Developer Note

AV Architecture

Developer Press
0 Apple Computer, Inc. 1995

Apple Computer, Inc.

01995, Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter, Macintosh,
and QuickTime are trademarks of
Apple Computer, Inc.,, registered in the
United States and other countries.
Apple Desktop Bus, AppleColor,
AudioVision, Macintosh Quadra,
PlainTalk, PowerBook, AppleVision,
and PowerBook Duo, are trademarks of
Apple Computer, Inc.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

AGFA is a trademark of Agfa-Gevaert.

America Online is a trademark of
Quantum Computer Services, Inc.
Classic is a registered trademark
licensed to Apple Computer, Inc.
CompuServe is a registered trademark
of CompuServe Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Preface

Contents

Figures and Tables vii

About This Note ix

Chapter 1

Conventions Used in This Note X
List of Abbreviations X

Other Reference Material xi

For More Information Xi

Overview of the AV Architecture and
Application Software 1

Chapter 2

AV Devices 2
Why the AV Architecture Was Developed 2
Status Quo — Control Panels 3
Problem Areas 3
Apple’s Solution 3
Architectural Features 5
Developer’s Role 6
Architectural Components 6
Panel Components 6
Engine Components 9
Port Components 10
Device Components 12
Delivering Your Components 13
Advantages of a Component-Based Architecture

Panel Components 15

13

Panel Owner Search for Candidate Panels 16
AVPanelOpen 17
AVPanelGetFidelity 19
AVPanelClose 21
AVPanelGetPanelClass 21

Opening Panels for Display to Users 22
AVPanelOpen 22
AVPanelSetCustomData 23
AVPanelGetDITL 23
AVPanelComponentGetPanel Adornment 24
AVPanellnstall 26

iii

Chapter 3

AVPanelTargetDevice 27
AVPanelGetSettingsldentifiers 28
AVPanelSetSettings 28
AVPanelGetTitle 29
AVPanelClose 29

Running the Setup Application 30
AVPanelEvent 30
AVPanelValidateInput 31
AVPanelTargetDevice 31

Closing the Panel Window 32
AVPanelValidateInput 32
AVPanelGetSettings 32
AVPanelGetSettingsldentifiers 33
AVPanelRemove 33
AVPanelClose 34

Engine Components 35

Chapter 4

Engine Component Description 36

Engine Component Functions 36
AVEngineComponentGetFidelity 36
AVEngineComponentTargetDevice 37

Registering Engine Components Multiple Times 37

Notification =~ 38

Port Components 39

iv

Why Have Ports? 40
Why Have Port Components? 42
Storing Names and Icons 42
Turning the Port On and Off 42
Implementing Wiggling 42
Interfacing Between Engine Components and Hardware
Port Component Description 44
Port Component Functions 45
Storing Names and Icons 45
AVPortGetName 45
AVPortGetGraphicInfo 45
Turning the Port On and Off 47
AVPortSetActive 47
AVPortGetActive 48
Retrieving Information From the Port Component 48
AVDevicePortGetName 48
AVDevicePortGetDeviceComponent 48

44

Chapter 5

Detecting Changes on Ports 49
AVPortSetWiggle 49
AVPortGetWiggle 49

Device Components 51

Chapter 6

Why Have Device Components? 52
Storing Names and Icons 52
Providing Interface With Hardware 52
Providing Storage for Shared Information 52
Device Component Functions 53
AVDeviceGetName 53
AVDeviceGetGraphicInfo 54

More Information About the AV Architecture

55

Appendix

Strategies for Storing Data in Components 56
Managing Component Storage 56

Creating and Destroying Instance Globals 56

Creating and Destroying Common Globals 57
Notification Mechanisms 58

Display Notification 58

Resolution Panel Notification =~ 59

Cursor Visibility Panel Notification 59
Utility Components 59

Preferences Component 59
Library of Utility Functions 60

Getting Globals 60

Getting and Setting the resFile 60

Manager Component 63

Loading Components 64

Registering Components 65

Component vs. INIT 65
Interaction With Device and Port Components 66
Cleaning Up During Sleep or Shutdown 66
Reporting on the State of the Component Group 70

Glossary 71

Index 73

Chapter 1

Chapter 2

Chapter 4

Chapter 6

Appendix

Figures and Tables

Overview of the AV Architecture and Application Software 1

Figure 1-1 Sound & Displays setup window 4
Figure 1-2 Panel Components 7

Figure 1-3 Typical control panel elements 8
Figure 1-4 Engine Components 9

Figure 1-5 Port Components 11

Figure 1-6 Device Components 12

Table 1-1 Port Component definition 10

Panel Components 15

Figure 2-1 Overview of call sequence 16

Figure 2-2 Call sequence—panel owner search for candidate panels
Figure 2-3 Opening panels for display to users 22

Figure 2-4 Panel with name and border 25

Figure 2-5 Panel with name and no border 25

Figure 2-6 Panel with no name and no border 26

Figure 2-7 Call sequence—setup application running 30

Figure 2-8 Call sequence—closing the panel window 32

Port Components 39

17

Figure 4-1 Audio/Video Setup window 40

Figure 4-2 Setup control panel for an AudioVision 14 display 41
Figure 4-3 Ports with more than one control path 43

Figure 4-4 Port location grid a7

More Information About the AV Architecture 55

Figure 6-1 Ownership model 57

Manager Component 63

Figure A-1 Manager Component 64

vii

PREFAUCE

About This Note

This developer note describes the Apple AV Architecture, which is an essential
element in Apple Computer’s upcoming audio and video products. The note
provides the information needed by developers to understand the functions
of the architecture, and to take advantage of these features to develop
components that fit into the architecture.

The note assumes that you are familiar with the functionality and program-
ming requirements of Apple Macintosh computers. It is intended to be used
in conjunction with the developer notes published for different Apple devices
that implement the AV Architecture. It also assumes that you have read the
“Component Manager” chapter of Inside Macintosh: More Macintosh Toolbox,
since the AV Architecture relies heavily on the Component Manager.

The note consists of six chapters, an appendix, a glossary, and an index.

s Chapter 1, “Overview of the AV Architecture and Application Software,”
introduces the concept of the new architecture, explains why the
architecture was needed, and gives an overview of the software
components that make up the architecture.

= Chapter 2, “Panel Components,” describes the sequence of calls to each of
the Panel Component functions. It explains how the panel owner searches
for candidate panels, opens panels for display to the user, runs the setup
application, and then closes the panel window.

= Chapter 3, “Engine Components,” explains why Engine Components are
critical to the AV Architecture, and describes the calls to each of the Engine
Component functions. It also describes how to register Engine Components
multiple times, and explains how the Engine Components notify all other
components when there are changes in the machine state.

= Chapter 4, “Port Components,” explains why ports and Port Components
are critical to the AV Architecture. It also describes the calls to each of the
Port Component functions.

= Chapter 5, “Device Components,” explains why Device Components are
critical to the AV Architecture. It also describes the calls to each of the
Device Component functions.

= Chapter 6, “More Information about the AV Architecture,” provides
supplementary information, including how to store data in components,
how to manage the storage, how the notification mechanism works, what
utility components are available, and an overview of the library of utility
functions.

= The appendix, “Manager Component,” provides information about a
component that may be used with the AV Architecture, but is not a
required part of the architecture. The Manager Component can load

ix

PREFAUCE

other components; register Device and Port Components with the Display
Manager; establish connections between Device and Port Components; and
register or unregister components when the system is initialized, shuts
down, goes into sleep mode, or wakes up from sleep mode.

Conventions Used in This Note

The following conventions are used throughout this note

Note
This type of note contains information of general interest. O

IMPORTANT
A note like this contains important information that you should read
before proceeding. a

Terms in boldface type are defined in the glossary.

A special font, Couri er, is used for characters that you type, or for lines of
program code. 1t | ooks |ike this.

List of Abbreviations

The following abbreviations are used in this publication.

API application programming interface
AV audio/video

CD compact disk

DLL dynamic linked library

DITL dialog item list

DM Display Manager

SDK Software Developer Kit

VCR video cassette recorder

PREFAUCE

Other Reference Material

Related documentation includes the following books from the Inside
Macintosh collection. Inside Macintosh is a collection of books, organized
by topic, that describe the system software of Macintosh computers.The
following publications can be found in the Inside Macintosh CD:

» [nside Macintosh: QuickTime
» Inside Macintosh: More Macintosh Toolbox

» [nside Macintosh: Devices

You should also refer to Designing Cards and Drivers for the Macintosh Family,
third edition, published by the Addison-Wesley Publishing Company, Inc.

For More Information

APDA offers convenient worldwide access to hundreds of Apple and
third-party development tools, resources, and information for anyone
interested in developing applications on Apple platforms.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA order

CompuServe 76666,2405

Internet APDA@applelink.apple.com

xi

CHAPTER 1

Overview of the
AV Architecture and
Application Software

CHAPTER 1

Overview of the AV Architecture and Application Software

This chapter provides an overview of the AV Architecture: its capabilities, areas of
application, and the technology that implements it. It also gives an overview of the
windows and panels designed for applications based on the AV Architecture. These
windows and panels replace the Macintosh standard Sound and Monitors control
panels. They are used to configure all the audio and video (AV) devices connected to
your Macintosh computer, or the AV features of the computer itself.

AV Devices

The audio devices referenced in this developer note include

= any device that provides sound input, such as microphones, CD players, videocassette
players, audiocassette players, television tuners, telephone connections

= any device that receives sound and plays it back, such as speakers, headphones,
videocassette recorders, audiocassette recorders

Video devices referenced include

= video input devices such as video cameras, videocassette recorders, television
tuners

= video output devices or displays such as computer monitors, television
sets, videocassette recorders.

Note

The devices listed are samples of the devices a typical AV application
can control. The ones you can actually use depend on the computer or
other AV product you are using. O

Why the AV Architecture Was Developed

This section provides background information about existing AV control panels,
describes the problems that arise when these panels are used with new AV products,
outlines the solution developed by Apple Computer, Inc. in the form of the AV
Architecture, and finally touches on the ways developers can use this architecture.

2 AV Devices

CHAPTER 1

Overview of the AV Architecture and Application Software

Status Quo — Control Panels

Before the development of the AV Architecture, Macintosh computers used control
panels, such as Monitors, Sound, and Video, to access and configure a variety of system
devices, including audio and video (AV) devices. At the simplest level, you could access
the Sound and Monitors panels from the Control Panels folder in the System Folder.
Developers also created a variety of new and unique control panels to control their audio
and video devices.

These panels allowed you to select and change audio and video features on your
computer. For example, the Monitors control panel allowed you to select color or
monochrome, identify the monitor, and set bit depth. The Sound control panel allowed
you to select the source for sound input, change or mute the speaker volume, and select
an alert sound. The options available within these control panels depended on the
equipment connected to your computer.

Problem Areas

In a multimedia context, audio and video control panels proliferated as new AV
technologies evolved. Control panels were developed to satisfy the needs of individual
devices, such as audio/video displays with their various I/O (input/output) features.
These control panels provided little centralization when a system was configured with
multiple devices, they frequently duplicated functions, and it was sometimes necessary
to go to two or more control panels to accomplish what seemed to the user to be one
task. In addition, each panel had its own personality and was not aware of the inter-
dependency between the technology it controlled and other technologies coexisting in
the system. Users became confused by the number and variety of control panels.

Apple’s Solution

To deal with this proliferation, Apple Computer Inc. developed the AV Architecture. It
provides a Macintosh framework that integrates all configuration features and allows
you to develop AV applications with consistent user interfaces. Such applications enable
you to access and configure the AV features of Macintosh computers and multimedia
displays. They allow you to:

» select and modify the characteristics of AV input/output devices, such as speakers
and CD players

= change display characteristics such as brightness and contrast, or other more
advanced features

The AV Architecture’s panels replace the Monitors, Sound, and Video control panels. The
basic AV application currently provided by Apple is the Sound & Displays application.
Sound & Displays provides a categorized front-end, for which users can access the
individual panels that control AV devices. Figure 1-1 shows the Sound & Displays setup
window.

Why the AV Architecture Was Developed 3

CHAPTER 1

Overview of the AV Architecture and Application Software

If you are working with AV devices, you should develop AV components rather than
control panels. Following the guidelines in this developer note, you should be able fit
your product’s panel seamlessly into the Sound & Displays application and into other
future AV applications.

Figure 1-1 Sound & Displays setup window

SO=—————————— Sound ¥ Displays
Sound Input Sound Output [
+" iInternal CD |5 Computer Speaker |7]
External dudio Input External dudio Output
Esxcternal Microphone iExternal Headphone E
Audioiizion Microphane W Audio¥ision Speakers G
Audio¥ision Input Jack tuficiision Headphones il @GI
= = <)
Yideo Displays
Built-in Yiden [| Display €23 |7
W dudiovizion Display (1) rfaw Eq
)
B)
<V
= 5 | 7 N
-]
< [
@ [System Sound...] [Arrange Displays...]

The AV Architecture is easy to use, powerful, flexible, and extendable. It is implemented
by the Component Manager, a dynamic linked library (DLL) technology that is now part
of the Macintosh Toolbox. The Component Manager is described in detail in Inside
Macintosh: More Macintosh Toolbox. The AV Architecture specifies a framework for
separating the following elements into standard, reusable Component Manager
components, such as:

» the driver-like software elements, or engines, that interface with audio and video
hardware devices

» the user interface elements, or panels, that use the engines to control the audio and
video devices

By separating elements of the AV software in this way, you can easily create new panels,
update panels for existing engines, and reuse existing panels for new engines.

Why the AV Architecture Was Developed

CHAPTER 1

Overview of the AV Architecture and Application Software

Architectural Features

The AV Architecture consists of the following components:
= Panel Components

= Engine Components

= Port Components

= Device Components

» the optional Manager Component

These components enable you to develop the user interface panels and functionality
needed to communicate with all the AV devices connected to your Macintosh computer.
As a developer you may design your own components, however, you must follow the
baseline architecture as described in this developer note. You can also customize or
override existing components. You may need to create only Panel Components, or you
may need to create all five types of components. The component types are described in
this document in the order you are most likely to need to create them.

The architecture incorporates the functionality essential to current and future projects
and performs the following functions:

= Provides a foundation for a new AV user interface and allows users to access
technological capabilities, such as video mirroring and double buffering, that will be
available in upcoming products.

= Supports localization, which is the process of adapting software to a particular region,
language, and culture. Elements involved include date and time format, keyboard
resources, and fonts.

» Supports systems that are not audio/video systems.
Using the AV Architecture you can develop applications that
= support scripting and Apple events

= are dynamic and configure themselves based on the capabilities of the system on
which the application is running

= provide a clear conceptual model for configuring AV devices

= create as few layers of interaction as possible and avoid modal dialog boxes
where possible

= support task-oriented configurations, such as “play audio CD,” “enable microphone,”
and so forth

= access frequently used settings easily and quickly

= implement configuration changes immediately, so that if you change brightness
or contrast using a Video panel, you will see the changes reflected immediately on
the screen

Why the AV Architecture Was Developed 5

CHAPTER 1

Overview of the AV Architecture and Application Software

= provide supplementary visuals when needed
= have comprehensive on-line assistance through the Apple Guide on-line help system

= allow system settings to be changed automatically through Apple events and through
scripting and recording.

Applications normally interact with Panel Components, Port Components, and the
Macintosh Toolbox.

When you configure AV features, you activate and deactivate the I/O devices, as well as
adjusting the various audio and video settings. You do this by means of an AV setup
panel. Figure 1-1 on page 4 shows the setup window used in the Sound & Displays
application.

Developer’s Role

As a developer, you can use the AV Architecture in a number of ways. For example
you can:

= Develop new Panel Components and accompanying Engine Components that will
allow users to control your AV devices using Sound & Displays. Apple supplies this
application routinely with products that use the AV Architecture.

= Develop new Engine Components that can be used by standard existing panels to
control your AV devices.

In the future, you will be able to:

= Incorporate new or existing AV components into your own application. For instance,
you might invoke a standard or new panel from within an audio application to
control the volume of the CPU’s audio output.

Architectural Components

This section gives an overview of the architectural components. It explains the main
responsibilities of each component, what it does, and why it exists; it describes how to
deliver components; and finally it looks at the philosophy behind a component-based
architecture. Subsequent chapters of the developer note provide detailed information
about each component.

Panel Components

As shown in Figure 1-2, Panel Components are at the highest level in the AV Architecture.
You require a Panel Component for every panel needed in the human interface. The
display shown in Figure 1-1 on page 4 has four panels: Sound Input, Sound Output,
Video, and Displays.

6 Architectural Components

CHAPTER 1

Overview of the AV Architecture and Application Software

Figure 1-2 Panel Components

AV application

AV architecture ‘
Panel Component

For every panel needed
in the human interface

Hardware
Ia:g/S;:aCtlon Macintosh -
Toolbox
|
Drivers
IMPORTANT

The panels shown in this section are examples of typical panels from
several AV applications including Sound & Displays. The panels you see
in your own system environment will be different and will reflect the AV
devices and the AV application you are using. a

Panel Components have the following general characteristics:

= allow you to provide a user interface

contain no hardware-specific code

do not deal with bits and bytes or register-level transactions

have no knowledge of the hardware implementation

generally focus on a single task or set of controls, such as bit depth or resolution
Panel Components perform the following specific functions:

= get the items in the DITL (dialog item list)

» get the title of the panel

s handle user interaction events

Architectural Components

CHAPTER 1

Overview of the AV Architecture and Application Software

Panel Components generally access the hardware by means of the Engine Component,
as described in the following section. A given panel can access more than one engine,
and more than one panel can access the same engine. Panel Components may also use
the services of the Macintosh Toolbox, as shown in Figure 1-2. They may even use
drivers if the devices are available. They need know nothing about Port Components or
Device Components.

Figure 1-3, a window containing five panels, shows some of the elements that commonly
make up a panel.

Figure 1-3 Typical control panel elements

Radio buttons

EDE Audiolision Display (1)
— Color Depth I — Resolution
Elack & white |43 640 x 450 45|
4 | (O Grays 852 x 542 |
16 |_| @ Colors 1024 % 768
256]
. L Lists
[1dentify the displays —
Default
Checkboxes — Mac 13" Color
Cursor Yisibility Page White ||
!—D Hide the pointer on this display Uncorrected [
— Contrast & Brightness
Contrast Brightness
O t:@:i O _Q_ I:@ _’Q_
|
Icon @) | | Sliders
button

Panel elements include
s sliders that allow you to adjust things like contrast and brightness

» checkboxes that allow you to turn features on and off, for example displaying or
hiding the pointer, and identifying the display

» radio buttons that allow you to select among features, for example, geometry features
such as height/width, position, or, as shown in Figure 1-3, to select grayscale or color.

= lists that allow you to display and select among features such as the gamma features
Default, Mac 13” Color, Page White, and Uncorrected

Panel elements not shown in Figure 1-3 include pop-up menus that allow you to select
from a group of items or features, and static text such as an unchangeable text string that
contains the name of the display. Chapter 2 provides detailed information about Panel
Components.

The human interface guidelines applied to AV applications call for panel designs that
exclude Cancel or OK buttons. These buttons are associated with dialog boxes that you
dismiss when you have finished using them. On the other hand, AV panels are not
dismissed, but remain on the screen until you close the application. Since configuration
changes initiated through AV panels take place instantly, if you make a change and then
decide not to accept it, you can immediately go back and choose another setting.

Architectural Components

CHAPTER 1

Overview of the AV Architecture and Application Software

Engine Components

Engine Components provide the Panel Component with access to the hardware, as
shown in Figure 1-4. Note that for each function or set of related functions associated
with a given port, you must supply individual Engine Components. So, for example, if
you have a display port, you will need separate Engine Components for Contrast,
Geometry, and VPT (Virtual Photometry Technology).

Figure 1-4 Engine Components

AV application

AV Architecture ‘
Panel Component

For every panel needed
in the human interface

¥
Engine Component

For each function or
set of related
functions of each port

\))
Hardware
Ia:;)yset;’actlon Macintosh | |
Toolbox
[
Drivers

Using Engine Components to provide this kind of access has the following advantages:

Specific hardware elements are separated from the user interface.

Engine Components act as a sort of hardware abstraction layer, and provide common
APIs (application programming interfaces) to hardware functionality. These are
high-level APIs that are easy to use and contain calls such as Get Bri ght ness() and
Set Cont r ast (), rather than Set Devi ceRegi st er.

Engine Components contain the mechanism for controlling specific attributes, such
as the Geometry functionality of a display port.

Several development teams can work independently on different elements of the
software at the same time. For example, some developers may be working on
hardware drivers while others are developing human interface panels for the
user interface.

Architectural Components

CHAPTER 1

Overview of the AV Architecture and Application Software

= Elements such as Contrast or Brightness are quite different from each other and share
only the mechanism for communicating with the hardware. Because the mechanism
for controlling specific element functionality is encapsulated in an Engine
Component, the architecture is more modular, and specific engines can be upgraded
without disturbing other engines.

= If you are viewing only the human interface of a specific element, such as Brightness,
the code for the other elements, such as Contrast, need not be in memory at the same
time. This type of code may be voluminous and viewing elements in this way saves

memory space.

Refer to Chapter 3 for further information about Engine Components.

Port Components

Each AV product has a port for each audio or video I/O element. Port Components
group control panels by their functionality and are defined in terms of type (category),
port, physical element, and attributes, as shown in Table 1-1. Figure 1-5 shows how Port

Components relate to other components in the AV Architecture.

Table 1-1

Port Component definition

Type or category
Audio input

Audio output

Video input

Video output

Port
Microphone port

Speaker port
Headphone port

Video port

Display port

Architectural Components

Physical elements

Microphone
CD player

Speakers
Headphones

Camera
VCR

Monitor

Display
Television screen
VCR

Camcorder

Attributes
Gain
Playthrough
Balance

Volume
Balance

Inputs
Format
Filter

Contrast
Brightness

CHAPTER 1

Overview of the AV Architecture and Application Software

Figure 1-5 Port Components

AV application

AV architecture ‘
Panel Component

For every panel needed
in the human interface

\
Engine Component

For each function or
set of related related
functions of each port

v
Port Component

For every input or
output element in
the desktop device

i

Hardware
?;Jysetrractlon Macintosh | _ |
Toolbox
|
Drivers

Port Components contain calls that return the name and image of the port, and they
provide access to the hardware. In addition, they can turn an individual piece of
hardware, such as the headphone port, on and off. Access may be directly to the

hardware, using calls such as Set Devi ceRegi st er () and Get Devi ceRegi ster ().

Port Components also help the Display Manager to detect and identify displays
connected to the system. “Implementing Wiggling” on page 42 provides more
information on detecting and identifying hardware elements on ports that have more
than one communication/control path.

Refer to Chapter 4 for further information about Port Components.

Architectural Components

11

CHAPTER 1

Overview of the AV Architecture and Application Software

Device Components

Device Components represent the collection of features or ports associated with a
particular physical device. A device can be a single display with one port; or a display,
such as the AppleVision 1710AV, with multiple ports and complex audio/video features;
or a CPU with audio capabilities. Figure 1-6 shows the position of Device Components in
the architectural hierarchy.

Figure 1-6 Device Components

12

AV application

AV Architecture

!

Panel Component
For every panel needed

in the human interface

v

Engine Component
For each function or
set of related
functions of each port

v

Port Component

For every input or
output element in

the desktop device

Hardware
abstraction
layer

v v

v

Device Component

For every desktop
device

l

Macintosh
Toolbox

Drivers

Desktop audio
and/or video device

All Device Components perform the following functions:

= They contain a call that returns the name of the device, such as AudioVision, or

AppleVision.

= They contain a picture (icon) of the device that can be displayed in a graphical

representation of the control panel or application.

s They can act as drivers, with an expanded API that has additional calls such as
Set Devi ceRegi st er () and Get Devi ceRegi st er () for communicating directly

with the device’s hardware.

Architectural Components

CHAPTER 1

Overview of the AV Architecture and Application Software

Note

Port Components can also act as drivers. However, if more than one port
shares a common communication mechanism, it makes sense to use the
Device Component to implement this functionality. O

Refer to Chapter 5 for further information about Device Components.

Delivering Your Components

The components that you provide should be built into one or more system extensions.
The components can be encapsulated in the extension(s) in one of several ways:

» as separate ‘thng’ files, each containing a separate AV component
» as one ‘thng’ file containing all your AV components

» as an INIT, which registers one Manager Component, which in turn registers all your
other AV components

You must use option two or option three if your components need to load in a predeter-
mined order. Appendix A provides more information on the Manager Component. The
“Component Manager” chapter of Inside Macintosh: More Macintosh Toolbox provides
information about ‘thng’ files. You should also refer to develop Issue 15, and the article
“Managing Component Registration” for more information about various methods of
registering Component Manager components. You will find develop in the Periodicals
folder on the CD ROM, Developer CD Series Reference Library, December 1994.

Advantages of a Component-Based Architecture

After looking at the different components that are part of the AV Architecture, it becomes
apparent why the architecture is component based. Like object-oriented architectures,
the AV Architecture is dynamic and modular. It allows you to replace or redesign indivi-
dual components without replacing the entire structure. This means that individual
functionality can be customized; new features, such as Contrast and Brightness, can be
changed and added; troubleshooting can be done at the component level, making it
easier to identify and fix problems.

In addition, separating Engine Components from Port Components allows each port to
be upgraded independently. It also allows the Engine Components to be used on newer
devices and even on different hardware with different Port Components, provided that
the API to the port is kept constant.

Architectural Components 13

CHAPTER 2

Panel Components

CHAPTER 2

Panel Components

This chapter describes the sequence of calls to each of the Panel Component functions.
When a panel window is being created, the chain of calls to AV Panel Components is
similar to the call sequence shown in Figure 2-1. This chapter describes how the panel
owner searches for candidate panels, opens candidates for display to the user, runs the
setup application, and then closes the panel window.

Figure 2-1 Overview of call sequence
Search for AVPanel Open Always occur
candidate panels AVPanel Get Fidel ity in this order
AVPanel| Cet Panel C ass

AVPanel Cl ose

'

Panel opened AVPanel Open Always occur
for display AVPanel Set Cust onDat a in this order
to the user AVPanel| CGet DI TL

AVPanel Conponent Get Panel Ador nnent
AVPanel I nst al |

AVPanel Tar get Devi ce

AVPanel Get Settingsldentifiers
AVPanel| Set Setti ngs

AVPanel Cet Titl e

AVPanel d ose

Setup AVPanel Event May occur
application AVPanel Val i dat el nput in this order
running AVPanel Tar get Devi ce
Closing the AVPanel Val i dat el nput Always occur
panel window AVPanel Get Setti ngs in this order
AVPanel Get Settingsldentifiers

AVPanel Renove
AVPanel C ose

Panel Owner Search for Candidate Panels

16

When the panel owner, which may be the AV application, searches for candidate panels
to display to the user, it usually asks the Display Manager to provide a list of candidates.
During this search, the calls shown in Figure 2-2 are made. During the first part of the
sequence the panel is opened, and a fidelity check is made to see how well the panel
functions on the specified port. If you get an acceptable fidelity measurement, the panel
closes and then reopens, and the call is made to get the specific class of the AV functionality.
The class may be sound, geometry control, color correction, and so forth. If the fidelity
measurement is not acceptable, indicating that the panel generally does not function

with the given port, the panel closes and is not reopened.

Panel Owner Search for Candidate Panels

CHAPTER 2

Panel Components

Figure 2-2 Call sequence—panel owner search for candidate panels

Sequence 2
AVPanel Open Sequence 1

R

AVPanel Get Fidel ity AVPanel Get Panel d ass

AVPanel Cl ose <—,

IMPORTANT

The functions are described from the panel viewpoint. The parameters
to the functions are not the same as the parameters to the functions
called by the controlling application. This is because the Component
Manager translates a component selector call from the format of the
calling function, to the format of the function being called. a

AVPanelOpen

AVPanel Qpen is a standard component function, as described in standard Component
Manager documentation.

pascal Component Result AVPanel Open (Handl e storage,
Conponent I nst ance sel f)

st orage The handle that was associated with the panel by the
Set Conponent | nst anceSt or age() call.
sel f An instance of your panel component.

Supplementary Information

This panel should perform the following functions as a minimum:

s It should decide whether it is safe to open another instance of the component. Some
AV panels restrict themselves to having only one instance open at a time, while others
allow an unlimited number of instances to be open.

= AVPanel Open must also allocate a handle to hold the instance globals. Refer to
“Creating and Destroying Common Globals” on page 57 for information on this
subject. There is a single data structure that a panel defines for itself. This structure
holds all the information needed for the panel to manage itself. The handle allocated
by the panel is equivalent to the size of the data structure.

s The panel initializes the sel f field of the instance globals. Panels are free to store
whatever information they need. However, one of the fields of the instance globals
data structure should be a Conponent type. This field should be initialized to hold
the sel f parameter that was passed into the AVPanel Qpen() routine. It is useful to
have this information available at certain times.

Panel Owner Search for Candidate Panels 17

18

CHAPTER 2

Panel Components

s The panel sets the component instance storage. In order to have the instance globals
handle passed back each time one of the component selectors is called, the panel must
call Set Conponent | nst anceSt orage (self, (Handle) gl obal s).Doing this
allows the panel to associate the newly allocated handle with the panel instance.

Sample Code: AV Architecture

In the following example, the variable gl obal s was the local parameter used to allocate
the handle.

pascal Conponent Resul t
AVPanel Open (Handl e storage, Conponentlnstance self)

{

#pragma unused (storage)

/1 NOTE: This code assumes the definition of a data structure
/1 call ed MyPanel d obal s, a data type called

/1 MyPanel d obal sHdl , and a constant call ed

/1 kMaxNurber of MyPanel | nst ances

Conponent Resul t result = noErr;
MyPanel d obal sHdl gl obal s;

Set Conponent | nst anceA5 (self, (long) LMGetCurrentA5());
/1 Can we open anot her instance?

i f (Count Conponent | nstances ((Conponent) self) <=
kMaxNunber OF MyPanel | nst ances)

/1 Allocate our storage:

gl obal s = (MyPanel G obal sHdl) NewHandl eCl ear (si zeof
(MyPanel d obal s));

if (globals !'=nil)

{ /1 Keep a reference to self:
(*gl obal s)->self = (Conponent) self;
/] Set storage ref:
Set Conmponent | nst anceSt orage (sel f, (Handle) gl obals);
}

el se// NewHandl eCl ear fail ed

Panel Owner Search for Candidate Panels

CHAPTER 2

Panel Components

{ result = MenError();
}
}
el se// No nore instances can be opened
{
result = kAVOpenConponent | nst anceError;
}

return (result);

AVPanelGetFidelity

This function allows the panel to tell the caller how well the panel functions on a
particular port.

pascal Component Result AVPanel GetFidelity
(Component | nst ance panel Conponent,
AVI DType portl D,
DVFi del i tyType* panel Fidelity);

panel Conponent An instance of the panel component.
port|D The ID of the port for which fidelity is being returned.

panel Fidelity A number passed back to the caller that measures how well the
panel supports the port in question.

Supplementary Information

During the process of searching for a candidate, the Display Manager opens the Panel
Component and call its AVPanel Get Fi del i t y function. At this point, the panel should
examine the port ID that is passed in and determine how well it supports that port.
Typically, if a good fidelity number is returned, the parent application will probably call
AVPanel Tar get Devi ce later and then open the panel for that port.

If a panel, such as a bit depth panel, needs no engines but instead needs a gDevice, it can
just call:

DMGet GDevi ceByDi spl ayl D(porti D) ;

If no gDevices come back, it will return KNoFi del i ty.
If the panel needs one or more engines, it will search for the available engine type(s) it

needs by making the following call for each engine type:

DMVMNewAVENgi neLi st (portl D, engi neType, ninimunFidelity,
engi nelLi st Fl ags, reserved, engi neCount,
engi nelLi st);

Panel Owner Search for Candidate Panels 19

20

CHAPTER 2

Panel Components

The parameters to this call are as follows:

port|D The ID of the port for which fidelity is being returned.

engi neType This is the component subtype of the particular kind of engine for
which you are searching. For example, if the Brightness panel needs
to find its engine, you would provide the component subtype of
your brightness engine here. Note that there may be more than one
engine registered with this subtype. Some of these engines may not
belong to you.

m ni nunFi del ity
This parameter sets the minimum level of fidelity you will accept.
The interfaces shipped with the SDK (Software Developer Kit)
enumerate the constants used to define the levels of fidelity.

engi nelLi st Fl ags
Currently you should set this parameter to O.

reserved Set this parameter to O.

engi neCount When this parameter is returned, it contains the number of engine
components that responded to this call.

engi neLi st This is the list of engine components. To get the relevant
information about each engine, you can use an engine iterator
function to cycle through the list.

There may be several engines of t heType. The Display Manager will find all registered
engine components that match the criteria to the function, and it will call their

AVCet Fi del i ty functions. The returned engine list contains a reference to each of the
engines that succeeded in responding to this query. If there is more than one engine in
the returned list, your panel will need to query each one to find the one that the panel
expects. One way to do this is have one or more selector functions that your engine and
panel know about. Using this communication mechanism, your panel can determine
whether it has found the engine it needs.

The AVPanel Fi del i ty value that your component passes back from this function
should be set based on the results of the steps taken:

= If the panel determines that it has the ability to control the specified port completely
by means of the port ID (por t | D), it can return KManuf act ur er Fi del i ty.

s If the panel determines that it is not the owner of the port, but it knows how to control
the functions of the port, it can return kDef aul t Fi del i ty.

s If the panel determines that it knows nothing about how to control the port, it can
return KNoFi del i ty.

Panel Owner Search for Candidate Panels

CHAPTER 2

Panel Components

AVPanelClose

This function is a standard component function, as described in the Component
Manager documentation.

pascal Component Result AVPanel C ose
(Handl e storage, Conponentlnstance self)

st or age The handle that was allocated in the AVPanel Open() routine and
that was associated with the panel by the
Set Conponent | nst anceSt or age() call.

sel f An instance of your panel component.

Supplementary Information

The panel should be able to do the following;:

= Dispose of any data handles or component references that are referenced from this
panel’s instance globals.

» Dispose of the instance globals handle.

AVPanelGetPanelClass

Apple Computer defines standard classes of AV functionality, such as sound, geometry
control, color correction control, standard video/graphics control, and so forth. Classes
allow you to use one method of grouping and displaying panels to the user.

pascal Conponent Result AVPanel Get Panel d ass
(Handl e storage, resType* panel d ass,
resType* panel SubC ass, Ptr reservedl,
Ptr reserved?2)

st or age Your panel’s storage data, created in the AVPanel Open routine.

panel C ass A pointer to the r esType which receives the class of your panel.
This is either one of the pre-defined constants (see the sample code,
page 18 for the definitions), or a class of your own definition.

panel SubCl ass This is also a pointer to ar esType. It is currently not used, so you
should setittoni | .

reserved 1and 2 Set these parameters to ni | .

Supplementary Information

There is no supplementary information about this function.

Panel Owner Search for Candidate Panels 21

CHAPTER 2

Panel Components

Opening Panels for Display to Users

Selected panels are opened for users in the sequence shown in Figure 2-3. If an error
occurs while the panels are being opened, a call is made immediately to AVPanel O ose.

Figure 2-3 Opening panels for display to users
AVPanel Open No errors occur l
AVPanel| Set Cust onDat a
Error occurs *

AVPanel Get DI TL

!

AVPanel Conmponent Get Panel Ador nnent

!

AVPanel | nst al |

!

AVPanel Tar get Devi ce

!

AVPanel Get Settingsldentifiers

!

AVPanel Set Setti ngs

!

AVPanel Cl ose AVPanel Get Titl e

AVPanelOpen

The AVPanel Open function is described on page 17, and it works in exactly the same
way for this sequence.

22 Opening Panels for Display to Users

CHAPTER 2

Panel Components

AVPanelSetCustomData

This function allows two components to share specific data. It enables one component to
share information with another component that is being launched. The entity that creates
the parameters to launch a given panel has the option of specifying the custom data,
usually as a handle to a later structure.

pascal Component Result AVPanel Set Cust onDat a (Handl e storage,
| ong t heCust onDat a)

st or age The handle that was allocated in the AVPanel Open() routine and
that was associated with the panel by the
Set Conponent | nst anceSt or age() call.

| ong Along integer.
t heCust onDat a Field of data structure.

Supplementary Information

There are occasions when one panel may need to create and launch a separate panel
window. The process of doing this involves creating a variety of data structures that tell
the panel window what panels should be in the window. One of the fields of one of the
data structures is the custom data field. This is a long integer that can be treated as a
standard refCon-type field. The function is a mechanism that allows a panel to pass
specific data to the panel that is being launched. The data may be

= afour-byte value
» ahandle to a data structure that both of the panels can manipulate

» the component reference of the panel that is causing the new panel window to
be launched

AVPanelGetDITL

This function allows the parent application to determine which dialog box items are
managed by your panel. The parent application uses this information to build the
configuration window for users.

pascal Component Result AVPanel Get DI TL
(Conponent | nst ance panel Conponent, Handle *ditl);

panel Conponent An instance of the panel component.

ditl Refers to the Handl e that is to receive the component’s dialog item
list. The component should allocate a handle to the DITL, either
through a Get Resour ce() call, or by manually creating a DITL
and returning this handle.

Opening Panels for Display to Users 23

24

CHAPTER 2

Panel Components

Supplementary Information

The parent application calls your AVPanel Get DI TL function to obtain the list of dialog
box items supported by your panel. The panel then puts these items into a window and
presents the window to users.

The component returns the item list in a Handl e provided by the panel.

Note

The parent application disposes of this Handl e after retrieving the item,
so you should make sure the item list is not stored in a resource. If your
item list is already in a resource handle, you can use the Resource
Manager’s Det achResour ce function to convert that resource Handl e
into one that is suitable for use with the AVPanel Get DI TL function. O

The parent application will open your resource file before calling the function, unless
you instructed the parent application not to open your resource file by setting the
channel FI agDont OpenResFi | e component flag to 1.

Note

If the panel needs to add any items to the DITL dynamically, this is the
time to do it. The DITL handle should be resized appropriately, and the
necessary items inserted into the structure. O

Note

You will have the opportunity to adjust the DITL items in the
AVPanel Tar get Devi ce function. O

AVPanelComponentGetPanelAdornment

This function allows the panel to request how it will be adorned when it is displayed in
the panel window. A panel’s adornment consists of the border and the name.

pascal Conponent Result AVPanel Conmponent Get Panel Ador nnent
(Handl e storage, |ong *panel Border Type, |ong *panel NanmeType)

st or age The handle that was allocated in the AVPanel Qpen() routine and
that was associated with the panel by the
Set Conponent | nst anceSt or age() call.

l ong A long integer

Supplementary Information

There is no supplementary information about this function.

Opening Panels for Display to Users

CHAPTER 2

Panel Components

Sample Code

This section shows how a panel should request to be adorned. The options currently
available for adornment are as follows:

enum {
kAVPanel Ador nnent NoBor der = 0,
kAVPanel Ador nnent St andar dBor der

b
enum {
kAVPanel Ador nnent NoName = O,
kAVPanel Ador nnent St andar dName
b

Figure 2-4 shows an example of a panel that has both name and border displayed.
Figure 2-5 shows a panel with a name but no border. Figure 2-6 shows a panel with
no name and no border. The text “AudioVision 14 Display” shown in Figure 2-6 is
just a text string that is part of the panel. It is not the name of the panel.

Figure 2-4 Panel with name and border

Name

,— Border
Color Depth :

Elack & white |43
4 — i Grays
16 |_| (@ Colors
256 i
Figure 2-5 Panel with name and no border
Name
No border

lideo Output:

W Mac 16" Color Display |4
W fudiovizion 14 Display [|
T YCR/Camcarder

<

Opening Panels for Display to Users 25

Panel Components

Figure 2-6 Panel with no name and no border

26

Display 1 1D

Audio¥ision 14 Display

256 colors

é Startup screen

AVPanellnstall

The parent application calls the AVPanel | nst al | function after adding your items to
the window. This routine is called only once throughout the life of the panel, so the
operations performed should be actions that need to be taken only once.

pascal Component Result AVPanel | nstal |
(Component | nst ance panel Conponent,
Di al ogPtr theDi al og,
short itenfset);

panel Conponent An instance of the panel component.
t heDi al og A pointer identifying the panel’s dialog box.

itenOf f set Specifies the offset to the panel’s first item in the window. Because
the parent application builds your dialog box items into a larger
window containing other items, this value may be different each
time your panel is installed. Do not depend on it being the same.

Supplementary Information

The parent application provides the panel with the information that identifies the
window and the offset of the panel’s items in the DITL. Since this function is called only
once, you may use this opportunity to do the things that need to be done only once. This
might include creating a new empty list handle if any of your DITL items are lists;
positioning items within your panel’s boundaries if they need to be adjusted; loading
resources that are not specific to any particular port or device, and saving them in the
instance globals.

IMPORTANT

At this time, the panel does not have any knowledge of the specific port
it will be asked to control, so there are limitations to the kinds of things
that can be accomplished. For example, the Bit Depth panel can allocate
an empty list, but it cannot fill in the list entries with the bits depths
supported for a given port until it knows which port it will be
controlling. This information becomes available through the

AVPanel Tar get Devi ce() function. a

Opening Panels for Display to Users

CHAPTER 2

Panel Components

AVPanelTargetDevice

This function controls specific ports and the device referred to is a port. The function
may be thought of as the continuation of AVPanel | nst al | () . However, unlike
AVPanel I nst al | (), it may be called more than once during the life of the panel.

pascal Conponent Result AVPanel Tar get Devi ce
(Handl e storage, AVIDType displaylD,
Dial ogPtr theDialog, long itensOfset)

st or age The handle that was allocated in the AVPanel Qpen() routine and
that was associated with the panel by the
Set Conponent | nst anceSt or age() call.

di spl ayl D The AV ID (audiovideo ID) of the port that is being targeted.
t heDi al og The dialog box window that owns this panel.
i temsof f set The offset into the DITL of the window for this panel’s items.

Supplementary Information

The targeting action of this function gives the panel an opportunity to configure itself
based on the specific capabilities of the port it will be controlling. If the panel requires an
engine to manipulate the hardware, it can find and open an instance of the appropriate
engine, as it did during the AVPanel Get Fi del i t y() function. However, this time it
should save a reference to the Engine Component in its globals, for use as the panel is
receiving events from the user.

The panel can get the current state of the hardware by making engine (or Macintosh
Toolbox/driver) calls. It can then set its controls and globals fields appropriately.

The important thing to remember about this function is that it can be called multiple
times while the panel is open. The AV Architecture is designed this way to allow
flexibility in the human interface design of AV applications. For example, an application
may wish to keep a pop-up menu of the monitors connected to a Macintosh computer.
When the user chooses a new item from the pop-up menu, the application simply asks
the existing panels to target themselves to this new port.

Because targeting can happen multiple times, it is important that you do not rely on

the state of the hardware-specific globals fields that were not initialized in the

AVPanel I nstal | () routine. For example, if some of the fields have significance
when their value is 0, and the globals handle was originally allocated with a

NewHandl ed ear () toolbox call, it may seem safe to assume that you can rely on
them being clear after the panel leaves the targeting routine. However, this is not true,
since the panel may have been running and modifying the fields of the globals and

was subsequently asked to target again. It is important to set any hardware-specific
fields in the globals that need to be initialized when the targeting routine is complete, in
case there are other functions in the panel component that rely on this information.

Opening Panels for Display to Users 27

28

CHAPTER 2

Panel Components

AVPanelGetSettingsldentifiers

The parent application calls the component’s AVPanel Get Setti ngsl dentifiers
function to get the identifier (number) and the type under which your settings are
stored. The identifier is an integer. The type is a four-character resource ID that fits into
the long word format. The identifier and type uniquely identify the information that will
be stored to disk.

pascal Component Result AVPanel Get Settingsldentifiers
(Component | nst ance panel Conponent,
short *thel D, OSType *theType);

panel Conponent An instance of your panel component.
thel D The identifier under which your settings should be stored.
t heType The type under which your settings should be stored.

Supplementary Information

There is no supplementary information about this function.

AVPanelSetSettings

The parent application calls the component’s AVPanel Set Set t i ngs function to restore
the panel’s settings using previously saved values.

pascal Conponent Result AVPanel Set Setti ngs (Handl e gl obal s,
Handl e ud, 1ong flags);

gl obal s The panel’s Handl e for global data.

ud Identifies a Handl e that contains new settings information for your
panel. Your component must not dispose of this Handl e.

fl ags Reserved for future use.

Supplementary Information

The parent application calls the AVPanel Set Set t i ngs function to restore your panel’s
settings. It may use this call to set default values before displaying the panel to the user.

Your component originally creates the settings information when the parent application
calls the AVPanel Get Set ti ngs function. The parent application passes this configura-
tion information back to you in the ud parameter to the AVPanel Set Set t i ngs
function. Your component should parse the configuration information and use it to
establish your panel’s current settings.

Opening Panels for Display to Users

CHAPTER 2

Panel Components

Note

Your component may not be able to accommodate the original settings.
For example, settings may have been stored for some time, and the
hardware environment may not be able to support the values in the
settings. You should try to make the new settings match the original
settings as closely as possible. If you cannot make a perfect match,
return an appropriate result code. O

Note

Do not save settings that are managed by the system, such as bit depth,
resolution, and so forth. Configure the panel to reflect these settings
during the AVPanel Tar get Devi ce routine. O

The parent application uses the component’s AVPanel CGet Set t i ngs function to
retrieve this configuration information.

AVPanelGetTitle

The parent application calls the AVPanel Get Ti t | e routine if it wants to obtain the title
of the panel. The parent application uses this string whenever an identifier for your
panel is required. The identifier is used, for example, in the border title of a panel in the
panel window.

pascal Component Result AVPanel GetTitle (Handl e gl obal s,
StringPtr title);

gl obal s The panel’s Handl e for global data.

title Refers to the St ri ngPt r to hold your title. Fill in this St ri ngPt r
with the string you want to represent the title of your AV panel.

Supplementary Information

This routine is used to get the title of a panel. The parent application then uses this title,
which is a string, to identify the panel to the user. The title is generally displayed in the
panel border. The component returns the title in the St ri ngPt r that is provided by the
parent application.

The parent application opens the resource file before calling the function unless you have
instructed the parent application not to open the resource file. That is, you have set the
channel Fl agDont OpenResFi | e component flag to 1. This string could be stored in
the resource fork of your component.

AVPanelClose

The AVPanel C ose function is described on page 21, and it works in exactly the same
way for this sequence.

Opening Panels for Display to Users 29

CHAPTER 2

Panel Components

Running the Setup Application

When the setup application is running and interacting with the user, calls are made to
the functions shown in Figure 2-7 and described in this section.

Figure 2-7

30

Call sequence—setup application running

These calls may occur in any order

Repeated calls

Calls made when panel window AVPanel Val i dat el nput
receives enter/return key events

Calls may be made, depending AVPanel Tar get Devi ce
on the human interface of the

setup application

AVPanelEvent

AVPanel Event

The AVPanel Event function allows your component to receive and process individual
dialog box events. This function is similar to a modal dialog box filter function.

pascal Component Result AVPanel Event (Handl e gl obal s, Dial ogPtr

gl obal s

di al og
itemOff set
t heEvent

itenH t

handl| ed

di al og, short itenOXfset,
Eventrecord *t heEvent,
short *itenHit,

Bool ean *handl ed);

The panel’s Handl e for global data.
A dialog pointer identifying the settings dialog box.
Specifies the offset to the panel’s first item in the dialog box.

Contains an event record, which contains information identifying
the nature of the event.

Refers to a field that is to receive the item number in cases where
the component handles the event.

Refers to a Boolean value. Set this Boolean to indicate whether or
not the component handles the event. Set it to TRUE if it handles the
event, and to FALSE if it does not.

Running the Setup Application

CHAPTER 2

Panel Components

Supplementary Information

The parent application calls your AVPanel Event function whenever an event occurs in
the settings dialog box. The AVPanel Event function is similar to a modal dialog box
filter function. The main difference is that rather than returning a Boolean value to
indicate whether or not the event was handled, the AVPanel Event function sets a
Boolean that is provided by the calling function. If you handle the event, be sure to
update the field referred to by the i t emHi t parameter. By default, this value will be
initialized to t r ue by the parent application, so you need only be concerned with
setting it to f al se. Some events, such as mouse down, focus on one panel. Others, such
as update, activate, deactivate, suspend, and resume, go to all panels. When you handle
a single-panel event, the value should be set to t r ue. If you do not handle the
single-panel event, the value should be set to f al se. The value is always set to f al se
for events that go to all panels, regardless of whether or not they are handled.

AVPanelValidatelnput

The parent application calls the AVPanel Val i dat el nput function to allow you to
validate the contents of the user window.

pascal Component Result AVPanel Val i datel nput (Handl e gl obal s
Bool ean *o0k);

gl obal s The panel’s Handl e for global data.

ok Contains a pointer to a Boolean value. You set this Boolean to
indicate whether user settings are acceptable. Set it to TRUE if the
settings are correct, otherwise, set it to FALSE.

Supplementary Information

The parent application calls the AVPanel Val i dat el nput function to allow you to
validate the settings chosen by the user. This is your opportunity to validate them in
their entirety, including those for which you may not have received dialog box events or
mouse clicks. For example, if your panel uses a Text Edi t box, you should validate its
contents at this time. Be sure to give the user some indication of how to fix the settings.

AVPanelTargetDevice

The AVPanelTargetDevice function is described page 27, and it works in exactly the same
way for this sequence.

Running the Setup Application 31

CHAPTER 2

Panel Components

Closing the Panel Window

When you are ready to close the window that holds the panel, calls are made to the
functions shown in Figure 2-8 and described in this section.

Figure 2-8 Call sequence—closing the panel window

32

—— = | AVPanel Val i dat el nput

!

AVPanel Get Setti ngs

!

AVPanel Cet Settingsldentifiers

!

AVPanel Renpove

AVPanel Cl ose

AVPanelValidatelnput

The AVPanelValidateInput function is described page 31, and it works in exactly the
same way for this sequence.

AVPanelGetSettings

The parent application calls the component’s AVPanel Get Set t i ngs function to
retrieve the panel’s current settings.

pascal Conponent Result AVPanel Get Settings (Handl e gl obal s,
Handl e ud, |1 ong flags);

gl obal s The panel’s Handl e for global data.

ud Contains a Handl e to your panel’s configuration data. Your
component is responsible for creating a new Handl e and returning

it as ud. Your component is not responsible for disposing of the
Handl e.

flags Reserved for future use.

Closing the Panel Window

CHAPTER 2

Panel Components

Supplementary Information

The parent application calls your AVPanel Get Set t i ngs function to obtain a copy of
your panel’s current settings. The parent application stores these settings and may use
them to restore the panel’s settings by calling the AVPanel Set Set ti ngs function. Your
component should store whatever values are necessary to configure the associated panel
component properly.

These settings may be stored as part of a larger panel configuration, and they must
remain valid across system restarts. Therefore, you should not store values that may
change without your knowledge, such as a component ID. In addition, saving a file
reference number or component instance is not valid.

You are free to format the data in the Handl e in any way you wish. Make sure you
can retrieve the settings information from the user data item when the

AVPanel Set Set t i ngs function is called. You may choose to format the data in
such a way that other components can parse it easily, allowing the component to
operate with other panels.

The parent application uses the component’s AVPanel Set Set t i ngs function to restore
this configuration information.

Note

Do not save settings that are managed by the system, such as bit depth,
resolution, and so forth. Configure the panel to reflect these settings
during the AVPanel Tar get Devi ce routine. O

AVPanelGetSettingsldentifiers

The function is described on page 28 and it works in exactly the same way for
this sequence.

AVPanelRemove

The parent application calls the component’s AVPanel Renpve function before it
removes the panel from the settings dialog box.

pascal Component Result AVPanel Renove(Handl e gl obal s,
Di al ogPtr di al og,
short itenOfset);

gl obal s The panel’s Handl e for global data.
di al og Contains a dialog pointer identifying the settings dialog box.
i tenfset Specifies the offset to the panel’s first item in the dialog box.

Closing the Panel Window 33

34

CHAPTER 2

Panel Components

Supplementary Information

The parent application provides you with the information that identifies the dialog box,
and the offset of the panel’s items into the dialog box. You may use this opportunity to
save any changes you have made to the dialog box or to retrieve the contents of

Text Edi t items. If the parent application opened your resource file, it will still be open
when it calls this function.

The AVPanel Renpbve() routine is the place to get rid of any data that pertains to the
panel’s membership in the panel window from which it is being removed. This is
different from getting rid of the gl obal s handle in AVPanel Cl ose(), because the
panel still exists after the AVPanel Renpve() function has been completed.

You can use this routine, for example, to

= remove the display event notification registration, if one was created, by calling
DVRenoveExt endedNot i f yProc()

= remove any Apple event handler routines by calling AERenpveEvent Handl er ()

You use AVPanel Renpve to perform these functions because once the panel does not
belong to a panel window any longer, it has no need to receive notification or Apple
events. Any other ties to the system that are relevant only when this panel is installed
should be removed at this time.

AVPanelClose

The AVPanel Cl ose function is described on page 21, and it works in exactly the same
way for this sequence.

Closing the Panel Window

CHAPTER 3

Engine Components

CHAPTER 3

Engine Components

When Engine Components are required to operate a Panel Component, they are opened
and closed by the Panel Component, usually when the panel itself is opened and
closed.This chapter describes the Engine Component functions that are part of the basic
AV Architecture, it describes how to register Engine Components multiple times, and
also explains how notification takes place. Refer to “Engine Components” on page 9 for
an overview of Engine Component functions and the functional advantages associated
with Engine Components.

Engine Component Description

Engine Components have the following component description:

conponent Type = 'avec'; Indicates whether the
component is an audio
or video panel.

conmponent SubType = ' ?2???' Identifies the specific engine.
conponent Manuf acturer = '????"; Identifies the manufacturer.
conponent Fl ags = cnpWant sRegi st er Message; Makes sure the component

is suitable for the machine.

Engine Component Functions

36

This section describes the Engine Component functions used in the AV Architecture .

AVEnNgineComponentGetFidelity

This function allows your engine to tell the caller (typically a panel with its own
Cet Fi del i ty function) how well your engine can perform on a particular port.

pascal Component Result AVENngi neConponent GetFidelity
(Component | nst ance engi neConponent ,
AVI DType portl D,
DVFi del i tyType* engi neFidelity);

engi neConponent
An instance of your engine component.

port|D The ID of the port for which to return the fidelity measurement.

engi neFi del ity A number thatis passed back to the caller to indicate how well the
engine supports the port in question.

Engine Component Description

CHAPTER 3

Engine Components

Supplementary Information

The Engine Component checks its own port ID to see if it matches. If it does, the
component returns a fidelity measurement (engi neFi del i t y) that indicates the engine
should be used for this port ID, overriding any engines that are more generic.

AVEnNgineComponentTargetDevice

Your engine makes its connection to a particular port in response to a call to
AVENngi neConponent Tar get Devi ce.

pascal Component Result AVEngi neConponent Tar get Devi ce
(Conponent | nst ance engi neConponent ,
AVI DType portlID);

engi neConmponent
An instance of your engine component.

portlD The ID of the port for which to return the fidelity measurement.

Supplementary Information

To find its port, the engine calls DMNewDevi cePor t Li st (port | D) ; . The engine needs
to talk to hardware, so it opens an instance of the Port Component. The Open selector of
the port also opens an instance of the Device Component.

If the functionality for communicating with the hardware is stored in the Device
Component, rather than the Port Component, the engine asks the port for the Device
Component instance by calling AVDevi cePor t Get Devi ceConrponent () ; .

Registering Engine Components Multiple Times

There are special cases where you may need to register an Engine Component more than
once. This occurs specifically if the Engine Component needs to share global data with
other instances that might be open for the same device. For example, if the device is a
display with a contrast control feature, it may take too long to read the contrast value
from hardware each time you want to change contrast. In this case, the contrast value
may be cached in the Engine Component.

The Manager Component registers the engine separately for each device, and stores the
cached values in separate refCon globals for each registered engine. This means that the
Manager Component, rather than the Panel Component, can call the engine’s target
selector. However, it can call it only once, at INIT time, to set the port ID for the engine.
Later attempts to call the target selector will be ignored, since the engine is fixed on one
device. When any call is made to the engine’s Get Fi del i t y selector, the engine can
simply check its own port ID to see if it matches.

Registering Engine Components Multiple Times 37

CHAPTER 3

Engine Components

This is preferable to other solutions for a number of reasons:

= If the value is stored in the instance globals, other engines that are open for other
panels will not have access to the updated value of the first engine and that engine’s
cache will become out of date without the engine realizing this.

= If the value is stored in the refCon globals, it conflicts with engines that are operating
on different devices with different values.

Notification

38

When there are changes in the machine state, such as an increase or decrease in speaker
volume, a change in contrast or brightness, and so forth, all components affected by the
change are notified, provided they are registered with the Display Manager. The
notification mechanism used in the AV Architecture allows these types of changes to be
synchronized across multiple devices.

All components use the following notification messages. However, if you have a fully-
featured suite of components (Panel, Engine, Port, and Device Components), it is the
Engine Component that sends out the notification.

t ypedef pascal void (*DMExtendedNotificationProcPtr) (void*
user Dat a, short theMessage, voi d* notifyData);

pascal OSErr

DMVRegi st er Ext endedNot i f yPr oc(DVExt endedNot i fi cati onProcPtr
noti fyProc, void* notifyUserData, unsi gned short

nof i f yOnFl ags, ProcessSeri al Nunber Pt r whi chPSN)

= {0x303C, Ox07EF, _Di spl ayDi spatch};

pascal OSErr

DVRenmoveExt endedNot i f yProc(DMEXt endedNot i fi cati onProcPtr
noti fyProc, voi d* noti fyUserDat a, ProcessSeri al Nunber Pt r
whi chPSN, unsi gned short renoveFl ags)

= {0x303C, 0x0726, _Di spl ayDi spatch};// Allows multiple
registrations to renove by userData, NOT just ProcPtr (which is
good for components).

pascal OSErr DMSendDependent Notificati on(ResType
noti fyType, ResType notifyd ass, D spl ayl DType
port | D, Conponent | nst ance noti f yConponent)

= {0x303C, 0x0830, Di spl ayDi spat ch};

This is not the only method of sending out a notification. “Notification Mechanisms” on
page 58 provides additional information on this subject.

Notification

CHAPTER 4

Port Components

CHAPTER 4

Port Components

This chapter describes the Port Components that are part of the AV Architecture . The
chapter explains why ports are a critical part of the AV Architecture; explains why Port
Components are necessary, and describes how they work; describes the software
functions associated with the Port Components.

Why Have Ports?

Each AV device (computer, display, and so on) has ports that enable audio and video
elements (such as displays, microphones, cameras, VCRs, and so on) to be connected
to them.

With products, such as the Apple AudioVision display, that have many functions
(brightness, contrast, speaker volume, headphone volume, microphone on/off, and
so forth), it would be very confusing if all the panels associated with the functions
appeared in one window at the same time.

The AV Architecture therefore partitions the control panels in a logical way that allows
you to see groups of related panels in the same window. The most logical way to
group the panels is by port, since each audio or video I/O function of an AV device
has a discrete port associated with it. Figure 4-1 shows the Sound & Displays setup
window. This window is typical of setups that group their panels by port. Three
devices are displayed, as described below. Each device is surrounded by icons for

the ports it supports.

Figure 4-1 Audio/Video Setup window

EO=———————— Sound & Displays
Sound Input Sound Output H .
o iInternal CO || Computer Speaker | [@ | | DEVICE‘S
External Audio Input External dudio Qutput
External Microphane + {External Headphone B
Audioyision Microphone W audio¥ision Speakers
tudioVision Input Jack + hudicision Hesdphores @ol @oL p—
S S T 2.
Yideo Displays .
Built-in ¥ideo || [iDisplay (2} | Device
v dudicvigion Display (17 I(@W | Ed
=])
)
‘3;@ c.m) Ports
2] EiE ~k J
= 3 -
| 5>
@ [System Sound...] [Arrange Displays...]

1. The first icon represents a display, such as an AudioVision display. The display has an
integral microphone and speaker; ports for external speakers or headphone; and a
port for a sound input, such as a microphone or CD player.

40 Why Have Ports?

CHAPTER 4

Port Components

2. The second icon represents a regular display or monitor. This device has no external
ports, but it does have intrinsic features that can be changed, for example brightness,
contrast, resolution, and color depth.

3. The third icon represents a Macintosh computer. It has an internal CD port, internal
speakers, ports for an external microphone or other sound input, a port for external
speakers or headphones, and a port for a digital camera.

The lists on the left side of the window indicate which displays are connected to the
system. In the example shown in Figure 4-2, there are two available displays: Display (2),
and AudioVision Display (2). The other lists show the audio/video I/O ports associated
with the devices shown on the right. The listings change according to the I/ O devices
connected to your system, and whether or not the ones present are functioning. For
example, if you have a computer with an audio CD drive, Audio CD will not appear in
the list if there is no CD in the drive.

When you select one of the devices, an associated panel is displayed on the screen. For
example, if you select the AudioVision (1) display, you will see the panel shown in
Figure 4-2. This panel allows you to change color depth, resolution, gamma correction,
and brightness and contrast. It also allows you to identify the displays in your
configuration, and to hide the pointer (cursor) on the display. The query button (?)
allows you to access on-line help.

Figure 4-2 Setup control panel for an AudioVision 14 display

=S[=———— HAudiollision Display (1)
4 Color depth
— Color Depth | — Resolution panel
Black & white |4 G40 x 450 4 X
o —) Grays B3F % 647 1 Resolution
16 | | @ Colors 1024x 7658 | | panel
256 i 4
[Identify the displays = BEE
Default 4
Mac 13" Color || Gamma
__ Cursor Yisibility Page W hite | correction
[] Hide the pointer on this display Uneorrected i panel
_ Contrast & Brightness
Contrast Brightness
O =P | @
: Contrast and
@ | brightness
panel

Each port is identified by an AV ID (audio/video identification) requested from the
Display Manager at boot time. When an AV application wishes to show all applicable
panels for a specific port, it asks the Display Manager for a list of panels. The Display
Manager in turn asks all the Panel Components if they work on the selected port by
calling the AVPanel Cet Fi del i t y function and passing in the AV ID of the port

in question.

Why Have Ports? 41

CHAPTER 4

Port Components

Why Have Port Components?

42

Each port has an associated Port Component that contains calls that return the name and
image of the port, turn the port on and off, and provide hardware access to the port.

Storing Names and Icons

The Port Component stores the name string and icons that represent the port. It
implements two functions, AVPor t Get Name, which returns the name of the port, and
AVPor t Cet Gr aphi cl nf o, which returns the icon that is displayed to show the port on
the user interface.

Turning the Port On and Off

In some cases, it is necessary simply to turn the port on or off. The meaning of on and off
varies depending on the port. However, most ports have this option, and can implement
it without actually opening a Panel Component or an Engine Component.

The AVPor t Set Act i ve and AVPor t Get Act i ve functions are used for this purpose.
The caller calls the port’s AVPor t Set Act i ve function to turn the port on or off, and
then calls the AVPor t Get Act i ve function to check whether or not current is being
supplied to the Port Component. The port does this by communicating directly with the
hardware or with the Device Component.

Implementing Wiggling

Wiggling is important for hardware that has ports with more than one control path. For
example, a computer may be connected to several AV displays, as shown in Figure 4-3.
The computer has a video card for each display and is connected to each display by
means of individual video cables. In addition, the computer is connected to each display,
in daisy-chain fashion, by the Apple Desktop Bus (ADB) cable, and each display has a
unique ADB address. Both the video cable and the ADB cable are used to control what
appears on the display.

For example, if you are using an AppleVision display, when you press the Contrast Up
button on the bezel of the display, the display sends a signal to the computer through the
ADB. The computer then displays a pop-up window on the screen of the display on
which the button was pressed. When you have more than one display connected, it is
important to identify the display (device) associated with the ADB address, otherwise,
the pop-up window may appear on the wrong screen.

Why Have Port Components?

CHAPTER 4

Port Components

Figure 4-3 Ports with more than one control path

Display #1 Display #2 Display #3

— =] (=]

Video cables i

g — ADB cable
2

1
Video cards

Macintosh computer
Keyboard

Mouse

Port Components have wiggle functions, AVPor t Get W ggl e and AVPor t Set W ggl e,
that allow the correspondence to be made between each ADB address and the gDevice.
These functions are generally used when multiple displays are present, but they may
also be used for any ports that have more than one communications/control path.

Note

Wiggling is a process similar to toggling. The level of the sense line
(Sense Line 2) in the video cable is changed, from 0 to 1, or from 1 to 0,
to alert the computer that a given display is present. Wiggling is
implemented only on display ports O

When wiggling is implemented, the entity that actually performs the pairing operation
must be identified. For video/display ports, the Display Manager performs this function
immediately after you register the port with the Display Manager. It does so by calling
DMNewAVI Dby Por t Conponent . If the por t Ki nd is AWi deoDi spl ayPor t Ki nd, the
Display Manager calls the AVPor t Set W ggl e function of the Port Component, and
returns the value t r ue. The Port Component then instructs the display, via the ADB (or
other serial control path) to change Sense Line 2 to an abnormal state, meaning if it was 0
to change it to 1, and if it was 1 to change it to 0. In other words, it instructs the display
to wiggle the line.

Why Have Port Components? 43

CHAPTER 4

Port Components

The Display Manager then queries each video driver to see which one detects this
change. When it finds the appropriate driver, the pairing is made, and the Display
Manager calls the AVPor t Set W ggl e function, and returns the value f al se. The Port
Component then returns Sense Line 2 to its normal state.

If your port does not implement wiggling, the Display Manager cannot tell whether the
two communication paths are for a single display or for two AV devices. This means
that the user will see two ports listed under the list of ports in such applications as
Sound & Displays. For instance, in the example described above, two ports would
appear: one display port for controlling graphics device functions, such as bit depth;
and one AppleVision display port for controlling contrast, brightness, and other
AppleVision functions. The user could select either of these ports to access all of the
display’s functions.

Note

In some Apple publications, the term tagging
is used instead of wiggling. O

Interfacing Between Engine Components and Hardware

When the physical hardware is grouped by port, different circuitry operates the screen,
the microphone, speakers, and so forth. In this case, the Port Component is a convenient
way for the Engine Components to communicate with the hardware, using a port call.
This use of Port Components is optional. However, it makes sense, especially when the
Port Component has to communicate with the hardware anyway, in order to turn a port
on or off, or to implement wiggling. The Port Component can in turn call the Device
Component, as described in Chapter 5, or communicate directly with the hardware.

Port Component Description

44

Port Components have the following component description:

conponent Type = 'avdp'; Indicates whether the
component is an audio or
video panel.

conmponent SubType = ' ?2???' Identifies the specific
engine.

conponent Manuf acturer = '????"; Identifies the manufacturer.

conponent Fl ags = cnpWant sRegi st er Message; Makes sure the component

is suitable for the machine.

Port Component Description

CHAPTER 4

Port Components

Port Component Functions

There are several types of Port Component functions, those that:
= store names and icons

= turn the port on and off

= retrieve information from the Port Component

= detect changes on ports and implement wiggling

Storing Names and lcons

The functions in this section store the name and the icon of each port.

AVPortGetName

This function allows the caller to get the name of the port component, for example,
External Microphone, External Headphones, and so on. The name is returned in
por t Nane. All Port Components must support this call.

pascal Component Result AVPort Get Nane
(Conponent | nst ance port Conponent,
StringPtr portName);

port Conponent An instance of your Port Component.
por t Nane The name of the port to be returned by the function.

Supplementary Information

There is no supplementary information about this function.

AVPortGetGraphiclnfo

This function allows the caller to get graphical information about the Port Component,
that is the icon (or image) of the selected port. This could be a picture of a microphone,
headphones, camera, and so forth. This function also allows you to set the position of the
port icon with respect to the device icon. All Port Components must support this call.

pascal Component Result AVPort Get Graphiclnfo
(Conponent | nst ance port Conponent, Pi cHandl e *t hePi ct,
Handl e *thel conSuite, AVLocationPtr theLocation);

port Conponent An instance of your Port Component.
Pi cHandl e Standard data type.
*t hePi ct Address of the Pi cHandl e data type.

Port Component Functions 45

CHAPTER 4

Port Components

*thel conSuite Addressof a Handl e.
AVLocati onPtr Address of an AV location data structure.

t heLocati on Indicates the position of the AV location data structure. This is the
position of the port icon with respect to the device icon. This field is
defined as follows:

t heLocat i on- >l ocat i onConst ant =k

Refer to the following section and to Figure 4-4 for further
information.

Supplementary Information

In response to this call, the Port Component should check the return parameters
t hePi ct, t hel conSui t e, and t heLocat i on, to determine what information the
caller is requesting.

If t hePi ct is non nil (that is not 0), a handle to a picture of the port in PICT format
should be returned in *t hePi ct . If the picture is a resource that is retrieved via

Cet Resour ce, Get Pi ct ur e, and so on, you must be sure to detach the resource.

If t hel conSui t e is non nil, a handle to an icon suite should be returned in

*t hel conSui t e. If t heLocat i on is non nil, the AVLocat i onRec that it points to
should be filled out. The information that goes into the AVLocat i onRec is specific to
each port and must be determined by each port.

The port icons are arranged round the device icons in a grid, as shown in Figure 4-4.
The device may be a CPU, an AV display, a monitor, or any other piece of equipment
with audio or video capabilitites. The grid has 12 different positions, and each port
icon is assigned a position in the grid. The position is defined by the constant in the
t heLocat i on field, as shown in the listing below. These constants are in
AVConponent s. h.

/* Port Conmponent G aphic Location Constants */

enum {
kAVPort Fi rstPosition= 1,
kAVPor t SecondPosi ti on,
kAVPor t Thi r dPosi ti on,
kAVPor t Fourt hPosi ti on,
kAVPor t Fi ft hPosi ti on,
kAVPor t Si xt hPosi ti on,
kAVPor t Sevent hPosi ti on,
kAVPor t Ei ght hPosi ti on,
kAVPort Ni nt hPosi ti on,
kAVPort Tent hPosi ti on,
kAVPor t El event hPosi ti on,
kAVPort Twel ft hPosi ti on,

Port Component Functions

CHAPTER 4

Port Components

Figure 4-4 Port location grid

5 4
Device
7 icon 6
9 8
] o

| |

12 | 11 [10
| [

Constants 1 through 12 represent
port icon positions

Turning the Port On and Off

The functions in this category turn the related port on and off.

AVPortSetActive

This function allows clients to change the state of the port from active to inactive, or from
inactive to active.

pascal Conponent Result AVPort Set Active
(Component | nst ance port Conponent, Bool ean Set Acti ve);

port Conponent An instance of your Port Component.
Set Acti ve Boolean that determines whether the port is active or inactive.

Supplementary Information

Ports may have inactive and inactive states, for example, the sound ports may be muted
(inactive) or unmuted (active). AVPor t Set Act i ve provides the mechanism for toggling
between states. If a port is called and AVPor t Set Act i ve ist r ue, then the port is set to
the active state. If AVPor t Set Act i ve is f al se, the port is set to the inactive state. If the
port cannot be deactivated, it responds with an error message to this call.

Port Component Functions 47

CHAPTER 4

Port Components

AVPortGetActive

This function allows clients to query the state of the port and find out if it is active or
inactive. All Port Components should support this call.

pascal Conponent Result AVPort Get Active
(Component | nst ance port Conmponent, Bool ean *isPortActive,
Bool ean *port CanBeActivated, Ptr Reserved);

port Conponent An instance of your Port Component.
*i sPortActive Boolean that indicates whether the port is active or inactive.

*port CanBeAct i vat ed
Boolean that indicates whether or not the port can be activated.

Supplementary Information

If the port is active, *i sPor t Act i ve should be set to t r ue, otherwise, it should be set
to f al se. If the port is the type that can be activated and deactivated,
*port CanBeAct i vat ed should be set to t r ue, otherwise, it should be set to f al se.

Retrieving Information From the Port Component

This section describes the two functions that enable you to retrieve information from
Port Components.

AVDevicePortGetName

This function allows the caller to get the name of the associated port. A name must be
returned. An empty string () is not an acceptable response.

pascal Conponent Result AVDevi cePort Get Nane
(Conponent | nst ance port Conponent, Str255* port Nane);

port Conponent An instance of your Port Component.
por t Nane The name of the port to be returned by the function.

Supplementary Information

There is no supplementary information about this function.

AVDevicePortGetDeviceComponent

This function allows the caller to identify the Device Component that owns the port.

pascal Conponent Result AVDevi ceCet Port Devi ceConponent
(Conponent | nst ance port Conponent,
Copnponent | nst ance* devi ceConponent | nst ance) ;

Port Component Functions

CHAPTER 4

Port Components

port Conponent An instance of your port component.
devi ceConmponent | nst ance

The port’s associated device component instance.

Supplementary Information

There is no supplementary information about this function.

Detecting Changes on Ports

This section describes the Port Component functions that enable the Display Manager to
detect how many displays have been connected to a device and to be aware of changes
that may be made while the device is powered down or in a sleep state. Refer to
“Implementing Wiggling” on page 42 for more information on this subject.

AVPortSetWiggle

This function sets the path code that allows the Display Manager to distinguish between
different displays, video cards, and so on, present in the system.

pascal Conponent Result AVDevi cePort Set W ggl e
(Conponent | nst ance port Conponent, Bool ean w ggl eDevi ce);

port Conponent An instance of your port component.

wi ggl eDevi ce Boolean representing the video port ID of the related display or
video card.

Supplementary Information

Refer to “Implementing Wiggling” on page 42 for further information.

AVPortGetWiggle
This function allows the Display Manager get the path code set by AVPor t Set W ggl e.

pascal Component Result AVDevi cePort Get W ggl e
(Conponent | nst ance port Conmponent, Bool ean* wi ggl eDevi ce);

port Conponent An instance of your port component.

wi ggl eDevi ce Boolean representing the video port ID of the related display or
video card.

Supplementary Information

Refer to “Implementing Wiggling” on page 42 for further information.

Port Component Functions 49

CHAPTER 5

Device Components

CHAPTER 5

Device Components

This chapter describes the Device Components that are part of the AV Architecture .
They are the lowest-level components in the architecture and represent an actual audio
or video product. A device can be an intelligent display, a video card, a computer, and so
forth. Device Components represent the physical box that contains all the ports. Refer to
Chapter 4 for information on Port Components. This chapter explains why Device
Components are a necessary part of the AV Architecture, and describes the software calls
associated with Device Components.

Why Have Device Components?

52

Each device has an associated Device Component that contains the name and image of
the device. The Device Component also provides access to the actual hardware layer, and
provides storage space for information that is shared among the ports and engines.

Storing Names and lcons

The Device Component stores the name string and icons that represent the device. It
implements two functions, AVDevi ceCet Nane, which returns the name of the device,
and AVDevi ceGet Gr aphi cl nf 0, which returns the icon that is displayed to show the
device on the user interface.

Providing Interface With Hardware

It is sometimes convenient to have a common point through which all calls can be made
to the hardware. This is particularly useful if all ports share the same communication
path to the hardware and the same protocol. When it is providing this common point,
the Device Component is acting as a kind of device driver. Both Engine Components and
Port Components can communicate with the hardware through the Device Component.
This is an optional use of the Device Component.

Providing Storage for Shared Information

Providing storage for shared information is another optional use of the Device
Component. You may find it useful to cache hardware settings in the Device Component
under any of the following conditions:

= When it is time-consuming to retrieve hardware settings directly from the hardware.
= When hardware settings are write only and cannot be read or checked.

= When the hardware functionalities of more than one engine or port are interrelated.
For instance, if turning off a microphone port has the side effect of turning off the
speaker port, then you might want to store flags for this side effect in the Device
Component.

Why Have Device Components?

CHAPTER 5

Device Components

If the microphone panel and the speaker panel are displayed at the same time and
you turn on the microphone by means of the microphone panel, the following
sequence occurs:

s The microphone panel instructs its engine to turn on.

s The engine tells its Device Component to turn on the microphone, or alternatively
issues the request to the Port Component, which in turn communicates with the
Device Component.

s The Device Component changes its flags to show that the microphone is now on,
and the speakers are now off.

s The engine sends out a Display Manager notification, indicating that something
has changed.

s The speakers panel receives the notification and checks its engine to see if the
speakers are on or off.

s The engine asks the Device Component if the speakers are on. Alternatively, the
engine queries the Port Component, which in turn queries the Device Component.

s The Device Component checks its flags and reports that the speakers are off.

It is also possible to have a case where the functionality is not interrelated, but where
two identical panels are displayed at the same time. The above process is used to make
sure that the two panels remain synchronized with each other.

If you do not want to use this type of procedure, you may choose to register the engine
separately and cache the engine settings in the refCon globals of the engine. You should
be aware, though, that this is a limited solution. It is also more complicated, since the
Manager Component must register and unregister the engines, depending on how many
devices are present. The solution also fails to address the situation where the functioning
of different engines on different ports is interrelated.

Device Component Functions

There are two Device Component functions that store the name and icon of the device.
These functions are described below.

AVDeviceGetName

In response to the call, the Device Component returns the name of the device in the
parameter devi ceName. All Device Components must support this call.

AVDevi ceGet Nane(Conponent | nst ance devi ceConponent,
StringPtr devi ceNane);

devi ceNane Name of the AV device, such as AudioVision, or AppleVision, that is
being selected.

Device Component Functions 53

54

CHAPTER 5

Device Components

Supplementary Information

There is no supplementary information about this function.

AVDeviceGetGraphicinfo

This function allows the caller to retrieve graphic information about the Device
Component. When a call is made to this function, it loads a Pi cHandl e resource and
returns the address of the Handl e. It then loads an icon suite resource and returns its
address in't hel conSui t e. All Device Components must support this call.

AVDevi ceGet Graphi cl nfo (Componentl nstance devi ceConponent,
Pi cHandl e *t hePi ct,
Handl e *t hel conSuite,
AVLocationPtr thelLocation);

Pi cHandl e Standard data type.

t hePi ct Address of a Pi cHandl e data type.

t hel conSuite Address of a Handl e.

AVLocationPtr Address of an AV location data structure.

t heLocati on Indicates the location of an AV location data structure. Currently it
is always 0, as shown below:

t heLocat i on- >Locat i onConst ant =0

Supplementary Information

In response to this call, the Device Component should check the return parameters
t hePi ct, t hel conSui te, and t heLocat i on, to determine what information the
caller is requesting.

If t hePi ct is non nil (that is not 0), a handle to a picture of the device in PICT format
should be returned in *t hePi ct . If the picture is a resource that is retrieved via

Cet Resour ce, Get Pi ct ur e, and so on, you must be sure to detach the resource.

If t hel conSui t e is non nil, a handle to an icon suite should be returned in

*t hel conSui t e. If t heLocat i on is non nil, the AVLocat i onRec that it points to
should be filled out.

Currently, all devices have a nil (zero) location constant. In this case, they should be
ignored and not filled out.

Device Component Functions

CHAPTER 6

More Information About
the AV Architecture

CHAPTER 6

More Information About the AV Architecture

This chapter contains supplementary information about the AV Architecture. It covers
the following topics:

= storing data in components

= managing component storage
= the notification mechanism

= utility components

s library of utility functions

Strategies for Storing Data in Components

Components have two mechanisms for storing data: instance globals and common
globals. Instance globals are private to a given instance of the component, and they are
retrieved through the Set / Get Conponent | nst anceSt or age() functions. Common
globals apply to all instances of a given component.

Note

An instance is one particular representative
within a group of components. 0O

If components are of the same type or subtype, any number of them can share a single
set of common globals. A handle to this data structure is stored in the component’s
refCon, and it is accessed through the Set / Get Conponent Ref Con functions. Figure 6-1
shows the ownership model for two instances of an AV component, which might be a
Panel, Engine, Port, or Device Component. Generally, an AV component always needs

a set of instance globals and may never need to share common globals with other
components.

Managing Component Storage

56

There are certain well-defined times when you may want to create or destroy the
two types of storage provided by instance and common globals. You must be careful
to create or destroy the appropriate storage, particularly when you are dealing with
common globals.

Creating and Destroying Instance Globals

Instance globals are normally created in the AVPanel Open() routine.
“AVPanelSetCustomData” on page 23 provides detailed information about this
routine. To create an instance global:

» Allocate a handle large enough to store the information you will need.

= Call Set Conponent | nst anceSt or age() .

Strategies for Storing Data in Components

CHAPTER 6

More Information About the AV Architecture

Figure 6-1

Get Conponent | nst anceSt or age()

Ownership model

AV component

AV component

Instance 1 Instance 2
Type: X Type: X
Subtype: Y Subtype: Y

|
'

AV component
Instance 1
Private globals

Get Conponent Ref Con()

Cet Conponent | nst anceSt or age()

'

AV component
Instance 2
Private globals

AV component
Instances 1 and 2
Type: X
Subtype: Y

You can dispose of an instance global in the AVPanel Cl ose() routine. “AVPanelClose”
on page 21 provides detailed information about this routine. To dispose of an
instance global:

» Dispose of any handles that are stored within the global. This is very critical.

» Dispose of the global’s handle.

Creating and Destroying Common Globals

There are also well-defined times when common globals (if used) are allocated and
disposed of. However, management of common globals is dependent on how many
instances of a given component are open at the time you wish to allocate or dispose of
the common global.

If you are sharing common globals among multiple instances, and you wish to allocate a
common global, you may use the following process:

= In the Panel Open() routine, count the number of open instances of the component.

» If there is only one open instance, it is safe to allocate a handle for the common
globals, initialize it as needed, and then call Set Conponent Ref Con() with
that handle.

» If there is more than one instance open, you need not call Set Conponent Ref Con(),
because all instances will share the refCon, and will therefore share the common
globals handle.

The process is similar for disposing of common globals:

= In the Panel O ose() routine, count the number of instances of the component.

» If there is only one, then it is time to dispose of the common globals.

Managing Component Storage 57

CHAPTER 6

More Information About the AV Architecture

= Dispose of any handles contained in the globals, then dispose of the globals
themselves.

= When you have disposed of the common globals, you can go on to dispose of the
instance globals, as described in the previous section.

Notification Mechanisms

58

If you have a fully featured suite of components, consisting of Panel, Engine, Port, and
Device Components, notification of changes in the machine state is generally provided
by the Engine Component. “Notification” on page 38 provides information about this
type of notification. However, there are other methods of sending notification, as
described in the following sections.

Display Notification

The Display Manager provides a mechanism that allows any software entity to notify
any other software entity that a change has been made in the system configuration. This
mechanism is known as a display notification.

IMPORTANT

This is type of notification is not the same as that
provided by the Toolbox Notification Manager. a

The AV Architecture uses display event notification to keep all open components
synchronized with what is happening. For example, if multiple instances of the Bit
Depth panel are open, and you make a Set Dept h() Toolbox call, then all the open Bit
Depth panels will update themselves to reflect the current bit depth and the color state of
the screen that was changed.

The AV Architecture is able to keep track of these types of changes because the open
Bit Depth panels are registered with the Display Manager and are therefore notified
whenever there is a change in the graphics environment. If you have a variety of

AV components that need to track with each other, you can use the AV notification
mechanism. To do this, components should register themselves with a call to

DMRegi st er Ext endedNot i f yProc(), usually from within the Panel I nstal | ()
function.

Whenever there is a change in the graphics environment, the Display Manager
automatically broadcasts an event using the kDMNot i f yEvent message. The types
of changes include

= bit depth, implemented through Set Dept h()
» resolution, implemented through DVSet Di spl ayMde()
» gDevice position, implemented through DMVbveDi spl ay()

» mirroring, implemented through DMM r r or Devi ces()

Notification Mechanisms

CHAPTER 6

More Information About the AV Architecture

= adding displays, implemented through DVAddDi spl ay()
= removing displays, implemented through DMRenoveDi spl ay()

One of the parameters to the DVRegi st er Ext endedNot i f yProc() function is the
address of a notification handler routine. Whenever the Display Manager broadcasts a
notification event, this handler routine is called.

Resolution Panel Notification

The Resolution Panel uses the Display Manager as its hardware abstraction. When this
panel asks for a resolution change, the Display Manager panel automatically sends out a
notification.

Cursor Visibility Panel Notification

The Cursor Visibility Panel does not use Engine, Port, or Device Components. In
addition, the Display Manager knows nothing about this panel. When a change is made
in the panel, the panel itself makes a couple of new Toolbox calls, and then explicitly
sends out the notification.

Utility Components

Utility components handle service requests and have the tools needed to respond to such
requests from a component client. Currently, there is only one utility component. This is
the Preferences Component described below.

Preferences Component

When an AV component needs to save information on disk, and you choose not to save it
in the standard AV preferences file, you can save it in your own preferences file using the
Preferences Component.

Your Component (Panel, Engine, Device, Port) can open an instance of the Preferences
Component and save a reference to it in the panel’s instance globals. “Strategies for
Storing Data in Components” on page 56 provides further information on this subject.
When the panel is being closed, you can use this component to create a private file and
store your data there. Later, when the panel is being opened, it can open an instance of
the Preferences Component and ask it to retrieve the information that was previously
stored. Your panel can then set up its internal data using this information.

Utility Components 59

CHAPTER 6

More Information About the AV Architecture

Library of Utility Functions

60

Utility functions are tools provided by Apple for developers as part of the software
development kit. The AV library of utility functions contains common pieces of
functionality that may be useful to developers. Currently, they are utilities associated
with getting globals from a panel, and with getting and setting the application’s resFile.

Getting Globals

This utility enables you to get the globals from a panel within a dialog box filter function.
Since AV panels create their human interface pieces using dialog box items and dialog
box windows, anything that is not a standard item, such as a radio button, checkbox,
static text, and so on, must have its drawing and updating managed by the panel itself.
This means that you must write a custom dialog box item draw procedure, which has a
fixed APL This API gives only the dialog box window pointer and the DITL index of the
item that needs to be drawn. The assumption is that you will use the refCon of the dialog
box window to store a handle to your private information. You can then get the
information needed to draw or update your custom item using this handle.

Because the AV panel window uses the refCon for storing a wide variety of information
that is not necessarily related to any given panel in the window, you do not want to open
up the storage format and expose the data. For this reason, you should use the following
utility routine provided in the AV library of utility functions:

Handl e AVGet Panel G obal sFronPanel W ndow()

This function requires only the dialog box window pointer and the absolute item index
as input for any item in the panel. The function knows how to traverse the information
in the panel window storage handle, and it will return a handle to the globals for the
panel. The caller must not dispose of this handle. It will be taken care of when the panel
is closed.

IMPORTANT
The absolute item index is required, not the relative item index. a

Getting and Setting the resFile

This utility enables you to get the application’s resource file (resFile) from an arbitrary
component, or to set the application’s resFile in an arbitrary component. When a
component needs to access any of its resources, it must first make sure that it sets the
current resource file to its own resFile, using the Set Conponent ResFi | e() function.

Library of Utility Functions

CHAPTER 6

More Information About the AV Architecture

Because the component is likely to be called from some kind of controlling application, it
is important to save and restore whatever resource file was current before the component
changed files. It is not sufficient merely to call Cur ResFi | e() to find out what the
current file is before switching to the component’s file.

For this reason, the AV architecture provides the following routine:
short AVGet Appl i cati onResFil e()

Your panel can either save the value () in its private globals, or it can call the function
each time it needs this information. Whenever your panel sets its component resource
file, you should make a call to UseResFi | e(appResFi |) before leaving the
component function.

Library of Utility Functions 61

A PPENDTIX

Manager Component

The Manager Component is not a required part of the AV Architecture. However, it is
often convenient and, in certain cases essential, to define one Manager Component that
registers and unregisters all your other components. The Manager Component is needed
if your components must load in a certain order, or if it is possible to remove or add
essential hardware while the computer, for example a PowerBook, is asleep. This chapter
explains the key functions of the Manager Component.

The Manager Component is responsible for:
» Loading all the other components.

» Registering Device and Port Components with the Display Manager and establishing
connections between Device and Port Components.

» Registering and unregistering components when the system is initialized, shuts down,
goes into sleep mode, wakes from sleep mode.

= Answering queries about the status of the component group as a whole.

Figure A-1 shows the relationship between the Manager Component and the AV
Architecture components.

APPENDIX

Manager Component

Figure A-1 Manager Component

AV application

AV Architecture ‘
Panel Component

For every panel needed
in the human interface

A\
Engine Component

For each function or
set of related
functions of each port

Manager v
Component
Registers and maintains

components based on
hardware state

Port Component
For every input or
output element in
the desktop device

Hardware ; : !
abstraction Y Y V
layer Device Component Macintosh
-
For every desktop Toolbox
device T
l Drivers

Desktop audio
and/or video device

Loading Components

64

The Manager Component shields your components from the Component Manager,
making sure that the Component Manager does not load them in the wrong order. It is
also responsible for loading the components in the correct order.

The Manager Component is the only component that has a ‘thng’ resource, and is
therefore the only component automatically loaded by the Component Manager at boot
time. All other components should have ‘gnht” resources. The Manager Component
performs in a similar way to the Loader Component, the only difference being that no
‘thld’ resource is used, since registration may vary depending on the state of the
hardware present.

Typically you will ship one extension file for your product. This extension file contains
the Panel, Engine, Port, and Device Components as “gnht’ resources, rather than ‘thng’
resources. This means the Component Manager will not try to register them. The

Loading Components

APPENDIX

Manager Component

Manager Component is stored in the extensions as a regular ‘thng’ resource, and when it
is registered, it in turn finds the ‘gnht’ resources for the device, ports, and engines, and
registers them according to the hardware that is present.

Registering Components

The Manager Component should be able to determine how many devices are present. If
there is more than one hardware device attached to the Macintosh, it is preferable to
register the Device and Port Components multiple times, once for each like device
attached to the system. This means that there will be separate refcon globals for device
variables. You may question whether it is better to create multiple instances of the
Device Component or to register separately. Generally you should register separately.

Component vs. INIT

In most case you should use a component rather than an INIT. This is because systems
earlier than System 7.1 need QuickTime INIT to install the Component Manage.
Therefore, if you use an INIT, you run the risk of the name of the INIT starting with a
letter earlier in the alphabet than Q (QuickTime). In which case, your components would
not be registered, since the Component Manager would not have been installed.

There is one case when you must use an INIT, and take a chance with systems earlier
than System 7.1. This is when you need a “sysz’ resource, such as the following example,
to temporarily allocate more heap space for your components during boot time.

Example:

data ‘sysz’ (0) {
$” 0002 0000"
b

However, ‘sysz’ resources only take effect when you have an ‘INIT’ in the same files as
the ‘sysz’ resource. You should therefore simply load the Manager Component in a very
small INIT. When you do this, make sure you change the Manager Component’s ‘thng’
resource to a ‘gnht’ resource, to hide it from the Component Manager. Otherwise, it will
load twice.

Source code sample:

#i ncl ude <Conponents. h>

void MyI NI T()

{
Conmponent t heConpl D;

Conponent Resour ceHandl e conponent ResHdl ;
conponent ResHdl = (Conponent Resour ceHandl e)

Loading Components 65

APPENDIX

Manager Component

CGet 1Resource(' gnht',
kManager Conponent Resour cel D) ;
i f (conponent ResHdl)
t heConmpl D = Regi st er Conponent Resource (conponent ResHdl ,

regi st er Conponent d obal) ;
return;

Interaction With Device and Port Components

The Manager Component provides a convenient way of registering Device and Port
Components with the Display Manager and of establishing connections between Device
and Port Components.

All Device and Port Components must be registered with the Display Manager. You can
do this using the DMNewAVI DBy Devi ceConponent and DMNewAVI DBy Por t Conponent
calls. When these calls return new AV IDs, you let your Device and Port Components
knows what their own AV IDs are by making the standard AVDevi ceSet AVI Dand
AVPor t Set AVI D calls.

In addition, you must establish connections between the Device and Port Components.
Port Components should know to which Device Component they are attached. You can
do this using the port call AVPor t Set Devi ceAVI D.

Cleaning Up During Sleep or Shutdown

66

The PowerBook computer goes into sleep mode during periods of inactivity. During this
time you might add or remove critical devices. For example you might add or remove a
display. Similarly, devices may be removed or connected while the PowerBook is
shutdown and then be present when it is powered up again.

The Manager Component manages the registration and unregistration of components
during these periods. The following points are critical:

= You should not register a component when the related hardware is not available.

s If the hardware your components use changes while the PowerBook is asleep, you
must make sure that they are registered (if added), or unregistered (if removed) when
the PowerBook wakes from sleep mode.

= You should perform some kind of initialization when the PowerBook wakes from
sleep mode.

= At shutdown you should clean up and remove unwanted components.

Interaction With Device and Port Components

APPENDIX

Manager Component

The Manager Component receives sleep, wakeup, and shutdown notifications, and goes
through the processes necessary to handle these situations. The source code required to
accomplish this is shown in the following sample.

Source Code Sample

#i ncl ude <Power. h>

typedef struct Sl eepl nfoRec

{
Sl eepQRec ny Sl eepQRec;
| ong nmy Sl pRef Con;
} Sl eepl nfoRec, *SleeplnfoRecPtr, **S|eeplnfoRecHandl e;

voi d MySl eepProc(void);

{ I/ install a sleep task
OSErr result = noErr;
[ong prgrAttributes;

result = Gestalt(gestaltPowerMrAttr, &ongrAttributes);
if (result == noErr && (pnorAttributes & (1l<<gestaltPMyrEXists)))
{ /'/ Power Manager is present

Sl eepl nfoRecPtr sl eepl nfoRecPtr = NULL;

Handl e nySl eepProcHandl e = NULL;

result = LoadPi eceOF Code(kMyCodeResour ceType,
kM/SI eepResl D,
&ny Sl eepProcHandl e) ;
if (result == noErr)
{
sl eepl nfoRecPtr = (Sl eepl nfoRecPtr) NewPtrSysd ear (
si zeof (Sl eepl nfoRec));
if (sleeplnfoRecPtr !'= NULL)

{

sl eepl nf oRecPt r - >ny Sl eepQRec. sl eepQLi nk NULL;
sl eepl nf oRecPt r - >ny S| eepQRec. sl eepQType = sl pQType;
sl eepl nf oRecPt r - >ny Sl eepQRec. sl eepQPr oc (Sl eepQUPP)
*ny Sl eepPr ocHandl e;
sl eepl nf oRecPt r - >ny Sl eepQRec. sl eepQFl ags = 0;
sl eepl nf oRecPtr->nyS|l pRef Con = 0; // could use this for sonething
Sl eepQ nstal | ((Sl eepQrecPtr) sl eepl nfoRecPtr);

Cleaning Up During Sleep or Shutdown 67

APPENDIX

Manager Component

{ I/ install a shutdown task

}

Handl e nyShut downPr ocHandl e = NULL;

result = LoadPi eceOr Code(kMyCodeResour ceType, kM Shut downResl D,
&ny Shut downPr ocHandl e) ;
if (result == noErr)
Shut Dwnl nst al | ((Shut DMmUPP) * my Shut downPr ocHandl e, (sdOnDri vers));

OSErr LoadPi ece Code(ResType theType, short thel D, Handl e *theProcHandl e)

{

68

OSErr result = noErr;
Handl e nyProcHandl e = NULL;
| ong nyProcSi ze;

*t hePr ocHandl e = NULL;

/1 first get the resource without actually |loading it
Set ResLoad(f al se);

nyProcHandl e = CGet Resource(theType, thelD);

Set ResLoad(true);

if (myProcHandl e !'= NULL)

{
/] see howbig it is
nyProcSi ze = Get Resour ceSi zeOnDi sk(myProcHandl e) ;
result = ResError();
if (result == noErr)
{
/1 reserve this nuch nenory at the bottom of the System heap
Reser veMenys(myProcSi ze) ;
LoadResour ce(nyProcHandl e) ;
result = ResError();
if (result == noErr)
{
Det achResour ce(nyProcHandl e) ;
HLock(myPr ocHandl e) ;
*t hePr ocHandl e = nmyPr ocHandl e;
}
}
}
el se result = -1;

return result;

Cleaning Up During Sleep or Shutdown

APPENDIX

Manager Component

The sleep procedure is loaded in the previous code sample as a separate code resource,
and it may look like the following code sample.

Source Code Sample

#i ncl ude <Components. h>

extern void MYAl | owSl eepRequest (voi d)
ONEWORDI NLI NE(0x7000) ; // MOVEQ #0, DO

extern void MyDenySl eepRequest (voi d)
ONEWORDI NLI NE(0x7001); // MOVEQ #1, DO

extern Sl eepl nfoRecPtr MyGet Sl eepl nf oPt r (voi d)
ONEWORDI NLI NE(Ox2E88); // MOE.L A0, (A7)

extern [ong MyGet Sl eepComuand(voi d)
ONEWORDI NLI NE(Ox2E80); // MOVE.L DO, (A7)

voi d MySl eepProc()

{

Sl eepl nf oRecPt r ny Sl eepl nf oPtr;

| ong

ny Sl eepl nf oPt r
ny Sl eepComand

ny Sl eepComand;

MyGet Sl eepl nfoPtr();
My Get Sl eepComrand() ;

swi tch (nySl eepConmand)

case sl eepRequest:

M/Al | owSl eepRequest () ;
br eak;

case sl eepDenand:
case sl eepWakeUp:

{

Conponent Descri pti on conpDesc;
Conmponent manager Conpl D = NULL;

conpDesc. conponent Type = kManager Type;

conpDesc. conmponent SubType = kManager SubType;
conpDesc. component Manuf act urer = kManuf act ur er Type;
conpDesc. conmponent Fl ags = 0;

conpDesc. conponent Fl agsMask = kAnyConponent Fl agsMask;

manager Conpl D = Fi ndNext Conponent (manager Conpl D, &conpDesc);

Cleaning Up During Sleep or Shutdown 69

APPENDIX

Manager Component

i f (manager Conpl D !'= NULL)

{
Component | nst ance manager | nst ance;
manager | nst ance = QpenConponent (nanager Conpl D) ;
if (nySl eepComrand == sl eepDemand)
Manager Conrponent Sl eep(manager | nst ance) ;
el se
Manager Conponent Wake(nanager | nst ance) ;
Cl oseConponent (manager | nst ance) ;
}
}
br eak;
case sl eepRevoke:
defaul t:
br eak;

You can define the Manager Conponent Sl eep and Manager Conponent Wake selectors
in the Manager Component so that they register and unregister your other components
as needed to match the hardware that is present. The shutdown procedure can be even
simpler. You can just find the Manager Component and call a

Manager Conponent Shut down selector that you have defined.

Reporting on the State of the Component Group

70

The Manager Component can also serve as a representative of your software as a whole.
If you have a custom AV application that makes heavy use of the AV components, you
may decide that it should not run at all if your components are not loaded correctly.

Your application should first check for the existence of the Manager Component, using
the Fi ndNext Conponent call. If the Manager Component cannot be found, the
components are definitely not loaded.

If the Manager Component is found, then your application, using

MyManager Conponent Get St at e(), can request that it check the state of the
component set. If all your components were not loaded at boot time,

MyManager Conponent Get St at e() can return an error or a constant to indicate that
your application should not run.

Reporting on the State of the Component Group

Glossary

Apple event An Apple event is a high-level
event that adheres to the Apple Event Interprocess
Messaging Protocol. An Apple event consists of
attributes, including the event class and event ID
that identify the event and its task. It also
contains parameters that contain data used only
by the target application. You will find detailed
information about Apple events in Inside
Macintosh, Volume VI.

architecture A set of design principles that
specifies the relationship among components,
in this context, Panel, Engine, Port, and Device
Components.

DITL The DITL (dialog item list) is a list of
resources associated with a given control panel.

hardware abstraction This is a process that
takes hardware functionality and gives it a name,
thus concealing the hardware implementation
from the software. The hardware abstraction
layer acts as a liaison between the software
element and the hardware element.

Virtual Photometry Technology (VPT) A
proprietary Apple technique used in imaging
devices, such as video displays, to ensure
accurate color on the screen.

71

Index

A B

abbreviations x
ADB
address 42
cable 42
adornment 24
APDA addresses xi
APIs 13, 60
extended 12
high-level 9
Apple events 71
application functions 5
architectural components 6 to 13
Device Components 12 to 13, 52 to 54
Engine Components 9 to 10, 36 to 38
Panel Components 6 to 8, 16 to 34
Port Components 10 to 11, 40 to 49
architectural features 5 to 6
architecture
component-based 13
definition of 71
functions 5
audio devices 2
audio input ports
CD player 10
microphone 10
audio output ports
headphones 10
speakers 10
AVDevi ceCGet Gr aphi cl nf o function 54
AVDevi ceGet Nane function 53
AVDevi cePort Get Devi ceConponent function 48
AVDevi cePort Get Name function 48
AV devices 2
AVENngi neConponent Get Fi del i ty function 36
AVENngi neConponent Tar get Devi ce function 37
AV ID (identification) 41
AVPanel Cl ose function 21, 29, 34
AVPanel Conponent Get Panel Ador nnent
function 24
AVPanel Event function 30
AVPanel Get DI TL function 23
AVPanel Get Fi del i ty function 19
AVPanel CGet Panel d ass function 21
AVPanel Get Set ti ngs function 32
AVPanel Cet Setti ngsl dentifiers function 28
AVPanel Get Ti t | e function 29
AVPanel I nstal | function 26

AVPanel Open function 17, 22
AVPanel Renpve function 33
AVPanel Set Cust onDat a function 23
AVPanel Set Set ti ngs function 28
AVPanel Tar get Devi ce function 27
AVPanel Val i dat el nput function 31
AVPor t Get Act i ve function 48
AVPor t Get Gr aphi cl nf o function 45
AVPor t Get Nane function 45

AVPor t Get W ggl e function 49
AVPor t Set Act i ve function 47
AVPor t Set W ggl e function 49

AV setup panel 6, 40

C

call sequences
closing the panel window 32
Panel Components 16
searching for panel owner 17
setup application running 30

Cancel buttons 8

candidate panels 16

candidate search 19

changes in graphics environment 58

classification of AV functions 21

common globals 56, 57

component-based architecture, advantages of 13

Component Manager 4
components, architectural 6 to 13
components, delivering 13
component storage, managing 56
control panels 3

elements 8

partitioning 40
conventions X
Cursor Visibility Panel 59

D

delivering components 13

detecting changes on ports 49

Device Components 12 to 13, 52 to 54
Device Manager Component 37
dialog box window pointer 60

73

INDEX

dialog item list (DITL) 71

Display Manager 16, 19, 38, 41, 43, 49, 58, 66

display notification 58
dynamic linked library (DLL) 4

E

Engine Components 9 to 10, 36 to 38
extended APIs 12

=

fidelity mechanism 19 to 20

Fi

ndNext Conponent 70

functions

AVDevi ceGet Graphi cl nfo 54
AVDevi ceGet Nane 53

AVDevi cePor t Get Devi ceConponent 48

AVDevi cePort Get Nane 48
AVENngi neConponent Get Fidel ity 36

AVENngi neConponent Tar get Devi ce 37

AVPanel Cl ose 21,29, 34

AVPanel Conmponent Get Panel Ador nnent 24

AVPanel Event 30

AVPanel Get DI TL 23
AVPanel Get Fidelity 19
AVPanel Get Panel Cl ass 21
AVPanel Get Settings 32

AVPanel Get Settingsldentifiers 28

AVPanel GetTitl e 29
AVPanel I nstal | 26
AVPanel Qpen 17,22
AVPanel Renove 33
AVPanel Set Cust onDat a 23
AVPanel Set Setti ngs 28
AVPanel Tar get Devi ce 27
AVPanel Val i dat el nput 31
AVPort Get Acti ve 48
AVPor t Get Gr aphi cl nfo 45
AVPor t Get Nane 45

AVPort Get W ggl e 49
AVPor t Set Acti ve 47
AVPor t Set W ggl e 49

74

G

globals 60
common 56, 57
creating 56, 57
destroying 56, 57
instance 38, 56
refCon 38
graphics environment, changes 58

H

hardware, interfacing with 44, 52
hardware abstraction 9, 71
high-level APIs 9

human interface 8, 10

I, J, K

icons, storing 42, 52
implementation technology 4
INITs 65

instance globals 38, 56

interfacing with hardware 44, 52
Interprocess Messaging Protocol 71

L

Loader Component 64
loading components 64

M

Macintosh Toolbox 6, 8

Manager Component 37, 53, 63 to 70
Manager Conponent Sl eep selector 70
Manager Conponent Wake selector 70
Monitors control panel 3

multimedia applications 3

multiple AV device connections 42
multiple control paths 43

multiple displays, identifying 42

MyManager Conponent Get St at e() function 70

INDEX

N

R

names, storing 42, 52
notification 38
Cursor Visibility Panel 59
display 58
mechanisms 58
Resolution Panel 59

O

refCon globals 38

reference material xi

registering components 65, 66
registering Engine Components 37
reporting on component group 70
Resolution Panel 59

S

OK buttons 8
opening panels 22

P

Panel Components 6 to 8, 16 to 34
panel owner call sequence 17
panels

adornment 24, 25

border 25

name 25

opening 22

owners 16
partitioning control panels 40
Port Components 10 to 11, 40 to 49

description 44

retrieving information from 48
ports

audio 10

audio output 10

detecting changes on 49

with multiple control paths 43

turning on and off 42

video 10

video input 10

video output 10
PowerBook applications 66
Preferences Component 59

Q

QuickTime INITs 65

searching for candidates 19
selectors
Manager Conponent Sl eep 70
Manager Conponent Wake 70
setup panels 6
shared information, storing 52
shutdown 66
sleep mode 66
Sound & Displays 6, 7
application 3
setup window 4
Sound control panel 3
storing
data in components 56
icons 42, 52
names 42, 52
shared information 52
System 7.1 65

T

targeting 27

toggling sense lines 49
Toolbox 6, 8

turning ports on and off 42

U

unregistering components 66
utility components 59
utility functions
getting globals 60
getting the resFile 60
library 60
setting the resFile 60

75

INDEX

\Y

video devices 2

video input ports
camera 10
VCR 10

video output ports
camcorder 10
display 10
monitor 10
TV screen 10
VCR 10

Virtual Photometry Technology (VPT) 71

W, X,Y, Z

wiggle selectors 43
wiggling 42, 49

76

T H E A PPLE PUBLISHTING

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Select 360 printer. Final
pages were created on the Apple
LaserWriter Pro 630. Line art was created
using Adobe" Tllustrator. PostScript",
the page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino” and display type is
Helvetica". Bullets are ITC Zapf
DingbatsD. Some elements, such as
program listings, are set in Apple Courier.

WRITER
Joyce D. Mann

DEVELOPMENTAL EDITOR
John Hammett

ILLUSTRATOR
Sandee Karr

Special thanks to
Aaron Ludtke, Mark Taylor,
Greg Mullins, and William Sheet

	AV Architecture
	Contents
	Figures and Tables
	About This Note
	Conventions Used in This Note
	List of Abbreviations
	Other Reference Material
	For More Information

	Overview of the AV Architecture and Application Software
	AV Devices
	Why the AV Architecture Was Developed
	Status Quo — Control Panels
	Problem Areas
	Apple’s Solution
	Architectural Features
	Developer’s Role

	Architectural Components
	Panel Components
	Engine Components
	Port Components
	Device Components
	Delivering Your Components
	Advantages of a Component-Based Architecture

	Panel Components
	Panel Owner Search for Candidate Panels
	AVPanelOpen
	AVPanelGetFidelity
	AVPanelClose
	AVPanelGetPanelClass

	Opening Panels for Display to Users
	AVPanelOpen
	AVPanelSetCustomData
	AVPanelGetDITL
	AVPanelComponentGetPanelAdornment
	AVPanelInstall
	AVPanelTargetDevice
	AVPanelGetSettingsIdentifiers
	AVPanelSetSettings
	AVPanelGetTitle
	AVPanelClose

	Running the Setup Application
	AVPanelEvent
	AVPanelValidateInput
	AVPanelTargetDevice

	Closing the Panel Window
	AVPanelValidateInput
	AVPanelGetSettings
	AVPanelGetSettingsIdentifiers
	AVPanelRemove
	AVPanelClose

	Engine Components
	Engine Component Description
	Engine Component Functions
	AVEngineComponentGetFidelity
	AVEngineComponentTargetDevice

	Registering Engine Components Multiple Times
	Notification

	Port Components
	Why Have Ports?
	Why Have Port Components?
	Storing Names and Icons
	Turning the Port On and Off
	Implementing Wiggling
	Interfacing Between Engine Components and Hardware

	Port Component Description
	Port Component Functions
	Storing Names and Icons
	AVPortGetName
	AVPortGetGraphicInfo

	Turning the Port On and Off
	AVPortSetActive
	AVPortGetActive

	Retrieving Information From the Port Component
	AVDevicePortGetName
	AVDevicePortGetDeviceComponent

	Detecting Changes on Ports
	AVPortSetWiggle

	Device Components
	Why Have Device Components?
	Storing Names and Icons
	Providing Interface With Hardware
	Providing Storage for Shared Information

	Device Component Functions
	AVDeviceGetName
	AVDeviceGetGraphicInfo

	More Information About the AV Architecture
	Strategies for Storing Data in Components
	Managing Component Storage
	Creating and Destroying Instance Globals
	Creating and Destroying Common Globals

	Notification Mechanisms
	Display Notification
	Resolution Panel Notification
	Cursor Visibility Panel Notification

	Utility Components
	Preferences Component

	Library of Utility Functions
	Getting Globals
	Getting and Setting the resFile

	Manager Component
	Loading Components
	Registering Components
	Component vs. INIT

	Interaction With Device and Port Components
	Cleaning Up During Sleep or Shutdown
	Reporting on the State of the Component Group

	Glossary
	Index

