n n —_
n n n n
NOTE ™ =flagset, —=flag cleared,
WARNING

Single-container case—Bank flags
not set

Off-chip section (parameters,
workspace)

Off-chip initialized workspace
Allocate on-chip workspace
Allocate a cleared on-chip workspace

Dual-container case—one or more
Bank flags set

Save primary to secondary on exit

Allocate a clear primary on entry, save
to secondary on exit

Load primary from secondary on entry

Load primary from secondary on entry,
save to secondary on exit

Illegal cases—caching with one
container or dynamic allocation

Illegal—can’t AutoCache with a
dynamic section

Illegal—can’t AutoCache with one
container

Illegal—can’t AutoCache with one
container

Useless/illegal
Useless/illegal

? = do not care what flag is set to

The foregoing method of providing buffer moves cannot

be used for DemandCache. a

Software Architecture

105

106

CHAPTER 3

Introduction to Real-Time Data Processing

DemandCache Execution Model

DemandCache is used for complex situations such as the following:
= More than 32 sections are required.

» A module must make a decision as to which sections must be cached, based on some
program status.

= A module has one or more large functions which must be broken down into smaller
steps that will fit in the cache. This requires a sequence of cached sections.

The DemandCache execution model supports any number of sections, but the section
table cannot be placed in the cache if the number of sections gets too large. The
programmer must make the trade-off between faster execution (in-cache section table)
and more cache space available (out-of-cache section table). This selection is done by
setting a flag in the module header.

The Real Time Manager determines if two containers are needed by observing the Static
flag. If it is set (static allocation), two containers are required. Otherwise, only a single
container is required (dynamic allocation). In effect, a static section is allocated in the
same way sections are allocated in AutoCache, at module installation rather than during
run time.

Note

Since the Static flag is ignored for AutoCache, standard section macros,
such as NewPRBQut put Sect i on, set this flag. This eliminates the need
to have two sets of macros. O

Note

While two containers are allocated initially for static sections, the section
may become a one-container section once the Real Time Manager has
done its work. Clearly, if neither Save flags nor Load flags are set the
secondary container is not needed. O

Caching is accomplished with calls to the DSP operating system. There are only two
routines: PushSect i on and PopSect i on. These routines can do different things,
depending on the state of the section control flags. Whenever a section is accessed with
these routines, the section table is updated.

The DSP operating system names PushSect i on and PopSect i on reflect the stack-like
structure of DemandCache. The PushSect i on routine pushes a section onto the cache
stack, and the PopSect i on routine pops a section off of the cache stack. There are
actually two different stacks: the Bank A stack and the Bank B stack. Two stacks are
necessary to support the maximum performance operation for dual bank caches.

WARNING

The PushSect i on and PopSect i on routines will cause a run-time
error if neither Bank flag is set, because a section without a bank
preference is an external section. a

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

As in AutoCache, the section table is prebuilt during the load process by the Real Time
Manager. For AutoCache, the values in the table are always the primary container
pointers. DemandCache is more complex—the values in the section table are different
for dynamic and static sections. Each case is described separately below.

DemandCache for Dynamic Sections

Most of the sections in a DemandCache module are dynamic, and are allocated by the
programmer on the stack. Only a single container is required for these sections. The
primary container is always an off-chip buffer, and the secondary container pointer is

ni | . The PushSect i on routine creates a temporary container on the stack, and the
PopSect i on routine removes it. Both PushSect i on and PopSect i on routines update
the section table: PushSect i on changes the pointer from the primary container to the
newly created stack container and PopSect i on does the reverse.

Note
The container pointers in the section data structure
are not modified by either of these routines. O

All section flags affect the operation of the PushSect i on and PopSect i on routines. A
PushSect i on routine uses the Load flag, Clear flag, and Bank flags. The PopSect i on
uses only the Save flag. The Static flag’s impact on PushSect i on and PopSecti on
operations is discussed next in “DemandCache for Static Sections.”

When PushSect i on is called, a block of memory is allocated in the appropriate stack
(selected by the Bank preference flags). If the Load flag is set, the contents of the primary
container is copied to the stack. Otherwise, the allocated space is work space. If the Clear
flag is set, the allocated stack space is cleared. In effect, you can specify that the work
space be either cleared or not cleared with this mechanism. Both flags should not be set.

When PopSect i on is called, the stack space is copied back to the primary container if
the Save flag is set. Then the stack space is deallocated.

If you access a dynamic section prior to a PushSect i on call or after a PopSect i on call,
you will access the primary container in external memory. Accesses between the
PushSect i on and PopSect i on calls will be directed to the section in the cache stack.

WARNING

It is the programmer’s responsibility to update the pointers after using
the PushSect i on or PopSect i on routine. The DSP operating system
only updates the section table, not the registers used by the programmer
in the module. a

Notice that there are run-time errors that can occur with these routines. For
PushSect i on, insufficient space in the stack or no Bank flags will cause an error.
For PopSect i on, an error will result if the section space in the stack is not at the top
of the stack. In either case, the DSP operating system will mark the task as inactive
and send a message to the client indicating the type of error.

Software Architecture 107

108

CHAPTER 3

Introduction to Real-Time Data Processing

DemandCache for Static Sections

Static sections are used in DemandCache as a mechanism to provide efficient inter-
module buffer management. This use is supported by the Real Time Manager and is one
of the central services of the real-time data processing architecture. This connection
mechanism allows the creation of generic modules that can be interconnected in many
different ways for different purposes, without explicit programming. To support all
possible cases, however, the module programmer must follow the rules for the I/O
sections that are to be connected.

Static sections are allocated at module installation time by the Real Time Manager. This is
very similar to the allocation of sections in the AutoCache model. When PushSect i on
is called, the section table is updated with the primary container pointer. If the Load flag
is set, the contents of the secondary container is copied to the primary container.
Otherwise, the primary container is work space. If the Clear flag is set, the primary
container is cleared. In effect, you can specify that the work space be either cleared or not
cleared with this mechanism. Both flags should not be set.

If the Save flag is set when PopSect i on is called, the primary container is copied back
to the secondary container and the section table is updated with the secondary container
pointer. If the Save flag is not set, the section table is updated with the secondary
container pointer only if the pointer is not ni | . The pointer is ni | for single container
sections and contains a valid address for loaded sections.

To summarize, static sections work very much like AutoCache except that caching
operations are carried out under the control of the module programmer rather than prior
to and after module execution.

No run-time errors can occur with static sections.

Connections in DemandCache

It is possible to make connections to either dynamic or static sections using the Real Time
Manager. If a connection is made to a dynamic section the primary container is shared
with the other connected sections in local memory, external to the cache. This can be
used to reduce local memory requirements or pass parameters between modules. This
type of connection is made without specific module programming. In effect, the primary
container pointer is changed to point to some other container and the original container
is deleted.

For static sections, connections are made as with AutoCache, using two containers. Such
connections are used to pass buffers between modules without the overhead of moving
them off-chip and then back on-chip for a subsequent module. The section table contains
the secondary container pointer until a PushSect i on call is made, after which it
contains the primary container pointer. When a PopSect i on call is made, the section
table is restored to the secondary container pointer.

For some types of connections, the secondary container is not required. For example, if
an input section is already on-chip from a previous module, the Load flag is cleared and
there is no use for the secondary container. In this case, the secondary container is

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

eliminated and the secondary pointer is set to ni | . The primary pointer is placed in the
section table in place of the ni | secondary pointer. Notice that neither PushSect i on
nor PopSect i on actually move memory in this case.

WARNING

This means that the DemandCache programmer must always make the
PushSect i on and PopSect i on calls in the code for static input and
output sections. By making the calls, the correct function is executed,
depending on the connections made. This makes the generic connection
mechanism available to the DemandCache programmer. a

For example, suppose you have a simple module with a single input section (ignoring
other sections). This input can be connected by the client that is installing the module
into the task. Since it is a general-purpose input buffer, the Load flag and Static flags
should be set.

If the client makes a connection to an output buffer from a previous module, and the
buffer is already on-chip, then the Load flag will be cleared, and the primary container
pointer will point on-chip to that buffer. The secondary container is deleted, and ni | is
stored in the secondary pointer. The primary container pointer is placed in the section
table. When PushSect i on and PopSect i on are called, no action is taken. Notice that
the program may access the buffer before the push operation or after the pop operation,
if desired

If the client instead makes a connection to a previous module with an off-chip output
buffer, the Real Time Manager will not clear the Load flag, and the secondary container
will be valid. The secondary container pointer will be put into the section table. The
PushSect i on routine will load the off-chip buffer into the on-chip primary container
and update the section table pointer. The PopSect i on routine will restore the secondary
container pointer in the section table. Accessing the secondary container prior to the
push gives access to the input data off-chip (slow access). It does not make sense to
access the data after the pop operation, since the data is not saved.

Hence, off-chip buffer accesses are not recommended prior to a push or after a pop
operation. Since the location pointed to by the section table is certain to be on-chip only
after the push and before the pop operation, accessing data on-chip can be guaranteed
only between these routines.

Table 3-4 summarizes the flag combinations for DemandCache at run time.

Notice in Table 3-4 that although it is not illegal to specify or use a section that does not
have any Bank flags set, it is always illegal to push or pop such a section. Other illegal
combinations include static sections with no bank preference flags, and cached sections
(Load flag or Save flag set) with no bank preference.

Software Architecture 109

CHAPTER 3

Introduction to Real-Time Data Processing

Table 3-4 Run-time DemandCache flag combinations
Flags
Bank Static Load Save Clear PushSecti on PopSecti on
Single-container
dynamic case—Static
flag is not set
Ll - - - - Allocate space in stack Deallocate space in
stack
. - - - = Allocate and clear stack Deallocate space in
workspace stack
. - - = - Allocate space in stack Save to primary and
deallocate
= - - = = Allocate and clear stack Save to primary and
workspace deallocate
= - = - - Allocate and load stack Deallocate space in
from primary stack
ol - . . - Allocate Save to primary and
deallocate
Single-container static
case—Static flag is set
. . - - - No operation No operation
. . - - = Clear primary No operation
Dual-container static
case—Static flag is set
" - - . - Section table change Save primary to
only secondary
= - - = = Clear primary Save primary to
secondary
= . = - - Load primary from Section table change
secondary only
= = = = - Load primary from Save primary to
secondary secondary
Illegal cases—if no Bank
flags are set
- - - ? Off-chip section, push Off-chip section, pop
illegal illegal
- = ? ? ? Static illegal if no Bank Static illegal if no Bank
flag set flag set
- ? = ? ? Load illegal if no Bank Load illegal if no Bank
flag set flag set
continued

110

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

Table 3-4 Run-time DemandCache flag combinations (continued)

Flags

Bank

Static
?

Load Save Clear PushSecti on PopSecti on

? = ? Save illegal if no Bank Save illegal if no Bank
flag set flag set

. - . Useless/illegal Useless/illegal
. . . Useless/illegal Useless/illegal
. - . Useless/illegal Useless/illegal
. . . Useless/illegal Useless/illegal

NOTE m =flagset, —=flagcleared, ?=do not care what flag is set to

FIFO Connections

It is possible to connect standard AIAO input and output buffers to a FIFO buffer. This
can be done in one of two ways:

s Connect a FIFO section to an AIAO section with the DSPConnect Sect i ons routine.
» Create a FIFO for an AIAO I/O section with the DSPNewF| FOroutine.

In the first case, the ATAO section is marked as a FIFO section, and the secondary
container becomes the DSPFI FOdata structure. One section should be an output section
(Save flag set), and the other should be an input section (Load flag set). In the second
case, a new DSPF| FOstructure is created as the secondary container, and the AIAO
section is marked as a FIFO section.

The DSP operating system recognizes these flag combinations, FIFO plus Load flag or
FIFO plus Save flag, and does a DSPFI FORead or DSPFI FOW i t e automatically, in
place of a normal block copy. This allows the client to make connections with FIFOs
without changing the module code. For AutoCache, the FIFO operations occur during
the precache and postcache processes. For DemandCache, the FIFO operations occur
during push and pop operations.

WARNING

In DemandCache, it is inappropriate to access an input or output
section before a push or pop operation, because a FIFO connection
may have been made by the client. a

The Set Taskl nact i ve flag in FIFO operations makes it possible to do useful things
with FIFO connections. For example, it is possible to set up a sound player and connect
its input to a sound FIFO. By setting the Set Taskl nact i veOnEnpt y and

Set Taskl nact i veOnUnder r un flags, the player will automatically stop when the
buffer has played. A zero fill is done on the last DSPFI FORead, which creates silence at
the end of the sound if it is not an integral number of frames in length.

Software Architecture 111

CHAPTER 3

Introduction to Real-Time Data Processing

Grouped Modules

AutoCache and DemandCache provide enough flexibility for most functions. If
a job cannot be accomplished with AutoCache, it is almost certain to be possible
with DemandCache.

There are cases where having one big complex module to handle a complex case is not a
good solution. This is where a set of already existing standard modules, if properly used,
could get the job done. Another case is when automatic function replacement is
desirable. For example, a system might consist of several very distinct functions, all
implemented as separate modules. It is possible to replace a single module with a new
and better one if the functions are separate rather than integrated into a single module.
This is especially important if the modules were created by different programmers.

To support this type of building-block philosophy; a field called skipcount is added to
each module. The skipcount number is normally set to zero, which indicates that the
DSP operating system should proceed normally to the next module in the task or jump
to the next task if the next module pointer is ni | . The skipcount can also be set to -1,
which means that the DSP operating system should exit the task at the completion of the
module, ignoring any additional modules that may follow.

If the skipcount has any value from 1 up, it tells the DSP operating system how many
modules to skip over in the current task before continuing module execution. If the DSP
operating system runs out of modules in the task while skipping, it automatically exits
the task, and begins the next one. This is not considered a run-time error. The skipcount
from one task cannot affect a following task.

Here is an example of how the skipcount can be used in a telephone answering function,
where a status and control module is required. The module is responsible for detecting
rings, taking the phone line offhook, and hanging up the phone. Other functions needed
include a recorder function, a play message function, and a dial function. The recorder
function may need a DTMF decoder to detect remote control functions. The recorder
may use a compression module, and the player may use a decompression module. One
possible arrangement of these modules is shown in Figure 3-29.

Figure 3-29 Example of DSP task for telephone answering

4

4

112

X -1 -1 0 -1
Status Subband DTMF Subband DTMF
PhoneMan :> :> :> :>
module encoder encoder decoder decoder
Control Play Dial L Record ——!

In this example, the status module contains the control function. It normally has a
skipcount of -1 when the answering machine is idle. When a play function is needed the
skipcount is set to 0. When the dial function is needed the skipcount is set to 1. When the
record function is needed the skipcount is set to 2. The fact that the skipcount has several
possible values is indicated with an “x” in Figure 3-29.

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

The skipcount can be set initially by calls to the Real Time Manager. Since the count is
normally 0, the value -1 should be stored in the status module, subband encoder, DTMF
encoder, and subband decoder modules. The last module count does not matter but
should be set to —1. The status/ control module will change its own skipcount as needed
using the DSP operating system routines provided.

GPB for Grouped Modules

The telephone-answering task described in the last section never actually uses all of the
modules within it at the same time. Hence it would be inappropriate to add up the GPB
requirements for all the modules and allocate that much time for this function. A flag,
called Dont Count Thi sModul e, is included in the module to handle this case. If set, it
tells the Real Time Manager not to include the GPB of a module in the total GPB
requirements for the task. It is up to the client that is installing this group to determine
which is the worst-case utilization of modules, and to mark all of the other modules with
the flag. In the example, the record case is probably the worst case. Therefore, the dial
and play modules should have their Dont Count Thi sModul e flags set. This is shown
in Figure 3-30, where modules with the flag set are shown with shading. Only the
unshaded modules will have their GPB requirements added to the task total.

Figure 3-30 Controlling GPB in grouped modules

4

X 1 -1 0 1
Status Subband DTMF Subband DTMF
PhoneMan : > : >
module encoder encoder decoder decoder
Control Play Dial Record

4

Module Scaling

The Macintosh real-time data processing architecture makes it possible to use
modularized digital signal processing functions in different configurations, reducing

or eliminating the need to rewrite DSP modules whenever a slightly different operation
is required. To accomplish this, the architecture provides unified I/O buffers and
connections to make up new applications from existing modules. It also includes

the ability to scale a module’s buffers to accommodate different frame rates, sample
rates, and GPB requirements.

It is possible for a client to encounter one of three sample rates for sound or telecom, plus
one of two (at least) frame rates. It would be unfortunate if a different module was
required for each of the possible cases. The real-time data processing architecture solves
this problem by providing a means of scaling any module to fit the current frame and
sample rate, as well as select the appropriate GPB estimate for the module’s functionality.

There are several characteristics that change for a module when either the frame rate
or sample rate change. First, the required GPB number changes. A module that takes
5000 GPB units to execute at 100 frames per second will only take 2500 GPB units at

Software Architecture 113

114

CHAPTER 3

Introduction to Real-Time Data Processing

200 frames per second. The second characteristic that changes is the number of repeat
loops the module must execute to complete processing for a frame. Again, at the

200 frames per second rate only half as many samples must be processed or generated
per frame. A module may also change its GPB requirements based on an outside
loading factor.

There are some types of modules that normally do not operate at different frame rates or
sample rates—for example, a DTMF decoder. This is because a DTMF decoder looks for
specific frequencies and must assume a sample rate. A more advanced version of a
DTMEF decoder could be created that would adjust automatically to the sample rate.

A good example of a module that can easily function at various sample rates and frame
rates is a sample rate converter. If the converter has a fixed conversion rate, it can
operate just as well on 32 kHz data as 8 kHz data. Likewise, it can operate just as well
on 240 samples per frame as 120 samples per frame. A more advanced sample rate
converter would be able to adjust automatically to changes in the input frequency by
changing the conversion factor. This capability requires that a module be able to request
more or less GPB even though the sample rate and frame rate have remained fixed.

The Real Time Manager provides a mechanism for the module programmer to specify
scalability, whenever it is possible. This is done with the use of scaling vectors and the
GPB mode (AutoCache or DemandCache). A scaling vector contains three values: the
frame rate, the scale factor, and the GPB value. Any number of scaling vectors can be
supplied for a module. They work for both AutoCache and DemandCache modules.
In addition, a scaling vector can have one frame rate and scale factor with multiple
GPB estimates.

The module code itself determines the number of samples it has to work with by using
the Get Sect i onSi ze macro. By using this on its input buffer, for example, the module
can determine the repeat count of its processing loop. Generally, this is the only
information required by the module. It contains both sample rate and frame rate
information in a single number. The GPB mode must be specified if the module has
variable GPB requirements.

The frame rate value is used to select the appropriate scaling vector. The scale factor is
used to determine the size of the scalable 1/ O buffers for the module.

The scalability of I/O buffers is indicated by setting the Scal abl eSect i on flag. This
flag should be set only for AIAO I/O buffers. The Real Time Manager determines the
actual size of the section for a given scaling vector by multiplying the size set in the
source code by the scaling vector’s scale factor.

In a 2 to 1 sample rate converter, for example, scaling vectors might be generated for the
following cases:

= 100 frames/sec. 24 kHz to 12 kHz
s 200 frames/sec. 24 kHz to 12 kHz
s 100 frames/sec. 8 kHz to 4 kHz

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

= 200 frames/sec. 8 kHz to 4 kHz

= 100 frames/sec. 16 kHz to 8 kHz
= 200 frames/sec. 16 kHz to 8 kHz
= 100 frames/sec. 48 kHz to 24 kHz
= 200 frames/sec. 48 kHz to 24 kHz
= 100 frames/sec. 32 kHz to 16 kHz
= 200 frames/sec. 32 kHz to 16 kHz

Note

The only information the module would need to operate at any of these
rates is the amount of cache space and the size of either the input or
output buffer. All of the required information to support these 10 cases
can be supplied by 10 scaling vectors. O

Since this module is a 2 to 1 converter, the size of the input buffer in the source code
should be set to 2, and the output buffer should be set to 1. The 10 scaling vectors would
look like this:

Mode 0 100, 120, 5000 [100 £/s, scale = 120 (I/ O size of 240/120), GPB = 5000]
Mode 1 200, 60, 2500 [200 £/s, scale = 60 (I/O size of 120/60), GPB = 2500]
Mode 2 100, 40, 1666 [100 f/s, scale = 40 (I/ O size of 80/40), GPB = 1666]
Mode 3 200, 20, 833 [100 £/s, scale = 20 (I/O size of 40/20), GPB = 833]
Mode 4 100, 80, 3333 [100 £/s, scale = 80 (I/O size of 160/80), GPB = 3333]
Mode 5 200, 40, 1666 [200 f/s, scale = 40 (I/ O size of 80/40), GPB = 1666]
Mode 6 100, 240, 10000 [100 f/s, scale = 240 (I/ O size of 480/240), GPB = 10,000]
Mode 7 200, 120, 5000 [200 f/s, scale = 120 (I/ O size of 240/120), GPB = 5000]
Mode 8 100, 160, 6666 [100 f/s, scale = 160 (I/O size of 320/160), GPB = 6666]
Mode 9 200, 80, 3333 [200 f/s, scale = 80 (I/ O size of 160/80), GPB = 3333]

Notice that there are several cases where the same values for GPB and scale factor are
used, but a different frame rate is selected. This is necessary to provide a mechanism for
the module programmer to exactly specify the conditions under which the module will
operate. There may be cases where the module will not operate correctly when run at a
different frame rate with the same GPB and scale factor. An example of this is a module
that is designed to operate at specific frequencies, such as a DTMF decoder.

Note

In the example, the GPB numbers are neatly set to round
numbers. In reality, the numbers may not be so round,
because of bus and DSP operating system overhead. O

Software Architecture 115

CHAPTER 3

Introduction to Real-Time Data Processing

Selecting Module Scale Factor

The process for selecting the scale for a module is simple. When the client wishes to load
a module, a Real Time Manager call to DSPLoadMdul e is made. One of the parameters
provided to the Real Time Manager is the scale factor. The current DSP frame rate is
provided automatically. If there is a matching scaling vector, the scalable sections are
scaled appropriately and the correct GPB is used. If there is no matching scaling vector,
an error is returned. The client must make a selection based on the required I/ O buffer
sizes. The associated scale factor is then passed to the loader.

Standard Sound

Standard sound consists of a set of tasks installed in the real-time task list plus the DSP
Sound Driver. The Sound Driver acquires control over the sound port, installs and
maintains the sound tasks, and handles the interface to the Macintosh Sound Manager.
The goal of the Sound Driver is to provide DSP sound support to all applications that
do not use the DSP, and to provide a plug-board architecture for sound applications
that use the DSP. The relationship between these different layers of software is shown in
Figure 3-31.

Figure 3-31 DSP Sound Manager and Sound Driver

Applications

i

Sound Manager

g

DSP Sound Driver

g

DSP Manager

The function of the Sound Driver interface is to provide a hardware-independent
interface to the Macintosh Sound Manager that can accept requests for work to be done.
The interaction between available GPB and work requests is handled automatically by
the Sound Driver. If there is insufficient DSP processing time available, the Sound Driver

116 Standard Sound

CHAPTER 3

Introduction to Real-Time Data Processing

rejects the work request, and the Sound Manager does the work itself. This mechanism
prevents a heavily loaded DSP from preventing essential sound functions from
operating. The DSP is used if it is available, and normally results in better sound.

Sound Manager Interface

The Sound Manager approach is to provide a series of blocks for processing sound from
the raw data to the output. This diagram is shown in Figure 3-32.

Figure 3-32 Sound Manager processing

Host processing DSP processing

Sound buffer

|:>| Decompressed Ii>| Rate convert |:":>| Effect |:>| Mix) Effect

The dividing line between 68000 processing and DSP processing moves from right to left
in Figure 3-32, depending on the amount of DSP processing available; the more DSP
processing available, the farther left the line goes. The mix and speaker output is always
done in the DSP. However, if additional channels of sound are required, and the DSP is
fully loaded, the additional channels will have to be “premixed” before arriving at the
DSP. If sufficient DSP processing is available, the entire processing chain for each channel
will be handled by the DSP. The processing of each channel is done by a task installed in
the player patch point, described in the next section. In the example above, the task
consists of a decompressor module, a sample rate converter module, and a special effects
module. All modules are interconnected via AIAO buffers. The input buffer for the
decompressor is a FIFO and the output buffer is the sound output buffer.

Standard Sound Task List

The standard sound task list consists of five separate tasks, as shown in Figure 3-33.

The first and last task are responsible for handling the serial port data stream and for
opening and closing two ITBs that pass stereo data in DSP floating-point format between
all five of the tasks. These buffers are used to provide the standard sound patch points.

Note
The standard sound tasks are not named to represent what the task does
but rather are named for the patch points associated with them. O

Standard Sound 117

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-33 Standard sound task list

118

. Process input data stream to
Sound input standard sound buffers
Sound input patchpoint
Preprocess patchpoint
.
Convert from 22.2545 to
Preprocess Sound Manager, as needed
Recorder patchpoint
N
Record/play Input to output monitor volume
Player patchpoint
N

Convert to 24.000 from
Sound Manager, as needed

Post process

Post process patchpoint
Sound Output patchpoint

Process standard sound buffers to

Sound output output data stream

The sound input task takes the serial data stream from the DMA channel coming from
the stereo A /D converter and converts it to DSP floating-point format. For 10 ms frames
and 24 kHz sound, this takes the form of two 240-longword buffers. These buffers are
established as ITBs by the DSP map structure associated with sound input.

If an application wishes to get access to the raw input data stream, it installs a task after
the sound input task. Such a task should not modify the sound input.

The preprocess task provides a stereo or mono data stream to the sound input at any of
the standard 8-bit rates of 7, 11, and 22 kHz, and 16-bit sound at the current rates of 24,
32, or 48 kHz.

If an application wishes to preprocess the sound datastream prior to it reaching any
recorder tasks, it installs a task prior to the preprocess task.

The record / play task handles the monitor function of the standard sound plug board.
This function allows none or all of the input sound to be passed to the output sound.

If an application wishes to record sound, it installs a task before the record /play task. If
an application wishes to play sound, it installs a task after the record /play task.

The postprocess task accepts a mono or stereo sound channel from the Sound Manager
at the standard 8-bit rates of 7, 11, and 22 kHz, or 16-bit sound at the current rates of 24,
32, or 48 kHz.

Standard Sound

CHAPTER 3

Introduction to Real-Time Data Processing

If an application wishes to postprocess the mix from all players, it installs a task after the
postprocess task.

The sound output task accepts the final mixed and processed output data stream in DSP
floating-point format. It takes care of the system volume control function, converts the
data to the serial port format, and transports it to the sound output buffer. The DMA
channel passes this data to the sound D/ A converters.

If an application wishes to access the data stream after all players and postprocessing, it
installs a task before the sound output task. Such a task should not modify the output
sound stream.

The operation of the standard sound plug-board depends on the function of AIAO
buffers and the Real Time Manager. The two sound ITBs are opened by the sound input
task, and passed to each task in the list. The sound output task closes the ITBs. This
operation is covered in “Buffer Connections Between Tasks,” earlier in this chapter.

There are two different ways a sound module can be installed in this task list. For these
examples, assume the application is installing a five-band active equalizer module
(forming one task). This module can be installed as a preprocessor or part of a more
complex preprocessor function, as a recorder or part of a recorder, as a player or part of
a player, and as a postprocessor or part of a postprocessor. Figure 3-34 shows how the
module can be used as a recorder.

Figure 3-34 Equalizer used as a recorder task

Task list

:

Recorder ———mEqualizer module

Left channel Program
Right channel Tables
i Variables
Record/play task Input buffer
Output buffer [FIFO [—® To disk
Parameters

In this example, assume that the equalizer is monophonic. Its input buffer is a scalable
ATAO bulffer, and its output buffer is a scalable ATAO buffer. This means that the Load
flag is set for the input buffer, and the Clear flag and Save flags are set for the output
buffer. These buffers were created using the NewScal abl el nput Buf f er and
NewScal abl ePRBQut put Buf f er macros.

Standard Sound 119

CHAPTER 3

Introduction to Real-Time Data Processing

The application uses the Real Time Manager to make a connection between the right
channel ITB (shown as part of the record / play task) and the input buffer section of the
equalizer. Since the ITB already exists on-chip, the Load flag is cleared by the Real Time
Manager, and the input buffer primary container is made to be the same as the right
channel buffer. This completes the input connection.

The output buffer section is connected to a FIFO, using the NewF| FOroutine. The
application uses this FIFO to buffer the data to the disk. In this case neither the Clear
flag or Save flags are cleared by the Real Time Manager.

When executing, the output buffer is cleared, the equalizer reads its input data from the
right channel buffer, and then the equalizer sums its output into the output buffer.
Finally, the DSP operating system writes the buffer to the FIFO. The data recorded is the
same data format and sample rate as the input data, but has been processed through the
equalizer filters.

The next example connects the same module as a player. A player task is installed after
the record / play task, as shown in Figure 3-35.

Figure 3-35 Equalizer used as a player task

Task list

'

Recorder ——— = Equalizer module

120

Left channel Program
Right channel Tables
i Variables
Record/play task Input buffer
Output buffer R I FIFO ~4— From disk
Parameters

When the connection is made from the output buffer to the right channel buffer, the
Clear flag is cleared, since this module is not the first to input to the right channel buffer.
Likewise, the Save flag is cleared, since the right channel buffer already exists on-chip.
Thus, any already existing signal in the buffer is directly summed into by the equalizer.
This is a normal or direct connection.

Note

The function of this buffer as a summing buffer is a fundamental
property of the standard sound plug board. O

In Figure 3-36, the equalizer task is used as a sound preprocessor.

Standard Sound

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-36 Equalizer used as a preprocess task

Task List

'

Preprocess ——— = Equalizer module

Left channel Program
Right channel Tables
i Variables
Preprocess task Input buffer

Output buffer

Parameters

In this case, both the input buffer and the output buffer are connected to the same ITB. If
the normal summing connection was made between the output buffer and the right
channel buffer in this case, the desired result would not be achieved. Rather, the sum of
the signal and the filtered signal would be in the right channel buffer. In this case, the
client must make an indirect connection between the two buffers. This type of connection
is selected with one of the Connect Sect i ons routine parameters.

An indirect connection is the same as a direct connection, except a buffer move is
required—either the Save flag of the source buffer or the Load flag of the destination
buffer must be set (or not cleared). The Clear flag of the source buffer must be left set.
This results in the equalizer summing into a cleared buffer, followed by the DSP
operating system saving the filtered sound into the right channel buffer, overwriting the
previous sound data.

The final example is to use this same equalizer as a postprocessor. The layout would look
exactly like Figure 3-36, except the location of the task would be different.

These examples show the versatility of the standard sound plug-board architecture. In
addition, the utility of the Real Time Manager to create connections between FIFOs and
AJAOs, and to provide both direct and indirect connections, allows the standard sound
modules to be used in very flexible ways.

Sample Rate and Frame Rate Changes

There are two factors that affect the real-time DSP processing of sound: the sample rate
of the sound I/O subsystem, and the frame rate of the DSP operating system. While it is
possible to handle these two factors separately, it is more convenient to handle them
together. This simplifies the standard sound task list.

Standard Sound 121

CHAPTER 3

Introduction to Real-Time Data Processing

This approach offers three different “gear shifts” for sound:
= standard sound (24 kHz sample rate, 10 ms frame rate)

= high fidelity sound (32 kHz sample rate, 5 ms frame rate)
= professional sound (48 kHz sample rate, 5 ms frame rate)

The advantage of this approach is that there is sufficient room in the cache to support all
of these selections, including the dual intertask buffers. If 48 kHz was supported at

10 ms frames, for example, the buffers would be too big to both fit in the cache along
with the DSP operating system and module code.

122 Standard Sound

CHAPTER 4

Real Time Manager

CHAPTER 4

Real Time Manager

This chapter describes the Macintosh system software routines for accessing, controlling,
and monitoring the digital signal processor (DSP) subsystem in the Macintosh

Quadra 840AvV and Macintosh Centris 660AV. The DSP subsystem provides real-time
processing for applications that require a guaranteed throughput. It also provides
processing for applications that perform timeshare processing.

Before you read this chapter you should already be familiar with
» Macintosh programming
= using resource files

» the concepts of digital signal processing given in Chapter 3, “Introduction to
Real-Time Data Processing”

A brief synopsis of the Real Time Manager is provided first. Valuable information about
getting started with the DSP is included in “About the Real Time Manager.” This is
followed by a top-down explanation of how an application accesses the different levels
of the DSP architecture. Next is an example showing the necessary commands in the
order they would probably be used. Optional commands are included to provide you
with programming alternatives. At the end is a Real Time Manager Reference, organized
in top-down order. Routines are listed for each level of the Real Time Manager in logical
groupings.

For information about installing and debugging DSP programs in the Macintosh
Quadra 840Av and Macintosh Centris 6604V, see Appendix A, “DSP d Commands for

MacsBug,” Appendix B, “BugLite User’s Guide,” and Appendix C, “Snoopy User’s
Guide.”

About the Real Time Manager

124

The Real Time Manager provides access to the capabilities of the Macintosh DSP
subsystem. DSP code modules for performing the desired data manipulations must
already be available as resources. Apple provides a standard set of DSP code modules as
resources for performing sound and telecommunications input and output. These
functions include data compression, sample-rate conversion, disk store and recall, and
playing sound files directly from disk. Examples are described in “Standard Sound Task
List,” in Chapter 3.

Real Time Manager Structure

Figure 4-1 gives a high level architectural view of the DSP subsystem. To maintain
implementation independence, the Real Time Manager must perform all operations on
the DSP subsystem. Programmers wanting to maintain compatibility should always use
the Sound Manager and communications toolboxes provided by Apple. For maximum
performance the Real Time Manager is accessible directly. However, error handling
should be included for use on computers without the DSP.

About the Real Time Manager

CHAPTER 4

Real Time Manager

Figure 4-1 DSP subsystem overview
Client(s)
Sound Manager Comm. Toolbox

DSP Manager

ﬂ Shared data structures

DSP Driver(s)

68K Code ﬁ

3210 Code (—— DSP kernel

To determine if the DSP subsystem is available use the Gestalt command. See “Machine
Identification,” in Chapter 1.

To check compatibility with the version of the Real Time Manager installed in the
system, the DSPManager Ver si on routine must be called. This routine should always
be called early in the application to determine if its DSP tasks can be installed.

pascal unsigned | ong DSPManager Ver si on(voi d)

The Sound Manager includes code that sets up and maintains a set of standard system
tasks to support input and output for the stereo codec and mono/stereo sound player,
as well as multiple sample rates and sample rate changes. Calls made to the Sound
Manager are always performed by the system. If there is no DSP subsystem available,
the system performs the desired function using the main processor.

The Communications Toolbox handles similar functions for the telephone and data
communications serial port. Calls made to the Communications Toolbox will only be
performed if a DSP subsystem is available.

Memory allocation routines in the Real Time Manager handle the DSP’s on-chip
memory, module bandwidth allocation, and intertask buffer (ITB) allocation. Since these
routines are specifically for the DSP subsystem there are no equivalent system routines.

All blocks of memory indicated by a value of type DSPAddr ess are by definition locked
contiguous and non-cacheable. They are locked contiguous so that the DSP does not
have to worry about scatter/ gather operations when using a DSPAddr ess value. The
blocks are locked non-cacheable to eliminate conflicts that would occur when the DSP
modifies a memory location that the host processor had cached. Since the DSP can only
address physical memory, it cannot use virtual memory.

About the Real Time Manager 125

CHAPTER 4

Real Time Manager

The type DSPAddr ess is a general type. Subordinate types include DSPFI FOAddr ess,
DSPTaskAddr ess, DSPModul eAddr ess, and DSPSect i onAddr ess. Each has the
same data structure as DSPAddr ess, but is used for a specific purpose. This distinction
allows type-checking of pointers in the source code.

Guaranteed Processing Bandwidth

Guaranteed processing bandwidth (GPB) provides a simple but flexible mechanism that
allows the Real Time Manager to monitor and limit execution time, thereby guaranteeing
real-time execution. This mechanism dynamically adapts to systems with different
hardware characteristics. GPB is defined by parameters of type DSPCycl es, as shown in
Listing 4-1.

Listing 4-1 DSP bandwidth structure

126

struct DSPBandwi dt h { /1 bn = bandwi dth
DSPCycl es bnEsti mat e; /1l worst-case pre-runtine
DSPCycl es bnAct ual ; /1 worst-case runtine
unsi gned |l ong bnFl ags; /1 control flags
1

The units for DSPCycl es are DSP instruction cycles. The parameter cpuMaxCycl es
that is part of the DSPCPUDevi cePar anBl k data structure, shown in Listing 4-3,
indicates the maximum number of instruction cycles available for each DSP CPU device.
At any given instant, the instruction cycles consumed by the modules installed in the
real-time task list of a device cannot exceed this maximum allowable limit.

Each module has three parameters to support the GPB system. These are: bnEst i nat e,
bnAct ual , and bnFl ags. The estimated value is included in the module resource. It is
the DSP programmer’s predicted worst-case prediction for how many DSP cycles it takes
to execute this module. The bnAct ual and bnEst i mat e values are maintained in the
DSPBandwi dt h data structure, shown in Listing 4-1.

The parameter bnAct ual is a computed value and is updated by the DSP operating
system at run time. The actual and estimated processing requirements are controlled by
the bnFl ags parameter, using these values:

kdspLunpyModul e /1 use bnEstinate
kdspSnoot hibdul e /1l use bnActua

The kdspSnoot hMbdul e flag indicates that the bnAct ual value of processing time
should be used. The flag is preset if the module always takes the same amount of
execution time, or set by the module itself using the GPBSet UseAct ual routine. If

the flag is not set, the bnEst i mat e value is used instead. If the flag is set by the module,
it is set one or more frames after determining that the module’s worst-case process

has been executed.

About the Real Time Manager

CHAPTER 4

Real Time Manager

The kdspDont Count Modul e routine specifies that this module is used in a grouped set,
and should not be included in the overall GPB calculations. In a grouped set of modules
the module with the worst-case GPB is used by calling DSPCount Modul e.

Figure 4-2 shows some examples of module sequences and their associated
DSPBandwi dt h numbers. The DSPBandwi dt h numbers are used differently
according to the values of bnFl ags.

Figure 4-2 Examples of different GPB values

Case where GPB=1+4+6+7 =18 DSPCycl es

Module #1 Module #2 Module #3 Module #4
Estimate = 1 Estimate = 4 Estimate = 6 Estimate =7
Actual = 2 I:> Actual = 3 I:> Actual =5 Actual =8
Flags = 0x0 Flags = 0x0 Flags = 0x0 Flags = 0x0
Case where GPB=1+3+5+7 =16 DSPCycl es
Module #1 Module #2 Module #3 Module #4
Estimate =1 Estimate = 4 Estimate = 6 Estimate =7
Actual =2 I:> Actual =3 I:> Actual =5 Actual =8
Flags = 0x0 Flags = 0x1 Flags = 0x1 Flags = 0x0
Case where GPB=1+3+0+7=11DSPCycl es
Module #1 Module #2 Module #3 Module #4
Estimate =1 Estimate =4 Estimate = 6 Estimate =7
Actual =2 I:> Actual =3 I:> Actual =5 Actual = 8
Flags = 0x0 Flags = 0x1 Flags = 0x3 Flags = 0x0

Devices and Clients

The Real Time Manager provides a flexible but efficient interface that allows multiple
applications, working either separately or together, to operate simultaneously on
multiple DSP subsystems without risk of conflict. To accomplish this it is necessary to
arbitrate the use of the DSP device drivers.

The term client identifies any software entity that is using the Real Time Manager. Before
a client can request resources from the Real Time Manager, it must first find what

DSP devices are available using the DSPGet | ndexedCPUDevi ce routine. Then the
client signs into the DSP device using the DSPOpenCPUDevi ce routine and receives a
unique identification number, its pbhd i ent Ref Num The identification number is used
for arbitration of the individual DSP device drivers. This client reference number is

Devices and Clients 127

CHAPTER 4

Real Time Manager

also used to facilitate a controlled sign-off of device driver clients. If for any reason

a client calls Exi t ToShel | before deallocating all of its resources (primarily memory
and processor bandwidth) the Real Time Manager will automatically deallocate

those resources.

WARNING

If you are writing a system extension that will use the Real Time
Manager, be aware there is only a limited amount of memory available
because the system heap cannot expand. You will need to include a

' zsys' resource in your system extension to cause the system heap to
be enlarged before the extensions run. The amount of memory needed
may be more than required by your system extension because some of
the memory may be used by LocalTalk, EtherTalk, TokenTalk, and
A/ROSE. a

Note

The pbhd i ent Ref Numvalue is unique only to the DSP device driver
that issued it. Both pbhd i ent Ref Numand the pbhDevi cel ndex
value must be used for complete identification of a specific client. O

A DSP CPU device is defined to be one DSP subsystem device driver. The data structures
DSPDevi cePar anBl k and DSPCPUDevi cePar anBl k are used to pass information
about a DSP CPU device between the Real Time Manager and the client. These data
structures are shown in Listing 4-2 and Listing 4-3. It is up to the client application to

keep track of information it needs from the parameter list. Initially all values except
pbhd i ent Nane and pbhd i ent | CONare 0.

Listing 4-2 DSP device parameter block structure

str

128

uct DSPDevi ceParamBl k {

unsi gned short pbhDevi cel ndex; /1 index for this device
unsi gned short pbhdC ientPermssion; // client’s read/wite perm ssion
DSPC i ent Ref Num pbhd i ent Ref Num /1l reference number for this client
Str31 pbhd i ent Name; /1 nanme of this client
Handl e pbhd i ent | CON,; /1 handle to client’s icon
Str31l pbhDevi ceNane; /1 nanme for the 1/0O or cpu device
Handl e pbhDevi cel CON, /1 icon for the 1/O or cpu device
b

Note

The DSPDevi cePar anBl kHeader data structure is defined in the
include file as DSPDevi cePar anBl k. This construct is used so that the
information can be more easily included in other data structures; for
example, in the DSPCPUDevi cePar anBl k structure shown in

Listing 4-3. O

Devices and Clients

CHAPTER 4

Real Time Manager

Listing 4-3 CPU device parameter block structure

struct DSPCPUDevi ceParanBl k {
DSPDevi cePar anBl kHeader
unsi gned char cpuSl ot Nunber ;
unsi gned char cpuProcessor Number ;

OSType cpuProcessor Type;
DSPCycl es cpuMaxCycl es;

DSPCycl es cpuAl | ocat edCycl es;
DSPCycl es cpuCur Real Ti neLoadi ng;
DSPCycl es cpuTi meShar eLoadi ng;
DSPCycl es cpuTi meShar eFr eq;

unsi gned | ong cpuFraneRat e;

/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11

sl ot nunber the card is in
processor #, zero-based
type of the processor
max processor execution
cycles per frane
nunber of real-time cycles plus
overhead currently all ocated
nunber of cycles used
during the last frane
nunber of cycles it took
for tineshare |ist
how often the tinmeshare
list is run
nunber of franes per second for
this cpu device

MessageAct i onProc cpuC i ent MessageActionProc; // client’s nessage handl er

s

Note

For more information about MessageAct i onPr oc
see “Sending Messages,” later in this chapter. O

Information can be retrieved about a specific client by using DSPCGet Cl i ent | nf 0. The
information is returned in the DSPQ i ent | nf oPar anBl k, shown in Listing 4-4.

Listing 4-4 Client information parameter block structure

struct DSPC i ent | nfoParanBl k {
DSPC i ent Ref Num ci d i ent Ref Num

unsi gned short ci Ci ent Perm ssion
Handl e ci Cientl CON
Str31l ci i ent Nane;

b

Devices and Clients

/1
/1
/1
/1
/1

returned ref numof the client
returned read/wite

perm ssion of the client
returned icon of the client
returned nanme of the client

129

CHAPTER 4

Real Time Manager

Tasks

The DSPTask structure is used for storing information about a digital signal processing
task. To generate a task follow the procedure in “Using the Real Time Manager,” later in
this chapter.

Notice that it is at the task level that the Real Time Manager checks to see if there is
enough DSP processing bandwidth (described as GPB) to accept the additional work
load. This is a logical choice for three reasons. First, it does not make sense to install
some of the algorithms that make up a task only to find out that there is not enough GPB
to install the rest. Second, if algorithms (as DSP modules) were installed one at a time
they could potentially each start on a different frame. By installing them all at once as a
task, they automatically all start on the same frame. Third, if one of the modules takes
excessive processing time for some reason, it makes sense to remove the entire task
rather than remove just one piece of the task. Such a partial removal would most likely
prove disastrous.

A client can retrieve information about a specific task with the DSPGet Taskl nf o
routine. The information is returned in DSPTask! nf oPar anBl k, shown in Listing 4-5.
For more information about MessageAct i onPr oc see “Sending Messages,” later in
this chapter.

Listing 4-5 Task information parameter block structure

struct DSPTaskl nf oParanBl k {

DSPTaskRef Num ti Ref Num /1 returned reference nunber for this task
unsi gned | ong ti Ref Con; /1 returned application-specific info
MessageActi onProc ti Vector; /1 returned vector of task action proc
unsi gned | ong ti Fl ags; /1l returned flags for DSPTask control
Str31 ti Nane; /1 returned name of this DSPTask

b

Passing data between tasks is accomplished with intertask buffers (ITBs). The ITBs must
be allocated in the first task needing to pass data to another task. The ITBs must be
de-allocated by the last task using them. For more information about ITBs see “Data
Buffering,” in Chapter 3.

130 Tasks

CHAPTER 4

Real Time Manager

Modules

This section discusses the Macintosh system software that controls DSP modules.

Module Definition

DSP modules are the basic building blocks for constructing tasks for the DSP. A module
is typically broken into a number of sections. A section can contain code, data, variables,
and can be an input or output buffer. The module structure contains the information
needed to let the Real Time Manager and DSP operating system perform their functions,
including linking modules, controlling the execution of a module, and so on. Each
module also contains information about how much processing bandwidth it requires
and how many times it has executed since it was installed.

Note
To install a module into a task follow the procedure in
“Using the Real Time Manager,” later in this chapter. O

A client can get information about a specific module by using the kdspGet Mbdul el nf o
routine. The information is returned in the DSPMbdul el nf oPar anBl k, shown in
Listing 4-6.

Listing 4-6 Module information parameter block structure

struct DSPMbdul el nf oPar anBl k {

DSPMbdul eRef Num m Ref Num /1 reference nunber of this nodule
struct DSPBandwi dth m GPB; /1 guarant eed processing bandwi dth
unsi gned | ong m Fl ags; /1 nodul e flags

unsi gned | ong m NunBect i ons; /1 nunber of sections in nodule
Str31 m Nane; /1 nanme of the DSP nodul e

unsi gned | ong m Executi ons; /1 nunber of executions

unsi gned | ong m Ski pCount ; /1 nunber of nodules to skip

i

Execution Flow for Modules

The DSP operating system executes the DSP modules that are installed in a task. In a
typical operation, it simply scans the list executing each of the modules sequentially.
However, there are cases when modules need to be executed in a selective fashion. To
facilitate this functionality at the DSP operating system level, the m Ski pCount field is
included in the module data structure. This field controls the execution flow within a
task, not between tasks. It allows a module to specify that one or more modules

Modules 131

CHAPTER 4

Real Time Manager

following it are to be skipped. The m Ski pCount field is set equal to the number of
modules to be skipped. To set a modules skip count, use

pascal OSErr DSPSet Ski pCount (DSPMbdul eRef Num t heMbdul eRef Num
unsi gned | ong t heCount)

The DSP operating system always executes the first module in a module list. After
executing a module it copies the module’s m Ski pCount field. It decrements through
the module list until the copied value reaches -1, then resumes execution at the selected
module. (For example, a skip count of 0 causes execution of the next module. A skip
count of 2 jumps two modules and continues execution at the third module.) If a module
has a skip count of -1, execution of the module list is stopped and execution resumes at
the next task. If the list of modules within the task ends before the skip count reaches -1
it is considered an error condition and the DSP operating system continues execution at
the next task; however, the DSP operating system does not report this error. Figure 4-3
shows examples of how the skip count mechanism is used.

Figure 4-3 Examples of different execution paths

Execution path=1, 2, 3,4, 5

Module 1 Module 2 Module 3 Module 4 Module 5
mdSkipCount ’:> mdSkipCount mdSkipCount mdSkipCount mdSkipCount
=0 =0 =0 =0 =0
Execution path=1, 2, 4
Module 1 Module 2 Module 3 Module 4 Module 5
mdSkipCount |:> mdSkipCount mdSkipCount mdSkipCount mdSkipCount
=0 =1 =-1 =-1 =-1
Execution path =1, 2, 3
Module 1 Module 2 Module 3 Module 4 Module 5
mdSkipCount I:> mdSkipCount mdSkipCount mdSkipCount mdSkipCount
=0 =0 =-1 =-1 =-1
Execution path=1, 4,5
Module 1 Module 2 Module 3 Module 4 Module 5
mdSkipCount I:> mdSkipCount mdSkipCount mdSkipCount mdSkipCount
=2 =-1 =-1 =0 =-1
132 Modules

Sections

CHAPTER 4

Real Time Manager

This section discusses the Macintosh system software that controls DSP sections
within modules.

Section Definition

The DSPSect i on structure is used to define a section type. Sections are usually buffers
in host memory that can be moved (cached) to internal DSP static random-access
memory (SRAM) prior to program execution, and optionally saved back to host memory
after program execution. Sections include the program, tables or coefficients, state
variables, temporary variables, input and output data, and control information
(parameter buffers).

There are two basic types of sections: one-container and two-container. Any section that
is going to be cached from external memory to DSP memory or vice versa must be a dual
container section. One container is in main memory, the other is in DSP internal memory.
The one-container section needs no caching or saving, and usually represents one of
these forms of memory:

= temporary storage on-chip, in automatic variables of the work space or intermediate
buffers

= large areas in main memory, such as data arrays or FIFO buffers

= common areas shared between modules, such as AIAO buffers, or between a module
and the Macintosh system, such as parameter buffers

The section structure includes two pointers to handle the two-container case:

scPri mary and scSecondar y. In the one-container case, the scSecondar y pointer
isnil.

A client can retrieve information about a specific section by using the

DSPGet Sect i onl nf o routine. The information is returned in the
DSPSect i onl nf oPar anBl k, shown in Listing 4-7.

Listing 4-7 Section information parameter block structure
struct DSPSecti onl nf oParanBl k {
DSPSect i onRef Num si Ref Num /1 reference nunmber for this section
unsi gned | ong si Si ze; /1 size of data in actual section
unsi gned | ong si Fl ags; /1l section flags
unsi gned | ong si Type; /1 for section connection type checking
Str31 si Nare; /1 nanme of this section
Ptr si Primary; /1l current location of section data
Ptr si Secondary; /1 optional section data storage |ocation

Sections 133

CHAPTER 4

Real Time Manager

DSPSecti onRef Num si PrevSection; // previous connection
DSPSect i onRef Num si Next Section; // next connection
DSPFI FORef Num si FI FORef Num // RefNum of the FIFO

}s

Section Flags and Data Types

The si Fl ags field of the DSPSect i onl nf oPar anBl k contains flags that provide
information about the section. The use of the si FI ags field is detailed in Table 4-1.

Table 4-1 Section flags

siFlags Usage

kdspLeaveSecti on Do not load or save this section
kdspLoadSect i on Load this section

kdspSaveSecti on Save this section

kdspCl ear Sect i on Fill this section with zeroes
kdspSaveOnCont ext Swi t ch Save this section on context switch
kdspSt ati cSection This section statically allocated before runtime
kdspExt er nal Never loaded on chip

kdspBankA Load in Bank A if possible
kdspBankB Load in Bank B if possible
kdspAnyBank Load anywhere

kdspFl FOSecti on Section is a FIFO buffer

kdspNot | OBuf f er Secti on All cases other than below

kdspl nput Buf f er Section is an input buffer

kdspQut put Buf f er Section is an output buffer

kdspScal abl eSecti on Section size can be scaled
kdspDSPUseOnl y Only DSP should modify this memory

The section flags assist the Real Time Manager and DSP operating system with some of
the buffer management and FIFO operations of the system. The Scal abl eSect i on flag
must be set whenever it is desirable for the system to automatically scale the module for
different sample rates or frame rates.

134 Sections

CHAPTER 4

Real Time Manager

The si Type field of the DSPSect i onl nf oPar anBl k contains flags that provide
information that is useful for type checking when connecting sections of several

modules, such as the output buffer of one section to the input buffer of the next section.
The use of the si Type field is detailed in Table 4-2.

Table 4-2 Section data-type flags

siType Usage

kdspNonbDat a Data in section is beyond description
kdsp3200FI oat Data is 3200 float format

kdspl EEEFI oat Data is in IEEE float format

kdspl nt 32 Data is 32-bit integer

kdspl nt 1616 Data is 16-bit integer packed

kdspl nt 8888 Data is 8-bit integer packed
kdsprmuLaw Data is nuLaw format

kdspALaw Data is Al awformat

kdspAppSpeci fi cDat a Data is application-specific

Connecting Sections

To improve efficiency, it is often desirable to connect two or more sections from two or
more modules. This allows data to be passed from one module to the next without
moving the data off the chip and then back on. This feature is useful in patchcording
algorithms, where the output of one operation can be left on-chip for the next operation
to use as input. It is also useful in optimizing the execution of a task. If one task uses
the same section in multiple modules, a performance gain can be achieved by leaving
the section on-chip between module executions. It is also possible to connect a FIFO

to an AIAO. When this occurs the DSP operating system loads data from the FIFO into
the ATAO (or AIAO to FIFO) every frame.

Figure 4-4 shows some of the possible connections of sections between four modules.
The double arrows indicate forward /backward pointers.

Connecting Sections 135

CHAPTER 4

Real Time Manager

Figure 4-4 Section interconnection

DSP module DSP module DSP module DSP module

]
L
<)

) ([[¢]

A

[~
o

>4 |

©

DSP section O Section buffer

Using the Real Time Manager

Before building a task and installing it into the DSP, the application must determine
if the DSP resources are available. This is done using the Gest al t and
DSPManager Ver si on routines.

Gestalt
The Gest al t routine is used to determine if the Real Time Manager is available. It must
always be called before any attempt is made to install a DSP task.
pascal unsigned long Gestalt (void)

DESCRIPTION

The Real Time Manager constant for Gest al t is

gestaltReal ti meMgrAttr ‘'rtm’

136 Using the Real Time Manager

CHAPTER 4

Real Time Manager

DSPManagerVersion

The DSPManager Ver si on routine returns the version number of the installed
DSP software.

pascal unsigned | ong DSPManager Ver si on (voi d)

DESCRIPTION

The DSPManager Ver si on routine is used to maintain version compatibility between
the client’s tasks and the Real Time Manager. It must always be called before any attempt
is made to install a DSP task.

The constant for DSPManager Ver si on is kdspManager Bui | dVer si on.

Accessing the DSP

An example of a complete task is shown in this section to help clarify how Real Time
Manager routines and macros work. Figure 4-5 shows an overview of an example task.

Figure 4-5 Task example

:

Task Module Module

[CD-XA player [Equalizer

PlayMySound

:

The task PlayMySound is shown installed in the task list. It points to two DSP modules.
The first module, CD-XA player, is used to decompress CD-XA data from disk into PCM
data. The equalizer module is used to adjust the tone quality of the sound, and feeds the
results to the sound partial result buffer (PRB). The sequence of Real Time Manager calls
that is necessary to set up and execute a task such as this is given in Table 4-3. Italicized
calls are made only if necessary.

Using the Real Time Manager 137

CHAPTER 4

Real Time Manager

Table 4-3 Setting up a task

Routines Usage
DSPGet | ndexedCPUDevi ce

DSPOpenCPUDevi ce
DSPNewTask
DSPLoadMbdul e
DSPNewf| FO

DSPGet Sect i on
DSPConnect Sect i ons
DSPI nsert Task
DSPGet Sect i onDat a
DSPSet TaskAct i ve

DSPGetIndexedCPUDevice

Get information about the available DSPs

Sign in as a client to one of the DSPs

Create the empty task structure

Load a module (from resource) into the task structure
Allocate memory for a FIFO section

Get pointer to the named section (to connect sections)
Connect sections to pass data between modules
Insert the task into the execution stream of the DSP
Get pointer to section data (for shared parameters)

Tell the DSP to execute the task

138

The DSPCet | ndexedCPUDevi ce routine returns a pointer to the indexed CPU device

parameter block.

Pascal OSErr DSPGet | ndexedCPUDevi ce (DSPCPUDevi ceParanBl kPt r

t heCPUPar anBl k)

Field descriptions

- pbhDevi cel ndex

- pbhDevi ceName

o pbhDevi cel CON

- cpuSl ot Nunber

- cpuPr ocessor Nunber

- cpuProcessor Type

- cpulMaxCycl es

- cpuAl | ocat edCycl es

- cpuCur Real Ti meLoadi ng
- cpuCur Ti meShar eLoadi ng
- cpuTi meShar eFr eq

- cpuFr aneRat e

The cpuPr ocessor Type constants can be:

kdsp3210 '3210'
kdsp32C '32C"

Using the Real Time Manager

Index of desired device.

Returned name of device.

Returned icon of device.

Returned NuBus slot # of device.
Returned processor # of device.
Returned type of processor.

Max number of cycles for the processor.
Number of real-time cycles plus DSP
operating system overhead currently
allocated.

Number of cycles used during the last
frame.

Number of cycles it took for timeshare list.
Number of times the timeshare list is run.
Frame rate in frames/sec.

CHAPTER 4

Real Time Manager

DESCRIPTION
The DSPCet | ndexedCPUDevi ce routine is used by a client to find information about
the DSP devices installed. By calling DSPCGet | ndexedCPUDevi ce a client can create
a list containing t heCPUPar anBl k for each available device. The client should
pass an index starting at 0 (in pbhDevi cel ndex) and increment the index until
kdspl nval i dl ndexErr is returned. The client should also allocate space for the
icon buffer pbhDevi cel CONor pass ni | if no icon is desired. This routine does not
allocate memory.
Note
If the icon is not desired, be sure to set pbhDevi cel CONto ni | before
calling DSPGet | ndexedCPUDevi ce. O
DSPOpenCPUDevice
The DSPOpenCPUDevi ce routine requests access to the specified CPU device.
pascal OSErr DSPQpenCPUDevi ce (DSPCPUDevi cePar anBl kPt r
t heCPUPar anBl k) ;
Field descriptions
N pbhDevi cel ndex The index for this device.
- pbhd i ent Per mi ssi on The client’s requested permission.
- pbhd i ent Ref Num The client reference number.
N pbhd i ent | CON The client’s icon.
N pbhd i ent Nane The name of this client.
- cpud i ent MessageActi onProc Location of client’s message action
procedure.
Valid constants for pbhCl i ent Per m ssi on are:
kdspReadPer m ssi on Requesting read-only access to the device.
kdspReadW i t ePer ni ssi on Requesting read / write access to the device.
DESCRIPTION

The DSPOpenCPUDevi ce routine is called by a Real Time Manager client to request use
of a device driver. If t heCPUDevi cePar anBl kPt r is a pointer to a t heCPUPar anBl k
data structure that was set up by calling DSPGet | ndexedCPUDevi ce, then the

client need only fill in the pbhCl i ent Name, pbhd i ent Per mi ssi on, and

cpud i ent MessageAct i onPr oc fields. The two parameters pbhd i ent | CONand
pbhd i ent Nane are optional.

For more information about MessageAct i onPr oc see “Sending Messages,” later in
this chapter.

Using the Real Time Manager 139

CHAPTER 4

Real Time Manager

Creating a Task

The sections that follow describe the sequence of events required to create a task. The
task, PlayMySound, has two modules, uses a FIFO buffer, and has one section connected
between the two modules.

After calling DSPCet | ndexedCPUDevi ce and DSPOpenCPUDevi ce to open and sign
into a DSP device, call DSPNewTask to create the task structure.

DSPNewTask

DESCRIPTION

140

The DSPNewTask routine returns a reference number to a new task.

pascal OSErr DSPNewTask (
DSPCPUDevi cePar anBl kPt r t heCPUDevi ce,

MessageAct i onProc t heVect or,
StringPtr t heTaskNane,
DSPTaskRef Num *t heRef Nunj ;

Field descriptions

- t heCPUDevi ce A pointer to info about the CPU device being used.

- t heVect or The message vector for this task. This vector will be
used to make calls to the application when the code
modules contained in the task fail to operate within the
processing requirements specified.

- t heTaskNarme The name of this task.

- *t heRef Num The returned reference number for this task.

The DSPNewTask routine allocates a DSPTask data structure for a new task in the Real
Time Manager’s heap. DSPNewTask does not actually insert the new task into the task

list of any DSP device. The DSPI nser t Task routine is used to do the actual insertion.

The DSPNewTask routine generates a reference number for the task.

The client must use the task routines in a specific sequence. First, the task must be
created. This only allocates the task structure, it does not allocate any memory for the
task. Second, the task must be assembled by loading DSP modules into it. Third, the task
must be installed into the task list. Fourth, the task must be activated. This sequence can
be accomplished using the following calls:

1. DSPNewTask Create a new task structure

2. DSPLoadModul e Load modules into task structure

3. DSPI nsert Task Insert task into the appropriate task list
4. DSPSet TaskAct i ve Activate task to execute

For more information about MessageAct i onPr oc see “Sending Messages,” later in
this chapter.

Using the Real Time Manager

CHAPTER 4

Real Time Manager

Loading a Module

You call the DSPLoadMbdul e routine to load a module (CD-XAPlayer) into the
task structure.

DSPLoadModule

DESCRIPTION

The DSPLoadMdul e routine loads the specified module into the specified task at the
specified position.

pascal OSErr DSPLoadMbdul e (

StringPtr t heNane,
DSPTaskRef Num t heTaskRef Num
DSPPosi ti on t hePosi ti on,

DSPModul eRef Num t heRef er enceModul eRef Num
DSPModul eRef Num *t heNewibdul eRef Num

| ong t heScal e) ;

Field descriptions

—

—

—

t heNane
t heTaskRef Num

t hePosi ti on

t heRef er enceMbdul eRef Num
*t heNewbdul eRef Num
t heScal e

Valid constants for t hePosi ti on are:

kdspHeadl nsert
kdspTai |l I nsert
kdspBef or el nsert
kdspAfterlnsert
kdspAnyPosi tionl nsert

The name of the resource you want to load.
A pointer to the task structure you want the
resource loaded into.

The position where this module should be
loaded into the task. If a reference module is
specified, install before or after the reference
module (within the already existing list of
modules in this task). If no reference
module is specified, install at the beginning
or end of the module list for this task.

An optional pointer to a reference module.
The returned module reference number.
The scale multiplier for scalable sections.

Insert at head of list.

Insert at tail of list.

Insert before reference link.
Insert after reference link.
Insert anywhere in list.

DSP object code is stored on disk in the form of a resource. By using the DSPLoadMbdul e
routine this code can be retrieved from the disk, loaded into the DSP heap, and inserted
into the specified task. The t heRef er enceMbdul eRef Numvalue can be ni | if

t hePosi t i on does not require a reference module.

Using the Real Time Manager

141

CHAPTER 4

Real Time Manager

Figure 4-6 is a simplified model of the task and module structure.

Figure 4-6 Task after loading the CD-XA player module

Task Module

- CD-XA player [

PlayMySound

Figure 4-7 shows a closer look at the sections contained within the CD-XA player module.

Figure 4-7 CD-XA player module structure

CD-XA player
7 sections

Section[0]
program

Section[1]
variables

Section[2]
tables

Section[3]
FIFO buffer

Section[4]
input buffer

Section[5]
output buffer

Section[6]
parameters

There are seven sections for this module. The first three are dual buffer sections. There is
a buffer in main memory that is used to store the section data between executions, and
an on-chip buffer that is used during execution. The code and table sections are
load-only, while the variables section is a load and save section. The last four sections
are single-buffer sections. They are not loaded or saved. The output buffer, however,
must be cleared. This operation is performed by the DSP operating system prior to code
execution. The input and output buffers are on-chip, while the FIFO and parameter
sections have their buffers off-chip.

142 Using the Real Time Manager

CHAPTER 4

Real Time Manager

Getting Data

The first single buffer section is a FIFO section. It has as its data a FIFO control block
called DSPDat a.

Note
Section[3] is a FIFO buffer so you need to call DSPNewF| FO
to allocate memory for the FIFO buffer. O

DSPNewFIFO

DESCRIPTION

The DSPNewF| FOroutine creates a new FIFO.

pascal OSErr DSPNewrl FO (

DSPSect i onRef Num t heSect i onRef Num
DSPFI FORef Num *t heFl FORef Num
unsi gned | ong t heSi ze,

Ptr | ogi cal ,

Ptr physi cal ,

Bool ean fifoFull,
MessageAct i onProc thelnterrupt);

Field descriptions

- t heSect i onRef Num FIFO section reference number.

- *t heFl FORef Num Reference number of the new FIFO.

= t heSi ze Size of data buffer allocated.

- | ogi cal Logical address.

- physi cal Physical address.

N fifoFull Indication that FIFO is full.

- thel nterrupt Procedure for receiving messages from the FIFO.

The DSPNew| FOroutine performs several functions. It creates a new non-linked FIFO
if the specified section does not already have a FIFO, or it creates and adds a linked
FIFO if the specified section already has a FIFO. The user has the option of passing in a
block of memory that already contains data. In this case, the logical address is specified
instead of ni | . A physical address does not need to be specified if the logical address is
in the system’s main memory (that is, if Get Physi cal will work).

Linked FIFOs are a circular list of FIFO. The list is created before the task is set active and
the order of the FIFOs in the list is invariant. The boolean bit FI FOFul | signifies that the
FIFO is full, which is when the read pointer equals the write pointer; it is used only
when the program has created the buffer. If there is already data in the buffer passtr ue,
otherwise pass f al se.

Using the Real Time Manager 143

CHAPTER 4

Real Time Manager

The DSPDat a control block points to a FIFO buffer set up in system memory by the host
application. The MessageAct i onPr oc routine is provided so the host application will
refill the FIFO on request by the Real Time Manager. This is an interrupt-level routine,
and is used whenever the FIFO is getting empty. For more information about
MessageAct i onProc see “Sending Messages,” later in this chapter.

Figure 4-8 shows how DSPNewF| FOadds a FIFO buffer to the CD-XA player module in
the current example.

Figure 4-8 Module structure after DSPNew| FOcall

CD-XA player
7 sections

Section[0]
program

Section[1]
variables

Section[2]
tables

Section[3]
FIFO buffer

Section[4]
input buffer

Section[5]
output buffer

Section[6]
parameters

Disk ——# FIFO [

The next two sections are input and output buffers. The last is a parameter section. The
parameter section is used to specify the volume of the player’s output. It remains
off-chip in system memory. The single value stored in that buffer is used to multiply the
data before summing into the PRB. Space at the top of the DSP memory is reserved by
the Real Time Manager for the PRB. This buffer will be connected to the input buffer of
the second module and must always be at the top of available memory to avoid
allocation gaps in the DSP memory.

The module reads data from the FIFO into the input AIAO section, decompresses it and
places it into the output AIAO. Since this is the first use of this buffer, it must be cleared
prior to execution. After the CD-XA player has run, 32-bit floating point sound data will
be in the output buffer. In this example equalization is also applied to the sound data so
the equalizer module will be loaded after the CD-XA player, as shown in Figure 4-9.

Figure 4-9 Task structure after DSPLoadModul e call

144

Task Module Module

- CD-XA player [Equalizer

PlayMySound

Using the Real Time Manager

CHAPTER 4

Real Time Manager

Now the PlayMySound task has two modules: a CD-XA player and an equalizer. The
CD-XA player is executed first, and the equalizer is executed second. Figure 4-10 shows
a closer look at the sections contained within the equalizer module.

Figure 4-10 Sections contained in the equalizer module

Equalizer
6 sections

Section[0]
program

Section[1]
variables

Section[2]
tables

Section[3]
input buffer

Section[4]
output buffer

Section[5]
parameters

The output buffer from the CD-XA player module must be connected to the input buffer
of the equalizer module so it can process the data from the CD-XA player. This
connection eliminates the need to save the buffer off-chip after the decompression
module executes only to reload it again for the equalizer module. There are three calls
needed to perform the connection:

1. Call DSPCet Sect i on to get a pointer to the output buffer section in the CD-XA
player module.

2. Call DSPGet Sect i on to get a pointer to the input buffer of the equalizer module.

3. Call DSPConnect Sect i ons to connect these two sections together.

DSPGetSection

The DSPGet Sect i on routine returns a section reference number.

pascal OSErr DSPGet Section (
DSPModul eRef Num t heModul eRef Num
StringPtr t heSect i onNane,
DSPSecti onRef Num *t heSecti onRef Nunj ;

Field descriptions

5 t heMbdul eRef Num Module that contains section.
5 t heSect i onNanme Name of the desired section.
- *t heSect i onRef Num Returned section reference number.

Using the Real Time Manager 145

CHAPTER 4

Real Time Manager

DESCRIPTION
The DSPCet Sect i on routine returns a section reference number when it is passed a
module reference number and a section name.
DSPConnectSections
The DSPConnect Sect i ons routine connects two sections to allow the DSP operating
system to leave sections that are shared between modules on-chip.
pascal OSErr DSPConnect Sections (
DSPSect i onRef Num secti onOneRef Num
DSPSect i onRef Num secti onTwoRef Num
DSPConnecti onType t heConnect i onType);
Field descriptions
- secti onOneRef Num The source section for the connection.
- secti onTwoRef Num The destination section for the connection.
- t heConnecti onType The method of connection.
Valid constants for t heConnect i onType are:
kdspDi r ect Connecti on
kdspl ndi r ect Connecti on
kdspH HOConnect i on
DESCRIPTION

DSPConnect Sect i ons is used to pass data between two sections in the same task
or between a section and an ITB. When setting up the connection, data flow is the
controlling factor and should always run from section one to section two. The data
type for both sections must also match for the connection to be established.

When a FIFO section is connected to a FIFO buffer using DSPNewF| FQO, the connection
process stores the information about the FIFO in the DSPFI FOheader. When a FIFO
section of one module is connected to an AIAO section in another module the connection
process changes the AIAO into a FIFO and creates the DSPFI FOheader. This change
does not affect the operation of the ATAO section within the module. It only facilitates
the connection of different section types so data can be transferred between them
between modules. Figure 4-11 shows the sample CD-XA player connected to an
equalizer, using DSPConnect Sect i ons.

With this connection established the data from the output buffer of the CD-XA player
module will be fed to the input buffer of the equalizer module.

146 Using the Real Time Manager

CHAPTER 4

Real Time Manager

Figure 4-11 CD-XA player with DSPConnect Sect i ons to equalizer

CD-XA player Equalizer
7 sections 6 sections
Section[0] Section[0]

program program
Section[1] Section[1]
variables variables
Section[2] Section[2]
tables tables
Section[3] Section[3]
FIFO buffer input buffer
Section[4] Section[4]
input buffer output buffer
Section[5] Section[5]
output buffer parameters
Section[6]
parameters

Putting the Task to Work

Now that the task structure is complete you use DSPI nser t Task to insert the task into
the DSP execution stream and DSPSet TaskAct i ve to start the DSP executing it.

DSPInsertTask

The DSPI nser t Task routine inserts the specified task into the specified task list.

pascal OSErr DSPI nsert Task (

DSPCPUDevi cePar anBl kPt r
DSPTaskRef Num

DSPPosi ti on
DSPTaskPriority
DSPTaskRef Num

Field descriptions

5 t heCPUDevi ce
o t heNewTaskRef Num

N t hePosi tion
- i nterruptLevel
- t heRel ati veTaskRef Num

Using the Real Time Manager

t heCPUDevi ce,

t heNewTaskRef Num

t hePosi tion,

i nterruptLevel,

t heRel ati veTaskRef Num ;

The CPU device being used.

Reference number of the task to insert.
Insertion location.

kdspReal Ti me or kdspTi meShar e.
Reference number of a task previously installed
by this client. If this client has already inserted
a task into the task list it may be used as a
reference for inserting other tasks.

147

CHAPTER 4

Real Time Manager

DESCRIPTION

The DSPI nser t Task routine is used to insert t heNewTaskRef Numin the list of tasks
for a given device. When the task is inserted, the Real Time Manager performs the
calculations necessary to determine how much DSP processing the task will take.

When inserting tasks it is necessary to specify where in the list to insert the task. This is
specified in the t hePosi t i on parameter, as shown in Table 4-4.

Table 4-4 Task insertion locations

Constant Comments
kdspHeadl nsert Insert at head of list

kdspTail I nsert Insert at tail of list
kdspBef or el nsert Insert before reference task
kdspAfterlnsert Insert after reference task

kdspAnyPosi ti onl nsert Insert anywhere in list

To start and stop the task call DSPSet TaskAct i ve and DSPSet Taskl nacti ve
respectively. This will leave the task allocated and installed in the DSP’s execution list.

DSPSetTaskActive

The DSPSet TaskAct i ve routine sets the specified task active.

pascal OSErr DSPSet TaskActive (DSPTaskRef Num theRef Numj;

Field description
- t heRef Num Reference number of the DSP task to activate.

DESCRIPTION

To activate a task call DSPSet TaskAct i ve. After a task has been installed, the DSP will
not execute the task until it has been activated. This routine sets the active flag for

the task, which tells the DSP operating system to execute it on the next pass through the
task list.

148 Using the Real Time Manager

CHAPTER 4
Real Time Manager

Getting Off the DSP Task List

When you are ready to stop and remove a task from the task list, use the sequence of
Real Time Manager calls in Table 4-5. Italicized calls are used only if necessary.

Table 4-5 Removing a task

Routines Usage

DSPSet Taskl nacti ve Stop the task

DSPRenpveTask Remove the task from the DSP’s execution stream

DSPUnl oadMbdul e Remove the module from the task structure

DSPDi sposeFl FO Free memory used by a FIFO section

DSPDi sposeTask Free memory used by the task structure

DSPCl oseCPUDevi ce Sign out from the DSP device
DSPSetTaskInactive

The DSPSet Taskl nact i ve routine sets the specified task inactive.

pascal OSErr DSPSet Taskl nacti ve (DSPTaskRef Num t heRef Nunj ;

Field description
5 t heRef Num Reference number of the DSP task to deactivate.

DESCRIPTION

To deactivate a task call DSPSet Taskl nact i ve. This routine does not remove the task
from the task list or deallocate memory.

DSPRemoveTask

The DSPRenpveTask routine removes the specified task from the task list.

pascal OSErr DSPRenbveTask (DSPTaskRef Num t heTaskRef Num ;

Field description
N t heTaskRef Num Reference number of the DSP task to remove.

Using the Real Time Manager 149

DESCRIPTION

CHAPTER 4

Real Time Manager

The DSPRenoveTask routine is used to remove a task from the task list of a specific
device. If the task is still active at the time this call is made, DSPRenpveTask will
deactivate the task before removing it from the list.

Note

It may take several frames before the Real Time Manager can correctly
remove the task from the DSP. The DSPRenpveTask routine will call
Wi t Next Event until the task goes inactive. O

DSPUnloadModule

DESCRIPTION

The DSPUnI oadMbdul e routine removes the specified module from the task.

pascal OSErr DSPUnl oadModul e (
DSPTaskRef Num t heTaskRef Num
DSPModul eRef Num t heMbdul eRef Nunj ;

Field descriptions

- t heTaskRef Num The task that contains the module.
- t heMbdul eRef Num The module to unload.

The DSPUnl oadMbdul e routine is used to remove a module from a task. The task must
first be removed from the task list using DSPRenoveTask before the module can be
unloaded. To remove all the modules at once, use the DSPDi sposeTask routine,
described on page 151. This will dispose of the task structure as well as all of the module
structures in the task module list.

DSPDisposeFIFO

150

The DSPDi sposeF! FOroutine disposes of the memory used by the specified FIFO.

pascal OSErr DSPDi sposeFl FO (
DSPSect i onRef Num t heSect i onRef Num
DSPFI FORef Num t heFl FORef Num ;

Field descriptions

- t heSect i onRef Num The section reference number.
- t heFl FORef Num The FIFO to be disposed of.

Using the Real Time Manager

CHAPTER 4

Real Time Manager

DESCRIPTION

The DSPDi sposeF| FOroutine is used to dispose of the memory used by a single
DSPFI FOin a set of linked FIFOs, a non-linked FIFO, or all of the linked FIFOs
belonging to a section. The FIFO is indicated by both the t heFI FORef Numand the

t heSect i onRef Numvalues. If the t heFl FORef Numvalue is ni | , all of the linked
FIFOs are disposed of; otherwise, only the specified FIFO is disposed of. The memory
used by the DSPFI FOdata structure is deallocated when the module that owns the
FIFO section is deallocated by DSPUn| oadMbdul e.

DSPDisposeTask

The DSPDi sposeTask routine disposes the memory of the specified task.

pascal OSErr DSPDi sposeTask (DSPTaskRef Num t heTaskRef Nunj ;

Field description
- t heTaskRef Num Reference number of the task to dispose of.

DESCRIPTION

The DSPDi sposeTask routine is used to deallocate the t heTask structure that was
allocated using the DSPNewTask routine. It deallocates all of the DSP modules, DSP
sections, and DSP FIFOs associated with the specified task. If the task is active
DSPSet Taskl nact i ve will be called before the structures are deallocated. Until the
task is inactive DSPDi sposeTask will call Get Wi t Next Event .

DSPCloseCPUDevice

The DSPC oseCPUDevi ce routine closes access to the specified device.

pascal OSErr DSPC oseCPUDevi ce (DSPCPUDevi ceParanBl kPtr;
t heCPUPar anBl k) ;

Field description
N pbhd i ent Ref Num The reference number for this client.

DESCRIPTION

The DSPCl oseCPUDevi ce routine closes a device that was requested by a
DSPOpenCPUDevi ce routine.

The fields of the DSPCPUDevi cePar anBl k structure are described in the
DSPCet | ndexedCPUDevi ce section, page 138.

Using the Real Time Manager 151

CHAPTER 4

Real Time Manager

DSPUpdateCPUDevicelnfo

DESCRIPTION

The DSPUpdat eCPUDevi cel nf o routine updates the information about a CPU device.

pascal OSErr DSPUpdat eCPUDevi cel nf o (DSPCPUDevi cePar anBl kPt r
t heCPUPar anBl k) ;

Field descriptions

- pbhDevi cel ndex The index for this device.

- cpuAl | ocat edCycl es The allocated real-time cycles.

- cpuCur Real Ti meLoadi ng The number of real-time cycles used.
- cpuTi meShar eLoadi ng The timeshare loading for the device.

The DSPUpdat eCPUDevi cel nf o routine is called by a Real Time Manager client to
update the information about a CPU device. To use this call, the client must first call
DSPOpenCPUDevi ce to open the device. Since the loading values for a CPU device will
change as clients use or relinquish the device, this call will let a client get the current
loading numbers.

Sending Messages

152

This section describes how real-time data processing software passes information
between the currently running Macintosh software (the host) and the DSP program.

From DSP to Host

In many situations the DSP will need to notify a host application when a change in status
has been detected. In order to free the host from the burden of polling the DSP for
changes in status, an interrupt driven DSP-to—host message passing mechanism is
provided. This mechanism is used by the Real Time Manager both for sending update
messages to the DSP FIFOs, and for sending frame overrun messages to clients. It is
generic however, and can be used by any client that needs this capability.

To send a message from the DSP to the host, the code calls _SendMessageToHost with
a pointer to the message to be sent. The _SendMessageToHost routine queues the
message and generates an interrupt to the host. When the host receives the interrupt, it
queues a deferred task. When the deferred task is removed from the queue and executed,
it calls DSPPr ocessMessages, which calls the actual MessageAct i onPr oc routine.
This process is diagrammed in Figure 4-12.

Sending Messages

CHAPTER 4

Real Time Manager

Figure 4-12 Message passing from DSP to host

DSP code Driver
SendMessageToHost : Driver receives interrupt
gueues message and and queues a deferred
generates interrupt. task. When the deferred

|:> task is executed, it calls

DSPPr ocessMessages.

J

{

DSP Manager Host application
DSPPr ocessMessages: MessageAct i onProc:
removes message from handles the message at
the queue and sends it deffered task level.

on to the host application. I:>

The reason for deferring the interrupt via the deferred task mechanism is to ensure
compatibility with virtual memory. By calling the user’s MessageAct i onPr oc routine
from the deferred task, the user code does not have to be locked in physical memory
while the risk of causing a double page fault is still avoided. A disadvantage of using the
deferred task mechanism is that the messages only get processed after all higher level
interrupts have been processed. You should consider this when determining if the
message passing mechanism is appropriate for your use.

From Host to DSP

Message passing from the host to the DSP is accomplished by using shared memory. A
parameter, data, or table section must be established for use by both the DSP and the
host. The host uses this section to pass user-defined messages to the DSP. The DSP must
check this section for new information in every frame.

Message Action Procedure

All normal interrupt code restrictions apply to the MessageAct i onPr oc routine.
Register A5 is not guaranteed to be valid and should be explicitly restored if needed.
Only those toolbox routines that are re-entrant can be called. The MessageAct i onPr oc
routine should reside in the main segment of the application to ensure that its segment
does not get unloaded. The MessageAct i onPr oc routine has the format shown in
Listing 4-8.

Sending Messages 153

CHAPTER 4

Real Time Manager

Listing 4-8 Message action procedure

typedef pascal void (*MessageActi onProc)(struct DSPMessage
*t heMessage) ;
struct DSPMessage {

MessageAct i onProc nsVect or; /1l vector of routine
unsi gned | ong msData[3]; // application-specific data
1

Message Format

The nsVect or field of the DSPMessage data structure is always a pointer to the
MessageAct i onPr oc routine that will be called by DSPPr ocessMessages when the
message is removed from the deferred task queue. It should be set up by the host at run
time prior to executing the DSP code that uses it. If the DSPPr ocessMessages receives
a message with ani | msVect or field the message will be ignored. The use of msDat a
is application-specific. It provides a convenient place for the DSP sending the message
to store parameters the MessageAct i onPr oc routine will need. The DSPMessage
data structure has the format shown in Listing 4-9.

Listing 4-9 DSP message format

154

struct DSPMessage {

MessageAct i onProc nsVector; /1 vector of routine
unsi gned | ong nmeData[3]; // application-specific data
i

DSPTask MessageActi onProc

ns\Vect or -> passed in during DSPNewTask routine

nmsDat a[0] -> the nessage

nsDat a[1] -> DSPTask

nsDat a[2] -> application-specific paranmeter set using the

DSPSet TaskRef Con routi ne

DSPFI FO MessageAct i onProc

nmsVect or -> passed in during DSPNewrl FO routi ne

nsDat a[0] -> the nessage

nsDat a[1] - > DSPFI FORef Num

nmsDat a[2] -> application-specific paraneter set using the

DSPFI FOSet Ref Con routi ne

Messages that are valid for the nsDat a[0] field are listed in “Summary of the Real Time
Manager,” at the end of this chapter.

Sending Messages

CHAPTER 4

Real Time Manager

Real Time Manager Reference

The remainder of this chapter describes the routines in the Real Time Manager that are
not described earlier in this chapter. At the end of this chapter is a summary listing of the
DSP’s application programming interface.

Client Routines

The client routines support software access to the DSP. Besides the routines described in
this section, the client routines include the following:

= Gestal t, described on page 136
= DSPManager Ver si on, described on page 137

DSPGetIndexedClient

DESCRIPTION

The DSPCet | ndexedC i ent routine gets an index to the specified client.

Pascal OSErr DSPGet| ndexedd ient (

unsi gned | ong t hel ndex,
DSPCPUDevi cePar anBl kPt r t heCPUDevi ce,
DSPCl i ent Ref Num *t hed i ent Ref Num ;

Field descriptions

- t hel ndex Index of desired client.
- *t hed i ent Ref Num Returned client reference numbers.

DSPCPUDevi cePar anBl kPt r

Field descriptions

o t heCPUDevi ce Name of the CPU device.
o t heCl i ent | CON Return the client’s icon.

The DSPCet | ndexedd i ent routine is used to find all the clients signed into the DSP
device specified by t heCPUDevi ce. The client should pass an index starting at 0 (in

t hel ndex) and increment it until a kdspl nval i dl ndexEr r value is returned. The
client should also allocate space for the icon buffer t heC i ent | CONor pass ni | if no
icon is desired. This routine does not allocate memory.

Note
If the icon is not desired, be sure to sett heCl i ent | CONto
ni | before calling DSPGet | ndexedCl i ent. O

Real Time Manager Reference 155

CHAPTER 4

Real Time Manager

DSPGetClientInfo

DESCRIPTION

The DSPCet Cl i ent | nf 0 routine gets information about the specified client.

Pascal OSErr DSPGetClientlnfo
(DSPd i ent | nf oPar anBl kHandl et hed i ent Par anBl kHdl) ;

Field descriptions

- ci i ent Ref Num Input reference number of the client.

- ci dientPerm ssion Returned read /write permission of the client.
- cidientl CON Returned icon of the client.

- ci d i ent Nane Returned name of the client.

The DSPCet Cl i ent | nf 0 routine is used to find information about a specific DSP client.
Use either the DSPGet | ndexedCl i ent or the DSPGet Oaner Cl i ent routine to find the
ci d i ent Ref Numvalue needed in the DSPGet i ent | nf o call.

Note

If the specified client did not provide an icon then ni | will be returned
intheci i ent | CONfield. O

DSPGetOwnerClient

DESCRIPTION

156

The DSPGet Oaner Cl i ent routine gets the client for a specified task.

Pascal OSErr DSPGet OmnerCient (
DSPTaskRef Num t heTaskRef Num
DSPC i ent Ref Num *t hed i ent Ref Num ;

Field descriptions

- t heTaskRef Num Reference number for this task.
- *t hed i ent Ref Num Reference number for this client.

When given the DSPTaskRef Numvalue, DSPGet Oaner Cl i ent returns the reference
number, in t heC i ent Ref Num of the client that created the specified task.

Real Time Manager Reference

CHAPTER 4

Real Time Manager

Device Routines

The device routines help you work with CPU devices. Besides the routines described in
this section, they include the following:

= DSPCet | ndexedCPUDevi ce, described on page 138
= DSPOpenCPUDevi ce, described on page 139
= DSPCl oseCPUDevi ce, described on page 151

DSPGetAvailableOnChipMemory

The DSPCet Avai | abl eOnChi pMenor y routine gets available on-chip memory on the

specified CPU device.

pascal OSErr DSPGet Avai | abl eOnChi pMenory (
DSPMbdul eRef Num t heModul eRef Num
unsi gned | ong *t heSi ze) ;

Field descriptions

- t heModul eRef Num The reference number of the desired module.
- *t heSi ze The size of the available on-chip memory.

DESCRIPTION
The DSPCet Avai | abl eOnChi pMenor y routine returns the amount of on-chip DSP
memory available for use by the module. The returned value can be used by the
DSPSet Sect i onSi ze routine to set a dynamic section in a demand cache module to
this size.

SEE ALSO
DSPCet Sect i onl nf o (page 174)
DSPSet Sect i onSi ze (page 174)
DSPNew! nt er TaskBuf f er (page 175
DSPNewF| FO (page 176)
DSPFI FOGet Si ze (page 176)

DSPGetIndexedCPUDeviceOption

The DSPCet | ndexedCPUDevi ceQpt i on routine gets information about a specified
CPU device. To get all the available options of a given type, repeat this call while
incrementing t heQpt i onl ndex from 0 until it returns kdspl nval i dl ndexErr.

Real Time Manager Reference 157

DESCRIPTION

CHAPTER 4

Real Time Manager
You can then call DSPSet | ndexedCPUDevi ceOpt i on with the resulting values of
t heOpti onType and t heOpt i onl ndex to set the device option.

pascal OSErr DSPCGet | ndexedCPUDevi ceOpti on (
DSPCPUDevi cePar anBl kPt r t heCPUPar anBl k,

unsi gned short t heOpt i onl ndex,
OSType t heOpti onType,
unsi gned | ong *t heOpti on);

Field descriptions

- t heOpt i onl ndex The index of the desired option from 0.
- t heOpti onType The desired option.
- *t heOpti on The value of the specified option.

The valid selector fort heOpt i onType is:
kdspFr aneRat e

DSPCPUDevi cePar anBl kPt r

Field descriptions

- pbhd i ent Ref Num The client reference number.
- pbhd i ent Per mi ssi on The caller’s permission.

The DSPCet | ndexedCPUDevi ceQpt i on routine allows a client to request information
about a device. By calling DSPGet | ndexedCPUDevi ceOpt i on with t heOpt i onl ndex
starting at 0 and incrementing until kdspl nval i dl ndexErr is returned a client can get
a list of all available options of a given type for a device. The client must first make a call
to DSPQpenCPUDevi ce before calling DSPGet | ndexedCPUDevi ceOpt i on.

DSPSetIndexed CPUDeviceOption

158

The DSPSet | ndexedCPUDevi ceQpt i on routine sets information about specified
CPU device. For information about getting values for t heOpt i onl ndex and

t heOpt i onType, see the routine description for DSPGet | ndexedCPUDevi ceOpt i on
on page 157.

pascal OSErr DSPSet | ndexedCPUDevi ceOption (
DSPCPUDevi cePar anBl kPt r t heCPUPar anBl k,
unsi gned short t heOpt i onl ndex,
OSType t heOpti onType) ;

Real Time Manager Reference

DESCRIPTION

CHAPTER 4

Real Time Manager

Field descriptions

- t heOpt i onl ndex The index of the desired option.
- t heOpti onType The desired option.

DSPCPUDevi cePar anBl kPt r

Field descriptions

- pbhC i ent Ref Num The client reference number.
- pbhd i ent Per mi ssi on The caller’s permission.

The DSPSet | ndexedCPUDevi ceQpt i on routine is used to set an option for a CPU
device. Sett heOpt i onType to the appropriate selector and t heOpt i onl ndex to
the desired option. The client must first call DSPOpenCPUDevi ce with read /write
permission to be able to change the device option.

The t heCPUPar anBl k data structure is used to pass information about a DSP CPU
device between the Real Time Manager and a client.

DSPSetCPUDeviceBondage

DESCRIPTION

The DSPSet CPUDevi ceBondage routine configures the master/slave relationship
between two DSP CPUs.

pascal OSErr DSPSet CPUDevi ceBondage (
DSPCPUDevi cePar anBl kPt r cpubDevi cel,
DSPCPUDevi cePar anBl kPt r cpubevi ce2);

Field descriptions

- cpubevi cel The device to be configured.
- cpubDevi ce2 Optional, new master device.

The DSPSet CPUDevi ceBondage routine is used to configure the master/slave relation-

ship between two DSP CPUs. Parameter cpuDevi cel identifies the device to be

configured. Pass ni | in cpuDevi ce2 to make cpuDevi cel identify a master device, or

pass a valid cpuDevi ce2 value to make cpuDevi cel a slave of cpuDevi ce2.

Real Time Manager Reference

159

CHAPTER 4

Real Time Manager

DSPOpenlODevice

DESCRIPTION

The DSPOpen! CDevi ce routine opens access to a specified I/O device.

pascal OSErr DSPQOpenl ODevi ce
(DSPI ODevi cePar anBl kPt r t hel OPar anBl k) ;

Field descriptions

- pbhDevi cel ndex The index for this device.

- i opbCPUDevi cel ndex CPU device index for this I/O device.
- i opbl ODevi ceType The type of this I/O device.

- pbhDevi ceName Returned name of device.

- pbhd i ent Per mi ssi on The caller’s permission.

- pbhd i ent Ref Num The client reference number.

Valid constants for pbhCl i ent Per ni ssi on are:

kdspW it ePer m ssi on Requesting permission to write to the device.
kdspReadPer ni ssi on Requesting permission to read from the device.
kdspReadW it ePer m ssi on (kdspW it ePer m ssi on | kdspReadPer m ssi on).

The DSPOpenl CDevi ce routine allows the client to gain access to one of the

DSPI ODevi ce drivers. This routine is analogous to DSPOpenCPUDevi ce in that if the
DSPI ODevi cePar anBl k structure was set up by calling DSPCet | ndexedl| CDevi ce
then the client need only fill the pbhCl i ent Per nmi ssi on field.

DSPCloselODevice

DESCRIPTION

160

The DSPCl osel ODevi ce routine closes access to the specified 1/0 device.

pascal OSErr DSPC osel ODevi ce (DSPI ODevi cePar anBl kPt r ;
t hel OPar anBl k) ;

Field descriptions

- pbhd i ent Ref Num The reference number for this client.
- pbhC i ent Per mi ssi on The read / write permission for this client.

The DSPC osel ODevi ce routine closes a DSPI ODevi ce that was opened using
DSPOpenl CDevi ce.

Real Time Manager Reference

CHAPTER 4

Real Time Manager

DSPGetIndexedIODevice

DESCRIPTION

The DSPGet | ndexedl ODevi ce routine gets an index to the specified I/O device.

pascal OSErr DSPGet| ndexedl ODevi ce (DSPI CDevi cePar anBl kPt r;
t hel OPar anBl k)

Field descriptions

N pbhDevi cel ndex The index for this device.

- i opbCPUDevi cel ndex CPU device index for this I/O device.
N i opbl ODevi ceType The type of this I/O device.

- pbhDevi ceName Returned name of device.

- pbhDevi cel CON Returned icon of device.

Valid I/O device types are:

kdspSI OTypeDevi ce (0)
kdspBI OTypeDevi ce (1)

The DSPCet | ndexedl ODevi ce routine is used by a client to find information about
the DSP I/O devices installed. By calling DSPGet | ndexed| ODevi ce a client can
create a list containing t hel OPar anBl k for each available device. The client should
pass an index starting at 0 (in i oppCPUDevi cel ndex) and increment it until

kdspl nval i dl ndexEr r is returned. The client should also allocate space for the
icon buffer pbhDevi cel CONor pass ni | if no icon is desired. This routine does not
allocate memory.

Note

If the icon is not desired, be sure to set ppbhDevi cel CONto
ni | before calling DSPGet | ndexedCPUDevi ce. O

DSPGetIndexedIODeviceOption

The DSPCet | ndexedl ODevi ceQpt i on routine gets information about a specified
I/0 device. To get all the available options of a given type, repeat this call while
incrementing t heQOpt i onl ndex from 0 until it returns kdspl nval i dl ndexErr.
You can then call DSPSet | ndexed| CDevi ceOpt i on with the resulting values of
t heOpt i onType and t heOpt i onl ndex to set the device option.

pascal OSErr DSPGet | ndexedl ODevi ceOption (

DSPI ODevi cePar anBl kPt r t hel OPar anBl k,
unsi gned short t heOpt i onl ndex,
OSType t heOpti onType,
unsi gned | ong *t heOption);

Real Time Manager Reference 161

CHAPTER 4

Real Time Manager

Field descriptions

- t heOpt i onl ndex The index of the desired option from 0.
N t heOpti onType The desired option.
- theOpti on The value of the specified option.

Valid values for t heOpt i onType are:

kdspl ndexedSanpl eRat e 'srop
kdspl ndexedSanpl eFor nat 'szop

DSPI ODevi cePar anBl kPt r

Field descriptions

- pbhC i ent Ref Num The reference number of the client.
- pbhC i ent Per mi ssi on The caller’s permission.

DESCRIPTION

A client can find out the different values available for each t heOpt i onType by
calling DSPGet | ndexed| CDevi ceOpt i on. For each t heOpt i onType the client
should pass a count starting at 0 (in t heQpt i onl ndex) and increment it until a
kdspl nval i dl ndexErr error occurs. Using this method the client can get a list
of all available options for each t heOpt i onType for a DSPI/O device.

DSPSetIndexedIODeviceOption

The DSPSet | ndexedl ODevi ceQpt i on routine sets information about a specified
I/0O device. For information about getting values for t heOpt i onl ndex and

t heOpt i onType, see the routine description for DSPGet | ndexed| ODevi ceOpt i on
on page 161.

pascal OSErr DSPSet | ndexedl ODevi ceOption (

DSPI ODevi cePar anBl kPt r t hel OPar anBl k,
unsi gned short t heOpt i onl ndex,
OSType t heOpti onType) ;

Field descriptions

- t heOpt i onl ndex The index of the desired option from 0.
. t heOpti onType The desired option.

Valid values for t heOpt i onType are:

kdspl ndexedSanpl eRat e 'srop'

kdspl ndexedSanpl eFor nat 'szop'

162 Real Time Manager Reference

CHAPTER 4

Real Time Manager

DSPI ODevi cePar anBl kPt r

Field descriptions

- pbhd i ent Ref Num The client reference number.
- pbhd i ent Per m ssi on The caller’s permission.

DESCRIPTION
The DSPSet | ndexedl ODevi ceQpt i on routine allows the client to set an option for a
DSP I/0O device. The client must first open the device with read / write privileges. Use
DSPGet | ndexedl ODevi ceOpt i on to determine the relationship of t heOpt i onl ndex
to each t heOpt i onType. For example, to set kdspl ndexedSanpl eRat e to a specific
sample rate, use the value of t heOpt i onl ndex that returned the value you wanted.
Note
In all cases only the client with write permission is allowed
to make DSPSet | ndexedl ODevi ceOpti on calls. O
The t hel OPar anBl k data structure is used to pass information about a DSP I/O device
between the Real Time Manager and a client.

Task API Routines
The task API routines let you create and control DSP tasks. Besides the routines
described in this section, the task API routines include the following:
= DSPNewTask, described on page 140
= DSPI nsert Task, described on page 147
= DSPSet TaskAct i ve, described on page 148
= DSPSet Taskl nact i ve, described on page 149
= DSPRenpveTask, described on page 149
» DSPDi sposeTask, described on page 151

DSPGetIndexedTask

The DSPGet | ndexedTask routine returns a reference number to the task in the
specified task list on the specified CPU belonging to the indexed client.

pascal OSErr DSPGet | ndexedTask (

unsi gned | ong t hel ndex,
DSPTaskPriority i nterruptLevel,
DSPCPUDevi cePar anBl kPt r t heCPUDevi ce,
DSPTaskRef Num *t heTaskRef Num ;

Real Time Manager Reference 163

DESCRIPTION

CHAPTER 4

Real Time Manager

The DSPTaskPri ori t y constants can be:

kdspReal Ti e
kdspTi meShar e

Field descriptions

= t hel ndex Index of desired client.

= i nterruptLevel kdspReal Ti ne or kdspTi meShar e.

N t heCPUDevi ce The Par anBl kPt r of the device to search.
- t heTaskRef Num Returned task reference number.

DSPGet | ndexedTask is used by a client to find information about all the DSP tasks
currently installed on a specific CPU device. By calling DSPGet | ndexedTask a client
can create a list containing the clients for each available device. The client should pass
an index starting at 0 (in t hel ndex) and increment it until a kdspl nval i dl ndexEr r
value is returned.

DSPGetTaskStatus

DESCRIPTION

164

The DSPGet TaskSt at us routine returns the status of the referenced task.

pascal unsigned | ong DSPGet TaskSt at us (DSPTaskRef Num t heTask) ;

Field description
= t heTask Reference number of the task.

The task status is one of the following constants:

kdspTaskl sActi ve
kdspTaskl sl nacti ve
kdspTaskl sCoi ngl nacti ve
kdspTaskl sGoi ngActi ve
kdspl nval i dTask

The DSPGet TaskSt at us routine returns the status of a task.

Real Time Manager Reference

CHAPTER 4

Real Time Manager

DSPGetOwnerTask

The DSPGet Omer Task routine returns the reference number to the task that the
module belongs to.

pascal OSErr DSPGet Onner Task (
DSPMbdul eRef Num t heModul eRef Num
DSPTaskRef Num *t heTaskRef Num ;

Field descriptions

5 t heModul eRef Num Reference number of the module.
- t heTaskRef Num Reference number of the task.

DESCRIPTION
The DSPGet Oaner Task routine returns the t heTaskRef Numreference number of the
task that contains the specified DSP module.
DSPGetTaskInfo
The DSPGet Task| nf o routine returns information about the referenced task.
pascal OSErr DSPGet Taskl nfo (DSPTaskl nf oParanBl kHandl e
t heTaskPar anBl kHdl ;) ;
Field descriptions
- ti Ref Num Reference number of the task.
- ti Ref Con Returned application-specific information.
- ti Vector Returned vector of task action procedure.
- ti Fl ags Returned flags for DSP task control.
- ti Nane Returned name of this DSP task.
DESCRIPTION

Given a task reference number, a client can use the DSPGet Task! nf o routine to find out
the task’s Ref Con information (the application-specific field of the DSPTask structure),
the task action procedure vector, the task flags, and the task name. The task reference
number can be obtained by using either DSPGet | ndexedTask (page 163) or

DSPGet Oaner Task (page 165).

Real Time Manager Reference 165

CHAPTER 4

Real Time Manager

DSPGetTaskRefCon

DESCRIPTION

The DSPCet TaskRef Con routine returns application-specific information about the
referenced task.

pascal unsigned | ong DSPGet TaskRef Con (DSPTaskRef Num t heRef Num ;

Field description
- t heRef Num Reference number of the task.

The DSPCet TaskRef Con routine is used to return the application-specific field of the
DSPTask structure.

DSPSetTaskRefCon

DESCRIPTION

166

The DSPSet TaskRef Con routine sets the application-specific information field for the
specified task.

pascal OSErr DSPSet TaskRef Con (
DSPTaskRef Num t heRef Num
unsi gned | ong t heDat a) ;

Field descriptions

- t heRef Num Reference number of the DSP task.
- t heDat a New application-specific data for the task.

The DSPSet TaskRef Con routine is used to set the application-specific data field in the
DSPTask structure. An application will use this routine to set the parameter when it
passes a message to the task’s MessageAct i onPr oc. The DSPSet TaskRef Con routine
can then be used from inside the task MessageAct i onPr oc to retrieve the parameter.

For more information about MessageAct i onPr oc see “Sending Messages,” earlier in
this chapter.

Real Time Manager Reference

CHAPTER 4

Real Time Manager

DSPTaskToSynchronize

DESCRIPTION

The DSPTaskToSynchr oni ze routine sets a flag in the task to indicate that this task
should be synchronized.

pascal OSErr DSPTaskToSynchronize (
DSPTaskRef Num t heRef Num
unsi gned | ong franeDel ay,
DSPSynchRef Num *synchRef Num ;

Field descriptions

- t heRef Num Reference number of the DSP task to synchronize.
- f rameDel ay Number of frames till synch operation.
- synchRef Num Synchronization reference number for this task.

You sometimes need to synchronize multiple tasks so they start on the same frame. For
example, when playing back a multiple track sound file where each of the tracks is
assigned to a separate task, it is necessary to start each of these tracks on the same frame
to maintain synchronization. Of course there are many cases where the same function
can be accomplished by placing the required modules under one task; this is the
preferred method.

When installing several tasks that you want to synchronize, use the
DSPTaskToSynchr oni ze routine to set them all to the same synchRef Num

Once this flag is set in all of the tasks that you want to start synchronously, a call

is made to DSPSynchr oni zeTasks. This causes the DSP operating system to toggle
(change the state of the flag, 1 or 0) all of the active flags for the marked tasks.

This technique can synchronously stop as well as synchronously start tasks. You can
even start one group and stop another group at the same time with this technique.

Note
Until DSPSynchr oni zeTasks is called, no calls
to Wai t Next Event should be made. O

DSPSynchronizeTasks

The DSPSynchr oni zeTasks routine synchronizes the starting of different tasks.

pascal OSErr DSPSynchroni zeTasks (DSPSynchRef Num *synchRef Num

Field description

- synchRef Num Synchronization reference number of DSP task to be
synchronized.

Real Time Manager Reference 167

CHAPTER 4

Real Time Manager

DESCRIPTION

This routine is used when it is necessary to synchronize two or more DSP tasks that
belong to the same or different DSP devices.

A WARNING
This call should not be made from the interrupt level. a

Note

It does not make any sense to try to synchronize both real-time and
timeshare tasks. There is no way to guarantee any relationship between
the two task lists. O

SEE ALSO
DSPTaskToSynchr oni ze (page 167)

Module API Routines

The module API routines let you load and control DSP modules. Besides the routines
described in this section, the module API routines include the following:

= DSPLoadMdul e, described on page 141
= DSPUnI oadModul e, described on page 150

DSPGetOwnerModule

The DSPGet Omer Modul e routine returns a reference number to the module for the
specified section.

pascal OSErr DSPGet Omner Modul e (
DSPSect i onRef Num t heSect i onRef Num
DSPModul eRef Num *t heModul eRef Num ;

Field descriptions

- t heSect i onRef Num The section reference number.
- t heMbdul eRef Num Returned reference number of module.

DESCRIPTION

The DSPGet Oaner Modul e routine is used by a client to find the reference number of the
module that the specified section is a part of.

168 Real Time Manager Reference

CHAPTER 4

Real Time Manager

DSPGetIndexedModule

The DSPCet | ndexedModul e routine returns a reference number to the specified
module on the specified task belonging to the indexed client.

pascal OSErr DSPGet | ndexedModul e (
unsi gned | ong t hel ndex
DSPTaskRef Num t heTaskRef Num
DSPModul eRef Num *t heMbdul eRef Numj ;

Field descriptions

N t hel ndex Index of desired client.
- t heTaskRef Num Reference number of the task.
- t heMbdul eRef Num Returned module reference number.

DESCRIPTION
The DSPCet | ndexedModul e routine is used by a client to find information about all the
modules that are currently installed on a specific task. By calling this routine, a client can
create a list containing the modules for each available task. The client should pass an
index starting at 0 (in t hel ndex) and increment it until a kdspl nval i dl ndexErr
value is returned.
DSPGetModulelnfo
The DSPGet Modul el nf o routine provides information about the specified module.
pascal OSErr DSPGet Modul el nfo (DSPModul el nf oPar anBl kHandl e
t heMbdul ePar anBl kHdl) ;
Field descriptions
- m Ref Num Input reference number of this module.
- m GPB Returned guaranteed processing bandwidth.
- m Fl ags Returned module flags.
- m NunBect i ons Returned number of sections in module.
- m Nanme Returned name of the DSP module.
- m Execut i ons Returned number of executions.
- m Ski pCount Returned number of modules to skip.
DESCRIPTION

The DSPGet Modul el nf o routine is used by a client to find information about the
module specified by mi Ref Num

Real Time Manager Reference 169

CHAPTER 4

Real Time Manager

DSPSetSkipCount

DESCRIPTION

The DSPSet Ski pCount routine sets the skip count for the specified module.

pascal OSErr DSPSet Ski pCount (
DSPModul eRef Num t heMbdul eRef Num
unsi gned | ong t heCount) ;

Field descriptions

o t heModul eRef Num The reference number of this module.
- t heCount The new skip count value.

The DSPSet Ski pCount routine sets the skip count value of the module referenced
byDSPModul eRef Num It is used to selectively skip over one or more modules, to run
later modules in the same task.

DSPSetGPBMode

DESCRIPTION

170

The DSPSet GPBMbde routine sets the GPB mode for the specified module.

pascal OSErr DSPSet GPBMbde (
DSPModul eRef Num t heMbdul eRef Num
unsi gned short desi r edvbde)

Field descriptions

- t heMbodul eRef Num The reference number of this module.
- desi redMbde The new mode value for the GPB vector in the module.

DSPGPBModel ndi cat or

Field descriptions

- m Cur r ent Mode Mode in which the module is operating (only the DSP
code should change this value).
- m Next Mbde Mode the client wants to change to (only the Real

Time Manager should change this value).

The DSPSet GPBMbde routine is used to change the GPB allocation for a module that
has already been installed in the DSP. If the module has more than one scaling

vector (sample-rate/scale-factor/ GPB-value) then each sample-rate / scale-factor with
a different GPB value is a GPB mode.

Real Time Manager Reference

SEE ALSO

CHAPTER 4

Real Time Manager

If there is enough processing bandwidth available the Real Time Manager will change

m Next Mbde to the desired mode. The DSP module should be monitoring the

m Next Mbde value for changes and switch modes to the desired mode. After the module
has made the switch it should update the mi Cur r ent Mode value so the Real Time
Manager can update the GPB numbers on the disk. If there is not enough processing
bandwidth to use the new mode the Real Time Manager will respond with an error,
kdspNot EnoughGPB.

DSPLoadModul e (page 141)

DSPCountModule

DESCRIPTION

The DSPCount Modul e routine allows the specified module to be included in the
GPB calculations.

pascal OSErr DSPCount Modul e (DSPModul eRef Num t heModul eRef Num

Field description
= t heModul eRef Num Module reference number.

The DSPCount Modul e routine clears the kdspDont Count Thi sMbdul e flag so the GPB
value of the module is used in calculating the task’s GPB requirements. There must be at
least one module in a task that has this flag cleared. The kdspDont Count Thi shbdul e
flag is normally cleared by the DSP programmer.

DSPDontCountModule

DESCRIPTION

This routine prevents the specified module from being included in the GPB calculations.

pascal OSErr DSPDont Count Modul e (DSPModul eRef Num t heModul eRef Numj

Field description
- t heModul eRef Num Module reference number.

Sets the kdspDont Count Thi sMbdul e flag so the GPB value of the module is not used
in calculating the task’s GPB requirements. There must be at least one module in a task
that has this flag cleared. The kdspDont Count Thi sMbdul e flag is normally cleared by
the DSP program.

Real Time Manager Reference 171

CHAPTER 4

Real Time Manager

DSPUpdateGPBPreferenceFile

DESCRIPTION

The DSPUpdat eGPBPr ef er enceFi | e routine updates the GPB information for the
specified module in the DSP preferences file.

pascal OSErr DSPUpdat eGPBPr ef erenceFi |l e (DSPModul eRef Num
t heModul eRef Nun)

Field description
- t heModul eRef Num Reference number of this module.

The DSPUpdat eGPBPr ef er enceFi | e routine immediately updates the preferences
file, but only if the worst-case GPB condition has been found.

DSPDontUpdateGPBPrefs

DESCRIPTION

SEE ALSO

172

The DSPDont Updat eGPBPr ef s routine prevents the specified module from having its
actual GPB values saved to the DSP preferences file.

pascal OSErr DSPDont Updat eGPBPrefs (DSPModul eRef Num
t heMbdul eRef Nunj

Field description
5 t heModul eRef Num Reference number of this module.

When a module is deallocated, if the module has run its worst-case GPB condition and
the bnAct ual GPB flag is set, then the Real Time Manager will automatically save the
module’s new GPB number(s) to the DSP preferences file. This routine is used when the
application does not want the new GPB values stored in the DSP preferences file and
must be made before the module is deallocated.

Note

This call must be made before the module is deallocated if the GPB
numbers are not to be updated. O

DSPUpdat eGPBPr ef er enceFi | e (page 172)

Real Time Manager Reference

CHAPTER 4

Real Time Manager

Section API Routines

The section API routines let you control DSP sections. Besides the routines described
below, the section API routines include the following;:

= DSPCet Sect i on, described on page 145
= DSPConnect Sect i ons, described on page 146

DSPGetSectionData

The DSPCet Sect i onDat a routine returns a pointer to the actual data that is in a section.

pascal OSErr DSPGet SectionData (
DSPSect i onRef Num t heSect i onRef Num
Ptr *t heDat a) ;

Field descriptions

- t heSect i onRef Num The section reference number.
- t heDat a The returned pointer to the section’s data.

DESCRIPTION

The DSPCet Sect i onDat a routine is provided to get a pointer to the base of the

actual data that is in the section. This is used for sharing parameters between the
host and the DSP.

Note

This call can only be made after the task containing the specified
section has been installed using DSPLoadMbdul e. O

DSPGetIndexedSection

The DSPGet | ndexedSect i on routine returns the reference number to the indexed
section in the specified module.

pascal OSErr DSPGet| ndexedSection (

unsi gned | ong t hel ndex,
DSPModul eRef Num t heMbdul eRef Num
DSPSect i onRef Num *t heSecti onRef Num ;
Field descriptions
- t hel ndex Index of desired section.
N t heModul eRef Num Module that contains section.
- t heSect i onRef Num Returned section reference number.

Real Time Manager Reference 173

CHAPTER 4

Real Time Manager

DESCRIPTION

The DSPCet | ndexedSect i on routine is used by a client to find information about all

the sections that are part of the module designated by t heMbdul eRef Num By calling

DSPCet | ndexedSect i on, a client can create a list containing the sections for each

available module. The client should pass an index starting at 0 (in't hel ndex) and

increment it until a kdspl nval i dl ndexEr r value is returned.
DSPGetSectionInfo

The DSPCet Sect i onl nf 0 routine returns information about the specified section.

pascal OSErr DSPGet Sectionl nfo (DSPSecti onl nfoParanBl kHandl e

t heSect i onPar anBl kHdl) ;

Field descriptions

- si Ref Num Input reference number of this section.

- si Size Returned size of data in actual section.

- si Fl ags Returned section control flags.

- si Type Returned section data type.

- si Nane Returned name of this section.

- si Primary Returned location of section data.

- si Secondary Returned optional section data storage location.

- si PrevSecti on Returned previous connection.

- si Next Secti on Returned next connection.

- si FI FORef Num Returned reference number of the FIFO.
DESCRIPTION

The DSPCet Sect i onl nf o routine is used by a client to find information about the

specified section. If it is a FIFO section, then the parameter si FI FORef Numis returned

with the FIFO reference number; otherwise ni | is returned.
DSPSetSectionSize

The DSPSet Sect i onSi ze routine sets the size of the specified section.

pascal OSErr DSPSet Secti onSi ze(

DSPSect i onRef Num t heSect i onRef Num
unsi gned | ong t heSi ze) ;

Field descriptions

- t heSect i onRef Num The section reference number.

- t heSi ze The desired size of the section.
174 Real Time Manager Reference

DESCRIPTION

CHAPTER 4

Real Time Manager

The DSPSet Sect i onSi ze routine is used to set the size of the section.

DSPNewlInterTaskBuffer

DESCRIPTION

The DSPNewl nt er TaskBuf f er routine creates a new ITB and returns a reference
number to the ITB for the specified task.

pascal OSErr DSPNew nt er TaskBuf fer (

DSPTaskRef Num t heTaskRef Num

unsi gned | ong t heSi ze,

unsi gned short t heDat aType,

Str31 t hel nt er TaskBuf f er Nane,
short bankPr ef er ence,

DSPSect i onRef Num *t heRet ur nedSecti on);

Field descriptions

- t heTaskRef Num Pointer to the requesting task.

- theSi ze Size of the ITB.

- t heDat aType Type of data in the ITB.

- t hel nt er TaskBuf f er Name Name of the ITB.

- bankPr ef er ence Bank of on-chip SRAM to use for buffer.
- t heRet ur nedSect i on Reference number for accessing the ITB.

The DSPNew nt er TaskBuf f er routine is used to create a data buffer that can be
shared between two different tasks. The bankPr ef er ence parameter may be
kdspBankA, kdspBankB, or kdspAnyBank. After creating the buffer, use
DSPConnect Sect i ons to connect the buffer to the sections in your tasks.

FIFO API Routines

The FIFO API routines let you create and control DSP FIFO buffers. Besides the routines

described in this section, the FIFO API routines include the following;:
= DSPNewF| FO described on page 143
= DSPDi sposeF| FO described on page 150

Real Time Manager Reference

175

CHAPTER 4

Real Time Manager

DSPFIFOGetSize

The DSPFI FOGet Si ze routine returns the size of the specified FIFO.
pascal unsigned | ong DSPFI FOCGet Si ze (DSPFI FORef Num t heFl FORef Num ;

Field descriptions

- t heFl FORef Num The FIFO reference number.
- Functi onResul t The number of total bytes allocated for the FIFO.

DESCRIPTION
The DSPFI FOCet Si ze routine returns the size of the given FIFO.

DSPFIFOGetReadCount

The DSPFI FOGet ReadCount routine returns the number of bytes available in a FIFO.

pascal unsigned | ong DSPFI FOGet ReadCount (DSPFI FORef Num
t heFl FORef Nunj ;

Field descriptions

- t heFlI FORef Num The FIFO reference number.
- Functi onResul t The number of bytes currently in the FIFO.
DESCRIPTION
The DSPFI FOGet ReadCount returns the number of bytes that can actually be read from
a given FIFO.
DSPFIFORead

The DSPFI FORead routine reads data from the FIFO into the specified location.

pascal unsigned | ong DSPFI FORead (

DSPFI FORef Num t heFl FORef Num
Ptr t heDest i nati on,
unsi gned | ong t heCount) ;

176 Real Time Manager Reference

DESCRIPTION

CHAPTER 4

Real Time Manager

Field descriptions

- t heFl FORef Num Reference number of the FIFO to be read.

- theDesti nati on The location in which to place the data being read.
. t heCount The number of bytes to be read.

- Functi onResul t The number of bytes that were read.

The DSPFI FORead routine reads data from a FIFO. The t heCount parameter is the
number of bytes requested. The number of bytes actually read are returned in the
Functi onResul t parameter. The data is written to t heDest i nati on.

DSPFIFOGetWriteCount

The DSPFI FOGet Wi t eCount routine returns the number of available bytes in a FIFO.

pascal unsigned | ong DSPFI FOGet Wit eCount (DSPFI FORef Num
t heFl FORef Num ;

Field descriptions

- t heFl FORef Num The FIFO reference number.
- Functi onResul t The number of empty bytes left in the FIFO.
DESCRIPTION
The DSPFI FOGet Wi t eCount routine returns the number of bytes that can be written
to a FIFO.
DSPFIFOWrite

The DSPFI FOW i t e routine writes data into the specified FIFO.

pascal unsigned | ong DSPFI FOWite (
DSPFI FORef Num t heFl FORef Num
Ptr t heSour ce,
unsi gned | ong t heCount) ;

Field descriptions

- t heFl FORef Num The FIFO reference number to write to.
N t heSour ce The location of the data to be written.
- t heCount The number of bytes to write.

- Functi onResul t The number of bytes actually written.

Real Time Manager Reference 177

DESCRIPTION

CHAPTER 4

Real Time Manager

The DSPFI FON i t e routine writes data to a FIFO. The t heCount parameter is the
number of bytes to be written. The number of bytes actually written are returned
in the Funct i onResul t parameter. The data to be written to the FIFO is indicated
by t heSour ce.

DSPFIFOSwap

DESCRIPTION

178

The DSPFI FOSwap routine swaps new data into the specified FIFO.

pascal unsigned | ong DSPFI FOSwap (
DSPFI FORef Num t heFl FORef Num
unsi gned | ong t heSi ze,
Ptr Logi cal ,
Ptr physi cal ,
Bool ean fifoFull,
MessageActi onProc thelnterrupt);

Field descriptions

- t heFl FORef Num The FIFO reference number.

- theSi ze The size of data buffer allocated.

- | ogi cal The logical address.

- physi cal The physical address.

- fifoFull Flag to tell routine to fill FIFO with data.

- thel nt errupt The procedure for receiving messages from the FIFO.

The DSPFI FOSwap routine takes an existing FIFO header and changes the FIFO data.
This routine is used with linked FIFOs when a FIFO linked message is received and
more data needs to be put into the FIFO. It does not allocate memory and is safe to call at
the interrupt level. The FIFO linked message indicates the specific FIFO is empty and can
safely be removed from the linked FIFO. If the removed FIFO was allocated by the
application, then it must be deallocated by the application.

For more information about MessageAct i onPr oc see “Sending Messages,” earlier in
this chapter.

Real Time Manager Reference

CHAPTER 4

Real Time Manager

DSPFIFOReset

The DSPFI FOReset routine empties the FIFO and clears any pending operations for
a FIFO.

pascal OSErr DSPFI FOReset (DSPFI FORef Num t heFl FORef Num ;

Field description
- t heFl FORef Num The FIFO reference number.

DESCRIPTION
The DSPFI FOReset routine is used to reset a FIFO after a transaction has finished.
This routine disables message passing by calling DSPFI FOSet MessageMde with
t heFl ags set to kdspMaskAl | Messages. It then calls DSPFI FOO ear | nt er r upt to
clear any pending interrupts. Finally, it resets both the read and write indexes to 0,
which has the effect of emptying the FIFO.

DSPFIFOClearInterrupt

The DSPFI FOO ear | nt er r upt routine clears the interrupt for a FIFO.

pascal OSErr DSPFI FOC ear | nterrupt (DSPFI FORef Num t heFl FORef Num ;

Field description
- t heFl FORef Num The FIFO reference number.

DESCRIPTION

The DSPFI FOCI ear | nt er r upt routine clears the interrupt for the given FIFO. Once
the DSP has sent a message to a FIFO, it will not send additional messages until this call
has been made to clear the current interrupt. Usually this call would be made from the
FIFO’s MessageAct i onProc.

For more information about MessageAct i onPr oc see “Sending Messages,” earlier in
this chapter.

Real Time Manager Reference 179

CHAPTER 4

Real Time Manager

DSPFIFOGetRefCon

DESCRIPTION

The DSPFI FOGet Ref Con routine returns application-specific information for the
specified FIFO.

pascal unsigned | ong DSPFI FOGet Ref Con (DSPFI FORef Num
t heFl FORef Num ;

Field descriptions

o t heFl FORef Num The FIFO reference number.
- Functi onResul t The current Ref Con of the FIFO.

The DSPFI FOGet Ref Con routine returns the application-specific data for a given
DSP FIFO.

DSPFIFOSetRefCon

DESCRIPTION

180

The DSPFI FOSet Ref Con routine sets the value of the application-specific data field in a
DSP FIFO buffer.

pascal OSErr DSPFI FOSet Ref Con (
DSPFI FORef Num t heFl FORef Num
unsi gned |l ong theVal ue);

Field descriptions

- t heFl FORef Num The FIFO reference number.
- t heVval ue The desired value of the Ref Con.

The Ref Con for the FIFO is an application-specific parameter. When a client application
has to pass FIFO parameters to its FIFO MessageAct i onPr oc it should use this
routine to set the parameter. DSPFI FOCGet Ref Con can be used from inside the
MessageAct i onPr oc routine to get the FIFO parameter that was set up by the client.

For more information about MessageAct i onPr oc see “Sending Messages,” earlier in
this chapter.

Real Time Manager Reference

CHAPTER 4

Real Time Manager

DSPFIFOGetMessageMode

DESCRIPTION

The DSPFI FOGet MessageMde routine returns the mode of the specified FIFO.

pascal unsigned | ong DSPFI FOGet MessageMbde (DSPFI FORef Num
t heFl FORef Num ;

Field descriptions

N t heFl FORef Num The FIFO reference number.
- Functi onResul t The current value of the FIFO’s flags.

The DSPFI FOGet MessageMde routine returns the mode set by the
DSPFI FOSet MessageMode routine.

DSPFIFOSetMessageMode

DESCRIPTION

The DSPFI FOSet MessageMde routine sets the message passing mode for a FIFO.

pascal OSErr DSPFI FOSet MessageMode (
DSPFI FORef Num t heFl FORef Num
unsi gned | ong t heFl ags) ;

Field descriptions

- t heFl FORef Num The FIFO reference number.
- t heFl ags The desired value of the FIFO's flags.

The DSPFI FCSet MessageMode routine is used to enable or disable message passing
from the DSP to the FIFO. Setting t heFl ags to kdspMaskAl | Messages will disable
all messaging. Setting t heFl ags to kdspHal f MessageEnabl e will enable the half
empty/full messages. Setting t heFl ags to kdspTer mi nat i onMessageEnabl e will
enable the empty/ full message.

To transfer data from the host to the DSP, the typical steps to follow are to set the mode
to kdspHal f MessageEnabl e until the host runs out of data, then set the mode to
kdspTer mi nat i onMessageEnabl e. When the empty message comes in, set the mode
to kdspMaskAl | Messages since the transfer is complete.

Table 4-6 shows the Apple-defined message masks.

For more information about message passing see “Sending Messages,” earlier in
this chapter.

Real Time Manager Reference 181

CHAPTER 4

Real Time Manager

Table 4-6 Message masks

Message
kdspFl FOVaskAl | Messages

kdspFl FOEnabl eOver Under Message

kdspFl FOEnabl eFul | Enpt yMessage

kdspFl FOEnabl eHi ghLowiessage

kdspFl FCEnabl eLi nkMessage

kdspFl FOOver Under Taskl nacti ve

kdspFl FOFul | Enpt yTaskl nacti ve

DSPFIFOGetMessageActionProc

Comments

Disable all messages, (p) priority of FIFO
messages in descending order

(4) enable message when FIFO transfer
causes an overrun or underrun

(3) enable message when FIFO is full
or empty

(2) enable message when FIFO is at least
half full or half empty

(1) enable message when FIFO's link
was traversed

If task accessing FIFO causes either FIFO
overrun or underrun then set task inactive

If task accessing FIFO causes either FIFO
full or empty then set task inactive

DESCRIPTION

182

The DSPFI FOGet MessageAct i onPr oc routine returns a pointer to the specified FIFOs

message action procedure.

pascal OSErr
DSPFI FORef Num
MessageAct i onProc

Field descriptions

5 t heFl FORef Num
- t heVect or

DSPFI FOGet MessageAct i onProc (
t heFl FORef Num
*t heVector);

The FIFO reference number.
The FIFO message action procedure.

The DSPFI FOGet MessageAct i onPr oc routine provides the location of the specified
FIFOs message action procedure. The result is used to get or set the messages associated

with the FIFO.

For more information about MessageAct i onPr oc see “Sending Messages,” earlier in

this chapter.

Real Time Manager Reference

CHAPTER 4

Real Time Manager

DSPFIFOSetMessageActionProc

DESCRIPTION

The DSPFI FOSet MessageAct i onPr oc routine sets the location of the message action
procedure for the specified FIFO.

pascal OSErr DSPFI FOSet MessageActi onProc (
DSPFI FORef Num t heFl FORef Num
MessageAct i onProc *t heVector);

Field descriptions

- t heFl FORef Num The FIFO reference number.
. t heVect or The FIFO message action procedure.

The DSPFI FOSet MessageAct i onPr oc routine sets the location of the specified FIFO's
message action procedure. The location is used to get or set the messages associated with
the FIFO.

For more information about MessageAct i onPr oc see “Sending Messages,” earlier in
this chapter.

DSPFIFOSetMessageThreshold

DESCRIPTION

The DSPFI FOSet MessageThr eshol d routine sets the byte level that triggers a
FIFO message.

pascal OSErr DSPFI FOSet MessageThreshol d (
DSPFI FORef Num t heFl FORef Num
unsi gned | ong t heThr eshol d) ;

Field descriptions

- t heFl FORef Num The FIFO reference number.
- t heThreshol d The desired value of the threshold in bytes.

The DSPFI FCSet MessageThr eshol d routine is used by a client application to set the
minimum number of bytes, the t heThr eshol d value, from the beginning or end of the
FIFO memory that are needed to generate the interrupt, as shown in Figure 4-13. The

t heThr eshol d value is an application-specific parameter subject to these rules:

Reading data: When the FIFO has been filled with the threshold amount of data,
then an interrupt will be generated.

Real Time Manager Reference 183

CHAPTER 4

Real Time Manager

Writing data: When the FIFO has been emptied by the amount of the threshold,
then an interrupt will be generated.

Maximum t heThr eshol d value = FI FOSi ze - 4 bytes

Minimum t heThr eshol d value = 4 bytes

Figure 4-13 FIFO threshold

FIFO full

Write threshold

FIFO memory

Read threshold

FIFO empty

Summary of the Real Time Manager

Constants

All constants used in real-time software are listed in Chapter 5, “DSP Operating
System.” Only the constants referred to in the present chapter are listed here.

kdspManager Bui | dVer si on 0x0000000x // last digit is version number

kdspHeadl nsert 0x00000004 /1 insert at head of I|ist
kdspTai |l I nsert 0x00000008 /1 insert at tail of list
kdspBef or el nsert 0x00000010 /1 insert before reference |ink
kdspAfterlnsert 0x00000020 /1 insert after reference |ink

kdspAnyPosi tionl nsert kdspHeadl nsert // insert anywhere in |ist

184 Summary of the Real Time Manager

/'l constants for

CHAPTER 4

Real Time Manager

kdspBI OPi nChangedsSt at e

kdspFl FOVessage

kdspFI FOLi nkMessage

kdspFl FOOver runMessage

kdspFl FOUnder r unMessage

kdspFl FOFul

| Message

kdspFl FOEmpt yMessage

kdspFI FOH ghMessage

kdspFl FOLowvessage

kdspFI FOPr i
kdspExcept

kdspExcept
kdspExcept
kdspExcept
kdspExcept
kdspExcept
kdspExcept
kdspExcept
kdspExcept
kdspExcept
kdspExcept
kdspExcept
kdspExcept
kdspExcept
kdspExcept
kdspExcept

neMessage
onMessage

onReset

onBusErr or

onl | | egal Opcode
onReservedOne
onAddr essError
onDAUOver Under f | ow
onNot ANunber
onReser vedTwo
onExt er nal | nt Zer o
onTi mer
onReservedThr ee
onSl A nput Buf Ful |
onSI| OQQut put Buf Enpt y
onSI CDVAI nput Fr ame
onSl CDVACQut put Fr ame

0x62696f 70

0x66000000

0x666c6e6b

0x666f 7672

0x66756e64

0x6666756¢C

0x66656d70

0x66686967

0x666¢c6f 77

0x66707269
0x78000000

0x78727374
0x78627573
0x78696¢c6¢C
0x78727631
0x78616472
0x78646175
0x786e616e
0x78727632
0x78657830
0x7874696d
0x78727633
0x78736962
0x78736f 62
0x78736966
0x78736f 66

Summary of the Real Time Manager

/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1

nmessages received by client tasks

"bi op' (bio pin has changed
state)

' f " (prefix used for FIFO
nessages)

"flnk' (the FIFO s |link was
traver sed)

"fovr' (the FIFO s buffer
filled before the FIFOwite
conpl et ed)

"fund' (the FIFO s buffer
enptied before the FIFO read
conpl et ed)

"fful' (the FIFO s buffer is
exactly full)

"fenp' (the FIFO s buffer is
enpty)

"fhig (the FIFO s buffer is
at least half full but not
exactly full)

"flow (the FIFO s buffer is

at | east
exactly enpty)
"fpri’
' X

(prefix for

excepti on nessages)

" Xrst'
xbus'
"xill'
"xrvl'
xadr'
' xdau'
' xnan'
Xrv2'
' xex0'
"xtim
xrv3'
' xsib'
' xsob'
xsi f'
' xsof'

hal f enpty but

not

(application-specific)

dsp

185

CHAPTER 4

Real Time Manager

kdspExcept i onExt er nal | nt One
kdspExcepti onRunti meError
kdspGPBMessage

kdspGPBTaskAct i ve

kdspGPBTaskl nact i ve
kdspGPBFr aneQverrun

kdspGPBFr aneSki p

/1l read/wite perm ssion constants for

kdspW it ePerm ssi on

kdspReadPer ni ssi on

kdspReadW it ePer m ssi on

kdspFlI FOVaskAl | Messages

kdspFI FOEnabl eOver Under Message

kdspFI FOEnabl eFul | Enpt yMessage

kdspFl FOEnabl eHi ghLowiessage

kdspFl FOEnabl eLi nkMessage

kdspFl FOOver Under Taskl nacti ve

kdspFl FOFul | Enpt yTaskl nacti ve

186

0x78657831
0x78657272
0x67000000

0x67616374

0x67696e61
0x676f 7672

0x67736b70

0x0001
0x0002

(kdspWit ePerm

0x00000000

0x00000001

0x00000002

0x00000004

0x00000008

0x00000010

0x00000020

Summary of the Real Time Manager

/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11

clients

' xex1'

'xerr'

‘g " (prefix used for GPB
nessages)

"gact' (the task is active)
"gina' (the task is inactive)
"govr' (this task was

involved in a frane overrun
and i s now inactive)

"gskp' (this task has skipped
one or nore frames due to a
frame overrun)

ssion | kdspReadPer ni ssion)

di sable all nessages (p)
priority of FIFO nmessages in
descendi ng order

(4) enabl e nessage when FI FO
transfer causes an overrun
or underrun

(3) enabl e nessage when FI FO
is full or enpty

(2) enabl e nessage when FIFO
is at least half full or

hal f enpty

(1) enabl e nessage when

FIFO s link was traversed

if task accessing FlI FO causes
ei ther FIFO overrun or
underrun then set task

i nactive

if task accessing FlI FO
causes either FIFO full or
enpty then set task inactive

CHAPTER 4

Real Time Manager

e e R
/1 GPBFI ags
e L
kdspLunpyModul e 0x00000000 // use bnEstinate
kdspSnoot hModul e 0x00000001 // wuse bnActua
e e R
/1l SectionFl ags
e L
/1 Costs the DSP one instruction to use the follow ng fl ags:
kdspLeaveSecti on 0x00000000 // do not |oad or save this section
kdspLoadSecti on 0x00000001 // load this section
kdspSaveSecti on 0x00000002 // save this section
kdspd ear Secti on 0x00000004 // fill this section with zeroes
kdspSaveOnCont ext Swi t ch 0x00000008 // save this section on context

/1 switch
kdspExt er nal 0x00000000 // never |oaded on chip
kdspBankA 0x00000020 // load in Bank A if possible
kdspBankB 0x00000040 // load in Bank B if possible
kdspAnyBank (kdspBankA | kdspBankB)// | oad anywhere
kdspSt ati cSecti on 0x00000080 // this section statically

/1 allocated before runtine
kdspFl FCSect i on 0x00000100 // section is a FIFO buffer
kdspReser vedSecti onFl ag0200 0x00000200 // reserved
kdspLoadFI FOSect i on 0x00000400 // when | oading convert froma FIFO
kdspSaveFl FOSect i on 0x00000800 // when saving convert to a FIFO
kdspHI HOSect i on 0x00001000 // this is a H HO Section

kdspReser vedFor Toggl eSecti onThl 0x00002000// hol ds the kdspToggl eSecti onTabl e
/1l flag fromthe nodule's flag

kdspLoadH HOSect i on 0x00004000 // when | oading convert froma H HO

kdspSaveH HOSect i on 0x00008000 // when saving convert to a H HO

/] Costs the DSP two instructions to use the follow ng fl ags:

kdspNot | OBuf f er Secti on 0x00010000 // all cases other than bel ow
kdspl nput Buf f er 0x00020000 // section is an input buffer
kdspQut put Buf f er 0x00040000 // section is an output buffer
kdspl TBSect i on 0x00080000 // section is an |InterTask Buffer
kdspScal abl eSecti on 0x00100000 // section size can be scal ed
kdspSecti onAl | ocat ed 0x00200000 // reserved for use by the DSP
/1 Manager
kdspDSPUseOnl y 0x00400000 // only DSP should nmodify this
/1 menmory

Summary of the Real Time Manager 187

CHAPTER 4

Real Time Manager

e e R
/1 SectionDat aTypes
e L
kdspNonDat a 0x00000000 // data in section is beyond
/1 description

kdsp3200FI oat 0x00000001 // data is in 3200 float format
kdspl EEEFI oat 0x00000002 // data is in |IEEE float formt
kdspl nt 32 0x00000003 // data is 32bit integer
kdspl nt 1616 0x00000004 // data is 16bit integer packed
kdspl nt 8888 0x00000005 // data is 8bit integer packed
kdspmuLaw 0x00000006 // data is muLaw format
kdspALaw 0x00000007 // data is Al aw format
kdspAppSpeci fi cDat a Ox0000FFFF // data is application-specific
e L
/1 the processor types 'ptyp'
e e R
kdsp3210 ' 3210 /1 DSP3210 hardware conpati bl e
kdsp32C 32C " /1 DSP32C hardware conpati bl e
Data Types
DSPPosi ti on: unsigned long // type for position paraneter
DSPCycl es: unsigned long // type for processing bandw dth
DSPC i ent Ref Num unsigned long // type for DSPOient reference nunber
DSPI ODevi ceRef Num unsigned long // type for DSPI ODevice reference nunber
DSPCPUDevi ceRef Num unsigned long // type for DSPCPUDevi ce reference nunber
DSPTaskRef Num unsigned long // type for DSPTask reference nunber
DSPModul eRef Num unsigned long // type for DSPMbdul e reference nunber
DSPSect i onRef Num unsigned long // type for DSPSection reference nunber
DSPFI FORef Num unsigned long // type for DSPFI FO reference nunber
DSPLi nkedFl FORef Num unsigned long // type for DSPLi nkedFl FO ref nunber
DSPSynchRef Num unsigned long // type for TaskToSynch and SynchTasks

/'l reference nunmber

pascal

enum DSPConnecti onType {
kdspDi r ect Connecti on,
kdspl ndi r ect Connect i on,
kdspHI HOConnecti on

b

188

voi d (*MessageActi onProc) (struct

Summary of the Real Time Manager

DSPMessage *t heMessage);

CHAPTER 4

Real Time Manager

enum DSPTaskPriority {
kdspReal Ti e,
kdspTi meShar e

}s

enum {
kdspTaskl sActi ve,
kdspTaskl sl nacti ve,

kdspTaskl sCoi ngl nacti ve,
kdspTaskl sGoi ngActi ve,

kdspl nval i dTask
} DSPTaskSt at us;

DSPCPUDevi cePar anBl k
DSPI QDevi cePar anBl k
DSPBI ODevi cePar anBl k
DSPSI ODevi cePar anBl k
DSPCl i ent | nf oPar anBl k
DSPTaskl nf oPar anBl k
DSPModul el nf oPar anBl k
DSPSect i onl nf oPar anBl k

DSPGPBMbdel ndi cat or

Data Structures

* DSPCPUDevi cePar anBl kPt r,

** DSPCPUDevi cePar anBl kHandl e;
*DSPI CDevi cePar anBl kPt r,
**DSPI ODevi cePar anBl kHandl e;

* DSPBI ODevi cePar anBl kPt r,

** DSPBI ODevi cePar anBl kHandl e;
* DSPSI ODevi cePar anBl kPt r,

** DSPSI CDevi cePar anBl kHandl e;
*DSPCl i ent | nf oPar anBl kPt r,
**DSPd i ent | nf oPar anBl kHandl e;
* DSPTask| nf oPar anBl kPt r,
*DSPTaskl! nf oPar anBl kHandl e;

* DSPMbdul el nf oPar anBl kPt r,

** DSPModul el nf oPar anBl kHandl e;
*DSPSect i onl nf oPar anBl kPt r,
**DSPSect i onl nf oPar anBl kHandl e;
* DSPGPBMbdel ndi cat or Pt r,

* DSPGPBModel ndi cat or Handl e;

struct DSPFI FOAddress {

struct DSPFI FO *| ;
struct DSPFI FO *p;

b

/1 1ogical pointer
/1 physical pointer

Summary of the Real Time Manager 189

CHAPTER 4

Real Time Manager

/| DSPPar anBl kHeader

/1 Thi s paraneter bl ock header is shared between the

/1 DSPI ODevi cePar anbl ock and t he DSPCPUDevi cePar anBl k. The

/1 reason we declare things this way is so that we can have

/1 routines that operate only on the conmon parts of the

/1 structures therefore making the code snaller, easier to

/1 wite, easier to maintain, etc...

/1

/1 pbhDevi cel ndex the index for this device

/1 pbhd i ent Per m ssi on read/ wite permssion for this client

/1 pbhC i ent Ref Num the reference nunber for this client

/1 pbhd i ent Nane the nane of this client

/1 pbhd i ent | CON; handle to client’s icon

/1 pbhDevi ceNarme t he device name for the io or cpu device
/1 pbhDevi cel CON the device icon for the io or cpu device

/1

#def i ne DSPDevi cePar anBl kHeader \

unsi gned short pbhDevi cel ndex; \

unsi gned short pbhC i ent Per m ssi on; \
DSPCd i ent Ref Num pbhd i ent Ref Num \
Str31 pbhC i ent Name; \

Handl e pbhC i ent | CON; \

Str31 pbhDevi ceNane; \

Handl e pbhDevi cel CON; \

struct DSPDevi ceParanBl k {
DSPDevi cePar anBl kHeader

s

/| DSPCPUDevi cePar anBl k:
/1 This paraneter block is used for controlling a cpu device. It
/1 shares the DSPParanBl kHeader with the i o device.

190 Summary of the Real Time Manager

CHAPTER 4

Real Time Manager

struct DSPCPUDevi ceParanBl k {
DSPDevi cePar anBl kHeader

unsi gned char cpuSl ot Nunber ; /1 the slot nunmber the card is in
unsi gned char cpuProcessorNunber; // the processor nunber, zero based
OSType cpuProcessor Type; /1 the type of the processor
DSPCycl es cpuMaxCycl es; /1 max processor execution cycles per
/1 frame
DSPCycl es cpuAl | ocat edCycles; // numcycles currently allocated
DSPCycl es cpuCur Real Ti neLoadi ng;// num cycl es used during the | ast
/1 frame
DSPCycl es cpuTi neSharelLoadi ng; // numcycles it took for tineshare
/1 list
DSPCycl es cpuTi meShar eFr eq; /1 how often the timeshare list is run
unsi gned | ong cpuFraneRat e; /1 num franmes per second for this cpu
/] device
MessageAct i onProc cpud i ent MessageActi onPr oc;
b
| | ================ooo=ooo=ooo-ooo-ooo-ooo—sooo—ooo——ooo—ooo—ooo—oos=ss
/1 DSPI ODevi cePar anBl k
/1 This paraneter block is used for controlling an io devi ce.
/1 It shares the DSPParanBl kHeader with the cpu devi ce.
[| ========sssssSSSsSossss

struct DSPI ODevi cePar anBl k {
DSPDevi cePar anBl kHeader

unsi gned short iopbl ODevi cel ndex; /1 index of this io device

unsi gned short i opbl ODevi ceType; /1 type of this io device

unsi gned char iopbReserved[32]; /1 data specific to the io device
b

struct DSPBI ODevi ceParanBl k {
DSPDevi cePar anBl kHeader
unsi gned short i opbl ODevi cel ndex; /1 index of this io device
unsi gned short iopbl ODevi ceType; /1 type of this io device
struct DSPMessage *bi oMessageHandl er;// gets called when state of bio pin
/1l changes

unsi gned char bi oPi nSt at e; /1 0 =1logic level low, 1 =logic
/1 level high
unsi gned char bi oPinDirection; /1 0 = input only, 1 = output only
unsi gned char bi oPi nl nt Enabl e; /1 0 = interrupt masked, 1 = interrupt
/1 enabl ed
unsi gned char bi oReserved[25]; /'l reserved space
1

Summary of the Real Time Manager 191

CHAPTER 4

Real Time Manager

struct DSPSI ODevi ceParanBl k {

DSPDevi cePar anBl kHeader

unsi gned short iopbl ODevi cel ndex;// index of this io device

unsi gned short iopbl ODevi ceType; // type of this io device

unsi gned | ong sioSanpl eRat e; /1l sanple rate for this io device, both
/1 input and out put

unsi gned long sioSanpleFornmat; // sanple size for this io device, both
/1l input and out put

DSPFI FQAddr ess si ol nput FI FG, /1 pass the physical ptr to your dsp code
DSPFI FOAddr ess si oQut put FI FO, /1 pass the physical ptr to your dsp code
unsi gned char si oDMAEnabl e; /1 0 = off, 1 = on, enables both input
/1 and out put
unsi gned char si oFeatures; /1 indicates if the io device can be used
/1 for standard sound etc...
unsi gned char si oReserved[6]; /1 reserved space
1

/1 DSPBandwi dth: is used to represent guaranteed processing
/1 bandwi dt h information.

struct DSPBandwi dt h { /1 bn = bandwi dth
DSPCycl es bnEsti mate; // worst-case pre-runtinme
DSPCycl es bnAct ual ; /1 worst-case runtine
unsi gned |l ong bnFl ags; /1 control flags
b

/1 DSPMessage: used for passing nessages back and forth between the
/1 kernel and the driver.

struct DSPMessage {

MessageAct i onProc nmsVect or ; /1 vector of routine
unsi gned | ong nsDat a[3] ; /1 application-specific data
b

/1 DSPGPBMbdel ndi cator: used for requesting nore (or |ess) GPB when
/1 a nodul e is running.

struct DSPGPBMbdel ndi cat or {

unsi gned short mi CurrentMde; // node in which the nodule is operating
/1 (only the DSP code shoul d change this)

192 Summary of the Real Time Manager

CHAPTER 4

Real Time Manager

unsi gned short m Next Mode; /1 (only the Real Time Manager shoul d
/1 change this)

/] Get Info Paraneter Bl ocks

/1 DSPd i ent | nf oPar anBl k
/1 this paraneter block is used for getting i nformati on about a
/1 client that is signed into the DSP Manager.

struct DSPC ient| nfoParanBl k {
DSPCl i ent Ref Num ci O i ent Ref Num /1 returned ref numof the client
unsi gned short ciClientPermssion; [// returned read/wite perni ssion
/1 of the client
Handl e ci Cientl CON, /1 returned icon of the client
Str31 ci dient Nane; /1l returned name of the client

b

/1 DSPTaskl nf oPar anBl k
/1 this paraneter block is used for getting i nformati on about a
/1 task that is installed on the DSP.

struct DSPTaskl nf oParanBl k {
DSPTaskRef Num ti Ref Num /1 returned reference nunber for this task
unsi gned | ong ti Ref Con; /1l returned application-specific info
MessageActi onProc ti Vector; /1 returned vector of task action proc
unsi gned | ong ti Fl ags; /1 returned flags for DSP task control
Str31 ti Nane; /1 returned name of this DSP task

b

/1 DSPModul el nf oPar anBl k
/1 this paraneter block is used for getting i nformati on about a
/1 nodul e that is installed on the DSP.

struct DSPModul el nf oPar anBl k {

DSPModul eRef Num m Ref Num /1 returned reference nunber of this
/1 nodul e

struct DSPBandwi dth mi GPB; /1 returned guaranteed processing
/1 bandw dt h

unsi gned | ong m Fl ags; /1l returned nodul e flags

unsi gned | ong m NunmBections; // returned number of sections in
/1 rmodul e

Summary of the Real Time Manager 193

CHAPTER 4

Real Time Manager

Str31
unsi gned | ong
unsi gned | ong

}s

m Nane;

m Executi ons;

m Ski pCount ;

/] DSPSect i onl nf oPar anBl k

/1 this paraneter
/1 section that
struct

bl ock is used for

is installed on the

DSPSect i onl nf oPar anBl k {

DSPSect i onRef Num si Ref Num

unsi gned | ong

unsi gned | ong
unsi gned | ong

Str31
Ptr
Ptr

DSPSect i onRef Num
DSPSect i onRef Num

DSPFI FORef Num
}s

si Si ze;

si Fl ags;
si Type;

si Nane;
si Primary;
si Secondary;

si PrevSecti on;
si Next Secti on;
si FI FORef Num

/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11

Trap Macros and Routine Selectors

/1l returned nanme of DSP npdul e
/'l returned number of executions
/1 returned nunber of npdules to skip

getting informati on about a

DSP.

returned reference nunber for this
section

returned size of data in actua
section

returned section flags

returned for section connection type
checki ng

returned name of this section
returned | ocation of section data
returned optional section data storage
| ocation

returned previous connection

returned next connection

returned reference nunber of the FIFO

[| ============sooososoosooooooooooooooooooooooooooooooooooooososososss
/1 msc dispatcher constants & macros

[| ===========sssooooooSoooSoooSoooSSSoSSSoSSSSSSSSSSSSSSSSSSSSoS=oss
#define _DSPDi spatch OXABF5

#define MOVEL 0x303C

#defi ne DSPDi spatch(select) {MOVEL, sel ect, DSPD spatch};

[| ============ssssSSsSs===s
/1 dispatch selectors for external routines

[| ============sooososoosooooooooooooooooooooooooooooooooooooososososss
#defi ne kdspCet Tr apAddr ess 0

#def i ne kdspSet Tr apAddr ess 1

#defi ne kdspGet | ndexedCPUDevi ce 2

#defi ne kdspOpenCPUDevi ce 3

194 Summary of the Real Time Manager

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CHAPTER 4

Real Time Manager

kdspCl oseCPUDevi ce

kdspGet | ndexedCPUDevi ceQpt i on
kdspSet | ndexedCPUDevi ceOpti on

kdspCet | ndexedl ODevi ce
kdspOpenl ODevi ce
kdspCl osel ODevi ce
kdspCet | ndexedl ODevi ceOpti on
kdspSet | ndexedl ODevi ceOpti on
kdspSi gnl nCPUDevi ce
kdspSi gnQut CPUDevi ce
kdspSi gnl nl ODevi ce
kdspSi gnQut | ODevi ce
kdspLoadModul e

kdspUnl oadModul e
kdspConnect Sect i ons
kdspNew nt er TaskBuf f er
kdspNewTask

kdspDi sposeTask

kdspl nsert Task
kdspManager Ver si on
kdspRenmoveTask
kdspTaskToSynchr oni ze
kdspAddr essl nZone
kdspSynchr oni zeTasks
kdspSet TaskAct i ve
kdspSet Taskl nacti ve
kdspCr eat eZone
kdspNewAddr ess

kdspDi sposeAddr ess
kdspCGet Addr essSi ze
kdspCet ZoneSi ze
kdspGet Addr ess

kdspGet Zone

kdspl nsert Doubl e
kdspRenoveDoubl e

kdspl nsert Si ngl e
kdspRenoveSi ngl e
kdspCet Secti on
kdspNewFl FO

kdspDi sposeFl FO
kdspCet Secti onDat a
kdspFl FORead
kdspFI FOWN i te

Summary of the Real Time Manager

195

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

196

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CHAPTER 4

Real Time Manager

kdspFl FOGet ReadCount
kdspFl FOGet Wi t eCount
kdspFl FOCet Si ze

kdspAl | ocat eModul e
kdspDi sposeMdul e
kdspRenovehbdul e
kdspCGet d i ent Zone
kdsplnitializeStorage
kdspAl | ocat eSt or age
kdspUnr eser veSt or age
kdspDeal | ocat eSt or age
kdspDi sposeSt or age
kdspProcessMessages
kdspFI FOO ear | nt errupt
kdspFl FOGet Ref Con
kdspFl FOSet Ref Con
kdspFl FOGet MessageMode
kdspFl FOSet MessageMbde
kdspFl FOReset

kdspSet TaskRef Con
kdspCet TaskRef Con
kdspCet | ndexedd i ent
kdspGet | ndexedTask
kdspGet Omner d i ent
kdspCet | ndexedModul e
kdspGet Omner Task
kdspCet | ndexedSect i on
kdspGet Oaner Modul e
kdspGetdientlnfo
kdspGet Taskl nf o

kdspCGet Modul el nfo
kdspGet Secti onl nfo
kdspConnect | TBSect i ons
kdspConnect TwoFl FOSect i ons
kdspConnect FI FOToAl ACSect i ons
kdspConnect FI FOSect i ons
kdspConnect Regul ar Sect i ons
kdspAl | ocat e

kdspUpdat eCPUDevi cel nf o
kdspDi sposeOneFl FO
kdspFl FOSwap

kdspCount Modul e
kdspDont Count Modul e

Summary of the Real Time Manager

47
48
49
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

CHAPTER 4

Real Time Manager

#def i ne kdspSet Ski pCount 91
#defi ne kdspGet TaskSt at us 92
#def i ne kdspSet CPUDevi ceBondage 93
#def i ne kdspFl FOGet MessageDi spat ch 94
#defi ne kdspUpdat eGPBPrefFil e 95
#defi ne kdspFl FOSet MessageThr eshol d 96
#def i ne kdspSet GPBMbde 97
#def i ne kdspDont Updat eGPBPr ef s 98
#defi ne kdspUpdat eGPBPr ef erenceFil e 99
#def i ne kdspConnect H HOSect i ons 100
#defi ne kdspDi sposeZone 101
#def i ne kdspd i ent MessageDi spat ch 102

#def i ne kdspFl FOGet MessageAct i onProc 103
#def i ne kdspFl FOSet MessageAct i onPr oc 104

#defi ne kdspSet Syst enTask 105

#def i ne kdspCet Avai | abl eOnChi pMenory 106

#defi ne kdspSet Secti onSi ze 107

// ==ttt
/1 Real Time Manager dispatched traps (external only)

// S o o C

pascal OSErr DSPGet | ndexedCPUDevi ce
(DSPCPUDevi cePar anBl kPt r t heCPUPar anBl k)
= DSPDi spat ch(kdspGet | ndexedCPUDevi ce)
pascal OSErr DSPQOpenCPUDevi ce
(DSPCPUDevi cePar anBl kPt r t heCPUPar anBl k)
= DSPDi spat ch(kdspQpenCPUDevi ce)
pascal OSErr DSPC oseCPUDevi ce
(DSPCPUDevi cePar anBl kPt r t heCPUPar anBl k)
= DSPDi spat ch(kdspC oseCPUDevi ce)
pascal OSErr DSPUpdat eCPUDevi cel nfo
(DSPCPUDevi cePar anBl kPt r t heCPUPar anBl k)
= DSPDi spat ch(kdspUpdat eCPUDevi cel nf 0)
pascal OSErr DSPGet | ndexedCPUDevi ceOpti on
(DSPCPUDevi cePar anBl kPt r t heCPUPar anBl k,
unsi gned short theQOptionl ndex, OSType theOptionType,
unsi gned | ong *t heOpti on)
= DSPDi spat ch(kdspGet | ndexedCPUDevi ceQpt i on)
pascal OSErr DSPSet | ndexedCPUDevi ceOpti on
(DSPCPUDevi cePar anBl kPt r t heCPUPar anBl k,
unsi gned short theOptionl ndex, OSType theOptionType)
= DSPDi spat ch(kdspSet | ndexedCPUDevi ceQpt i on)

Summary of the Real Time Manager 197

CHAPTER 4

Real Time Manager

pascal OSErr DSPGet | ndexedl ODevi ce
(DSPI ODevi cePar anBl kPt r t hel OPar anBl k)
= DSPDi spat ch(kdspGet | ndexedl ODevi ce)

pascal OSErr DSPQpenl ODevi ce (DSPI ODevi ceParanBl kPtr t hel OPar anBl k)
= DSPDi spat ch(kdspQpenl ODevi ce)

pascal OSErr DSPC osel CDevi ce (DSPI CDevi cePar anBl kPtr t hel OPar anBl k)
= DSPDi spat ch(kdspC osel ODevi ce)

pascal OSErr DSPGet | ndexedl ODevi ceQpti on
(DSPI ODevi cePar anBl kPt r t hel OPar anBl k,
unsi gned short theQOptionl ndex, OSType theOptionType,
unsi gned | ong *t heOpti on)
= DSPDi spat ch(kdspGet | ndexedl ODevi ceOpti on)

pascal OSErr DSPSet | ndexedl ODevi ceOpti on
(DSPI ODevi cePar anBl kPt r t hel OPar anBl k,
unsi gned short theOptionl ndex, OSType theOptionType)
= DSPDi spat ch(kdspSet | ndexedl CDevi ceOpti on)

pascal OSErr DSPLoadMbdul e (StringPtr theNane,
DSPTaskRef Num t heTaskRef Num DSPPositi on thePosition,
DSPMbdul eRef Num t heRef er enceModul eRef Num
DSPModul eRef Num *t heNewibdul eRef Num | ong theScal e)
= DSPDi spat ch(kdspLoadModul e)

pascal OSErr DSPUnl oadModul e (DSPTaskRef Num t heTaskRef Num
DSPModul eRef Num t heModul eRef Num)
= DSPDi spat ch(kdspUnl oadModul e)

pascal OSErr DSPConnect Sections (DSPSecti onRef Num secti onOneRef Num
DSPSect i onRef Num sect i onTwoRef Num
DSPConnect i onType t heConnecti onType)
= DSPDi spat ch(kdspConnect Sect i ons)

pascal OSErr DSPNewl nt er TaskBuf f er (DSPTaskRef Num t heTaskRef Num
unsi gned | ong theSi ze, unsigned short theDataType,
Str31 thelnterTaskBufferNanme, short bankPreference,
DSPSect i onRef Num *t heRet ur nedSecti on)
= DSPDi spat ch(kdspNewl nt er TaskBuf f er)

pascal OSErr DSPNewTask (DSPCPUDevi ceParanBl kPtr theCPUDevi ce,
MessageActi onProc theVector, StringPtr theTaskNane,
DSPTaskRef Num *t heRef Num)
= DSPDi spat ch(kdspNewTask)

pascal OSErr DSPDi sposeTask (DSPTaskRef Num t heTaskRef Num)
= DSPDi spat ch(kdspDi sposeTask)

pascal OSErr DSPI nsert Task (DSPCPUDevi ceParanBl kPtr theCPUDevi ce,
DSPTaskRef Num t heNewTaskRef Num DSPPosition thePosition,
DSPTaskPriority interruptlLevel,
DSPTaskRef Num t heRel at i veTaskRef Num)
= DSPDi spat ch(kdspl nsert Task)

198 Summary of the Real Time Manager

CHAPTER 4

Real Time Manager

pascal OSErr DSPRenpveTask (DSPTaskRef Num theTaskRef Num)
= DSPDi spat ch(kdspRenoveTask)
pascal OSErr DSPTaskToSynchroni ze (DSPTaskRef Num t heRef Num
unsi gned | ong franmeDel ay, DSPSynchRef Num *synchRef Nun)
= DSPDi spat ch(kdspTaskToSynchr oni ze)
pascal OSErr DSPSynchroni zeTasks (DSPSynchRef Num *synchRef Num)
= DSPDi spat ch(kdspSynchr oni zeTasks)
pascal OSErr DSPSet TaskActi ve (DSPTaskRef Num t heRef Num
= DSPDi spat ch(kdspSet TaskActi ve)
pascal OSErr DSPSet Taskl nactive (DSPTaskRef Num t heRef Num
= DSPDi spat ch(kdspSet Taskl nacti ve)
pascal OSErr DSPGet Section (DSPModul eRef Num t heModul eRef Num
StringPtr theSectionNane, DSPSecti onRef Num *t heSecti onRef Num)
= DSPDi spat ch(kdspGet Sect i on)
pascal OSErr DSPNewrl FO (DSPSecti onRef Num t heSect i onRef Num
DSPFI FORef Num *t heFl FORef Num unsi gned | ong t heSi ze,
Ptr |l ogical, Ptr physical, Boolean fifoFull,
MessageActi onProc thel nterrupt)
= DSPDi spat ch(kdspNewrl FO)
pascal OSErr DSPDi sposeFl FO (DSPSect i onRef Num t heSect i onRef Numj
= DSPDi spat ch(kdspDi sposeFl FO)
pascal OSErr DSPFI FOFi || (DSPFI FORef Num t heFl FORef Num
unsi gned | ong theSize, Ptr logical, Ptr physical,
Bool ean fifoFull, MessageActionProc thelnterrupt)
= DSPDi spat ch(kdspFl FOSwap)
pascal OSErr DSPCet Secti onData (DSPSecti onRef Num t heSecti onRef Num
Ptr *theDat a)
= DSPDi spat ch(kdspGet Sect i onDat a)
pascal unsigned | ong DSPFI FORead (DSPFI FORef Num t heFl FORef Num
Ptr theDestination,
unsi gned | ong t heCount)
= DSPDi spat ch(kdspFl FORead)
pascal unsigned | ong DSPFI FONite (DSPFI FORef Num t heFl FORef Num
Ptr theSource,
unsi gned | ong t heCount)
= DSPDi spat ch(kdspFI FONite)
pascal unsigned | ong DSPFI FOGet ReadCount
(DSPFI FORef Num t heFI FORef Num)
= DSPDi spat ch(kdspFl FOCGet ReadCount)
pascal unsigned | ong DSPFI FOGet Wit eCount
(DSPFI FORef Num t heFI FORef Num)
= DSPDi spat ch(kdspFl FOGet Wi t eCount)

Summary of the Real Time Manager 199

CHAPTER 4

Real Time Manager

pascal unsigned | ong DSPFI FOGet Si ze (DSPFI FORef Num t heFl FORef Numj
= DSPDi spat ch(kdspFl FOGet Si ze)

pascal OSErr DSPFI FOCl ear | nterrupt (DSPFI FORef Num t heFl FORef Num
= DSPDi spat ch(kdspFl FOC ear | nt errupt)

pascal unsigned | ong DSPFI FOGet Ref Con (DSPFI FORef Num t heFl FORef Numj
= DSPDi spat ch(kdspFl FOCGet Ref Con)

pascal OSErr DSPFI FOSet Ref Con (DSPFI FORef Num t heFl FORef Num
unsi gned | ong t heVal ue)
= DSPDi spat ch(kdspFl FOSet Ref Con)

pascal unsigned | ong DSPFI FOGet MessageMode
(DSPFI FORef Num t heFI FORef Num)
= DSPDi spat ch(kdspFl FOGet MessageMbde)

pascal OSErr DSPFI FOSet MessageMode (DSPFI FORef Num t heFl FORef Num
unsi gned | ong t heFl ags)
= DSPDi spat ch(kdspFl FOSet MessageMbde)

pascal unsigned | ong DSPManager Ver si on (voi d)
= DSPDi spat ch(kdspManager Ver si on)

pascal OSErr DSPFI FOReset (DSPFI FORef Num t heFl FORef Numj
= DSPDi spat ch(kdspFl FOReset)

pascal OSErr DSPSet TaskRef Con (DSPTaskRef Num t heRef Num
unsi gned | ong t heDat a)
= DSPDi spat ch(kdspSet TaskRef Con)

pascal unsigned | ong DSPGet TaskRef Con (DSPTaskRef Num t heRef Numj
= DSPDi spat ch(kdspCet TaskRef Con)

pascal OSErr DSPGet| ndexedC ient (unsigned |ong thel ndex,
DSPCPUDevi cePar anBl kPt r t heCPUDevi ce,
DSPC i ent Ref Num *t heCl i ent Ref Num)
= DSPDi spat ch(kdspGet | ndexedd i ent)

pascal OSErr DSPCet | ndexedTask (unsigned |ong thel ndex,
DSPTaskPriority interruptLevel,
DSPCPUDevi cePar anBl kPt r t heCPUDevi ce,
DSPTaskRef Nuntt heTaskRef Num
= DSPDi spat ch(kdspGet | ndexedTask)

pascal OSErr DSPGet Ownerd i ent (DSPTaskRef Num t heTaskRef Num
DSPC i ent Ref Num *t hed i ent Ref Num
= DSPDi spat ch(kdspGet Owner d i ent)

pascal OSErr DSPGet | ndexedModul e (unsi gned | ong thel ndex,
DSPTaskRef Num t heTaskRef Num DSPModul eRef Num *t heMbdul eRef Num
= DSPDi spat ch(kdspGet | ndexedModul e)

pascal OSErr DSPGet Oanner Task (DSPMbdul eRef Num t heMbdul eRef Num
DSPTaskRef Num *t heTaskRef Numj
= DSPDi spat ch(kdspGet Oaner Task)

200 Summary of the Real Time Manager

CHAPTER 4

Real Time Manager

pascal OSErr DSPGet| ndexedSection (unsigned | ong thel ndex,
DSPModul eRef Num t heMbdul eRef Num
DSPSect i onRef Num *t heSect i onRef Num)
= DSPDi spat ch(kdspGet | ndexedSect i on)
pascal OSErr DSPGet Oaner Mbdul e (DSPSecti onRef Num t heSect i onRef Num
DSPMbdul eRef Num *t heModul eRef Num)
= DSPDi spat ch(kdspGet Owner Modul e)
pascal OSErr DSPCGetCientlnfo
(DSPC i ent | nf oPar anBl kHandl e t heCl i ent Par anBl kHdl)
= DSPDi spat ch(kdspGet d i ent | nf 0)
pascal OSErr DSPCGet Taskl nfo
(DSPTaskl nf oPar anBl kHandl e t heTaskPar anBl kHdl)
= DSPDi spat ch(kdspGet Taskl nf 0)
pascal OSErr DSPCGet Modul el nfo
(DSPModul el nf oPar anBl kHandl e t heModul ePar anBl kHdl)
= DSPDi spat ch(kdspGet Modul el nf 0)
pascal OSErr DSPCet Secti onl nfo
(DSPSect i onl nf oPar anBl kHandl e t heSect i onPar anBl kHdl)
= DSPDi spat ch(kdspGet Sect i onl nf 0)
pascal OSErr DSPCount Modul e (DSPMbdul eRef Num t heModul eRef Nunm)
= DSPDi spat ch(kdspCount Modul e)
pascal OSErr DSPDont Count Modul e (DSPMbodul eRef Num t heModul eRef Numj
= DSPDi spat ch(kdspDont Count Modul e)
pascal OSErr DSPSet Ski pCount (DSPMbdul eRef Num t heMbdul eRef Num
unsi gned | ong t heCount)
= DSPDi spat ch(kdspSet Ski pCount)
pascal DSPTaskStatus DSPGet TaskSt atus (DSPTaskRef Num t heRef Num)
= DSPDi spat ch(kdspGet TaskSt at us)
pascal OSErr DSPSet CPUDevi ceBondage
(DSPCPUDevi cePar anBl kPt r cpuDevi cel,
DSPCPUDevi cePar anBl kPt r cpuDevi ce2)
= DSPDi spat ch(kdspSet CPUDevi ceBondage)
pascal OSErr DSPFI FOSet MessageThr eshol d
(DSPFI FORef Num t heFl FORef Num
unsi gned | ong theThreshol d)
= DSPDi spat ch(kdspFl FOSet MessageThr eshol d)
pascal OSErr DSPFI FOSwap (DSPFI FORef Num t heFl FORef Num
unsi gned | ong theSize, Ptr logical, Ptr physical,
Bool ean fifoFull, MessageActionProc thelnterrupt)
= DSPDi spat ch(kdspFlI FOSwap)
pascal OSErr DSPSet GPBMbde (DSPModul eRef Num t heModul eRef Num
unsi gned short desiredMde)
= DSPDi spat ch(kdspSet GPBMbde)

Summary of the Real Time Manager 201

CHAPTER 4

Real Time Manager

pascal OSErr DSPDont Updat eGPBPrefs (DSPModul eRef Num t heModul eRef Numj
= DSPDi spat ch(kdspDont Updat eGPBPr ef s)
pascal OSErr DSPUpdat eGPBPr ef erenceFil e
(DSPModul eRef Num t heMbdul eRef Nunj
= DSPDi spat ch(kdspUpdat eGPBPr ef er enceFi | e)
pascal OSErr DSPFI FOGet MessageAct i onProc
(DSPFI FORef Num t heFl FORef Num
MessageActi onProc *t heVect or)
= DSPDi spat ch(kdspFl FOGet MessageAct i onProc)
pascal OSErr DSPFI FOSet MessageActi onProc
(DSPFI FORef Num t heFIl FORef Num
MessageAct i onProc theVector)
= DSPDi spat ch(kdspFl FOSet MessageAct i onProc)
pascal OSErr DSPCet Avai | abl eOnChi pMenory
(DSPModul eRef Num t heMbdul eRef Num
unsi gned | ong *t heSi ze)
= DSPDi spat ch(kdspGet Avai | abl eOnChi pMenory)
pascal OSErr DSPSet SectionSi ze (DSPSecti onRef Num t heSecti onRef Num
unsi gned | ong theSize)
= DSPDi spat ch(kdspSet Secti onSi ze)

202 Summary of the Real Time Manager

CHAPTER 5

DSP Operating System

CHAPTER 5

DSP Operating System

This chapter describes the software routines for building, accessing, and using the digital
signal processor (DSP) subsystem of the Macintosh Quadra 840Av and Macintosh
Centris 660AV computers. The DSP subsystem provides real-time processing for applica-
tions that require a guaranteed throughput. It also provides processing for applications
that perform timeshare processing.

Before you read this chapter you should already be familiar with
» basic Macintosh programming concepts

= DSP3210 programming

» creating and using resource files

» the concepts of digital signal processing given in Chapter 3, “Introduction to
Real-Time Data Processing”

This chapter starts with a brief overview of the DSP chip and the DSP3210 register
requirements. “DSP Operating System Reference” begins with two main sections:
“Creating a Module” and “Building a Section.” This chapter does not discuss what
the module will do, nor does it explain how to write DSP3210 code.

The remaining parts of the reference section explain the macros used within the DSP
operating system environment to manipulate its various components, determine
run-time variables, and communicate between the DSP module and the host application.

For information about installing and debugging DSP programs in the Macintosh
Quadra 840Av and Macintosh Centris 660AV, see Appendix A, “DSP d Commands for
MacsBug,” Appendix B, “BugLite User’s Guide,” and Appendix C, “Snoopy User’s
Guide.”

About DSP Modules

204

The DSP provides both real-time and timeshare processing capabilities for Macintosh
applications. Apple provides a complete set of programming macros to help DSP
programmers write DSP modules compatible with the DSP operating system. These
macros isolate the DSP3210 code contained within the module from the specific
implementation of the DSP operating system. This guarantees that the module will
be compatible with all DSP3210 implementations on Macintosh computers.

The relation between the DSP programming macros and the DSP operating system and
DSP code is diagrammed in Figure 5-1.

About DSP Modules

CHAPTER 5

DSP Operating System

Figure 5-1

DSP3210 code

DSP API macros

DSP OS

DSP programming model

DSP3210 Register Model

Table 5-1 shows how the DSP3210 registers are used.

Table 5-1 DSP3210 register assignments

Register Usage Description

ri-r4 scratch The contents of these registers are not saved or restored.

r15-r17 The contents of these registers may be destroyed by DSP

a0-al API routines.

r5-rl4 protected The contents of these registers must always be saved and

a2-a3 restored when they are used by the programmer. The
contents of these registers are always saved before and
restored after they are used by the DSP API routines.

r18 (RV) return The DSP operating system always calls the first instruction

ri9
r20
r21

r22

reserved
reserved

stack

reserved

About DSP Modules

in the entry section of each module. Register r 18 contains
the return vector to get back to the DSP operating system
when the module is finished executing. Before jumping to
the return vector, all protected registers must be restored to
the same values they contained upon initial entry to the
module.

This register is reserved by Apple. Do not alter its contents.
This register is reserved by Apple. Do not alter its contents.

This register is the common stack pointer register shared by
the programmer and the DSP operating system. Register

r 21 always points to the next available stack location.
Therefore, r 21 is pre-decremented for pops and
post-incremented for pushes.

This register is reserved by Apple. Do not alter its contents.

205

CHAPTER 5

DSP Operating System

32-Bit Data Transfers

Because of the implementation of the DSP3210 floating-point instruction set it is
necessary to use a specific instruction when moving 32-bit data between memory
locations. The DSP3210 hardware checks for a valid floating-point value in dau
instructions. If a floating-point number whose least significant byte is 0 is moved into an
accumulator register, the whole accumulator register is zeroed. For example, the correct
way to move 32-bit data from memory pointed to by r 3 into memory pointed to by r 2 is
the following:

a0 = (*r2++ = *r3++) *a0

The following command is incorrect, because it will not work for some floating-point
numbers:

*r2++ = a0 = *r3++

DSP Program Information for the Macintosh Programmer

206

Using DSP modules effectively isolates DSP programming from Macintosh programming,.
However, since DSP modules are installed by Macintosh applications, the DSP
programmer must document some basic information about each module. This
information is used by the Macintosh application programmer to create applications that
install and use these modules. The information should include:

» the names of all input and output sections, their section types, and their section
data types

» the names of all parameter sections and their formats
» the GPB scaling vectors supported by the module

» the module’s grouping assumptions

» the module’s run-time environment

These items of information for each module are discussed below.

Input and Output Sections

The Macintosh programmer needs to know the names of all sections in the DSP module
that are input or output sections. The type of each section and the type of the data
contained in the section must also be specified. This information is used by Macintosh
applications to make connections between DSP sections.

DSP Program Information for the Macintosh Programmer

CHAPTER 5

DSP Operating System

Parameter Sections

The names of all sections in the DSP module that are parameter sections must be
documented by the DSP programmer. The format for the data in each parameter section
must also be specified. This information is used by Macintosh applications to use and
manipulate data in DSP parameter sections.

GPB Scaling Vectors

The DSP programmer must document what GPB scaling vectors are declared in the
header of the DSP module. These vectors specify the frame rates, buffer scaling vectors,
and GPB estimates for the module. This information is used by the application to
determine the appropriate mode selection.

Grouping Assumptions

The Macintosh programmer needs to know if the DSP module makes assumptions about
group ordering. Modules that depend upon other modules, change their skip count, or
set their owner task inactive, are examples of modules that make assumptions about
group ordering. The information is used by the application to determine the order of
module installation, module grouping, and intermodule dependencies.

Run-Time Environment

The DSP programmer must tell the Macintosh programmer whether to install each DSP
module into the real-time or timeshare DSP run-time environment. The requirements
and expectations for running the module in each environment must also be specified.
For example, if the module runs in real time what are its data input requirements? If the
module runs as a timeshare processor, how is it expected to be used? This information
helps the Macintosh programmer determine how the module can be used in the
application.

DSP Operating System Reference

This reference section is divided into three parts. The first part covers creating a new
module. This lays the foundation for the DSP program by creating the structure for the
resource that will be loaded on the DSP chip.

The second part covers the process of building a module by creating sections to hold all
the components needed to perform the desired functions. Creating sections is described
in the following order:

» code and variables
= data input

= data output

DSP Operating System Reference 207

CHAPTER 5

DSP Operating System

The third part explains all the DSP operating system macros you can use, from low-level
system macros to host-level communication routines. This part is organized from the
bottom up—the lowest level routines used for system level manipulation are described
first. The section, module, task, and FIFO manipulation macros are explained in that
order. They are followed by the guaranteed processing bandwidth (GPB), semaphore,
and message manipulation macros.

Creating a Module

DSP modules are the basic units that are stored on disk and loaded by Macintosh
applications. Each module is composed of DSP sections created by the DSP programmer.
Figure 5-2 shows how a module is constructed. For information on building sections
refer to “Building a Section,” later in this chapter.

Figure 5-2 DSP module structure

DSP module

Header

Section #0

Section #1

Section #2

Section #3

NewModule

208

The NewModul e macro creates a new DSP module.

NewModul e (Nanme, GPBFl ags, Modul eFl ags, EntryNane)

Nane The name of this module.

GPBFI ags The GPBFI ags argument to Newivbdul e contains
information about how the module’s GPB is used in the GPB
calculation.

Valid GPBFI ags are:

kdspLunpyModul e Use bnEsti mat e
kdspSnoot hibdul e Use bnAct ual

DSP Operating System Reference

DESCRIPTION

A

CHAPTER 5

DSP Operating System

Modul eFl ags The Modul eFl ags argument to Newhbdul e contains
information about the module’s run-time environment.
These flags determine if the module is automatically cached
by the DSP operating system (Aut oCache) or explicitly
cached by the DSP programmer (DemandCache). You must
use OR to combine all flags that apply.

Valid Modul eFl ags are:

kdspAut oCache Select auto cache model

kdspDemandCache Select demand cache
model

kdspOnChi pSecti onTabl e Put section table on-chip

kdspOnChi pSt ack A stack of the specified
size is created on-chip

kdspOf f Chi pSt ack A stack of the specified
size is created off-chip

Ent ryNane Entry point into the module. This is the name of the code
that the DSP operating system will call when the module
is executed.

When the NewSect i on macro uses the name specified by Modul eNane, the new
section is included in the specified module. The Newivbdul e macro declares Ent r yNane
as the entry point to the first section. The programmer must also specify the location of
the stack, either on-chip or off-chip, for this module.

The programmer must declare a set of GPB scaling vectors immediately after the
NewMbdul e macro. At least one scaling vector is required; additional vectors are
optional. Each of the vectors consists of three 32-bit integers: the frame rate, the scaling
factor used to multiply the size of the scalable section, and the GPB estimate for this
scale. For example:

long <mn denand cache stack size> // Demand Cache only

long <stack size> /1 Demand Cache only

l ong 100, 240, 3000 /1 scaling vector for 100 franes per
/1 second, 240 sanpl es per frane

Il ong 100, 320, 4500 /1 scaling vector for 100 franes per

/1 second, 320 sanples per frame

DSP modules should not assume
» the frame rate associated with the data being accessed

» the sample rate associated with the data being accessed

WARNING
The GPB estimate cannot be 0. You should specify a positive number as
close to the actual processing time as you can estimate. a

DSP Operating System Reference 209

CHAPTER 5

DSP Operating System

Building a Section

A section is the minimum DSP program unit that can be cached on the DSP chip. The
following macros are used in your source code to create code and variable sections or
add to them. A section remains active until a new section is declared by a routine such as
AppendSect i on.

NewSection

DESCRIPTION

The NewSect i on macro creates a new section that remains active until the next section
is declared.

NewSecti on (Nanme, SectionFlags, SectionDataType, Mdul eNane)

Nane The name of this section.

Secti onFl ags The flags for controlling run-time operation.

Sect i onDat aType The type of data that is in this section.

Modul eNane The name of the module this section is attached to.

The Nane field contains the section name. This section is included in the module
specified by Modul eNarne. Each section requires a set of flags to assist the operating
system in handling the section correctly.

Although the NewSect i on routine can be used to create all types of code, variable,

and data sections there are a set of standard section macros available to make the

most commonly used sections. This routine should only be used if no other routine
listed in this chapter can accomplish the desired functionality. A complete understanding
of both the DSP operating system and the section control flags is needed to use this
routine properly.

Note

When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip; the PopSect i on
macro (page 227) is used to move a section off-chip. O

SECTION CONTROL FLAGS

210

The Sect i onFl ags argument to NewSect i on controls the caching operation of the
new section. Remember to use OR to combine the parts that apply. All unused bits are
reserved for use by Apple and should be left as zeros.

If the module can run in timeshare then it is important to know the sections that need to
be saved back into main memory before the real-time modules execute. This saves the
DSP operating system from having to page out the entire on-chip memory for every

DSP Operating System Reference

CHAPTER 5

DSP Operating System

context switch. For example, code sections would generally not need the Save flag set,
but variable sections would. Remember that a context switch can occur at any time
during a timeshare task. Section control flags are listed in Table 5-2.

Table 5-2 Section flags

DSP constant Comment

kdspLeaveSecti on Do not load or save this section
kdspLoadSecti on Load this section on-chip
kdspSaveSecti on Save this section off-chip

kdspCl ear Sect i on Clear this section before it is used

kdspSaveOnCont ext Swi t ch Save this section to main memory if a context switch
is done

Each section can be cached into either memory bank A or B on the DSP3210. Generally
Bank A is used for program space, variables, tables, state, and coefficients, and Bank B is
used for buffers. Bank preference is controlled by the programmer, using the constants
listed in Table 5-3, not by the DSP operating system.

Table 5-3 DSP3210 bank preferences section flags

DSP constant Comment

kdspExt er nal Never load on-chip

kdspBankA Load in Bank A

kdspBankB Load in Bank B

kdspAnyBank Load in either bank, use system preference
kdspSt ati cSection This section statically allocated before run time

The type of data contained in a section is specified by the Sect i onType flags. A section
can have any of the Apple-defined section types shown in Table 5-4.

Table 5-4 Buffer type section flags

DSP constant Comments

kdspFl FCSect i on Section is a FIFO buffer

kdspNot | OBuf f er Sect i on All cases except those below, or code section
kdspl nput Buf f er Section is an input buffer

kdspQut put Buf f er Section is an output buffer

kdspScal abl eSect i on Section size is scalable

kdspDSPUseOnl y Only DSP should modify this memory

DSP Operating System Reference 211

CHAPTER 5

DSP Operating System

The Sect i onDat aType argument to NewSect i on defines what type of data is in the
section. Data types have been predefined by Apple. They are used when connecting
buffers to ensure that the buffers contain compatible data as expected by the module.
Data types are shown in Table 5-5; only one can be used at a time.

Table 5-5 Data type flags

DSP constant Comments

kdspNonDat a Data in this section is not describable, or is code
kdsp3200FI oat Data is 3200 float format

kdspl EEEFI oat Data is IEEE float format

kdspl nt 32 Data is 32-bit integer format

kdspl nt 1616 Data is 16-bit integer packed format

kdspl nt 8888 Data is 8-bit integer packed format
kdsprmuLaw Data is nuLaw format

kdspALaw Data is ALaw format

kdspAppSpeci fi cDat a Data is application specific

Code and Variables

The following macros create new DSP code and variables.

NewCachedProgramSection

DESCRIPTION

212

The NewCachedPr ogr anSect i on macro defines a code section that is loaded on the
DSP chip.

NewCachedPr ogr anSecti on (Nane, Mdul eNane)

Nane The name of this section.
Modul eNane The name of the module this section is attached to.

The NewCachedPr ogr anSect i on macro does not put any code into the section. This
macro only creates the header; code is then added using the AppendSect i on macro.

Note

In a DemandCache module use the call
PushSecti on (t heSecti onNane) to move
the section on-chip. O

DSP Operating System Reference

CHAPTER 5

DSP Operating System

AppendSection

DESCRIPTION

The AppendSect i on macro is used to add contents to an already defined section.
AppendSecti on (Nane)

Nane The name of the section this code is appended to.

The primary application of the AppendSect i on macro is to add code to the first
section in the module. Anything following this macro will be added to the section
specified by Name.

WARNING

The AppendSect i on macro cannot be used to extend an AIAO or a
FIFO section. Attempts to extend these section types will not work
and will result in a loss of data. a

NewParameterSection

DESCRIPTION

The NewPar anet er Sect i on macro creates a parameter section. This section is not
loaded or saved.

NewPar anet er Secti on (Nane, SectionDataType, Mdul eNane)

Name The name of this section.
Secti onDat aType The type of data that is in this section.
Modul eNane The name of the module this section is attached to.

The NewPar anet er Sect i on macro defines a parameter section for passing control or
status between the module and another module or between the module and a Macintosh
application. Parameter sections that are shared between a module and an application
should not be saved back to main memory. This would cause changes made by the
application to the copy of the buffer in main memory to be overwritten. Locked
read-modify-write cycles should be used for any data in a parameter buffer that is being
jointly updated by both the host application and the module. The Sect i onDat aType
field uses the same selection of values as the Sect i onDat aType field in the

NewSect i on routine (page 210).

Note

When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip; the PopSect i on
macro (page 227) is used to move a section off-chip. O

DSP Operating System Reference 213

CHAPTER 5

DSP Operating System

NewTableSection

DESCRIPTION

The NewTabl eSect i on macro creates a table section. This section is loaded in the DSP,
but is not saved.

NewTabl eSecti on (Name, SectionbDataType, Mbdul eNane)

Narme The name of this section.
Secti onDat aType The type of data that is in this section.
Modul eNane The name of the module this section is attached to.

The NewTabl eSect i on macro defines a table buffer for providing a fixed table of data
for use within a module. Code is added to this section using the AppendSect i on
macro. The Sect i onDat aType field uses the same selection of values as the

Sect i onDat aType field in the NewSect i on routine (page 210).

Note

When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip; the PopSect i on
macro (page 227) is used to move a section off-chip. O

NewStateVariableSection

DESCRIPTION

214

The NewSt at eVar i abl eSect i on macro creates a table section that is both loaded
and saved.

NewSt at eVar i abl eSecti on (Nanme, SectionDataType, Mbdul eNane)

Name The name of this section.
Secti onDat aType The type of data that is in this section.
Modul eNane The name of the module this section is attached to.

The NewSt at eVar i abl eSect i on macro defines a state variable buffer for providing a
variable table of data for use within a module. If any data in the parameter buffer is
being jointly updated by both the host and the DSP, then locked read-modify-write
cycles should be used. Code is added to this section using the AppendSect i on macro.
The Sect i onDat aType field uses the same selection of values as the

Sect i onDat aType field in the NewSect i on routine (page 210).

DSP Operating System Reference

CHAPTER 5

DSP Operating System

Note

When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip; the PopSect i on
macro (page 227) is used to move a section off-chip. O

NewTemp VariableSection

DESCRIPTION

The NewTenpVar i abl eSect i on macro creates a temporary on-chip buffer. Nothing is
loaded into this section and it is not saved except during a timeshare context switch.

NewTenpVar i abl eSecti on (Nane, SectionDataType, Modul eNane)

Name The name of this section.
Sect i onDat aType The type of data that is in this section.
Modul eNane The name of the module this section is attached to.

The NewTenpVar i abl eSect i on macro defines a scratch buffer for use by the module
code section while the module is executing. The Sect i onDat aType field uses the same
selection of values as the Sect i onDat aType field in the NewSect i on routine

(page 210).

Note

When used in a DemandCache module, the call

PushSecti on (theSecti onNane) is used to move a
section on-chip; the call PopSecti on (theSecti onName)
is used to move a section off-chip. O

NewTempScalableAIAOSection

The NewTenpScal abl eAl ACSect i on macro creates a temporary on-chip buffer.
Nothing is loaded into this section and it is not saved except during a timeshare
context switch.

NewTenpScal abl eAl ACSecti on (Name, Al ACScal e, SectionDat aType,
Modul eNane)

Nare The name of this section.

Al ACScal e The scale factor for controlling AIAO size.

Secti onDat aType The type of data that is in this section.

Modul eName The name of the module this section is attached to.

DSP Operating System Reference 215

CHAPTER 5

DSP Operating System

DESCRIPTION

The NewTenpScal abl eAl ACSect i on macro defines a temporary scalable ATAO
section. Typically used as a scratch area that must be sized in relationship to the input
data for the module. The Sect i onDat aType field uses the same selection of values as
the Sect i onDat aType field in the NewSect i on routine (page 210).

Note

When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip; the PopSect i on
macro (page 227) is used to move a section off-chip. O

NewExternalProgramSection

The NewExt er nal Pr ogr anSect i on macro creates a code section that is not loaded
or saved.

NewExt er nal Progr anSecti on (Name, Mdul eNane)

Nane The name of this section.
Modul eNane The name of the module this section is attached to.

DESCRIPTION

The NewExt er nal Pr ogr anSect i on macro defines a code section which is never
cached on the DSP chip. It is not saved during a context switch. Code is added to this
section using the AppendSect i on macro (page 213).

Data Input

The macros described in this section create DSP input buffers.

NewInputAIAOSection

The Newl nput Al ACSect i on macro creates an AIAO section that is loaded, but saved
only during a context switch.

Newl nput Al ACSecti on (Nane, Al ACSi ze, SectionDataType, Mdul eNane)

Nanme The name of this section.

Al ACSi ze The ATIAO size.

Secti onDat aType The type of data that is in this section.

Mbdul eNane The name of the module this section is attached to.

216 DSP Operating System Reference

DESCRIPTION

CHAPTER 5

DSP Operating System

The Newl nput Al ACSect i on macro defines an AIAO section that connects to another
ATAO section. The Sect i onDat aType field uses the same selection of values as the
Sect i onDat aType field in the NewSect i on routine (page 210).

WARNING

You cannot append data to an AIAO section using the AppendSect i on
macro. Attempting to do so will result in a loss of data. a

Note

When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip. O

NewScalableInputAIAOSection

DESCRIPTION

The NewScal abl el nput Al ACSect i on macro creates a scalable AIAO section that is
loaded, but saved only during a context switch.

NewScal abl el nput Al ACSecti on (Nane, Al ACScal e, Secti onDat aType,
Modul eNane)

Nane The name of this section.

Al ACScal e Scale factor for controlling AIAQO size.

Secti onDat aType The type of data that is in this section.

Modul eNane The name of the module this section is attached to.

The NewScal abl el nput Al ACSect i on macro defines a scalable AIAO section that
connects to another ATAO section. The Sect i onDat aType field uses the same selection
of values as the Sect i onDat aType field in the NewSect i on routine (page 210).

WARNING

Data cannot be appended to an AIAO section using the
AppendSect i on macro. Any data that is added in this way
will result in a loss of data. a

Note

When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip. O

DSP Operating System Reference 217

CHAPTER 5

DSP Operating System

NewInputFIFOAndBufferSection

DESCRIPTION

The Newl nput FI FOAndBuf f er Sect i on macro creates an input FIFO section that is
saved only during a context switch.

Newl nput FI FOAndBuf f er Secti on (Name, BufferSize, SectionDataType,
Modul eNane)

Nane The name of this section.

BufferSi ze The buffer size.

Secti onDat aType The type of data that is in this section.

Mbdul eNane The name of the module this section is attached to.

The Newl nput FI FOAndBuf f er Sect i on macro names a FIFO buffer and defines a
temporary FIFO section to hold data read from the FIFO. The Sect i onDat aType field
uses the same selection of values as the Sect i onDat aType field in the NewSect i on
routine (page 210).

Data is moved from the FIFO buffer to the FIFO section using the FI FORead,
FI FOReadN, and FI FOReadNBuf f er macros. The Get Sect i onAddr ess,
Cet Secti onLabel , and Get Sect i onSi ze macros return information about
the FIFO section.

Note

When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip. O

NewInputFIFOAndScalableBufferSection

218

The Newl nput FI FOAndScal abl eBuf f er Sect i on macro creates a scalable input
FIFO section that is saved only during a context switch.

Newl nput FI FOAndScal abl eBuf f er Secti on (Nane, BufferScal e,
Secti onDat aType, Modul eNane)

Nane The name of this section.

Buf f er Scal e The scale factor for controlling buffer size.

Sect i onDat aType The type of data that is in this section.

Mbdul eNane The name of the module this section is attached to.

DSP Operating System Reference

CHAPTER 5

DSP Operating System

DESCRIPTION
The Newl nput FI FOAndScal abl eBuf f er Sect i on macro names a FIFO buffer and
defines a scalable temporary FIFO section to hold data read from the FIFO. The
Sect i onDat aType field uses the same selection of values as the Sect i onDat aType
field in the NewSect i on routine (page 210).

Data is moved from the FIFO buffer to the FIFO section using the FI FORead,
FI FOReadN, and FI FOReadNBuf f er macros. The Get Sect i onAddr ess,
Cet Secti onLabel , and Get Sect i onSi ze macros return information about
the FIFO section.

Note

When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip. O

Data Output

The macros described in this section create DSP output buffers.

NewOutputFIFOAndBufferSection

The NewQut put FI FOAndBuf f er Sect i on macro creates an output FIFO section that is
saved only during a context switch.

NewQut put FI FOAndBuf f er Secti on (Name, BufferSize, SectionDataType,

Modul eNane)
Nanme The name of this section.
Buf ferSi ze The buffer size.
Sect i onDat aType The type of data that is in this section.
Modul eNane The name of the module this section is attached to.

DESCRIPTION
The NewQut put FI FOAndBuUf f er Sect i on macro names a FIFO buffer and defines
a temporary FIFO section to hold data before it’s written to the FIFO. The
Sect i onDat aType field uses the same selection of values as the Sect i onDat aType
field in the NewSect i on routine (page 210).

Data is moved from the FIFO section to the FIFO buffer using the FI FON i t e,
FI FOW it eN and FI FON i t eNBuf f er macros. The Get Sect i onAddr ess,

Cet Secti onLabel , and Get Sect i onSi ze macros return information about
the FIFO section.

Note
When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip. O

DSP Operating System Reference 219

CHAPTER 5

DSP Operating System

NewOutputFIFOAndScalableBufferSection

DESCRIPTION

The NewQut put FI FOAndScal abl eBuf f er Sect i on macro creates a scalable output
FIFO section that is saved only during a context switch.

NewQut put FI FOAndScal abl eBuf f er Secti on (Nanme, Buffer Scal e,
Secti onDat aType, Mdul eNane)

Nane The name of this section.

Buf f er Scal e The scale factor for controlling buffer size.

Secti onDat aType The type of data that is in this section.

Mbdul eNane The name of the module this section is attached to.

The NewQut put FI FOAndScal abl eBuf f er Sect i on macro names a FIFO buffer
and defines a scalable temporary FIFO section to hold data before it’s written

to the FIFO. The Sect i onDat aType field uses the same selection of values as the
Sect i onDat aType field in the NewSect i on routine (page 210).

Data is moved from the FIFO section to the FIFO buffer using the FI FOWV i t e,
FI FON it eN and FI FON i t eNBuf f er macros. The Get Sect i onAddr ess,
Cet Secti onLabel , and Get Sect i onSi ze macros return information about
the FIFO section.

Note

When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip. O

NewOutputCRBSection

220

The NewQut put CRBSect i on macro creates a complete result buffer (CRB) section that
is saved off-chip and saved during a context switch.

NewQut put CRBSecti on (Nane, Al ACSi ze, SectionDataType, Mdul eNane)

Nare The name of this section.

Al ACSi ze The AIAO size.

Secti onDat aType The type of data that is in this section.

Mbdul eNane The name of the module this section is attached to.

DSP Operating System Reference

CHAPTER 5

DSP Operating System

DESCRIPTION
The NewQut put CRBSect i on macro defines an AIAO section that connects to another
ATAO section. The Sect i onDat aType field uses the same selection of values as the
Sect i onDat aType field in the NewSect i on routine (page 210).

A WARNING

You cannot append data to an AIAO section using the AppendSect i on
macro. Attempting to do so will result in a loss of data. a

Note

When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip. O

NewScalableOutputCRBSection

The NewScal abl eCut put CRBSect i on macro creates a scalable complete result buffer
(CRB) section that is saved off-chip and saved during a context switch.

NewScal abl eQut put CRBSecti on (Nane, Al ACScal e, Secti onDat aType,

Modul eNane)
Nane The name of this section.
Al ACScal e The scale factor for controlling ATAO size.
Secti onDat aType The type of data that is in this section.
Modul eNane The name of the module this section is attached to.

DESCRIPTION

The NewScal abl eQut put CRBSect i on macro defines a scalable AIAO section that
connects to another AIAO section. The CRB section is initially cleared to 0. The

Sect i onDat aType field uses the same selection of values as the Sect i onDat aType
field in the NewSect i on routine (page 210).

A WARNING
You cannot append data to an AIAO section using the AppendSect i on
macro. Attempting to do so will result in a loss of data. a

Note

When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip. O

DSP Operating System Reference 221

CHAPTER 5

DSP Operating System

NewOutputPRBSection

The NewQut put PRBSect i on macro creates a partial result buffer (PRB) section that is
cleared when created on-chip and saved off-chip. It is also saved during a context switch.

NewQut put PRBSecti on (Nane, Al ACSi ze, SectionDataType, Mdul eNane)

Nare The name of this section.

Al ACSi ze The ATAO size.

Secti onDat aType The type of data that is in this section.

Modul eNane The name of the module this section is attached to.

DESCRIPTION
The NewQut put PRBSect i on macro defines an AIAO section that connects to another
ATAO section. Data input to this section is summed with any data already in the AIAO
section. The Sect i onDat aType field uses the same selection of values as the
Sect i onDat aType field in the NewSect i on routine (page 210).

A WARNING

You cannot append data to an AIAO section using the AppendSect i on
macro. Attempting to do so will result in a loss of data. a

Note

When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip. O

NewScalableOutputPRBSection

The NewScal abl eCut put PRBSect i on macro creates a scalable partial result buffer
(PRB) section that is cleared when created on-chip and saved off-chip. It is also saved
during a context switch.

NewScal abl eQut put PRBSecti on (Nane, Al AOCScal e, Secti onDat aType,

Modul eNane)
Nanme The name of this section.
Al ACScal e The scale factor for controlling AIAO size.
Secti onDat aType The type of data that is in this section.
Modul eNane The name of the module this section is attached to.

222 DSP Operating System Reference

CHAPTER 5

DSP Operating System

DESCRIPTION
The NewScal abl eQut put PRBSect i on macro defines a scalable ATIAO section that
connects to another AIAO section. Data input to this section is summed with any data
already in the ATAO section. The Sect i onDat aType field uses the same selection of
values as the Sect i onDat aType field in the NewSect i on routine (page 210).

A WARNING
You cannot append data to an AIAO section using the AppendSect i on
macro. Attempting to do so will result in a loss of data. a

Note
When used in a DemandCache module, the PushSect i on macro
(page 228) is used to move a section on-chip. O

DSP Operating System Macros

Apple provides a set of DSP operating system macros to assist DSP programmers in
manipulating DSP modules and sections. All DSP operating system macros are
register-based and use the scratch registers r 1 through r 4 for passing parameters and
returning results. In addition, the contents of the scratch registers r 15 through r 18, a0,
and al may be destroyed by the macros.

General Manipulation Macros

The macros described in this section perform general tasks in DSP programming.

BlockMove

The Bl ockMove macro moves blocks of data from a source to a destination.

Bl ockMove(theSrcPtr, theDestPtr, theCount)

theSrcPtr Must be a cau register r 1-r 14.
t heDest Pt r Must be a cau register r 1-r 14 or a constant.
t heCount Value (in bytes) is divided by four and only i nt () is used.

(Example: 17 bytes / 4 = 4). It may be any cau register
r1-r17 or a constant.

REGISTER USAGE

The Bl ockMove macro destroys the contents of cau registers r 1-r 4, r 15-r 18, and
al-al.

DSP Operating System Reference 223

CHAPTER 5

DSP Operating System

DESCRIPTION
The Bl ockMove macro copies t heCount bytes from t heSrcPtr tot heDest Pt r. The
move is accomplished using the instructiona0 = (*r2++ = *r1++) * a0.The value
of t heCount must be exactly divisible by four. If it is not, only the integer result will be
used. (For example, 18 bytes / 4 = 4.) The values of t heSr cPt r and t heDest Pt r must
be addresses on a longword boundary. If it is not, the address is rounded down to the
nearest longword boundary. (Example: $00000802 — $00000800.) The values of
theSrcPtr and t heDest Pt r cannot be 0.
PcLabel
The PcLabel macro locates the specified section on-chip and returns its offset..
regi ster = PclLabel (theSectionLabel)
t heSect i onLabel Label used within this section.
REGISTER USAGE
The PcLabel macro does not alter the contents of any register exceptr egi st er.
DESCRIPTION
The PcLabel macro calculates the offset from the current pc location to the
t heSect i onLabel address and places the offset into r egi st er, which may be
any cau register r 1-r 18.
Pop
The Pop macro pops the stack.
Pop (theRegi ster)
t heRegi ster Return value, may be from any cau register.
REGISTER USAGE
The Pop macro does not alter the contents of any register except r egi st er and the
stack pointer (SP).
DESCRIPTION
The Pop macro pre-decrements SP and then reads a longword into t heRegi st er,
which may be any cau register r 1-r 18.
224 DSP Operating System Reference

CHAPTER 5

DSP Operating System

Push
The Push macro pushes the stack.
Push (theRegi ster)
t heRegi st er Any cau register.
REGISTER USAGE
The Push macro does not alter the contents of any register except SP. This macro does
not affect the cau flags.
DESCRIPTION

The Push macro writes the longword from cau register t heRegi st er to the top of the
stack and then increments SP by four.

Section Manipulation Macros

The following macros help you work with DSP sections.

CallSection

The Cal | Sect i on macro branches to continue execution at the specified section.
Cal | Section (theSecti onNane)

t heSect i onNane The name of the section to continue operation at.

REGISTER USAGE
The Cal | Sect i on macro does not alter the contents of any registers except RV.

DESCRIPTION

The Cal | Sect i on macro takes one argument, the section name of a DSP section to
branch to and continue execution. The section whose name is t heSect i onNanme must
be a DSP section located within the same DSP module as the current section.

The Cal | Sect i on macro places the return address in RV.

DSP Operating System Reference 225

CHAPTER 5

DSP Operating System

GetSectionAddress

The Get Sect i onAddr ess macro returns the physical address of the specified section.

CGet Secti onAddress (theSectionPtr,theSecti onNane)

t heSectionPtr Returns a value, physical location of section.
t heSect i onNane The name of section to locate.
REGISTER USAGE

The Get Sect i onAddr ess macro does not alter the contents of any registers except
theSectionPtr.

DESCRIPTION
The Get Sect i onAddr ess macro calculates the physical address of t heSect i onNane
and copies the address into the t heSect i onPt r register, which may be any cau
register r 1-r 18.

GetSectionLabel
The Get Sect i onLabel macro returns a physical pointer to a label in the
specified section.
Get Secti onLabel (theSectionLabel Ptr,theSectionLabel)
t heSecti onLabel Ptr Returns a pointer, physical location of section.
t heSect i onLabel Label used within the section.

REGISTER USAGE
The Get Sect i onLabel macro does not alter the contents of any register except
t heSecti onLabel Ptr.

DESCRIPTION

The Get Sect i onLabel macro returns a physical pointer to a label designated by
t heSect i onLabel . The pointer is returned in t heSect i onLabel Pt r, which may
be any cau register r 1-r 18.

226 DSP Operating System Reference

CHAPTER 5

DSP Operating System

GetSectionSize

The Get Sect i onSi ze macro returns the size of the specified section.

CGet Secti onSi ze (theSectionSi ze, t heSecti onNane)

t heSecti onSi ze The size of the section.
t heSect i onNane The section name.
REGISTER USAGE
The Get Sect i onSi ze macro destroys the contents of cau registersr 1-r 4,r 15-r 18,
and a0- al.

DESCRIPTION

The Get Sect i onSi ze macro calculates the size of t heSect i onNane and copies it into
the t heSect i onSi ze register, which may be any cau register r 1- r 18.

PopSection

The PopSect i on macro caches the specified section off-chip.
PopSecti on (theSecti onNane)

t heSect i onNane The section name.

REGISTER USAGE

The PopSect i on macro destroys the contents of cau registers r 1-r 4, r 15-r 18, and
a0-al.

DESCRIPTION
The PopSect i on macro caches t heSect i onNane. The actual caching operation
performed depends upon the section’s caching flags.

For static sections, PopSect i on caches the section data from its primary container to its
secondary container. For non-static sections, PopSect i on caches the section data from
the top of the demand cache stack to its primary container.

DSP Operating System Reference 227

CHAPTER 5

DSP Operating System

Note

The Save flag must be set (caching flags) for the specified section if data
is to be moved. The memory space is automatically reclaimed by the
DSP operating system. O

A WARNING
Sections must use PopSect i on in the reverse order that they use
PushSection. a
PushSection
The PushSect i on macro loads the specified section on-chip.
PushSection (theSecti onNane)
t heSect i onNane The section name.
REGISTER USAGE
The PushSect i on macro destroys the contents of cau registersr 1-r 4, r 15-r 18,
and a0- al.
DESCRIPTION

228

The PushSect i on macro caches t heSect i onNarme. The actual caching operation
performed depends upon the section’s caching flags.

For static sections PushSect i on caches the section data from its secondary container to
its primary container. For non-static sections, PushSect i on caches the section data
from its primary container to the top of a demand cache stack.

Note

You must set the Load flag (caching flags) for the specified section if data
is to be moved. The Clear flag must be set if the section is to be cleared.
Either the Bank A or Bank B flag should also be set. If no Bank flag or the
Don't Care flag is selected the DSP operating system will use Bank A. O

Module Manipulation Macro

The Set Ski pCount macro helps you program DSP modules.

DSP Operating System Reference

CHAPTER 5

DSP Operating System

SetSkipCount

The Set Ski pCount macro sets the skip count (number of modules to be jumped over).
Set Ski pCount (t heSki pCount)

t heSki pCount The number of modules to skip over.

REGISTER USAGE

The Set Ski pCount macro destroys the contents of cau registersr 1-r 4, r 15-r 18,
and a0- al.

DESCRIPTION

The Set Ski pCount macro sets the skip count for the currently executing module. The
current module continues its execution. When the module finishes its execution, the new
skip count takes effect.

The t heSki pCount parameter is a 32-bit constant or any cau register in the range r 1
throughr 17.

Task Manipulation Macros

The macros described in this section help you work with tasks.

GetNumRealTimeFrames

The Get NunReal Ti meFr ames macro returns the number of real-time frames that have
been executed.

Get NunReal Ti neFr anes (nunfranes)

nunfr anes The number of frames executed.

REGISTER USAGE

The Get NunrReal Ti neFr ames macro destroys the contents of cau registersr 1-r 4,
ri15-r18, and a0- al.

DESCRIPTION

The Get NunReal Ti meFr anes macro is used to get the number of real-time frames that
have been executed since the DSP was started or reset.

DSP Operating System Reference 229

CHAPTER 5

DSP Operating System

SetTaskInactive

The Set Taskl nact i ve macro turns off the task associated with the section that is
using it.

Set Taskl nactive ()

REGISTER USAGE

The Set Taskl nact i ve macro destroys the contents of cau registersr 1-r4,r 15-r 18,
and a0- al.

DESCRIPTION

The Set Taskl nact i ve macro sets the owner task for the currently executing module
inactive. Setting the task inactive does not take effect until the next frame. The task’s
modules complete their execution for the current frame.

FIFO Manipulation Macros

The macros described in this section help you work with FIFO buffers.

A WARNING
Although FIFO manipulations deal with byte counts, all operations
must be done in longword (4 bytes) increments only. Use of the FIFO
calls with non-longword counts will cause unpredictable results. a

FIFOGetReadCount

The FI FOGet ReadCount macro returns the available number of data bytes in the FIFO.
FI FOGet ReadCount (t heFl FONane)

t heFlI FONane The FIFO name.

REGISTER USAGE

The FI FOGet ReadCount macro destroys the contents of cau registers r 1-r 4,
r15-r 18, and a0- al.

DESCRIPTION

The FI FOGet ReadCount macro returns, in r 2, the current number of bytes available in
the FIFO that can be read. A value of 0 indicates an empty FIFO.

230 DSP Operating System Reference

CHAPTER 5

DSP Operating System

FIFORead
The FI FORead macro copies FIFO data into the specified section.
FI FORead (theSecti onNane)
t heSect i onNane The section name.
REGISTER USAGE
The FI FORead macro destroys the contents of cau registersr 1-r 4,r 15-r 18,
and a0- al.
DESCRIPTION
The FI FORead macro takes one argument, the section name of an AIAO FIFO
section. The AIAO FIFO section must be located within the same DSP module as
the current section.
The FI FORead macro copies data to the AIAO FIFO section from the FIFO that’s
connected to it.
The size of AIAO is used as the number of bytes to read from the FIFO. If the FIFO
empties during the read, only the actual number available will be read. The remaining
bytes in the section are cleared to 0.
In the event that an underrun occurs (the FIFO does not contain enough data to fill the
ATAO), a kdspFl FOQUnder r unMessage message is sent to the FIFO’s message handler
if the FIFO’s kdspEnabl eOver Under Message flag is set. Also, if the FIFO’s
kdspOver Under Taskl nact i ve flag is set, the owner task of the currently executing
module is set inactive.
Note
Reads and writes to the buffers must occur on longword boundaries. O
FIFOReadN

The FI FOReadN macro copies the requested number of bytes of FIFO data into the
specified section.

FI FOReadN ('t heFl FONane, theCount)

t heFl FONane The FIFO name.
t heCount The number of bytes to copy.

DSP Operating System Reference 231

CHAPTER 5

DSP Operating System

REGISTER USAGE

The FI FOReadN macro destroys the contents of cau registers r 1-r 4, r 15-r 18, and
a0-al.

DESCRIPTION
The FI FOReadN macro reads the specified number of bytes in t heCount from the
named FIFO to the section. The programmer should check r 2 to make sure that the
requested number of bytes was transferred. If the FIFO empties during the read, only
the actual number of bytes available are read. The remaining bytes in the section are
cleared to 0.

FIFOReadNBuffer
The FI FOReadNBuf f er macro copies the requested number of bytes of FIFO data into
the specified section.
FI FOReadNBuf f er (theFl FONane, theCount, theBufferPtr)
t heFl FONane The FIFO name.
t heCount The number of bytes to copy.
theBufferPtr The section data is being copied to.

REGISTER USAGE
The FI FOReadNBuf f er macro destroys the contents of cau registersr 1-r4,r 15-r 18,
and a0- al.

DESCRIPTION
The FI FOReadNBuf f er macro reads the specified number of bytes in t heCount from
the named FIFO to the section pointed to by t heBuf f er Pt r. The programmer should
check r 2 to make sure that the requested number of bytes was transferred. If the FIFO
empties during the read process, only the actual number of bytes available will be read.
The remaining bytes in the section are cleared to 0.

232 DSP Operating System Reference

CHAPTER 5

DSP Operating System

FIFOGetWriteCount

The FI FOGet Wi t eCount macro returns the number of empty bytes available in
the FIFO.

FI FOGet Wit eCount (theFl FONane)

t heFl FONane The FIFO name.

REGISTER USAGE

DESCRIPTION

FIFOWrite

The FI FOGet Wi t eCount macro destroys the contents of cau registers r 1-r 4,
r 15-r 18, and a0- al.

The FI FOGet Wi t eCount macro returns in r 2 the current number of bytes available in
the FIFO that can be written—in other words, how much empty space is available. A
value of 0 indicates a full FIFO.

The FI FON i t e macro copies section data into the specified FIFO.
FIFOWite (theSectionNane)

t heSect i onNanme The section name.

REGISTER USAGE

DESCRIPTION

The FI FON i t e macro destroys the contents of cau registers r 1-r 4, r 15-r 18, and
a0- al.

The FI FOW i t e macro writes from the AIAO section to the named FIFO. The
programmer should check r 2 to make sure that the requested number of bytes was
transferred. If the FIFO fills up, without overrunning, the maximum number of
bytes possible will be transferred.

The size of the ATAO section is used as the number of bytes to write to the FIFO.

DSP Operating System Reference 233

CHAPTER 5

DSP Operating System

In the event that an overrun occurs (the FIFO does not contain enough space to hold the
AJAQ'’s data), a kdspFI FOOver r unMessage message is sent to the FIFO’s message
handler if the FIFO’s kdspEnabl eOver Under Message flag is set. Also, if the FIFO's
kdspOver Under Taskl nact i ve flag is set, the owner task of the currently executing
module is set inactive.

Note
Reads and writes to the FIFO and the buffer may occur on longword
boundaries only. O

FIFOWriteN

The FI FOW i t eNmacro copies the specified number of bytes of section data into the
specified FIFO.

FI FOWiteN (theFl FONane, theCount)

t heFl FONane The FIFO name.
t heCount The number of bytes to copy.
REGISTER USAGE

The FI FON i t eNmacro destroys the contents of cau registers r 1-r 4, r 15-r 18, and
a0-al.

DESCRIPTION
The FI FON i t eNmacro writes the specified number of bytes in t heCount to the
named FIFO from the section. The programmer should check r 2 to make sure that the
requested number of bytes was transferred. If the FIFO fills up, without overrunning, the
maximum number of bytes possible will be transferred.

FIFOWriteNBuffer
The FI FOW i t eNBuf f er macro copies the specified number of bytes of section data
into the specified FIFO.
FI FOWiteNBuf fer (theFl FONane, theCount, theBufferPtr)
t heFl FONane The FIFO name.
t heCount The number of bytes to copy.
theBufferPtr The section data is being copied from.

234 DSP Operating System Reference

CHAPTER 5

DSP Operating System

REGISTER USAGE

DESCRIPTION

The FI FON i t eNBuf f er macro destroys the contents of cau registersr 1-r 4,
r 15-r 18, and a0- al.

The FI FON i t eNBuf f er macro writes the specified number of bytes in t heCount to
the named FIFO from the buffer pointed to by t heBuf f er Pt r. The programmer should
check r 2 to make sure that the requested number of bytes was transferred. If the FIFO
fills up, without overrunning, the maximum number of bytes possible will be transferred.

Note

Reads and writes to the FIFO and the buffer are on longword
boundaries only. O

GPB Manipulation Macros

The macros described in this section help you manage the GPB for a module. GPB is
discussed in “Guaranteed Processing Bandwidth,” in Chapter 3.

GPBElapsedCycles

The GPBEl apsedCycl es macro returns the number of DSP cycles used by this module
up to the point it is called.

GPBE!l apsedCycl es (theCycl es)

t heCycl es Elapsed cycles since start or reset.

REGISTER USAGE

DESCRIPTION

The GPBEl apsedCycl es macro destroys the contents of cau registers r 1-r 4,
r 15-r 18, and a0- al.

The GPBEl apsedCycl es macro returns the number of DSP instruction cycles that have
elapsed since this module started execution. By comparing this value with the expected
value returned from the GPBExpect edCycl es() macro, a dumb lumpy algorithm can
determine if it should cease processing. Dumb lumpy algorithms are discussed in
“Smooth and Lumpy Algorithms,” in Chapter 3.

DSP Operating System Reference 235

CHAPTER 5

DSP Operating System

GPBExpectedCycles

The GPBExpect edCycl es macro returns the computed number of DSP cycles this
module is expected to need based on the supplied GPB estimate.

GPBExpect edCycl es (theCycl es)

t heCycl es Expected cycles for this module.

REGISTER USAGE

The GPBExpect edCycl es macro destroys the contents of cau registers r 1-r 4,
r 15-r 18, and a0- al.

DESCRIPTION
The GPBExpect edCycl es macro returns the expected number of DSP instruction cycles
to complete this module. This is used in conjunction with the GPBEI apsedCycl es
macro (page 235) to control the execution of a dumb lumpy algorithm.
GPBSetUseActual
The GPBSet UseAct ual macro tells the DSP operating system to use the actual GPB
required instead of the estimated value.
GPBSet UseAct ual ()
REGISTER USAGE
The GPBSet UseAct ual macro destroys the contents of cau registersr 1-r 4, r 15-r 18,
and a0- al.
DESCRIPTION

The GPBSet UseAct ual macro sets the UseAct ual GPB flag for the module. This flag is
set immediately, so this routine should not be called until the module is in its worst-case
GPB usage.

236 DSP Operating System Reference

CHAPTER 5

DSP Operating System

Semaphore Manipulation Macros

The macros described in this section help you work with semaphores.

SemaphoreClear

The Semaphor eCl ear macro clears the specified semaphore in a locked environment.
Semaphor ed ear (theSemaphorePtr, theMask, thed dSemaphoreVal ue)

t heSemaphor ePt r Pointer to the semaphore.
t heMask Mask of new semaphore value.
t hed dSemaphor eVal ue Returns the value of the old semaphore.

REGISTER USAGE

The Semaphor eCl ear macro destroys the contents of cau registersr 1-r 4,r 15-r 18,
and a0- al.

DESCRIPTION

The Senmaphor ed ear macro locks the system bus and performs the following
operation:

[l ock the bus]

*t heSemaphorePtr = ((thed dSemaphoreVal ue = *t heSemaphorePtr) &
~t heMask)

[unl ock the bus]

The value of t heSenmaphor ePt r must be a cau register in the range r 1 through r 17
containing a physical pointer.

The value of t heMask may be any register in the range r 1 through r 17, or a constant.

The Semaphor eCl ear macro performs dol ock on the bus to prevent host access and
then reads the semaphore location. The old semaphore value is AND-combined with NOT
of the mask and this new value is written back to the semaphore location.

RETURN VALUE

The value of t heO dSemaphor eVal ue is the value of the semaphore before it was
AND-combined with the one’s-complement of the value of t heMask.

DSP Operating System Reference 237

CHAPTER 5

DSP Operating System

SemaphoreSet

The Semaphor eSet macro sets the specified semaphore in a locked environment.
Semaphor eSet (theSemaphorePtr, theMask, thed dSemaphoreVal ue)

t heSemaphor ePtr Pointer to the semaphore.
t heMask Mask of new semaphore value.
t hed dSemaphor eVal ue Returns the value of the old semaphore.

REGISTER USAGE

DESCRIPTION

RETURN VALUE

238

The Senmaphor eSet macro destroys the contents of cau registersr 1-r 4, r 15-r 18, and
a0-al.

The Semaphor eSet macro locks the system bus and performs the following operation:

[l ock the bus]

*t heSemaphorePtr = ((thed dSemaphoreVal ue = *t heSenaphorePtr) |
t heMask)

[unl ock the bus]

The value of t heSemaphor ePt r must be a cau register r 1- r 17 containing a
physical pointer.

The Semaphor eSet macro performs DoLock on the bus to prevent host access and then
reads the semaphore location. The old semaphore value is OR-combined with the mask
and this new value is written back to the semaphore location.

The value of t heO dSemaphor eVal ue is the value of the semaphore before it was
OR-combined with t heMask.

DSP Operating System Reference

CHAPTER 5

DSP Operating System

Message Manipulation Macro

The SendMessageToHost macro helps you work with DSP messages.

SendMessageToHost

The SendMessageToHost macro sends a message from the module to the host using
the interrupt handler.

SendMessageToHost (t heDSPMessagePtr)

t heDSPMessagePt r Pointer to the message vector.

REGISTER USAGE

DESCRIPTION

The SendMessageToHost macro destroys the contents of cau registers r 1-r 4,
r 15-r 18, and a0- al.

The SendMessageToHost macro calls the msVect or (interrupt handler) in the Real
Time Manager structure that then passes the message to the interrupt handler. When
used by a module to send a message to the client application the msDat a [0] through
msDat a[2] fields are not defined when using this macro.

The value of t heDSPMessagePt r must be a cau register r 1- r 17 containing a physical
pointer to a DSP message.

Note

The nsVect or field of the message must be initialized to a valid
interrupt handler. Fields nsDat a [0] through nmsDat a[2] can be
used by the programmer as needed. O

When the Real Time Manager uses this routine to send a message to the client
application nsDat a [0] contains t heEr r or Message constant. The message is sent to
the interrupt vector of the owner task for the currently executing module. The owner
task is then set inactive.

The t heEr r or Message constant is a DSP message constant or a register containing a
DSP message constant. The Apple-defined DSP message constants are defined in the
next section.

DSP Operating System Reference 239

CHAPTER 5

DSP Operating System

When the host interrupt vector for the task is called, a complete DSPMessage structure
is passed on the stack containing the following information:

The owner task’s interrupt vector - nmsVect or

t heErr or Message - neDat a[0]
The task’s reference number - nmsDat a[1]
The current module’s reference number - meDat af 2]

The DSP message structure is diagrammed in Figure 5-3.

Figure 5-3 DSP message structure

DSP message

msVector

msData[0]

msData[1]

msData[2]

The corresponding routine in the Macintosh API is the MessageAct i onPr oc routine.

Summary of the DSP Operating System

Constants

/1 DSP MODULE/ SECTI ON DEFI NI TI ONS

/1 FI FOFI ags

#define kdspFl FOVaskAl | Messages 0x00000000 // disable al

!/l messages (p) priority of FIFO nessages in descendi ng order

#defi ne kdspFl FOEnabl eOver Under Message 0x00000001 // (3) enable
/1 nmessage when FIFO transfer causes an overrun or underrun

240 Summary of the DSP Operating System

CHAPTER 5

DSP Operating System

#defi ne kdspFl FOEnabl eFul | Empt yMessage 0x00000002 // (2) enable
/1 message when FI FO goes full or enpty

#defi ne kdspFl FOEnabl eH ghLowMessage 0x00000004 // (1) enable
/1 message when FIFO goes at least half full or half enpty

#defi ne kdspFl FOEnabl eLi nkMessage 0x00000008 // (4) enable
/1 message when FIFO s |ink is traversed

#defi ne kdspFl FOOver Under Taskl nacti ve 0x00000010 // if task
/'l accessing FIFO causes either FIFO overrun or underrun then
/1 set task inactive

#defi ne kdspFl FOFul | Enmpt yTaskl nacti ve 0x00000020 // if task
/1 accessing FIFO causes either FIFO full or FIFO enpty then set
/1 task inactive

e L
/1 Modul eFl ags
e e R
#define kdspAutoCache 0x00000000 // select auto cache node
#defi ne kdspDemandCache 0x00000001 // select demand cache node
#define kdspOnChi pSectionTable 0x00000004 // put section table on-chip
#define kdspOnChi pSt ack 0x00000020 // a stack of the specified

/1 size will be created on-chip
#define kdspOfChipStack 0x00000040 // a stack of the specified

/1 size will be created off-chip
e e R

#define kdspLunpyModul e 0x00000000 // wuse bnEstimte

#defi ne kdspSnoot hModul e 0x00000001 // see DSPConstantsPrivate.h

e e R

/1 SectionFl ags

e e R

/1l Costs the DSP one instruction to use the follow ng flags:

#define kdspLeaveSection 0x00000000 // do not |oad or save this
/1 section

#define kdspLoadSection 0x00000001 // load this section

#defi ne kdspSaveSection 0x00000002 // save this section

#defi ne kdspCd ear Secti on 0x00000004 // fill this section with zeroes

Summary of the DSP Operating System 241

CHAPTER 5

DSP Operating System

#defi ne kdspSaveOnCont ext Switch 0x00000008 // save this section on context
/1 switch

#defi ne kdspExternal 0x00000000 // never | oaded on-chip

#defi ne kdspBankA 0x00000020 // load in Bank A if possible

#define kdspBankB 0x00000040 // load in Bank B if possible

#defi ne kdspAnyBank (kdspBankA | kdspBankB) // | oad anywhere

#define kdspStaticSection 0x00000080 // section statically allocated
/1 before runtine

#defi ne kdspFl FOSecti on 0x00000100 // section is a FIFO buffer

#define kdspReservedSecti onFl ag0200 0x00000200 // reserved

#define kdspLoadFl FOSecti on 0x00000400 // when | oading convert froma
/1 FIFO

#define kdspSaveFl FOSecti on 0x00000800 // when saving convert to a FIFO

#defi ne kdspH HOSecti on 0x00001000 // this is a H HO section

#define kdspReservedFor Toggl eSecti onTbl 0x00002000 // this flag holds the
/1 kdspToggl eSecti onTabl e fl ag
/1 fromthe nodule’'s flag

#define kdspLoadH HOSecti on 0x00004000 // when | oading convert froma
/1 H HO

#define kdspSaveH HOSection 0x00008000 // when saving convert to a H HO

/1 Costs the DSP two instructions to use the foll ow ng fl ags:

#define kdspNotl OBufferSection 0x00010000 // all cases other than bel ow

#defi ne kdspl nput Buf f er 0x00020000 // section is an input buffer

#defi ne kdspQut put Buf f er 0x00040000 // section is an output buffer

#define kdspl TBSecti on 0x00080000 // section is an intertask
/1 buffer

#defi ne kdspScal abl eSecti on 0x00100000 // section size can be scal ed

#define kdspSectionAll ocated 0x00200000 // reserved for use by the DSP
/1 Manager

#defi ne kdspDSPUseOnly 0x00400000 // only DSP should nodify this
/'l menory

e e R

/1 SectionDat aTypes

e L

#defi ne kdspNonDat a 0x00000000 // data in section is beyond

/1 description

#define kdsp3200FI oat 0x00000001 // 3200 fl oat

#defi ne kdspl EEEFI oat 0x00000002 // IEEE float format

242 Summary of the DSP Operating System

CHAPTER 5

DSP Operating System
#defi ne kdsplnt32 0x00000003 // 32bit integer
#define kdsplntl1l616 0x00000004 // 16bit integer packed
#defi ne kdspl nt 8888 0x00000005 // 8bit integer packed
#defi ne kdspnuLaw 0x00000006 // mnuLaw for mat
#define kdspALaw 0x00000007 // Al aw format
#define kdspAppSpecificData OxO000FFFF // application-specific
| | ============ooossosoosooooooooooooooooooooooooooooooooooooooosooosss
/1 DSP CLI ENT DEFI NI TI ONS
[| ===========ossoosoooSoooSoooSSooSSooSSSoSSSSSSSSSSSSSSSoSSSooS=Dss
e e R

/1 insert at l|ist:
#define kdspHeadl nsert 0x00000004 /1 head
#defi ne kdspTaillnsert 0x00000008 /1 tai
#define kdspBeforelnsert 0x00000010 /1l before reference link
#define kdspAfterlnsert 0x00000020 /1 after reference link
#defi ne kdspAnyPosi tionl nsert kdspHeadl nsert // anywhere
e L
/1 constants for nessages received by client tasks
e e R
#defi ne kdspBl OPi nChangedState 0x62696f70 //'biop' (bio pin has changed
/1 state)
/1 constants used for FIFQO
#defi ne kdspFl FOvessage 0x66000000 // 'f (nmessages)
#define kdspFl FOLi nkMessage 0Ox666¢c6e6b // "Ink ' (link was traversed)
#define kdspFl FOOverrunMessage O0x666f7672 // 'fovr' (buffer filled before
/1 FIFO wite conpl eted)
#define kdspFl FOUnderrunMessage 0x66756e64 //'fund' (buffer enptied before

/1 FIFO read conpl et ed)

/'l constants used for FIFO buffer:

#define kdspFl FOFul | Message 0x6666756¢c // 'fful' (exactly full)
#defi ne kdspFl FOEmpt yMessage 0x66656d70 // 'fenmp' (exactly enpty)
#define kdspFl FOH ghMessage 0x66686967 // 'fhig' (at |east half ful
/1 but not exactly full)
#defi ne kdspFl FOLowessage ox666¢c6f77 // 'flow (at |east half enpty
/1 but not exactly enpty)
#defi ne kdspFl FOPri meMessage 0x66707269 [/ 'fpri' (application-specific)

Summary of the DSP Operating System 243

CHAPTER 5

DSP Operating System

/1 constants used for dsp exception nessages

/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1

11
/1
/1
11
/1
/1
11
/1
/1
11

/1
11
/1
/1

X
Xrst'
xbus'
xill'
xrvl'
xadr'
xdau’
xnan'
Xrv2'
xex0'
xtim
Xrv3'
xsi b’

xsob'
xsif'
xsof"’
xex1'
xerr'

g (prefix used
for GPB nessages)

' gact'
active)
‘gina' (task is

i nactive)

"govr' (task was
involved in a frame
overrun and i s now
i nactive)

(task is

"gskp' (task has
ski pped one or nore
frames due to a
frame overrun)

kdspReadPer m ssi on)

#define kdspExcepti onMessage 0x78000000
#defi ne kdspExcepti onReset 0x78727374
#defi ne kdspExcepti onBusError 0x78627573
#define kdspExceptionlllegal Opcode 0x78696¢c6¢C
#defi ne kdspExcepti onReservedOne 0x78727631
#defi ne kdspExcepti onAddressError 0x78616472
#define kdspExcepti onDAUOver Underfl ow 0x78646175
#define kdspExcepti onNot ANunber Ox786e616e
#defi ne kdspExcepti onReservedTwo 0x78727632
#define kdspExcepti onExternallntZero 0x78657830
#define kdspExceptionTi mer 0x7874696d
#defi ne kdspExcepti onReservedThree 0x78727633
#define kdspExceptionSl O nput Buf Ful | 0x78736962
#defi ne kdspExcepti onSl OQut put Buf Enpt y 0x78736f 62
#defi ne kdspExcepti onSI GDVAI nput Fr ane 0x78736966
#define kdspExcepti onSI CDVACQut put Fr ane 0x78736f 66
#define kdspExcepti onExternallntOne 0x78657831
#defi ne kdspExcepti onRunti meError 0x78657272
#define kdspGPBMessage 0x67000000
#define kdspGPBTaskActive 0x67616374
#defi ne kdspGPBTaskl nactive 0x67696e61
#defi ne kdspGPBFraneOverrun 0x676f 7672
#define kdspGPBFraneSki p 0x67736b70
e e R
/1l read/wite perm ssion constants for clients
e L
#defi ne kdspWitePerm ssion 0x0001

#define kdspReadPerm ssion 0x0002

#defi ne kdspReadWitePerm ssion (kdspWitePerm ssion
244 Summary of the DSP Operating System

CHAPTER 5

DSP Operating System
e e R
/'l constants for indexed devices
e L
/1 CPU processor types
#define kdsp3210 ' 3210
#defi ne kdsp32C '32C"
e e R
/1 constants for DSP APl functions
e e R
#define kevtMessageToHost (17)
#define kevtCacheSection (22)
#defi ne kevt CopyFl FO (23)
#define kevt GetSectionSize (43)
#define kevt GPBSet UseAct ual (44)

#defi ne kevt GPBExpect edCycl es (45)
#define kevt GPBEl apsedCycl es (46)

#define kevt Semaphor eSet (47)
#defi ne kevt Semaphor ed ear (48)
#define kevt Set Ski pCount (50)
#defi ne kevt Set Taskl nacti ve (51)
#defi ne kevt Bl ockMove (53)

#define KkevtNunreal-tineFrames (113)

/1l constants for errors returned by Maci ntosh DSP API

// msc errors
/1 the next avail able error code nunber is -733
/!l if you add an error, also add it to the DSPErrorStrings.r file

#defi ne kdspUni npl enent ed (-692) /1 feature is not inplenented

#defi ne kdspParantrr (-704) /1 bad paraneter

e e R

/1 DSPFI FO errors

e L

#defi ne kdspNot AFl FOSect i on (-700) /1 not a FIFO section

#define kdspNoMessagelnterrupt (-702) /'l no nessage passing w thout a
/1 vector

Summary of the DSP Operating System 245

CHAPTER 5

DSP Operating System

/1
/1
11
/1

11
/1

this FIFOis currently being
accessed by the DSP
can only di pose of
structures

i nactive

t he FI FO nust
inthe link to wap it

be the first FlIFO

illegal
DSPPosi ti on al ready occupi ed
illegal insertion request
ref erence el enent does not
exi st

del eti on el enent

DSPPosi tion type

not found

heap full,allocation failed
address is not in a zone

of nil

of (nil, nil)
factor of four
| ongwor d

trying to di spose
trying to dispose
be
be

heap size mnust
heap base nust
al i gned

no devi ce matching gi ven nane
no devi ce (or whatever)

mat chi ng i ndex given

can't sign out device with
clients

invalid perm ssion for
operation

client already exists with
write perm ssion

client
byt es

name must be [1...31]

#defi ne kdspFl FO nUseByDSP (-719)

#define kdspTaskMistBel nActive (-720)

#define kdspNotFirstFlFO (-721)
e L
/1 DSPList errors

e e R
#define kdspPositionlllegal Err (-666)

#defi ne kdspPositionBusyErr (-667)

#define kdsplnval i dReferenceErr (-668)

#defi ne kdspNonExi st ant Ref erenceErr (-669)

#define kdspNonExistantEl enentErr (-670)

e e R
/1 DSPMenory errors
e L
#defi ne kdspMenful | Err (-671)

#define kdspAddressNot | nZone (-672)

#defi ne kdspNi | Address (-683)

#defi ne kdspCont ai ni ngNi | Addr ess(-684)

#define kdsplnvalidZoneSi ze (-685)

#defi ne kdspl nval i dZoneBase (-686)
e L
/1 DSPClient errors

e e R
#defi ne kdspDevi ceNot Found (-673)

#defi ne kdspl nval i dl ndexErr (-674)

#defi ne kdspDevi ceHasActivedients (-675)

#define kdsplnvali dPerni ssion (-688)

#define kdspWitePerni ssionDenied (-689)

#define kdspdientNanelnvalid (-690)

246 Summary of the DSP Operating System

CHAPTER 5

DSP Operating System

options sel ector not
recogni zed

invalid io device type,

i ndex out of range

an invalid |I CON was passed
speci fied cpu devi ce cannot

be a sl ave

nodul e does not exi st
i nconpatible frame or
sanpl e rate

DSPF resource not
recogni zed

DSPF resource not
recogni zed

nodul e has GPB set to
zero

cannot have both an
on-chip and an

of f-chip stack

t he amount and | ocation do
not exi st

not enough on-chip menory to
al | ocate

#defi ne kdsplnvalidOptionSel ector (-691) /1

/1
#defi ne kdspl nval i dl ODevi ceType (-707) /1

/1
#define kdsplnvalidCdientl CON (-717) /1
#defi ne kdspDevi ceCant BeSl ave (-728) /1

/1
e L
/1 resource | oader errors
e e R
#defi ne kdspMdul eNot Found (-676)
#defi ne kdspMdul eUnconpati bl eRat e (-677)
#def i ne kdspUnknownDSPFResour ceVer si on (-679)
#define kdspUnknownDSPSecti onTag (-680)
#defi ne kdspZer oGPB (-714)
#define kdspTwoSt acks (-731)
e e R
/1 DSPStorage errors
e L
#defi ne kdspSt or ageNot Found (-695) /1

/1
#defi ne kdspNot EnoughOnChi pMenory (- 696) /1

/1
e L
/1 DSPAl | ocation errors
e e R
#defi ne kdspCoul dNot Al | ocat e (-678)
#define kdspMreThanOneModul e (-687)
#defi ne kdspSecti onAl readyConnect ed (-693)

Summary of the DSP Operating System

/1 could not allocate the
/1 nodul e

/1l can allocate only one
/1 nodule for now

/1 one of the sections has
/1 already been

/1 connected (i.e. FIFO

/1 sections)

247

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

248

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

CHAPTER 5

DSP Operating System

kdspSect i onsDoNot Mat ch

kdspSect i onsNot | nSaneModul e

kdspSect i onNot Found

kdspBot hFI FGsAl | ocat ed

kdspHadToUseO f Chi pMenory

kdspAl r eadyAl | ocat ed

kdspTooManyl TBs

kdspl nval i dModul eAddr ess

kdspAl AOMUst LoadOr Save

kdspFl FOsNot Connect ed

kdspNot Al | ocat ed

kdspTaskNot | nstal | ed

Summary of the DSP Operating System

(-694)

(- 706)

(-697)

(- 698)

(- 699)

(-701)

(- 703)

(-712)

(- 715)

(-716)

(-718)

(-732)

/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1

the sections which are
bei ng connected either do
not have the sane size

or the same type or are
both i nput or both out put
the sections that are
bei ng connected are not
in the sanme nodul e

could not find the

speci fied section

both FI FO sections have
al ready been attached to
FI FCs

section which was
supposed to be on-chip
was set up off-chip; the
module will still run,

but not as quickly

you cannot nmake a new | TB
or connect sections if
task has already been

al | ocat ed

you cannot have nore than
MAX_MAP_SECTI ONS | TBs
passed in a nil nodul e
addr ess

when connecting a FIFO to
an Al AQ, t he Al AO nust
nove data or the
connection will not work
you cannot insert a task
if all the FIFGs are not
connected to other FIFGCs
you nust insert the task
before you can cal
DSPGet Sect i onDat a

you cannot get the

avail abl e on-chip

menory until after the
task is installed

CHAPTER 5

(- 705)

(-708)
(- 709)
(- 710)
(-711)

(-713)

(-722)

(-723)

(-724)

(- 725)

(- 726)
(-727)

DSP Operating System
/1 DSPTask errors
#defi ne kdspTaskRef NumAl r eadyAl | ocat ed(- 681)
#define kdspNi | MessageActi onProc
#defi ne kdspl nval i dCPUDevi cePtr
#defi ne kdspl nval i dTaskRef NunPt r
#define kdsplnval i dTaskAddress
#defi ne kdspl nval i dTaskRef Num
#define kdsplnval i dTaskName
#define kdspNoMaster Sl aveRel ati onship
#defi ne kdspAl | TasksMist BeReal Ti ne
#defi ne kdspNot EnoughTi e
#define kdspChangi ngState
#defi ne kdspAl readyActive
#define kdspAl readyl nactive
/1 DSPGPB errors
#defi ne kdspNot EnoughGPB (-682)

Summary of the DSP Operating System

not enough real

/1
/1
11
/1
/1
11
/1
/1
11
/1

11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1

trying to reuse used
DSPTaskRef Num
passed in nil where
MessageAct i onProc
required

passed in nil for
DSPCPUDevi cePar anBl kPt r
passed in nil for the
DSPTaskRef NunPt r

passed in nil for the
DSPTaskAddr essPtr
passed in nil for the
DSPTaskRef Num

[engt h of name nust

be > 0 and < 31

tasks to be synchroni zed
must be on one

DSP or on DSPs that have
master-sl ave rel ati onship
tasks to be synchroni zed
that are on different
DSPs nust all be in

the real -time task Iist
didn’t have enough tine
to successfully
synchroni ze all the tasks
task is in the process of
going (in)active

task is already active
task is already inactive

time for allocation

249

#def i ne

#def i ne

/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11

250

CHAPTER 5

DSP Operating System

kdspOnChi pPat chup

(-729) /1 auto-init using address already
/'l on-chip

kdspBadRel ocat i onType (-730) /1 internal assert - unrecognized

/1 relocation type fromlinker

DSP3210 Regi ster

REG STER
ri-r4
ris5-r17
a0-al

rs5-rl14
az2-a3

ri8

rio

r20

USAGE

scratch

protected

return

reserved

reserved

Model

DESCRI PTI ON

The contents of these registers are not
saved or restored. The contents of these
regi sters nmay be destroyed by DSP APl calls.

The contents of these registers nust
al ways be saved and restored when they
are used by the progranmer.

The contents of these registers are al ways
saved before and restored after they are
used by the DSP APl calls.

The DSP operating systemalways calls the first
instruction in the entry section of

each nodule. r18 contains the return

vector to get back to the DSP operating system
when t he nodul e has fini shed executi ng.

Before junping to the return vector, al
protected registers nust be restored to the
sanme val ues they contained upon initia
entry to the nodul e.

This register is reserved by Apple. Do not alter
its contents.

This register is reserved by Apple. Do not alter
its contents.

Summary of the DSP Operating System

/1 r21

/1
11
/1
/1
11

Il r22

CHAPTER 5

DSP Operating System
st ack This register is the conmon stack pointer
regi ster shared by the programmer and the
DSP operating system r21 always points to the
next avail able stack | ocation. Therefore,
is pre-decrenmented for pops and
post-increnmented for pushes.
reserved This register is reserved by Apple. Do not alter
its contents.
// s s s g ———————————————————————
T™P 117 /1 tenporary register
RV rig /1 return vector
MXPB r19 /1 reserved
ERRT r20 // reserved
SP r21 /1l stack pointer
EVTP r22 /1 reserved

#def i
#def i

ne kLongWrdSi ze
ne kStr31Si ze

/1 DSPMessage

#def i
#def i
#def i

#def i
#def i

#def i

ne
ne
ne

ne
ne

ne
RV
RV
nop
cal
nop

msVect or

nmsDat a
DSPMessageSi ze

kEVTPad
Fi nd(theSel ector) EVTP + kEVTPad + theSel ect or*kLongWr dSi ze

DSP APl CONSTANTS

(0)
(msVector + kLongWor dSi ze)
(rmsData + 3*kLongWor dSi ze)

(512)

OSCal | (t heSel ector)\
Fi nd(theSel ector);\

A\

(1 ong)
(1 ong)

*RV; \

I RV (RV);\

Summary of the DSP Operating System

251

CHAPTER 5

DSP Operating System

/1 Sel ectors/ Options for DSP APl nacros

#define kdspSel ect Push 0x00000000 // selector for direction

#defi ne kdspSel ect Pop 0x00000001 // selector for direction

#defi ne kdspOpti onSpeci fyBuffer 0x00000002 // option for specifying
/1 buffer

#define kdspOpti onSpeci fyCount 0x00000004 // option for specifying
/1 count

#define kdspOpti onNoCopyJust Count 0x00000008 // option for just counting

Routines

#defi ne Newibdul e (Name, GPBFl ags, Modul eFl ags, EntryNane)\
@ owrod (Nanme, GPBFl ags, Modul eFl ags, EntryNane)

#defi ne NewSection (Nanme, SectionFlags, SectionDataType, Mdul eNanme)\
@owseg (Nanme, SectionFlags, 0, SectionDataType, Mdul eNane)
#defi ne AppendSecti on (Nane)\
.rsect"Nanme", TEXT

#defi ne Newl nput FI FOAndBuf f er Secti on (Name, BufferSize, SectionDataType,
Modul eNanme)\ NewSection (Nane, \
kdspBankB | kdspSaveOnCont ext Switch | kdspDSPUseOnly
| kdspl nputBuf fer | kdspFl FOSecti on,\
Secti onDat aType, \
Modul eName) \
Buf ferSize * long O

#def i ne NewQut put FI FOAndBuf f er Secti on (Name, BufferSize, SectionDataType,
Modul eNane) \ NewSect i on (Nane, \
kdspBankB | kdspSaveOnCont ext Switch | kdspDSPUseOnly
| kdspQut put Buf fer | kdspFl FOSecti on, \
Secti onDat aType, \
Modul eNane) \
BufferSize * long O

252 Summary of the DSP Operating System

CHAPTER 5

DSP Operating System

#def i ne Newl nput FI FOAndScal abl eBuf f er Secti on (Nanme, BufferScal e,
Secti onDat aType, Modul eNare) \ NewSecti on (Nane, \

kdspBankB | kdspSaveOnCont ext Switch | kdspDSPUseOnly
| kdspl nputBuffer | kdspFl FOSection
| kdspScal abl eSecti on,\
Secti onDat aType, \
Modul eNane) \
BufferScale * long O

#def i ne NewQut put FI FOAndScal abl eBuf f er Secti on (Name, Buffer Scal e,
Secti onDat aType, Mdul eNane)\ NewSecti on (Nane,\

kdspBankB | kdspSaveOnContext Switch | kdspDSPUseOnly
| kdspQutputBuffer | kdspFl FOSecti on
| kdspScal abl eSecti on, \
Secti onDat aType, \
Modul eNarre) \
Buf ferScale * long O

#def i ne Newl nput Al ACSecti on (Name, Al ACSi ze, SectionbDataType, Mbdul eNane)\
NewSecti on (Nane, \
kdspLoadSecti on | kdspBankB
| kdspSaveOnContextSwitch | kdspDSPUseOnly
| kdsplnputBuffer | kdspStaticSection,\
Secti onDat aType, \
Modul eNane) \
Al ACSi ze * long O

#def i ne NewQut put PRBSecti on (Nanme, Al ACSi ze, SectionbDataType, Mdul eNane)\
NewSecti on (Name, \
kdspC ear Section | kdspSaveSection | kdspBankB
| kdspSaveOnContextSwitch | kdspDSPUseOnly
| kdspl nputBuf fer | kdspQutput Buffer
| kdspStaticSection,\
Secti onDat aType, \
Modul eNarre) \
Al ACSi ze * long O

#def i ne NewQut put CRBSecti on (Name, Al ACSi ze, SectionbDataType, Mbdul eNane)\
NewSecti on (Nane, \
kdspSaveSecti on | kdspBankB
| kdspSaveOnContextSwitch | kdspDSPUseOnly
| kdspQutputBuffer | kdspStaticSection,\
Sect i onDat aType, \
Modul eNane) \
Al ACSi ze * long O

Summary of the DSP Operating System 253

CHAPTER 5

DSP Operating System

#def i ne NewScal abl el nput Al ACSecti on (Nane, Al ACScal e,

Modul eNamre) \ NewSect i on (Nane, \
kdspLoadSection | kdspBankB

Sect i onDat aType,

| kdspSaveOnContextSwitch | kdspDSPUseOnly
| kdsplnputBuffer | kdspStaticSection

| kdspScal abl eSecti on, \
Secti onDat aType, \

Modul eName)

Al ACscale * long O

#defi ne NewTenpScal abl eAl ACSection (Name, Al ACScal e,

Modul eName) \ NewSect i on (Nanme, \
kdspLeaveSecti on | kdspBankB

Sect i onDat aType,

| kdspSaveOnContextSwitch | kdspDSPUseOnly
| kdspScal abl eSection | kdspd ear Secti on, \

Sect i onDat aType, \
Modul eNane) \
Al ACScale * long O

#def i ne NewScal abl eQut put PRBSecti on (Nane, Al ACScal e,

Modul eNamre) \ NewSect i on (Nane, \

Secti onDat aType,

kdspC ear Section | kdspSaveSection | kdspBankB
| kdspSaveOnContextSwitch | kdspDSPUseOnly

| kdspl nputBuf fer | kdspQutput Buffer

| kdspStaticSection | kdspScal abl eSection,\

Secti onDat aType, \
Modul eNarre) \
Al ACscale * long O

#def i ne NewScal abl eQut put CRBSecti on (Nane, Al ACScal e,

Modul eName) \ NewSect i on (Nanme, \
kdspSaveSecti on | kdspBankB

Sect i onDat aType,

| kdspSaveOnContextSwitch | kdspDSPUseOnly
| kdspQut putBuffer | kdspStaticSection

| kdspScal abl eSecti on,\
Secti onDat aType, \

Modul eNane) \

Al ACScale * long O

#defi ne NewCachedPr ograntSecti on (Nanme, Modul eNane)\
NewSecti on (Nare, \

kdspLoadSecti on | kdspBankA | kdspDSPUseOnly

| kdspNot | OBuf f er Secti on, \
kdspNonDat a, \
Modul eNane)

254 Summary of the DSP Operating System

CHAPTER 5

DSP Operating System

#def i ne NewExt er nal PrograntSecti on (Nane, Modul eNane)\
NewSecti on (Name, \
kdspLeaveSecti on | kdspNot | OBuf f er Secti on, \
kdspNonDat a, \
Modul eName)

#def i ne NewPar anet er Secti on (Nane, SectionDataType, Mdul eNane)\
NewSecti on (Name, \
kdspExternal | kdspNot | OBuffer Section,\
Secti onDat aType, \
Modul eName)

#def i ne NewTabl eSecti on (Nanme, SectionDataType, Modul eNane)\
NewSecti on (Name, \
kdspLoadSection | kdspBankA | kdspDSPUseOnly
| kdspNot | OBuf f er Secti on, \
Sect i onDat aType, \
Modul eNane)

#defi ne NewSt at eVari abl eSection (Nanme, SectionDataType, Modul eNane)\
NewSecti on (Nare, \
kdspLoadSecti on | kdspSaveSection | kdspBankB
| kdspDSPUseOnly | kdspSaveOnCont ext Switch
| kdspNot | OBuf f er Secti on, \
Secti onDat aType, \
Modul eName)

#def i ne NewTenpVari abl eSecti on (Nane, SectionDataType, Mdul eNane)\
NewSecti on (Name, \
kdspLeaveSecti on | kdspBankB
| kdspSaveOnContextSwitch | kdspDSPUseOnly
| kdspNot | OBuf f er Secti on, \
Secti onDat aType, \
Modul eNane)

Summary of the DSP Operating System

255

CHAPTER 5

DSP Operating System

#define Bl ockMwve(theSrcPtr,theDestPtr,theCount)\
rl = (long) theSrchktr;\
r2 (long) theDestPtr;\
r3 (long) theCount;\
RV (long) Find(kevtBl ockMve);\
RV (long) *RV;\
ris (ushort24) 0x0004;\
call RV (RV);\
ri6 = (ushort24) 0x0004

#defi ne PclLabel (theSectionLabel) \
pc + ((theSectionLabel)-(.+8))

#define Pop(theRegister)\
SP = (long) SP--;\
t heRegi ster = (long) *SP;\
nop

#define Push(theRegister) *SP++ = (long) theRegister

#define Call Section (theSectionNane)\
RV = (long) MXPB + sectn theSectionNane;\

RV = (long) *RV;\
nop

call RV (RV);\

nop

#defi ne Get Secti onAddress(theSectionPtr,theSecti onNane)\
t heSectionPtr = (long) MXPB + sectn theSectionNane;\
theSectionPtr = (long) *theSectionPtr;\
nop

256 Summary of the DSP Operating System

CHAPTER 5

DSP Operating System

#defi ne Get SectionSize(theSectionSize,theSecti onNane)\

RV
RV
ril
cal l

nop; \
t heSectionSize = (long) r2

#define GetSectionLabel (theSectionLabel Ptr,theSectionLabel)\
t heSecti onLabel Ptr = (long) MXPB + sectn theSectionLabel ;\

(long) Find(kevtGet SectionSize);\
(long) *RV;\
(short) sectn theSecti onNane;\

RV (RV);\

t heSecti onLabel Ptr = (long) *theSectionLabel Ptr;\

nop;

t heSect i onLabel Ptr

\

#defi ne PopSection (theSectionNane)\

RV
RV
rl
cal l
r2

(long) Find(kevtCacheSection);\
(long) *RV;\

(short) sectn theSecti onNane;\
RV (RV);\

(ushort24) kdspSel ect Pop

#defi ne PushSection (theSectionNane)\

RV

RV

ril

cal l

r2
/1

(long) Find(kevtCacheSection);\
(long) *RV;\

(short) sectn theSecti onNane;\
RV (RV);\

(ushort24) kdspSel ect Push

#defi ne Set Ski pCount (t heSki pCount)\

RV
RV
rl
cal l
nop

(long) Find(kevtSet Ski pCount);\
(long) *RV;\

(1 ong) theSkipCount;\

RV (RV);\

Summary of the DSP Operating System

(long) theSectionLabel Ptr + offset theSectionLabe

257

CHAPTER 5

DSP Operating System

#defi ne Get NunReal Ti neFr anes(nunfranes)\
nunFrames = (long) Fi nd(kevt NunReal Ti neFranes) ;\

nunframes = (long) *nunfranes;\

nop
#define Set Taskl nactive() OSCal | (kevt Set Taskl nacti ve)
// S S S S o
/1 FI FO MANI PULATI ON

#defi ne FI FOGet ReadCount (t heFl FONane) \
RV = (long) Find(kevtCopyFlFO ;\
RV (long) *RV ;\
ri (short) sectn theFl FONane; \
call RV (RV);\
r2 = (ushort24) (kdspOptionNoCopyJust Count | kdspSel ect Push)

#define FIFOGet WiteCount (theFl FONane)\
RV = (long) Find(kevtCopyFl FO ;\
RV = (long) *RV;\
ri = (short) sectn theFl FONane;\
call RV (RV);\
r2 = (ushort24) (kdspOptionNoCopyJust Count | kdspSel ect Pop)

#define FIFORead(theSecti onNane)\
RV = (long) Find(kevtCopyFlFO) ;\
RV (long) *RV;\
ril (short) sectn theSecti onNane;\
call RV (RV);\
r2 = (ushort24) (kdspSel ectPush)

#define FIFOReadN(theFl FONane, t heCount)\

rd = (long) theCount;\

RV = (long) Find(kevtCopyFlFO) ;\
RV = (long) *RV;\

ri = (short) sectn theFl FONane;\

call RV (RV);\
r2 = (ushort24) (kdspSelectPush | kdspOptionSpecifyCount)

258 Summary of the DSP Operating System

CHAPTER 5

DSP Operating System

#defi ne FlI FOReadNBuf f er (t heFI FONane, t heCount , t heBufferPtr)\

r3 = (long) theBufferPtr;\

ra = (long) theCount;\

RV = (long) Find(kevtCopyFlFO ;\
RV = (long) *RV;\

rl = (short) sectn theFl FONane;\
call RV (RV);\

r2 = (ushort24) (kdspSel ectPush | kdspOpti onSpeci fyCount
| kdspOptionSpeci fyBuffer)

#define FIFOWite(theSectionNane)\

RV = (long) Find(kevtCopyFlFO) ;\

RV = (long) *RV;\
rl = (short) sectn theSectionNane;\
call RV (RV);\

r2 = (ushort24) (kdspSel ect Pop)

#define FIFOWiteN(theFl FONane, t heCount)\

rd = (long) theCount;\

RV = (long) Find(kevt CopyFl FO) ;\
RV = (long) *RV;\

ri = (short) sectn theFl FONane;\
call RV (RV);\

r2 = (ushort24) (kdspSel ectPop | kdspOpti onSpecifyCount)

#define FIFOWIiteNBuffer(theFl FONane,t heCount,theBufferPtr)\

r3 = (long) theBufferPtr;\

rd = (long) theCount;\

RV = (long) Find(kevtCopyFlFO) ;\
RV = (long) *RV;\

ri = (short) sectn theFl FONane;\

call RV (RV);\
r2 = (ushort24) (kdspSel ectPop | kdspOpti onSpecifyCount
| kdspOpti onSpeci fyBuffer)

#defi ne GPBEl apsedCycl es(theCycl es)\

OSCal | (kevt GPBEl apsedCycl es) ; \
theCycles = (long) r2

Summary of the DSP Operating System

259

CHAPTER 5

DSP Operating System

#defi ne GPBExpect edCycl es(t heCycl es)\
OSCal | ((kevt GPBExpect edCycl es) ; \
theCycles = (long) r2

#define GPBSet UseAct ual () OSCal | (kevt GPBSet UseAct ual)

#define SendMessageToHost (t heDSPMessagePtr)\
RV = (long) Find(kevtMessageToHost);\

(long) *RV;\

rl = (long) theDSPMessagePtr;\

call RV (RV);\

2

#defi ne Semaphored ear (theSemaphorePtr, theMask,
t hed dSenaphor eVal ue)\

RV = (long) Find(kevtSemaphored ear);\
RV = (long) *RV;\

rl = (long) theSemaphorePtr;\

r2 = (long) theMask;\

call RV (RV);\
nop; \
t hed dSemaphoreVal ue = (long) r3

#define SemaphoreSet (theSemaphorePtr, theMask,
t hed dSemaphor eVal ue)\

RV = (long) Find(kevtSemaphoreSet);\
RV = (long) *RV;\

rl = (long) theSemaphorePtr;\

r2 = (long) theMask;\

call RV (RV);\
nop; \
t hed dSemaphoreVal ue = (long) r3

260 Summary of the DSP Operating System

PART T HREE

Speech Synthesis and
Recognition

This part of the Macintosh Quadra 840Av and Macintosh Centris 660Av Developer
Note explains the facilities in the Macintosh Quadra 840Av and Macintosh
Centris 660AV system software for generating and understanding human
speech. It contains three chapters:

Chapter 6, “Speech Manager,” describes a new Macintosh system software
manager that provides a standardized way for applications to generate
synthesized speech. The Speech Manager also lets an application control
one or more speech synthesizers, which generate spoken sound in specific
languages, intonations, and speaking styles.

Chapter 7, “Introduction to Speech Recognition,” contains a basic tutorial
for the Speech Setup control panel. This control panel provides commands
for controlling the speech recognition functions of the Macintosh

Quadra 840Av and Macintosh Centris 660AV computers.

Chapter 8, “Speech Rules,” describes the speech rules that are built into the
Macintosh Quadra 840Av and Macintosh Centris 660AV system software.

CHAPTER 6

Speech Manager

CHAPTER 6

Speech Manager

This chapter describes Apple’s Speech Manager, which provides a standardized method
for Macintosh applications to generate synthesized speech.

This chapter provides an overview of the Speech Manager followed by general informa-
tion about generating speech from text. The necessary information and calls needed by
all text-to-speech applications are given next, followed by a simple example of speech
generation. More advanced calls and special-purpose routines are described last.

Speech Manager Overview

A complete system for speech synthesis consists of the elements shown in Figure 6-1.

264

Figure 6-1 Speech synthesis components

“The cat sat

on the mat.” Controls Sample data
Application Speech Manager Speech synthesizer

An application calls routines in the Speech Manager to convert character strings into
speech and to adjust various parameters that affect the quality or character of the spoken
output. The Speech Manager is responsible for dispatching these requests to a speech
synthesizer. The speech synthesizer converts the text into sound and creates the actual
audio output. Hardware support for speech generation in the Macintosh Quadra 840Av
and Macintosh Centris 660AV is described in “Sound I/0O,” in Chapter 2.

The Apple-supplied voices, pronunciation dictionaries, and speech synthesizer may
reside in a single file or in separate files. These files are clearly identifiable as Speech
Manager-related files and are installed and removed by being dragged into or out of the
System Folder. Additional voices can be provided by bundling the resources in the
resource forks of specific applications. These resources are considered private to that
particular application. It is up to the individual developers to decide whether the voice
resources they provide are usable on a systemwide basis or only from within their
applications.

In the first release of the Speech Manager, pronunciation dictionaries are managed
entirely by the application. The application is free to store dictionaries in either the
resource or the data fork of a file. The application is responsible for loading the
individual dictionaries into RAM and then passing a handle to the dictionary data to
the Speech Manager.

Applications that use the Speech Manager must provide their own human interface for
selecting voices and /or controlling other speech characteristics. If voices are provided in
separate files, the speech synthesizer developer is responsible for providing a method for

Speech Manager Overview

CHAPTER 6

Speech Manager

installing these resources into the System Folder or Extensions folder. The computer
must be rebooted after speech synthesizers are added to or removed from the System
Folder for the desired changes to be recognized.

Speech Manager Concepts

On a simple level, speech synthesis from text input is a two-stage process. First, plain-
language English text is converted into phonemic representations for the individual
words. Phonemes stand for specific sounds; for a complete explanation, see “Summary
of Phonemes and Prosodic Controls,” later in this chapter. The resulting sequence of
phonemes is converted into audible sounds by mapping of the individual phonemes to a
series of waveforms, which are sent to the sound hardware to be played.

In reality, each stage is more complicated than this description suggests. For example,
during the text-to-phoneme conversion stage, number strings, abbreviations, and special
symbols must be detected and converted into appropriate words before being converted
into phonemes. When a sentence such as “He earned over $2,000,000 in 1990” is spoken,
it would normally be preferable to say “He earned over two million dollars in nineteen-
ninety” rather than “He earned over dollar-sign, two, comma, zero, zero, zero, comma,
zero, zero, zero, in one, nine, nine, zero.” To produce the desired spoken output
automatically, knowledge of these sorts of constructions is built into the synthesizer.

The phoneme-to-sound conversion stage is also complex. Phonemes by themselves are
often not sufficient to describe the way a word should be pronounced. For example, the
word “object” is pronounced differently depending on whether it is used as a noun or a
verb. (When it is used as a noun, the stress is placed on the first syllable. When it is used
as a verb, the stress is placed on the second syllable.) In addition to stress information,
phonemes must often be augmented with pitch, duration, and other information to
produce intelligible, natural-sounding speech.

The speech synthesizer has many built-in rules for automatically converting text into the
complex phonemic representation described above. However, there will always be
words and phrases that are not pronounced the way you want. The Speech Manager
allows you to provide raw phonemic information directly in order to enable very precise
control over the spoken output.

By default, speech synthesizers expect input in normal language text. However, using
the input mode controls of the Speech Manager, you can tell the synthesizer to process
input text in raw phonemic form. By using the embedded commands described in the
next section, you can even mix normal language text with phonemic text within a single
string or text buffer.

See “Summary of Phonemes and Prosodic Controls,” later in this chapter, for a listing of
the phonemic character set and each character’s interpretation.

Speech Manager Concepts 265

CHAPTER 6

Speech Manager

Using the Speech Manager

This section describes the routines used to add speech synthesis features to an
application. It is organized into three sections: “Getting Started” (easy), “Essential Calls—
Simple and Useful” (intermediate), and “Advanced Routines.”

Getting Started

If you're just getting started with text-to-speech conversion using the Speech Manager,
the following routines will get you up and running with minimal effort. If you're
developing an application that does not need to choose voices, use more than one
channel of speech, or exercise real-time control over the synthesized speech, these may
be the only routines you need.

Determining If the Speech Manager Is Available

You can find out if the Speech Manager is available with a single call to the
Gestalt Manager.

Use the Gest al t toolbox routine and the selector gest al t SpeechAt t r to determine
whether or not the Speech Manager is available, as shown in Listing 6-1. If Gest al t
returns NOEr r, then the parameter argument will contain a 32-bit value indicating one or
more attributes of the installed Speech Manager. If the Speech Manager exists, the bit
specified by gest al t SpeechMgr Pr esent is set.

Listing 6-1 Determining if the Speech Manager is available

Bool ean SpeechAvail abl e (void) {

CSErr err;

| ong result;

err = Cestalt(gestaltSpeechAttr, &result);
if ((err '=noErr) || !(result &

(1 << gestaltSpeechMyrPresent)))
return FALSE;
el se
return TRUE;

266 Using the Speech Manager

CHAPTER 6

Speech Manager

Determining Which Version of the Speech Manager Is Running

Once you have determined that the Speech Manager is installed, you can see which
version of the Speech Manager is running by calling SpeechManager Ver si on.

SpeechManagerVersion

DESCRIPTION

RESULT CODES

Returns the version of the Speech Manager installed in the system.

pascal NunVersi on SpeechManager Version (void);

SpeechManager Ver si on returns the version of the Speech Manager installed in the
system. This call should be used to determine the compatibility of your program with
the currently installed Speech Manager.

None

Making Some Noise

The most basic operation of the Speech Manager is accomplished by using the
SpeaksSt ri ng call. This call passes a specific text string to be spoken to the
Speech Manager.

SpeakString

DESCRIPTION

The SpeaksSt ri ng function passes a specific text string to be spoken to the
Speech Manager.

pascal OSErr SpeakString (StringPtr s);

s Text string to be spoken.

SpeakSt ri ng attempts to speak the Pascal-style text string contained in my St r i ng.
Speech is produced asynchronously using the default system voice. When an application
calls this function, the Speech Manager makes a copy of the passed string and creates
any structures required to speak it. As soon as speaking has begun, control is returned

to the application. The synthesized speech is generated transparently to the application

Using the Speech Manager 267

CHAPTER 6

Speech Manager

so that normal processing can continue while the text is being spoken. No further
interaction with the Speech Manager is required at this point, and the application is free
to release or purge or trash the original string.

If SpeakSt ri ng is called while a prior string is still being spoken, the audio currently
being synthesized is interrupted immediately. Conversion of the new text into speech is
then initiated. If an empty (zero length) string or a null string pointer is passed to
SpeakSt ri ng, it stops the synthesis of any prior string but does not generate any
additional speech.

As with all Speech Manager routines that expect text arguments, the text may contain
embedded speech control commands.

RESULT CODES
noErr 0 No error
mentul | Err -108 Not enough memory to speak
synt hQpenFai | ed 241 Could not open another speech synthesizer channel

Determining If Speaking Is Complete

Once an application starts a speech process with SpeakSt ri ng, the next thing it will
probably need to know is whether the string has been completely spoken. It can use
SpeechBusy to determine whether or not the system is still speaking.

SpeechBusy

The SpeechBusy routine is useful when you want to ensure that an earlier speech
request has been completed before having the system speak again.

pascal short SpeechBusy (void);

DESCRIPTION

SpeechBusy returns the number of channels of speech that are currently synthesizing
speech in the application. If you use just SpeakSt r i ng to initiate speech, SpeechBusy
will always return 1 as long as speech is being produced. When SpeechBusy returns 0,
all initiated speech has finished.

RESULT CODES

None

268 Using the Speech Manager

CHAPTER 6

Speech Manager

A Simple Example

The example shown in Listing 6-2 demonstrates how to use the routines introduced in
this section. It first makes sure the Speech Manager is available. Then it starts speaking a
string (hard-coded in this example, but more commonly loaded from a resource) and
loops, doing some screen drawing, until the string is completely spoken. This example
uses the SpeechAvai | abl e routine shown in Listing 6-1.

Listing 6-2 Elementary Speech Manager calls

CSErr err;
i f (SpeechAvailable()) {
err = SpeakString("\pThe cat sat on the mat.");
if (err == noErr)
whi | e (SpeechBusy() > 0)
Cool Ani mat i onRout i ne();
el se
Not SoCool Al ert Routi ne(err);

Essential Calls—Simple and Useful

While the routines presented in the last section are simple to use, their applicability
is limited to a few basic speech scenarios. This section describes additional routines
that let you work with different voices and adjust some basic characteristics of the
synthesized speech.

Working With Voices

When describing a person’s voice, we talk about the particular set of characteristics that
help us to distinguish that person’s voice from another. For example, the rate at which
one speaks (slow or fast) and the average pitch (high or low) characterize a particular
speaker on a crude level. In the context of the Speech Manager, a voice is the set of
parameters that specify a particular quality of synthesized speech. This portion of

the Speech Manager is used to determine which voices are available and to select
particular voices.

Every specific voice has a unique ID associated with it, which is the primary way an
application refers to it. Every voice is also associated with a Voi ceSpec structure that
is set up by the MakeVoi ceSpec routine.

The Speech Manager provides two routines to count and step through the list of
currently available voices. Count Voi ces is used to compute how many voices are
available with the current system. Get | ndVoi ce uses an index, starting at 1, to return
information about all currently installed voices.

Using the Speech Manager 269

CHAPTER 6

Speech Manager

Use the Get | ndVoi ce routine to step through the list of available voices. It will fill a
Voi ceSpec record that can be used to obtain descriptive information about the voice or
to speak using that voice.

Any application that wishes to use multiple voices will probably need additional
information about the available voices beyond the Voi ceSpec structure, such as the
name of the voice and perhaps what script and language each voice supports. This
information might be presented to the user in a “voice picker” dialog box or voice menu,
or it might be used internally by an application trying to find a voice that meets certain
criteria. Applications can use the Get Voi ceDescr i pt i on routine for these purposes.

MakeVoiceSpec

DESCRIPTION

270

To maximize compatibility with future versions of the Speech Manager, you
should always use MakeVoi ceSpec instead of setting the fields of the Voi ceSpec
structure directly.

pascal OSErr MakeVoi ceSpec (OSType creator, OSType id, VoiceSpec
*voi ce);

t ypedef struct Voi ceSpec {
OSType creator; // determ nes which synthesizer is required
OSType id; /1 voice ID on the specified synth

} Voi ceSpec;

Field descriptions

creat or The synthesizer required by your application.
id Identification number for this voice.
*voi ce Pointer to the Voi ceSpec structure.

Most voice management routines expect to be passed a pointer to a Voi ceSpec
structure. MakeVoi ceSpec is a utility routine provided to facilitate the creation of
Voi ceSpec records. On return, the passed Voi ceSpec structure contains the
appropriate values.

Voices are stored in resources of type ' t t sv' in the resource fork of Macintosh files. The
Speech Manager uses the same search method as the Resource Manager, looking for
voice resources in three different locations when attempting to resolve Voi ceSpec
references. It first looks in the application’s resource file chain. If the specified voice is
not found in an open file, it then looks in the System Folder and the Extensions folder (or
in just the System Folder under System 6) for files of type ' t t sv' (single-voice files) or
"ttsb' (multivoice files) and in text-to-speech synthesizer component files (file type
"IINIT" or'thng"). Voices stored in the System Folder or Extensions folder are
normally available to all applications. Voices stored in the resource fork of an application
files are private to the application.

Using the Speech Manager

RESULT CODE

CHAPTER 6

Speech Manager

noErr 0 No error

While the determination of specific voice ID values is mostly left to synthesizer
developers, the voice cr eat or values are specified by Apple (they would ordinarily
correspond to a developer’s currently assigned creator ID). For both the cr eat or and

i d fields Apple further reserves the set of OSType values specified entirely by space
characters and lowercase letters. Apple is establishing a standard suite of voice ID values
that developers can count upon being available with all speech synthesizers.

CountVoices

DESCRIPTION

RESULT CODE

The Count Voi ces routine returns the number of voices available.
pascal OSErr Count Voi ces (short *voi ceCount);

voi ceCount Number of voices available to the application.

Each time Count Voi ces is called, the Speech Manager searches for new voices. This
algorithm supports dynamic installation of voices by applications or users. On return,
the voi ceCount parameter contains the number of voices available.

noErr 0 No error

GetIndVoice

DESCRIPTION

The Get | ndVoi ce routine returns information about a specific voice.

pascal OSErr GetlndVoice (short index, VoiceSpec *voice);

i ndex Index value for a specific voice.

*voi ce Pointer to the Voi ceSpec structure.

As with all other index-based routines in the Macintosh Toolbox, an index value of 1
causes CGet | ndVoi ce to return information for the first voice. The order that voices are
returned is not presently defined and should not be assumed. Speech Manager behavior
when voice files or resources are added, removed, or modified is also presently

Using the Speech Manager 271

CHAPTER 6

Speech Manager

undefined. However, calling Count Voi ces or Get | ndVoi ce with an index of 1
will force the Speech Manager to update its list of available voices. Get | ndVoi ce
will return a voi ceNot Found error if the passed index value exceeds the number of
available voices.

RESULT CODES

noErr 0 No error
voi ceNot Found -244 Voice resource not found

GetVoiceDescription

The Get Voi ceDescri pti on routine returns information about a voice beyond that
provided by Get | ndVoi ce.

pascal OSErr Get Voi ceDescription (Voi ceSpec *voice,
Voi ceDescription *info, |ong infolLength);

enum {kNeuter = 0, kMale, kFemale};// returned in gender field bel ow

t ypedef struct VoiceDescription {

| ong | engt h; /1 size of structure

Voi ceSpec voi ce; /1 synth and IDinfo for voice

| ong version; /1 version code for voice

Str63 nane; /1 name of voice

Str 255 comment ; /1 additional text info about voice
short gender ; /1 neuter, nale, or female

short age; /] approxi mate age in years

short script; /1 script code of text voice can process
short | anguage; /1 | anguage code of voice output speech
short regi on; /1 region code of voice output speech

| ong reserved[4] ; /1 always zero - reserved

} Voi ceDescri ption;

Field descriptions

*voi ce Pointer to the Voi ceSpec structure.
*info Pointer to structure containing parameters for the specified voice.
i nfoLengt h Length in bytes of i nf 0 structure.
DESCRIPTION

The Speech Manager fills out the passed Voi ceDescri pt i on fields with the correct
information for the specified voice. If a null Voi ceSpec pointer is passed, the Speech
Manager returns information for the system default voice. If the Voi ceDescri pti on

272 Using the Speech Manager

CHAPTER 6

Speech Manager

pointer is null, the Speech Manager simply verifies that the specified Voi ceSpec
refers to an available voice. If Voi ceSpec does not refer to a known voice,
Get Voi ceDescri pti on returns a voi ceNot Found error, as shown in Listing 6-3.

To maximize compatibility with future versions of the Speech Manager, the application
must pass the size of the Voi ceDescr i pt i on structure. Having the application do this
ensures that the Speech Manager will never write more data into the passed structure
than will fit even if additional information fields are defined in the future. On returning
from Get Voi ceDescr i pti on, the length field is set to reflect the length of data actually
written by this routine.

Listing 6-3 Getting information about a voice

RESULT CODES

OSErr Cet Voi ceCGender (Voi ceSpec *voicePtr, short *gender) {
OSEr r err;
Voi ceDescri pti onvd;
err = Cet Voi ceDescription
(voi cePtr, &vd, si zeof (Voi ceDescri ption));
if (err == noErr) {
if (vd.length > offsetof (VoiceDescription, gender))
*gender = vd. gender;
el se
err = badStructLen;

}
return err;
}
nokErr 0 No error
parantrr =50 Parameter error
menful | Err -108 Not enough memory to load voice into memory
voi ceNot Found —244 Voice resource not found

Managing Connections to Speech Synthesizers

Using the routines described earlier in this chapter, an application can select the voice
with which to speak. The next step is to associate the selected voice with the proper
speech synthesizer. This is accomplished by creating a new speech channel with the
NewSpeechChannel routine. A speech channel is a private communication connection
to the speech synthesizer, much as a file reference number is a communication channel to
an open file in the Macintosh file system.

The Di sposeSpeechChannel routine closes a speech channel when the application is
finished with it and releases any resources that have been allocated to support the
speech synthesizer and are no longer needed.

Using the Speech Manager 273

CHAPTER 6

Speech Manager

NewSpeechChannel

DESCRIPTION

RESULT CODES

The NewSpeechChannel routine creates a new speech channel.

pascal OSErr NewSpeechChannel (VoiceSpec *voice,
SpeechChannel *chan);

*voi ce Pointer to the Voi ceSpec structure.

*chan Pointer to the new channel.

The Speech Manager automatically locates and opens a connection to the proper
synthesizer for a specified voice and sets up a channel at the location pointed to by
*chan so that it is ready to speak with that voice. If a null Voi ceSpec pointer is passed
to NewSpeechChannel , the Speech Manager uses the current system default voice.

There is no predefined limit to the number of speech channels an application may create.
However, system constraints on available RAM, processor loading, and number of
available sound channels may limit the number of speech channels actually possible.

noErr 0 No error

menful | Err -108 Not enough memory to open speech channel

synt hQpenFai | ed -241 Could not open another speech synthesizer channel
voi ceNot Found 244 Voice resource not found

DisposeSpeechChannel

DESCRIPTION

RESULT CODES

274

The Di sposeSpeechChannel routine disposes of an existing speech channel.
pascal OSErr Di sposeSpeechChannel (SpeechChannel chan);

chan Specific speech channel.

This routine disposes of an existing speech channel. Any speech channels that have not
been explicitly disposed of by the application are released automatically by the Speech
Manager when the application quits.

nokErr 0 No error
i nval i dConponent | D -3000 Invalid SpeechChannel parameter
Using the Speech Manager

CHAPTER 6

Speech Manager

Starting and Stopping Speech

SpeakText

All the remaining routines in this section require a valid speech channel to work
properly. Once the application has successfully created a speech channel, it can start to
speak. You use the SpeakText routine to begin speaking on a speech channel.

At any time during the speaking process, the application can stop the synthesizer’s
speech. The St opSpeech routine will immediately abort any speech being produced on
the specified speech channel and force the channel back into an idle state.

DESCRIPTION

The SpeakText routine converts designated text into speech.

pascal OSErr SpeakText (SpeechChannel chan, Ptr textBuf, |ong
t ext Byt es) ;

Field descriptions

chan Specific speech channel.
t ext Buf Buffer of text.
t ext Byt es Length of t ext Buf .

In addition to a valid speech channel, Speak Text expects a pointer to the text to be
spoken and the length in bytes of the text buffer. Speak Text will convert the given

text stream into speech using the voice and control settings for that speech channel.

The speech is generated asynchronously. This means that control is returned to your
application before the speech has finished (probably even before it has begun). The
maximum length of text buffer that can be spoken is limited only by the available RAM.
However, it’s generally not very friendly to force the user to listen to long uninterrupted
text unless the user requests it.

If SpeakText is called while it is currently busy speaking the contents of a prior text
buffer, it will immediately stop speaking from the prior buffer and will begin speaking
from the new text buffer as soon as possible. As with SpeakSt r i ng, described on
page 267, if an empty (zero length) string or a null text buffer pointer is passed to
SpeakText , this will have the effect of stopping the synthesis of any prior text but will
not generate any additional speech.

WARNING

With SpeakText , unlike with SpeakSt ri ng, the text buffer must
be locked in memory and must not move during the entire time that
it is being converted into speech. This buffer is read at interrupt
time, and very undesirable effects will happen if it moves or is
purged from memory. a

Using the Speech Manager 275

RESULT CODES

StopSpeech

CHAPTER 6

Speech Manager

nokErr 0 No error
i nval i dComponent | D -3000 Invalid SpeechChannel parameter

DESCRIPTION

RESULT CODES

The St opSpeech routine terminates speech delivery on a specified channel.
pascal OSErr StopSpeech (SpeechChannel chan);

chan Specific speech channel.

After returning from St opSpeech, the application can safely release any text buffer that
the speech synthesizer has been using. The SpeechBusy routine, described on page 268,
can be used to determine if the text has been completely spoken. (In an environment
with multiple speech channels, you may need to use the more advanced status routine
Get Speechl nf o, described on page 286, to determine if a specific channel is still
speaking.) St opSpeech can be called for an already idle channel without ill effect.

nokErr 0 No error
i nval i dComrponent | D -3000 Invalid SpeechChannel parameter

Using Basic Speech Controls

276

The Speech Manager provides several methods of adjusting the variables that can affect
the way speech is synthesized. Although most applications probably do not need to use
these advanced features, two of the speech variables, speaking rate and speaking pitch,
are useful enough that a very simple way of adjusting these parameters on a channel-
by-channel basis is provided. Routines are supplied that enable an application to both set
and get these parameters. However, the audible effects of changing the rate and pitch of
speech vary from synthesizer to synthesizer; you should test the actual results on all
synthesizers with which your application may work.

Speaking rates are specified in terms of words per minute (WPM). While this unit of
measurement is difficult to define in any precise way, it is generally easy to understand
and use. The range of supported rates is not predefined by the Speech Manager. Each
speech synthesizer provides its own range of speaking rates. Furthermore, any specific
rate value will correspond to slightly different rates with different synthesizers.

Speaking pitches are defined on a musical scale that corresponds to the keys on a
standard piano keyboard. By convention, pitches are represented as fixed-point values in
the range from 0.000 through 100.000, where 60.000 corresponds to middle C (261.625

Using the Speech Manager

CHAPTER 6

Speech Manager

Hz) on a conventional piano. Pitches are represented on a logarithmic scale. On this
scale, a change of +12 units corresponds to doubling the frequency, while a change of
—12 units corresponds to halving the frequency. For a further discussion of pitch values,
see “Getting Information About a Speech Channel,” later in this chapter.

Typical voice frequencies might range from around 90 Hertz for a low-pitched male
voice to perhaps 300 Hertz for a high-pitched child’s voice. These frequencies
correspond to pitch values of 41.526 and 53.526, respectively.

Changes in speech rate and pitch are effective immediately (as soon as the synthesizer
can respond), even if they occur in the middle of a word.

SetSpeechRate

The Set SpeechRat e routine sets the speaking rate on a designated speech channel.
pascal OSErr Set SpeechRate (SpeechChannel chan, Fixed rate);

chan Specific speech channel.
rate Word output speaking rate.

DESCRIPTION

The Set SpeechRat e routine is used to adjust the speaking rate on a speech channel.
The r at e parameter is specified as a fixed-point, words-per-minute value. As a general
rule of thumb, “normal” speaking rates range from around 150 WPM to around

180 WPM. It is important when working with speaking rates, however, to keep in
mind that users will differ greatly in their ability to understand synthesized speech

at a particular rate based upon their level of experience listening to the voice and their
ability to anticipate the types of utterances they will encounter.

RESULT CODES

noErr 0 No error
i nval i dConponent | D -3000 Invalid SpeechChannel parameter

GetSpeechRate

The Get SpeechRat e routine returns the speech rate currently active on a designated
speech channel.

pascal OSErr Get SpeechRate (SpeechChannel chan, Fixed *rate);

chan Specific speech channel.

*rate Pointer to the current speaking rate.

Using the Speech Manager 277

CHAPTER 6

Speech Manager

DESCRIPTION

The Get SpeechRat e routine is used to find out the speaking rate currently active on a
speech channel.

RESULT CODES

nokErr 0 No error

i nval i dComponent | D -3000 Invalid SpeechChannel parameter
SetSpeechPitch

The Set SpeechPi t ch routine sets the speaking pitch on a designated speech channel.
pascal OSErr Set SpeechPitch (SpeechChannel chan, Fixed pitch);

chan Specific speech channel.

pitch Frequency of voice.

DESCRIPTION

Use the Set SpeechPi t ch routine to change the current speaking pitch on a
speech channel.

RESULT CODES

NoErr 0 No error

i nval i dConponent | D -3000 Invalid SpeechChannel parameter
GetSpeechPitch

The Get SpeechPi t ch routine returns the current speaking pitch on a designated
speech channel.

pascal OSErr Get SpeechPitch (SpeechChannel chan, Fixed *pitch);

Field descriptions
chan Specific speech channel.

pitch Frequency of voice.

DESCRIPTION

The Get SpeechPi t ch routine is used to find out the speaking pitch currently active on
a speech channel.

278 Using the Speech Manager

CHAPTER 6

Speech Manager

RESULT CODES
nokErr 0 No error
i nval i dComponent | D -3000 Invalid SpeechChannel parameter
Putting It All Together

The code fragment in Listing 6-4 illustrates many of the routines introduced in this

section.

The example steps through the list of available voices to find the first female

voice. Then it creates a new speech channel and begins speaking. While the voice is
speaking, the pitch of the voice is continually adjusted around the original pitch. If the
mouse button is pressed while the voice is speaking, the code halts the speech and exits.
This example uses the SpeechAvai | abl e and Get Voi ceCGender routines shown
earlier in Listing 6-1 and Listing 6-3.

Listing 6-4 Putting it all together

CSErr err;
Str 255 nyStr = "\ pThe bat sat on ny hat.";
Voi ceSpec voi ce;
Voi ceDescription vd;
Bool ean got Voi ce = FALSE;
short voi ceCount, gender, i;
SpeechChannel chan;
Fi xed origPitch, newPitch;
if (myStr[0] && SpeechAvail able()) {
err = Count Voi ces(&voi ceCount);// count the avail abl e voices
i = 1;
while ((i <= voiceCount) && ((err=GCetlndVoice(i++, &voice))
==noErr))
{
err = CetlndVoice(i++, &voice)) == noErr;
err = Get Voi ceGender (&voi ce, &gender);
if ((err == noErr) && (gender == kFemale)) {
got Voi ce = TRUE;
br eak;
}
}
i f (gotVoice) {

err = NewSpeechChannel (&voi ce, &chan);

if (err == noErr) {
err = Get SpeechPitch(chan, &origPitch); // cur pitch
if (err == noErr)

err = SpeakText(chan, &mryStr[1], nyStr[0]);

Using the Speech Manager 279

CHAPTER 6

Speech Manager

i = 0;
if (err == noErr)
whi | e (SpeechBusy() > 0) {

Cool Ani mat i onRout i ne();
newPitch = (i - 4) << 16; // fixed pitch offset
newPitch += origPitch;
i = (i +1) &7;// steps fromO to 7 repeatedly
err = Set SpeechPi tch(chan, newPitch);

if ((err !'= noErr) || Button()) {
err = StopSpeech(chan);
br eak;
}
}
err = Di sposeSpeechChannel (chan);
}
}
if (err !'= noErr)

Not SoCool Al ert Routi ne(err);

Advanced Routines

This section describes several advanced or rarely used Speech Manager routines. You can
use them to improve the quality of your application’s speech.

Advanced Speech Controls

280

The St opSpeech routine, described on page 276, provides a simple way to interrupt
any speech output instantly. In some situations it is preferable to be able to stop speech
production at the next natural boundary, such as the next word or the end of the current
sentence. St opSpeechAt provides that capability.

Similarly, the PauseSpeechAt routine causes speech to pause at a specified point in the
text being spoken; the Cont i nueSpeech routine resumes speech after it has paused.

In addition to SpeakSt ri ng and SpeakText , described earlier in this chapter, the
Speech Manager provides a third, more general routine. SpeakBuf f er is the low-level
speech routine upon which the other two are built. SpeakBuf f er provides greater
control through the use of an additional flags parameter.

The SpeechBusySyst emW de routine tells you if any speech is currently being synthe-
sized in your application or elsewhere on the computer.

Using the Speech Manager

CHAPTER 6

Speech Manager

StopSpeechAt

The St opSpeechAt routine halts speech at a specific point in the text being spoken.

pascal OSErr StopSpeechAt (SpeechChannel chan, |ong whereToStop);

enum {
kl mredi at e = 0,
KEndCOf Wor d = 1,
KEndOF Sent ence =2

1

chan Specific speech channel.

wher eToSt op
Location in text at which speech is to stop.

DESCRIPTION
St opSpeechAt is used to halt the production of speech at a specified point in the text.
The wher eToSt op argument should be set to one of the following constants:
= The kI nmedi at e constant stops speech output immediately.

s The KEndOf Wor d constant lets speech continue until the current word has been
spoken.

= The KEndOF Sent ence constant lets speech continue until the end of the current
sentence has been reached.

This routine returns immediately, although speech output continues until the specified
point has been reached.

A WARNING
You must not release the memory associated with the current
text buffer until the channel status indicates that the speech
channel output is no longer busy. a

If the end of the input text buffer is reached before the specified stopping point, the
speech synthesizer will stop at this point. Once the stopping point has been reached, the
application is free to release the text buffer. Calling St opSpeechAt with wher eToSt op
equal to kI nredi at e is equivalent to calling St opSpeech, described on page 276.

Contrast the St opSpeechAt routine with PauseSpeechAt , described next.

RESULT CODES

nokErr 0 No error
i nval i dComponent | D -3000 Invalid SpeechChannel parameter

Using the Speech Manager 281

CHAPTER 6

Speech Manager

PauseSpeechAt

DESCRIPTION

RESULT CODES

282

The PauseSpeechAt routine causes speech to pause at a specified point in the text
being spoken.

pascal OSErr PauseSpeechAt (SpeechChannel chan,
| ong wher eToPause) ;

enum {
kl medi at e =0,
KEndOF Wor d =1,
KEndOf Sent ence =2
b
chan Specific speech channel.

wher eToPause Location in text at which speech is to pause.

PauseSpeech makes speech production pause at a specified point in the text. The
wher eToPause parameter should be set to one of these constants:

» The k|l medi at e constant stops speech output immediately.

s The KEndOf Wor d constant lets speech continue until the current word has
been spoken.

» The KEndOf Sent ence constant lets speech continue until the end of the current
sentence has been reached.

When the specified point is reached, the speech channel enters the paused state, reflected
in the channel’s status. PauseSpeechAt returns immediately, although speech output
will continue until the specified point.

If the end of the input text buffer is reached before the specified pause point, speech
output pauses at the end of the buffer.

PauseSpeechAt differs from St opSpeech and St opSpeechAt in that a subsequent
call to Cont i nueSpeech, described next, causes the contents of the current text buffer
to continue being spoken.

WARNING

While in a paused state, the last text buffer must remain available at all
times and must not move. While paused, the SpeechChannel status
indicates out put Busy =t r ue and out put Paused =true. a

nokErr 0 No error
i nval i dComrponent | D -3000 Invalid SpeechChannel parameter

Using the Speech Manager

CHAPTER 6

Speech Manager

ContinueSpeech

The Cont i nueSpeech routine resumes speech after it has been halted by the
PauseSpeechAt routine.

pascal OSErr Conti nueSpeech (SpeechChannel chan);

chan Specific speech channel.

DESCRIPTION
At any time after PauseSpeechAt is called, Cont i nueSpeech may be called to
continue speaking from the point at which speech paused. Calling Cont i nueSpeech on
a channel that is not currently in a pause state has no effect; calling it before a pause is
effective cancels the pause.
RESULT CODES
noErr 0 No error
i nval i dComponent | D -3000 Invalid SpeechChannel parameter
SpeakBuffer
The SpeakBuf f er routine causes the contents of a text buffer to be spoken, using
certain flags to control speech behavior.
pascal OSErr SpeakBuffer (SpeechChannel chan, Ptr textBuf,
I ong textBytes, long control Fl ags);
enum {
kNoEndi ngPr osody = 1,
kNoSpeechl nt er r upt = 2,
kPreflight ThenPause = 4
};
chan Specific speech channel.
t ext Buf Buffer of text.
t ext Byt es Length of t ext Buf .
control Fl ags Control flags to control speech behavior.
DESCRIPTION

When the cont r ol FI ags parameter is set to 0, SpeakBuf f er behaves identically to
SpeakText , described on page 275.

Using the Speech Manager 283

RESULT CODES

CHAPTER 6

Speech Manager

The KNoEndi ngPr osody flag bit is used to control whether or not the speech synthesizer
automatically applies ending prosody, the speech tone and cadence that normally occur
at the end of a statement. Under normal circumstances (for example, when the flag bit

is not set), ending prosody is applied to the speech when the end of the t ext Buf data

is reached. This default behavior can be disabled by setting the KNoEndi ngPr osody
flag bit.

Some synthesizers do not speak until the KkNoEndi ngPr osody flag bit is reset, or they
encounter a period in the text, or t ext Buf is full.

The kNoSpeechl nt er r upt flag bit is used to control the behavior of SpeakBuf f er
when called on a speech channel that is still busy. When the flag bit is not set,
SpeakBuf f er behaves similarly to SpeakSt ri ng and SpeakText , described earlier
in this chapter. Any speech currently being produced on the specified speech

channel is immediately interrupted and then the new text buffer is spoken. When

the kNoSpeechl nt er r upt flag bit is set, however, a request to speak on a channel
that is still busy processing a prior text buffer will result in an error. The new buffer

is ignored and the error synt hNot Ready is returned. If the prior text buffer has been
fully processed, the new bulffer is spoken normally.

The kPr ef | i ght ThenPause flag bit is used to minimize the latency experienced
when the speech synthesizer is attempting to speak. Ordinarily whenever a call to
SpeakStri ng, SpeakText, or SpeakBuf f er is made, the speech synthesizer must
perform a certain amount of initial processing before speech output is heard. This
startup latency can vary from a few milliseconds to several seconds depending upon
which speech synthesizer is being used. Recognizing that larger startup delays may be
detrimental to certain applications, a mechanism is provided to provide the synthesizer
a chance to perform any necessary computations at noncritical times. Once the
computations have been completed, the speech is able to start instantly. When the
kPref | i ght ThenPause flag bit is set, the speech synthesizer will process the input text
as necessary to the point where it is ready to begin producing speech output. At this
point, the synthesizer will enter a paused state and return to the caller. When the
application is ready to produce speech, it should call the Cont i nueSpeech routine to
begin speaking.

noErr 0 No error
synt hNot Ready -242 Speech channel is still busy speaking
i nval i dConponent | D -3000 Invalid SpeechChannel parameter

SpeechBusySystemWide

284

You can use SpeechBusySyst emW de to determine if any speech is currently being
synthesized in your application or elsewhere on the computer.

pascal short SpeechBusySystemN de (void);

Using the Speech Manager

CHAPTER 6

Speech Manager

DESCRIPTION

This routine is useful when you want to ensure that no speech is currently being
produced anywhere on the Macintosh computer. SpeechBusy Syst em\W de returns the
total number of speech channels currently synthesizing speech on the computer, whether
they were initiated by your code or by some other process executing concurrently.

RESULT CODES
None

Converting Text Into Phonemes

In some situations it is desirable to convert a text string into its equivalent phonemic
representation. This may be useful during the content development process to fine-tune
the pronunciation of particular words or phrases. By first converting the target phrase
into phonemes, you can see what the synthesizer will try to speak. Then you need
correct only the parts that would not have been spoken the way you want.

TextToPhonemes

The Text ToPhonenes routine converts a designated text to phoneme codes.

pascal OSErr Text ToPhonenmes (SpeechChannel chan, Ptr textBuf,
| ong textBytes, Handl e phoneneBuf,
| ong *phoneneByt es);

chan Specific speech channel.

t ext Buf Buffer of text.

t ext Byt es Length of t ext Buf in bytes.
phonemeBuf Buffer of phonemes.

*phoneneByt es Pointer to length of phoneneBuf in bytes.

DESCRIPTION

It may be useful to convert your text into phonemes during application development in
order to be able to reduce the amount of memory required to speak. If your application
does not require the text-to-phoneme conversion portion of the speech synthesizer,
significantly less RAM may be required to speak with some synthesizers. Additionally,
you may be able to use a higher quality text-to-phoneme conversion process (even one
that does not work in real time) to generate precise phonemic information. This data can
then be used with any speech synthesizer to produce better speech.

Text ToPhonenes accepts a valid SpeechChannel parameter, a pointer to the
characters to be converted into phonemes, the length of the input text buffer in bytes, an
application-supplied handle into which the converted phonemes can be written, and a

Using the Speech Manager 285

RESULT CODES

CHAPTER 6

Speech Manager

length parameter. On return, the phonenmeByt es argument is set to the number of
phoneme character bytes that were written into phonemeBuf . The data returned by
Text ToPhonenes will correspond precisely to the phonemes that would be spoken had
the input text been sent to SpeakText instead. All current mode settings are applied to
the converted speech. No callbacks are generated while the Text ToPhonemnes routine is
generating its output.

noErr 0 No error

par ankrr =50 Parameter value is invalid

ni | Handl eErr -109 Handle argument is ni |

si Unknownl nf oType -231 Feature not implemented on synthesizer

i nval i dConponent | D -3000 Invalid SpeechChannel parameter

Getting Information About a Speech Channel

Several additional types of information have been made available for advanced users of
the Speech Manager. This information provides more detailed status information for
each channel. You can get this information by calling the Get Speechl nf o routine. This
function accepts selectors that determine the type of information you want to get.

Note

Throughout this document, there are several references to parameter
values specified with fixed-point integer values (pbas, prod, r at e, and
vol m). Unless otherwise stated, the full range of values of the Fi xed
data type is valid. However, it is left to the individual speech synthesizer
implementation to determine whether or not to use the full resolution
and range of the Fi xed data type. In the event a specified parameter
value lies outside the range supported by a particular synthesizer, the
synthesizer will substitute the value closest to the specified value that
does lie within its performance specifications. O

GetSpeechlnfo

enum {

soSt at us
soErrors
sol nput Mode
soChar act er
soNunber Mod

286

The Get Speechl nf o routine returns information about a designated speech channel.

pascal OSErr Get Speechl nfo (SpeechChannel chan, OSType sel ector,
voi d *speechl nfo);

= "stat', /1 gets speech output status

='erro', /1 gets error status

= "inpt', /1 gets current text/phon node
Mode = 'char', /1 gets current character node
e = 'nnbr', /1 gets current nunber node

Using the Speech Manager

CHAPTER 6

Speech Manager

soRat e
soPi t chBase
soPi t chMod =
soVol une =
soSynt hType =
soRecent Sync =
soPhoneneSynbol s
soSynt hExt ensi on =

b

rate'
pbas’
prod'
vol m
vers'
sync'
phsy’
xt nd'

Field descriptions

chan
sel ect or

*speechl nfo

DESCRIPTION

, /1 gets current speaking rate

, /1l gets current baseline pitch

, /1 gets current pitch nodul ation

, /1 gets current speaking vol une

, /'l gets speech synth version info

, /1 gets nobst recent sync message info

, /1 gets phonene synbols & ex. words
/'l gets synthesizer-specific info

Specific speech channel.
Used to specify data being requested.
Pointer to an information structure.

The following list of selectors describes the various types of information that can be
obtained from the Speech Manager. The format of the information returned depends on
which value is used in the selector field, as follows:

Note

For future code compatibility, use the application programming
interface (API) labels instead of literal selector values. O

Field descriptions

st at

erro

Gets various items of status information for the specified channel.
Indicates whether any speech audio is being generated, whether or
not the channel has paused, how many bytes in the input text have
yet to be processed, and the phoneme code for the phoneme that is
currently being generated. If i nput Byt esLef t is 0, the input
buffer is no longer needed and can be disposed of. The API label for
this selector is soSt at us.

t ypedef SpeechStat usl nfo *speechl nf o;
typedef struct SpeechStatuslinfo {

Bool ean out put Busy; /1 true = audio playing
Bool ean out put Paused; // true = channel paused
| ong i nput BytesLeft;// bytes |l eft to process
short phoneneCode; /1 current phonene code

} SpeechsSt at usl nf o;

Gets saved error information and clears the error registers. This
selector lets you poll for various run-time errors that occur during
speaking, such as the detection of badly formed embedded
commands. Errors returned directly by Speech Manager routines
are not reported here. The count field shows how many errors

Using the Speech Manager 287

288

CHAPTER 6

Speech Manager

i npt

char

nnbr

rate

have occurred since the last check. If count is 0 or 1, then ol dest
and newest will be the same. Otherwise, ol dest contains the
error code for the oldest unread error and newest contains the
error code for the most recent error. Both ol dPos and newPos
contain the character positions of their respective errors in the
original input text buffer. The API label for this selector is
soErrors

t ypedef SpeechErrorlnfo *speechl nfo;
t ypedef struct SpeechErrorlinfo {

short count ; /1l # of errs since |ast check
OSErr ol dest; // oldest unread error

| ong ol dPos; // char position of ol dest err
OSEr r newest; // nost recent error

| ong newPos; // char position of newest err

} SpeechErrorl nfo;

Gets the current value of the text processing mode control. The
returned value specifies whether the specified speech channel is
currently in text-input mode (TEXT) or phoneme-input mode
(PHON). The API label for this selector is sol nput Mode.

t ypedef OSType *speechl nfo; /1 TEXT or PHON

Gets the current value of the character processing mode control. The
returned value specifies whether the specified speech channel is
currently processing input characters in normal mode (NORM or in
literal, letter-by-letter, mode (LTRL). The API label for this selector
is soChar act er Mode.

typedef OSType *speechlnfo;// NORM or LTRL

Gets the current value of the number processing mode control. The
returned value specifies whether the specified speech channel is
currently processing input character digits in normal mode (NORM
or in literal, digit-by-digit, mode (LTRL). The API label for this
selector is soNunber Mode.

t ypedef OSType *speechlnfo;// NORM or LTRL

Gets the current speaking rate in words per minute on the specified
channel. Speaking rates are fixed-point values. The API label for this
selector is SORat e.

typedef Fi xed *speechl nfo;

Using the Speech Manager

CHAPTER 6

Speech Manager

pbas

prod

Note

Words per minute is a convenient, if difficult to define, way of
representing speaking rate. Although there is no universally
accepted definition of words per minute, it does communicate
approximate information about speaking rates. Any specific rate
may correspond to different rates on different synthesizers, but the
two rates should be reasonably close. More importantly, doubling
the rate on a particular synthesizer should halve the time needed to
speak any particular utterance. O

Gets the current baseline pitch for the specified channel. The pitch
value is a fixed-point integer that conforms to the following
frequency relationship:

Hertz = 440.0 * 2((BasePitch - 69) / 12)

BasePitch of 1.0 = 9 Hertz
BasePitch of 39.5 = 80 Hertz
BasePitch of 45.8 = 115 Hertz

BasePitch of 50.4 = 150 Hertz
BasePitch of 100.0 2637 Hertz

0

BasePi t ch values are always positive numbers in the range from
1.0 through 100.0. The API label for this selector is SOPi t chBase.

typedef Fi xed *speechl nfo;

Gets the current pitch modulation range for the speech channel.
Modulation values range from 0.0 through 100.0. A value of 0.0
corresponds to no modulation and means the channel will speak in
a monotone. The API label for this selector is SOPi t chMbd.

Nonzero modulation values correspond to pitch and frequency
deviations according to the following formula:

Maxi mum pitch = BasePitch + PitchMd

M ni mum pitch = BasePitch - PitchMd
Maxi mum Hertz = BaseHertz * 2(+ Mbdval ue / 12)
M ni num Hertz = BaseHertz * 2(- Mbdvalue / 12)
G ven:

BasePitch of 46.0 (= 115 Hertz),

Pi tchMod of 2.0,
Then:

Maxi mum pi t ch 48. 0 (=131 Hertz),
M ni mum pitch = 44.0 (=104 Hert z)
t ypedef Fi xed *speechl nfo;

Using the Speech Manager 289

290

CHAPTER 6

Speech Manager

vol m

vers

sync

phsy

Gets the current setting of the volume control on the specified
channel. Volumes are expressed in fixed-point units ranging from
0.0 through 1.0. A value of 0.0 corresponds to silence, and a value of
1.0 corresponds to the maximum possible volume. Volume units lie
on a scale that is linear with amplitude or voltage. A doubling of
perceived loudness corresponds to a doubling of the volume. The
API label for this selector is soVol umne.

typedef Fi xed *speechl nfo;

Gets descriptive information for the type of speech synthesizer
being used on the specified speech channel. The API label for this
selector is soSynt hType.

typedef SpeechVersi onlnfo *speechl nfo;
typedef struct SpeechVersionlnfo {

OSType synt hType; /1 always 'ttsc
OSType synt hSubType; /'l synth flavor
OSType synt hManuf acturer;// synth creator
| ong synt hFl ags; /1 reserved
NunmVer si on synt hVer si on; /1l synth version

} SpeechVer si onl nf o;

Returns the sync message code for the most recently encountered
embedded sync command at the audio output point. If no sync
command has been encountered, 0 is returned. Refer to the section
“Embedded Speech Commands,” later in this chapter, for informa-
tion about sync commands. The API label for this selector is
soRecent Sync.

typedef OSType *speechl nfo;

Returns a list of phoneme symbols and example words defined for
the current synthesizer. The input parameter is the address of a
handle variable. On return, the PhoneneDescr i pt or parameter
contains a handle to the array of phoneme definitions. Make sure to
dispose of the handle when you are done using it. This information
is normally used to indicate to the user the approximate sounds
corresponding to various phonemes—an important feature in
international speech. The API label for this selector is
soPhoneneSynbol s.

t ypedef PhoneneDescriptor ***speechlnfo; // VAR
Handl e
typedef struct Phonenelnfo {
short opcode; // opcode for the phonene
Str1l5 phStr; /'l correspondi ng char string
Str31 exanpl eStr; /1 word that shows use of
/1 phonene

Using the Speech Manager

CHAPTER 6

Speech Manager

short hiliteStart; /1 part of exanple word
/1 to be hilighted as in
short hiliteEnd,; /1 TextEdit sel ections

} Phonenel nf o;
typedef struct PhoneneDescriptor {
short phonemeCount ; [l # of elenents
Phonenel nfo t hePhonenes[1]; // elenment |ist
} PhoneneDescri ptor;

xt nd This call supports a general method for extending the functionality
of the Speech Manager. It is used to get synthesizer-specific
information. The format of the returned data is determined by the
specific synthesizer queried. The speechl nf o0 argument should be
a pointer to the proper data structure. If a particular
synt hCr eat or value is not recognized by the synthesizer, the
command is ignored and the si Unknownl nf oType code is
returned. The API label for this selector is soSynt hExt ensi on.

t ypedef SpeechXtndData *speechl nfo;
typedef struct SpeechXtndData {
OSType synthCreator; // synth creator ID
Byt e synthData[2]; // data TBD by synth
} SpeechXt ndDat a;

RESULT CODES

noErr 0 No error
si Unknownl nf oType -231 Feature is not implemented on synthesizer
i nval i dConponent | D -3000 Invalid SpeechChannel parameter

Advanced Control Routines

The Speech Manager provides numerous control features for sophisticated developers.
These controls enable you to set various speaking parameters programmatically and
provide a rich set of callback routines that can be used to notify applications of various
conditions within the speaking process. They are extended by many speech synthesizers.

These controls are accessed with the Set Speechl nf o routine. All calls to this routine
expect a SpeechChannel parameter, a selector to indicate the desired function, and a
pointer to some data. The format of this data depends on the particular selector and is
documented in the following routine description.

Using the Speech Manager 291

CHAPTER 6

Speech Manager

SetSpeechInfo

The Set Speechl nf o routine sets information for a designated speech channel.

pascal

voi d *speechl nf o) ;

OSErr Set Speechl nfo (SpeechChanne

chan, OSType sel ector

enum { /1 Sets the paraneter
sol nput Mode = "inpt' /1 current text/phon node
soChar act er Mbde = 'char'’ /1 current character node
soNunber Mode = 'nnbr' /1 current nunber node
soRat e = 'rate' /1l current speaking rate
soPi t chBase = ' pbas’ /1 current baseline pitch
soPi t chMod = ' pnod' /1 current pitch nodul ation
soVol une = 'volm /1 current speaking vol une
soCur rent Voi ce = 'cvox' /1 current speaking voice
soCommandDel i mi ter ='dlim /1 conmand deliniters
soReset = 'rset' /1 re channel to default state
soCur r ent A5 = ' nmyA5' /1 app's A5 on call backs
soRef Con = 'refc' /1 reference constant
soText DoneCal | Back = 'tdchb' /1 text done call back proc
soSpeechDoneCal | Back = ' sdcb’ /1 end-of -speech cal | back proc
soSyncCal | Back = 'sychb' /1 sync command cal | back proc
soErrorCal | Back = "erch' /1 error callback proc
soPhoneneCal | Back = ' phchb' /1 phonene cal |l back proc
soWbr dCal | Back = "wdchb'’ /1 word call back proc
soSynt hExt ensi on = 'xtnd /1 synthesizer-specific info
1
chan Specific speech channel.
sel ect or Used to specify data being requested.
*speechl nf 0 Pointer to an information structure.
DESCRIPTION
The following list of selectors outlines the controls available with the Speech
Manager. The format of the information returned depends on which value is used
in the selector field.
292 Using the Speech Manager

CHAPTER 6

Speech Manager

Note

The Speech Manager supports several callback features that can provide
the sophisticated developer with a tight coupling to the speech synthesis
process. However, these callbacks must be used carefully. Each is
invoked from interrupt level. This means that you may not perform any
operations that might cause memory to be allocated, purged, or moved.
Although application global variables are also ordinarily not accessible
at interrupt time, the soCur r ent A5 nyA5 selector described in the
following text can be used to ask the Speech Manager to point register
A5 at your application’s global variables prior to each callback. This
makes it fairly painless to access global variables from your callback
handlers. If this information worries you, don’t despair. Most
information available through callbacks is also available through a

Get Speechl nf o call. These calls are more friendly and do not come
with the constraints imposed upon callback code. The only drawback

is that if you do not poll the information you are interested in often
enough, you may miss some of the changes in your speech channel’s
status. O

Field descriptions

i npt Sets the current value of the text processing mode control. The
passed value specifies whether the speech channel should be in
text-input mode (TEXT) or phoneme-input mode (PHON). Input
mode changes take effect as soon as possible; however, the precise
latency is dependent upon the specific speech synthesizer. The API
label for this selector is sol nput Mode.

t ypedef OSType *speechlinfo; // TEXT or PHON

char Sets the current value of the character processing mode control. The
passed value specifies whether the speech channel should be in
normal character processing mode (NORM) or literal, letter-by-letter,
mode (LTRL). Character mode changes take effect as soon as
possible; however, the precise latency is dependent upon the
specific speech synthesizer. The API label for this selector is
soChar act er Mode.

typedef OSType *speechinfo; // NORMor LTRL

nmbr Sets the current value of the number processing mode control. The
passed value specifies whether the specified speech channel should
be in normal number processing mode (NORM) or in literal,
digit-by-digit, mode (LTRL). The number mode changes take effect
as soon as possible. However, the precise latency is dependent upon
the specific speech synthesizer. The API label for this selector is
soNunber Mode.

typedef OSType *speechinfo; // NORMor LTRL

Using the Speech Manager 293

294

CHAPTER 6

Speech Manager

rate

pbas

prod

vol m

Sets the speaking rate in words per minute on the specified channel.
Speaking rates are fixed-point values. All values are valid; however,
specific synthesizers will not necessarily be able to speak at all
possible rates. The API label for this selector is SORat e.

typedef Fi xed *speechl nfo;

Changes the current baseline pitch for the specified channel. The
pitch value is a fixed-point integer that conforms to the following
frequency relationship:

Hertz = 440.0 * 2((BasePitch - 69) / 12)

BasePitch of 1.0 = 9 Hertz

BasePitch of 39.5 = 80 Hertz
BasePitch of 45.8 = 115 Hertz
BasePitch of 50.4 = 150 Hertz

BasePitch of 100.0 2637 Hertz

0

BasePi t ch values are always positive numbers in the range from
1.0 through 100.0.

typedef Fi xed *speechl nfo;

The API label for this selector is soPi t chBase.

Changes the current pitch modulation range for the speech channel.
Modulation values range from 0.0 through 100.0. A value of 0.0
corresponds to no modulation and means the channel will speak in
a monotone. Nonzero modulation values correspond to pitch and
frequency deviations according to the following formula:

BasePitch + PitchMd

BasePitch - PitchMod
BaseHertz * o(* MdValue / 12)

BaseHertz * 2(- MdValue / 12)

Maxi mum pi tch

M ni mum pitch

Maxi mum Hert z

M ni mum Hert z

G ven:
BasePitch of 46.0 (=115 Hertz),
PitchMod of 2.0,

Then:
Maxi mum pi t ch
M ni mum pitch

48.0 (=131 Hertz),
46.0 (=104 Hert z)

t ypedef Fixed *speechl nf o;

The API label for this selector is SOPi t chibd.

Changes the current speaking volume on the specified channel.
Volumes are expressed in fixed-point units ranging from 0.0
through 1.0. A value of 0.0 corresponds to silence, and a value of 1.0
corresponds to the maximum possible volume. Volume units lie on

Using the Speech Manager

CHAPTER 6

Speech Manager

CvOoX

dlim

rset

my AS

a scale that is linear with amplitude or voltage. A doubling of
perceived loudness corresponds to a doubling of the volume. The
API label for this selector is soVol urre.

typedef Fi xed *speechl nfo;

Changes the current voice on the current speech channel to the
specified voice. Note that this control call will return an

i nconpat i bl eVoi ce error if the specified voice is incompatible
with the speech synthesizer associated with the speech channel. The
API label for this selector is soCur r ent Voi ce.

t ypedef Voi ceSpec *speechl nfo;

Sets the delimiter character strings for embedded commands. The
start of an embedded command is determined by comparing the
input characters to the start-command delimiter string. Likewise, the
end of a command is determined by comparing the input characters
to the end-command delimiter string. Command delimiter strings
are either 1 or 2 bytes in length. If a single byte delimiter is desired, it
should be followed by a null (0) byte. Delimiter characters must
come from the set of printable characters. If the delimiter strings are
empty, this will have the effect of disabling embedded command
processing. Care must be taken not to choose delimiter strings that
might occur naturally in the text to be spoken. The API label for this
selector is soCommandDel i m ter.

typedef Delimterlnfo *speechlnfo;

typedef struct Delimterinfo {

Byt e startDelimter[2]; /] defaults to "[["
Byt e endDelinmter[2]; /1 defaults to "]]"
} Delimterlnfo;

Resets the speech channel to its default states. The speechl nf o
parameter should be set to 0. Specific synthesizers may provide
other reset capabilities. The API label for this selector is SoReset .

t ypedef |ong *speechl nfo;

An application uses this selector to request that the speech
synthesizer set up an A5 world prior to all callbacks. In order for an
application to access any of its global data, it is necessary that
register A5 contain the correct value, since all global variables are
referenced relative to register A5. If you pass a non-null value in the
speechl nf o parameter, the speech synthesizer will set register A5
to this value just before it calls one of your callback routines. The
Ab register is restored to its original value when your callback
routine returns. The API label for this selector is soCur r ent A5.

typedef Ptr speechlnfo;

Using the Speech Manager 295

296

CHAPTER 6

Speech Manager

refc

tdcb

sdcb

A typical application would make the call to Set Speechl nf o with
code like the following:

nyA5 = Set Current A5();
err = Set Speechl nfo (mySpeechChannel, soCurrentA5,
nyAS) ;

Sets the reference constant associated with the specified channel. All
callbacks generated for this channel will return this reference
constant for use by the application. The application can use this
value any way it wants to. The API label for this selector is

soRef Con.

t ypedef |ong *speechl nfo;

Enables the callback that signals that text input processing is done.
Your callback routine is invoked when the current buffer of input
text has been processed and is no longer needed by the speech
synthesizer. This callback does not indicate that the synthesizer is
finished speaking the text (see the sdcb callback description, next);
it merely indicates that the input text has been fully processed and
is no longer needed by the speech synthesizer. This callback can be
disabled by passing a null Pr ocPt r in the speechl nf o parameter.
When your callback routine is invoked, you have two options. If
you set the next Buf, byt eLen, and cont r ol Fl ags variables
before returning, you will enable the speech synthesizer to continue
speaking without any interruption in the output. If you set the

next Buf parameter to null, you are indicating that you have no
more text to speak. The cont r ol Fl ags parameter is defined as in
SpeakBuf f er. The API label for this selector is

soText DoneCal | Back.

typedef Ptr speechlnfo;

pascal void Myl nput DoneCal | back (SpeechChannel
chan, long refCon, Ptr *nextBuf,
[ong *bytelLen, |ong *control Fl ags);

Enables an end-of-speech callback. Your callback routine is called
whenever an input text stream has been completely processed and
spoken. When your callback routine is invoked, you can be certain
that the speech channel is now idle and no audio is being generated.
This callback can be disabled by passing a null ProcPt r in the
speechl nf o parameter. The API label for this selector is
soSpeechDoneCal | Back.

typedef Ptr speechl nfo;
pascal void MyEndOf SpeechCal | back (SpeechChannel
chan, long refCon);

Using the Speech Manager

CHAPTER 6

Speech Manager

sych

ercb

phcb

wdchb

Enables the sync command callback. Your callback routine is
invoked when the text following a sync embedded command is
about to be spoken. This callback can be disabled by passing a null
ProcPtr in the speechl nf o parameter. See “Embedded Speech
Commands,” later in this chapter, for a description of how to use
sync commands. The API label for this selector is
soSyncCal | Back.

typedef Ptr speechlnfo;
pascal void MySyncConmmandCal | back (SpeechChanne
chan, long refCon, OSType syncMessage);

Enables error callbacks. Your callback routine is called whenever an
error occurs during the processing of an input text stream. Errors
can result from syntax problems in the input text, insufficient

CPU processing speed (such as an audio data underrun), or other
conditions that may arise during the speech conversion process.

If error callbacks have not been enabled, when an error condition

is detected, the Speech Manager will save its value. The error

codes can then be read using the Get Speechl nf o status selector
soErrors (err o). The error callback can be disabled by passing a
null ProcPt r in the speechl nf o parameter. The API label for this
selector is SOEr r or Cal | Back

typedef Ptr speechl nfo;
pascal void MyErrorCall back (SpeechChannel chan
| ong ref Con, OSErr error, |ong bytePos);

Enables phoneme callbacks. Your callback routine is invoked for
each phoneme generated by the speech synthesizer just before the
phoneme is actually spoken. This callback can be disabled by
passing a null ProcPt r in the speechl nf o parameter. The API
label for this selector is soPhoneneCal | Back.

typedef Ptr speechl nfo;
pascal voi d MyPhoneneCal | Back (SpeechChannel chan
| ong ref Con, short phonenmeQpcode);

Enables word callbacks. Your callback routine is invoked for each
word generated by the speech synthesizer just before the word is
actually spoken. This callback can be disabled by passing a ni |
ProcPtr in the speechl nf o parameter. The API label for this
selector is soWbr dCal | Back.

typedef Ptr speechlnfo;
pascal void MyWrdcCal | back (SpeechChannel chan
| ong ref Con, |ong wordPos, short wordLen);

Using the Speech Manager 297

RESULT CODES

CHAPTER 6

Speech Manager

xt nd This call supports a general method for extending the functionality
of the Speech Manager. It is used to set synthesizer-specific
information. The speechl nf o argument should be a pointer to
the appropriate data structure. If a particular synt hCr eat or value
is not recognized by the synthesizer, the command is ignored and
an si Unknownl nf oType code is returned. The API label for this
selector is soSynt hExt ensi on.

t ypedef SpeechXtndData *speechl nfo;
typedef struct SpeechXtndData {
OSType synthCreator; // synth creator ID
Byt e synthData[2]; // data TBD by synth
} SpeechXt ndDat a;

noErr 0 No error
par ankrr =50 Parameter value is invalid
si Unknownl nf oType —231 Feature is not implemented on synthesizer

i nconpat i bl eVoi ce 245 Specified voice cannot be used with synthesizer
i nval i dComponent | D -3000 Invalid SpeechChannel parameter

Application-Defined Pronunciation Dictionaries

298

No matter how sophisticated a speech synthesis system is, there will always be words
that it does not automatically pronounce correctly. The clearest instance of words that
are often mispronounced is the class of proper names (names of people, place names,

and so on).

One way to get around this fundamental limitation is to use a dictionary of pronuncia-
tions. Whenever a speech synthesizer needs to determine the proper phonemic represen-
tation for a particular word, it first looks for the word in its dictionaries. Pronunciation
dictionary entries contain information that enables precise conversion between text and
the correct phoneme codes. They also provide stress, intonation, and other information
to help speech synthesizers produce more natural speech. If the word in question is
found in the dictionary, then the synthesizer uses the information from the dictionary
entry rather than relying on its own letter-to-sound rules. The use of phonemes is
described in “Summary of Phonemes and Prosodic Controls,” later in this chapter.

The Speech Manager word storage format provides high-quality data that is inter-
changeable between speech synthesizers. The Speech Manager also uses an easily
extensible dictionary structure that does not affect the usability of existing dictionaries.

It is assumed that application-defined pronunciation dictionaries will reside in RAM
when in use. The run-time structure of dictionary data presumably depends on the
specific needs of particular speech synthesizers and will therefore differ from the
structure of the dictionaries as stored on disk.

Using the Speech Manager

CHAPTER 6

Speech Manager

Associating a Dictionary With a Speech Channel

The following routine can be used to associate an application-defined pronunciation
dictionary with a particular speech channel.

UseDictionary

The UseDi ct i onary routine associates a designated dictionary with a specific
speech channel.

pascal OSErr UseDictionary (SpeechChannel chan, Handl e
di cti onary);

chan Specific speech channel.
di cti onary Handle to the specified dictionary.

DESCRIPTION

The speech synthesizer will attempt to use the dictionary data pointed to by the

di cti onary handle argument to augment the built-in pronunciation rules on the
specified speech channel. The synthesizer will use whatever elements of the dictionary
resource it considers useful to the speech conversion process. After returning from
UseDi cti onary, the caller is free to release any storage allocated for the dictionary
handle. The search order for application-provided dictionaries is last in, first searched.

All details of how an application-provided dictionary is represented within the speech
synthesizer are dependent on the specific synthesizer implementation and are totally
private to the synthesizer.

RESULT CODES
noErr 0 No error
mentul | Err -108 Not enough memory to use new dictionary
badDi ct For mat 246 Format problem with pronunciation dictionary

i nval i dConponent | D -3000 Invalid SpeechChannel parameter

Pronunciation Dictionary Data Format

Each application-defined pronunciation dictionary is implemented as a single resource
of type ' di ct"' . To read the dictionary contents, the system first reads the resource into
memory using Resource Manager routines.

Using the Speech Manager 299

CHAPTER 6

Speech Manager

An application dictionary contains the following information:

total byte length (long) (Length is all-inclusive)

atom type (long)

format version (long)

script code (short)

language code (short)

region code (short)

date last modified (long) (Seconds since January 1, 1904)
reserved (4) (long)

entry count (long)

list of entries
The currently defined atom type is
"dict' - Dictionary

Each entry consists of the following;:

entry byte length (short) (Length is all-inclusive)
entry type (short)

field count (short)

list of fields

The currently defined entry types are the following;:

0x00 - Null entry

0x01 to 0x20 - Reserved

0x21 - Pronunciation entry
0x22 - Abbreviation entry

Each field consists of the following:

field byte length (short) (Length is all-inclusive minus padding)
field type (short)
field data (char]]) (Data is padded to word boundary)

The currently defined field types are the following:

0x00 - Null field
0x01 to 0x20 - Reserved
0x21 - Word represented in textual format.

continued

300 Using the Speech Manager

CHAPTER 6

Speech Manager

0x22 - Phonemic pronunciation including a complete set

of syllable, lexical stress, word prominence, and
prosodic markers represented in textual format

0x23 - Part-of-speech code

Creating and Editing Dictionaries

There is no built-in support for creating and editing speech dictionaries. You can create
dictionary resources using any of the available resource editing tools such as the MPW
Rez tool or ResEdit. Of course, you can also fairly easily develop routines to edit the
dictionary structure from within the application. At the present time, no assumption
should be made that the entries in a dictionary are stored in sorted order.

Advanced Voice Information Routine

Ordinarily, an application should need to use only the Get Voi ceDescr i pti on routine
to access information about a particular voice. Occasionally, however, it may be
necessary to obtain more detailed information by using the Get Voi cel nf o routine.

GetVoicelnfo

The Get Voi cel nf o routine returns information about a specified voice channel beyond
that obtainable through the Get Voi ceDescri pti on routine.

pascal OSErr GCet Voicel nfo (VoiceSpec *voice, OSType sel ector

voi d *voicel nfo);

t ypedef Voi ceDescription *voi cel nfo;
t ypedef VoiceFil elnfo *voicel nfo;
typedef struct VoiceFilelnfo {

FSSpec fil eSpec; /1 vol, dir, name info for voice file
short resl D /1 resource ID of voice inthe file
} Voi ceFil el nf o;
enum {
soVoi ceDescri ption = 'info', /1 gets basic voice info
soVoi ceFil e = "fref' /1 gets voice file ref info
b
*voi ce Specific speech channel.

sel ect or Used to specify data being requested.

*voi cel nfo Pointer to an information structure.

Using the Speech Manager

301

DESCRIPTION

RESULT CODES

302

CHAPTER 6

Speech Manager

This function accepts selectors that determine the type of information you want to get.
The format of the information returned depends on which value is used in the selector
field, as follows:

Field descriptions

info Gets basic information for the specified voice. The structure
returned is functionally equivalent to the Voi ceDescri pti on
data structure in Get Voi ceDescri pti on, described on page 272.
To maximize compatibility with future versions of the Speech
Manager, the application must set the | engt h field of the
Voi ceDescri pti on structure to the size of the existing record
before calling Get Voi cel nf o, which then returns the size of the
new record.

fref Gets file reference information for specified voice; normally only
used by speech synthesizers to access voice disk files directly.

noErr 0 No error
menfFul | Err -108 Not enough memory to load voice into memory
voi ceNot Found -244 Voice resource not found

Embedded Speech Commands

This section describes how you can insert commands directly into the input text to
control or modify the spoken output. When processing input text data, speech
synthesizers look for special sequences of characters called delimiters. These character
sequences are usually defined to be unusual pairings of printable characters that would
not normally appear in the text. When a begin command delimiter string is encountered
in the text, the following characters are assumed to contain one or more commands. The
synthesizer will attempt to parse and process these commands until an end command
delimiter string is encountered.

Embedded Speech Command Syntax

By default, the begin command and end command delimiters are defined to be [[and]].
The syntax of embedded command blocks is given below, according to these rules:

= Items enclosed in angle brackets (< and >) represent logical units that are either
defined further below or are atomic units that should be self-explanatory.

» Items enclosed in brackets are optional.

= Items followed by an ellipsis (..) may be repeated one or more times.

Using the Speech Manager

CHAPTER 6

Speech Manager

= For items separated by a vertical bar (|), any one of the listed items may be used.

= Multiple space characters between tokens may be used if desired.

= Multiple commands should be separated by semicolons.

All other characters that are not enclosed between angle brackets must be entered
literally. There is no limit to the number of commands that can be included in a single

command block.

Here is the embedded command syntax structure:

Identifier
CommandBlock
BeginDelimiter
EndDelimiter
CommandList
Command
CommandSelector

Parameter

String1
String2
StringN
QuoteChar
OSType
Character
FixedPointValue
32BitValue
16BitValue
8BitValue
LongInt
HexLongInt
Integer
HexInteger
Byte
HexByte

Syntax

<BeginDelimiter> <CommandList> <EndDelimiter>

<Stringl> |
<Stringl> |

<String2>
<String2>

<Command> [; <Command>] ...

<CommandSelector> [parameter] ...

<OSType>
<OSType> |

<FixedPointValue> | <32BitValue> |

<8BitValue>

<Stringl> | <String2> | <StringN> |

<16BitValue> |

<QuoteChar> <Character> <QuoteChar>
<QuoteChar> <Character> <Character> <QuoteChar>

<QuoteChar> [<Character>] ... <QuoteChar>

<4 character pattern (for example, RATE, vers, aBcD)>

<Any printable character (for example, A, b, *, #, x)>
<Decimal number: 0.0000 < N < 65535.9999>
<OSType>| <Longlnt>| <HexLonglnt>
<Integer>| <HexInteger>
<Byte>| <HexByte>
<Decimal number: 0 < N < 4294967295>

<Hex number: 0x00000000 < N < OxFFFFFFFF>
<Decimal number: 0 < N < 65535>

<Hex number: 0x0000 < N < OxFFFF>

<Decimal number: 0 < N < 255>

<Hex number: 0x00 < N < 0xFF>

Using the Speech Manager

303

304

CHAPTER 6

Speech Manager

Embedded Speech Command Set

Table 6-1 outlines the set of currently defined embedded speech commands.

Table 6-1 Embedded speech commands

Command

Version

Delimiter

Comment

Reset

Baseline pitch

Using the Speech Manager

Selector

vers

dlim

cmt

rset

pbas

Command syntax and description

vers <Version>

Version: : = <32BitValue>

This command informs the synthesizer of the
format version that will be used in subsequent
commands. This command is optional but is
highly recommended. The current version is 1.

dl i m <BeginDelimiter> <EndDelimiter>

The delimiter command specifies the character
sequences that mark the beginning and end of
all subsequent commands. The new delimiters
take effect at the end of the current command
block. If the delimiter strings are empty, an error
is generated. (Contrast this behavior with the

dl i mfunction of Set Speechl nf 0.)

cmt [Character] ...

This command enables a developer to insert a
comment into a text stream for documentation
purposes. Note that all characters following the
cmt selector up to the <EndDelimiter> are part of
the comment.

rset <32BitValue>

The reset command will reset the speech channel’s
settings back to the default values. The parameter
should be set to 0.

pbas [+ | -] <Pitch>

Pitch ::= <FixedPointValue>

The baseline pitch command changes the current
pitch for the speech channel. The pitch value is a
fixed-point number in the range 1.0 through 100.0
that conforms to the frequency relationship

Hertz = 440.0 * 2((Pitch -69) /12)

If the pitch number is preceded by a + or —
character, the baseline pitch is adjusted relative to
its current value. Pitch values are always positive
numbers. For further details, see the description of
Set Speechl nf o on page 292.

continued

CHAPTER 6

Speech Manager

Table 6-1 Embedded speech commands (continued)

Command Selector Command syntax and description

Pitch modulation pnod pnod [+ | -1 <ModulationDepth>
ModulationDepth : .= <FixedPointValue>

The pitch modulation command changes the
modulation range for the speech channel. The
modulation value is a fixed-point number in the
range 0.0 through 100.0 that conforms to the
following pitch and frequency relationships:

Maximum pitch = BasePi t ch + Pi t chMbd
Minimum pitch = BasePi t ch - Pi t chMbd
Maximum Hertz = BaseHer t z * 2(+ Mdval ue /12)
Minimum Hertz = BaseHer t z * 2(-MdVal ue /12)

A value of 0.0 corresponds to no modulation and
will cause the speech channel to speak in a
monotone. If the modulation depth number is
preceded by a + or — character, the pitch
modulation is adjusted relative to its current
value. For further details, see the description of
Set Speechl nf o on page 292.

Speaking rate rate rate [+ | -] <WordsPerMinute>
WordsPerMinute : : = <FixedPointValue>
The speaking rate command sets the speaking
rate in words per minute on the speech channel.
If the rate value is preceded by a + or — character,
the speaking rate is adjusted relative to its
current value.

Volume vol m volm[+ | -] <Volume>
Volume: : = <FixedPointValue>
The volume command changes the speaking
volume on the speech channel. Volumes are
expressed in fixed-point units ranging from 0.0
through 1.0. A value of 0.0 corresponds to silence,
and a value of 1.0 corresponds to the maximum
possible volume. Volume units lie on a scale that is
linear with amplitude or voltage. A doubling of
perceived loudness corresponds to a doubling of
the volume.

Sync sync sync <SyncMessage>
SyncMessage: : = <32BitValue>
The sync command causes a callback to the
application’s sync command callback routine. The
callback is made when the audio corresponding
to the next word begins to sound. The callback
routine is passed the SyncMessage value from the
command. If the callback routine has not been
defined, the command is ignored. For further
details, see the description of Set Speechl nf o
on page 292.

continued

Using the Speech Manager 305

CHAPTER 6

Speech Manager

Table 6-1 Embedded speech commands (continued)

Command

Input mode

Character mode

Number mode

Silence

Emphasis

Synthesizer-Specific

Selector

i npt

char

nnbr

sl nc

enph

xt nd

Command syntax and description

inpt TX | TEXT | PH| PHON

This command switches the input processing
mode to either normal text mode or raw phoneme
mode.

char NORM | LTRL

The character mode command sets the word
speaking mode of the speech synthesizer. When
NORMmode is selected, the synthesizer attempts to
automatically convert words into speech. This is
the most basic function of the text-to-speech
synthesizer. When LTRL mode is selected, the
synthesizer speaks every word, number, and
symbol letter by letter. Embedded command
processing continues to function normally,
however.

nmbr NORM | LTRL

The number mode command sets the number
speaking mode of the speech synthesizer. When
NORMmode is selected, the synthesizer attempts to
automatically speak numeric strings as
intelligently as possible. When LTRL mode is
selected, numeric strings are spoken digit by digit.

sl nc <Milliseconds>

Milliseconds : : = <32BitValue>

The silence command causes the synthesizer to
generate silence for the specified amount of time.

emph + | -

The emphasis command causes the next word to
be spoken with either greater emphasis or less
emphasis than would normally be used. Using +
will force added emphasis, while using — will force
reduced emphasis.

xtnd <SynthCreator> [parameter]

SynthCreator ::= <OSType>

The extension command enables
synthesizer-specific commands to be embedded
in the input text stream. The format of the data
following SynthCreator is entirely dependent

on the synthesizer being used. If a particular
SynthCreator is not recognized by the synthesizer,
the command is ignored but no error is generated.

Synthesizers often support embedded commands that extend the set given in Table 6-1.

306 Using the Speech Manager

CHAPTER 6

Speech Manager

Embedded Speech Command Error Reporting

While embedded speech commands are being processed, several types of errors may be
detected and reported to your application. If you have set up an error callback handler
with the soEr r or Cal | Back selector of the Set Speechl nf o routine (described on
page 292), you will be notified once for every error that is detected. If you have not
enabled error callbacks, you can still obtain information about the errors encountered by
calling Get Speechl nf o with the SOEr r or s selector (described on page 286). The
following errors are detected during processing of embedded speech commands:

badPar nval 245 Parameter value is invalid

badCmdText -246 Embedded command syntax or parameter problem

uni npl Cnd 247 Embedded command is not implemented on synthesizer
uni mpl Msg -248 Unimplemented message

badVoi cel D —250 Specified voice has not been preloaded

badPar nCount 252 Incorrect number of embedded command arguments

Summary of Phonemes and Prosodic Controls

This section summarizes the phonemes and prosodic controls used by American English
speech synthesizers.

Phoneme Set

Table 6-2 summarizes the set of standard phonemes recognized by American English
speech synthesizers.

In this description, it is assumed that specific rules and markers apply only to general
American English. Other languages and dialects require different phoneme inventories.
Phonemes divide into two groups: vowels and consonants. All vowel symbols are
uppercase pairs of letters. For consonants, in cases in which the correspondence between
the consonant and its symbol is apparent, the symbol is that lowercase consonant; in
other cases, the symbol is an uppercase consonant. Within the example words, the
individual sounds being exemplified appear in boldface.

Summary of Phonemes and Prosodic Controls 307

CHAPTER 6

Speech Manager

Table 6-2 American English phoneme symbols
Symbol Example Opcode Symbol Example Opcode
AE bat 2 b bin 18
EY bait 3 C chin 19
AO caught 4 d din 20
AX about 5 D them 21
IY beet 6 f fin 22
EH bet 7 g gain 23
IH bit 8 h hat 24
AY bite 9] gin 25
IX roses 10 k kin 26
AA cot 11 1 limb 27
Uw boot 12 m mat 28
UH book 13 n nat 29
UXx bud 14 N tang 30
ow boat 15 p pin 31
AW bout 16 r ran 32
0)4 boy 17 s sin 33
shin 34
t tin 35
T thin 36
\ van 37
w wet 38
y yet 39
% silence 0 z zen 40
@ breath 1 4 genre 41
intake
Note

The “silence” phoneme (%) and the “breath” phoneme (@) may be
lengthened or shortened like any other phoneme. O

308 Summary of Phonemes and Prosodic Controls

CHAPTER 6

Speech Manager

Prosodic Controls

The symbols listed in Table 6-3 are recognized as modifiers to the basic phonemes
described in the preceding section. They can be used to more precisely control the
quality of speech that is described in terms of raw phonemes.

Table 6-3 Prosodic control symbols
Type Symbol Description of effect
Lexical stress: Marks stress within a word
Primary stress 1 anticipation AEnt2IHsIXp1EYSAXn (“anticipation”)
Secondary stress 2 anticipation
Syllable breaks: Marks syllable breaks within a word
Syllable mark = (equal) AEn=t2IH=sIX=p1EY=SAXn (“anticipation”)
Word prominence: Marks the beginning of a word (required)
Unstressed ~ (asciitilde) Used for words with minimal information
content
Normal stress _ (underscore) Used for information-bearing words
Emphatic stress + (plus) Special emphasis for a word
Prosodic: Placed before the affected phoneme
Pitch rise / (slash) Pitch will rise on the following phoneme
Pitch fall (backslash) Pitch will fall on the following phoneme
Lengthen > (greater) Lengthens the duration of the following
phoneme phoneme
Shorten phoneme < (less) Shortens the duration of the following
phoneme
Punctuation: Pitch effect Timing effect
(period) Sentence final fall Pause follows
? (question) Sentence final rise Pause follows
! (exclam) Sentence final sharp fall Pause follows
(ellipsis) Clause final level Pause follows
, (comma) Continuation rise Short pause
follows
; (semicolon) Continuation rise Short pause
follows
(colon) Clause final level Short pause
follows
continued
Summary of Phonemes and Prosodic Controls 309

CHAPTER 6

Speech Manager

Table 6-3 Prosodic control symbols (continued)
Type Symbol Description of effect
Punctuation (continued): Pitch effect Timing effect
((parenleft) Start reduced range Short pause
precedes
) (parenright) End reduced range Short pause
follows
“ (quotedblleft, Varies Varies
’ quotesingleleft)
" (quotedblright, Varies Varies
’ quotesingleright)
- (hyphen) Clause-final level Short pause
follows
& (ampersand) Forces no addition of silence between
phonemes

Specific pitch contours associated with these punctuation marks may vary according to
other considerations in the analysis of the text, such as whether a question is rhetorical or
begins with a wh question word, so the above effects should be regarded only as
guidelines and not absolute. This also applies to the timing effects, which will vary
according to the current rate setting.

The prosodic control symbols (/, \, <, and >) may be concatenated to provide more
exaggerated, cumulative effects. The specific nature of the effect is dependent on the
speech synthesizer. Speech synthesizers also often extend or enhance the controls
described in this section.

Summary of the Speech Manager

Constants

#def i ne gestaltSpeechAttr 'ttsc'// Gestalt Manager selector for speech
attributes

enum {
gest al t SpeechMyr Pr esent =0 /] Gestalt bit that indicates that Speech
Manager exists

b

310 Summary of the Speech Manager

CHAPTER 6

Speech Manager

#def i ne kText ToSpeechSynt hType "ttsc' /1 text-to-speech
synt hesi zer conponent type

#defi ne kText ToSpeechVoi ceType "ttvd /] text-to-speech voice
resource type

#defi ne kText ToSpeechVoi ceFi |l eType "ttvf! /1l text-to-speech voice file
type

#def i ne kText ToSpeechVoi ceBundl eType "ttvb' /1 text-to-speech voice
bundle file type

enum { /1 Speech Manager error codes (range from 240 - 259)
noSynt hFound = - 240,

synt hOpenFai | ed = -241,

synt hNot Ready = -242,

buf TooSnal | = -243,

voi ceNot Found = -244,

i nconmpati bl eVoi ce = -245,

badDi ct For mat = -246,

badPhoneneText = -247
1
enum { /1 constants for SpeakBuffer and text done call back

control Flags bits

kNoEndi ngPr osody = 1,

kNoSpeechl nt er r upt = 2,

kPreflight ThenPause =4
b
enum { /1 constants for StopSpeechAt and PauseSpeechAt

kl mredi at e = 0,

KEndOr Vor d =1,

KEndOF Sent ence =2
b
/1 Get Speechl nfo & Set Speechlnfo sel ectors
#def i ne soSt at us "stat’
#defi ne soErrors ‘erro
#def i ne sol nput Mode "inpt
#def i ne soChar act er Mbde " char’
#def i ne soNumnber Mode "'nnbr'’
#define soRate "rate’
#defi ne soPitchBase ' pbas’
#def i ne soPit chMod ' pnod’
#defi ne soVol unme "vol
#defi ne soSynt hType ‘vers

Summary of the Speech Manager 311

CHAPTER 6

Speech Manager

#def i ne soRecent Sync 'sync

#defi ne soPhoneneSynbol s ' phsy'

#def i ne soCurrent Voi ce ' cvox

#defi ne soConmandDel i niter "dlio

#def i ne soReset 'rset

#def i ne soCurrent A5 " nyA5'

#defi ne soRef Con "refc

#def i ne soText DoneCal | Back "tdcb’

#defi ne soSpeechDoneCal | Back ' sdchb’

#def i ne soSyncCal | Back 'sych'

#def i ne soError Cal | Back "erch’

#def i ne soPhoneneCal | Back ' phcb’

#defi ne soWbrdCal | Back "wdch'

#defi ne soSynt hExt ensi on ' xt nd'

/'l speaking node constants

#def i ne nodeText "TEXT" // input node constants

#def i ne nodeTX ' TX

#defi ne nodePhonenes ' PHON

#def i ne nodePH " PH

#def i ne nodeNor mal "NORM // character node and nunber nbde constants

#defi ne nodelLiteral "LTRL

enum { /1l GetVoicelnfo selectors
soVoi ceDescri ption = '"info', /1 gets basic voice info
soVoi ceFi |l e = '"fref’ /1 gets voice file ref info

i

enum {kNeuter = 0, kMale, kFemale}; // returned in gender field bel ow

Data Types

t ypedef struct SpeechChannel Record ({
| ong data[1];
} SpeechChannel Recor d;
t ypedef SpeechChannel Record *SpeechChannel

t ypedef struct Voi ceSpec {

OSType creator; /1 creator ID of required synthesizer
OSType id; /1 voice ID on the specified synth

} Voi ceSpec;

312 Summary of the Speech Manager

CHAPTER 6

Speech Manager

t ypedef struct Voi ceDescription {

| ong | engt h; /1 size of structure - set by application
Voi ceSpec voi ce; /1 voice creator and ID info

| ong versi on; /1 version code for voice

Str63 nane; /1 name of voice

Str 255 conment ; /1 additional text info about voice
short gender ; /1 neuter, nale, or female

short age; /1l approximate age in years

short script; /1 script code of text voice can process
short | anguage; /'l language code of voice output

short regi on; /'l region code of voice output

| ong reserved[4] ; /1 reserved for future use

} Voi ceDescri ption;

typedef struct VoiceFilelnfo {
FSSpec fil eSpec; /1 volume, dir, & nane information for voice file
short resl D, /1 resource ID of voice in the file

} Voi ceFi |l el nf o;

typedef struct SpeechStatuslnfo {

Bool ean out put Busy; /1 true if audio is playing
Bool ean out put Paused,; /1 true if channel is paused
| ong i nput Byt esLeft; /1 bytes left to process
short phoneneCode; /1 opcode for cur phonene

} SpeechsSt at usl nf o;

typedef struct SpeechErrorinfo {

short count ; /1l # of errs since |ast check
OSErr ol dest; // ol dest unread error

| ong ol dPos; // char position of ol dest err
OSEr r newest; // nost recent error

| ong newPos; // char position of newest err

} SpeechErrorlnfo;

typedef struct SpeechVersionlnfo {

OSType synt hType; /1 always 'ttsc

OSType synt hSubType; /1 synth flavor

OSType synt hManuf act urer; /1 synth creator ID

| ong synt hFl ags; /1 synth feature flags
NunVer si on synt hVer si on; /1 synth version nunber

} SpeechVer si onl nf o;

Summary of the Speech Manager 313

CHAPTER 6

Speech Manager

t ypedef struct Phonenel nfo {

short opcode; /!l opcode for the phonene

Stri5 phStr; /1 corresponding char string
Str31l exanpl eStr; /1 word that shows use of phonene
short hiliteStart; /'l segnent of exanple word that
short hiliteEnd, /1 hilighted text (ala TextEdit)

} Phonenel nf o;

typedef struct PhoneneDescriptor {
short phoneneCount ; /1 # of elenents
Phonenel nf o t hePhonenes][1] ; /1l elenment |ist
} PhoneneDescri ptor;

typedef struct SpeechXtndData {
OSType synthCreator; // synth creator ID
Byt e synthData[2]; // data TBD by synth
} SpeechXt ndDat a;

typedef struct Delimterinfo {
Byt e startDelinter[2]; /1 defaults to [[
Byt e endDel inmter[2]; /1 defaults to]]
} Delimterlnfo;

Speech Manager Routines

Voice Routines

pascal OSErr MakeVoi ceSpec (OSType creator, OSType id, VoiceSpec *voice);
pascal OSErr Count Voi ces (short *nunWVoi ces);
pascal OSErr GetlndVoice (short index, VoiceSpec *voice);
pascal OSErr GetVoi ceDescription (VoiceSpec *voice, VoiceDescription *info,
| ong infolLength);
pascal OSErr Get Voicelnfo (VoiceSpec *voice, OSType sel ector, void
*voi cel nfo) ;

Routines for Managing Speech Channels

pascal OSErr NewSpeechChannel (VoiceSpec *voice, SpeechChannel *chan);
pascal OSErr Di sposeSpeechChannel (SpeechChannel chan);

314 Summary of the Speech Manager

CHAPTER 6

Speech Manager

Speaking Routines

pascal OSErr SpeakString (StringPtr s);

pascal OSErr SpeakText (SpeechChannel chan, Ptr textBuf, |ong textBytes);

pascal OSErr StopSpeech (SpeechChannel chan);

pascal OSErr StopSpeechAt (SpeechChannel chan, |ong whereToStop);

pascal OSErr PauseSpeechAt (SpeechChannel chan, |ong whereToPause);

pascal OSErr Conti nueSpeech (SpeechChannel chan);

pascal OSErr SpeakBuffer (SpeechChannel chan, Ptr textBuf, |ong textBytes,
| ong control Fl ags) ;

Information and Control Routines

pascal NunVersi on SpeechManager Version (void);

pascal short SpeechBusy (void);

pascal OSErr Set SpeechRate (SpeechChannel chan, Fixed rate);

pascal OSErr Get SpeechRate (SpeechChannel chan, Fixed *rate);

pascal OSErr Set SpeechPitch (SpeechChannel chan, Fixed pitch);

pascal OSErr Get SpeechPitch (SpeechChannel chan, Fixed *pitch);

pascal short SpeechBusySystemN de (void);

pascal OSErr Get Speechl nfo (SpeechChannel chan, OSType sel ector, void
*speechl nf o) ;

pascal OSErr Set Speechl nfo (SpeechChannel chan, OSType sel ector, void
*speechl nfo);

Text-to-Phoneme Conversion Routine

pascal OSErr Text ToPhonenes (SpeechChannel chan, Ptr textBuf,
| ong textBytes, Handl e phoneneBuf, |ong *phoneneBytes);

Dictionary Management Routine

pascal OSErr UseDictionary (SpeechChannel chan, Handl e dictionary);

Callback Prototypes

/1 text-done callback routine typedef
typedef pascal void (*TextDoneProcPtr) (SpeechChannel, long, Ptr *, long *,
llong *);

/! speech-done call back routine typedef
t ypedef pascal void (*SpeechDoneProcPtr) (SpeechChannel, long);

Summary of the Speech Manager 315

CHAPTER 6

Speech Manager

/1 sync call back routine typedef
typedef pascal void (*SyncProcPtr) (SpeechChannel, |ong, OSType);

/1 error callback routine typedef
typedef pascal void (*ErrorProcPtr) (SpeechChannel, |ong, CSErr, |ong);

/1 phonene call back routine typedef
typedef pascal void (*PhoneneProcPtr) (SpeechChannel, |ong, short);

/1 word call back routine typedef
typedef pascal void (*WrdProcPtr) (SpeechChannel, |ong, |ong, short);

Error Return Codes

noErr 0 No error

par ankrr =50 Parameter error

menful | Err -108 Not enough memory to speak

ni | Handl eErr -109 Handle argument is ni |

si Unknownl nf oType —231 Feature not implemented on synthesizer

noSynt hFound —240 Could not find the specified speech synthesizer
synt hCpenFai | ed -241 Could not open another speech synthesizer channel
synt hNot Ready -242 Speech synthesizer is still busy speaking

buf TooSnal | -243 Output buffer is too small to hold result

voi ceNot Found 244 Voice resource not found

i nconpat i bl eVoi ce -245 Specified voice cannot be used with synthesizer
badDi ct For mat —246 Format problem with pronunciation dictionary
badPhoneneText —-247 Raw phoneme text contains invalid characters

uni mpl Msg -248 Unimplemented message

badVoi cel D —250 Specified voice has not been preloaded

badPar mCount 252 Incorrect number of embedded command arguments
i nval i dConponent | D -3000 Invalid SpeechChannel parameter

316 Summary of the Speech Manager

CHAPTER 7

Introduction to
Speech Recognition

CHAPTER 7

Introduction to Speech Recognition

This chapter introduces the speech recognition software in the Macintosh Quadra 840av
and Macintosh Centris 660AV computers and tells you how to use it.

Speech is the most natural and common form of human communication. Having
continuous speech recognition available to all users is a new and exciting kind of
computer input. However, this is the first public release of speech recognition technology
from Apple. The software is still under development, and its features may change. Not
all of the guidelines and tools for developing speech-aware applications are included
with this release. You may use this document as a guide for trying the software as it
exists today. The performance and recognition accuracy of the software will improve as
development progresses.

Casper is the code name for an interface for users and developers to Apple’s underlying
speech recognition and synthesis technology. All the necessary software to run speech
recognition should already be loaded on the computer’s hard disk or integrated on the
software release floppy disks. See “Software Installation,” later in this chapter, for the
locations of the needed files. For best results with speech recognition, the Macintosh
Quadra 840Av or Macintosh Centris 660AV microphone is required. Microphone
placement and usage are described in “Using the Microphone,” later in this chapter.
Hardware support for speech recognition in the Macintosh Quadra 840Av and Macintosh
Centris 660AV is described in “Sound I/0O,” in Chapter 2.

The following is a list of Casper’s speech recognition features:
» Speaker independence. No training is required for new speakers.

» Connected speech. Phrases can be spoken in a natural manner rather than as isolated
words separated by pauses.

» Environmental adaptation. The system automatically adapts to changes in background
noise and room acoustics.

s Vocabulary independence. The system automatically synthesizes pronunciations for
new words.

» Standardized English. The system recognizes speech from any adult speaking North
American English.

How Does Casper Work?

318

The built-in speech recognition software can recognize any enabled menu item and
dialog box button, with a few exceptions. The rules are simple: the active application
must have used the standard Macintosh Toolbox, and the user must utter a standard
English word for the name of the item.

How does Casper do it? The Casper speech recognizer requires a predefined grammar
to function. There must be a finite number of possible phrases available; the more
numerous the possibilities, the greater the chance of substitution errors. The Speech
Setup control panel and a background application, the Speech Monitor, are the interface
between the spoken word and speech control of the computer.

How Does Casper Work?

CHAPTER 7

Introduction to Speech Recognition

Macros or rules are defined to cover every available command. Some are built into
uneditable files, such as the speech rules that control the menu items and buttons;
some are available to user definition, such as macros created with the Speech Macro
Editor (SME).

The recognition level is controlled by a slider that ranges from tolerant to strict in the
Speech Setup control panel, described in “The Casper User Interface,” later in this
chapter. The recognition level should be adjusted to get a reasonable result within your
environment and using your voice. The noisier the environment, the higher you will
want to set this control to prevent Casper from trying to respond to background sounds.

In a noisy environment, voice commands generally work much better if you use a name,
which acts as a keyword, before each command. If you have a slight accent, moving the

slider toward Tolerant will make it easier for Casper to understand you. The system has

been optimized for North American English accents, so non-English accents may reduce
the accuracy rate.

The name you give your computer is user-editable; feel free to name it anything you like.
Naming is supported in three modes. Name optional mode means that the name never
has to be used. Name required mode means every utterance must be preceded by a name.
Name required 15 seconds after last command is based on the principle that once a speaker
has a listener’s attention (in this case the computer), the speaker shouldn’t have to
address it by name all the time. So, once an utterance is recognized successfully, Casper
switches into name optional mode until it hasn’t heard anything for a specified number
of seconds, set in the Speech Setup control panel. You can tell if the name is required at
any time by looking below the animated icons in the feedback window, where the
current name required is actively updated.

Software Installation

Speech recognition and synthesis can run on the Macintosh Quadra 840Av and
Macintosh Centris 660AV base configurations of 8 MB of RAM. Speech recognition
requires about 2.4 MB, however, and speech synthesis can use up to an additional

2.6 MB for a male voice without compression. Thus, when using speech features with
applications that require more than than 1.5 MB of RAM, a total RAM capacity of 12 MB
is recommended. To use speech with 8 MB of RAM, you can use compressed voices

in the feedback options or disable the voice option. This will free a significant amount
of memory.

For information about the base equipment configurations shipped with the Macintosh
Quadra 840Av and Macintosh Centris 660AV computers, see “Models and Accessories,”
in Chapter 1. Macintosh system release 7.1 is also required.

The software for speech recognition either is preinstalled on your hard disk or comes on
a series of floppy disks. If you install the software yourself, make sure you copy all the
files to their proper locations. Once all the files have been copied, you must restart the
computer.

Software Installation 319

CHAPTER 7

Introduction to Speech Recognition

You currently need the files listed below for speech recognition and synthesis.

These files belong to the Casper software package:
Speech Scripting
Speech Setup
SR Macros
SR Monitor
SR Rules

These files belong to the PlainTalk software package:
PlainTalk SR
SR North American English

These files belong to the Gala Tea software package:
PlainTalk TTS
TTS Male Voice
TTS Male Voice Compressed
TTS Female Voice

These files belong to AppleScript:
AppleScript
Apple Event Manager

These files are scripting additions for AppleScript:
Beep
Choose Application
Choose File
Current Date
Display Dialog
File Commands
Load Script
Numerics
Run Script
Store Script
String Commands

This file is a tool that helps you edit speech macros:
Speech Macro Editor

Of the files just listed, the following go in the Extensions folder inside the System Folder:
Apple Event Manager
AppleScript
PlainTalk SR
PlainTalk TTS
SR Macros
SR Monitor
SR North American English
SR Rules
TTS Female Voice
TTS Male Voice
TTS Male Voice Compressed

Software Installation

CHAPTER 7

Introduction to Speech Recognition

The following files go in a folder named Scripting Additions inside the Extensions folder:
Beep
Choose Application
Choose File
Current Date
Display Dialog
File Commands
Load Script
Numerics
Run Script
Store Script
String Commands
Speech Scripting

The Speech Setup file goes in the Control Panels folder.
The Speakable Items folder goes inside the Apple Menu Items folder.

Using the Microphone

The Macintosh Quadra 840Av and Macintosh Centris 660AV computers are compatible
with a new higher-fidelity microphone that is designed specifically for speech
recognition. The microphone has a special connector designed to plug into the audio
input on the computer. Do not attempt to plug another microphone into the Macintosh
Quadra 840Av or the Macintosh Centris 660Av; the software and hardware are designed
specifically to work with Apple’s microphone. Do not attempt to plug the speech
recognition microphone into another device; it uses a custom connector that is not
designed to work with other devices. For further information, see “Sound I/0O,” in
Chapter 2.

When using the microphone for speech recognition, place it in the top center of the
monitor. While speaking, you should maintain a constant distance of approximately 12
to 24 inches from the microphone. The microphone is directionally sensitive. Side-to-side
or up-and-down head movement will alter the voice reception and may result in
reduced recognition accuracy.

Getting Started

You are now ready to try talking to the computer. The following steps will enable
the speech recognition software and allow you to begin commanding your computer
by voice.

Go to the Control Panels folder and open Speech Setup. The Speech Setup control panel
will open and should look something like Figure 7-1. This control panel turns speech
recognition on and off and is the interface between the user and the speech recognition
system. The Options pop-up menu selects between four different modes of control
panel operation.

Using the Microphone 321

CHAPTER 7

Introduction to Speech Recognition

322

Figure 7-1 Speech Setup control panel
S[I=——=— Speech Setup
- Recognition :
hE
:')j = ion Tolerant Strict

- Optiens : Introduction ¥ | e

To use speech recognition effectively, you
should go through the Speech Introduction in
the Help mmenu. Or click the following button to
open it.

[Speech Introduction]

1.0a12

When the Options pop-up menu is set to Introduction, as shown in Figure 7-1, the user is
advised to read the material in online help. The other Options pop-up menu selections
are the following:

= Name, which lets the user select a name for addressing the Macintosh computer

= Feedback, which lets the user select a feedback voice and sounds for replies from
the computer

= Attention Key, which lets the user select a key combination to temporarily disable and
enable speech recognition

These three pop-up menu selections are described in more detail in the next
three sections.

Setting Your Computer’s Name

Before you can talk to your computer, you must give it a name. The name should be
short but distinctive—for example, “Computer.” The naming function of the Speech
Setup control panel is shown in Figure 7-2.

Getting Started

CHAPTER 7

Introduction to Speech Recognition

Figure 7-2 Setting your computer’s name
S[1&=——— Speech Setup =iceaF=F——
- Recognition :
b
:':') - l:::l an Taolerant Strict
) off

D Marne optional before commands

D Marne required before cormmands

@ MNarne required seconds

after last speech cornrnand

1.0a12

Choosing Speech Feedback

Feedback sounds are used to indicate positive recognition of a command and completion
of its execution. A variety of aural feedback is available for use, several text-to-speech
voices are available, and any system sounds can be used. The feedback function of the
Speech Setup control panel is shown in Figure 7-3.

Figure 7-3 Choosing feedback signals

S 1=——= Speech Setup |
- Recognition :
Ik
"):I = o Tolerant Strict

-~ Options - Feedback L [P —

Character:

<
Responding: [_Click! v] [
Cornpleted: =i

1.0a12

Getting Started 323

CHAPTER 7

Introduction to Speech Recognition

Setting the Attention Key

The attention key helps minimize two inherent problems of speech recognition: the
speech recognizer’s tendency to tie up the computer’s processor trying to respond to
noise in the environment, and its occasional interpretation of random sound as a

valid speech command. Thus, the attention key is useful in noisy situations in which
the speech recognizer must be temporarily disabled and reenabled. Any single key

or combination of keys can be used for this purpose except for Command-key
combinations and other combinations reserved for system use. Two suggestions are F15
(marked as “pause” on extended keyboards) and the “record” button, marked with a
microphone symbol on the new Norsi keyboard. The attention key function of the
Speech Setup control panel is shown in Figure 7-3.

Figure 7-4 Setting the attention key

S[I=——— Speech Setup

- Recognition :
:':') = 1 on Tolerant Strict

w0 Off

- Options - Attention Key ¥ | -

Toggle listening on and off:

Cornrnand-Option—"

1.0a12

The Casper User Interface

324

The Speech Setup control panel allows the user to adjust certain operating parameters
and the audiovisual feedback that indicates the state of the recognizer. Various Speech
Setup control panel modes are shown in the previous section, “Getting Started.”

Operational Control

The operational controls in the Speech Setup control panel allow you to make the
computer start and stop listening and to change the speech recognition listening
parameters. Name Optional should be used only in a quiet environment. Use of a name
before a command prevents Casper from attempting to recognize all spoken words and
possibly trying to recognize words spoken by someone other than the user.

The Casper User Interface

CHAPTER 7

Introduction to Speech Recognition

The following contains a description of each control. Note that the controls may be
changed whether or not speech is currently enabled. If it is enabled, the changes will
take effect immediately.

On/Off This control allows the user to turn speech recognition on and off.
When speech recognition is shut off, all memory and CPU and DSP
bandwidth resources are reclaimed.

The Speech Setup control panel sets the startup mode for speech
recognition. It must be explicitly turned off before shutdown, or
speech recognition will be on when the system is powered up.

Tolerant/Strict This slider allows the user to adjust the recognition level required
for Casper to recognize an utterance. When the slider is set to the
far left, Tolerant, more out-of-grammar and out-of-vocabulary
utterances are allowed. When the slider is set to Strict, Casper is
more likely to reject a valid utterance. The recommended setting is
approximately the center of the scale, as shown in Figure 7-1.

Name This editable text field allows the user to specify the name that is
used before spoken commands. You can verify that the system is
working by using the default name Computer before experimenting
with other names.

Name optional before commands
This radio button, when selected, causes the system to recognize
spoken commands that are not preceded by the name. (However,
commands may still be preceded by the name.) See Figure 7-2.

Name required before commands
This radio button, when selected, causes the system to recognize
only commands that are preceded by the name. See Figure 7-2.

Name required _ seconds after last speech command
This radio button, when selected, allows the user to enable a
timeout value, in seconds, in conjunction with Name required
mode. Within the specified number of seconds after the most recent
command, it will not be necessary to say the computer’s name
again before saying a new command.

Feedback Control

This group of controls in the Speech Setup control panel lets the user change how the
system provides feedback.

Character This pop-up menu allows the user to select which character
represents the talking computer.

Voice This pop-up menu allows the user to select the voice to be used for
spoken feedback. The choices available will depend on which
synthesizers are installed in the System Folder. If no voices are
available, this control is disabled.

Responding This pop-up menu allows the user to select the sound to be used to
acknowledge that a command has been understood. Audio
feedback is also used for commands that have no text specified for
their acknowledgment. The sounds available in this menu are the
sounds stored in the System file. Sounds are listed alphabetically.

The Casper User Interface 325

CHAPTER 7

Introduction to Speech Recognition

Completed This pop-up menu allows the user to select the sound to be used
when a spoken command has been carried out. The sounds
available are the same as those for the responding sound.

Speech Macro Editor

326

Speech macros let users initiate actions on the computer by speaking phrases. A speech
macro comprises the following pieces:

= The macro name is what users actually speak to trigger the macro.

= The macro’s context specifies where users can speak the macro name and have the
computer recognize it. For now, the context is either anywhere (the computer will
always recognize the name) or a specific application (the computer will recognize the
name only when the application is active in the frontmost window).

= The macro’s scripting system determines what script engine will execute the
commands and hence what commands are used for writing or recording scripts. The
script engine must be compatible with the Open Scripting Architecture (OSA)
standard. For the Macintosh Quadra 840Av and Macintosh Centris 660AV, such a
system is either AppleScript or QuicKeys, although others might appear later.

= The macro’s script is a sequence of commands triggered by the macro name. The
commands are interpreted by the scripting software currently selected by the Script
pop-up menu.

= Macros can specify whether to signal the user with the responding and completed
sounds by setting the feedback controls in the Speech Setup control panel.

The application Speech Macro Editor (SME) lets users create and edit speech macros.
An SME document contains a list of the speech macros in the document. Users can edit
the attributes of a macro, write or record new macros, and manage the list of macros in
the document.

Scripting Tool Requirements

The Speech Macro Editor requires the general AppleScript OSA interpreter for playing
and recording scripts. Alternatively, users can compose scripts with QuicKeys. Speech
recognition is not needed to write and edit voice macros, just to speak them.

Users will have to deal with the difference between writing scripts and recording them.
Whether either is possible depends on both the scripting system and the specific
application. The current situation for the Macintosh Quadra 840Av and Macintosh
Centris 660AV is described in this section.

AppleScript

AppleScript is good for capturing high-level descriptions of action on objects in an
application as opposed to low-level events (for example, moving the icon Untitled to
the Trash as opposed to drag from 100,100 to 512,342). The range and quality of these

Speech Macro Editor

CHAPTER 7

Introduction to Speech Recognition

high-level descriptions depend entirely upon the amount of work a developer puts
into factoring the application.

To write scripts, users must have AppleScript-aware applications and must know the
scripting commands for those applications.

To record scripts, users must have applications that can convert actions into commands
as users perform them. Moreover, they’ll probably have to look at the recorded script to
determine whether the application recorded all their actions.

As shipped, the Macintosh Quadra 840Av and Macintosh Centris 660AV are not supplied
with scriptable or recordable applications. Some third-party applications are currently
available. The Apple Scriptable Text Editor is recordable, and Excel and FileMaker" Pro
are scriptable. The AppleScript system will become more useful as more and more
applications support it.

QuicKeys

QuicKeys is good for recording low-level events and thus for handling simple
interactions with most applications. It suffers many of the same problems as the original
MacroMaker from Apple:

= It usually just replays users actions exactly (users see the interface flying by as if they
were doing it).

= Since it’s just replaying low-level events, many of its commands break down if the
position of the underlying object changes.

s It lacks the full expressive qualities of AppleScript; it's really its own language, but
one lacking sophisticated conditionals, loops, procedure calls, and so on.

To write scripts, users must know the QuicKeys language supported by the OSA
component so that they can change volatile commands such as Drag and Click At to
more stable commands where possible. The Macintosh Quadra 840Av and Macintosh
Centris 660AV system software supports QuicKeys, so users can create new macros. CE
Software also provides a set of example macros written with QuicKeys. The QuicKeys
scripting language may not include the full power of the “normal” QuicKeys system; for
example, QuicKeys extensions, which circumvent the interface and set values directly,
may not be supported.

User Requirements

As with AppleScript, users of the Speech Macro Editor will have to be fairly sophisticated
to be able to write and edit scripts; the majority of users will have to use prewritten
scripts. Recording should allow less experienced users to create voice macros, but
recording must be viewed as a shortcut for typing a new script; further editing will
probably be required.

Speech Macro Editor 327

CHAPTER 7

Introduction to Speech Recognition

Since the SME isn’t trying to reproduce the full suite of scripting tools being developed
for AppleScript (no debugging, no access to help on scripting commands, and so on), its
users will need to know how to find the answers to these questions:

» Is the application AppleScript aware? Is it also recordable? What scripting commands
does it provide?

» What scripting commands does the script system provide?

The script editor provided with AppleScript has facilities for developing more
complicated scripts than are possible with SME and includes complete debugging and
error reporting features.

Using the Speech Macro Editor

The Speech Macro Editor is an application in the Extras folder on the hard disk. Here’s
how to start it:

1. Open the Extras folder.

2. Open the Speech Macro Editor by double-clicking its icon.
When the Speech Macro Editor starts up, by default it automatically opens the Speech
Macros document from the Extensions folder. The document window for Speech
Macros lists all the speech macros it contains. Initially, the SME does not select an item
in the list. A typical Speech Macros document window is shown in Figure 7-5.

328

Figure 7-5 Typical Speech Macro document window
Sf=————— SpeechMacros —

Mame Context

Clase all subfolders Finder

Find the original item Finder

Throw these away Finder

Turn off the Trash warning Finder

Turnon file sharing Finder

Macrao 1 M3 Word

Macra 2 M5 ward

Macra 3 M3 word

Macrao 1 Studins32

Macra 2 Studins32

Macra 3 Studin /32
IMPORTANT

Speech macros can exist in any SME document. The Speech Macros
document is just the default document shipped with the computer. An
SME document must be in the Extensions folder or the System Folder
for it to become part of the current grammar. a

Speech Macro Editor

CHAPTER 7

Introduction to Speech Recognition

Recording a New Macro

To record a new macro, follow the steps below. As an example, we’ll create a speech
macro for copying the first item in the Scrapbook.

1.

Choose Create New Macro from the Macro menu.
A blank macro window appears onscreen. The insertion point is set in the Name field.

. Type the phrase that you want to speak.

It's best for the name to be a phrase rather than a single word. Recognition works
faster and more accurately if the differences among names are more pronounced. Also
note that, unlike most speech recognition technologies, Casper can recognize
continuous speech.

. From the Context pop-up menu, choose the context in which you’ll be able to speak

the new macro.
In this case, you want to have this macro available at all times, so change the context
to Anywhere.

Figure 7-6 shows these three steps performed in a New Macro window.

Figure 7-6 Typical New Macro window

=

Narme: |Eupu fram Scraphuuk| |

Contexd:
seript:

i
[] |
Record
(=]
Stop
Run Ei
<)

Note

If users open the SME on a system that’s not running AppleScript, they
can only edit scripts. The following actions with the Record, Stop, and
Play buttons and the Script pop-up menu will not be available; these
items will be dimmed. O

4.

Choose a script language for recording the macro.

The choice of script system determines what applications (and events in those
applications) are recordable. Users need to understand the benefits and limitations of
a particular choice here. Since the system and Finder won't support AppleScript,
change the script system to QuicKeys.

Speech Macro Editor 329

330

CHAPTER 7

Introduction to Speech Recognition

5. Click the Record button.
The button “locks” in place, and a small recording icon blinks over the Apple menu
while the user is in record mode. The icon that appears depends on the script system
(AppleScript displays a small cassette, QuicKeys a small microphone).

6. Switch to the application and perform the desired actions.
In this example, pull down the Apple menu, choose Scrapbook, choose Copy, and
close the window.

IMPORTANT

Script systems may handle the posting of commands differently.
For example, AppleScript sends commands to the SME after
each one occurs. QuicKeys returns an entire script after the user
stops recording. a

7. Return to the SME by clicking an open SME window or by choosing SME from the
Application menu, then click Stop.
Wait until the recording icon stops blinking. The script appears in the script area of
the window.

8. Click the close box to save the new macro.

Renaming a Macro

To change the name of a macro, follow these steps:

1. Select the macro you want to edit and choose Edit Macro from the Macro menu, or
double-click the macro name.

2. A macro window appears.
3. Type the new name in the text field.
4. Click the close box.

The window disappears, the name and context items in the list of macros change, and
the list is sorted.

Saving Macro Changes

At any point, the user can save changes to an SME document by choosing one of the
Save commands in the File menu. These commands are available from the main
document window or any of the macro windows. If a save command is chosen when a
macro window is active, the SME saves the entire document in which that macro resides.

The SME displays the standard Save Changes dialog box if the user closes a document
window without having first saved changes.

Loading Macros

Casper loads macros at the following times:

= When users turn speech on from the Speech Setup control panel, Casper loads rules
from any SME document that is in the Extensions folder or the System Folder on the
startup disk. Casper also loads any speech rules documents found in either of these
two locations.

Speech Macro Editor

CHAPTER 7

Introduction to Speech Recognition

= When users make changes to any of the SME documents loaded from the Extensions
folder or the System Folder, Casper reloads the changed SME documents when the
user saves the document. Casper should acknowledge that it’s reloading the macros
(so that users know it’s happening) by posting a message to the feedback window.

= Users who place new SME documents or new speech rules documents in the
Extensions folder or the System Folder must stop and restart Casper to load the new
documents. Casper keeps track only of the documents it loaded when starting up.

» If an application contains speech rules in its resource fork, they will be loaded when
the application is launched. For further information, see “Speech Rules Files,” in
Chapter 8.

Built-in Speech Rules and Grammar

Speech rules are structures used to define how words can be strung together for speech
recognition. They are discussed in detail in Chapter 8, “Speech Rules.” Since many
commands (such as those that choose menu items) are required in all applications, a
standard set of rules is built into Casper to provide a robust set of standard commands.
Many menu functions are common across a wide variety of applications, and most
applications will also use Finder-type commands to access the Apple menu items.

In English there are grammar rules that define the noun-verb-subject sequence. A similar
sequence must be identified explicitly for the speech recognizer. For example:

“Open Chooser”
“Open the Chooser”
“Open menu item Chooser”

could all be used to open the Chooser control panel. All of the acceptable word strings
must be defined in order for the Speech Monitor to select the correct command. If the
user says “Chooser open,” the rules in this example will not recognize that statement as
an acceptable command. If the word string “Chooser open” is added to the rules, then
Casper will respond with an acceptable command.

In the Macintosh Quadra 840Av and Macintosh Centris 660AV speech recognition
software, all menu items and dialog box buttons are controllable by speech. Use the
following command forms:

= “Open AppleMenultem,” where AppleMenultem is any item within the Apple menu—
for example, “Open Alarm Clock”

= “Switch to ProcessMenultem,” where ProcessMenultem is the name of any process—for
example, “Switch to Finder”

A new Speakable Items folder exists in the Apple Menu Items folder in the Macintosh
Quadra 840Av and Macintosh Centris 660AV system software. Any item or alias to an
item within it will be speakable. Some aliases to standard items are installed
automatically, such as Open System Folder. The phrase to speak these items is the same
as the name given to the item. AppleScript (or QuicKeys) items can be placed in the

Built-in Speech Rules and Grammar 331

CHAPTER 7

Introduction to Speech Recognition

Speakable Items folder as well. This folder is not dynamically updated at present, so
speech must be shut down and restarted to load any new items placed in it.

Here are some sample Finder phrases:

“Hello”

“What time is it”

“What day is it”

“close window”

“close all windows” (available only when the Finder is frontmost)
“zoom window”

“is file sharing on”

“start file sharing”

“stop file sharing”

“shut speech off”

Here are sample printing phrases:

“Print from n to n”
“Print from page n to m”
“Print n copies”

“Print page n”

“Print page n to m,” where n and m are numbers from 1 through 99. (This works in all
applications that use Cmd-P to print.)

Performance

332

Casper’s speech recognition goal is a minimum in-grammar error rate for a typical
task in a low-noise environment. In-grammar error rate is the number of times the
speech recognition software does not respond as intended when a defined command
is spoken. All of the variables listed in the next section affect the ability of the system
to recognize speech.

Real-Time Response

Response time is a function of several variables:

Clear pronunciation. The search tends to be faster if the utterance is spoken clearly in
North American English.

Grammar complexity. The higher the number of possible word phrases in the speech
rules, the longer the search and the higher the error rate.

Performance

CHAPTER 7

Introduction to Speech Recognition

= Word complexity. The choice of words can affect the duration of the search;
similar-sounding words are harder to distinguish.

» Extraneous noise. Additional noise affects the quality of the input and potentially
increases the search time as the noise is increased.

= Room acoustics. Bad acoustics may degrade system performance, including response
time from one acoustic environment to the next.

s Environmental adaptation. This algorithm adapts to changing room conditions and
background noise—after every five utterances, the environmental adaptation is
updated.

Types of Errors

Taken as a group, the rules for a specific application form the grammar for that applica-
tion. The recognition search returns the best match from the available grammar.

One type of error occurs when the search results are too uncertain, in which case the
speech recognizer rejects the sentence as unrecognizable. Another type of error occurs
when an in-grammar match is selected to an incorrect sentence and the speech
recognizer responds although no command was given.

Apple’s naming conventions for speech recognition responses, both correct and
erroneous, are shown in Table 7-1.

Table 7-1 Grammatical naming conventions

In-grammar Out-of-grammar

Correct recognition Correct rejection

Incorrect recognition Correct detection of new word
Incorrect rejection Incorrect recognition

(correct words/ grammar not identified) (through substitution or insertion)

For the in-grammar case the first item is the nonerror response. For the out-of-grammar
case, the first two items are the nonerror responses. There are several reasons why a
phrase might not be properly recognized—for example, unclear pronunciation,
background noise, or bad room acoustics.

Acceptable Limits or Constraints

The system is constrained to North American adult English used in grammatically
simple sentences. Note that this also implies a limited vocabulary.

The system accuracy will typically drop during changing environmental conditions.
Adaptation takes approximately five utterances.

The speech recognition software currently understands only clearly spoken English
words. The user must speak in well-defined sounds for all words and sentences.

Performance 333

334

CHAPTER 7

Introduction to Speech Recognition

Note

The speech recognizer cannot recognize most nonstandard English
words. A nonstandard word could be any word that is formed as a
result of concatenating words, using abbreviations, or other shortcuts,
which typically result in many ways to say the same word. The current
recognizer accepts only one pronunciation for a word, with only small
variations from that pronunciation. As an example, a made-up word
used as a filename may not be recognizable. Abbreviated forms of words
(such as MPW) are not typically recognizable as words. O

Performance

CHAPTER 8

Speech Rules

CHAPTER 8

Speech Rules

This chapter describes how the speech recognition software in the Macintosh

Quadra 840Av and Macintosh Centris 660AV uses speech rules to interpret and respond
to the user’s utterances. It also describes the Conpi | eRul es tool available with the
Macintosh Programmer’s Workshop (MPW), which compiles the rule source files

into resources. Read Chapter 7, “Introduction to Speech Recognition,” before reading
this chapter.

Overview

336

At the heart of Apple’s speech recognition system is a data structure called a speech rule.
A speech rule is a word or a sentence that is defined to perform an action within the
current computer environment. Each rule performs a unique function depending on the
words spoken. An application’s grammar is derived from the set of speech rules and the
current context.

A rule can include variables used in locations that can be more than a single word. A
word within a sentence that can be substituted with another word is called a category.

A category can be an individual word or another category. When it is a predefined
category, the acceptable words are listed in that category. For example, <nunber > can
be a number from 1 to 9. A <t en> is defined as a number in the tens location, plus a
<nunber > or a 0. A <hundr ed> is defined as a number in the hundreds location, plus a
<ten>ora0, plusa<number>oral0. This process can be continued to make up any
arbitrarily large number. In each case the category is made up of previously defined
categories, except for <nunber >, which is a list of individual words.

In its simplest form, a speech rule maps some spoken utterance to a value or an action.
When the speech recognition software detects that the user has uttered the phrase, the
corresponding value is computed or an action is performed. Here is an example of a
simple speech rule:

% ul e
bol d
%action
tell application "M/App"
set style of selection to bold
end
%end

The effect of this rule is that whenever the user says “bold,” the application named
MyApp changes the selected text to bold. The % ul e clause signals the beginning of a
new speech rule; the line containing bol d contains the phrase that should be recognized;
the %@act i on clause signals the beginning of the action part of the rule; the lines from
tel | toend contain the script that should be executed when the rule’s phrase is
recognized; and the ¥&nd clause signals the end of the rule.

Overview

CHAPTER 8

Speech Rules

A speech rule can have any number of phrases—for example:

% ul e
bol d
change to bold
bold this
make it bold
%action

tell application "MApp"
set style of selection to bold

end
%end

This is a valid speech rule, the effect of which would be to cause MyApp to change the
style of the selection when any of the specified phrases is recognized.

Note

Avoid using the same speech string twice. If two speech commands are
identical, Casper will use only the first macro it finds. The second macro
will be ignored. O

One problem with the foregoing rule is that it causes the MyApp application to change
styles, no matter what application is currently active. So, if MacWrite" is the active
application and the user says“bold,” MyApp will change styles (or worse, if MyApp is
not running, it will be launched and then it will change styles). One way around this
problem is to specify that the rule should be active only when MyApp is the active
application:

% ul e
bol d
%ont ext application "MApp"
%action
tell application "MApp"
set style of selection to bold
end
%end

In this case, the speech recognizer listens for the phrase bold only when the MyApp
application is active. Spoken commands that make sense only when a particular
application or window is active can be marked in this fashion.

As you begin to build up larger vocabularies for your computer, you will want to avoid
having to enumerate every utterance that the system should recognize. Speech rules can
be used to construct entire grammars of what the user can say. For example, let’s say you

Overview 337

338

CHAPTER 8

Speech Rules

want to define a rule that allows the user to change the selection to any style, without
having to list every utterance separately:

%lefine style
bol d
italic
underl i ne
%end

The foregoing is called a category rule. It is similar to the command rule in that it defines
a set of phrases that the user might say. However, it does not specify an action. Instead,

this rule defines a token, <st yl| >, which can be used in other rules instead of directly

enumerating the category’s phrases.

% ul e
<styl e>
change to <styl e>
%act i on
tell application "MApp"
set style of selection to ...
end
%end

Defining the rules this way lets you specify the syntax of the style command itself
separately from the syntax for the style names. Other commands can also refer to the
<styl e> category.

Note that in the action for the preceding rule, an ellipsis (. . .) was used in place of the
actual style. The initial example used a constant style, but in this case, the actual style
depends on which style the user says. There is a way to pass that information from the
category rule to the command rule, by attaching a script fragment to each phrase. The
script fragment returns a value representing the meaning of that phrase—for example:

%lefine style

plain ; {neani ng: plain}

bol d ; {nmeani ng: bol d}

italic ; {nmeaning: italic}
%end

For each phrase, the text to the left of the semicolon defines what the user can say, and
the text to the right of the semicolon is the AppleScript expression. This technique allows

Overview

CHAPTER 8

Speech Rules

the rule writer to assign a meaning to each of the possible phrases that the user may
utter. The rule that uses this meaning, then, looks like this:

% ul e
<s:style>
change to <s:style>
%action
tell application "MApp"
set style of selection to neaning of s
end
%end

Every reference to a category whose value is needed should be preceded with a variable
name. When the subsequent script is executed, the variable will be bound to the value
returned by the category rule. For example, if the user says “change to bold,” the style
category matches the word bold, producing as its value the Apple event record

{ meani ng: bol d}. The above command rule then matches the entire utterance,
executing its script with the variable s bound to the value produced by the corresponding
category rule. Finally, the expression meani ng of s retrieves the style constant from the
meaning record.

Note the use of the meani ng property to access the value computed by the category.
Whenever a phrase’s script is evaluated, the value returned is always coerced into an
Apple event record. In the example just given, a record was used as the value of each
of the category’s phrases. Since it was already a record, it was used as is. If the value is
any other data type, it is stored as the meani ng property of an Apple event record,
and the record is used as the returned value. For example, the following two phrases
are equivalent:

one ;o1
one ; {meani ng: 1}

Thus, when accessing the value bound to a variable in a category reference, it is usually
necessary to get its meani ng property.

Here is another example of using categories to define a grammar for numeric digits:

%define digit

one 1

t wo 2

t hree ;3

ni ne ;9
%end

Overview 339

340

CHAPTER 8

Speech Rules

This category defines a simple grammar that will recognize a single spoken digit and
return the numeric value of that digit. A script can access the value returned by a
category by preceding the category reference with a variable name:

% ul e
what is <n:digit> plus <mdigit>
%action

set x to (nmeaning of n) + (neaning of m

%end

Using the techniques described so far, you can define a category for recognizing whole
numbers less than 100. First, define a rule to recognize the tens words:

%define tens

twenty ;20

thirty ; 30

ni nety ;90
%end

This rule is exactly like the definition of digit just given. Next, define a rule to recognize
the teens words:

%defi ne teens

ten ;10
el even ;11
ni net een ;19
%end
Overview

CHAPTER 8

Speech Rules

Finally, define the rule that combines all the parts and returns the correct value for
multiword phrases:

%glef i ne uhundred

<n:digit> ;on
<n:teens> ;on
<n:tens> ;on

<n:tens> <d:digit> (meaning of n) + (meaning of d)
%end

For the first three phrases, the value returned is simply the value recognized by the
subordinate category. For example, a single digit is a valid number to be recognized by
this rule, and its value is simply the value returned by the digit rule. In the case of the
fourth phrase, you want to recognize spoken numbers such as twenty-five. The script for
this phrase essentially computes the meaning of speaking these two words in sequence.
This is a trivial example, but the general mechanism is a powerful one that can be used
to associate meaning with a wide variety of spoken commands.

Note that in the fourth phrase above you did not write n + d as the script. This is because
the values bound to n and d are Apple event records, not numbers. In the previous cases,
you were simply passing on the values, so you could leave them as records; but when
you want to do arithmetic, you need to access the meaning explicitly. An equivalent, if
more verbose, expression is the following:

<n:tens> <d:digit>, {neaning: (nmeaning of n) + (neaning of d)}

Sometimes the meaning of an utterance resides simply in the words spoken. For
example, consider a phone-dialing application in which you want to acknowledge that
the spoken command is being carried out:

%defi ne nane

John Doe : {phone: "555-7442"}
Bob Strong ; {phone: "555-3295"}
%end
% ul e
call <n:nane>
%act i on

di al (phone of n)
acknow edge sayi ng "Now dialing"
%end

Overview 341

CHAPTER 8

Speech Rules

In this example, each person’s phone number is attached as part of the neani ng
structure. Notice that a different property is used. This works fine; you can use any
properties that you want as long as you return a record. With speech recognition,
however, there is always the possibility of a mistaken recognition. It would be better
to tell the user the name of the person that the system is dialing, so that if it fails to
recognize correctly, the user has a chance to hang up before the call goes through.
You could attach the person’s name to the meaning structure:

John Doe ; {phone: "555-7442", nane: "John Doe"}

However, this would be redundant. As a convenience, the Speech Monitor always adds
an utterance property to the value generated by a phrase script. The value assigned to
this property is a string containing the words that were matched by the category rule. So,
you can rewrite the action script of your phone-dialing rule as follows:

% ul e

call <n:nane>
%action

di al (phone of n)

acknow edge saying "Now dialing
%end

& (utterance of n)

Speech Rules Files

342

Speech rules are data structures that determine how spoken commands are interpreted.
They are stored as resources either in speech rules files or in the resource fork of an
application. When speech is started, the System Folder and the Extensions folder are
scanned for speech rules files. Any speech rules files found in these two locations are
scanned, and the rules in those files become active and are used for spoken command
recognition. Rules resources present in an application are loaded when an application is
launched.

There are actually two different file types used for speech rules files: one for speech rules
files proper and one for macro files. A speech macro is a simplified kind of speech

rule that can be created with the application Speech Macro Editor. Internally, these files
have identical formats, and the speech recognition system does not distinguish between
the two.

The Conpi | eRul es MPW tool is used to generate rules files or rule resources from text
files. The syntax to invoke Conpi | eRul es is

Conpi | eRul es [options | input-file ...

Speech Rules Files

CHAPTER 8

Speech Rules

Any number of input files may be specified. The valid options are as follows:

-b

- base integer

- C creator

The - b option causes all scripts in the file to be precompiled and
stored in their binary format. If this option is not specified, the rules
will be compiled by the Speech Monitor at run time, on demand.

The - base option causes rule resources to be numbered beginning
at the specified ID. If this option is not specified, resource IDs begin
at 0. This option is useful in order to prevent resource ID collision
when the rule resources are going to be installed in an application
file. The rule compiler currently generates resources of types
"rule'," ' glob',and" scpt'.

The - ¢ option may be used to specify a creator for the output file. If
not specified, the creator is set to ' 2??2?" .

-category category-name

-generate all
- gener at e integer

-met hod total |

- 0 output-file

-p

-uni que

This option is used in conjunction with the - gener at e option to
cause phrases generated by a particular category to be generated. If
this option is not used, then phrases are generated from the set of all
possible commands.

The - gener at e option is used to print to standard output a list of
utterances generated by the grammar defined by the input files. If
al | is specified, then all possible utterances are listed. Otherwise,
the number of utterances specified by integer is printed out,
generated at random according to the method defined by the

- met hod option.

phrase | m xed

This option is used to specify the method of generating random
utterances. The t ot al method generates each utterance from the
total set of possible utterances with equal probability. The phr ase
method generates utterances such that each phrase from a rule is
equally likely to be chosen. The m xed method uses the phr ase
method to choose a top-level command at random and then uses
the t ot al method to expand any categories contained in that
utterance. The default method is m xed.

The output file is designated with the - 0 option. If this option is not
specified, the input files are read and checked for correct syntax, but
no output is created.

The - p option causes informative progress messages to be written
to standard output as the rules are compiled.

The - uni que option is used in conjunction with the - gener at e
option in order to force all generated utterances to be unique.

The Conpi | eRul es tool must be run on a system that contains the scripting systems to

be compiled (that is,

AppleScript). Errors in the speech rules file will result in messages

being written to standard output with the error and line of the file where each error
occurred. The format for the text file is given in the next section.

Speech Rules Files

343

344

CHAPTER 8

Speech Rules

There are two kinds of speech rules: command rules and category rules. Command rules
are like speech macros; in fact, speech macros are instances of command rules. They
cause a specified action to occur when the Speech Monitor hears a particular phrase.
Every command rule has the following parts:

» Alist of phrases, each of which defines a phrase that the user may utter to cause the
action below to be carried out. Each phrase has an optional script that can define a
semantic value to be associated with the phrase and can be accessed in the action’s
script. The phrase itself consists of a list of tokens that are references to either words
or categories. Words are like terminals in a grammar, and categories are like
nonterminals.

» An optional context that defines when the command rule is active. If the context is
empty, the rule is always active.

» An optional condition, which is a script that determines whether or not the rule should
be considered active. This is like the context, except that it is evaluated rather than
constant, and it is evaluated after the utterance has been recognized. It is useful for
resolving ambiguities when more than one rule has matched the user’s utterance.

» An optional Boolean acknowledge flag that causes the command to be acknowledged in
the standard (nonverbal) way. If it is desired to provide verbal acknowledgment, then
the flag should be f al se, and the acknowledge AppleScript command should be
used. Normally this flag is used for very short commands, such as menu items, dialog
box buttons, and so on.

» An optional target clause, which indicates a default target for the condition and action
scripts. If no target is specified, the default target for the scripts is the Speech Monitor
itself. The target can be changed in the script by using the t el | clause of AppleScript.

= Anaction, which is a script that is executed when one of the rule’s phrases has been
uttered by the user and recognized. The action’s script may refer to variable bindings
created by any of the phrase’s scripts that have matched the user’s utterance. The
default target is Speech Moni t or, so that any scripts sent to the Speech Monitor can
be used without the standard t el | appl i cati on block.

» An optional index clause, which consists of a list of index terms used by the help
system. It is recommended that this clause always be provided.

= An optional description clause, which is a textual description of the effect of the
command. This field is used by the help system.

Category rules are used to create subgrammars, which may be used by command rules
and other category rules. Each category rule defines a set of phrases that may be
recognized as part of an utterance. Category rules do not have actions and are relevant
only when they are referred to by command rules (directly or indirectly). Every category
rule has a name, which is used to refer to the category in other rules.

In addition, there are two subtypes of category rules: internal and external. Internal
categories are rules that have their phrases listed explicitly in the rule. The list of phrases
has exactly the same form and function as in command rules. The variable bindings
assigned by the phrases’ scripts can be used by any rule that refers to the category.
External categories are rules that have their phrases computed by a script. The value
returned by the script should be either a list of strings or a single string of phrases

Speech Rules Files

CHAPTER 8

Speech Rules

separated by newline characters. External categories have an additional option called
dynamic, which determines when the script is evaluated. Nondynamic external
categories have their scripts evaluated once, when speech starts up (or if there is a
context, each time the context makes a transition from not active to active). Dynamic
external categories have their scripts evaluated every time an utterance is detected and
their context is active (if the rule has a context).

When a speech rules file is saved in the Macintosh System Folder or Extensions folder
and speech is on, ar el oad r ul es command needs to be sent to the Speech Monitor or
speech must be shut off and restarted to load the changes. The Speech Macro Editor does
this, for example, when you save a macro file that is stored in one of these two places.
You can also use AppleScript to make this happen. The following script causes the
named speech rules file to be loaded or reloaded:

tell application "Speech Mnitor"
reload rules (alias "Hard Disk:Rules:My Rule File")
end

Speech Rules File Syntax

Speech rules are stored as resources either in speech rules files stored in the System
Folder or in the resource fork of an application. The resources in these files are created
from a text form using an MPW tool called Conpi | eRul es. The syntax for the text form
of speech rules files is described in the next section. These notations are used:

= Anything appearing between brackets is optional. The brackets themselves do not
appear in the source file.

» Ellipsis points (three periods) are used to denote zero or more repetitions of the
preceding element.

= A name in italics is a reference to another syntactic element, defined elsewhere. Any
other item not in italics should appear in the source file exactly as indicated.

Command Rules

The general form of a rule is this:

% ul e
phr ase

[Y%€ontext [context ...]]
[¥%acknowl edge]
[% arget [signature]]

Speech Rules File Syntax 345

346

CHAPTER 8

Speech Rules

[%€ondition [script-type]

script]

Y%action [script-type |

script

[% ndex term [, term ...]|]

[Y%elescription
description]
%end

The % ar get statement is used to set the default target for all scripts that occur in the
rule. This includes any phrase scripts, the condition script, and the action script. If no
target is specified, the default target is used, and if no default has been set, then the
default target is the Speech Monitor. Note that the script’s target affects what termi-
nology is available to the script. For example, if the values computed by phrase scripts
refer to application-specific terminology, then either the script must explicitly use at el |
statement or the rule must have a target specified. If no signature is specified in the
target statement, the Speech Monitor becomes the default target for the rule’s scripts.

If the %acknow edge statement is present, a standard (nonverbal) acknowledgment is
executed according to the settings in the Speech Setup control panel.

The %€ ondi t i on statement specifies a script that evaluates to either t r ue or f al se to
determine whether to execute the action associated with this rule. Unlike cont ext, this
check is done after the rule has matched and thus is useful for resolving ambiguity when
more than one rule matches the user’s utterance.

The % ndex statement is used by the help system to allow the user to find speech
commands that are relevant to a particular topic. This helps the user know what to say at
any given point. As an example, a rule having to do with sending faxes may have the
following index clause:

% ul e
fax this to <person>

% ndex emmil, fax, send
%end

The %lescri pti on statement should be an English description (on as many lines as
needed) that the help system can use to explain the effect of the command to the user.

The order of the %statements is flexible.

Speech Rules File Syntax

CHAPTER 8

Speech Rules

Phrases and AppleScript Clauses

A phrase defines a sequence (or set of sequences) of words that may be uttered by a user
and recognized by the speech system. Syntactically, a phrase is specified as a sequence of
space-separated tokens, each of which is either a word or a category reference. Words
that contain nonalphabetic characters must be enclosed in quotation marks—for example:

"don't" save

A category reference consists of an opening angle bracket (<), followed by an optional
label and a colon, followed by a category name, followed by a closing angle bracket (>)—
for example:

<n: nunber >

If the value returned by the number category is not needed in the clause’s script, then the
label and its colon may be omitted:

<nunber >

If the label is used, it can be referred to as a property in the value script attached to the
phrase (for category rules) or in the action script (for command rules)—for example:

odefine ..

print page <n:nunber>; {start: neaning of n, end: neaning of n}

%end

or, alternately,

% ul e
print page <n:nunber>
%act i on

nmeani ng of n ..
%end

In category rules, each phrase may have an associated script that computes its value.
There is no way to specify another script type for the value scripts of phrases—
AppleScript is the only script system currently supported.

For command rules, you can refer to the category reference variables in the action script
itself, as illustrated in the preceding examples.

Speech Rules File Syntax 347

348

CHAPTER 8

Speech Rules

Internal Category Rules

The following format is used for defining internal categories:

%lefine name [open]
[% arget [signature]]
phrase [; wvalue-script]

%end

In this format, name is the category name. It must be a single word without punctuation.
The phrase and clause formats are explained in the previous section.

External Category Rules

The following format is used for defining external categories:

%lefi ne name external [dynamic] [open]
[%€ontext [context ...]]

[% arget [signature]]

%action [script-type]

script

%end

The external and dynam c properties are indications that the possible phrases of this
category should be obtained by executing the script that follows, using the script-type
indicated. If script-type is not specified, then the default will be used and consequently
must have been specified in a prior default statement. The value returned by the script
should be either a list of strings or a single string of phrases separated by newline
characters. These values are then active phrases for use within the grammar.

If context is specified for an external (not dynamic) rule, the action will be reevaluated
whenever that context becomes active.

The string containing the exact source text as opposed to the words spoken is an
additional property that is present for external categories. It is available through the
sour ce property. For example, consider an external category that returns the names of
all sounds stored in the System Folder, assuming the class ' sound' is implemented in
the application theApp:

%lefi ne sound external

%action Appl eScri pt

tell application "theApp"
nane of every sound

end tell

%end

Speech Rules File Syntax

CHAPTER 8

Speech Rules

One of the sounds might have a name such as O i ck1. The pronunciation generated for
this item might be something like click one. However, to cause the sound to be played,
you need its exact name. For this reason, the Speech Monitor provides both the words
that are recognized in the utterance property and the exact name of the item in the
source property—for example:

% ul e
pl ay <s:sound>
%ction Appl eScri pt

utterance of s - "Cick 1"
source of s - "dick1l"
%end

The dynami ¢ option of category rules causes the rule to be evaluated every time speech
is detected. Extensive use of dynamic categories is not recommended, since this will
slow down the apparent response time of the speech recognizer.

Here is an example category that loads the values of the first two cells of an Excel
spreadsheet as possible phrases:

%lef i ne <possi bl eAnswer s> ext er na
%ont ext application "Excel"
%ction Appl eScri pt
tell application "Excel"

{val ue of cell 1, value of cell 2}
end tel
%end

Context Specifiers

Contexts may be specified for both command rules and external category rules. A context
specifier is a declarative representation that tells when the rule should be considered to be
active. A context specifier is simply a list of context descriptors, each of which must be
“active” in order for the whole context specifier, and thus the rule, to be considered
“active.” The syntax for a context specifier is this:

%ontext [context ...]
Each of the one or more context descriptors can be one of the following:

appl i cation name
application id

W ndow name

user name

suite id

Speech Rules File Syntax 349

350

CHAPTER 8

Speech Rules

The application context descriptor causes a rule to be active only when a particular
application is active. The application may be specified by its name or its signature. If the
name is specified, Conpi | eRul es looks for an application with that name and uses its
signature. Examples of valid application contexts are

%ont ext application "MApp" application named MyApp
%ont ext application ' MACS the Finder
%ont ext application * any application

The window context descriptor causes a rule to be active only when a specific window
of the active application is active. Windows can be identified by either their name, their
kind (the wi ndowKi nd field of W ndowRecor d), or (for dialog boxes) their resource
ID. If a window descriptor is used by itself, without an accompanying application
descriptor, the rule will be active whenever the descriptor matches the current context,
regardless of what application it belongs to. Here is an example of a valid window
context:

%ont ext wi ndow " Speech Set up" window named Speech Setup

The user context allows a rule to be active when a particular user name has been entered
in the Sharing Setup control panel. This allows users to have their own rule sets on a
machine that is used by more than one person—for example:

%ont ext user "Bob Strong" enable Pig Latin rules

Default Statements

The default statement can be used to define rule characteristics that apply to all
following rules in the speech rules file. This alleviates the need to repeat the specification
for each rule. Valid default statements have these forms:

%lef aul t cont ext context ...
Y%lef aul t script script-type
Y%ef aul t target signature

In the first case, the context descriptors are as specified in the context clause of rules—
for example:

9%default context application "M/App"

In order to negate the effect of a default context inside a rule definition, simply specify
the desired context, or an empty context if the rule is to be globally active:

9%default context application "M/App"

% ul e

Speech Rules File Syntax

CHAPTER 8

Speech Rules

hel | o

% ont ext

%action

acknow edge sayi ng " Yo"
%end

The default itself can be undone by specifying an empty context descriptor:
%ef aul t cont ext

A default script type can be specified as follows:
%aefault script AppleScript

Subsequent scripts would not have to specify the script type in their condition and
action clauses.

Global Scripts

A speech rules file may contain any number of scripts that are executed when the speech
rules file is loaded. These are useful for defining handlers (subroutines) that are available
to speech rules. Scripts defined using the %gl obal clause are executed in a global
context and thus can be used to define handlers and properties that are available to all
rules, even in other files. Scripts defined using the % ocal clause are executed in a
context that belongs to the speech rules file itself and thus cannot be shared with rules
and scripts in other files:

%l obal [script-type]

%end
or

% ocal [script-type]

%end
If the optional script type is not specified, the default script type is used. It must have

been previously defined. Any number of these clauses can appear in a file. Note, how-
ever, that scripts using different scripting systems cannot share handlers or properties.

Speech Rules File Syntax 351

CHAPTER 8

Speech Rules

CompileRules Error Messages

352

The following are descriptions of the error messages that can be generated by the
Conpi | eRul es tool. For syntax errors, a line is printed with the filename and line
number in a form that is suitable for executing in the MPW Shell (for example, by
entering triple-click—Enter). Doing so will open the source file and set the selection
to the line containing the error.

Cannot create output file
The file you specified with the -o option could not be created.
Possible reasons are that you specified a file on a locked volume or
in a read-only folder; the volume containing the file you specified is
full; or the startup volume, which is used as temporary storage
during compilation, is full.

Cannot find input file
One of the input files you specified does not exist.

Conmand doesn't need any arguments
Indicates that an argument was encountered for the acknowledge
clause. This clause does not take any arguments.

Couldn't get file info for
One of the input files you specified could not be accessed.

Didn't expect this:
During the processing of a rule phrase, some lexical element was
found that didn’t make sense. Typically this is caused by unpaired
angle brackets, a missing label delimiter, an improperly quoted
word containing special characters, or the like.

Enpty phrase script
A rule phrase was encountered that had the script delimiter
(semicolon), but no script was found.

Enpty rul e phrase
An empty rule phrase was encountered. All rule phrases must have
at least one word or category reference.

External rul e shouldn't have a phrase
Indicates that a phrase was specified on an external category rule.
External categories shouldn’t have phrases, since their phrases are
computed externally by a script.

File is not a text file
One of the input files you specified was not a text file.
Conpi | eRul es can compile only text files.

Invalid context
Indicates that the context descriptor had invalid syntax. See
“Context Specifiers,” earlier in this chapter, for a description of
valid context descriptor syntax.

CompileRules Error Messages

CHAPTER 8

Speech Rules

M ssi ng category nane
The category name is missing from a category definition. All
category definitions must specify the category name.

M ssi ng context descriptor
Indicates that a context specifier was encountered that had no
context descriptor. At least one context descriptor must be included.

M ssing default type
Indicates that the script type is missing from a default script
statement.

M ssing script type
This error occurs when a script specifier occurs without a script
type, when no default has been specified for the file. Either a default
script type must be specified or every script specifier must include
a script type.

No i nput files specified!
You must specify at least one input source file.

Premat ure end of phrase
Indicates that the end of a phrase was encountered when expecting
a closing category reference delimiter. This is typically caused by a
missing right angle bracket, label, or category name.

Rul e already has a condition
Indicates that more than one condition clause was found in a rule
definition. Only a single condition may be specified for a rule.

Rul e al ready has a cont ext
Indicates that more than one context was specified for a rule. A rule
can have only one context specified, although that specification can
contain multiple context descriptors.

Rul e al ready has an action
Indicates that more than one action clause was found in a rule
definition. Only a single action may be specified for a rule.

Trouble witing to tenporary file..
An error occurred while writing to the temporary file used during
compilation. Possible reasons are that the startup volume is full or a
disk error occurred.

Unknown cat egory option
Indicates that one of the category options specified was unknown.
Valid category options are open, ext er nal , and dynani c.

Unknown or invalid command
Indicates that an unknown clause was encountered. The only valid
rule clauses are %gont ext, ¥%condi ti on, % ar get,
Yacknow edge, ¥act i on, and %end. The only valid clause for a
global script is ¥&nd.

Unknown rule file conmand
Indicates that an unknown speech rules file command was
encountered. Valid speech rules file commands are %glef aul t,
%gl obal , % ocal , %def i ne, and % ul e.

CompileRules Error Messages 353

CHAPTER 8

Speech Rules

Unknown scripting system
This error occurs when a script type is specified that is not
registered with the system. This can occur when the script type is
misspelled or when the scripting component was not installed at
system startup time.

Apple Events Speech Events

The following defines the syntax of Apple events that are implemented by the Speech
Monitor and can be invoked by speech rule scripts:

acknow edge [success | failure | progress]
[of hearing | recognizing | understanding | responding]
[saying text]
[caption text]

reload rules [file]

An Example: A Simple Checkbook

354

Following are the complete rules for a simple checkbook grammar. For lack of a real
application to control, the rules simply type the results into the Note Pad application.

%define uten
one ;
t wo ;
three
four ;
five ;
Si X
seven ;
ei ght ;
ni ne

%end

© 0o ~NOoO O~ WN PR

%define digit
zero ;0
oh ;0
<x:uten> ; X
%end

Apple Events Speech Events

CHAPTER 8

Speech Rules

%lefine tens
twenty ;20
thirty ; 30
forty ;40
fifty ; 50
Si xty ; 60
seventy ; 70
ei ghty ; 80
ni nety ;90
%end
%lefi ne teens
ten ; 10
el even ;11
twel ve ;12
thirteen ; 13
fourteen ; 14
fifteen ; 15
sixteen ; 16
sevent een; 17
ei ghteen ; 18
ni neteen ; 19
%end
%lefi ne utwenty
<x:uten> ; X
%end
%lef i ne uhundred
<x:digit> x
<x:teens>; X
<x:tens> ; X
<x:tens> <y:uten>; (nmeaning of x) + (meaning of y)
%end
%lefi ne ut housand
<x: uhundred>; x
<x: uten> hundred; (neaning of x) * 100
<x: uten> hundred <y:uhundred>; (nmeaning of x)
* 100 + (meani ng of vy)
<x:uten> hundred and <y:uhundred> ; (meaning of x)
* 100 + (neani ng of y)
%end

An Example: A Simple Checkbook 355

CHAPTER 8

Speech Rules

%lefi ne nmoney
<x: ut housand> dol | ars; (neaning of x) * 100
<x: ut housand> dol | ars and <y: uhundred> cents
; (neaning of x) * 100 + (neaning of y)
<x: uhundred> <y: uhundred>; (neaning of x) * 100 +
(meani ng of y)
<x: ut en> <y: uhundred> <z: uhundred>
; (meaning of x) * 10000 + (meaning of y) * 100 +
(meani ng of z)
%end

%lef i ne merchant
Enpori um
Sears
JC Penney
Mar shal | s
Macys
Nor dst r om
Paci fic Gas and El ectric
Paci fic Bell
%end

% ul e
%¢ont ext application "npad"

pay <n:nerchant> <x:nbney>

pay <x:nmoney> to <n:nerchant>
%action appl escri pt

do nenu "d ear”

type "pay " & neaning of x & " to " & utterance of n
% ndex checkbook, pay
%description

Pays t he vendor the anpbunt requested (actually sinply types

the vendor anount into the open Note Pad w ndow).

%end

% ul e
open checkbook
%acti on Appl eScri pt
do nmenu "Note Pad"
% ndex checkbook
%description
Opens the Note Pad to begin checkbook function
%end

356 An Example: A Simple Checkbook

CHAPTER 8

Speech Rules

% ul e
%¢ont ext application "npad"
cl ose checkbook
%acti on Appl eScri pt
do nenu "Quit"
% ndex checkbook
%escription
Cl oses the Note Pad to stop checkbook function.
%end

The rule to pay <mer chant > <nbney> uses the Speech Monitor to actually type the
result into the Note Pad. No “tell application” block is needed, because the Speech
Monitor sets itself to be the default application. Ideally, the Note Pad should be
AppleScript-aware, so the script could be

tell application "Note Pad"
set ourResult to "pay " & (neaning of x) &" to " &
(utterance of n) & "\r"
copy ourResult to contents of selection
end tell

and no doMenu or t ype command would be needed.

An Example: A Simple Checkbook

357

PART F O U R

System Software
Modifications

This part of the Macintosh Quadra 840Av and Macintosh Centris 660Av Developer
Note covers miscellaneous changes to the system software in the Macintosh
Quadra 840Av and Macintosh Centris 660AV, including a new manager for the
internal and external SCSI (Small Computer System Interface) ports. It
contains five chapters:

» Chapter 9, “SCSI Manager 4.3,” describes the new SCSI Manager in the
Macintosh Quadra 840Av and Macintosh Centris 660AV.

» Chapter 10, “DMA Serial Driver,” covers the new hardware-independent
serial driver that uses direct memory access (DMA).

» Chapter 11, “Video Driver,” describes changes to the video driver for the
Macintosh Quadra 840Av and Macintosh Centris 660AV.

» Chapter 12, “New Age Floppy Disk Driver,” lists changes to the floppy
disk driver and tells you how they affect floppy disk compatibility with
other Macintosh computers.

» Chapter 13, “Virtual Memory Manager,” details how the Virtual Memory
Manager no longer disables interrupts when performing certain tasks.

CHAPTER 9

SCSI Manager 4.3

CHAPTER 9

SCSI Manager 4.3

This chapter describes the new SCSI Manager architecture for the Macintosh
Quadra 840Av and Macintosh Centris 660AV computers. It contains functional
specifications describing the features, interface, compatibility, and performance
of the new SCSI Manager. For hardware details of SCSI support in the Macintosh
Quadra 840Av and Macintosh Centris 660AV, see “SCSI Connection,” in Chapter 2.

In addition to the capabilities of the former SCSI Manager, the new SCSI Manager
= supports major new SCSI features such as disconnect and reconnect
» supports services such as fully asynchronous SCSI input and output

» provides a more hardware-independent API that minimizes the SCSI-specific tasks
that a device driver must perform

» provides full use of whatever SCSI hardware is available
» supports existing SCSI device drivers with minimum or no modifications

This chapter starts with “SCSI Manager 4.3 Features,” which describes the current
feature set, compatibility issues, performance, and some of the developer issues raised
by changes to the SCSI Manager. Everyone should read this section.

“Design Overview” describes the layered structure of the new SCSI Manager and lists
the general functions provided by each of the layers.

“Implementation” describes specific hardware and software dependencies of the new
SCSI Manager. Compatibility with the previous SCSI Manager, the virtual bus, and data
transfer methods are also discussed here.

Two sections, “Guidelines for SCSI Device Driver Developers” and “Guidelines for SIM/
HBA Developers,” contain information for specific types of developers. If you are
developing either a SCSI device driver, a SCSI interface module (SIM), or a host bus
adapter (HBA) you should read these sections.

Finally, “SCSI Manager 4.3 Reference” discusses the actual API for the SCSI Manager 4.3,
and “Summary of the SCSI Manager 4.3” lists its code interface.

SCSI Manager 4.3 Features

The SCSI Manager 4.3, in its Macintosh Quadra 840Av and Macintosh Centris 660AV
release, supports the following new or improved features.

» Parameter-block programming interface for SCSI I/O requests. A parameter block contains
all the information required to complete each SCSI I/O transaction. Additionally,
this interface provides a hardware-independent view of the SCSI Manager. This
independence allows the same device driver to work with any supported SCSI
controller.

s Asynchronous SCSI I/O. SCSI Manager 4.3 handles both synchronous and
asynchronous I/O requests. In addition, it allows multiple device drivers to maintain
multiple outstanding requests.

362 SCSI Manager 4.3 Features

CHAPTER 9

SCSI Manager 4.3

s Phase-cognizant implementation. SCSI Manager 4.3 follows the phases driven by the
target and performs the appropriate operations as specified in the SCSI I/ O request
parameter block. Driver clients no longer need to worry about SCSI bus phases. This
eliminates a major source of development difficulties found in the old SCSI Manager.

» Disconnect/reconnect features. Disconnect/reconnect capability helps maximize SCSI
bus utilization. It allows a device to disconnect and release control of the SCSI bus
while the device processes a command from the host and to reconnect when the
device is ready to communicate with the host. This allows the computer to submit
requests to multiple targets so that those requests are executed in parallel. An example
of this is a disk array application that can issue a request to one disk, which
disconnects, and then issue another request to a different disk. The two disks can
be performing seek operations simultaneously, thereby cutting down on the average
seek time.

= Parity support. For the first time, parity is completely supported. This applies both to
transmission of parity (which has always been the case) and to detection and handling
of bad parity on reception. For compatibility reasons, a client can disable the parity
detection on a per-transaction basis.

» SCSI-2 support. All SCSI-2 mandatory messages and protocol actions are supported
as defined for an initiator. In addition, there are several optional features, such as
disconnect/reconnect, that are also supported. There are optional SCSI-2 hardware
features, such as Fast or Wide SCSI, that are anticipated by the architecture and API of
SCSI Manager 4.3; when compatible hardware is available, device drivers will not
have to be modified to take advantage of it.

s Autosense feature. The SCSI Manager automatically performs a request sense operation
in case of a check condition and retrieves the sense data. This provides support for
contingent allegiance conditions and unit attention conditions.

» SCSI direct memory access. SCSI Manager 4.3 can make use of any onboard direct
memory access (DMA). This feature allows the host to perform other functions while
data bytes are transferred to or from the SCSI bus.

s Full support for multiple buses. SCSI Manager 4.3 supports a full complement of devices
on each available SCSI bus; this support allows a CPU with internal and external SCSI
buses to access up to 14 SCSI targets instead of 7. In addition, third parties can create
NuBus or PDS cards, with advanced SCSI adapters, that drivers can access through
SCSI Manager 4.3 in exactly the same manner as through the standard SCSI bus. Users
install a faster SCSI bus on an accessory card and move some or all of their SCSI
devices to the new bus. Those devices will continue to work even if the SCSI devices,
the SCSI drivers on those devices, and the SCSI bus are all made by different vendors.
If these new SCSI adapters use 16-bit or 32-bit buses, all 16 (or 32) targets are
addressable.

» Full support for multiple logical units on each target. SCSI Manager 4.3 allows full access
to all 0-7 logical unit numbers (LUNs) on a target. These LUNs are treated as separate
entities—I/O requests are queued according to LUN, and each LUN can maintain its
own internal request queue (when target queuing is supported).

SCSI Manager 4.3 Features 363

364

CHAPTER 9

SCSI Manager 4.3

Compatibility

SCSI Manager 4.3 fully supports the current Macintosh SCSI Manager interface. It
supports all calls and transfer information block (TIB) pseudoinstructions, except for
scConp (compare) which is very rarely used. The lack of scConp is because of the
support for DMA, which does not easily permit compare operations. Future
implementations of the SCSI Manager are not guaranteed to maintain this level of
compatibility with the old SCSI Manager APL

WARNING

Applications or drivers that bypass the current SCSI Manager
for any part of a transaction are not supported and will probably
result in a fatal error. a

System Performance Impact

The performance impact of the SCSI Manager can be viewed from several different
perspectives. Viewed from a raw byte-to-byte transfer level on the SCSI bus, SCSI
Manager 4.3 performs like the old SCSI Manager. This is mostly a hardware issue—the
performance of the SCSI Manager is tied to the level of performance of the hardware
underneath. For information about Macintosh Quadra 840Av and Macintosh

Centris 660AV SCSI performance, see “SCSI Connection,” in Chapter 2.

However, viewed from the system level, the asynchronous capability provides
significant increases in performance by allowing SCSI clients to regain control of the
system while a SCSI I/O request is in progress. In addition, the support for disconnect/
reconnect allows the system to have multiple I/ O requests in operation on multiple
targets concurrently, allowing another significant gain.

Because the Macintosh Quadra 840Av and Macintosh Centris 660AV hardware supports
DMA, SCSI Manager 4.3 allows even more CPU cycles to be used for non-SCSI activity
while a SCSI transaction is in progress. Just how many more depends on how much time
is spent transferring data bytes. Another, though smaller, factor is how much the CPU
uses the memory bus during DMA operations, because the DMA and CPU contend for
the bus. An example of this factor is the relative difference between 68030 and 68040 bus
use. Compared to the 68030, the 68040 has a higher cache hit rate (due to the larger
cache) and a correspondingly smaller bus usage for the same set of instructions.

Impact on Developers

Two main product areas can take advantage of the new features of SCSI Manager 4.3:
drivers for SCSI devices and add-on SCSI buses.

Almost all existing drivers and other clients of the SCSI Manager will continue to run
without problems, as described in “Compatibility,” earlier in this chapter. But most
developers will want to modify their drivers to make use of the features of the new

SCSI Manager 4.3 Features

CHAPTER 9

SCSI Manager 4.3

manager. “Guidelines for SCSI Device Driver Developers,” later in this chapter, provides
general principles critical to developers of drivers.

Developers of add-on SCSI bus adapters clearly gain from the new architecture. These
NuBus adapter cards provide one or more additional SCSI buses, each of which typically
provides higher throughput and /or enhanced capabilities beyond the hardware
supplied by Apple on the main logic board. In the past there was no standard software
interface for accessing more than one SCSI bus or for accessing the advanced features of
these buses. Because of this, developers of these cards have had to provide their own
SCSI Manager, which controlled only their SCSI bus.

The new SCSI Manager 4.3 architecture improves this situation significantly, as further
described in “Design Overview,” later in this chapter. The makers of SCSI adapter cards
can continue to supply the software for controlling their bus. But now, this software
accesses the SCSI Manager 4.3, providing it the ability to direct I/ O requests to that bus.
The clients of the SCSI Manager (drivers or applications) can access a SCSI device in the
same manner, with the same calls and parameters, whether that device is connected to
the Apple SCSI bus or to a third-party NuBus SCSI adapter. “Guidelines for SIM/HBA
Developers,” later in this chapter, explains general principles critical to this effort.

The support for third-party add-on SCSI buses provides another incentive for driver
writers to recode. With the new SCSI Manager’s application programming interface,
their drivers will work with devices that are on any available SCSI bus.

Design Overview

This section provides a high-level overview of SCSI Manager 4.3.

General Concepts

The SCSI Manager 4.3 application programming interface strongly resembles the
software interface specified by ANSI X3T9 in the Common Access Method document
(CAM). The SCSI Manager 4.3 interface however, contains Apple-specific areas for
backwards compatibility and conformity with the Macintosh operating environment.

Intrinsic in the CAM-like interface is a CAM-like design. In CAM, there are two main
layers—the transport (XPT) layer and the SIM layers. The XPT sits on top of multiple
SIMs. Each SIM is responsible for controlling one host bus adapter (HBA), which
constitutes the hardware associated with a specific SCSI bus adapter. There are a few
requests that are handled entirely in the XPT layer, but in most cases the XPT simply
passes the request to the SIM that has been registered to handle the HBA specified in
the request.

These relationships are diagrammed in Figure 9-1.

Design Overview 365

CHAPTER 9

SCSI Manager 4.3

Figure 9-1 SCSI Manager software hierarchy

366

Driver
Previous SCSI Manager API CAM Interface
Old SCsSI driver New SCSI driver
VAN VAN
SCSI Manager
A4 A4

Transport layer (XPT)

|| I |
SCSil interface modules (SIMs)

(ij

SIM interface

SIM80 SIM96 SIMxx
AN A\ A\
Hardware
N N N
5380 HBA 53c96 HBA HBA xx

Host bus adapters

Those readers familiar with the CAM document should note that Apple has adopted
alternatives to some of the terms used by CAM. Table 9-1 shows the terms, their
meanings, and their Apple equivalents.

Table 9-1 CAM to ACAM terminology conversion

CAM Apple Meaning
HBA Bus or HBA is an acronym for host bus adapter, which contains all the
HBA hardware associated with a single SCSI bus adapter. This could

be a bus on the main logic board, a NuBus card with a SCSI bus
adapter, or any other native or attached SCSI bus. If there is
DMA circuitry associated with that bus, it is also considered part
of the HBA or bus.

continued

Design Overview

CHAPTER 9

SCSI Manager 4.3

Table 9-1 CAM to ACAM terminology conversion (continued)

CAM Apple Meaning

Path Bus CAM uses “Path” to specify a particular HBA or bus attached to
the system. Similarly, CAM functions and parameter blocks
frequently include a Pat h_| Dwhich is renamed Bus| Din this
chapter.

CCB SCSI_PB CAM control blocks are the same as Apple’s SCSI parameter
blocks or SCSI _PB.

In Out When referencing routine parameters, CAM uses the SCSI
convention of direction with respect to the initiator. This is
backward from the standard way of describing parameters and
results for functions. For instance, if the SCSI Manager has a
function with an input parameter Bus| D, this is typically
considered “in,” but CAM refers to its direction as “out.” This is
because, in SCS], if a parameter is sent to the XPT, it is sent
toward the target (away from the initiator), or “out.” Likewise,
results returned from functions are considered “in” by CAM but
are referred to as “out” in this chapter.

Out In See comment above.

Transport Layer

There is one XPT layer per system. This forms the access point for all clients of the SCSI
Manager and has the following responsibilities:

s Provide the means to register HBAs, their characteristics, and their respective
software entry points in SIMs.

» Route the request (parameter block or SCSI _PB) to the proper SIM.

» Provide higher-level facilities for old SCSI Manager interface compatibility. This
consists of maintaining a translation list of SCSI Sel ect IDs and their corresponding
HBAs and directing them accordingly.

» Provide Operating System (OS) services to SIMs to isolate SIMs from OS
dependencies. Such services include registration of interrupt handlers, static data
space allocation and deallocation, and so on.

SCSI Interface Modules

Beneath the XTP layer lies one or more SIMs, each of which is responsible for
interpreting the requests directed to it by the XPT. Each SIM “owns” one HBA. If there
are multiple identical HBAs, there will be multiple identical SIMs. It is important to
realize that a SIM designates not a code entity (such as a code resource), but instead
represents the process or task which is responsible for controlling a particular HBA. For
instance, if one SIM is coded for the Macintosh Quadra 900 (which has two identical
53¢96 chips), there will be two SIM “instances,” one for the internal bus and one for the
external bus.

Design Overview 367

CHAPTER 9

SCSI Manager 4.3

The SIM’s responsibilities can be broken into three main areas: queue maintenance, bus
servicing, and assorted software services. The bus service routines are HBA-specific. The
other two areas are very similar between various SIMs. Specifically, the SIM handles:

= queuing of multiple operations for all LUNs on same and on different targets and
assigning tags for tag queuing (when supported)

» maintaining the queue, including freezing and unfreezing for queue recovery
as necessary

» posting completed operations back to the requesting client (callback to device driver
or application)

= managing the selection, disconnection, reconnection, and data pointers of the SCSI
HBA protocol

» performing all interface functions to the SCSI HBA

» managing the data transfer path hardware (SCSI bus), including DMA circuitry and
address mapping, and establishing DMA resource requests

» distinguishing abnormal behavior and performing error recovery, as required

» providing a time-out mechanism for tracking SCSI _PB execution using values
provided by the peripheral driver

» supporting old SCSI Manager calls (optional on a SIM-by-SIM basis)

CAM Deviations

Apple has used the Common Access Method as a guideline during the creation of

the SCSI Manager 4.3. CAM was never an attempt to provide either source-level or
binary-level compatibility between different platforms. Considering this, it was viewed
as more beneficial to provide a SCSI Manager interface that fit in with other Macintosh
interfaces than to provide one that was similar to those on DOS or UNIX" platforms.

Implementation

368

The mechanics of issuing a call is slightly different than with the old SCSI Manager—
instead of the stack-based SCSI Di spat ch trap, a register-based A-trap is used

(SCSI At omi c). Several routines are accessed through one A-trap, distinguished by a
routine selector word that is now one of the register parameters. C and Assembler
macros and glue code are available that allow each of the routines to be called with a
single line of code.

There are several routines that can be called in this manner. SCSI Regi st er Bus is used
by a SCSI interface module during initialization to inform the XPT of its presence and

its ability to handle SCSI requests. Various entry points and details of the SIM are passed
to the XPT in a SI M ni t | nf 0 parameter block and, after registration, the XPT fills in
other fields in the same parameter block, specifying details of the registration required
by the SIM.

Implementation

CHAPTER 9

SCSI Manager 4.3

A SCSI Der egi st er Bus routine is provided to undo the effect of the
SCSI Regi st er Bus routine. This is not likely to be needed in the current Macintosh
environment.

The third routine, SCSI Act i on, is used by clients of the SCSI Manager to issue all other
requests. Beside the selector word designating SCSI Act i on, the only other parameter is
a pointer to a SCSI parameter block (SCSI _PB). A variety of functions are requested
through this parameter block interface, the most important being SCSI _Execl O,

the function used to request a complete SCSII/O transaction. Most of the functions
available have corresponding SCSI parameter blocks defined to carry the input
parameters as well as the results. For instance, the SCSI _Bus| nqui ry function requires
a SCSI _Busl nqui ry_PB parameter block, a pointer to which is passed to SCSI Act i on.

The SCSI _Execl O_PB parameter block contains the destination of the SCSII/O request
(which bus, target, and logical unit), the command descriptor block (CDB), the descrip-
tion of the data buffer(s) which either supply or receive the data, and the results of the
operation, as well as a variety of other fields and flags required to completely specify

the transaction.

Different SIM implementations may require additional fields beyond the standard public
fields in the SCSI _Execl O_PB parameter block. Some of these may be input or output
fields providing access to special capabilities provided by a SIM or they may be fields
private to the SIM required during the processing of this request. In either case, the

SCS| _Execl O_PB parameter block may vary in size depending upon which bus is
being addressed. In order to determine the size for a particular bus, a client must issue a
SCSI _Busl nqui ry request (also through SCSI Act i on) which returns the size of the
SCSI _Execl O_PB parameter block as well as additional information about the specified
bus. An appropriately sized parameter block can then be allocated, filled out, and issued
to that bus to perform the requested SCSI _Exec| Ofunction.

SCSI _Busl nqui ry is also used by a client to determine various hardware and software
characteristics of a SIM/HBA. This may be required to adequately form a request that
takes advantage of all of the SIM’s capabilities.

SCSI _Execl Ocalls can be made either synchronously or asynchronously. If the call is
asynchronous, the caller may determine whether the action is complete either by
checking the result field of the SCSI _Execl O_PB parameter block or, preferably, by
supplying an address of a completion routine (callback). Because of special interrupt
handling considerations, you should issue all SCSI _Exec| Orequests that need to be
performed synchronously directly to the SCSI Manager, rather than issuing them
asynchronously and then performing a sync-wait action in the client program. More
details of this requirement can be found in “Guidelines for SIM/HBA Developers,” later
in this chapter.

When an error occurs during a SCSI _Execl| Orequest, the SIM may freeze the queue
for the LUN on which the error occurred, to allow the client to perform any required
error recovery. Upon completion of the recovery process, the client should issue a

SCSI _Rel easeQrequest to reenable the normal handling of I/ O requests to that LUN.

Other SCSI Act i ons that may affect SCSI devices are the SCSI _Reset Bus,
SCSI _Reset Devi ce, SCSI _Abort Command, and SCSI _Ter mi nat el Ofunctions.

Implementation 369

370

CHAPTER 9

SCSI Manager 4.3

There are a class of SCSI Act i on requests that are used by SCSI device drivers and
SCSI utilities to determine which Macintosh device drivers are responsible

for which SCSI devices. These are SCSI _Set Ref Num SCSI _RenpveRef Numand
SCSI _Get Next Ref Num These routines allow a client to maintain or examine the
relationship between driver r ef Nuns and SCSI Devi cel dent s (bus+target+LUN).

Target mode (although not supported in the initial SIM implementation) would be
accessed through the SCSI _Enabl eLUNand SCSI _Tar get | Ofunctions.

Optional Features Not Supported in the SIM

If any of the following functions are requested of the SIM in the Macintosh
Quadra 840Av or Macintosh Centris 660AV, an appropriate error code is returned:

s Synchronous data transfer. The SIM does not initially support synchronous data
transfer. Any I/O requests designating synchronous data are rejected with a status
of “Unable to provide the requested capability” and can simply be reissued without
the synchronous data transfer request.

» Target command queuing. The SIM does not support SCSI-2 target queuing in its initial
release. Eventual support is planned. Until that time, any I/O requests with the
QueueAct i onEnabl ed bit set are rejected.

= HBA engine support. None of Apple’s SIMs support HBA engines. A bus inquiry
returns an engine count of zero. The engine inquiry and execute engine request
functions return request completed with an error value.

= Target mode. Target mode is not currently supported.

Although these features are not supported in the initial implementation, third-party
SIMs could provide support for these items because the XPT layer still delivers requests
of these types to all installed SIMs.

Compatibility and Emulation

The old SCSI Manager routines (SCSI Cet, SCSI Sel ect, SCSI Conpl et e, and so on)
will continue to work under SCSI Manager 4.3 with very few compatibility problems.

A SIM/HBA may or may not be capable of supporting the old routines. When a SIM
registers its HBA with the XPT, it must identify its ol dCal | Capabl e status—its ability
to support the old routines or not. All Apple-supplied SIM/HBAs are capable of
handling old calls.

SCSI Get calls set a flag that prevents any additional SCSI Get calls but perform no
other operation. Upon the receipt of the SCSI Sel ect call, the XPT issues a

SCSI _QA dCal | request to the SIM which places it, like all other SCSI _Execl O_PB
parameter blocks, in its queue. Any SCSI parameter blocks that are awaiting initial
execution (as well as any received while the old API transaction is in effect) are queued
and do not begin execution until after a SCSI Conpl et e is received and completed,
which is when the queue is released. Any additional SCSI Get or SCSI Sel ect calls
received after an old API emulation has already begun are rejected with an error.

Implementation

CHAPTER 9

SCSI Manager 4.3

While the old API emulation is in progress, SCSI parameter blocks resident in or
destined for queues in other HBAs are not affected—they continue to be executed
as requested.

The old SCSI Manager routines supported by SCSI Manager 4.3 are listed in Listing 9-1.

Listing 9-1 Supported old SCSI Manager routines

OSErr SCSl Reset (void);

short SCSI Stat (void);

OSErr SCSI Get (void);

OSErr SCSI Sel ect (short targetlD);

OSErr SCSI Sel Atn (short targetlD);

OSErr SCSICrd (Ptr buffer, short count);

OSErr SCSlI Read (Ptr tibPtr);

OCSErr SCSIRBlIind (Ptr tibPtr);

OSErr SCSIWite (Ptr tibPtr);

OSErr SCSIVBlind (Ptr tibPtr);

OSErr SCSI Msgln (short *nessage);

OSErr SCSI MsgQut (short message);

OSErr SCSI Conpl ete (short *stat, short *nmessage, unsigned |ong
wait);

SCSI Reset calls are executed synchronously, but they can reset only buses that are
controlled by SIMs that are capable of handling old calls.

The SCSI St at routine works and returns results as accurate as possible for the current
old-call bus. If there is no current old-call bus, then the result indicates bus-free. If it is
difficult for SCSI interface modules (SIM/HBA) to determine the exact state of the REQ
signal during certain periods, for instance between the functions provided by old API
calls, the SIM can be written so that the it does not return control to the XPT (for
example, with an r t s instruction) until a valid phase is on the bus.

There are several variances in support for transfer instruction blocks (TIBs). The

first affects the scConp (compare) instruction, which is no longer supported in SCSI
Manager 4.3. This results from the support for DMA hardware, which does not permit
a compare operation. This should pose few compatibility problems, since it is rarely
used; there were several previous versions of the SCSI Manager that did not perform
compare operations properly.

Virtual Bus

SCSI Manager 4.3 has explicit support for multiple buses (HBAs), allowing a client to
specify a target based on its bus number as well as its target ID and LUN. To support old
API calls which understand only a target ID, the technique first used in the Macintosh
Quadra 900 is expanded to include not only built-in SCSI buses but add-on NuBus and
PDS buses as well.

Implementation 371

372

CHAPTER 9

SCSI Manager 4.3

In the Macintosh Quadra 900, SCSI transactions are directed to the first bus which
responds to a select for the requested ID. The ID specified in a SCSI Sel ect routine is
called the “virtual ID” because it designates a device on the single “virtual bus” (which
encompasses both internal and external buses). When a SCSI Sel ect call is made, a
selection of the virtual ID is attempted on the internal bus first, and if there is no
response, the selection is attempted on the external bus. Once a successful selection of a
virtual ID occurs, all subsequent SCSI Sel ect calls are directed to the bus on which that
selection occurred. Until a successful selection has occurred on one of the buses, the
virtual ID is not assigned to a particular physical bus. Once established, a virtual ID to
physical bus mapping is not changed until restart.

The virtual bus is maintained by the compatibility portion of the XPT layer, which
determines the virtual-to-physical ID mapping. The XTP layer does this by attempting to
select the virtual ID on each of the HBAs that can handle old calls until it finds a device
that responds. The HBAs are searched in order of registration, which in most cases is
first internal, then external, then additional third-party add-in SCSI cards. The Macintosh
Quadra 840Av and Macintosh Centris 660AV have no separate external bus.

Data Transfer Descriptions

Clients of SCSI Manager 4.3 can use several different structures to describe the source (or
destination) memory buffers for data transfer to (or from) a SCSI device. The easiest is
the single buffer descriptor, consisting of a buffer address and a buffer length. A more
difficult descriptor is needed when there are discontiguous areas of memory that make
up a client’s data transfer. These are specified by a single scatter / gather (S/G) list. Buffer
descriptors include address and length. There is an additional parameter for how many
items are in the S/G list.

In the old SCSI Manager, the TIB is made up of a series of transfer instructions. During
the execution of a SCS| Read, SCSI Wit e, SCSI RBI i nd, or SCSI VBl i nd, the TIB
instructions (transfer and increment address, transfer and don’t increment, add
longword to address, move longword, loop, compare, and stop) are interpreted by the
SCSI Manager to determine the source and destination of the data. Additional details can
be found in Inside Macintosh, Volume IV.

Although S/G lists are simpler than TIBs, TIBs were actually designed for an additional
purpose—they are also used to show the SCSI Manager where long delays (greater than
16 ps) may be found in the data transfer. This was required for the Macintosh Plus
because of the lack of hardware handshaking between the SCSI chip and the CPU. It was
required in all later Macintosh computers as well for slightly different reasons. SCSI
Manager 4.3 only supports TIBs for old API calls. All new API calls must specify either a
single buffer descriptor or S/G lists.

A second aspect of the TIB is used by the scHandshake field of the SCSI _Execl O_PB
parameter block. This field is a series of words, each of which specifies the number of
bytes between potential delays in the SCSI data transfer. For instance, 1, 511 Tl Bisa
common TIB structure needed to work with drives which have a 512 byte block and
sometimes have a delay between the first and second bytes in the block as well as a
delay between the last byte of a block and the first byte of the following block. This TIB

Implementation

CHAPTER 9

SCSI Manager 4.3

structure translates to an scHandshake of 1, 511, 0... which translates to a request to
transfer 1 byte, synchronize then transfer 511 bytes, synchronize, transfer 1 byte, and so
on. As can be seen from the example, this structure is null-terminated and can have a
maximum of 8 byte counts/handshake points.

Guidelines for SCSI Device Driver Developers

SCSI device drivers and other clients written to take advantage of the SCSI Manager 4.3
must continue to perform all of the operations associated with their counterparts when
dealing with the old SCSI Manager. In addition, they will be have to follow some new
rules that asynchronous data transfer and multiple-bus support require.

A SCSI device driver interfaces with its client (typically through the Device Manager)
and with the SCSI Manager. Because the old SCSI Manager was completely synchronous,
SCSI drivers were synchronous as well. If a driver is rewritten to issue asynchronous
SCSI requests, it can also be rewritten to behave asynchronously as well (with respect to
its clients). This is critical in order for the benefit to reach the application level.

Booting and Drive Mounting

For earlier ROMs, the OS scans the SCSI bus from ID 6 to ID 0, looking for all devices
that have an Appl e_HFS as well as an Appl e_Dri ver partition. When one is found, the
driver is loaded and executed and installs itself into the unit table. The driver then places
an element in the drive queue for any HFS partitions that are on the drive. The Start
Manager then records these Dr vQEl ement s, mounts the startup volume, and attempts
to start up the computer.

There are six unit table slots ($20 through $26) reserved for SCSI drivers for devices

at IDs 0 through 6 respectively. In the Macintosh Quadra 840Av and Macintosh

Centris 660AV architecture, which allows the addition of many SCSI buses, device drivers
must be able to allocate their unit table slots dynamically. All SCSI drivers, including
drivers written for SCSI Manager 4.3, must attempt to install themselves in the unit table
at the same location specified under the old calls, $20+SCSI _| D. This attempt lets

both old and new drivers serve as boot devices when booting from an earlier machine. If
a driver finds that the slot is already full, it should search for an empty slot in the

48 ($30) toUni t Nt ryCnt range.

SCSI Manager 4.3 is able to distinguish between old drivers that support only the

old API and new drivers that are aware of SCSI Manager 4.3. Drivers aware of SCSI
Manager 4.3 are identified in the partition map as type Appl e_Dr i ver 43 instead of
the previous type, Appl e_Dr i ver. Because the old ROMs checked only the first 12
characters of the type before loading and executing the driver, both new and old drivers
will work on older machines.

Once the drivers have been loaded and executed, the ROM searches for the default
startup device in the drive queue. If it is there, it is mounted and the boot process begins.
In the Macintosh SE ROM and all ROMs since, the boot drive is identified by a driver

Guidelines for SCSI Device Driver Developers 373

374

CHAPTER 9

SCSI Manager 4.3

reference number. The unit table slots for SCSI drivers are always in the range $20
through $26—the slots set aside for SCSI drives at IDs 0 through 6 respectively. This
works fine when drivers have the same r ef Numbetween boots but, in the Macintosh
Quadra 840Av and Macintosh Centris 660AV, drivers allocate unit table slots dynamically.

Currently, the driver reference number (a word) is stored in parameter RAM (PRAM)
and is used by the Start Manager to pick the startup device. However, SCSI Manager 4.3
designates the startup device by using Devi cel dent (containing the bus number,

SCSI ID, and LUN of a device), which supports multiple buses. To access devices on
multiple-bus CPUs, you must know which device to boot from and whether the external
device can be mounted at Lat eLoad time.

Some devices may be “hidden” from access to the old API calls if a device with the same
ID is found on a higher-priority HBA. With earlier ROMs, the old SCSI Manager loads all
drivers that are found. On multiple-bus machines, this does not include those devices
with the same IDs as devices on higher priority buses. When SCSI Manager 4.3 is
running, access to those devices can be made only through the new API and hence only
by new drivers (Appl e_Dri ver 43). Lat eLoad, which runs after SCSI Manager 4.3 has
been installed, scans all known buses and load all additional new drivers found, using
the new APIL The new drivers then mount their respective drives. SCSI Manager 4.3 also
loads additional old drivers if those drivers are accessible by emulating the old API.

When SCSI Manager 4.3 is present at startup (in ROM), all new (Appl e_Dr i ver 43)
drivers are loaded from all drives found. Then pre-4.3 (Appl e_Dr i ver) drivers are
loaded if they are found on a device (accessible via emulation of the old API) that
corresponds to the virtual-to-physical mapping for their SCSI ID.

If a pre-4.3 ROM loads an Appl e_Dr i ver 43 driver, it treats it exactly like an

Appl e_Dri ver driver. This means that during initialization, the Start Manager makes

a call to the beginning of the driver (defined as the first byte) with register D5 set

to the SCSI'ID of the device the driver was loaded from. To provide complete compa-
tibility, an additional entry point has been defined for Appl e_Dr i ver 43 at 8 bytes from
the start. If this entry point is called, it means that SCSI Manager 4.3 is present and that a
Devi cel dent value is in register D5. No other registers are valid.

There could be situations where SCSI Manager 4.3 becomes active after an

Appl e_Dri ver 43 driver is loaded. This would occur if a newer system was patching

an older ROM; the old ROM would load and install the driver and the system would

come up later, installing SCSI Manager 4.3. To recognize the appearance of the new

SCSI Manager, every Appl e_Dr i ver 43 driver should check for the presence of the
_SCsSI At oni ¢ trap ($A089). The best place to do this check is at the first accRun tick

(from dNeedTi ne flag). This tick happens after the system patches are in place.

Asynchronous Behavior

The successful execution of asynchronous I/O requires a whole set of rules that were not
a concern when dealing with the synchronous SCSI Manager. The general form of an
asynchronous SCSI driver is different than that of an old synchronous driver. When a
client makes an I/O request, the Device Manager queues that request in the driver’s I/O

Guidelines for SCSI Device Driver Developers

CHAPTER 9

SCSI Manager 4.3

queue and then make a call to the driver’s _Pri me routine. That routine should stuff a
SCSI _Execl O_PB parameter block (PB) with the parameters necessary to complete the
request (or multiple PBs if required) and send them to the SCSI Manager through

SCSI Act i on. The proper SIM then adds the request to its queue and possibly start
working on it before returning back to the driver.

At this point, virtually nothing can be assumed by the driver about the request. If it
was accepted it may have only been queued or it may have proceeded all the way to
completion. If the return value is a value other than noEr r, it is the result of input
parameter errors. Either the parameter block was built incorrectly or it contains an error
in one or more parameters. If the return value provided by SCSI Act i on is noEr r, the
command has been accepted and the contents of the SCSI _Execl O_PB are no longer
valid. This is because of the asynchronous nature of the SCSI Manager.

WARNING

Once a parameter block has been accepted by the SCSI Manager, no
attempt should be made by the driver to read it. The current parameter
block being worked on by SCSI Manager 4.3 may be from a different
request and completely incorrect for the driver. a

Typically a callback routine is supplied with the SCSI _Exec| O_PB parameter block.
This routine allows the SIM to asynchronously notify the client that the request has
completed. SCSI drivers must always use such callbacks.

WARNING

SCSI drivers must always use a callback routine when issuing
asynchronous requests. If a callback routine is not supplied the client
cannot be notified asynchronously. Being notified asynchronously
would require that the driver perform a sync-wait action, which is not
permitted because of virtual memory compatibility factors. a

For SCSI requests that can be handled synchronously, such as those required during
error handling or initialization, the driver should issue those requests to the SCSI
Manager synchronously, rather than asynchronously, and then wait for the scResul t
field to change from scsi Reql nPr og. The latter process is effectively a synchronous
request, except that the sync-wait is performed in the driver. This is not allowed. A
further explanation is given in the next section.

An asynchronous I/O request issued by a client to a driver may occur at interrupt time.
This eliminates the possibility of allocating memory to handle the request at the time the
request arrives. This means that any SCSI _Execl O_PBs, S/G lists and any other
structures that are needed for the processing of the I/ O should be allocated at driver
initialization time. Unlike a synchronous request, none of these can be allocated on the
stack because they would disappear when the driver returned from the _Pri e routine.

When issued asynchronously the resulting action may start at any time and may end at
any time. There is no implied ordering of these events with respect to earlier or later
requests. An earlier request may be started later, or a later request may complete earlier.
However, a series of requests to the same device (bus ID + target ID + LUN) is issued to
that device in the order received.

Guidelines for SCSI Device Driver Developers 375

376

CHAPTER 9

SCSI Manager 4.3

Virtual Memory Operation

There is a possibility that an application may disable interrupts and then cause a page
fault. Because this page fault translates to a synchronous SCSI driver request, the SCSI
Manager handles the resulting SCSI request without the benefit of interrupts. The
Macintosh Quadra 840Av and Macintosh Centris 660AV require that all sync-waits be
performed either in the SCSI Manager or in the Device Manager where there are hooks
that provide the sync-wait loop the ability to poll the SCSI interrupt sources.

If a driver has received a synchronous 1/ O request (typically from _Pri ne), the driver
has two options. Either it can issue the subsequent SCSI Manager request synchronously
as well, or it can issue the SCSI request asynchronously and simply return back to the
Device Manager. The Device Manager sits in a sync-wait loop, awaiting the completion
of the request. The driver should call (or jump to) | ODone after it receives the SCSI
completion callback. If the single driver request translates to multiple SCSI requests,

the driver can issue each of those requests synchronously or it can issue them
asynchronously and return back to the Device Manager. The driver should, in this case,
call | CDone after the callbacks for all of the SCSI requests have been received.

WARNING

Under no condition should the driver use a sync-wait loop.

If it does, the SCSI Manager will never be allowed to clear the
interrupts and will hang indefinitely. a

Never perform sync-waiting in the driver itself. The wait must be controlled by the
Device Manager (by returning from the _Pr i ne routine) or in the SCSI Manager (by
issuing the SCSI request synchronously).

As explained in Chapter 13, “Virtual Memory Manager,” virtual memory (VM) in

the Macintosh Quadra 840Av and Macintosh Centris 660AV executes I/ O completion
routines, Time Manager tasks, VBL and slot VBL tasks, deferred tasks, and PPost Event
actions without disabling interrupts. If a completion routine is to be run while VM is
running the deferred user function queue (with interrupts enabled), VM queues this new
completion routine at the tail of the deferred user function queue. This assures that
routines of the types listed above will execute in their original order.

The SCSI completion routines (callbacks from SCSI _Exec| O) are similar to

| OConpl et i on routines except for one major difference. Because they can cause

page faults and typically occur at “interrupt time,” | OConpl et i on routines are handled
by VM,; if it’s safe for paging at the time the call to | ODone is made, the | OConpl et i on
routine is executed immediately. If it isn’t safe for paging, VM defers execution of

the | OConpl et i on routine until it is safe.

Like | OConpl et i on, SCSI completion routines are usually called at interrupt time. The
difference is that VM does not intercept them. This means that SCSI completion routines
are called even if it is not safe for paging, so they are not allowed to cause page faults.
For SCSI drivers, that is not usually a problem—their whole world is usually held
anyway. In response to a SCSI completion, a driver typically calls | ODone, which makes
a call to the client’s | OConpl et i on routine, which could cause a page fault. This is not a
problem, because, as mentioned already, VM defers the call until it is safe for paging.

Guidelines for SCSI Device Driver Developers

CHAPTER 9

SCSI Manager 4.3

Guidelines for SIM/HBA Developers

Developers of SCSI HBAs should ship their products with SIMs that are compatible
with SCSI Manager 4.3, to enable other vendors’ drivers and devices to work with their
SCSI adapter.

SIM Initialization and General Operation

For the Macintosh Quadra 840Av and other machines with ROMs that contain SCSI
Manager 4.3, third-party SIMs can register their HBAs as soon as their code is executing.
This happens during NuBus configuration ROM setup (Pri maryl ni t).

For systems without SCSI Manager 4.3 in ROM, SIMs must wait until SCSI Manager 4.3
is up and running before registering with the XPT. This means that a drive on a
third—party HBA cannot be used as a boot device nor as the backing store for VM, but
can be mounted once SCSI Manager 4.3 is running and the HBA is installed. This
secondary driver loading and drive mounting happens after SCSI Manager 4.3 is
operational.

To initialize itself, the SIM issues a SCSI Regi st er Bus call, with a pointer to a

SI M ni t | nf o structure that has been filled out with the entry points, required static
data space size and ol dCal | Capabl e status of the SIM. The SI M ni t | nf o structure is
shown in Listing 9-2. This structure can be disposed after the routine finishes, because
the XPT makes a copy of the data.

Listing 9-2 SIM initialization information structure
typedef struct { /1 used for SCSI RegisterBus cal
uchar *Sl MstaticPtr; /]l <- ptr to the SIMs static vars
| ong staticSi ze; /1 -> bytes SIMneeds for static
/1 vari abl es
| ong (*SIMnit)(); /1l -> pointer to SIMinit routine
| ong (*SI Maction)(); [/ -> pointer to SIMaction routine
| ong (*SIMISR (); /1l -> pointer to the SIMISR routine
voi d (*Newd dCal 1) (); [// -> pointer to the SI M Newd dCal
| ong i ntrptSource; /1l -> interrupt source specifier

Bool ean ol dCal | Capabl e; /1 ->true if this SIMcan handl e
/1 ol d SCSI Manager calls

ushort busl D; /1l <- bus # for the registered bus
voi d (*XPT_ISR) (); /1 <- pointer to the XPT ISR
voi d (*MakeCal | back) ();// <- pointer to the XPT |layer’s

/1 MakeCal | back routine
} SIMnitlnfo;

Guidelines for SIM/HBA Developers 377

378

CHAPTER 9

SCSI Manager 4.3

The XPT allocates the requested number of bytes for the SIM static space and assigns the
next bus number to this SIM. A pointer to the allocated memory is returned as is the
bus! Dthat was assigned, in the appropriate fields of the SI M ni t | nf o parameter
block. The XPT also fills in two fields indicating entry points into the XPT. The XPT_I SR
entry point should be used by the SIM when the XPT has not provided sufficient
interrupt registration functions. The MakeCal | back routine should be called when the
SIM completes a SCSI _Exec| Orequest and needs to make the SCSI completion callback
to the client.

The SI M ni t routine is called during the execution of the SCSI Regi st er Bus routine.
It is passed the SI Mst at i cPtr (address of SIM’s static data space) as well as a pointer
to the SI M ni t | nf o structure after the XPT has filled in all of the required fields.

SI M ni t attempts to initialize all data structures and hardware and returns an
appropriate result code indicating whether this was successful. If a failure result is
returned, the XPT does not register the SIM.

Once the registration is complete, the XPT makes calls to the S| Mact i on entry point
whenever a SCSI Act i on call is received that is destined for this bus. The XPT passes
a pointer to the SCSI _PB parameter block and a pointer to the SIM’s static space into
the scSI MPri vat e parameter of the SI Mact i on routine. The SIM should parse

the SCSI _PB parameter block for illegal or unsupported parameters and return an
appropriate failure code if either of these are found. All SCSI _Exec| Orequests should
be treated asynchronously by the SIM; all other types of requests should be treated
synchronously.

Once the Execl Orequest has been queued, the SIM should return back to the XPT.
When the request finishes, the SIM calls the XPT’s MakeCal | back routine. This makes
the call to the client’s specified completion routine (if it exists).

The parameter blocks appear to the client to be queued on a per-LUN basis as queue
freezing and unfreezing is performed one LUN at a time. In actuality, the SIM may
queue all SCSI _Execl O_PB parameter blocks in the same queue no matter which
LUN is the destination. This helps maintain a first-in, first-out sequence of the
parameter blocks.

Support for the Old SCSI Manager

Upon registration, every SIM should specify whether or not it supports old SCSI
Manager routines. If it indicates that it does, the XPT adds it to the list of buses searched
when a SCSI Sel ect call is received.

The handling of an old API transaction differs from the handling of new API

SCSI _Execl O_PB parameter blocks. The main difference is the presence of communica-
tion between the XPT and the SIM during the transaction. This communication consists
of the old API calls (to the SIM) and the results returned (from the SIM) at the
completion of the routines. The XPT is responsible for catching and converting the old
calls into the proper format and submitting them to the SIM. It also takes the results for
each of the calls from the SIM and returns back to the client with those results.

Guidelines for SIM/HBA Developers

CHAPTER 9

SCSI Manager 4.3

SCSI Get calls are handled entirely within the XPT; the XPT simply notes that the call
was made by setting an internal flag and returning back to the caller. SCSI Sel ect calls
cause the XPT to generate a SCSI _Execl| Oparameter block and submit it to the SIM via
the SI Mact i on entry point. This parameter block is filled in with an scFunct i onCode
field of SCSI _0 dCal | and an scDevi cel dent field containing the bus number of this
SIM, the target ID requested in the SCSI Sel ect call, and a LUN of 0. This parameter
block should be queued with all other SCSI _Execl O_PBs.

The SIM should attempt a select of the specified device and return the result of that
select back to the XPT (scsi ReqConpl et e if successful and scsi Sel Ti neout if not).
Old call results are not communicated through the scResul t field, as this would be
interpreted as completion of the entire transaction rather than only the portion of the
transaction resulting from the single old call. Instead, the SIM should place the result in
the ol dCal | Resul t field. As additional old calls are made, the XPT fills in the
appropriate fields of the SCSI _Execl O_PB and calls the SIM’s Newd dCal | entry
point. Table 9-2 shows the old call parameters and the fields that are filled in by the XPT.

Table 9-2 Old call parameter conversion

Call Parameter Dir ExeclO field Notes

SCSIGet — XPT only

SCSISelect/ targetID - scDeviceldent bus| D= this SIM,

SCSISelAtn LUN=0

SCSICmd *buffer - scCDB Pointer in field
count - scCDBLen

SCSl<data> *tibPtr - scDataPtr Pointer in field

SCSIComplete *stat - scSCSlstatus Status in field

*message - scSCSImessage Message in field

wait - scConnTimer Ti meMyr format

SCSIMsgIn *message - scSCSImessage Message in field

SCSIMsgOut message - scSCSImessage Message in field

SCSIReset — SCSI_ResetBus_PB

SCSIStat — XPT only

To provide the highest level of compatibility with the old SCSI Manager, every SIM
should be able to perform a SCSI arbitration and selection process independently

of a SCSI message-out or command phase, in order to register itself as being capable
of handling old SCSI calls. If it must have the CDB or message-out bytes in order

to perform the selection operation, then it will be unable to adequately execute

the SCSI Sel ect call. Without this ability, the SIM must always return noErr to a

Guidelines for SIM/HBA Developers

379

380

CHAPTER 9

SCSI Manager 4.3

SCSI Sel ect (SCSI _d dCal | function), a result that produces a false indication of the
presence of a device at that ID. This would cause all future SCSI Sel ect s to that ID to

be directed to only this bus. The result would be that no devices installed on buses that

registered after this bus would be accessible through the old API.

Interrupt Support

Each SIM passes the address of its interrupt service routine and an interrupt source
identifier (ISR) to the XPT during the SCSI Regi st er Bus routine. The XPT installs an
ISR at the specified source so that when that interrupt happens, it can make the call

to the SI M_| SRroutine, passing the address of the SIM’s static data space. The XPT
performs some VM-required operations before and after the call to the SI M_| SRwhen
VM is turned on.

The same SI M_| SRentry point is used by the XPT to get the SIM to check for the
presence of an interrupt. Checking for an interrupt is required during various situations
where interrupts are disabled but SCSI operations may still be in operation. Hence the
S| M_I SRmust be written to verify that the interrupt is in fact present before attempting
to handle it. If an interrupt is handled during the routine, the SIM should return a
nonzero result to the XPT.

Handshaking of Data Bytes

The old SCSI Manager provided TIBs to perform two functions: designation of data
buffers (scatter/gather) and designation of handshaking requirements for a transfer. The
latter function refers to the handshaking between the processor and the SCSI controller
chip. This was originally required during Macintosh Plus blind transfers because there
was no hardware handshaking that prevented the processor from overflowing or
underflowing the 5380 chip.

In Apple platforms after the Macintosh Plus, the handshaking information was used to
prevent bus errors when the target failed to deliver the next byte within a processor bus
error timeout or when the SCSI Manager attempted to read it from the SCSI interface
chip. This timeout is 250 ms for the Macintosh SE and 16 ps for the Macintosh II and all
Macintosh models since. The SCSI Manager blindly read (or wrote) data bytes until it
reached the end of an scl nc or scNol nc pseudoinstruction. When the next scl nc or
scNol nc was encountered, the SCSI Manager first explicitly polled the SCSI chip to
make sure that it was ready with data (for a read) or ready to accept data (for a write). In
this way, TIBs were used to make the SCSI Manager synchronize with the target at times
in the transfer when the target was slow in accepting bytes.

The new SCSI Manager still requires this handshaking information for non-DMA SCSI
transfers such as those used on all earlier models. There is no possibility of bus errors
with the Macintosh Quadra 840Av or Macintosh Centris 660AvV, because the DMA
hardware does not attempt to transfer data until the SCSI controller indicates that it

is ready:.

Guidelines for SIM/HBA Developers

CHAPTER 9

SCSI Manager 4.3

Handshaking is handled similarly for third-party HBAs. With DMA there is no need for
the explicit handshaking. With non-DMA transfers, however, a SIM must pay attention
to the handshaking description that is part of the SCSI _Exec| O_PB. The form of the
descriptor is much simpler than TIBs and explicitly specifies which bytes in which to
expect delays from the target. In an environment where bus errors may occur if the
handshaking description is inaccurate, the SIM should provide a bus error handler that
can recover, retry, and pick up the transfer where it was interrupted. Because bus-error
exception processing differs among the members of the 68000 processor family, several
handlers are required, some of which are not trivial. In addition, it is impossible to
predict what will happen in later 68000 processors with different exception handling that
might force rewriting and redistribution of any SIMs with bus error handlers.

DMA Support

For HBAs with DMA support, the direct memory access process typically requires that
the data buffer affected by the transfer be locked down (so that the physical addresses
won’t change) and that it be noncacheable. Locking data buffers was previously difficult
to manage because of severe restrictions on when LockMenor y could be called.

LockMenory is now allowed at interrupt time but only if the affected pages are already
held. Get Physi cal is also allowed at interrupt time and continues to have its
previously restriction of only working with pages that are locked.

SCSI Manager 4.3 Reference

Many SCSI bus-related functions are available to the client. All of them are accessed by
calling a single entry point (SCSI Act i on) with a SCSI parameter block (SCSI _PB) and
are designated by the function code element of the SCSI _PB header. The structure of the
SCSI _PBbody (past the header) varies depending upon the function requested.

The parameter block consists of function types, parameter structures, action flags and
status flags necessary to perform most SCSI requests. SCSI I/ O requests are performed
by allocating a SCSI parameter block and filling in the necessary fields to describe and
specify the necessary actions the SCSI Manager needs to perform the requested function.
The status of both the I/ O request and actual SCSI bus transaction are returned through
the parameter block. These functions may be specified to complete either synchronously
or asynchronously with respect to the calling client.

By far the most important and commonly used request passed to SCSI Act i on is to
execute a SCSII/O request. It is this request that actually performs the SCSI transaction
between the computer and the target. All of the parameters required by the SCSI
Manager to accomplish a complete transaction are contained in the SCSI _Execl O_PB
parameter block that is passed to SCSI Act i on.

Besides routines driven by SCSI _PB, the XPT provides several others as well. These
routines fall into two categories: routines of interest to a driver-type client and routines
of interest to an operating system module (such as a SIM).

SCSI Manager 4.3 Reference 381

CHAPTER 9

SCSI Manager 4.3

Note that in the remainder of this chapter, certain data types have the following
definitions:

#def i ne ushort unsi gned short
#def i ne uchar unsi gned char
#defi ne ul ong unsi gned | ong

typedef struct Devicel dent

{
uchar di Reserved; /! unused
uchar bus; /1l SCSI - Bus #
uchar targetlD; /1l SCSI - Target SCSlI |ID
uchar LUN; /1 SCSI - LUN

} Devicel dent;

Data Structure

This section describes the general parameter block data structure that provides
information and control in SCSI Manager 4.3. There are many different parameter blocks
all using the same template, SCSI _PB. Specific parameter blocks are discussed with the
routines that use them. This section describes the parameter block header and the
construction of the SCSI _PB parameter block.

SCSI Manager Parameter Block

Each client of the SCSI Manager allocates a SCSI _PB parameter block and fills in the
required fields before passing it to the SCSI Act i on function. A function-specific

SCSI _PB consists of two parts: the SCSI _PB header (SCSI Hdr), that part common to all
types of SCSI _PBs, and the SCSI _PB body, containing SCSI parameters specific to the
function’s SCSI _PB (the size and fields of which vary depending on the function).

The common parameter block header definition is the following:

#def i ne SCSI PBHdr \

struct SCSI Hdr *qLi nk; /1 (internal) Qlink to next PB

short gType; /1 (unused) Q type

ushort scVer; /1 -> version of the PB

ushort scPBLen; /1 ->length of the entire PB

Functi onType scFuncti onCode;// -> function sel ector

OSEr r scResul t; /1 <- returned result

Devi cel dent scDeviceldent; // -> (bus + target + LUN)

Cal | backProc scConpFn; /1 -> callback on conpletion function
ul ong scFl ags; /1l -> flags for operation

/1 end of SCSI PBHdr

382

SCSI Manager 4.3 Reference

CHAPTER 9

SCSI Manager 4.3

Note

Several fields in the parameter block are operating system dependent. In
this document the direction shown by arrows is with respect to the SCSI
Manager—for example, in SCSI PBHdr . This is opposite to the
convention followed by ANSI X3T9, the Common Access Method
document, as explained in “CAM Deviations,” earlier in this chapter. O

The SCSI parameter block header structure uses SCSI PBHdr, as follows:

t ypedef struct SCSI Hdr
{

SCSI PBHdr
} SCsl Hdr;
*qgLi nk Reserved for Apple use only. A pointer to the next parameter block in the
SCSI queue.
qType Reserved for Apple use only. The queue type.
scVer Version of the parameter block. Used by SCSI Manager to determine the

format of this parameter block.

scPBIl en

scFuncti onCode

The length in bytes of the PB, including the PB header.

A function selector that specifies the service being requested by the SCSI
device driver. See also “SCSIAction,” later in this chapter.

scDevi cel dent

A function selector that specifies the device that the request is directed
towards. This field is of type Devi cel dent, defined above.

scResul t

A value returned by the SCSI Manager after the function is completed. A

scsi Reql nPr og status indicates that the request is still in progress or

queued.

Valid scResul t return values are:

noErr

scsi Reql nProg
scsi ReqAbort ed
scsi Unabl eToAbor t
scsi ReqCpl WEr r
scsi Busy

scsi Reqgl nvalid
scsi Buslnval id
scsi DevNot There
scsi Unabl eTerm O
scsi Sel Ti meout
scsi CndTi meout
scsi MsgRej ect Revd

SCSI Manager 4.3 Reference

Request completed without error
Request in progress

Request aborted by the host
Unable to abort request

Request completed with an error
SCSI subsystem busy

Request invalid

Bus ID supplied invalid

SCSI device not installed / there
Unable to terminate I/ O request
Target selection timeout
Command timeout

Message reject received

383

CHAPTER 9

SCSI Manager 4.3

scsi SCSI BusReset SCSI bus reset sent/received

scsi UncorParity Uncorrectable parity error occurred

scsi Aut osenseFai | Autosense: request sense command fail

scsi NoHBA No HBA detected

scsi Dat aRunEr r Data overrun/underrun

scsi UnexpBusFr ee Unexpected bus free

scsi SequenceFai | Target bus phase sequence failure

scsi PBLenErr Parameter block length supplied is
inadequate

scsi Provi deFai | Unable to provide requested capability

scsi BDRsent A SCSI BDR bus request message was sent
to the target

scsi ReqTerm O Request terminated by the host

scsiLUNInval i d LUN supplied is invalid

scsi TIDinvalid Target ID supplied is invalid

scsi FuncNot Avai | The requested function is not available

scsi NoNexus Nexus not established

scsillDinvalid Initiator ID invalid

scsi CDBRcvd The SCSI CDB has been received

scsi SCSI Busy SCSI bus busy

scsi SI MFrozen The SIM queue frozen with this error

scsi Aut osenseVval i d Autosense data valid for target

scDevi cel dent
Alongword that uniquely identifies a device that this request is directed
toward. The Devi cel dent designates a bus ID, target SCSI ID, and
LUN. A routine is provided to decode a Devi cel dent value into these
components if required, but the objective is to eliminate the physical
addressing characteristics of the transport layer (SCSI bus) from the APIL

scConpFn A pointer to the callback completion function.

scFl ags Alongword that contains the bit settings to indicate special handling of
the requested function. The number and meaning of the flags vary by
function code and are described in function-specific areas:

Flag descriptions

scsi Di r Mask
Bit field used to specify direction of transfer. Values can be

scsiDirln Data direction in
scsi Di r Qut Data direction out
scsi Dir None No data movement

384 SCSI Manager 4.3 Reference

CHAPTER 9

SCSI Manager 4.3

scsi Di sAut osense
Disable autosense feature

scsi ScatterValid
Scatter/ gather list is valid. If this flag is clear, the values in
the scDat a and scDat aLen fields are the starting address
and length of a block of data. If this flag is set, the scDat a
field is a pointer to an S/G list. Each element of the S/G
list is itself a description of a block of data. In addition,
when set, the scSA i st Cnt field contains the number
of S/G entries, and the scDat aLen field contains the total
number of bytes in the data transfer. This last field is
required for easy calculation of the scDat aResi dLen
value.

scsi CDBLi nked
The PB contains a linked CDB. This bit/function is not
supported in the built-in SIM.

scsi Qenabl e
SIM queue actions are enabled. This bit/function is not
supported in the built-in SIM.

scsi CDBI sPoi nt er
The CDB field contains a pointer. If clear, the scCDB field
contains the actual CDB. If set, the sc CDB field contains a
pointer to the CDB. In either case, the scCDBLen field
contains the number of bytes in the command.

scsi Di sDi sconnect
Disable disconnect. This flag, when set, prevents the SIM
from setting the Di SCPri v bit in the identify message
used for this I/O. If clear (default), Di ScPri v is set,
allowing the target to disconnect.

scsilnitiateSync
Attempt sync data xfer, and SDTR

scsi Di sSync
Disable sync; go to async

scsi SI MHead
Place parameter block at the head of SIM queue

scsi SI MQFr eeze
Return the SIM queue to frozen state

scsi SI MNoFr eeze
Disallow SIM queue freezing

scsi CDBPhys
CDB pointer is physical

scsi Dat aPhys
SG/bulffer data pointers are physical

SCSI Manager 4.3 Reference 385

CHAPTER 9

SCSI Manager 4.3

scsi SenseBuf Phys
Autosense data pointer is physical

scsi MsgBuf Phys
Message buffer pointer is physical

scsi Nxt PBPhys
Next parameter block pointer is physical

scsi Cal | BackPhys
Callback function pointer is physical

scsi PhysMask
At least one pointer is physical

scsi Dat aBuf val i d
Data buffer valid

scsi StatusBuf Val i d
Status buffer valid

scsi MsgBuf Val i d
Message buffer valid

scsi Tgt PhaseMode
The SIM will run in phase mode

scsi Tgt PBAvai |
Target parameter block available

scsi Di sAut oDi sc
Disable autodisconnect

scsi Di sAut saveRest
Disable autosave/ restore pointers

Routines

This section describes the routines used to control and inquire from the different layers
of the SCSI Manager hierarchy, as shown in Figure 8-1 (page 366). The order of
discussion is:

1. Driver routines
2. SCSI Interface Modules calls to the transport layer
3. Transport layer calls to SCSI Interface Modules

Driver Routines

Driver routines are used by the client to control and inquire from the transport layer. For
most operations using the SCSI Manager, these are the only routines that are needed.

386 SCSI Manager 4.3 Reference

SCSIAction

CHAPTER 9

SCSI Manager 4.3

The SCSI Act i on routine executes the request specified in the SCSI _PB parameter
block. Certain types of requests are handled by the XPT (such as those dealing with the
SCSI device table), but most are handled by the SIM/HBA. The SCSI _PB header
contains a function code specifying the requested operation. The codes are described
later in this section, along with the parameter blocks that correspond to those functions.

void SCSIAction (SCSI_PB *)

Operation

Drivers make all of their SCSI I/O requests using this function. It is designed to take
advantage of all features of SCSI that could be provided by virtually any HBA /SIM
combination. The parameter SCSI _PB block contains all of the parameters that the XPT
and SIM need to completely transact the I/ O request.

The SCSI Act i on function typically returns with a status of 0 indicating that the request
was queued successfully. Function completion can be determined by polling for nonzero
status or through the use of the callback on completion field. When the completion
routine is called, it has the same static variable pointer (A5) that existed when the
Execute SCSI I/ O request was received. If A5 was invalid when the I/O request was
made, it is also invalid when in the callback.

The callback routine should follow this format:
void ConpFn (SCSI_Execl O PB * thePB);

When issued asynchronously, execute SCSI1/O requests are performed as such; in other
words, the resulting action may start anytime and may end at any time. There is no
implied ordering of these events with respect to earlier or later requests. An earlier
request may be started later and a later request may complete earlier. However, a series
of requests to the same device (bus ID + target ID + LUN) is issued to that device in the
order received.

SCSIAction Function Codes

SCSI Act i on function codes are used by SCSI Manager clients to specify requests.
Table 9-3 lists the hexadecimal function codes that SCSI Manager 4.3 supports on its
initial release.

In Table 9-3, note that codes $00 through $0F cover common functions; codes $10
through $1F cover SCSI control functions; and codes above $7F are reserved by Apple.

SCSI Manager 4.3 Reference 387

CHAPTER 9

SCSI Manager 4.3

Table 9-3 SCSI Manager 4.3 function codes

Code Function Operation (CAM names) Supported
$00 SCSI _Nop NOP (No Operation) v
$01 SCSI _Execl O Execute SCSII/O v
$02 (reserved) Get Device Type

$03 SCSI _Busl nquiry Path (Bus) Inquiry Vv
$04 SCSI _Rel easeQ Release SIM Queue v
$05-$0F (reserved) Set Async callback v
$10 SCSI _Abor t Command Abort SCSI command v
$11 SCSI _Reset Bus Reset SCSI bus a
$12 SCSI _Reset Devi ce Reset SCSI device v
$13 SCSI _Terninatel O Terminate I/O process v
$14-$7F (reserved)

$80 SCSI _GetVirtual I DI nfo Get Devi cel Dof virtual ID v

* Not recommended; see warning on page 392.

SCSI_ExeclO

388

The most commonly executed request of the SCSI Manager is to perform an I/O
command, as defined by the SCSI _PB parameter block with a selector code of
SCSI _Execl O The resulting data structure is the following;:

t ypedef struct SCSI_Execl O PB

{
SCS| PBHdr

uchar
struct SCSI |10
ul ong
uchar

ul ong
uchar
uchar
uchar
ushort
ul ong
uchar
char

/1 header information fields
*scDrvrStorage;// <> ptr used by the driver
*scCOndLi nk; /[l -> ptr to the next |inked cnd
scAppl eRsvdO; // reserved
*scDat aPtr; /1l -> ptr to data buffer

/1 or SIGIist
scDat aLen; /] -> data transfer length

*scSenseBuf Ptr;//
scSenseBuf Len; [/
scCDBLen; /1
scSAistCnt; /1
scAppl eRsvdl; //
scSCSl status; [/

scSenseResi dLen;// <-autosense residua

SCSI Manager 4.3 Reference

->
->
->
->

<-

ptr to autosense buffer

si ze of autosense buffer
nunber of bytes for the CDB
nunber of S/Glist entries
reserved
returned SCSI device status

| ength

CHAPTER 9

SCSI Manager 4.3

ushort scAppl eRsvd2; // reserved
| ong scDat aResi dLen;// <- transfer residual length
CDB scCDB; /! -> actual CDB or ptr to CDB
| ong scTi meout ; /1 -> tineout value (Tine

/1 Manager format)
uchar *scMsgPtr; /1 -> pointer to nmessage buffer
ushort scMsglLen; /1 -> numbytes in nsg buffer
ushort scVUFI ags; /1l -> vendor (Apple) unique flags
uchar scTagActi on; /1 -> what to do for tag queuing
uchar scAppl eRsvd3; // reserved
ushort scAppl eRsvd4; [/ reserved
/1 Apple-specific public fields
uchar *scSCBase; /1 -> base data for S/IGentries
ushort scSel Timeout; // -> select tineout val ue
ushort scXf er Type; /1 -> transfer type
Dat aXf er Proc scDl xfer; /] -> data in function
Dat aXf er Proc scDOxf er; /1 -> data out function
ushort scHandshake[8] ;// -> handshaki ng structure
ul ong scAppl eRsvd5; // reserved
| ong scConnTi neout; // -> connection timeout val ue
uchar scSI Mpublics[8];// for use by 3rd-party SI M
uchar publicExtras[4];// for a total of 48 bytes
/1 XPT layer privates (for old APl enul ation)
Ptr savedAS5; /1 the A5 of the client
ushort scCurrent Phase;// <- phase upon conpleting old cal
short sel ector; /1l -> selector specified in old cal
ushort ol dCall Status; // 1/0O status of old cal
uchar scSCsl nessage; // <- Returned SCSI device nessage
uchar XPTprivFlags; [/ <> various flags
uchar XPTextras[4]; [/ for a total of 16 bytes

} SCSlI _Execl O_PB;

Field descriptions

SCSI PBHdAr Shorthand for the SCSI Manager parameter block structure. See
“SCSI Manager Parameter Block,” earlier in this chapter, for details.

*scDrvrStorage A pointer used by the peripheral driver to access the SCSI Hdr .

*scCndLi nk A pointer to the next linked command.
scAppl eRsvdO Reserved.

*scDat aPtr A pointer to the data buffer or the S/G list.
scDat aLen Length of data buffer to be transferred.

*scSenseBuf Ptr A pointer to the autosense data buffer. Used to get information
about the autosense status.

scSenseBuf Len Size of the autosense data buffer.

SCSI Manager 4.3 Reference 389

390

CHAPTER 9

SCSI Manager 4.3

scCDBLen Length of the CDB in bytes.

scSd i st Cnt Reserved. Number of entries in the S/G list. Used only by the
operating system.

scAppl eRsvdl Reserved.

scSCSl st at us Abyte that returns the SCSI device status. Contains the status of the
specified SCSI device.

scSenseResi dLen Autosense residual length.
scAppl eRsvd2 Reserved.
scDat aResi dLen Data transfer residual length.

scCDB Actual or a pointer to the CDB.

scTi meout Length of time specified before timeout of the SCSI bus.
*scMsgPtr A pointer to the message buffer.

scMsgLen Number of bytes in the message bulffer.

ScVUFI ags Apple-specific flags. These flags define the Apple-specific

operations supported by SCSI Manager 4.3.
Flag Descriptions

scsi NoPari t yCk

Disables the checking of parity on incoming data. Parity
continues to be generated for outgoing data.

scsi Di sSel Atn

Disables the sending of the Identify message for LUN
selection. The Devi cel dent still specifies the LUN so
that the request gets placed in the proper queue. As
always, the LUN field in the CDB is untouched. The
purpose is to provide compatibility with pre-SCSI-2
devices that did not support the inquiry+LUN concept as
described in the SCSI-2 documentation.

scsi SavePtr OnDi sc

If this flag is set, the SCSI Manager automatically does
a Save Data Pointer operation when it receives a
Disconnect message from the target. If this flag were
clear, operation would be as specified in SCSI-2; in
particular, there is no implied Save Data Pointer when
a Disconnect message is received, and if a disconnect
actually did occur, the data pointer would revert to the
value last saved. The purpose of this bit is to provide
compatibility with devices whose designers did not
understand the function of the Save Data Pointer and
Disconnect messages.

scsi NoBucket | n

SCSI Manager 4.3 Reference

CHAPTER 9

SCSI Manager 4.3

scTagActi on
scAppl eRsvd3
scAppl eRsvd4

Apple-specific fields
*scSGBLase
scSel Ti meout

scXfer Type

*scDl xf er
*scDOxf er

scHandshake[8]
scAppl eRsvd5

When set, no bit-bucketing on data-in is performed for
this transaction. Bit-bucketing normally occurs when
the device (target) wants to supply more data than the
computer (initiator) is expecting. This can happen if

the SCSI _Exec_| Oparameter block has inconsistent
parameters—with the CDB indicating a request for more
data than the S/G list provides. If this bit is set and the
extra data condition occurs, the SCSI Manager request

terminates and the bus is left in dat a_i n phase. A

SCSI _Reset Bus request must be issued to clear the bus.
Due to the impact of a SCSI Reset, this bit should only be
set for debugging.

scsi NoBucket Qut

When set, no bit-bucketing on data-out is performed for
this transaction. This is the inverse of bit-bucketing
described above and normally occurs when the target is
asking for more data than was supplied in the I/O
request. Again, this bit should only be used for
debugging purposes.

scsi ExecSync

This flag causes I/O to be executed synchronously (it
returns from a SCSI Act i on call only when complete).

Specifies what action is taken for tag queuing.
Reserved. SCSI Manager private data area.
Reserved. SCSI Manager private data area.

A pointer to the base data in an S/G entry.

A field that allows the client to set an alternate select timeout value.
The timeout is specified in milliseconds but there is no guaranteed
accuracy because different HBAs have different capabilities,
including only being able to handle the standard 250 ms. A value of
0 designates this default time length.

An option that selects which type of transfer to use during the data
phase. This roughly corresponds to blind versus polled. This option
is provided for backward compatibility with a few devices. For
nearly every device, this field should be zero, which selects the
default, fastest, most reliable transfer routine for the selected bus.
The number of specialized transfer types available on a particular
HBA is available in the scXf er Types field of the Bus| nqui ry
parameter block.

A pointer to a client-supplied function used by the SCSI Manager
during the data in phase. If null, the SIM’s routine is used.

A pointer to a client-supplied function used by the SCSI Manager
during the data-out phase. If null, the SIM’s routine is used.

A structure used for handshake operations.

Reserved for Apple use only.

SCSI Manager 4.3 Reference 391

CHAPTER 9

SCSI Manager 4.3

scConnTi meout A value used to time out SCSI operations.
scSI Mpubl i cs[8]
Basic allocation for use by third-party SIM vendors.

publ i cExtras][4]
Expanded allocation for third-party SIM vendors, providing a total
of 48 bytes.

SCSI_AbortCommand

The SCSI _Abor t Command function asks that a SCSI Manager request be canceled by
identifying the parameter block associated with the request. It should be issued on any
I/0O request (not completed) that the driver wishes to cancel. Success of the Cancel
function is never assured. This request does not necessarily result in an Abort message
being issued over SCSI.

/1 Abort SCSI Manager Request paraneter bl ock
t ypedef struct SCSI_Abort Conmand_PB

{
SCSI PBHdr !/l header information fields

SCSI Hdr *scThePB; /1l -> pointer to the PB to abort
} SCsl _Abort Conmand_PB;

SCSI PBHdr Shorthand for the SCSI Manager parameter block structure. See “SCSI
Manager Parameter Block,” earlier in this chapter, for details.

*scThePB A pointer to the parameter block to be canceled.

SCSI_ResetBus

This SCSI _Reset Bus function is used to reset the specified SCSI bus.

typedef struct SCSI _Reset Bus_PB
{

SCSI PBHdr /1 header information fields
} SCSI _Reset Bus_PB;

SCSI PBHdr Shorthand for the SCSI Manager parameter block structure. See “SCSI
Manager Parameter Block,” earlier in this chapter, for details.

A WARNING

This function should not be used in normal operation. It can be used
only in the unlikely event that a client is unable to use the SIM/HBA
due to a faulty device disabling the bus. a

392 SCSI Manager 4.3 Reference

CHAPTER 9

SCSI Manager 4.3

SCSI_ResetDevice

The SCSI _Reset Devi ce function is used to reset the specified SCSI target. This
function should not be used in normal operation, but if I/O to a particular device hangs
up for some reason, drivers can abort the I/0O and reset the device before trying again.
This request shall always result in a Bus Device Reset message being issued over SCSI.

typedef struct SCSI_Reset Devi ce_PB

{
SCSI PBHdr /1 header information fields

} SCSI _Reset Devi ce_PB;

SCSI PBHdr Shorthand for the SCSI Manager parameter block structure. See “SCSI
Manager Parameter Block,” earlier in this chapter, for details.

SCSI_TerminatelO

The SCSI _Ter nmi nat el Ofunction requests that a SCSI Manager I/O request be
terminated by identifying the parameter block associated with the request. This function
should be called for any I/O request that has not completed and that the driver wishes
to terminate. Success of the termination process is never assured. This request does not
necessarily result in a Ter m nat el OPr ocess message being issued over the SCSI bus.

typedef struct SCSI_Terni natel O PB

{
SCSI PBHdr /] header information fields

SCSI Hdr *scThePB; /1l -> a pointer to the paranmeter bl ock
/1 to term nate
} SCSI _Termi nat el O _PB;

SCSI PBHdr Shorthand for the SCSI Manager parameter block structure. See “SCSI
Manager Parameter Block,” earlier in this chapter, for details.

*scThePB A pointer to the parameter block to be canceled.

SCSI Manager 4.3 Reference 393

CHAPTER 9

SCSI Manager 4.3

SCSI_GetVirtuallDInfo (Apple-specific)

The SCSI _Get Vi r t ual | DI nf 0 routine returns the device ID for the specified virtual
ID. This function is typically used by a peripheral driver during the transition from
ROM-based previous SCSI Manager to a system file-based SCSI Manager 4.3. If no
device has yet been found on any of the ol dCal | Capabl e buses, the SCEXi st s
Boolean value is FALSE and the Devi cel dent field should be ignored.

typedef struct SCSI_GetVirtual I nfo_PB

{
SCSI PBHdr /1 header information fields
ushort scVirtual | D /1l -> SCSI |ID of device
/1 in question
Bool ean scExi st s; /1 <- true if device exists

} SCSI _GetVirtual I nfo_PB;

scHdr Shorthand for the SCSI Manager parameter block structure. See “SCSI
Manager Parameter Block,” earlier in this chapter, for details.

scVirtual I D
Identification of a device on either internal or external bus.

scExi sts A Boolean value that returns t r ue if the device exists on the bus.

Note

The Devi cel dent value is returned in the header of this parameter
block which makes this the only function that returns a value in the
SCSI Hdr outside of the scSt at us field. O

SCSI_ReleaseQ

394

The SCSI _Rel easeQfunction releases a frozen SIM queue for the selected LUN.

typedef struct SCSI _Rel easeQ PB

{
SCSI PBHdr /] header information fields

} SCSl _Rel easeQ PB;

SCSI PBHdr Shorthand for the SCSI Manager parameter block structure. See “SCSI
Manager Parameter Block,” earlier in this chapter, for details.

SCSI Manager 4.3 Reference

CHAPTER 9

SCSI Manager 4.3

SCSI_BusInquiry

The SCSI _Busl nqui ry function is used to get information on the specified HBA,
including the number of HBAs installed.

typedef stru
{
SCSI PBHdr
uchar
uchar
uchar
uchar
ushort
/1 Appl e-
ushort

ushort
ul ong
uchar

ul ong
ul ong
uchar
uchar
ushort
char
char
ul ong
char
char
} SCSI _Busln

ct SCsSl _Buslnquiry_ PB

/] header information fields

version nunber for controller
mmc of INQ byte 7

flags for target node support
msc feature flags

nunber of engi nes on bus
scVUrsrvd (14 bytes total)
nunber of transfer types

for this HBA

type of SCSI controller used
various Apple-specific flags

scVUrsrvd[14- VU used] ;// <- vendor-uni que reserved

/1

scVer si onNum /Il <-
scHBAI nqui rvy; /Il <-
scTar get MUFl ags; // <-
scSlI MM sc; /Il <-
scEngi neCnt ; /Il <-
specific fields through
scXf er Types; /Il <-
/1
scCntrlrType; /Il <-
scVUf | ags; /Il <-
scSI MPrivSi ze; /Il <-
scAsyncFl ags; /Il <-
scHi Busl D /Il <-
sclnitiatorlD; /Il <-
scReserved; /1
scSl Wend[16] ; /Il <-
scHBAVend[16] ; /Il <-
scOSDr eser ved; /1

scCntrl Fam | y[16];// <-
scCntrl Type[16]; [/ <-
qui ry_PB;

Standard field descriptions

Shorthand for the SCSI Manager parameter block structure. See
“SCSI Manager Parameter Block,” earlier in this chapter, for details.

SCSI PBHdr

scVer si onNum

| eftovers
size of SIMprivate data area
event cap. for Async call back
hi ghest bus ID in subsystem
initiator 1D on SCSI bus
reserved
vendor |ID of the SIM
vendor | D of HBA
reserved [OSD]
famly of SCSI controller
fam|ly of SCSI controller

The version number field is used by the client to verify that the SIM

can handle the requests the client was designed to issue:

Value Meaning

$00-07 Prior to revision 1.7

$08 Implementation version 1.7

$09-FF Revision number; for example $31 = 3.1

SCSI Manager 4.3 Reference

395

396

CHAPTER 9

SCSI Manager 4.3

scHBAI nqui ry These flags indicate basic SCSI capabilities of the subsystem

(SIM + HBA).

Bit Meaning

7 Modify data pointers
6 Wide bus 32

5 Wide bus 16

4 Synchronous transfers
3 Linked commands

2 (reserved)

1 Tagged queuing

0 Soft reset

scTar get MIFI ags Target mode is not supported in the initial versions of SCSI
Manager 4.3 and consequently, this field returns 0.

Bit Meaning
7 Processor mode
6 Phase cognizant mode
5-0 (reserved)
scSI MM sc These flags are meant to designate how the SCSI Device Table is
generated and maintained.
Bit Meaning
7 0 = scanned low to high
1 = scanned high to low
6 0 = removables included in table
1 = removables not included in table
5 1 = inquiry data not kept by XPT
4-0 (reserved)
scEngi neCnt As engines are not supported, this value is always 0 for

Apple-supplied SIMs and HBAs.

Apple-specific field descriptions

scXf er Types A field that returns the number of data transfer types available on
this HBA. These transfer types are roughly analogous to blind,
polled, and so on. They are provided purely for the sake of
compatibility with unusual devices that have specific timing
requirements. Apple SIMs provide two transfer routines that
resemble blind (1) and polled (2) modes. Here this field is 2. The
driver specifies which transfer type to use during a particular I/O
in the scXf er Type field in the SCSI _Execl| O_PB parameter block.
The scXf er Types value returned from a bus inquiry is the
maximum value supported in the Exec SCSI I/O request.

scCntrlrType A field that designates the SCSI controller chip used in this HBA.

SCSI Manager 4.3 Reference

CHAPTER 9

SCSI Manager 4.3

scVUf | ags Following are the currently defined Apple-specific flags for HBAs:

Bit Meaning

0 DMA transfer available and supported

1 Fast synchronous capable

2 Single-ended (0) or differential (1)

3 Bus has no external connectors (i.e. cable cannot extend
outside case)

4 HBA is capable of supporting old-API calls from XPT

scHBAnane[16] An HBA product name— an ASCII text HBA identifier. It is meant
to correspond to a commonly known product name for the HBA
such as WhopperSCSI SE30.

scVUr srvd[14- VUused]
As specified by CAM, a field for vendor-unique data that contains
14 bytes less the part used by Apple.

scSIMPrivSi ze Asspecified by CAM, this field designates how many bytes of data
are in the SIM’s private data area (static).

scAsyncFl ags Flags that indicate which types of asynchronous events are
generated by this SIM. A client may register with the XPT to receive
a callback when any of these events occur.

scHi Busl D If no bus IDs exist, i.e. no SCSI buses are registered, then the highest
bus ID assigned is $FF, the ID of the XPT.

sclnitiatorl D SCSIDevice ID (of Initiator)—For all Apple-supplied HBAs, this
field is 7. It is highly recommended that all third-party HBAs also
use ID 7 for their initiator.

scReserved Reserved for Apple use.

scSI M/end[16] Vendor ID of SIM-supplier—This is an ASCII text vendor identifier.
Apple Computer is designated “Apple Computer”.

scHBAVend[16] Vendor ID of HBA-supplier This is an ASCII text vendor identifier.
Apple Computer is designated “Apple Computer”.

scCntrl Fami | y[16]
A field that designates the family of parts that the SCSI controller
chip belongs to. It is meant to describe primarily the programming
interface to the part. For instance, 5380, 53¢80, and IIfx SCSIDMA
chips all have a family of NCR 5380.

scCntr | Type[16] Specific type of SCSI controller.

SCSI Interface Module Calls to Transport

The routines described in this section are used by a SIM to communicate with the
transport layer. Their calls should all be supported by SIM developers.

SCSI Manager 4.3 Reference 397

CHAPTER 9

SCSI Manager 4.3

SCSIRegisterBus

398

The SCSI Regi st er Bus routine is called to register an HBA for use with the transport
(XPT). Several characteristics of the HBA are specified as well as the software entry point
SIM and the number of bytes required for a static data space (for global variables).

The XPT returns a Bus| D that is used for that HBA as well as a pointer to the allocated

static space.

Il ong SCSl RegisterBus (SIMnitinfo * SIMnfo);

SI M ni t | nf ois defined as:

typedef struct { /1 used for SCSI Regi sterBus cal
uchar *Sl MstaticPtr; /1 <- ptr to the SIMs static vars
| ong staticSi ze; /1l -> bytes SIMneeds for static
/1 vari abl es

| ong (*SIMnit)(); /] -> pointer to SIMinit routine

| ong (*Sl Maction)(); /1l -> pointer to SIMaction routine
| ong (*SIMISR (); /!l -> pointer to the SIMISR routine
voi d (*Newd dCal 1)(); // -> pointer to the SI M Newd dCal

| ong i ntrptSource; /1l -> interrupt source specifier

Bool ean ol dCal | Capabl e; /1 ->true if this SIMcan handl e

/1 ol d SCSI Manager calls

ushort busl D /1l <- bus # for the registered bus
voi d (*XPT_ISR) (); [l <- ptr to the XPT ISR
voi d (*MakeCal | back) ();// <- pointer to the XPT |layer’s

} SIMnitlnfo;

Field descriptions
Sl MstaticPtr

staticSize

*SIMnit

*Sl Mact i on

*SI M_I SR
*Newd dCal |

ol dCal | Capabl e

i ntrpt Source
busl D
*XPT_I SR

Sl MstaticPtr

/1 MakecCal | back routi ne

A pointer to the allocated space for the SIM'’s static variables.

Alongword that specifies the number of bytes needed by the SCSI
interface module for its static variables.

A pointer to this SIM’s initialization routine.

A pointer to this SIM’s action routine.

A pointer to this SIM's interrupt service/ polling routine.

A pointer to this SIM’s routine for accepting old SCSI Manager calls.

A Boolean value that is t r ue if this SIM can handle old SCSI
Manager calls.

The interrupt source for this SIM’s HBA.
The bus number of the bus that this SIM is registered to use.

A pointer to the XPT’s interrupt service routine, used when the SIM
has an interrupt source besides the one specified in SI M ni t | nf o.

A pointer to this SIM’s static variables.

SCSI Manager 4.3 Reference

CHAPTER 9

SCSI Manager 4.3

SCSIDeregisterBus

The SCSI Der egi st er Bus routine is called to deregister an HBA when it is no longer
available for use.

| ong SCSI Der egi st er Bus (ushort buslD);

busl D The bus number of the bus that this SIM is registered to use.

Transport Calls to SCSI Interface Modules

These routines are used by the transport to control the SIM. This section includes all the
previous SCSI Manager routines that the new SCSI manager supports. Their calls should
all be supported by SIM developers.

SIMinit
The SI M ni t routine is called by the XPT to initialize the SIM's state. The SIM, in turn
has the responsibility of optionally initializing the HBA.
void SIMnit (Ptr SlMtaticPtr, |long buslD);
Sl MstaticPtr
A pointer to the previously allocated SIM static data area.
busl D Bus identification for this HBA.
SIMAction

The SI MAct i on routine is called by the XPT whenever a SCSI Act i on call is received
that needs to be serviced by the SIM.

long SIMAction (SCSI_PB *thePB, Ptr Sl MstaticPtr);

*t hePB A pointer to the parameter block.

Sl MstaticPtr
A pointer to the previously allocated SIM static data area.

SCSI Manager 4.3 Reference 399

CHAPTER 9

SCSI Manager 4.3

Summary of the SCSI Manager 4.3

Constants

/**/

/1 Defines for the SCSI Mygr scResult field in the paraneter

bl ock header.

/**/

#def i ne scsi Reql nProg 1 /1 PB request is in progress
#def i ne scsi RegAborted (OxE100+0x02) // -7934 = PB request aborted by
/1 the host
#def i ne scsi Unabl eToAbort (O0xE100+0x03) // -7933 = Unable to Abort PB
/1 request
#def i ne scsi ReqCnpl VEr r (O0OxE100+0x04) // -7932 = PB request conpl eted
/1 with an error
#def i ne scsi Busy (OxE100+0x05) // -7931 = SCSI subsystemis busy
#define scsiReglnvalid (OxE100+0x06) // -7930 = PB request is invalid
#def i ne scsiBuslnvalid (OxE100+0x07) // -7929 = bus ID supplied is
/1 invalid
#def i ne scsi DevNot There (OxE100+0x08) // -7928 = SCSI device not
/1 installed there
#def i ne scsi Unabl eTerml O (0OxE100+0x09) // -7927 = unable to ternmnate /O
/1 PB request
#def i ne scsi Sel Ti meout (OxE100+0x0A) // -7926 = target selection timeout
#def i ne scsi CndTi nmeout (OxE100+0x0B) // -7925 = command ti neout
#defi ne scsi MsgRej ect Revd (0OxE100+0x0D) // -7923 = nessage reject received
#def i ne scsi SCSI BusReset (OXE100+0x0E) [/ -7922 = SCSI bus reset sent
/'l received
#defi ne scsi UncorParity (OXE100+0x0F) // -7921 = uncorrectable parity
/1 error occurred
#def i ne scsi Aut osenseFail (0xE100+0x10) // -7920 = autosense: Request
/1 sense cnd fai
#def i ne scsi NoHBA (OxE100+0x11) // -7919 = no HBA detected error
#defi ne scsi Dat aRunErr (OxE100+0x12) // -7918 = data overrun/underrun
#def i ne scsi UnexpBusFr ee (OxE100+0x13) // -7917 = unexpected bus free
#def i ne scsi SequenceFai | (OxE100+0x14) // -7916 = target bus phase
/1 sequence failure
400 Summary of the SCSI Manager 4.3

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i
#def i

#def i

/1 Defines for the SCSIMyr flags field in

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne
ne

ne

/1 1st

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne

ne
ne

CHAPTER 9

SCSI Manager 4.3

scsi PBLenErr
scsi Provi deFai
scsi BDRsent
scsi ReqTerm O
scsi LUNI nval i d
scsi TI Dl nval i d
scsi FuncNot Avai
scsi NoNexus
scsill Dl nvalid
scsi CDBRevd

scsi SCSI Busy

scsi S| MJFrozen

scsi Aut osenseVal i d

scsi Resul t Mask

Byt e

scsi Di r Reserved
scsiDirln
scsi Di rQut
scsi Di r None
scsi Di r Mask

scsi Di sAut osense
scsi ScatterValid
scsi CDBLi nked

scsi QeEnabl e
scsi CDBI sPoi nt er

(O0xE100+0x15)
(0xE100+0x16)
(OxE100+0x17)

(O0xE100+0x18)

(O0xE100+0x38)
(OxE100+0x39)

(OXE100+0x3A)

(0xE100+0x3B)
(O0xE100+0x3C)
(OxE100+0x3E)

(OXE100+0x3F)

0x40
0x80

0x00C0

0x00000000 //
0x40000000 //
0x80000000 //
0xC0000000 //
0xC0000000 //
0x20000000 //
0x10000000 //
0x04000000 //

/1
0x02000000 //
0x01000000 //

Summary of the SCSI Manager 4.3

/1
/1
11
/1
/1
11
/1
/1

/1
/1
11
/1
/1
11
/1
/1
11
/1

11
/1

11
/1

t he paraneter

data
dat a
dat a
data
dat a

-7915 = PB length supplied is
i nadequat e

-7914 = unable to provide
required capability

-7913 = a SCSI BDR nessage was
sent to target

-7912 = PB request term nated
by the host

-7880 = LUN supplied is invalid
-7879 = target ID supplied is
invalid

-7878 = the required function is
not avail abl e

-7877 = Nexus is not established
-7876 = initiator IDis invalid
-7874 = SCSI CDB has been

recei ved
-7873 = SCSI bus busy

SIM queue frozen with this error

aut osense data valid for target

mask for high (QFZN and
AUTOSNS_VALID) bits

bl ock header.

direction
direction
direction
direction
direction

(00:
(01:
(10:
(11:
mask

reserved)
DATA I N)
DATA QUT)
no data)

di sabl e aut osense feature

S/IGlist
par amet er

is valid
bl ock contains a

i nked CDB
SI M queue actions are enabl ed
CDB field contains a pointer

401

CHAPTER 9

SCSI Manager 4.3

/1 2nd Byte

#def i ne scsi Di sDi sconnect 0x00800000
#define scsilnitiateSync 0x00400000
#def i ne scsi Di sSync 0x00200000
#defi ne scsi SI MQHead 0x00100000
#defi ne scsi SI MJFreeze 0x00080000
#defi ne scsi SI MQNoFr eeze 0x00040000
#def i ne scsi CDBPhys 0x00020000
/1 3rd Byte

#def i ne scsi Dat aPhys 0x00002000
#def i ne scsi Sense Buf Phys 0x00001000
#defi ne scsi MsgBuf Phys 0x00000800
#defi ne scsi Nxt PBPhys 0x00000400
#defi ne scsi Cal | BackPhys 0x00000200
#def i ne scsi PhysMask 0x00000100
/1 4th Byte - Target Mde Fl ags
#defi ne scsi DataBufValid 0x00000080
#def i ne scsi StatusBuf Val i d 0x00000040
#defi ne scsi MsgBufValid 0x00000020
#def i ne scsi Tgt PhaseMode 0x00000008
#defi ne scsi Tgt PBAvai | 0x00000004
#def i ne scsi Di sAut oDi sc 0x00000002
#defi ne scsi Di sAut saveRest 0x00000001

; /1 APPLE Unique flags - scVUFI ags

#def i
#def i
#def i
#def i
#def i

#def i

402

ne
ne
ne
ne
ne

ne

scsi NoPari t yCk
scsi Di sSel Atn
scsi SavePt r OnDi sc
scsi NoBucket I n
scsi NoBucket Qut

scsi ExecSync

0x0002
0x0004
0x0008
0x0010
0x0020

0x0040

Summary of the SCSI Manager 4.3

/1
11
/1
/1
11
/1
/1

/1
11
/1
/1
11
/1
/1
11
/1

/1
/1
11
/1
/1
11
/1

/1
11
/1
/1
11
/1
/1

di sabl e di sconnect

attenpt Sync data xfer, and SDIR
di sabl e sync, go to async

pl ace PB at the head of SIMQ
return the SIMQto frozen state
disall ow SIM Q freezing

CDB pointer is physical

S/ G buffer data pointers are
physi cal

aut osense data pointer is physica
nmessage buffer pointer is physica
next paramneter block pointer is
physi cal

cal | back function pointer is

physi cal

at |l east one pointer is physical

data buffer valid

status buffer valid

nessage buffer valid

SIMwi Il run in phase node

target PB avail able

di sabl e aut odi sconnect

di sabl e aut osave/restore pointers

di sabl e parity checking
di sabl e select with attention
do SAVEDATAPO NTER when DI SCONNECT

don’t bit-bucket in during this I/0
don’t bit-bucket out during this
/0

execute this 1/0O synchronously

CHAPTER 9

SCSI Manager 4.3

e e
/1 Defines for the SIMHBA queue actions. These values are used in the
/1 SCSI _Execl O PB, for the queue action field

#defi ne scsi Si npl eQlag 0x20 /1l tag for a sinple gueue
#def i ne scsi HeadQTag 0x21 /1 tag for head of queue
#def i ne scsi OrderedQrag 0x22 /1 tag for ordered queue
/1 Defines for the Bus Inquiry paraneter block fields.
#defi ne scsi VERSI ON 0x22 /1 binary value for the current vers
#def i ne busMDP 0x80 /1 supports MDP nessage
#defi ne busW de32 0x40 /1 supports 32 bit wi de SCS
#def i ne busW del6 0x20 /1 supports 16 bit w de SCS
#def i ne busSDTR 0x10 /'l supports SDTR nessage
#defi ne busLi nkedCDB 0x08 /'l supports |linked CDBs
#def i ne busTagQ 0x02 /1 supports tag queue nessage
#def i ne busSoft Reset 0x01 /1 supports soft reset
#defi ne busTgt Processor 0x80 /1 target node processor node
#def i ne busTgt Phase 0x40 /1 target node phase nobde
#defi ne busScansHi 2Lo 0x80 /1 bus scans fromID 7 to IDO
#def i ne busNoRenovabl e 0x40 /1 renovabl e dev not included in scan
#def i ne busDMAavai | 0x01 // DMA is avail able
#def i ne busFast SCSI 0x02 /1 HAL supports fast SCS
#define busDifferenti al 0x04 /1l singleEnded (0) or Differential (1)
#def i ne busNoExtern 0x08 /1 HAL has no external connectors
#def i ne busA dAPI 0x10 /1 HAL is old APl capable
Data Type
typedef struct { // directions for SCSIRegisterBus: (-> parm <- result)
uchar *Sl MstaticPtr; [l <- ptr to the SIMs static vars
| ong staticSi ze; /1 -> num bytes SI M needs for static vars
| ong (*SIMnit)(); /1l -> pointer to the SIMinit routine
| ong (*SI Maction)(); // -> pointer to the SIMaction routine
| ong (*SIMISR (); /1 -> pointer to the SIMISR routine
voi d (*Newd dCal 1) (); /1 -> pointer to the SIM Newd dCall routine
Bool ean ol dCal | Capabl e; /1l ->true if this SIMcan handl e ol d-APlI calls
ushort busl D, /1 <- bus nunber for the registered bus
voi d (*XPT_ISR) (); /1 <- ptr to the XPT ISR

voi d (*MakeCal | back) () ; [/l <- pointer to the XPT layer’'s
/1 MakeCal | back routine
} SIMnitlnfo;

Summary of the SCSI Manager 4.3 403

CHAPTER 9

SCSI Manager 4.3

Routines

void OSErr SCSI Acti on(SCSI _PB *);
long OSErr SCSI Regi sterBus(SIMnitlnfo *);
long OSErr SCSI Deregi sterBus(SIMnitinfo *);

404 Summary of the SCSI Manager 4.3

CHAPTER 10

DMA Serial Driver

CHAPTER 10

DMA Serial Driver

The DMA Serial Driver for the Macintosh Quadra 840Av and Macintosh Centris 660AV is
a complete reimplementation of the classic serial driver previously documented in Inside
Macintosh. The reasons for this change are

» to improve the maintainability and transportability of the serial driver by writing it in
a high-level language

» to modularize hardware-dependent support features, speeding the development of
serial driver versions for new hardware

These goals mesh with the extensive changes required to support a DMA serial I/O
model on the Macintosh Quadra 840Av and Macintosh Centris 660Av hardware. While
the documented API for the DMA Serial Driver is supported and compatible with the
classic serial driver, there are a few technical changes internally which could affect driver
clients that are not particularly well behaved.

The new Serial Driver does not assume anything about the hardware. Any function that
requires knowledge of the hardware results in a call to a hardware abstract layer (HAL),
an API layer that makes the driver hardware-independent. By supplying a new HAL, the
same serial driver can support many different hardware platforms. The first new HAL,
called PSCHAL, was developed to support the Macintosh Quadra 840Av and Macintosh
Centris 660AV hardware.

It is not necessary to read this chapter to use the new DMA Serial Driver. However, some
serial driver clients were written to take advantage of the hardware implementation of
the previous serial driver. The internal structures are not the same as in the previous
serial driver. Any software that relies on the serial driver’s internal structures must be
rewritten. Hence, developers wishing to maintain compatibility with the new DMA
Serial Driver should read this chapter and test their existing serial driver clients for
changes in the hardware implementation.

This chapter explains the change in the architecture of the DMA Serial Driver and then
the changes in implementation that could affect existing drivers. For information about
serial port hardware in the Macintosh Quadra 840Av and Macintosh Centris 660AV
computers, see “Serial Ports,” in Chapter 2.

Architecture

406

At the top level, presenting the familiar Device Manager AP, is a serial driver that
handles Open, Cl ose, Read, Wi te, Control,Status,andKil | | Ocalls. The driver
maintains a set of variables referenced by dCt | St or age that are not compatible with
the variables of the classic serial driver. The driver never explicitly references the
Macintosh hardware and never makes any assumptions about whether the hardware is a
standard SCC, SCC with IOP, SCC with PSC, or any other specific configuration. The
DMA Serial Driver is a standard 'SERD' resource of ID 1. The preliminary version
number for this driver is 8.

Architecture

CHAPTER 10

DMA Serial Driver

To support the documented API, anytime a required function would involve knowledge
of the hardware a call is initiated to a serial HAL resource. Through a parameter block
interface, the HAL handles requests from the serial driver that require specific knowledge
of the hardware.

A HAL is simply a code resource with a predefined, private API. By interchanging HAL
resources, the same serial driver can support a number of widely different hardware
configurations. The first HAL implemented is PSCHAL, a DMA HAL for the Macintosh
Quadra 840Av and Macintosh Centris 660Av. This HAL is largely a superset of what
would be required for the traditional Macintosh serial platform; by stripping out some
DMA code, for example, a simpler “SCCHAL” for the SCC could be generated.

Changes in Implementation

This section discusses the following areas affected by changes in the hardware and
software implementation of the DMA Serial Driver:

» interrupt handling
s DMA versus non-DMA transmissions
= elimination of the Pol | Pr oc mechanism

= use of the DMA capability

Interrupt Handling

The HAL has responsibility for receiving all interrupts generated by the serial hardware.
This is in line with the HAL's responsibility as keeper of the hardware. The HAL
dispatches serial driver interrupt handlers through the “Level 2” vector tables, including
external/status interrupts. It is the responsibility of the driver to make callbacks to the
HAL to perform hardware-dependent tasks at interrupt time, including secondary
dispatch of external/status interrupts. Driver-level interrupt handlers usually run as
deferred tasks with interrupts enabled.

The interrupt dispatch table structure is preserved as an element of the driver/HAL
interface. The familiar Lvl 2DT (SCCDT) and Ext St sDT tables are still used. DMA
interrupts are processed through these vectors as well as SCC interrupts, so there is more
complexity required in the interrupt handlers to process a given interrupt properly. In
general, this complexity is not in the driver but is instead pushed down into the HAL.
Register conventions across these dispatch tables may or may not be preserved; for
example, SCC addresses may not be stored in registers A0 or Al.

These changes in interrupt handling should be transparent to any serial driver client, but
they do significantly alter the interrupt handler code paths from those used in the former
serial driver.

Changes in Implementation 407

408

CHAPTER 10

DMA Serial Driver

DMA Versus Non-DMA Transmissions

The PSC DMA hardware presents a minor limitation in that all serial data transfers must
begin on longword boundaries. As a result, not all data can be transferred using DMA.
Therefore, PSCHAL uses a mixed DMA /SCC model where DMA is used if possible

and convenient. If DMA is not convenient, the classic character-oriented SCC interrupt
model is employed until synchronization is regained with a longword boundary.
Maximum performance benefit occurs with large, uninterrupted transfers.

When receiving data, there are new requirements on the receive buffer size and
alignment. Although the driver client can request any buffer size and alignment, the
driver uses only receive buffers which are 64 bytes or larger, aligned to a cache line
boundary and a multiple of 16 bytes in length. The driver attempts to ensure that the
buffer is also locked in physical memory and physically contiguous. If a buffer passed
to Ser Set Buf does not meet these requirements, the driver attempts to carve out a
subset of the given buffer which does meet them. If that is not possible, the driver
reverts to its internal default 64-byte buffer. This should have little impact on driver
clients, who should make no assumptions about the serial driver’s internal use of the
receive character buffer. Ser Set Buf and PBW i t e will fail if called when interrupts are
masked. The driver will be unable to lock the receive buffer for DMA.

PollProc Mechanism

The Pol | Pr oc mechanism, whereby serial characters are received with interrupts
disabled by LocalTalk or other applications, is not supported on the Macintosh

Quadra 840Av or Macintosh Centris 660Av. Pol | Procs are completely disabled. The
PSC is capable of reading incoming serial data while interrupts are disabled. Polling
by other software components threatens data integrity just as failure to poll did in

the past. All occurrences of polling in components outside the serial driver should

be disabled. The driver itself does not supply a Pol | Dt al n equivalent (the Pol | Pr oc
low memory is always nil).

DMA Use

PSCHAL uses all three serial DMA channels, each in a fixed direction. On port A, the
SCCA DMA channel (channel 4) is used to receive and SCCATx (channel 6) is used to
transmit. This allows full-duplex serial DMA on port A. On port B, SCCB (channel 5) is
used to transmit. Full-duplex serial DMA is not supported on port B, because the printer
port is used primarily for output and not for high-speed input. For hardware details, see
“Serial Ports,” in Chapter 2.

During DMA input, any Read call to the driver and any Ser Get Buf Status call requires
that pending DMA be terminated to determine an accurate accounting of characters
received. Terminating DMA ensures that all received characters are immediately
available, but degrades driver performance. If your application calls Ser Get Buf in a
loop you might want to rewrite it to work around this requirement.

Changes in Implementation

CHAPTER 11

Video Driver

CHAPTER 11

Video Driver

The Macintosh Quadra 840Av and Macintosh Centris 660AV computers are the first
Macintosh CPUs to provide both video-out and video-in capabilities built into the main
logic board. This chapter discusses the system software changes that support these
features. The hardware for video input and output is discussed in “Video and Graphics
I/0O,” in Chapter 2.

Before reading this chapter, you should already be familiar with video drivers based on
the Macintosh Slot Manager. See Designing Cards and Drivers for the Macintosh Family,
third edition, for background technical information.

Video Television Output

410

The user can control the video output portion of the video driver in the Macintosh
Quadra 840Av and Macintosh Centris 660AV by means of the Monitors control panel,
using the Options button. The Macintosh Quadra 840Av and Macintosh Centris 660AV
hardware supports video ouput not only through the standard DB-15 monitor connector
but also through a composite video connector on the back panel.

In addition to the standard RGB monitor output, video output is available in either
NTSC or PAL television format. With NTSC format, underscan produces a resolution of
512 by 384 pixels resolution, while overscan produces a resolution of 640 by 480 pixels.
With PAL format, underscan produces a resolution of 640 by 480 pixels, while overscan
produces a resolution of 768 by 576 pixels. When driving an interlaced display or
television, the hardware can implement a flicker-free mode called Apple convolution. This
mode is selectable through a checkbox on the Options dialog box of the Monitors control
panel. Apple convolution is not supported in more than 256 colors or when a video input
window is active.

Because of the limited resolutions of the NTSC and PAL standards, the video driver
allows the user to switch from an RGB display to a television output only when the RGB
display resolution is 512 by 384, 640 by 480, or 768 by 576 pixels. The driver provides
family modes for all Apple monitors in these resolutions, if physically possible. Thus, a
user who has a 16-inch color display with a resolution of 832 by 624 pixels can change
the family mode to 512 by 384, 640 by 480, or 768 by 576 pixels. The driver will center the
active video on the display and the user will see more black around it than in the
standard 832 by 624 resolution. After doing this, the Option dialog box of the Monitors
control panel will show enabled radio buttons to switch the output to one of the
television formats.

The Macintosh Quadra 840Av and Macintosh Centris 660AV video driver lets the user
connect a television set as the computer’s sole display. This is done by the Pri mar yl ni t
code; if there is no monitor connected to the DB-15 port, the code checks a bit in its slot
PRAM to determine whether the user has enabled the boot-on-television feature. If the bit
is set, the video driver opens and the monitor output is displayed on television equipment
connected to the composite output ports. The Options dialog box of the Monitors control
panel provides a checkbox to allow the user to select this feature.

Video Television Output

CHAPTER 11

Video Driver

Monitor output is directed to the video output connector in television format only if
there is no monitor connected to the DB-15 connector. If the user has not clicked the
checkbox in the Options dialog box of the Monitors control panel, this feature can also be
enabled by holding down the Command-Option-T-V keys during startup. If this is done,
the machine will boot up, play the boot beep, and replay the boot beep a short time later.
At that moment the user can release the keys and the computer will continue the startup
process, using the connected television set as its main display.

New Control and Status Routines

To let video displays go into a power-saving mode if the sync lines are dropped, two
new routines have been added to the video driver:

c¢sCode =11 csParam =VDFlagPtr [SetSyncs]
- csModef | ag mode value [byte]

csCode =11 csParam =VDFlagPtr [GetSyncs]
- cshbdef | ag mode value [byt e]

The Set Syncs control routine promotes evergy conservation by disabling the sync
outputs going to the monitor, thereby setting power-saving monitors in a low-power
mode. The same routine can then be used to reenable the syncs outputs. A csMbde value
of 0 enables the sync outputs, and a csMbde value of nonzero disables the sync outputs.
While the sync outputs are disabled, the monitor will show black.

The Get Syncs status routine returns a value that indicates the state of sync outputs. If
csMode is 0 it means that the syncs are enabled, and if csMbde is nonzero it means they
are disabled.

NuBus Block Moves

Video data movement to and from accessory cards often require block transfers, which
are supported by the MUNI chip as described in “NuBus Interface,” in Chapter 2. Block
transfers from NuBus are always enabled, but block transfers to NuBus must be enabled
by one of the following two procedures:

» by programming the card’s configuration ROM
= by using the trap macro _Sl ot Bl ockXf er Ct |

These procedures are described in the next sections.

Note

The system software fully supports the NuBus block
transfer sResource IDs. The sBl ockTr ansf er | nf o and
sMaxLockedTr ansf er Count sResour ce IDs are included
in the system’s board sResource. O

New Control and Status Routines 411

CHAPTER 11

Video Driver

Configuration ROM Programming

The configuration ROM on the card must support slave block transfers of size 4, which is
the only size that the MUNI can generate. The Macintosh system searches the card’s
configuration ROM after Pri mar yl ni t has run, and looks in the board’s sResource

list for the sResource ID of the sBl ockTr ansf er | nf o data structure. If the sResource
ID indicates that the card supports slave transfer sizes of size 4, the MUNI will be
programmed to enable block transfers to that slot. The ROM does not support the
automatic enabling of block transfers to NuBus if these transfers are not supported in all
the operational modes of the card. For further information, see Designing Cards and
Drivers for the Macintosh Family, third edition, and the NuBus Block Transfers technical note.

Using the Trap Macro SlotBlockXferCitl

You can also use a programmatic interface to enable or disable block transfers to NuBus.
The trap macro _Sl ot Bl ockXf er Ct | is accessed through the _HwPri v trap, with a
selector of 0x0c. The interface is the following:

Trap Macro: _Sl ot Bl ockXferCtl
HwPriv Sel ector: 0xOc

On Entry: A0 (1 ong) (bits 31-9) reserved
(bit 8) 0 to disable block xfer to
aslot, 1 toturnit on
(bits 7-0) slot nunber, range 1-14

On Exit: DO (1 ong) Oif we're on a MINI -based system & good
sl ot value, parankrr if not

A0 (1 ong) if noerr, previous state of block xfer for
each slot (1 = on, 0 = off)
(Bits 31-15 reserved, Bit 14 = slot 14,
bit 1 =slot 1, bit 0 reserved)

Destroys: D1, D2, A1

412 NuBus Block Moves

CHAPTER 12

New Age Floppy Disk
Driver

CHAPTER 12

New Age Floppy Disk Driver

The system software for the Macintosh Quadra 840Av and Macintosh Centris 660AV
computers contains a modified version of the traditional floppy disk driver covered
in Inside Macintosh. The new version is designed to support the New Age floppy disk
controller, described on page 15.

This chapter describes the support in the Macintosh Quadra 840Av and Macintosh
Centris 660AV for floppy disk reading and writing, plus changes to the floppy disk driver
operation and API.

Floppy Disk Support

The New Age floppy disk driver supports the Apple 800K GCR floppy disk drive and
the Apple SuperDrive floppy disk drive. It does not support the Apple 400K GCR floppy
disk drive or the Macintosh HD20 hard disk drive.

With an Apple 800K GCR drive, the New Age floppy disk driver reads from and writes
to the following disk formats:

= Apple 400K
= Apple 800K
s ProDos GCR

With an Apple SuperDrive, the Newage floppy disk driver reads from and writes to the
formats just listed plus the following:

s 720K MFM disks
= 1440K MFM disks

Programming Interface Changes

414

The New Age floppy disk driver is very similar to the floppy disk driver used in
Macintosh Quadra computers and previous models. Most of the prime, control, and
status routines are supported and should appear the same to application software; the
calling conventions are identical. However, three control routines—Tr ackCache,

Ki I'['1/Q and TagBuf f er —are no longer supported.

Tr ackCache, a control routine with a csCode of 9, is no longer supported because the
read process would try to cache everything on the track being read. If it failed to read
everything on that track, as it might on a copy-protected disk, it would only read and
cache what was requested. Similarly, the write process would cache up to a track of data
being written out.

Ki I 1/ Q a control routine with a csCode of 1, and TagBuf f er, a control routine with
acsCode of 8, are also not implemented. Calls to TagBuf f er return a result code of
-17 and calls to Ki | | | / Oreturn a result code of —1.

Floppy Disk Support

CHAPTER 12

New Age Floppy Disk Driver

Operational Compatibility

Besides the three unsupported control routines listed in the previous section, there are a
few minor differences between the New Age floppy disk driver and previous Macintosh
floppy disk drivers.

A call to Tr ackDunp with search mode 0 no longer starts its data stream at the
beginning of the track. Instead, it starts after the address field of the first sector (GCR
sector 0 or MFM sector 1). Tr ackDunp is a control routine with a csCode of 8.

A call to Dr i veSt at us with a drive reference number that identifies an uninstalled
floppy drive returns an error code of -56 and puts invalid data in the csPar amfield. A
call to Dri veSt at us with a drive reference number of 0 or 1 returns valid data.

Dri veSt at us is a status routine with a csCode of 8.

The New Age floppy disk driver does not return any of the following error codes:

noDri veErr —64 Drive not installed

badBt Sl pErr -70 One of the address mark bit slip nibbles was incorrect (GCR)
badDBt Sl p -73 One of the data mark bit slip nibbles was incorrect (GCR)

i nitlWErr =77 Unable to initialize IWM

t woSi deEr r -78 Tried to read a double-sided disk on a single-sided drive
spdAdj Err -79 Unable to correctly adjust the drive speed (GCR, 400K

drives only)
seekErr -80 Wrong track number read in sector’s address field

Floppy driver calls to an uninstalled drive return an nsDr VEr r error (no such drive
error) instead of noDri veErr.

The New Age controller returns only one error code for a bad address mark. There is no
differentiation in the address mark between a bad slip bit and a wrong track number.
Consequently, the badBt Sl pEr r, seekEr r, and noAdr MKEr r (couldn’t find valid
address mark) errors have all been merged into noAdr MKEr r. Similiarly, badDBt Sl p
and noDt aMKEr r (couldn’t find valid address mark) have been merged into

noDt aMKErr.

The error codes i ni t | WWEr r, t woSi deEr r, and spdAdj Er r are not applicable to the
New Age driver.

The noNybEr r error used to mean a byte timeout. With the New Age driver it indicates
a timeout error resulting from waiting for New Age to respond to a command.

Operational Compatibility 415

CHAPTER 13

Virtual Memory Manager

418

CHAPTER 13

Virtual Memory Manager

There is one substantial change to the Virtual Memory Manager in the Macintosh
Quadra 840Av and Macintosh Centris 660AV, made to accommodate the new SCSI
Manager (described in Chapter 9, “SCSI Manager 4.3”).

Virtual memory (VM) no longer disables interrupts when executing these tasks:
s /O completion routines

= Time Manager tasks

= VBL/slot VBL tasks

» deferred tasks (as they exist today)

= PPost Event actions

These tasks are placed in a deferred user function queue. If a user function, such as a
completion routine, is requested while the VM is running the deferred user function
queue (with interrupts enabled), VM places the user function at the end of the deferred
user function queue. This ensures that routines of the types listed above will execute in
their original order.

In earlier Macintosh systems, while virtual memory is servicing a page fault it defers the
execution of I/ O completion routines, Time Manager tasks, VBL and slot VBL tasks,
Deferred Tasks, and PPost Event s until it is page fault safe. VM disables dispatching
of the VBL/Slot VBL tasks and the Deferred Tasks when it services a page fault. I/O
completion routines, Time Manager tasks and PPost Event actions, are placed in a
deferred user function queue. Some Interrupt Service routines may execute the

Def er User Fn trap to install code in the same deferred user function queue. These
deferred user functions are run only when VM is sure that it is safe. When VM runs these
functions it disables interrupts until the entire deferred user function queue is emptied.
In earlier systems, this was a simple way to ensure that these asynchronous tasks were
executed in the order they were queued.

VM now executes these functions without disabling interrupts. For these routines to
execute in the expected order, if a user function (like a completion routine) is to be run
while VM is running the deferred user function queue (with interrupts enabled), VM
places this new completion routine at the tail of the deferred user function queue.

For general information about memory implementation in the Macintosh Quadra 840Av
and Macintosh Centris 660AV, see Chapter 2, “Hardware Details.”

Appendixes

This part of the Macintosh Quadra 840Av and Macintosh Centris 660Av Developer Note
contains four appendixes. They contain information that can help you with specific
development tasks:

» Appendix A, “DSP d Commands for MacsBug,” describes three new d commands
added to Macsbug that help in debugging DSP code.

» Appendix B, “BugLite User’s Guide,” covers a DSP module installer with a graphical
user interface. It helps programmers create and install tasks to be executed by the DSP.

= Appendix C, “Snoopy User’s Guide,” tells you how to use a browser and debugger
for the DSP. It helps programmers debug real-time tasks that run on the DSP.

» Appendix D, “Mechanical Details” contains foldout drawings of the physical
mounting facilities that are provided for internal SCSI devices
and accessory cards in the Macintosh Quadra 840Av and Macintosh Centris 660AV.

A PPENDTIX A

DSP d Commands for MacsBug

This appendix describes new MacsBug d commands used for debugging DSP3210 digital
signal processor code being run on Macintosh platforms.

These d commands are specific to the DSP3210. The dissassembly instruction assumes
the data is in DSP3210 code format. Before using MacsBug to locate a problem in the
DSP3210 code you should first attempt to use Snoopy, the DSP browser / debugger.
Additional information about d commands can be found in the MacsBug and Macintosh
debugging documentation available from APDA.

The first section, “Getting Started,” tells you how to install the new d commands in
MacsBug. The next section, “Using the d Commands,” shows how to find the specific
DSP desired and locate a specific module and section running on that DSP. The last
section, “d Commands Reference,” provides a description of how each command is used
and shows the default template used by each command.

Getting Started

Use ResEdit to install the d commands and templates into the Debugger Prefs file.

There are four basic d commands used in DSP3210 debugging and twenty five
templates. The d commands are used to show information about the DSPs and
the clients, tasks, modules, and sections that are installed on each one.

Using the d Commands

dsps
Devi ce
000dd740

Task

fee387cc
fee37884
f ee37808
fee3778c
fee37710

To locate the data you are interested in you must first find out what devices are
available. Use the dsps command, which produces a display such as the following:

Nane Ref Cdients Slot Proc TineShare Real Tine FraneC EVT
. DSP3210 ffca 0002 000e 0000 00000000 fee387cc 00015351 00015351

Nane Ref Num Modul es Fl ags Vect or dient Ref Con

| nput fee387cc fee385e4 AtR 00146984 000dd80c 00000000
Pr eput f ee37884 00000000 atR 00146984 000dd80c 00000000
M dput f ee37808 00000000 atR 00146984 000dd80c 00000000
Post put f ee3778c 00000000 atR 00146984 000dd80c 00000000
Qut put fee37710 fee37528 AtR 00146984 000dd80c 00000000

Getting Started 421

APPENDIX A

DSP d Commands for MacsBug

Second, find the specific task of interest and use the Mbdul es location in the nd
command to display the sections that make up the module. This example uses the first
module | nput that is located at f ee385e4.

nd FEE385E4

Modul e Nane Fl ags Sections Execution
f ee385e4 | nput dvsd 00000005 000159b5
Section Nane Fl ags | ndex Si ze

f ee38654 Program LscwAbD 00000000 00000118
fee38694 LAl AO | scWwabD 00000001 000003cO
f ee386d4 RAI AO | scWwabD 00000002 000003cO
fee38714 Tenp | scv\aBD 00000003 000003cO
fee38754 d obal s LScwaBD 00000004 00000008

Ski pCount Act ual Esti mate
00000000 000159b5 00000c80

Primary Secondary Type
5003e100 fee38488 iosft
5003f 640 00000000 i OSft
5003f 280 00000000 i OSft
5003e218 00000000 i oSft
5003e5d8 fee37900 iosft

Third, select the code section of interest and disassemble it with the i | 3210 command.
This example uses the first section located at f ee38488.

| L3210 FEE38488
Di sassenbling fromfee38488

422

f ee38488
f ee3848c
f ee38490
f ee38494
f ee38498
f ee3849c
f ee384a0
f ee384a4
f ee384a8
f ee384ac
f ee384b0
f ee384b4
f ee384b8
f ee384bc
f ee384c0
fee384c4
fee384c8
f ee384cc
f ee384d0
f ee384d4

9de5c817
9de6c817
9df 4¢817
14200004
969a02ac
9cf 4a000
80000000
12940000
80000000
98050022
949a0310
9ce42000
947a03c4
9ce31800
94240004
9cel0800
9be30001
98010885
94d5000c
9ce63000

*r21++
*r21++

(lo
(lo

*r21++ = (lo
ri = (short) 0x4(4)

ng) r5
ng) ré6
ng) rl8

r22 + Ox2ac(684)
*rl18

ro +r2

r22 + 0x310(784)
*rq

r22 + 0x3c4(964)
*r3

r4 + 0x4(4)

*ril

1(0x1)

(long) rl +r5
ri9 + 0Oxc(12)

ri8 = (long)
ri8 = (long)
NOP

caller18 (r18)
NOP

r5 = (long)
rd = (long)
r4 = (1ong)
r3 = (long)
r3 = (long)
ri = (long)
ri = (long)
(long) r3 &
if (ne) r1 =
ré = (long)
ré = (long)

*re6

Additional information can be obtained by using the display memory command DMand

the templates.

Using the d Commands

APPENDIX A

DSP d Commands for MacsBug

d Commands Reference

dsps

The three d commands used in DSP3210 debugging (besides DM are listed in Table A-1.

Table A-1 d commands

Command Description

dsps Display all DSP CPU devices and their associated tasks.

i 13210 Disassemble # lines of DSP32C from the address specified. If no number is

specified, then display half page.

md Display a list of the modules and their associated sections.

These d commands have predefined templates that are used to display the information
in a specific format.

SYNTAX

DESCRIPTION

dsps

The dsps command displays all DSP CPU devices and their associated tasks.

This command displays all DSP devices installed in the computer. It also shows all tasks
installed and relevent information for finding them in memory. Modules that are
installed in a specific task can be displayed using the Modul es reference address. The
current status of the task is specified by the Task flags shown in Table A-2. Upper case
letters indicate the true state, lower case letters indicate the false state of the flag.

Table A-2 Task flags

Task

flags Description

A Task is active

T Toggle the active bit to set the task active
R Task is in the real-time task list

d Commands Reference 423

APPENDIX A

DSP d Commands for MacsBug

In the example, the only tasks that are active are input and output. All of the other tasks
are inactive and are not set to become active. All of the tasks are in the real-time task list.

EXAMPLE
dsps
Device Nane Ref dients Slot Proc TineShare Real Tine FraneQt EVT
000dd740 . DSP3210 ffca 0002 000e 0000 00000000 fee387cc 00015351 00015351
Task Nane Ref Num Modul es Fl ags Vect or dient Ref Con
fee387cc | nput fee387cc fee385e4 AtR 00146984 000dd80c 00000000
fee37884 Preput f ee37884 00000000 atR 00146984 000dd80c 00000000
f ee37808 M dput f ee37808 00000000 atR 00146984 000dd80c 00000000
fee3778c Post put fee3778c 00000000 atR 00146984 000dd80c 00000000
fee37710 Qut put fee37710 fee37528 AtR 00146984 000dd80c 00000000
113210
SYNTAX
i 13210 [addr [n]]
DESCRIPTION
The i | 3210 command disassembles # lines of dsp3210 code, starting at address addr. If
no n is given, then it displays half page. This command disassembles the data starting at
addr into DSP3210 code format.
EXAMPLE

i 3210 FEE38488
Di sassenbling from FEE38488

424

f ee38488
f ee3848c
f ee38490
f ee38494
f ee38498
f ee3849c
f ee384a0
f ee384a4
f ee384a8
f ee384ac

9de5c¢817
9de6c817
9df 4c817
14200004
969a02ac
9cf 4a000
80000000
12940000
80000000
98050022

d Commands Reference

*r2l++ =
*r2l++ =
r2l++ =

(long) r5
(long) r6
(long) ri18

ri = (short) 0x4(4)

ri8 = (long) r22 + Ox2ac(684)
ri8 = (long) *rl8

NOP

call+r18 (r18)

NOP

r5 = (long) r0O + r2

APPENDIX A

DSP d Commands for MacsBug

f ee384b0 949a0310 ra (long) r22 + 0x310(784)

f ee384b4 9ce42000 ra = (long) *r4

f ee384b8 947a03c4 r3 = (long) r22 + 0x3c4(964)
f ee384bc 9ce31800 r3 = (long) *r3

f ee384c0 94240004 rl = (long) r4 + 0x4(4)

f ee384c4 9cel0800 ri = (long) *ril

fee384c8 9be30001 (long) r3 & 1(0x1)

f ee384cc 98010885 if (ne) rl =(long) rl +r5
f ee384d0 94d5000c ré = (long) rl1l9 + 0Oxc(12)

f ee384d4 9ce63000 ré = (long) *ré6

md

SYNTAX
md [modulepointer]

DESCRIPTION

The md command displays modules in a list with their associated sections. Flags are
listed in Table A-3 through Table A-5.

Table A-3 Module flags

Module

flag Description

D kdspDermandCache

M kdspModul eAl | ocat ed

A kdspUseAct ua

D kdspDont Count Thi shMbdul e

Table A-4 Section flags

Section

flag Description

L kdspLoadSecti on

S kdspSaveSecti on

C kdspCl ear Secti on

W kdspSaveOnCont ext Swi t ch

continued

d Commands Reference 425

APPENDIX A

DSP d Commands for MacsBug

Table A-4 Section flags (continued)

Section

flag Description

A kdspBankA

B kdspBankB

D kdspDSPUseOnl y

Table A-5 Section types

Section
type Description
I kdspl nput Buf f er
o kdspQut put Buf f er
S kdspScal abl eSecti on
F kdspFl FOSecti on
T kdspl TBSect i on
EXAMPLE
nd FEE385E4
Modul e Nare Fl ags Secti ons Execution Ski pCount Actual Estimate
f ee385e4 | nput dMsd 00000005 000159b5 00000000 000159b5 00000c80
Section Nane Fl ags | ndex Si ze Primary Secondary Type
f ee38654 Program LscwAbD 00000000 00000118 5003el100 fee38488 iosft
f ee38694 LAl AO | scWwabD 00000001 000003cO0 5003f640 00000000 i Osft
f ee386d4 RAI AO | scWabD 00000002 000003cO0 5003f280 00000000 i Osft
fee38714 Tenp | scWaBD 00000003 000003cO0 5003e218 00000000 ioSft

fee38754 d obal s LScWaBD 00000004 00000008 5003e5d8 fee37900 iosft

426 d Commands Reference

A PPENDTIX B

BuglLite User’s Guide

This appendix describes the user interface for BugLite, a tool for accessing and installing
digital signal processor (DSP) modules, as DSP tasks, in the real-time data processing
subsystem of the Macintosh Quadra 840Av or Macintosh Centris 660Av. The section
“Getting Started” describes how to install the application and provides information on
the initial display. “Tools of the Trade” describes what the BugLite tools are and how
they operate.

“Using BugLite” describes how to select and load a DSP program module. The example
also shows how to use the tools in creating a DSP task that plays a record from disk. The
final section, “Getting Information,” shows what information is available about each
module and how to access it.

BuglLite is a graphical DSP module installer that allows the DSP programmer to select
DSP modules from any mass storage device (for example, a hard disk) and install

them into a DSP subsystem. Using the graphical representation of tasks and modules,
predefined resource modules can be assembled into a task and run on the DSP subsystem.
This relieves the DSP programmer from having to generate a Macintosh application to
test DSP code. Additional capabilities provide access to external data files and I/O ports
for connecting the task into real data.

For more information on digital signal processing, see Chapter 3, “Introduction to
Real-Time Data Processing.” Although multiple DSP operations are not available on the
Macintosh Quadra 840AV or Macintosh Centris 660AV computer, they are documented
here for completeness.

To run BugLite, you need system software version 7.1 or later and at least 1,024 KB
available RAM; the preferred size is 1,024 KB.

Getting Started

This section tells you how to install and launch the BugLite tool.

Installation

BugLite operates as an application running on the main processor. Since it relies on the
DSP Manager that is in the Macintosh Quadra 840Av or Macintosh Centris 660Av ROM
there are no system files to be installed. To use BugLite

= copy the application to your hard drive
» launch BuglLite

Getting Started 427

APPENDIX B

BugLite User’s Guide

BuglLite can reside anywhere on your drive. However, you may find it useful to have
BuglLite in the same directory as your DSP object code so you don’t have to search
through multiple directories to locate your source files.

What You See When You Launch BugLite

There are several different objects in BugLite: tasks, modules, sections, and input and
output icons. All of these objects are displayed and manipulated graphically within a
task window. After launching BugLite, the task window, shown in Figure B-1, is
displayed. It is within this task window that a task is configured to run on the DSP.

Figure B-1 Task window

428

I (= E

TASK

The task window displays tasks with their associated modules and any subsystem
elements (disk file input or output, sound input or output). It is within this task window
that you can create tasks, load modules, and connect sections to other sections, the
microphone, the speaker, or disk files. On the left side of the task window is the tool
palette, discussed in the next section. Once the task has been configured it can be loaded
onto the DSP and executed by selecting the Run button directly below the task’s name.
See “Using BuglLite,” later in this appendix.

Getting Started

APPENDIX B

BugLite User’s Guide

Tools of the Trade

The tool palette, on the left side of the task window;, is used to switch modes of operation
within BugLite. The current active tool is highlighted (inverted). Clicking on a tool will
make it the current tool. The seven tools (from top to bottom) are shown in this section.

ARROW tool; used to select objects to position them on the screen and
connect objects.

TASK tool; used to create a task.

TASK

The task tool creates one task. Clicking anywhere in a task window will
prompt you for the task name and add the new task to the window. The task
can be moved around and connected to modules with the arrow tool.

BuglLite supports multiple tasks within the task window.

MODULE tool; used to open a module resource file. The standard file
selection box will ask for the file to be opened.

MOD-
ULE

The module tool creates one module. Clicking anywhere in a task window
will prompt you for the module resource file to open, as shown in Figure B-2.

Figure B-2 Open File dialog box

[=2 BOMII Modules ¥ | = Rush
PlayMonoPCM.s it ¥ pnt
PlayStereoPCM.s :
PlayStereoStdSound.s Desktop

RecordStereoPCM.s
Record5tereo5tdSound.s
src248.s Cancel
srcB24.s []

O ToggleRelay.s b

b
b
O
b
b
O
O

o

Open

Normally a module resource file is created using the following steps:
1. Use the MPW editor to create the DSP3210 source code (example: Rever b. s)

2. Use the d32asmscript to build the resource and put it into the source file:

d32asm Reverb.s Reverb.s Builds resource and puts it back into the source file

INPUT tool; creates an object that provides access to the stereo sound input
stream. This icon must then be connected to the appropriate input AIAO
section. The data stream is 3210 floating-point numbers.

Tools of the Trade 429

APPENDIX B

BugLite User’s Guide

T OUTPUT tool; creates an object that provides the ability to sum a signal
l]]]]% into the stereo output stream. This icon must then be connected to the
R appropriate output AIAO section. The data stream is 3210 floating-

point numbers.

¥ DISK RECORD tool; used to create a new AIFF disk file that can be
connected to a FIFO section to store data.

Fy DISK PLAY tool; used to open an existing AIFF file that can be connected to
a FIFO section for data input.

All objects in the task window have one or more triangular nibs () associated with
them. Nibs on the right side of an object are considered output and nibs on the left side
are considered input. Two objects are connected by connecting their nibs with the arrow
tool. These are the current valid connections:

Task to module: installs module into task.
Module to module: installs second module into task.

Section to section (both sections have same data type and size): allows section data to
be shared between two modules.

Sound input to AIAO: provides real-time data acquisition from the built-in
microphone.

AJAO to speaker output: provides real-time data playback to the built-in speaker.

ATAO section to disk object: provides access to data on disk or saving data to disk.

Using BuglLite

Before attempting to install a task onto the DSP subsystem each module’s specification
must be reviewed so that correct connections of module sections can be done. BugLite
does only minimal checking for incompatible buffers.

To make a task, follow these steps:

1. Click anywhere in the task window with the TASK tool.

F

The TASK tool will ask for a name for the new task. The name “test” is used in the
example, as shown in Figure B-3.

igure B-3 Graphical representation of a task

430

Using BugLite

APPENDIX B

BugLite User’s Guide

2. Select the first module to be loaded.
Figure B-4 shows a file input module “File In” used for getting data into the DSP data
stream. The MODULE tool uses the standard file selection dialog box to make the
selection.

Figure B-4 Graphical representation of a module

| Fileln I
B Yarisble
B{Cache

3. Connect the TASK to the MODULE using the ARROW tool.
Figure B-5 shows a task connected to a module.

Figure B-5 Task connected to a module

" Fileln =

Pragrarid
LA&l&0
FalAl
Mariable

Cache

DataBuff

In this example there is a task called “test” that was created with the TASK tool. The
task has one module, “File In,” connected to it.

Using BugLite 431

APPENDIX B

BugLite User’s Guide

4. Select the DISK PLAY tool.
The DISK PLAY tool uses the standard file selection dialog box to make the selection.

Figure B-6 Disk play of “funky” file

funky

In this example there is a data file called “funky” that is stored on disk. This data is in
the AIFF data format.

5. Connect the DISK PLAY icon (“funky” file) to the “DataBuff” section using the
ARROW tool.

Figure B-7 Disk player connected to input buffer

" Fileln =

Prograrnid
Lala0
RAlA0
“ariable
Cache

CataBuff

I- |

funky
6. Select the OUTPUT tool and place the icon to the right of the module.

Figure B-8 Speaker connection icon

i

432 Using BugLite

APPENDIX B

BugLite User’s Guide

7. Connect the L and R inputs of the OUTPUT icon to the “LAIAO” and
“RAIAQ”sections respectively using the ARROW tool.

Figure B-9 Data output buffers connected to speakers

" Fileln |

Prograrid

Lalan e

=
N

R alAD

Variable

Cache

CrataBuff

l— |

funky

8. Click once on the diamond shaped start button in the “test” task icon.
The diamond will change into a blinking square.

Figure B-10 Task with task active indicator

The task has now been loaded into the DSP subsystem and the sounds recorded in the
“funky” data file will play out of the DSP subsystem audio output.

To disconnect two objects, click in one of the nibs and drag away from it. If the discon-
nected object is part of a task that is executing, the task is stopped and removed from
the DSP.

To delete an object from the task window first select it by clicking on it with the arrow
tool, then press the delete key. If the deleted object is part of a task that is executing, the
task is stopped and removed from the DSP.

Using BugLite 433

APPENDIX B

BugLite User’s Guide

Getting Information

In the menu bar under Object is the Get Info selection. This selection provides informa-
tion about the selected item. Each task, module, and section has specific kinds of data.
Double-clicking an object will also bring up the object’s information window.

Task Info Window

The task info window provides information on
s real-time DSP cycles used in processor clock cycles

» real-time or timeshare mode selection

In Figure B-11 the task “test” shows zero real-time cycles used, indicating that the task
has not been run. The task has been set up to be inserted into the real-time task list. This
will result in it being allocated a guaranteed bandwidth on the DSP.

Figure B-11 Task Get Info window

Info for task: test

Real-time cycles used: 0

] Real-Time

Module Info Window

The module information window provides information on
= Real-time DSP cycles used in processor clock cycles
s Number of DSP frames that have been executed since the module was installed

» Skip count setting for this module

434 Getting Information

APPENDIX B

BugLite User’s Guide

= Flags for the module: a capital letter means flag is set, a lowercase letter means the
flag is clear:

Flag Meaning

d Demand cache

0 On-chip section table
a Use actual GPB
c

Count this module in GPB calculation

= Buffer scaling for this module, user changeable for configuration testing

In the Get Info window shown in Figure B-12, the real-time cycles used are in DSP clock
cycles. For this test, the DSP3210 had a frame time of 10 ms and a clock rate of 50 MHz.
This results in a total of 500,000 DSP cycles per frame. This module used .0127 percent of
the available DSP bandwidth. The value for real-time cycles used is the maximum cycles
used in a single frame during a run of 59297 frames.

Figure B-12 Module Get Info window

Info for module: Fileln

Real-time cycles used: 6353

Frames executed: 59297
Skip count: 0
Flags: doaC

Buffer scaling:

Getting Information 435

APPENDIX B

BugLite User’s Guide

Section Information

The section information window, shown in Figure B-13, provides information on
» Size of the section in bytes

= Type of section: capital letter means flag is set; lower-case means flag is clear:

Flag Meaning

i Input buffer

0 Output buffer

S Scalable section
t Static section

= Flag settings: capital letter means flag is set; lower-case means flag is clear:

Flag Meaning

I Load section

Save section

Clear section

Save on context switch

Bank A

Bank B

DSP use only (only DSP should modify this memory)

o o ® s 0w

The Get Info window in Figure B-13 can be decoded as
= section size: 960 Bytes
= section type: Not a defined section type

» caching flags: Save section, Clear section, Save on context switch, Load section into
Bank B, DSP use only

Figure B-13 Section Get Info window

436

Info for section: LAIAD

Size: 960 Bytes

Type: iost
Flags: ISCWaBD

Getting Information

A PPENDTIX C

Snoopy User’s Guide

Snoopy is a powerful, browser/debugger, in the tradition of SourceBug, for the DSP
programming environment. Like SourceBug, it provides breakpoint, single stepping, and
code disassembly capabilities. Unlike SourceBug, it also provides editing capabilities and
operates on code already installed in the system. Snoopy does not support source-level
debugging at this time.

This appendix describes how to use the Snoopy debugger.

The section “Getting Started” tells how to install the Snoopy application and provides
detailed information about how it works.

“Using Snoopy” provides valuable information about the menu commands and how to
access additional controls and selections when available. The menu commands are listed
in the order they would most likely be used. When a command invokes a dialog box, the
selections available in the box are discussed immediately following the command. The
windows available for displaying more information are detailed in “Additional
Information Windows.”

To run Snoopy, you need system software 7.1 or later and at least 128 KB of available
RAM,; preferred size is 768 KB.

Getting Started

This section tells you how to install and launch the Snoopy debugger.

Installation

Snoopy operates as an application running on the Macintosh Quadra 840Av or
Macintosh Centris 660AV main processor. To use it:

1. Copy the application to your hard drive.
2. Launch Snoopy.

Snoopy can reside anywhere on your hard drive. However, you may find it useful to
have Snoopy in the same directory as your DSP object code so you don’t have to search
through multiple directories to locate your source or symbol files. See “Module Menu,”
later in this appendix, for instructions on loading and removing symbols.

Getting Started 437

APPENDIX C

Snoopy User’s Guide

What You See When You Launch Snoopy

When Snoopy is launched the DSP Control window will show information about the
built-in DSP. In multiple DSP systems there would be an icon for each processor. To
select the processor to debug, click on the ICON for the desired processor. Figure C-1
shows the ICON for the built-in DSP. To show and hide the DSP Control window see
“Windows Menu,” later in this appendix.

Figure C-1 DSP Control window

Cyclone
Euilt-In
CFU #&

The Real Time Tasks window, shown in Figure C-2, is the primary display window for
both code and data display. If there are tasks currently installed on the DSP, they are
shown in the scrollable lists at the top of the window.

Note

Standard sound automatically installs itself onto the DSP
to enable the sound functions. O

Task/Module/Section Lists

At the top of the Real-Time Tasks window are three scrollable lists that contain (from left
to right) the currently installed tasks, the modules belonging to the currently highlighted
task, and the sections belonging to the currently highlighted module. This hierarchical
representation makes navigation through the potentially large number of tasks, modules,
and sections straightforward and intuitive.

For example, in Figure C-2 there is one task installed in the system named Input. Task
Input has one module, Input, that has four sections. The section currently being
displayed in the Data Display window is Program. If you wanted to view the Temp
section, you would simply click on Temp in the list, and it would appear in the Data
Display window.

The Data Display Window

The lower half of the Real-Time Tasks window contains the Data Display window. The
data belonging to the currently selected section is displayed here in the current format.
See “Formatting,” later in this appendix, for details.

438 Getting Started

APPENDIX C

Snoopy User’s Guide

Figure C-2 Real Time Tasks window

EO

Real Time Tasks

Task: Module -
Input Input
Freput
Pane Midpurt
resizers Fostput
Output -
i
Of fzet Address Oata
e 00000 FRADYS00 AnES = T
< +00004 FARAOTOO4 QOEGCE1Y *zp++ = rh .
B +00008 FAAOTIOS 9QOF4CE17 #spt+ = r 18
Breakpoint — +0000C FARAOTIOC 959A02AC ri18 = r22 + Ox02RC
B +00010 FARAOTI 10 QCF4A000 rig = #r18
+00014 FARAOTO 14 14200004 r1 = (short) 00004
PC indicator B +00013 FAADTI1S 12340000 call r18 (r182
+0001C FARAOTOIC 20000000 nap
B +00020 FARAOTIZ0 95050022 r3 =0+ r2
Breakpoint — |+ * +00024 FARAOTOZ24 940R0210 r4 = p22 + 0x0310
column B +00028 FAAOTIZS 4QCE42000 rd4 = #-d
< +0002C FARAOTOZC 947A02C4 r3 = p22 + 0x03C04
B +00030 FARAOTI30 A4QCE3 1800 r3 = %3
PC column < +000324 FAAOTO34 94240004 r1 = rd4 + 0x0004
B +00038 FAAOTI3S 4QCE 1000 r1 = %1
< +0002C FAAOTO3C 9QBE30001 r3 & Ox0001
B +00040 FARAOTI40 93010535 ifiner 1 =r1 +r5
< +00044 FAAOTO944 Q403000C rG = 19 + 0x000C
B +00043 FAAOTI4S QCEG3000 rG = %6
< +0004C FRAOTO4C 20000000 nap
B +00050 FAAOTISO 93010021 ri 0+ ri L5
Store Address |¢‘ - l_1-_"|

Run

Data display window

Run/Store Address Pop-up Menu

The DSP sections have (potentially) two containers; one at the “storage” address, and the
other at the “run” address. The storage address, if there is one, is usually off-chip (in host
DRAM or local SRAM), while the run address can either be off-chip or on-chip. The Run/

Store Address pop-up menu, shown in Figure C-3, allows you to select which location

you wish to view.

Note

Because the DSP operating system is a caching operating system, it is
difficult, if not impossible, to present cached data in a meaningful way
while the DSP is running. Consequently, when you switch to a cached
“Run Address” and the machine is running, a message will appear

in the Data Display window indicating that the data is unavailable.
Similarly, if you stop the DSP and attempt to display a cached run
address that has yet to be cached, a message will appear indicating that
the section is out of scope. O

Figure C-3 Run/Store Address pop-up menu

Run Address

+ Store Address

Getting Started

439

APPENDIX C

Snoopy User’s Guide

PC Column

The PC (program counter) indicator (an arrow) appears in the PC column, at the
appropriate offset, indicating where the DSP is stopped in the specified section. Any
window showing the data where the program counter has stopped will also show the PC
indicator arrow.

The Breakpoint Column

The breakpoint column, located at the left of the PC column, shows both the current
breakpoints and the possible breakpoint/single step locations (called breakpoint
candidates). Current breakpoints are indicated by a diamond, and breakpoint candidates
are indicated by gray brackets. Breakpoint restrictions are discussed in detail in “Setting
and Clearing Breakpoints,” later in this appendix.

Pane Resizers

As you can see, the Real-Time Tasks window and the other data display windows are
divided by double lines into panes, each of which is resizable. To resize a pane, simply
place the cursor on the Pane Resizers, click, drag, and release at the desired point. The
cursor becomes a pair of opposing arrows as shown in Figure C-4. Resizing allows you
to optimize your screen’s real estate.

Figure C-4 Vertical and horizontal pane resizers

HModule :

g s s
b H——s—=

{!, Resizer cursor

Using Snoopy

440

This section explains the use of all Snoopy’s menu items. There are additional controls
that are accessed using either a double click of the mouse or the Option key and a mouse
click. These additional controls are explained where appropriate.

Using Snoopy

APPENDIX C

Snoopy User’s Guide

Menu Bar

There are two standard menus: File and Edit. The other five menus are specific to
Snoopy, as shown in Figure C-5.

Figure C-5 Menu bar

% File Edit Find M™odule Control Inspect Windows

Control Menu

The Control menu has commands for running (Run), stopping (Break), and single
stepping (Single Step) the DSP. If the DSP is running only the Break command will be
available, as shown in Figure C-6. In order to view a cached program or data from a
module, the DSP must be stopped while executing in the module’s program section. This
is done by first using the Break command to halt the DSP, then setting a breakpoint in
the desired module. Breakpoints are explained in “Setting and Clearing Breakpoints,”
later in this appendix.

Figure C-6 Control menu

% File Edit Find Mudulelmmllnspect Windows

Hun i
Break *B
Singge $lap N

Dhmar # Hresiipaints

After the DSP has been stopped using the Break command, the Run and Single Step
commands become available, as shown in Figure C-7.

Figure C-7 Control commands after break

® File Edit Find Module Imml Inspect Windows
Run #R
Hrogk =g
Single Step E 3

Cheay #H reaskpoints

The Clear All Breakpoints command is available only if the DSP is stopped and there are
one or more breakpoints set.

Using Snoopy 441

APPENDIX C

Snoopy User’s Guide

Setting and Clearing Breakpoints

To set a breakpoint in a section, move the mouse to the breakpoint column and click in
any row that has a breakpoint candidate marker. See Figure C-8. (Notice that the cursor
has changed to the breakpoint cursor.) To remove a breakpoint, simply click the
breakpoint indicator. To remove all breakpoints use the Control menu’s Clear All
Breakpoints command.

Figure C-8 Setting breakpoints

Breakpoint candidate —+

Breakpoint indicator

Note
You cannot set or clear a breakpoint while the DSP is running. O

Snoopy can also set a breakpoint to the nth occurrence of the instruction. To set a
multiple breakpoint the breakpoint must already have been set. Use the Option key and
click the breakpoint indicator to set the number of times the breakpoint instruction is to
be executed before stopping the DSP. A dialog box will appear allowing you to change
the pass counter on the specified breakpoint. See Figure C-9. The initial number is
always one. If the breakpoint counter is set to four then the breakpoint instruction will
execute three times and stop the DSP on the fourth occurrence of the instruction.

Figure C-9 Setting the breakpoint counter

442

Break point count:
L |
(Change]

Breakpoint Restrictions

Because the AT&T DSP3210 is a pipelined device, and because it has minimal provisions
for debugging, there are restrictions as to where you can set breakpoints. You can only
set a breakpoint at a location that has a breakpoint candidate marker.

Using Snoopy

APPENDIX C

Snoopy User’s Guide

Single Stepping

To step to the next available instruction (not necessarily the next instruction), select
Single Step from the Control menu.

Note

Single Stepping is implemented using breakpoints (remember, no trace).
Because of this, Snoopy can only step within a section or DSP operating
system routine. O

Inspect Menu

The Inspect menu provides access to additional display windows. These windows are
available to view real-time tasks, timeshare tasks, DSP operating system routines, the
EVT, the on-chip SRAM, and the registers. See Figure C-10.

Figure C-10 Inspect menu

% File Edit Find Module Control [IENTIRH Windows
liew Real Time Tasks
g Tine Shara Taeky
liew Kernel Routines
liew EUT

Uiew On Chip SEAAM
liew Registers

i Balad o 8y ¥

Additionally, the Inspect menu has the View Selection As submenu. This menu is used to
select the different data formats for viewing purposes only. See Figure C-11. Changes
made in the View Selection As menu do not effect the actual data type. To coerce data
into another data type see the “Editing Data” section.

Figure C-11 Data display format menu

3210 Code

3210 Float [8 per linel
3210 Float [1 per line]
IEEE Float [8 per line]
IEEE Float [1 per line]
. Law [8 per line]

p Law [1 per line]

A Law [8 per linel

A Law [1 per line]
Long [8 per line]

Long [1 per linel
Short [8 per line]
Short [1 per line]

Using Snoopy 443

APPENDIX C

Snoopy User’s Guide

Formatting

Data can be displayed in several formats. To change the data format, highlight the
display lines you wish to change and select a format from the View Selection As menu
accessed through the Inspect menu. To highlight multiple lines hold down the shift key
while dragging the mouse.

Editing Data

Editing data is a point-and-click operation. Simply point to the data element you wish
to edit in the data display window and double-click. The dialog box shown in
Figure C-12 will appear, allowing you to view and edit the data and the data type.

Figure C-12 Data editing window

Data =FEE1F370

[

Note
Data viewed as type DSP Code cannot be edited. O

WARNING

DSP Code can be viewed as some other data type and the editor will
allow it to be changed. Extreme caution should be used when changing
DSP Code. There are no safeguards to prevent illegal opcodes from
being entered. This could result in loss of data or code. a

The defined data types that can be selected are shown in Figure C-13. Changes in the
data type will coerce the data into the new data type. Use the View Selection As menu
if you only want to view the data in a different format.

Figure C-13 Defined data types

444

Long
Short
Char
IEIERITY] - 3210 Float
IEEE Float
n Law

A Law

Using Snoopy

APPENDIX C

Snoopy User’s Guide

Windows Menu

When you launch the Snoopy application, you are presented with the Real-Time Tasks
window and the Current PC window. As shown in Figure C-14, the Windows menu lists
all open windows at the bottom of the menu and provides a quick way to bring any
window to the front. Auto Hide Windows (not implemented) removes the current
window when a new window is selected. The Windows menu also provides limited
control over open windows.

Figure C-14 Windows menu

Module Control Inspect

Update Front Window 3U
Full Titles

Hide D5SP Control

fiate Hide HHndons

« Current PC
Real Time Tasks

When the DSP is running the frontmost window is not automatically updated. The
window must be told to update or the data display will show only old data. This can be
done using the Update Front Window command in the Windows menu. Windows such
as Registers, Real-Time Tasks, and Timeshare Tasks will not have their data display
window updated if the DSP is running.

Windows can also be set to show the full title using the Full Titles command. This
includes information describing the specific DSP chip that the module is running on.
Also, the DSP Control window can be hidden or displayed from the Windows menu.

Additional Information Windows

This section describes the additional display windows used to provide information
about other parts of the DSP. The additional windows provide information about the
inside operation of the DSP. There are five additional windows:

s Current PC

= Kernel Routines

= EVT (Exception Vector Table)
= On-Chip SRAM

= Registers (in the DSP)

Using Snoopy 445

APPENDIX C

Snoopy User’s Guide

Current PC

The Current PC window shows the section or DSP operating system routine that was
running on the DSP when a break was initiated. This window can only show data when
the DSP has been stopped. If the DSP has been stopped with no breakpoint set it will
always stop at Ext er nal | nt One of the DSP operating system routines. Figure C-15
shows the current program counter when a breakpoint is set in the Standard Sound
Input Task:Input Module:Program Section at address 5003E020. The current PC
location has been single stepped two times. Notice that the address 5003E014 has no
breakpoint allowed. It will also be stepped over by the single-step procedure.

Figure C-15 Current PC window

446

Current PL =i ——=M=

Input->Input->Program
Of fzet Address Oata
+00000 SO03EOO0D] QOESCS17 *sp++ = ¢S

+00004 SO03EO04 QDEGCE1? *sp++ = rh

+00002 SO03E00S OOF4C217 #spd+ = 12

+0000C SO03E00C Q59A0ZAC r18 = k22 + Oe02AC
<»i 400010 SO0ZEQI0 QCF4A000 r18 = #r 12

+00014 SO003E014 14200004 1 = Cshort) w0004
<+ fp+00015 SO0ZE01S 12940000 call r15 CriSD

+0001C S003E01C 8000000 riop

SO02E024 949A031

u] 22 + 0=0310

< +00022 S002ED02E QCE42000 rd = #pd

e +0002C S003E02C 947A032C4 3 = r22 + 0=03C4
< +00020 S002E030 QCE21200 R o= kel

e +00024 S003E034 94240004 1 = r4 + 0x0004
< +00022 S002ED03S QCE 10200 r1 = %

e +0002C S003E03C 9BE30001 3 & O=0001

< +00040 S002ED040 Q2010225 ifihed vl =rl1 + r3
e +00044 S003E044 Q4030000 & = 19 + 0=000C

<+ +0004% SO03E04S 9QCES3000 r6 = #6

<+ +0004C SOO3E0Q4C 20000000 rop

<+ 400050 SO03E0SO 98010021 ri1 =0+ ri
=0+ r&

e +00054 S003E0S4 92020026 2
£ x +ONN5S SONIFOSS L1/

Run Addreszs |¢‘ -

The DSP Operating System Routines

DSP operating system routines are shown in the Kernel Routines window; simply select
View Kernel Routines from the Inspect menu. The DSP operating system routines will be
presented in a browser window similar to the Real-Time Tasks window with the
exception of the list at the top. This window is shown in Figure C-16. You can mani-
pulate DSP operating system routines (set breakpoints, single-step, and reformat) the
same way you manipulate sections.

Using Snoopy

APPENDIX C

Snoopy User’s Guide

Figure C-16 DSP Operating System Routines window

Kernel Routines

FarseSeqrent
FushReqgisters
FopRegizters
ExternallntOme
Anoni Mouse
Anoni Mause

Anoni Mouse

Offset Address Oata
>]

+00004 S003FE7C QCF4A000 w18 = #1418 =

+00002 S003F880 967VA0240 w17 = r22 + Ox0240

+0000C S003F224 1420FFF2 1 = (shortl OxFFF2

+00010 SO003FS888 12940000 call r18 Or182

+00014 S003F22C 9DE19200 #r17 = 1

+00018 SO03F290 969A0278 k18 r22 + 0x0278

+0001C S003F294 QCF4A000 w12 #-18

+00020 SO03F298 80000000 nop

+00024 S003F29C 12040000 call £12 Cr122

+00028 SO03FSA0 80000000 nop

+0002C S003F2A4 942A02F0 w1 = r22 + O0x=03F0

+00030 SO003F8AZ 128F00S0 call po+lx00S0 o180

+00024 SO03F2AC 945A0ZEC r2 = r22 + Ox03EC

+00038 SO03FSB0 969A0254 18 r22 + 0x0254

+0002C S003FEB4 QCF4A000 w12 #-18

+00040 SO03FSES 9895A835 19 r19 - w19

+00044 SO03FEBEC 12040000 call £12 Cr122

+00042 S003F8CO 943A03C0 w1 = r22 + O0x03C0

+0004C S003F2C4 9203AS35 w19 = r19 - 119

+00050 SO03F2CE 943A03EC w1 r22 + O=03EC

Run Address <] N

e

The EVT

The DSP operating system places system information, such as run-time variables and
routine addresses in the exception vector table (EVT). To view the EVT window;, select
View EVT from the Inspect menu. The resulting window is shown in Figure C-17.

Figure C-17 EVT window

Offset Address Oata

+00000 00015220 000 1SAZ0
+00004 00015224 00000000
+00002 00015282 202F00F0
+0000C 0001522C 90F30000
+00010 00015290 202F0102
+00014 00015234 90F3I0000
+00018 00015292 00000000
+0001C O001529C Q0000000
+00020 000152A0 00000000
+00024 000152R4 Q0000000
+00028 000152R2 00000000
+0002C O00152AC Q0000000
+000z20 000152B0 00000000
+00034 00015284 Q0000000
+000322 000152B2 00000000
+0003C O00152BC Q0000000
+00040 O00152C0 202F00F:2
+00044 O00152C4 90FI0000
+00042 000152C2 202F00F0
+0004C O00152CC 90F3I0000
+00050 00015200 00000000

olE

Run &ddress |<h|"

Using Snoopy

447

APPENDIX C

Snoopy User’s Guide

On-Chip SRAM

To view the On-Chip SRAM window, select View On Chip SRAM from the Inspect
menu. The resulting window is shown in Figure C-18.

Figure C-18 On-Chip SRAM window

On Chip SRAM
Offzet Address Data

+00000 S003E000 QDESCE17T *sp++ = 5

+00004 S002E004 QDEGCE1T #sp++ = p6

+00002 S003E002 QDETCE1T *sp+t = 7

+0000C S002E00C QDESCE1T 4sp++ = 2

+00010 S003E010 QDEQCE1T *sp++ = 8

+00014 S002E014 QDF4CE17 #sp++ = 12
+00012 S003E018 Q4B3000C w5 = w19 + O0=000C
+0001C S002E01C QCETZE00 p35 = #r3

+00020 S003E020 20000000 nop

+00024 3002E024 93130004 28 = w19 + 0:=0004
+00022 S003E028 QCE24000 k8 = #-8

+0002C S002E0ZC 20000000 pop

+00020 S003E030 94050002 w6 = »19 + O0=0002
+00024 S002E024 QCEG2000 rE = #r6

+00022 S003E038 20000000
+0002C S002E02C 93330010
+00040 S003E040 QCEQ4200
+00044 S002E044 20000000
+00042 S003E048 989A0ZAC
+00040C S002E04C QCF4A000
+00050 S003E050 14200004

19 + O=0010

22 + 0x=02AC
18
tshort Ox0004

[

Run Address |<g]

When the DSP has been stopped, all sections that are currently in it's cache can be
viewed in the On-Chip SRAM window. The data displayed is an image of the

cached code, buffers, tables, and other types of sections. Figure C-19 shows a possible
SRAM layout.

Figure C-19 Example of SRAM layout

448

Table Section —Unused memory
Parameter Section

Drata Section

ITB's

Registers

To display the DSP registers, select Show Registers from the Edit menu. The resulting
window is shown in Figure C-20. Notice that the processor status word is displayed as a
group of check boxes in the upper right corner.

Using Snoopy

APPENDIX C

Snoopy User’s Guide

Figure C-20 Registers window

E1=——— Registers
U EZHeowaznn
pe OOROO00O0
1 [00015658 15| 00000000
r2 (00000044 +16|00015678
3 (12000 17|00 14b5c8
4 (00000001 r18|000153ec
5 (00000000 19| 00000000
+G (00000001
7 (0002151 2053003378
8 (00000023 zp |00015cd4
FO[FIIFffff r22|00015280
+10|000 1564
r11|5003fch0 al u]
r1:2{00000000 al -2 1660. 08
135003038 =] u]
14| ffffelaf a3 u}

The Registers window displays the contents of all of the DSP registers for the instruction
at the current PC location. The Registers window is not updated while the DSP is
running. Manual update of the frontmost window is explained in “Windows Menu,”
earlier in this appendix.

Standard Menus

Snoopy uses the two menus that resemble standard Finder menus: File and Edit. The File
menu is used for opening, closing, and saving files. It uses the standard dialog box for all
operations. The Edit menu operates like the standard Finder Edit menu.

Find Menu

There are two commands in the Find menu. The Find command is used to locate specific
strings within the currently selected window. The Find Again command finds
subsequent occurrences of the specified information. See Figure C-21.

Figure C-21 Find menu

% File Edit Module Control Inspect Windows
Find ... ®BF

Firod #lgain Hb

Using Snoopy 449

APPENDIX C

Snoopy User’s Guide

When the Find command is selected the dialog box in Figure C-22 will appear. The Find
command can locate specific data values that are of a specific data type. If the specified
value is in the display range of any of the windows, the required window will be
selected and the address will be shown. The required window does not need to be the
frontmost window or even open for the Find operation to select it.

Figure C-22 Find Command dialog box

Find
Find IMhat ?
[s0escE14 | Data Tgpe
Look For:

® Address with that value
1 0Offset with that value
7 Instance with that value

Search In| All Sections |

There are three ways to look for specific locations in the data display. They are:
= look for an address with the specified value
= look for an offset with the specified value

= look for an instance with the specified value

When trying to locate a specific address location in the Data Display window use the
Look For Address with that value. When looking for a relative address within the data
display use the Look For Offset with that value. To look for a specific data word within
the data window use the Look For Instance with that value.

The default data type is a Long word. This should be used whenever specifying an offset
value. When looking for an Instance the data type may also be specified, as shown in
Figure C-23.

Figure C-23 Find Data Types menu

Short
Char
3210 Float

IEEE Float
n Law
A Law

450 Using Snoopy

APPENDIX C

Snoopy User’s Guide

You may also specify the section or sections to be searched, as shown in Figure C-24.

Figure C-24 Search In selection menu

Current $ection
+All Sections

If the data with the specified data type cannot be located, an alert box will display the
message Not Found.

Module Menu

Snoopy has some symbolic capabilities. If you declare symbols as global (using the

. gl obal assembler construct) a symbol table is created with your object code. To access
these symbols with Snoopy, choose the Show Symbols For ... command (replacing the
ellipsis with the name of the currently selected module) from the Module menu and
locate its object file. The currently selected module must be in either the Real-Time Tasks
or Timeshare Tasks window. Figure C-25 shows that the module named Input was
selected in the Real-Time Tasks window. A standard open-file dialog box is displayed for
selecting the appropriate resource file.

Figure C-25 Module menu

® File Edit Find Control Inspect Windows
Load Symbuols For Input
Bembpue Sumbols from inpyt

To remove the symbols from the Data Display window select the Remove Symbols From
Input command. This will remove the symbol lookup information from Snoopy’s
memory. This command cannot be undone. The symbol file must be reloaded to

show symbols.

There are several error messages which may be encountered when attempting to load a
symbolic file. For example, if the module symbol resource file cannot be loaded because
it does not match the code resources available in the loaded module then the error
window shown in Figure C-26 will appear.

Using Snoopy 451

APPENDIX C

Snoopy User’s Guide

Figure C-26 Error in loading symbolic table

O

No symbolic data for file
Record5tereo5StdSound.s.

452 Using Snoopy

A PPENDTIX D

Mechanical Details

This appendix provides details of the mechanical provisions for mounting internal SCSI
devices in the Macintosh Quadra 840Av and Macintosh Centris 660AV enclosures and for
installing accessory cards in the Macintosh Centris 660AvV. It is intended to guide
hardware engineers developing compatible equipment. The mechanical details for
internal SCSI device mounting consist of the following seven foldout drawings:

Figure D-1 reproduces Apple drawing number 815-1411-A, showing the bezel for the
Macintosh Centris 660AV enclosure used with an internal CD-ROM drive.

Figure D-2 reproduces Apple drawing number 815-1376-A, showing the blank bezel
for the Macintosh Centris 660AV enclosure (without an internal CD-ROM drive).

Figure D-3 reproduces Apple drawing number 815-1122-03, showing the mounting
sled used for internal 5.25-inch hard disk drives.

Figure D-4 reproduces Apple drawing number 805-0503-01, showing the magnetic
shield for the Macintosh Centris 660AV bezel used with an internal CD-ROM drive.

Figure D-5 reproduces Apple drawing number 805-0517-02, showing the magnetic
shield for the Macintosh Quadra 840Av bezel used with internal CD-ROM or hard
disk drives.

Figure D-6 reproduces Apple drawing number 815-1189-05, showing the blank bezel
for the Macintosh Quadra 840Av enclosure (without an internal CD-ROM drive).

Figure D-7 reproduces Apple drawing number 815-1186-04, showing the bezel for the
Macintosh Quadra 840Av enclosure used with an internal CD-ROM drive.

The following four foldout drawings give mechanical details for mounting expansion
cards in the Macintosh Centris 660AV:

Figure D-8 reproduces Apple drawing number 805-0530-06, showing the bracket in
the Macintosh Centris 660Av that supports an expansion card.

Figure D-9 reproduces Apple drawing number 725-0051-02, showing the insulator for
the expansion card bracket.

Figure D-10 reproduces Apple drawing number 630-0450-10, showing the
electromagnetic interference (EMI) shield for the expansion card bracket.

Figure D-11 reproduces Apple drawing number 630-0450-12, showing the NuBus
adapter card for the Macintosh Centris 660Av. This card is discussed in “Slot
Connections,” in Chapter 2.

For details of expansion card mounting in the Macintosh Quadra 840Av, see Designing
Cards and Drivers for the Macintosh Family, third edition.

453

NOTES :

(UNLESS OTHERWISE SPECIFIED)

1 INTERPRET DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982

2 MATERIAL ; ABS CYCOLAC KJC 3(187-1. COLOR : APPLE PLATNUN
PER COLOR APPLE COLOR [ONTROL PANEL 912-0037. TOLERANCE PER
COLOR TOLERANCE SET 912-1037,

3 ALL UNSPECIFIED DRAFT ANCLES TO BE 0* X0

4 ALL NON-APPEARANCE SURFACE EDGES TO HAVE
A 025 :003 RADIUS. EXCEPT AT PARTING LINE.

5 FLAT SURFACES TO HAVE A FLATNESS TOLERANCE OF 020 PER 25.00,
NOT T0 EXCEED 100 OVER THE ENTIRE SURFACE

6 STRAIGHT EDGES TO HAVE A STRAIGHTNESS TOLERANCE OF 0.05 PER 25.00,
NOT 10 EXCEED 0.20 OVER ENTRE LENGTH

EXTERIOR {APPEARANCE) SURFACES TO BE TEXTURED
PER APPLE SPECIFICATION 062-0222 (G-2).

NOLD FINISH ON INTERIOR (NON-APPEARANCE) SURFACES
10 BE SPLSPE 3.

9 FLASH NOT TO EXCEED 0.8

10 GATE TRIM TO BE 0.5 MAX.

1 PARTING LNE MSMATCH NOT T0 EXCEED 010

12 NO SNK DEPRESSIONS TO BE VISBLE ON APPEARANCE SURFACES

13 APPEARANCE SURFACES TD BE FREE OF COSMETIC DEFECTS INCLUDING,

BUT NOT UMITED TO. SPLAY INCLUDED PARTICLES. BURNED PLASTIC
NARKS AND SIMLAR MPERFECTIONS. SEE APPLE SPEC. 062-2006.

R

PART T0 BE FREE DF NOLD RELEASE DN APPEARANCE SURFACES.

15 NOLD DESIEN TO MNIMZE GATE BLUSH, FLOW LINES, AND MOLD MARKS.
MOLD CONSTRUCTION TO CONFORM TO GOOD MOLDING INDUSTRY PRACTICE
AS STATED N THE CURRENT EDTION OF "STANDARDS AND PRACTICES OF
PLASTIC CUSTOM NCLDERS’ BY THE SOCETY OF THE PLASTIC NDUSTRY. INC.

T 157 2X

.

R 20
154

8.07 2X- L R2157.81

@i |
038 2x

SECTION A=A

SNAP FEATURES

A

167.73 - DRAFT

2X

16 EJECTOR PIN, PARTING LINE, AND GATE LOCATN NUST BE APPROVED BY
APPLE CONPUTER PRODUCT DESIGN ENGNEERING PRIOR T MOLD FABRICATION.

NOLD TO BE PROPERTY OF APPLE COMPUTER, INC. AND SHALL BE
MARKED WITH APPLES NAME, APPROPRIATE PART NUMBER AND DATE.

4.46 + DRFT

& MARK APPLE PART NUMBER AND REVISON LETTER WITH 30 HIGH
CHARACTERS APPX. 0.3 TALL, NOT TO EXCEED 0.3, IN LOCATION SHOWN.

B\ ToeRance «

DIN. TOL
9 - <50 +/- 0.3
50 - <130_| 4/- 020
150 - <300 | +/- 033
>300 | +/- 050

20 NOMINAL WALL THCKNESS 3

‘A MARK MATERIAL WITH RCYCLING TRIANGLE AND MATERIAL DENTFER APPX WHERE SHOWN. DENTIFER
ABS-FR TO BE MARKED ON INTERIOR NON-FUNCTIONAL (NON-APPEARANCE} SURFACE USING 30 HIGH
CHARACTERS, 2.0 BELOW ISCCELES TRIANGLE ¢10.0) TALL TO PONT OF INTERSECTION WITH 10
RADI AT CORNERS. NATERIAL CALLOUT 7* N 56 HGH (HARACTERS TO BE APPOX CENTERED N
TRANGLE. ALL CHARACTERS TO BE RAISED 43, BUT NOT EXCEED Q5 FROM SURFACE. SEE DWG BELOW.

22 THS IS A SUPPLINENTAL CRITICAL FUNCTION DRAWNG AND IS TO

BE USED N CONJUNCTION WITH FLE B15-14TI-0M.i08. 8T5-1411-0381gs
TO MANUFACTURE AND TO INSPECT THE PART.

23 STARRED () DMENSKNS ARE FOR NCOMING OUALITY CONTROL INSPECTION.

60° 3X
R1 3X

b

5

Pt 7
" ABS - FR 1
RECYCLING SYMBOL
SCALE 31

67.00

A 8388 A g s
7 ¥4 -[Sav ‘
v
— o
¢
[I I
R 20 2X
. b
6124 - DRAFT —=f 12803 SYMM
SYM
350 2x
LS
A ——*162.90 SYM——— =
5.9
933
0200
— HH
(6389 ¢ / Jy
18.30-

R 075

R 050

FIGUR 1

CD bezel for Macintosh Centris 660av

815-1411-A ‘

NOTES :

(UNLESS OTHERWISE SPECIFIED)

157 2X

8.07-
INTERPRET OMENSIONS AND TOLERANCES PER ANSI YA45M-1982

MATERIAL ; ABS CYCOLAC KX 34107-1. COLOR : APPLE PLATINGM

PER [OLOR APPLE COLOR CONTROL PANEL 912-0037. TDLERANCE PER
COLOR TOLERANCE SET 912-%037.

ALL UNSPECFIED DRAFT ANGLES TO BE O° 307,

ALL NON-APPEARANCE SURFACE EDGES TO HAVE
A 025 +D03 RADIUS, EXCEPT AT PARTING LNE.

FLAT SURFACES TD HAVE A FLATNESS TOLERANCE OF 020 PER 2504
NOT TO EXCEED 100 OVER THE ENTIRE SURFACE

STRAGHT EDGES TO HAVE A STRAGHTNESS TOLERANCE OF DDS PER 2500,
NOT TO EXCEED Q20 OVER ENTRE LENGTH

EXTERIOR {APPEARANCE) SURFACES TO BE TEXTURED
PER APPLE SPECFLATION 062-0222 (G-2).

MOLD FINISH ON INTERIOR (NON-APPEARANCE) SURFACES
TO BE $PI-SPE 3.

FLASH NOT TO EXCEED 0.13 {

GATE TRM TO BE 0.5 MAX.

PARTNG LINE MSNATCH NOT TO EXCEED 0.0

NO SINK DEPRESSIONS TO BE VISIBLE ON APPEARANCE SURFACES
APPEARANCE SURFACES TO BE FREE OF [OSNETIC DEFECTS INCLUDING,

BUT NOT LIMTED TO. SPLAY INCLUDED PARTICLES. BURNED PLASTIC

x
6124 - DRFT —=
MARKS AND SMLAR IMPERFECTIONS. SEE APPLE SPEC. 042-2006. SYM

©

IRy

4.46 + DRFT

PART 10 BE FREE OF MOLD RELEASE ON APPEARANCE SURFACES.

MOLD DESIGN TO MNIMIZE GATE BLUSH, FLOW LINES, AND MOLD MARKS.
MOLD CONSTRUCTION TO CONFORM TO GODD MOLDING INDUSTRY PRACTICE

AS STATED IN THE CURRENT EDITION OF *STANDARDS AND PRACTICES OF
PLASTIC CUSTOM MOLDERS* BY THE SOCIETY OF THE PLASTIC INDUSTRY, NC.

EJECTOR PIN, PARTING LINE, AND GATE LOCATION MJST BE APPROVED BY
APPLE COMPUTER PRODUCT DESIGN ENGINEERING PRIOR TO MOLD FABRICATION.

MOLD TO BE PROPERTY OF APPLE COMPUTER, NC. AND SHALL BE ZA
MARKED WITH APPLE'S NANE, APPROPRIATE PART NUMBER AND DATE.

MARK APPLE PART NUNBER AND REVISION LETTER WITH 30 HIGH
CHARALTERS APPX. D3 TALL, NOT TQ EXCEED 05, IN LOCATION SHOWN.

& TOLERANCE :

23

DM, TOL.
0-<5 |- 0B
50 - <50 | +/- 020 E
150 - <300 | /- 033
=300 | +/- Q50

NOMNAL WALL THIDKNESS 3

MARK MATERIAL WITH RCYCLING TRIANGLE AND NATERIAL IDENTIFIER APPX WHERE SHOWN. IDENTIFER
*ABS-FR’ TO BE MARKED ON INTERIOR NON-FUNCTIONAL INON-APPEARANCE) SURFACE USING 380 HGH
CHARACTERS, 20 BELOW ISOCELES TRIANGLE (103 TALL TO POINT OF INTERSECTION! WITH 14

RADI AT CORNERS. MATERAL CALLOUT *7* IN 5.0 HIGH CHARACTERS TO BE APPOX CENTERED IN
TRIANGLE. ALL CHARACTERS TO BE RAISED (.3, BUT NOT EXCEED 05 FROM SURFACE. SEE DNG BELOW.

THIS IS A SUPPLIMENTAL CRITICAL FUNCTION ORAWING AND IS TO
BE USED IN CONJUNCTION WITH FILE 815-1376-O4w.igs. B15-1376-O4siigs
TD MANUFACTURE AND T0 INSPECT THE PART.

0° 3X
STARRED (+) DMENSKNS ARE FOR INCOMNG QUALITY CONTROL INSPECTION.

R1 3X;

g
i _ABS - FR T

RECYCLING SYMBOL
SCALE 311

z
Jo

—1—038
SECTION A'_‘
SNAP DETAILS

LR 2157.81

167.73

A

A A ri 8590 ——— A

*
2960 SYM

b4 - sav
AW/

H,ﬁ\l
u

Al

™ 35° 2X

=

16290 SYIM—————————=

S

x

| G —)

(63.90)

FIGURE D-2

Blank bezel for the Macintosh Centris 660Av

815-1376-A ‘

INOTES1 wiess onense secirien

2.
3.

Y.
5.
6.
7.
8.
9.
10.

1.

13.
4.

INTERPRET DIMENSIONS AND TOLERANCES PER ANSI YI4.SM-1982.

STARRED (+) DIMENSIONS [NDICATE PROCESS CONTROL DIMENSIONS.
MATERIAL: G.E. CYCLOAC KJC #34187-Y,
COLOR: APPLE ‘PLATINUN FER COLOR_CONTROL PANEL 912-0037,

TOLERANCE PER COLOR TOLERANCE SET 912-1037.
NOMINAL WALL THICKNESS TO BE 2.00.
UNSPECIFIED DRAFT ANGLES TO BE 1°.
ALL EDGES TO BE 0.25 20.12 RADIUS, EXCEPT AT PARTING LINE.
GATE TRIM TO BE 0.3 MAX. FLUSH WITH SURFACE.
FLASH NOT TO EXCEED 0.13.
PARTING LINE MISMATCH NOT TO EXCEED 0.25.

STRAIGHTEDGES TO_HAVE STRAIGHTNESS TOLERANCE OF 0.07
PER 25.0 NOT TO EXCEED 0.5 OVER THE ENTIRE SURFACE.

FLAT SURFACES TQ HAVE FLATNESS TOLERANCE OF 0,10 PER
25.0, NOT TO EXCEED 1.0 OVER THE ENTIRE SURFACE.

MARK AFPLE PART NUMBER AND REVISION LETTER WITH 2.0
MINIMUM HIGH CHARACTERS APPROX [MATELY WHERE SHOWN.
REVISION LETTER TO BE LOCATED ON AN EJECTOR PIN.

MOLD FINISH ON ALL SURFACES TO BE SPI-SPE #3.
MOLD_DESIGN TO MINIMIZE EJECTION PIN MARKS, GATE BLUSH,
L LD MARKS. WOLD GONSTRUCTION TQ CONFORM_TO
SOCIETY OF THE PLASTICS INDUSTRY.

EJECTOR PIN, PARTING LINE, AND GATE LOCATION MUST BE

B

APPROVED BY'APPLE COMPUTER PRODUCT DESIGN ENGINEERING
PRIDR TO MOLD FABRICATION.

MOLD TO BE_PROPERTY OF APPLE COMPUTER INC. AND SHALL BE
PERMANENTLY MARKED WITH APPLE'S NAME AND APPROPRIATE
PART NUMBER.

12,3—f—f

-5°DFT/SIDE

76.
-5°DF T/SIDE
SYMM ABOUT €

<N
NI

secrion B=F

SCALE: 2/1

[

2x
(37.90)

5.00—

secrion D= 2

SLOT ROTATED 90* \

iii— |

2 3.75/

+1°DFT

| i 4 el ——

3X 4,50 X 3,75 SLOT

3.8
-1*DFT/SIDE
F—4X 1,915

E

4X R 0.50

f
! ALDFT/SIDE
‘ (1 ROTATED 90°)
! E
‘ ‘ 6X R FULL
! ! (116.581)
‘ i
i
! ‘ o~
| |
i
| I
: | 2x
‘ 37.90
‘ U
T

ox 2.00—

A B °
o —(7.00)
1 16X R 1.00
— -77.00 P —= 8x 2.00— -+
T 10.34 [I M
Lo |
41.53 36,06 i
ax 1u.01
-5°DFT/SIDE
(= -
) — — ~
90.77 -—‘—“ﬂ
ue1 125,77 1 M L : | rwx 2.4
z
27X 2.00 134.% N 154
-5+DFT/SIDE 167.5 79.300 ! Li (s | 2x
-5°DFT/SIDE)
| : 8.5
ux 12.0 N ‘ 2x
] iy L 79.98
—/\ZX . | Py L 49 j
' ﬂ 2
‘ 41,49
155 2.00 N_
—l r / 8x R 3.90
L=
f oPEN
I { A g J \ / sz 3.00
2.00 i 6x R 2.00 16X 30° X 2.0 A exios
2x 30° 2.00 4X 2,00 —= [~ | |== R 1.3 ax 2
2x 8. .
™ Tve
3.00 12X 5.73— | B
—= k2.0 -1°DF1/SI0E 2X R 1.00 A = A
6. section A"
(7.00)— — -5DFT/SIDE 0
’ B B SYWM ABQUT & -5-DFT/SIDE
secTioN D7
146.1
-5*DFT/S1DE
126.60
—{}—2x 2.00
(8.00) -1°DFT/SIDE
I L e
E—1 I 7.00
i]
f J f
- 38.00
-1°DFT/S1DE
— (40.00) k= g aBoUT
-5°DFT/S1DE
4~
4X 115.920 £0.5
| +5*DFT/SIDE
/] r—isc.zc——
4:00 5°DFT/SIDE
T 2X 57.96 (7.00) — }—
8.87
— f—ux 3.90
c avorvse | T |E 2.0
]
— —
— |E

2X 9.00
tE'[FT/SIDE—l
L

300)

1
2x u.rscj

2x 7.36
.s-m/smg—l
!

i

Lsx 2.00
SECTION C‘:C

FIGURE D-3
Mounting sled for 5.25-inch SCSI devices

815-1122-03

NOTES (UNLESS SPECIFIED OTHERWISE):

MATERIAL: 0.25 (010" THK DR9 (TIN PRE-PLATED CRS)

~

INTERPRET DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.

w

ALL DIMENSIONS ARE INCHES AND MILLIMETERS: USE METRIC TOLERANCE BLOCK.

~

ALL UNSPECIFIED INSIDE BEND RADI TO BE 0.3mm.

w

ALL UNSPECIFIED RIGHT ANGLE BENDS TO BE 90°:05°.

@

ALL SHARP CORNERS TO BE BROKEN 0.8 X 45°

N

STRAIGHT EDGES TO HAVE A STRAIGHTNESS TOLERANCE OF 0.15mm PER 2500mm,
NOT TQ EXCEED 0.5mm OVER THE ENTIRE LENGTH,

@

FLAT SURFACES TO HAVE A FLATNESS TOLERANCE OF 0.10mm PER 25.00mm, NOT
TO EXCEED 0.50mm OVER THE ENTIRE SURFACE.

9 SURFACES TO BE FREE OF CONTAMINATES, METAL FLAKES, AND OIL.

MAR'K APPLE PART NUMBER AND REVISIONS LETTER WITH 3.0mm MINIMUM HIGH
CHARACTERS APPROXIMATELY WHERE INDICATED.

18.99
X 748

 E——
11 STEEL RULE DIES, SPECIAL PUNCHES, OR OTHER UNIQUE TOOLING REQUIRED TO H H
FABRICATE THS PART TO BE PROPERTY OF APPLE COMPUTER INC. AND SHALL BE
PERMANENTLY MARKED WITH APPLE'S NAME AND APPROPRIATE APPLE PART NUMBER.
12 MAXIMUM BURR ALLOWANCE IS 15% OF MATERIAL THICKNESS. SEC A-A
13 THIS IS A SUPPLEMENTAL DETAIL DRAWING AND IS TO BE USED IN CONJUNCTION
WITH PART MODEL FILE shid300igs TO MANUFACTURE AND TO INSPECT THE PART.
148. EOSYM
5846
4)(3 25
128
23 132,50
@—\ 5217 O
4397
l 1731 S
B —m
1533
604
30
176 *
069
1460
M 575
A
\ |
: \ |
228 200
l’ 079
| N
f
SEC B-B 7 111;57
it T/ [T [il i) I] T
] I 189]
4 78
166 25
5800 R
315 %zx%*— 0628
S 7 6700 247
6x>2- 2638
R N Py - 46,00 w2
089 181 283
153.00
ﬁSYM
/ BLl—
85°
17
07
08
03 H “
= L = L — L
30{/ ‘ | s
a3
| 1es W W
077
56 <
—2° 650 650
6.50 2x830
7.92 z 256> 256
TQREF
M2.07 <\
4.412

FIGURE D-4

Shield for the CD bezel for Macintosh Centris 660av

805-0503-01 ‘

N@TESHUY\LESS OTHERWISE SPECIFIED

1.
2.

3.
Y.
5.
6.
7.

INTERPRET DIMENSIONS AND TOLERANCES PER ANSI YI14,5M-1982.

MATERIAL: 0.28 (.011™| SUPER-ORTHOSIL-4 COATED WITH CARLITE OVER GLASS

OR ENGINEERING APPROVED EOUIVALENT.

STARRED (*} DIMENSIONS ARE CONTROL DIMENSIONS.

ALL UNSPECIFIED INSIDE BEND RADI1 TO BE 0.3 .

ALL UNSPECIFIED RIGHT ANGLE BENDS TO BE 90° $0.5 .
ALL SHARP CORNERS TO BE BROKEN 0.8 X US-.

STRAIGHT EDGES TO HAVE A STRAIGHTNESS TOLERANCE OF 0O.15
PER 25.00, NOT TO EXCEED 0.50 OVER THE ENTIRE LENGTH.

FLAT SURFACES TO HAVE A FLATNESS TOLERANCE OF 0.10 PER
25,00, NOT TO EXCEED 0.50 OVER THE ENTIRE SURFACE.

SURFACES TO BE FREE OF CONTAMINATES, METAL FLAKES, AND OIL.

MARK APPLE PART NUMBER AND REVISION LETTER WITH 3.0
MINIMUM HIGH CHARACTERS APPROXIMATELY WHERE I[NDICATED.

STEEL RULE DIES. SPECIAL PUNCHES OR OTHER UNIQUE TOOL ING REQUIRES
TO MAKE THIS PART _TO BE PROPERTY OF APPLE COMPUTER. INC.. AND
SHALL BE PERMANENTLY MARKED WITH APPLE'S NAME AND APPROPRIATE
APPLE PART NUMBER.

ADHESIVE: SCOTCH 3M P/N 9500 OR
ENGINEERING APPROVED EQUIVALENT.

ADHESIVE TO BE APPLIED TO SURFACE AS INDICATED AND
MUST BE COVERED WITH A REMOVABLE PAPER ELEMENT.

(0.28)
145.00
112.50
62.50
12.50
3 5.00 A

—l FARS [DE
— -
[

A A‘%§\

200.00

190.00

Al
/
/

3X 20.00

/—ux R 5.00

FIGURE D

Magnetic shield for CD-ROM drives

805-0517-02 ‘

NOTE: UNLESS OTHERWISE SPECIFIED
l. INTERPRET DIMENSIONS AND TOLERANCES PER ANSI YI4.SM-1982.
2. ALL DIMENSIONS ARE IN MILLIMETERS: REFER TO METRIC TOLERANCE BLOCK.

3. MATERIAL: ABS CYCOLAC KJC 34187-1, COLOR: APPLE PLATINUM
PER COLOR CONTROL PANEL S12-0037, TOL FPER COLOR TOL SET 912-1037.

4. WALL THICKNESS: 3.00.

5. DRAFT ANGLES: EXTERIOR SURFACES 10 BE 0° PER SIDE.
INTERIOR SURFACES 10 BE 1°* PER SIDE.

6. ALL_EXTERIOR MPPEARANCE SURFACE) EDGES TO BE 0.15 RADIUS,
EXCEPT AT PARTING LINE

7o ALL_INTERIOR (NON-APPEARANCE SURFACE) INSIDE RADII 190° CORNERS)
BE 0,15 OUTSIDE RADI1. 1270° CORNERS! TO BE Q«50.
EXCEPT AT PARTING LINE.

AIGHT EDGES TO HAVE A STRAIGHTNESS TOLERANCE OF 0.15 PER 25mm,
NOT TO EXCEED 0.5 OVER THE ENTIRE LENGTH.

9. FLAT_SURFACES TO HAVE FLATNESS TOLERANCE OF 0,15 PER 25mm,
NOT TO EXCEED 0.5 OVER THE ENTIRE SURFACE.

10. APP'EARANCE SURFACES ARE THOSE SUFFACES TEXTURED PER APPLE SPEC
62-0222, PER NOTES 11, 12 & 14

ALL EXTERIOR (APPEARANCE) SURFACES TO BE REG642 G2 TEXTURE PER
APPLE SPECIFICATION 062-0222 WHERE INDICATED.

12. TEXTURE TO BE SPI-SPE#3 (APPLE SPEC 0062-D222) WHERE INDICATED.
13. MOLD FINISH ON [NTERIOR (NON-APPEARANCE! SURFACES TO BE SPI-SPE#3.
14. TEXTURE TO BE REGE43 G-3 PER APFLE SPECIFICATIONs WHERE INDICATED.
15. GATE TO BE MACHINE TRIMMED O.15 BELOW SURFACE.
16. REFER TO APPLE SPEC 062-2006 FOR COSMETIC ACCEPTANCE CRITERIA.
17+ FLASH NOT TO EXCEED 0.05.
18. PART TO BE FREE OF MOLD RELEASE ON APPEARANCE SIDE OF PART.
19. MOLD DESIGN TO MINIMIZE EJECTION PIN MARKS. GATE BLUSH. LINES
AND WELD MARKS, MOLD CONSTRUCTION TO CONFORM TO GOOD MOLDING
INDUSTRY PRACT ICE AS STAT'ED lN THE_CURRENT EDITION OF “STANDARD
j PRACTICES OF CUSTOM BY THE SOCIETY OF PLASTIC INDUSTRY, INC.

MARK APPLE PART NUMBER AND REVISION LETTEH WITH 3.0 NINIMM
HIGH CHARACTERS APPROXIMATELY WHERE SHOWN

21. EJECTB? PIN‘ PARTING LINE, AND GATE LOCATIONS MUST BE
COMPUTER PRODUCT DESIGN ENGINEERING PRIOR TO MUL_D FA@ICAY[UN.

22. MOLD_TO DE PROI OF APPLE COMPUTERs INCa AND SHALL BE PERMANENTLY
MARKED WITH APPLE S NAME AND APPROPRIATE TOOL NUMBER.

23. STARRED (4) DIMENSIONS AND NOTES ARE CRITICAL CONTROL
D[M‘ENS]ONS AND NOTES FOR QC INSPECTION.

24. THIS DRAWING CONTAINS CRITICAL TO FUNCTION DIMENSIONS ONL
REFER TO UNIGRAPHICS CAD FILE (815-1189-04) FOR COMPLETE PART INFO.

8.

*11.19
- OFT

*20.88

2X R 0.25

SECTION C':'C

132.02
—2X 1.38
28.98 2X 5.00 __*
% 5.00 .
l I—_ + OFT r“ o7
: 1)
%2.68 Fx |
. T zsioa
38,18
ﬂg!—--— e @__

L...

2.02
* 2X R 1.50
uz.87 81.00

5.00

2X R 1.25

C
A 1 . — "\

2.00

+ DFT

SECTION A‘A

113°

2X 3.56

FIGURE D-6

Blank bezel for the Macintosh Quadra 840av

815-1189-05 \

UNLESS OTHERWISE SPECIFIED

L. INTERPRET DIMENSIONS AND TOLERANCES PER ANSI Yl4.5M-1982.
2. ALL DIMENSIONS ARE IN MILLIMETERS: REFER TO METRIC TOLERANCE BLOCK.

3. NMNATERIAL! ABS CYCOLAC KJC 34187-1, COLOR: APPLE PLATINUI
PER COLOR CONTROL PFANEL 912-0037, TOL PER COLOR TOL SET 9\2 1037,

4. WALL THICKNESS: 3.00.

5. DRAFT ANGLES!: EXTERIOR SURFACES TQ BE 0 PER SIDE.
INTERIOR SURFACES TQ BE 1°® PER SIDE.

6. ALL EXTERIOR (APPEARANCE SURFACE) EDGES TO BE 0.15 RADIUS,
EXCEPT AT PARTING LINE.

7« ALL INTERIOR (NON-APPEARANCE_SURFACE) INSIDE RADI1 190° CORNERS)
0.15 OUTSIDE RADII. 1270* CORNERS! TO BE 0.50
EXCEPT AT PARTING LINE.

8. STRAIGHT EDGES TO HAVE A STRAIGHTNESS TOLERANCE OF 0.15 PER 25mm,
NOT TO EXCEED 0.5 OVER THE ENTIRE LENGTH.

9. FLAT_SURFACES TO HAVE FLATNESS TOLERANCE OF 0.15 PER 25mm,
NOT TO EXCEED 0.5 OVER THE ENTIRE SURF,

10. APPEARANCE SURFACES ARE THOSE SURFACES TEXTURED PER APPLE SPEC
062-0222, PER NOTES 11, 12 & 14,

ALL EXTERIOR (APPEARANCE) SURFACES TO BE REG642 G2 TEXTURE PER
APPLE SPECIFICATION 062-0222 WHERE INDICATED.

12. TEXTURE TO BE SPI-SPE#3 (APPLE SPEC 062-0222) WHERE INDICATED.
13. MOLD FINISH ON [NTERIOR (NON-APPEARANCE) SURFACES TD BE SP1-SPE#3.
4. TEXTURE TO BE REG643 G-3 PER APPFLE SPECIF[CATION, WHERE INDICATED.
1S« GATE TO BE MACHINE TRIMMED Q.15 BELOW SURFACE.
16. REFER TO APPLE SPEC 062-2006 FOR COSMETIC ACCEPTANCE CRITERI[A.
17+ FLASH NOT TO EXCEED 0.05.
18. PART TO BE FREE OF MOLD RELEASE ON APPEARANCE SIDE OF PART.
19. MOLD DESIGN TO MINIM!ZE EJEET[ON FIN MARKE), BATE BLUSH. LINE‘:’)
AND WELD M, MOLD_CONSTRUC 0 _GODD MOLD
INDUSTRY F’RACTICE AS STATED IN THE CURRENT ED]TION OF STANDAF?D
i PRACTICES OF CUSTOM NOLDERS™ BY THE SOCTETY OF PLASTIC INDUSTRY, INC.

MARK APPLE PART NUMBER AND REVISION LETTER WITH 3.0 MINIMUM
HIGH CHARACTERS APPROXIMATELY WHERE SHOWN.

21. EJECTOR PIN, PARTING LINE, AND GATE LOCATIONS MUST BE APPRO
BY APPLE COMPUTER PRODUCT DESIGN ENGINEERING PRIOR TO MOLD FABRICAT[ON.

22. NOLD TO BE PROPERTY OF APPLE COMPUTER, INC. AND SHALL BE PERMANENTLY
MARKED WITH APPLE'S NAME AND APPROPRIATE TQOL NUMBER.

23. STARRED () DIMENSIONS AND NOTES ARE CR!T[CAL CONTROL
DIMENSIONS AND NOTES FOR QC INSPECTION

24. THIS DRANING CONTAINS CRITICAL TO FUNCTION DIMENSIONS ONLY.
REFER 10 UNIGRAPHICG CAD FILE (B15-1166-03) FOR GOMPLETE PART INFO.

-
NN

NN\

-
AN

e
v

|—2X 1.38
]

12.02 l—2x 5.00
-4.07—l [28-99
T)
Y263 F

38.13

[
2X 2.02

2X R 1.25

2X R 1.50

SECTION D"D

b
Lew
166.00
a
R ety 22T
R 0.75
@ 2.03—{~— | ALL AROUND
13,97

162,94
+ DFT

A

=8

C

SECTION B"B

FIGURE D

CD bezel for Macintosh Quadra 840av

815-1186-04

NOTES (UNLESS SPECIFED OTHERWISE):

MATERIAL: CRS 1.00mm THICK
FINISH: ELECTROGALVANIZED ZINC PRE-PLATE
(FINGERPRINT-LESS)

2 TYPICAL INSIDE BEND RADIUS: 1.0mm.

3 UNSPECIFIED RADI TO BE 1.0mm,

4 BREAK AND DEBURR ALL SHARP CORNERS AND EDGES. MAXIMUM BURR ALLOWANCE
IS 15% OF MATERIAL THICKNESS.

5 INTERPRET DIMENSIONS AND TOLERANCES PER ANS| Y14.5-1982

6 SURFACES TO BE FREE OF CONTAMINANTS, METAL FLAKES AND LUBRICANTS.

7 STRAIGHT EDGES TO HAVE A STRAIGHTNESS TOLERANCE OF 0.20 PER 250,
NOT TO EXCEED 0.40 OVER THE ENTIRE LENGTH

8 FLAT SURFACES TO HAVE A FLATNESS TOLERANCE OF 020 PER 25.0, NOT
TO EXCEED 0.4D OVER THE ENTRE SURFACE.

9 STEEL RULE DES. SPECIAL PUNCHES AND OTHER UNIQUE TOOLING REQUIRED

TO FABRICATE THIS PART TO BE PROPERTY OF APPLE COMPUTER. INC. AND
SHALL BE PERMANENTLY MARKED WITH APPLE'S NAME AND APPROPRIATE APPLE
PART NUMBER.

TAMP ASSEMBLY NUMBER 600-0627 AND
REVISION LEVEL WITH 30mm MINIMUM
HIGH CHARACTERS APPROXIMATELY WHERE o
INDICATED.

&NSTALL M3 THREADED STANDOFF (PEM
PART NO. SO-M3-10 OR EQUIV.) WHERE
INDICATED (2 PLACES),

Aexwqu HOLE AND TAP M3 THREADS
WHERE INDICATED (2 PLACES). HOLES TO
HAVE A MINIMUM OF THREE (3] THREADS,

13 THIS IS A SUPPLEMENTAL DETAL DRAWING
AND IS TO BE USED IN CONJUNCTION WITH 0
PART MODEL FLE 805-0530-06w.igs TO
MANUFACTURE AND INSPECT THE PART.

200SYM
10.00SYM
r

! = I

341
25.60

2.200FFSET

2.8FLAT-

secron A—A

5 PLACES

| ——2X CHAMFER

25 x 45°

158.63

n
N
S
104.00
— 12
—
7.00
206 = B r
= 392
5.42
[5 80.00 4X R10
m b=
£ o
o
bl
m
& 5 g7
3X R FULL \ ‘
1500] r 7.0SYM
0 é
7.5 4@’
»s—H
94.6 —— ﬂ
106.6 —— «E»
219
155.6 ‘@“
178.6 Eas 1806
3X R15.0
2096 ——
N ~
P S
3 a
9
3
s
8
7
©
279 r '
—
—
10TYP
~ @
A o
]

16.00

1392

— 40SYM

~——
150SYM =1

N34

0
3406
512

12.0

337

Yﬂ&:
2X R2.0

#340H0LE]

(180.6

401

(209.6) ——

5163

1620

20363

3X R4.0

o
s
R
N
(14.00) =)
(8.00 4_,1
O——=

|
| 10942

(@}
9
LA
O e

H E/wm
=

FIGURE D-8

Accessory-card bracket for the
Macintosh Centris 660Av

805-0530-06 ‘

N Q T E S . UNLESS DTHERWISE SPECIFIED:

A\

/A
A\

MATERIAL POLYCARBONATE SHEET, 0.20 (.008) THICK FLAMMABLILTY
RATING TQ BE LLY4-V2 MINIMUM.

ADHESIVE MATERIAL 3M 467 ADHESIVE OR EQUIVALENT.

ADHESIVE TO BE APPLIED TO SURFACE AS INDICATED., AND MUST BE
COVERED WITH A REMOVABLE PAPER ELEMENT.

ALL REQUIRED TOOLING TGO BE PROPERTY OF APPLE COMPUTER, INC AND SHALL
BE MARKED WITH APPLE'S NAME. APPROPRIATE PART NUMBER, AND DATE.

01 / R2.03x

A — f% w0

NEARSIDE 563

[— 351 —=~

60.1

754

L] e %

FIGURE D-9

Insulator for the Macintosh Centris 660Av
accessory-card bracket

725-0051-02 \

NOTES (UNLESS SPECIFIED OTHERWISE):

1 MATERIAL: 0.20 (008" THK STAINLESS
STEEL 301 SERIES. HALF-HARD.

2 TYPICAL INSIDE BEND RADWUS: 0.15mm.
3 ALL SHARP CORNERS TO BE RADIUSED 05R.

4 BREAK AND DEBURR ALL SHARP CORNERS AND
EDGES. MAXIMUM BURR ALLOWANCE IS 15%
DF MATERIAL THICKNESS.

5 INTERPRET DIMENSIONS AND TOLERANCES
PER ANSI Y14.5-1982.

& SURFACES TO BE FREE OF CONTAMINANTS,
METAL FLAKES AND LUBRICANTS.

7 STRAIGHT EDGES TO HAVE A STRAIGHTNESS
TOLERANCE QF 0.20 PER 25.0, NOT TQ
EXCEED 0.40 OVER THE ENTIRE LENGTH.

8 FLAT SURFACES TO HAVE A FLATNESS
TOLERANCE QF 0.20 PER 25.0, NOT TO
EXCEED 0.40 DVER THE ENTIRE SURFACE.

9 STEEL RULE DIES., SPECIAL PUNCHES AND
OTHER UNIQUE TOOLING REQUIRED TO
FABRICATE THIS PART TO BE PROPERTY OF
APPLE COMPUTER, INC. AND SHALL BE
PERMANENTLY MARKED WITH APPLE'S NAME
AND APPROFRIATE APPLE PART NUMBER.

&OPT\ONAL STRIP MAY BE ADDED FOR
SUPPORT DURING FORMING BUT MUST BE
TRIMMED AWAY WHEN PART IS COMPLETED.

100.0
R5.5 94.3 T
13.68 * ‘ I I TCT T TCT I TCT T 0o
27.35 l 15.0 >/ ‘ 740 |
L 75 ‘ 870~ 29
/ ‘ T T 14T T 10T T 10T
/ <——l>10.8 MIN RELEIF TYP
9400 927
937

—[6.00]

’J’— 2X 250

L

2X 0.6

LLX [1.00] 8X 75 8X 100
917
——Tm.a

ezl i ~7.20

W [fa I I T 1
19.40REF \GB ‘ 14.40

| —rfh +a e T

e L]
303 [19.80] —
594 3 SPACES © 19.6mm EA.

—f=—8X 05

R FULL 8X
\ -8X 2.0
4‘177

’;

8X 10 RELEIF—

R FULL 8X

NON-ACCUM. TOL.

\
2X 6.00 «L——‘

OUTSIDE RO.70MIN 2X

OPTIONAL

[14.40] [27.35]

1

FIGURE D-10

EMI shield for the Macintosh Centris 660Av
accessory-card bracket

630-0450-10

NOTES (UNLESS OTHERWISE SPECIFIED):

[-— J
A\ s eonerRy A0S T DG 10 % P60 T 22 36705 EURODN
- g NuBus CONNECTOR
z
a
=l
wnm
D
U U U 3959
= ==
BRI 15 1559 N 1
cL]
Ll |- < |
T | \—&
o z CARD EDGE CONTACTS FOR
min 140 POS. MICRO-CHANNEL
g\g STYLE CONNECTOR
B o
s 38 S‘m
0| 1N [10.00 "
N . 2X 65, KEEPOUT ~ 8x20
Qe a MmN~ .
MAX COMPONENT g‘; g‘% {1]":, 2XRFULL Q‘S 5‘%
HT 550 mm NeoeN = -
160 \ ‘ ‘ ‘ 4820 N
160 189 I
457 % . ? 898
14,64
8.62 A 576 A
340 INNNAN | | | 264 185, H
% | — Wz 380 073 169 vER PAD FINGERS)
0 075 063
30 025
2x 2% eepout 300 — A - o0
394 97 S8 8lg 3.40
S 31 191 glE oA 2X 935 HOLE
g‘g xS L ox 21 sym s< g3 134
: 075 secrion A=A
300 KEEPOUT AREA: SCALE 41 —
5 18 NO COMPONENTS
OR TRACES
BACKSIDE
TOP SIDE
(COMPONENT)

FIGURE D-11

NuBus adaptor card for the Macintosh Centris 660Av

630-0450-12 ‘

Glossary

ADB See Apple Desktop Bus.
AIAO See all-in/all-out buffer.

all-in/all-out buffer (AIAO) A buffer that is
completely emptied each time it is read.

ANSI

APDA Apple’s worldwide direct distribution
channel for Apple and third-party development
tools and documentation products.

American National Standards Institute.

API See application programming interface.

Apple Desktop Bus (ADB) An asynchronous
bus used to connect relatively slow user-input
devices to Apple computers.

Apple SuperDrive Apple’s disk drive for high-
density floppy disks.

AppleTalk Apple’s local area networking
protocol.

Apple Telecom External Clock Synchronizer
(ATECS) A chip that synchronizes the DSP and
sound subsystems to external clock signals
received through a serial port.

application programming interface (API) A set
of calls, instructions, and data structures in
system software or a processor instruction set
that application software can use to program

the computer.

arbitration The process of determining which
of several contending subsystems gains control of
a bus at any given time.

ATA See average timeshare available.

ATECS See Apple Telecom External Clock
Synchronizer.

ATT See average total timeshare.

ATU See average timeshare used.

AutoCache In digital signal processing, a
visible caching model in which the DSP
operating system performs all load and save
functions automatically.

average timeshare available (ATA) The
average amount of time per frame that the DSP
is in sleep mode. This time can be used for
timesharing tasks.

average timeshare used (ATU) The average
amount of time per frame that the DSP spends
executing timeshare tasks.

average total timeshare (ATT) The sum of
average timeshare available and average
timeshare used.

baud The maximum number of signal changes
per second on a transmission line.

block transfer Data transfers of more than one
longword at a time.

cache load In digital signal processing, the
process of moving data from local memory to
cache memory.

cache save In digital signal processing, the
process of moving data from cache memory to
local memory.

CAM See Common Access Method.
CAS See column address strobe.

Casper The code name for Apple’s speech
recognition human interface and technology.

CCIR Comité Consultatif International Radio.
CD-ROM See compact disc ROM.

CIVIC See Cyclone Integrated Video
Interfaces Controller.

client In DSP programming, an application or
system toolbox routine that uses the DSP.

Clifton Plus A functional equivalent of
the Endeavor chip, used in the Macintosh
Centris 660AV.

CMOS See complementary metal-oxide
semiconductor.

codec A digital encoder and decoder.

477

GLOSSARY

color depth The number of bits required to
encode the color of each pixel in a display.

column address strobe (CAS) A signal that
captures the column component of a matrix
addressing scheme from a bus that carries both
row and column addresses.

command item A user-selectable button in a

dialog box that can be operated by voice control—

for example, the OK or Cancel button.

Common Access Method A specification for

SCSI operation embodied in ANSI Standard X3T9.

compact disc ROM (CD-ROM) A read-only
data storage disk 120 mm in diameter that can
hold up to 550 MB of data.

complementary metal-oxide semiconductor
(CMOS) A chip material and fabrication
technology that features low power requirements
and high noise immunity.

composite video A video signal that includes
both picture information (with chroma and
luminance combined) and the timing and other
signals needed to display it. It is the standard
signal form for communication between video
cassette recorders, television sets, and other
common video equipment.

container In DSP programming, a memory
location occupied by a section.

convolution The process of smoothing
alternate lines of a video signal to be shown in
succeeding frames for a line-interlaced display.

CPU bus The bus connected directly to the
main processor.

Cuda A microcontroller chip that manages the
ADB and real-time clock, maintains parameter
RAM, manages power on and reset, and
performs other general system functions.

Curio AnI/O chip that supports Ethernet,
SCSI, SCC, and LocalTalk.

Cyclone Integrated Video Interfaces Controller
(CIVIC) A video control chip that manages
VRAM, generates video timing signals, and
performs convolution where needed.

DAC See digital-to-analog converter.

478

data burst Multiple longwords of data sent
over a bus in a single, uninterrupted stream.

delimiter A character or character pair used to
set off embedded speech commands in speech
synthesis.

DemandCache In digital signal processing, a
visible caching model in which the program
explicitly moves code and data blocks between
on-chip memory and off-chip memory.

digital audio/video (DAV) expansion
connector A connector in line with a NuBus
slot that lets a plug-in card access digital sound
and unscaled YUV video data directly.

Digital Multistandard Decoder (DMSD) A
video chip that decodes the color information in
NTSC, PAL, and SECAM video signals.

digital signal processor (DSP) A chip that
performs fast real-time data processing tasks,
such as speech recognition and audio
compression.

digital-to-analog converter (DAC) Circuitry
that produces analog electrical levels in response
to digital data.

direct memory access (DMA) A process of
transferring data rapidly into or out of RAM
without passing it through a processor or buffer.

DMA See direct memory access.

DMSD See Digital Multistandard Decoder.
DRAM See dynamic random-access memory.
DSP See digital signal processor.

DSP map A data structure used by the Real
Time Manager to hold intertask buffer
information.

DSP operating system Software built into

the DSP chip (independent of the Macintosh
Operating System) that supports DSP program-
ming and operation.

dumb lumpy algorithm A DSP operation that
varies in running time and for which the
program cannot determine before a frame how
long it will take to run. See also smart lumpy
algorithm.

GLOSSARY

duration control A control code in synthesized
speech that determines the duration of one or
more previous allophones.

dynamic random-access memory (DRAM)
Random-access memory in which each storage
address must be periodically interrogated
(“refreshed”) to maintain its value.

embedded speech command In speech
synthesis, an instruction placed in text being
spoken to indicate the rhythm, phrasing,
modulation, or tone of delivery.

Endeavor A chip that generates video clock
signals for a variety of different monitors.

ending prosody The modulation that
distinguishes the end of a sentence or statement
in normal speech.

Ethernet A high-speed local area network
technology that includes both cable standards
and a series of communications protocols.

exception vector table (EVT) A data structure
in which the DSP operating system places system
information, such as run-time variables and
routine addresses.

facsimile (fax) A data format and transmission
protocol for sending graphic images over
telephone lines.

fax See facsimile.
FIFO See first-in, first-out.

first-in, first-out (FIFO) A data-buffering
technique in which bytes are read out in the
same order in which they were received.

floating-point format A data format that
encodes real numbers, including decimals.

floating-point unit (FPU) A part of the
MC68040 processor that calculates numbers in
floating-point format.

frame In DSP programming, the repeating time
period during which DSP code runs.

frame-based processing The DSP processing
technique in which data is processed during a
fixed time interval (a frame).

GCR See Group Code Recording.

GeoPort Apple’s versatile, high-performance
serial interface that communicates with most
telephone systems worldwide by means of
external pods.

GPB See guaranteed processing bandwidth.

Group Code Recording (GCR) The Apple
recording format for floppy disks.

guaranteed processing bandwidth (GPB) A
concept in DSP programming that lets the
programmer make sure that the DSP will be able
to complete its required tasks during every frame.

HAL See hardware abstract layer.

hardware abstract layer (HAL) An API layer in
the DMA Serial Driver that makes the driver
hardware independent.

HBA See host bus adapter.

host A Macintosh application from the
viewpoint of a DSP program.

host bus adapter (HBA) The hardware
associated with a specific SCSI bus adapter.

IEEE Institute of Electrical and Electronics
Engineers.

I/O See input/output.

input/output (I/O) Parts of a computer system
that transfer data to or from peripheral devices.

Integrated Services Digital Network (ISDN) A
series of protocols that integrate voice and data
transmission over telephone lines.

intermodule buffer A buffer used to pass data
between DSP modules.

interrupt latency The maximum time that a
program can delay responding to an interrupt
without affecting the performance of the
operating system or peripheral devices.

intertask buffer (ITB) A buffer used to pass
data between DSP tasks.

ISDN See Integrated Services Digital Network.
ITB See intertask buffer.

LocalTalk The cable terminations and other
hardware that Apple supplies for local area
networking from Macintosh serial ports.

479

GLOSSARY

LocalTalk Patch Chip (LTPC) A chip that
processes LocalTalk signals to and from the
printer port.

logical unit number (LUN) A logical ID that
identifies a SCSI device for the SCSI Manager.

LTPC See LocalTalk Patch Chip.

lumpy algorithm A DSP operation whose
running time may vary from frame to frame. See
also smooth algorithm.

LUN See logical unit number.

MACE See Media Access Controller for
Ethernet.

Macintosh Universal NuBus Interface (MUNI)
A control and interface chip between NuBus and
the MC68040 processor.

MCA See Memory Controller and Arbiter.

MC68040 The model number of the Motorola
processor used in the Macintosh Quadra 840Av
and Macintosh Centris 660AV.

Media Access Controller for Ethernet
(MACE) Circuitry within Curio that
supports Ethernet I/O.

Memory Controller and Arbiter MCA) A
memory manager chip that controls access to
ROM and RAM and performs arbitration for the
CPU bus.

MFM See Modified Frequency Modulation.

Mickey A video encoder that produces
composite and S-video outputs in NTSC and PAL
formats.

mini-DIN An international standard form of
cable connector for peripheral devices.

Modified Frequency Modulation (MFM) A
recording format for floppy disks used by DOS
computers.

module The basic unit of DSP programming. A
module always includes DSP code and may also
include data, I/ O buffers, and parameter blocks.

MUNI See Macintosh Universal NuBus
Interface.

New Age A controller chip for Apple floppy
disk drives.

480

NTSC An acronym for National Television
Standards Committee, the television signal
format common in North America, Japan, parts
of South America, and other regions.

NuBus A bus architecture in Apple computers
that supports plug-in accessory cards. The
Macintosh Quadra 840AV contains three

NuBus slots.

Open Scripting Architecture (OSA) A
standard for the operation of scripting systems
(such as AppleScript and QuicKeys).

option item A radio button or checkbox in a
dialog box, which may or may not be voice
controlled.

OSA See Open Scripting Architecture.

PAL An acronym for Phased Alternate Lines,
the television signal format common in Western
Europe (except France), Australia, parts of South
America, most of Africa, and Southern Asia.

parameter RAM Random-access memory in an
Apple computer that retains data when the
computer is turned off.

PBX See Private Branch Exchange.
PDS See processor-direct slot.

Peripheral Subsystem Controller (PSC) A
control chip that manages DMA, handles system
interrupts, and performs other tasks.

phoneme A single sound element of
synthesized speech.

pitch In synthesized speech, the dominant
frequency of an utterance.

pixel A single dot on a screen display.

Private Branch Exchange (PBX) The traditional
transmission standard for voice telephone.

processor-direct slot (PDS) A connector in the
Macintosh Centris 660AV only that lets a plug-in
card access the CPU bus directly. The same
connector also accepts a NuBus adapter card.

prosody The rhythm, modulation, and stress
patterns of speech.

PSC See Peripheral Subsystem Controller.
RAS See row address strobe.

GLOSSARY

Real Time Manager A part of the system
software for the Macintosh Quadra 840Av and
Macintosh Centris 6604V that lets applications
control the DSP.

real-time processing Data processing that
occurs within the time constraints of another
process, such as manipulating a digital video
stream.

relative pitch control A control code in
synthesized speech that determines the pitch
relative to the pitch range for the current voice.

RGB Abbreviation for red-green-blue. A data
format for each pixel of a color display in which
the red, green, and blue values are separately
encoded.

row address strobe (RAS) A signal that
captures the row component of a matrix
addressing scheme from a bus that carries both
row and column addresses.

RS-232, RS-422 Standard communications
protocols established by the Electronics Industries
Association for serial data transmission.

scatter/gather (S/G) list A list of discontiguous
locations in memory where a single run of data
is located.

SCC See Serial Communications Controller.
SCSI See Small Computer System Interface.

SCSI Interface Module (SIM) A lower layer of
the SCSI Manager 4.3, which interfaces with host
bus adapters.

Sebastian A video color manager and digital-
to-analog converter on one chip.

SECAM A French acronym for the television
signal format used in France, Eastern Europe, the
former Soviet Union, and many former French
colonies.

section In DSP programming, a part of a
module that is stored in a locked contiguous
memory block.

section table A data structure maintained by
the DSP operating system to keep track of active
containers.

Serial Communications Controller (SCC)
Circuitry on the Curio chip that provides an
interface to the serial data ports.

S/G list See scatter/gather list.
SIM See SCSI Interface Module.
SIMM See Single Inline Memory Module.

Singer A digital encoder and decoder (codec)
for analog sound data, including speech.

Single Inline Memory Module (SIMM) A
plug-in card for expanding RAM that contains
several RAM chips and their interconnections.

sleep mode The idle state of the DSP during the
remainder of a frame after all required processing
tasks have been completed.

Small Computer System Interface (SCSI) An
industry standard parallel bus protocol for
connecting computers with peripheral devices
such as hard disk drives.

smart lumpy algorithm A DSP operation that
varies in running time but for which the program
can determine before each frame how long it will
take to run. See also dumb lumpy algorithm.

SME See Speech Macro Editor.

smooth algorithm A DSP operation that always
takes substantially the same time to run. See also
lumpy algorithm.

speech macro A user-defined routine that
specifies an utterance to be recognized plus a set
of instructions to be followed when it is
recognized.

Speech Macro Editor (SME) An application
shipped with the Macintosh Quadra 840Av and
Macintosh Centris 660AV that lets users edit
speech macros.

Speech Monitor A background application that
supports speech recognition.

speech rule An instruction to the Speech
Monitor for recognizing and acting on certain
words and phrases. Speech rules are kept in files
in a special folder in the System Folder.

481

GLOSSARY

speech rules file A file in the System Folder or
Extensions folder that contains speech rules.

Speech Setup control panel A control panel,
accessible through the Apple menu, that lets
users customize the computer’s speech
recognition behavior.

Standard Sound The DSP Sound Driver and
a set of common sound-manipulation tasks,
all of which are part of the Real Time Manager
software.

S-video A video format in which chroma and
luminance are transmitted on separate lines. It
provides higher image quality than composite
video.

task A group of DSP modules that always run
together.

TIB See transfer information block.

timeshare processing Data processing that uses
DSP facilities after real-time tasks are done, such
as file compression.

transfer information block (TIB) A SCSI
Manager data structure that communicates
instructions about the transferring of data
through the SCSI port.

transport (XTP) layer The upper level of the
SCSI Manager 4.3, which interfaces with old and
new SCSI drivers.

Truecolor A color range encoded by 24 bits.
VDC See Video Data Path Chip.

Versatile Interface Adapter (VIA) The interface
for system interrupts that is standard on most
Apple computers.

VIA See Versatile Interface Adapter.

482

Video Data Path Chip (VDC) A chip that
converts video in YUV format to RGB format and
performs video window scaling.

video frame buffer Memory that stores one or
more frames of video information until they are
displayed on a screen.

video RAM (VRAM) Random-access memory
used to store both static graphics and video
frames.

virtual memory (VM) A system of memory
storage that translates addresses used by
software into physical addresses that may be
different.

visible caching A DSP programming technique
in which off-chip code is stored on-chip in a
cache accessible to the application.

VM See virtual memory.

voice A particular style of utterance in speech
synthesis, such as male adult English.

voice synthesizer A utility that cooperates with
the Speech Manager to generate speech of a
particular kind.

volume control A control code in synthesized
speech that determines the loudness of an
utterance.

VRAM See video RAM.
XTP See transport layer.

YUV A data format for each pixel of a color
display in which color is encoded by values
calculated from its native red, green, and blue
components.

Index

A

C

abbreviations
accessory cards
power for
ADB. See Apple Desktop Bus
AIAO buffers for DSP
APDA xxvii
AppendSect i on DSP macro P13
Apple Desktop Bus D)
Apple events for speech recognition
AppleScript
Apple SuperDrive floppy disk drive
connector for [2
controller for [15,414
AppleTalk I@E
Apple Telecom External Clock Synchronizer
application programming interface
applications for the Macintosh Quadra 840AV @
arbitration (bus control) [13, 18,"29|
asynchronous SCSI 362,374
ATECS. See Apple Telecom External Clock Synchronizer
audio/video connector 13
AutoCache DSP execution [76,[87,
autosense feature for SCSI
average timeshare available (for DSP)
average timeshare used (for DSP) 82|
average total timeshare (for DSP) 53]

B

bnEst i mat e parameter [126)
bnFl ags parameter
breakpoints in Snoopy debugger
buffers, DSP
FIFO p2P4[101]
on-chip [74,{135,{142
BugLite DSP tool @273
installation @
using
burst read and write |20,
burst write timing [21]
bus arbitration 18,2930
bus snooping

Cache Allocation Manager
cache load [87
cache save [87
callbacks in speech synthe
Cal | Sect i on DSP macro 225
Casper speech recognition technology 318
category rules for speech recognition
CD-ROM drive E
CIVIC. See Cyclone Integrated Video Interfaces
Controller
Clifton Plus clock chip |1
color depth
column address strobe signals
Common Access Method for SCSI
Communications Toolbox |66,
Corpi | eRul es MPW tool [342
error messages
complete result buffer for DSP @
composite SIMM cards
configuration ROM for NuBus
containers (for DSP) @
and caching models
and sections
context specifiers in speech rules
Cont i nueSpeech routine P83

convolution of video out

Count Voi ces routine

CPU bus

access to memory
timeout for

cpuMaxCycl es parameter M

Cuda microcontroller chip [16

Curio multipurpose chip [L6]

current PC window in Snoopy

Cyclone Integrated Video Interfaces Controller

O8]

D

data bursts

DAV. See audio/ video connector
DAV sound interface m
DAV video interface E
d commands_{21-#126
debugging f21]

default statements in speech rules

483

INDEX

deferred tasks DSPFI FOGet MessageAct i onPr oc routine
delimiters for speech commands 302 DSPFI FOGet MessageMbde routine
DemandCache DSP execution 37 | DSPFI FOGet ReadCount routine [176
"dict' resource type DSPFI FOGet Ref Con routine [180
dictionaries, pronunciation @l DSPFI FOGet Si ze routine m
Digital Multistandard Decoder 7] DSPFI FOGet Wi t eCount_routine
digital signal processing xxiv, @ DSPFI FORead routine
digital signal processor. See DSP DSPFI FOReset routine
digital-to-analog converter DSPFI FOSet MessageAct | onPr oc routine
direct memory access E DSPFI FCset MessageMde routine
and Peripheral Subsystem Controller IE' DSPFI FCset MessageThr eshol d routine

and SCSI Manager [38]] DSPFI FCSet Ref Con routine
DSPFI FOBwap routine

DSPFI FOW i t e routine W

disk drive options |45

D sposeSpeechChannel routine DSPGet Avai | abl eOnChi pMeror y routine
DMA. See direct memory access DSPGet A i ent | nf o routine 156
DMA Serial Driver DSPGet | ndexedd i ent routine [159
DMSD. See Digital Multistandard Decoder DSPGet | ndexedCPUDevi ceQpt i on routine
DOS disk format DSPGet | ndexedCPUDevi ce routine
DRAM. See dynamic RAM DSPGet | ndexedl CDevi ceQpt i on routine
Dri veSt at us routine DSPGet | ndexed| CDevi ce routine
DSP DSPGet | ndexedMbdul e routine [169
aware applications [70{/1 DSPGet | ndexedSect i on routine
CPU device DSPGet | ndexedTask routine
floating-point instructions @ DSPGet Modul el nf o routine {169

frame overrun DSPGet Oaner d i ent routine

modules 85 DSPGet Qaner Modul e routine
registers DSPGet Qnner Task routine
reset DSPCGet Sect i onDat a routine
restart message |8—4| DSPGet Sect i onl nf o routine
sections [86488 {131 [1354136]| DSPGet Sect i on routine (14
semaphores DSPGet Taskl nf o routine [130|[16
task list [82 85 DSPGet TaskRef Con routine [166
tasks [85,[130 DSPGet TaskSt at us routine [T64
3210 chip XXVii, |60:[2,|89 DSPI nser t Task routine [14
DSPAddr ess data structure @l DSPLoadMdul e routine [116,§141
DSPAddr ess type DSPNVanager Ver si on routine 125
DSPBandwi dt h parameter DSP map
DSPdA i ent | nf oPar anBl k data structure m DSPMap data structure
DSPA oseCPWDevi ce routine DSPMessage data structure
DSPQ osel CDevi ce routine [160 DSPMbdul eAddr ess data structure
DSPConnect Sect i ons routine DSPMbdul eAddr ess type
DSPCount Mbdul e routine DSPModul el nf oPar anBl k data structure
DSPCPUDevi cePar anBl k data structure 128] DSPNewF| FOroutine @
DSPCycl es data type DSPNewl nt er TaskBuf T er routine
DSPDevi cePar anBl k data structure m DSPNewTask routine
DSPDevi cePar anBl kHeader data structure m DSPQpenCPUDevi ce routine
DSPDi sposeF! FOroutine [150) DSPQpenl CDevi ce routine [160)
DSPD sposeTask routine DSP operating system [64-6]
DSPDont Count Modul e routine debugging {46
DSPDont Updat eGPBPr ef s routine macros
DSP driver @ DSP operating system routines window in Snoopy
DSPFI FQAddr ess data structure DSP Prefs file 84]
DSPFI FQAddr ess type DSPPr ocessMessages routine
DSPFI FQQ ear | nt er r upt routine DSPRenoveTask routine

484

INDEX

DSPSect i onAddr ess data structure

DSPSect i onAddr ess type

DSPSect i on data structure

IBPSeti onl nf oPar anBl k data structure
135

DSPSet CPUDevi ceBondage routine

DSPSet GPBMbde routine

DSPSet | ndexedCPUDevi ceCpt i on routine
DSPSet | ndexed| CDevi ceQpt i on routine [162
DSPSet Sect i onSi ze routine @
DSPSet Ski pCount routine m
DSPSet TaskAct i ve routine
DSPSet Taskl nact i ve routine
DSPSet TaskRef Con routine [166]
dsps MacsBug command 423
DSPSynchr oni zeTasks routine [167]
DSPTaskAddr ess data structure
DSPTaskAddr ess type
DSPTask data structure
DSPTaskl nf oPar anBl k data structure m
DSPTaskToSynchr oni ze routine

DSPUnl oadModul e routine

DSPUpdat eCPUDevi cel nf o routine
DSPUpdat e@PBPr ef er enceFi | e routine
dual threaded execution streams |61

dumb lumpy DSP algorithms |81
duration control for speech i

dynamic RAM

E

FI FON i t eNDSP macro [234
Finder, speech control of
floating-point coprocessor E
floppy disk drive ﬂ
connector for

controller for
frame-based processing
frame buffers

G

electromagnetic interference shield
embedded speech commands 307]
Endeavor video clock chip

ending prosody (in speech synthesis)

errors in speech recognition [33
Ethernet

exception vector table

Exi t ToShel | routine [128
expansion slots H

F

facsimile interface E

FIFO buffers. See buffers, DSP

FI FOGet ReadCount DSP macro

FI FOGet Wi t eCount DSP macro

FI FCRead DSP macro

FI FCReadNBuf f er DSP macro
FI FOX i t e DSP macro

FI FOWi t eNBuf f er DSP macro

GCR. See Group Code Recording

GeoPort serial port

Gestalt Manager (8

Gest al t routine @

Get | ndVoi ce routine P71]

Get NunReal Ti neFr ames DSP macro 29

Get Sect i onAddr ess DSP macro 26

CGet Sect i onLabel DSP macro 226

Get Sect i onSi ze DSP macro

Get Speechl nf o routine m

Get SpeechPi t ch routine

Get SpeechRat e routine P77

Get Syncs status routine

Get Voi ceDescri pti on routine

Cet Voi cel nf o routine

GPB. See guaranteed processing bandwidth

GPB actual value [80

GPBEl apsedCycl es DSP macro

GPB estimate

GPBExpect edCycl es DSP macro

GPBSet UseAct ual DSP macro @

GPBSet UseAct ual routine

grammar of speech recognition m

Group Code Recording

guaranteed processing bandwidth
and frame overruns
and tasks
estimating
in module scaling
operations on
with real-time processes

—_

H

HAL. See hardware abstract layer

hard disk options

hardware abstract layer (in Serial Driver)
HBA. See host bus adapter

host bus adapter

human interface guidelines xxvii

485

INDEX

[,J system software for ?]
Macintosh Systemlzl XXiii
i 1 3210 MacsBug command Macintosh Universal NuBus Interface
input/output bus bus for
input/output completion routines features of
Inside Macintosm time-out for

ital Network MacsBug commands for DSP

MakeVoi ceSpec routine R70

MC68040 processor xxvii, E
status register in

nd MacsBug command

meaning property in speech rules 339

Integrated Services Dig
intermodule buffers
interrupt disabling
interrupt latenc

interrupts

interrupt vector [239

intertask buffers for DSP 5| Media Access Controller for Ethernet

ISDN. See Integrated Services Digital Network Memory Controller and Arbiter

ITB. See intertask buffers for DSP message action procedure. See MessageAct i onPr oc
routine

MessageAct i onPr oc routine
messages, DSP, enabling and disabling

K MFM. See Modified Frequency Modulation
Mickey video encoder

kdspDont Count Modul e routine microphone accessory B38|

kdspGet Modul el nf o routine mini-DIN connectors P1,22|B2]

kdspSnoot hibdul e flag mini-videocam. See videocam accessory

Ki | 11/ Oroutine mi Ski pCount_field

kPref | i ght ThenPause flag modem port

Modified Frequency Modulation EI
module information window in BugLite
module programming interface (for DSP) [64)

L modules (DSP) 62
monitors 35|
LocalTalk H Monitors control panel

LocalTalk Patch Chip
logical unit numbers 363
lumpy DSP algorithms f
LUN. See logical unit numbers

MPI. See module programming interface
ns\Vect or pointer
MUNI. See Macintosh Universal NuBus Interface

N, O
M
naming your computer for speech recognition
MACE. See Media Access Controller for Ethernet New Age floppy disk controller
machine identification New Age floppy disk driver {414
Macintosh Centris 660AV computer El See also NewCachedPr ogr anect i on DSP macro %
Macintosh Quadra 840Av computer NewExt er nal Pr ogr anBect i on DSP macro
differences with Macintosh Quadra 840av Newl nput Al ACSect i on DSP macro
computer Newl nput FI FOandBuf f er Sect i on DSP macro
features of xxiii Newl nput FI FQAndScal abl eBuf f er Sect i on DSP
Macintosh Quadra 840Av computer macro
applications for n NewMbdul e DSP macro
architecture of NewQut put CRBSect i on DSP macro
compatibility with other computers Ij NewQut put FI FQAndBuUf f er Sect i on DSP macro
differences with Macintosh Centris 660Av NewQut put FI FQAndScal abl eBuf f er Sect i on DSP
computer macro
features of xxiii NewQut put PRBSect i on DSP macro 22
monitors for NewPar arret er Sect i on DSP macro P13

486

INDEX

NewScal abl el nput Al ACSect i on DSP macro {217
NewScal abl eQut put CRBSect i on DSP macro 221
NewScal abl eQut put PRBSect i on DSP macro [222)
NewSect i on DSP macro
NewSpeechChannel routine
NewSt at eVar i abl eSecti on DSP macro
NewTabl eSect i on DSP macro
NewTenpScal abl eAl ACSecti on DSP macro
NewTenpVar i abl eSectl on DSP macro -
NTSC VldeO format (4
NuBus

block moves in m

features of

interface for p)39411
numbers, speaking [336

P

Q

QuicKeys scripting language

R

PAL video format

parameter RAM [16

parity (for SCSI)

parity on DRAM SIMMs

partial result buffer for DSP 97,
PauseSpeechAt routine t28_2
pbhd i ent | CONparameter [128
pbhd i ent Nane parameter [128
pbhQ i ent Ref Numparameter [127 128
pbhDevi cel ndex parameter 128

PBX. See Private Branch Exchange interface
PcLabel DSP macro

PDS cards 46

Peripheral Subs stem Controller (13,2930

phonemes !
phrases in speech rules [347]

pitch control for speech ﬂ
Pol | Proc routine 408§
Pop DSP macro [224
PopSect i on DSP macro [227
PopSect i on routine 106
power budget

for SCSI devices .

for slot cards [42)
power control
PPost Event actions {418
PRAM. See parameter RAM
PRB. See partial result buffer for DSP
printer port
Private Branch Exchange interface EI.
processor direct slot cards. See PDS cards
pronunciation of speech
prosody (in speech synthesis)
PSC. See Periheral Subsystem Controller
pseudocolor 1
Push DSP macro
PushSect i on DSP macro _.

RAM. See random-access memory

random-access memory
access times for PO
configurations of [19)

RAS. See row address strobe signals

215
access times for P

real-time clock (6
real-time data processing |60-{122

real-time DSP task 116
Real Time Manager 0,

architecture of [71]1 _
client services 130)

flag usage 135
1mplementat10n independence .
message passing

sample use of

task inactive message

tasks
real-time tasks window in Snoopy
registers window in Snoopy
ROM. See read-only memorﬁ

row address strobe signals
RS standard communication protocol

RSH22|standard communication protocol
rules files for speech recognition

S

Scal abl eSect i on flag 134

scatter/ gather list 385

SCC. See Serial Communications Controller
scPri mary pointer

scSecondar y pointer [133

SCSI _Abor t Conmand routine

SCS| _Busl nqui ry_PBdata structure @
SCSI _Busl nqui ry routine

SCSI _Execl O _PBdata structure @

SCSI _Execl Oroutine

SCSI _Get Vi rtual | DI nf o routine
SCSl _Rel easeQroutine 394
SCSI _Reset Bus routine (92
SCSI _Reset Devi ce routine 93]
SCSI _Ter mi nat el Oroutine B93
SCS| Act i on routine

INDEX

SCSI Der egi st er Bus routine 399
SCSI Interface Modules

SCSI Manager[4.3]
compatibility with other versions @
features of
implementation of

SCSI Regi st er Bus routine

SCSI. See Small Computer System Interface
Sebastian video chip

section information window in BugLite

section-relative addressing for DSP |102
sections (DSP)

Senaphor ed ear DSP macro

Senmaphor eSet DSP macro
SendMessageToHost DSP macro
Serial Communications Controller
serial driver software xxvi,
serial ports

Set Ski pCount DSP macro @
Set Speechl nf o routine P92
Set SpeechPi t ch routine P78
Set SpeechRat e routine W
Set Syncs control routine M
Set Taskl nact i ve DSP macro

Set Taskl nact i ve flag

S/G list. See scatter / gather list

signal buses

Sl MAct i on routine [399

SI M ni t routine [399

SI M ni t | nf o data structure |377,|398|
Singer sound chip [16,}44]

Single Inline Memory Module |12 [52-F5

skipcount for DSP (1124113 J132|

skipped frame message (from DSP) [84

Sl ot Bl ockXferCt| trap macro

slot cards

Small Computer System Interface

cable termination for

compatibility with previous versions 378

internal mountings for
software for xxv,|362]
smart lumpy DSP algorithms
SME. See Speech Macro Editor

data formattin:

editing data |4—§Z
error messages |51
installation 437

using
Sound Driver [68 |
sound I/0 [6,[38

DAV interface for |44
encoding frames for [44

488

Sound Manager 71, 125

SpeakBuf f er routine P83

speaking pitch

speaking rate

Speak$St ri ng routine 267

SpeakText routine ﬁ

SpeechBusy routine @
SpeechBusySyst em\W de routine
speech channels

speech commands, embedded B02-B0

speech controls %I
Speech Macro Editor
speech macros
Speech Manager B16
advanced routines [280)
concepts
dictionaries and
embedded commands for
essential calls
example of using P79
SpeechManager Ver si on routine
Speech Monitor
speech recognition xxv, 31834
installation
macros for [326
operation
performance [332
programmin:
speech rules Iﬁ
speech rules files
syntax of B45-B46|
Speech Setup control panel
speech synthesis xxiv,
callbacks
controls
speech synthesizers
Standard Sound
patch points
plug board
startup, system, from SCSI drive
St opSpeechAt routine P81

St opSpeech routine P76
style token in speech rules

22)

|

SuperDrive. See Apple SuperDrive floppy disk drive

S-video format
System 7.1 softwarem
system clocks

T

TagBuf f er routine
task inactive message (from DSP)

tasks, DSP, realtime and timeshare

INDEX

task window in BugLite (42§ W

Vi t Next Event routine @
Telecom Driver (b9
Telecommunications Manager @
telephone interface
television video output 410 X

Text ToPhonenes routine P85

text-to-speech conversion xxiv XTP. See transport layer for SCSI software
TIB. See transfer information block

Time Manager
timeshare DSP task (82
timeshare processing

Tr ackCache routine {414
Tr ackDunp routine @

transfer information block (for SCSI) 372
transport lﬁﬁer for SCSI software

Y,”Z
YUYV format

Truecolor

"ttsv' resource type

U

UseAct ual GPB flag
UseDi cti onary routine

\%

VBL tasks
VDC. See Video Data Path Chip
Versatile Interface Adapter
VIA. See Versatile Interface Adapter
video

bus for

data rates of
driver changes
input 2-p3

monitors |35

output a EE
random-access memory for @

timing
videocam accessory
Video Data Path Chip
video driver 112)
video frame buffer 3
video RAM. See video, random-access memory for
virtual memory xxvi

and DSP

and interrupts {18

and SCSI B76
visible caching
voices (for speech synthesis)
volume controls (for speech) [290,[294

VRAM. See video, random-access memory for

489

T H E A PPLE PUBLISHTING

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer; final pages
were created on the Apple LaserWriter
Pro 630. Line art was created using
Adobe" Tllustrator. PostScrip’rD , the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino” and display type is
Helvetica"”. Bullets are ITC Zapf
DingbatsD. Some elements, such as
program listings, are set in Apple Courier.

WRITER
George Towner

DEVELOPMENTAL EDITORS
Wendy Krafft, Jeanne Woodward,
Beverly Zegarski

ILLUSTRATORS
Barbara Carey, Deb Dennis

PRODUCTION EDITOR
Rex Wolf

Special thanks to Jim Jones, Noah Price,
William Sheet, Bob Strong, and
Fernando Urbina

Acknowledgments to Mike Bowes,
Rich Collyer, Debbie Lockett,
Isidoro Magana, Andy Soderberg,
Mark Turner, and Allen Watson

	Macintosh Quadra 840AV and Macintosh Centris 660AV Computers
	Contents
	Figures, Tables, and Listings
	About This Developer Note
	Contents of This Note
	Hardware Overview
	Software Overview
	Supplementary Documents
	Standard Abbreviations

	Hardware
	The Macintosh Quadra 840AV and Macintosh Centris 660AV Computers
	Models and Accessories
	Summary of Features
	Differences Between Models
	System Software
	Compatibility Issues
	Machine Identification

	Hardware Details
	Physical Forms
	Parts Layout
	System Architecture
	Functional Units
	System Clocks
	Signal Buses
	ROM and RAM Management
	External Device Interfaces
	PSC Functions
	Video and Graphics I/O
	Sound I/O
	NuBus Interface
	Processor-Direct Cards for the Macintosh Centris 660AV
	RAM Expansion Cards
	VRAM Expansion Cards

	Real-Time Data Processing
	Introduction to Real-Time Data Processing
	Introduction to Digital Signal Processors
	Real-Time Processing Architecture
	Software Model
	Software Architecture
	Standard Sound

	Real Time Manager
	About the Real Time Manager
	Devices and Clients
	Tasks
	Modules
	Sections
	Connecting Sections
	Using the Real Time Manager
	Sending Messages
	Real Time Manager Reference
	Summary of the Real Time Manager

	DSP Operating System
	About DSP Modules
	DSP Program Information for the Macintosh Programmer
	DSP Operating System Reference
	DSP Operating System Macros
	Summary of the DSP Operating System

	Speech Synthesis and Recognition
	Speech Manager
	Speech Manager Overview
	Speech Manager Concepts
	Using the Speech Manager
	Summary of Phonemes and Prosodic Controls
	Summary of the Speech Manager

	Introduction to Speech Recognition
	How Does Casper Work?
	Software Installation
	Using the Microphone
	Getting Started
	The Casper User Interface
	Speech Macro Editor
	Built-in Speech Rules and Grammar
	Performance

	Speech Rules
	Overview
	Speech Rules Files
	Speech Rules File Syntax
	CompileRules Error Messages
	Apple Events Speech Events
	An Example: A Simple Checkbook

	System Software Modifications
	SCSI Manager 4.3
	SCSI Manager 4.3 Features
	Design Overview
	Implementation
	Guidelines for SCSI Device Driver Developers
	Guidelines for SIM/HBA Developers
	SCSI Manager 4.3 Reference
	Summary of the SCSI Manager 4.3

	DMA Serial Driver
	Architecture
	Changes in Implementation

	Video Driver
	Video Television Output
	New Control and Status Routines
	NuBus Block Moves

	New Age Floppy Disk Driver
	Floppy Disk Support
	Programming Interface Changes
	Operational Compatibility

	Virtual Memory Manager
	Appendixes
	DSP d Commands for MacsBug
	Getting Started
	Using the d Commands
	d Commands Reference

	BugLite User’s Guide
	Getting Started
	Tools of the Trade
	Using BugLite
	Getting Information

	Snoopy User’s Guide
	Getting Started
	Using Snoopy

	Mechanical Details
	Glossary
	Index

