

ð

Developer Press



 Apple Computer, Inc. 1995

ð

Developer Note

AV Architecture

Thi d t t d ith F M k 4 0 4

ð

Apple Computer, Inc.



 1995, Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, APDA,
AppleLink, LaserWriter, Macintosh,
and QuickTime are trademarks of
Apple Computer, Inc., registered in the
United States and other countries.
Apple Desktop Bus, AppleColor,
AudioVision, Macintosh Quadra,
PlainTalk, PowerBook, AppleVision,
and PowerBook Duo, are trademarks of
Apple Computer, Inc.
Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.
AGFA is a trademark of Agfa-Gevaert.
America Online is a trademark of
Quantum Computer Services, Inc.
Classic is a registered trademark
licensed to Apple Computer, Inc.
CompuServe is a registered trademark
of CompuServe Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Thi d t t d ith F M k 4 0 4

iii

Contents

Figures and Tables vii

Preface

About This Note

ix

Conventions Used in This Note x
List of Abbreviations x
Other Reference Material xi
For More Information xi

Overview of the AV Architecture and

Chapter 1

Application Software

1

AV Devices 2
Why the AV Architecture Was Developed 2

Status Quo — Control Panels 3
Problem Areas 3
Apple’s Solution 3
Architectural Features 5
Developer’s Role 6

Architectural Components 6
Panel Components 6
Engine Components 9
Port Components 10
Device Components 12
Delivering Your Components 13
Advantages of a Component-Based Architecture 13

Chapter 2

Panel Components

15

Panel Owner Search for Candidate Panels 16
AVPanelOpen 17
AVPanelGetFidelity 19
AVPanelClose 21
AVPanelGetPanelClass 21

Opening Panels for Display to Users 22
AVPanelOpen 22
AVPanelSetCustomData 23
AVPanelGetDITL 23
AVPanelComponentGetPanelAdornment 24
AVPanelInstall 26

Thi d t t d ith F M k 4 0 4

iv

AVPanelTargetDevice 27
AVPanelGetSettingsIdentifiers 28
AVPanelSetSettings 28
AVPanelGetTitle 29
AVPanelClose 29

Running the Setup Application 30
AVPanelEvent 30
AVPanelValidateInput 31
AVPanelTargetDevice 31

Closing the Panel Window 32
AVPanelValidateInput 32
AVPanelGetSettings 32
AVPanelGetSettingsIdentifiers 33
AVPanelRemove 33
AVPanelClose 34

Chapter 3

Engine Components

35

Engine Component Description 36
Engine Component Functions 36

AVEngineComponentGetFidelity 36
AVEngineComponentTargetDevice 37

Registering Engine Components Multiple Times 37
Notification 38

Chapter 4

Port Components

39

Why Have Ports? 40
Why Have Port Components? 42

Storing Names and Icons 42
Turning the Port On and Off 42
Implementing Wiggling 42
Interfacing Between Engine Components and Hardware 44

Port Component Description 44
Port Component Functions 45

Storing Names and Icons 45
AVPortGetName 45
AVPortGetGraphicInfo 45

Turning the Port On and Off 47
AVPortSetActive 47
AVPortGetActive 48

Retrieving Information From the Port Component 48
AVDevicePortGetName 48
AVDevicePortGetDeviceComponent 48

v

Detecting Changes on Ports 49
AVPortSetWiggle 49
AVPortGetWiggle 49

Chapter 5

Device Components

51

Why Have Device Components? 52
Storing Names and Icons 52
Providing Interface With Hardware 52
Providing Storage for Shared Information 52

Device Component Functions 53
AVDeviceGetName 53
AVDeviceGetGraphicInfo 54

Chapter 6

More Information About the AV Architecture

55

Strategies for Storing Data in Components 56
Managing Component Storage 56

Creating and Destroying Instance Globals 56
Creating and Destroying Common Globals 57

Notification Mechanisms 58
Display Notification 58
Resolution Panel Notification 59
Cursor Visibility Panel Notification 59

Utility Components 59
Preferences Component 59

Library of Utility Functions 60
Getting Globals 60
Getting and Setting the resFile 60

Appendix

Manager Component

63

Loading Components 64
Registering Components 65
Component vs. INIT 65

Interaction With Device and Port Components 66
Cleaning Up During Sleep or Shutdown 66
Reporting on the State of the Component Group 70

Glossary

71

Index

73

vii

Figures and Tables

Chapter 1

Overview of the AV Architecture and Application Software

1

Figure 1-1

Sound & Displays setup window 4

Figure 1-2

 Panel Components 7

Figure 1-3

Typical control panel elements 8

Figure 1-4

Engine Components 9

Figure 1-5

Port Components 11

Figure 1-6

Device Components 12

Table 1-1

Port Component definition 10

Chapter 2

Panel Components

15

Figure 2-1

Overview of call sequence 16

Figure 2-2

Call sequence—panel owner search for candidate panels 17

Figure 2-3

Opening panels for display to users 22

Figure 2-4

Panel with name and border 25

Figure 2-5

Panel with name and no border 25

Figure 2-6

Panel with no name and no border 26

Figure 2-7

Call sequence—setup application running 30

Figure 2-8

Call sequence—closing the panel window 32

Chapter 4

Port Components

39

Figure 4-1

Audio/Video Setup window 40

Figure 4-2

Setup control panel for an AudioVision 14 display 41

Figure 4-3

Ports with more than one control path 43

Figure 4-4

Port location grid 47

Chapter 6

More Information About the AV Architecture

55

Figure 6-1

Ownership model 57

Appendix

Manager Component

63

Figure A-1

Manager Component 64

Thi d t t d ith F M k 4 0 4

ix

P R E F A C E

About This Note

This developer note describes the Apple AV Architecture, which is an essential
element in Apple Computer’s upcoming audio and video products. The note
provides the information needed by developers to understand the functions
of the architecture, and to take advantage of these features to develop
components that fit into the architecture.

The note assumes that you are familiar with the functionality and program-
ming requirements of Apple Macintosh computers. It is intended to be used
in conjunction with the developer notes published for different Apple devices
that implement the AV Architecture. It also assumes that you have read the
“Component Manager” chapter of

Inside Macintosh: More Macintosh Toolbox

,
since the AV Architecture relies heavily on the Component Manager.

The note consists of six chapters, an appendix, a glossary, and an index.

■

Chapter 1, “Overview of the AV Architecture and Application Software,”
introduces the concept of the new architecture, explains why the
architecture was needed, and gives an overview of the software
components that make up the architecture.

■

Chapter 2, “Panel Components,” describes the sequence of calls to each of
the Panel Component functions. It explains how the panel owner searches
for candidate panels, opens panels for display to the user, runs the setup
application, and then closes the panel window.

■

Chapter 3, “Engine Components,” explains why Engine Components are
critical to the AV Architecture, and describes the calls to each of the Engine
Component functions. It also describes how to register Engine Components
multiple times, and explains how the Engine Components notify all other
components when there are changes in the machine state.

■

Chapter 4, “Port Components,” explains why ports and Port Components
are critical to the AV Architecture. It also describes the calls to each of the
Port Component functions.

■

Chapter 5, “Device Components,” explains why Device Components are
critical to the AV Architecture. It also describes the calls to each of the
Device Component functions.

■

Chapter 6, “More Information about the AV Architecture,” provides
supplementary information, including how to store data in components,
how to manage the storage, how the notification mechanism works, what
utility components are available, and an overview of the library of utility
functions.

■

The appendix, “Manager Component,” provides information about a
component that may be used with the AV Architecture, but is not a
required part of the architecture. The Manager Component can load

Thi d t t d ith F M k 4 0 4

x

P R E F A C E

other components; register Device and Port Components with the Display
Manager; establish connections between Device and Port Components; and
register or unregister components when the system is initialized, shuts
down, goes into sleep mode, or wakes up from sleep mode.

Conventions Used in This Note 0

The following conventions are used throughout this note

Note

This type of note contains information of general interest.

◆

IMPORTANT

A note like this contains important information that you should read
before proceeding.

▲

Terms in

boldface

 type are defined in the glossary.

A special font,

Courier

, is used for characters that you type, or for lines of
program code.

It looks like this

.

List of Abbreviations 0

The following abbreviations are used in this publication.

API application programming interface

AV audio/video

CD compact disk

DLL dynamic linked library

DITL dialog item list

DM Display Manager

SDK Software Developer Kit

VCR video cassette recorder

xi

P R E F A C E

Other Reference Material 0

Related documentation includes the following books from the

Inside
Macintosh

 collection.

Inside Macintosh

 is a collection of books, organized
by topic, that describe the system software of Macintosh computers.The
following publications can be found in the

Inside Macintosh

 CD:

■

Inside Macintosh: QuickTime

■

Inside Macintosh: More Macintosh Toolbox

■

Inside Macintosh: Devices

You should also refer to

Designing Cards and Drivers for the Macintosh Family,

third edition, published by the Addison-Wesley Publishing Company, Inc.

For More Information 0

APDA offers convenient worldwide access to hundreds of Apple and
third-party development tools, resources, and information for anyone
interested in developing applications on Apple platforms.

To order products or to request a complimentary copy of the

APDA Tools
Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA order

CompuServe 76666,2405

Internet APDA@applelink.apple.com

C H A P T E R 1

Overview of the
AV Architecture and

Application Software 1

Figure 1-0
Listing 1-0
Table 1-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1

Overview of the AV Architecture and Application Software

2

AV Devices

This chapter provides an overview of the AV Architecture: its capabilities, areas of
application, and the technology that implements it. It also gives an overview of the
windows and panels designed for applications based on the AV Architecture. These
windows and panels replace the Macintosh standard Sound and Monitors control
panels. They are used to configure all the audio and video (AV) devices connected to
your Macintosh computer, or the AV features of the computer itself.

AV Devices 1

The audio devices referenced in this developer note include

■

any device that provides sound input, such as microphones, CD players, videocassette
players, audiocassette players, television tuners, telephone connections

■

any device that receives sound and plays it back, such as speakers, headphones,
videocassette recorders, audiocassette recorders

Video devices referenced include

■

video input devices such as video cameras, videocassette recorders, television
tuners

■

video output devices or displays such as computer monitors, television
sets, videocassette recorders.

Note

The devices listed are samples of the devices a typical AV application
can control. The ones you can actually use depend on the computer or
other AV product you are using.

◆

Why the AV Architecture Was Developed 1

This section provides background information about existing AV control panels,
describes the problems that arise when these panels are used with new AV products,
outlines the solution developed by Apple Computer, Inc. in the form of the AV
Architecture, and finally touches on the ways developers can use this architecture.

C H A P T E R 1

Overview of the AV Architecture and Application Software

Why the AV Architecture Was Developed

3

Status Quo — Control Panels 1

Before the development of the AV Architecture, Macintosh computers used control
panels, such as Monitors, Sound, and Video, to access and configure a variety of system
devices, including audio and video (AV) devices. At the simplest level, you could access
the Sound and Monitors panels from the Control Panels folder in the System Folder.
Developers also created a variety of new and unique control panels to control their audio
and video devices.

These panels allowed you to select and change audio and video features on your
computer. For example, the Monitors control panel allowed you to select color or
monochrome, identify the monitor, and set bit depth. The Sound control panel allowed
you to select the source for sound input, change or mute the speaker volume, and select
an alert sound. The options available within these control panels depended on the
equipment connected to your computer.

Problem Areas 1

In a multimedia context, audio and video control panels proliferated as new AV
technologies evolved. Control panels were developed to satisfy the needs of individual
devices, such as audio/video displays with their various I/O (input/output) features.
These control panels provided little centralization when a system was configured with
multiple devices, they frequently duplicated functions, and it was sometimes necessary
to go to two or more control panels to accomplish what seemed to the user to be one
task. In addition, each panel had its own personality and was not aware of the inter-
dependency between the technology it controlled and other technologies coexisting in
the system. Users became confused by the number and variety of control panels.

Apple’s Solution 1

To deal with this proliferation, Apple Computer Inc. developed the AV Architecture. It
provides a Macintosh framework that integrates all configuration features and allows
you to develop AV applications with consistent user interfaces. Such applications enable
you to access and configure the AV features of Macintosh computers and multimedia
displays. They allow you to:

■

select and modify the characteristics of AV input/output devices, such as speakers
and CD players

■

change display characteristics such as brightness and contrast, or other more
advanced features

The AV Architecture’s panels replace the Monitors, Sound, and Video control panels. The
basic AV application currently provided by Apple is the Sound & Displays application.
Sound & Displays provides a categorized front-end, for which users can access the
individual panels that control AV devices. Figure 1-1 shows the Sound & Displays setup
window.

C H A P T E R 1

Overview of the AV Architecture and Application Software

4

Why the AV Architecture Was Developed

If you are working with AV devices, you should develop AV components rather than
control panels. Following the guidelines in this developer note, you should be able fit
your product’s panel seamlessly into the Sound & Displays application and into other
future AV applications.

Figure 1-1

Sound & Displays setup window

The AV Architecture is easy to use, powerful, flexible, and extendable. It is implemented
by the Component Manager, a dynamic linked library (DLL) technology that is now part
of the Macintosh Toolbox. The Component Manager is described in detail in

 Inside
Macintosh: More Macintosh Toolbox

. The AV Architecture specifies a framework for
separating the following elements into standard, reusable Component Manager
components, such as:

■

the driver-like software elements, or engines, that interface with audio and video
hardware devices

■

the user interface elements, or panels, that use the engines to control the audio and
video devices

By separating elements of the AV software in this way, you can easily create new panels,
update panels for existing engines, and reuse existing panels for new engines.

C H A P T E R 1

Overview of the AV Architecture and Application Software

Why the AV Architecture Was Developed

5

Architectural Features 1

The AV Architecture consists of the following components:

■

Panel Components

■

Engine Components

■

Port Components

■

Device Components

■

the optional Manager Component

These components enable you to develop the user interface panels and functionality
needed to communicate with all the AV devices connected to your Macintosh computer.
As a developer you may design your own components, however, you must follow the
baseline architecture as described in this developer note. You can also customize or
override existing components. You may need to create only Panel Components, or you
may need to create all five types of components. The component types are described in
this document in the order you are most likely to need to create them.

The architecture incorporates the functionality essential to current and future projects
and performs the following functions:

■

Provides a foundation for a new AV user interface and allows users to access
technological capabilities, such as video mirroring and double buffering, that will be
available in upcoming products.

■

Supports localization, which is the process of adapting software to a particular region,
language, and culture. Elements involved include date and time format, keyboard
resources, and fonts.

■

Supports systems that are not audio/video systems.

Using the AV Architecture you can develop applications that

■

support scripting and Apple events

■

are dynamic and configure themselves based on the capabilities of the system on
which the application is running

■

provide a clear conceptual model for configuring AV devices

■

create as few layers of interaction as possible and avoid modal dialog boxes
where possible

■

support task-oriented configurations, such as “play audio CD,” “enable microphone,”
and so forth

■

access frequently used settings easily and quickly

■

implement configuration changes immediately, so that if you change brightness
or contrast using a Video panel, you will see the changes reflected immediately on
the screen

C H A P T E R 1

Overview of the AV Architecture and Application Software

6

Architectural Components

■

provide supplementary visuals when needed

■

have comprehensive on-line assistance through the Apple Guide on-line help system

■

allow system settings to be changed automatically through

Apple events

 and through
scripting and recording.

Applications normally interact with Panel Components, Port Components, and the
Macintosh Toolbox.

When you configure AV features, you activate and deactivate the I/O devices, as well as
adjusting the various audio and video settings. You do this by means of an AV setup
panel. Figure 1-1 on page 4 shows the setup window used in the Sound & Displays
application.

Developer’s Role 1

As a developer, you can use the AV Architecture in a number of ways. For example
you can:

■

Develop new Panel Components and accompanying Engine Components that will
allow users to control your AV devices using Sound & Displays. Apple supplies this
application routinely with products that use the AV Architecture.

■

Develop new Engine Components that can be used by standard existing panels to
control your AV devices.

In the future, you will be able to:

■

Incorporate new or existing AV components into your own application. For instance,
you might invoke a standard or new panel from within an audio application to
control the volume of the CPU’s audio output.

Architectural Components 1

This section gives an overview of the architectural components. It explains the main
responsibilities of each component, what it does, and why it exists; it describes how to
deliver components; and finally it looks at the philosophy behind a component-based
architecture. Subsequent chapters of the developer note provide detailed information
about each component.

Panel Components 1

As shown in Figure 1-2, Panel Components are at the highest level in the AV Architecture.
You require a Panel Component for every panel needed in the human interface. The
display shown in Figure 1-1 on page 4 has four panels: Sound Input, Sound Output,
Video, and Displays.

C H A P T E R 1

Overview of the AV Architecture and Application Software

Architectural Components

7

Figure 1-2

 Panel Components

IMPORTANT

The panels shown in this section are examples of typical panels from
several AV applications including Sound & Displays. The panels you see
in your own system environment will be different and will reflect the AV
devices and the AV application you are using.

▲

Panel Components have the following general characteristics:

■

allow you to provide a user interface

■

contain no hardware-specific code

■

do not deal with bits and bytes or register-level transactions

■

have no knowledge of the hardware implementation

■

generally focus on a single task or set of controls, such as bit depth or resolution

Panel Components perform the following specific functions:

■

get the items in the

DITL

 (dialog item list)

■

get the title of the panel

■

handle user interaction events

AV application

Macintosh

Toolbox

AV architecture

Hardware

abstraction

layer

Drivers

Panel Component

For every panel needed

in the human interface

C H A P T E R 1

Overview of the AV Architecture and Application Software

8

Architectural Components

Panel Components generally access the hardware by means of the Engine Component,
as described in the following section. A given panel can access more than one engine,
and more than one panel can access the same engine. Panel Components may also use
the services of the Macintosh Toolbox, as shown in Figure 1-2. They may even use
drivers if the devices are available. They need know nothing about Port Components or
Device Components.

Figure 1-3, a window containing five panels, shows some of the elements that commonly
make up a panel.

Figure 1-3

Typical control panel elements

Panel elements include

■

sliders that allow you to adjust things like contrast and brightness

■

checkboxes that allow you to turn features on and off, for example displaying or
hiding the pointer, and identifying the display

■

radio buttons that allow you to select among features, for example, geometry features
such as height/width, position, or, as shown in Figure 1-3, to select grayscale or color.

■

lists that allow you to display and select among features such as the gamma features
Default, Mac 13” Color, Page White, and Uncorrected

Panel elements not shown in Figure 1-3 include pop-up menus that allow you to select
from a group of items or features, and static text such as an unchangeable text string that
contains the name of the display. Chapter 2 provides detailed information about Panel
Components.

The human interface guidelines applied to AV applications call for panel designs that
exclude Cancel or OK buttons. These buttons are associated with dialog boxes that you
dismiss when you have finished using them. On the other hand, AV panels are not
dismissed, but remain on the screen until you close the application. Since configuration
changes initiated through AV panels take place instantly, if you make a change and then
decide not to accept it, you can immediately go back and choose another setting.

Lists

Sliders

Radio buttons

Icon
button

Checkboxes

C H A P T E R 1

Overview of the AV Architecture and Application Software

Architectural Components

9

Engine Components 1

Engine Components provide the Panel Component with access to the hardware, as
shown in Figure 1-4. Note that for each function or set of related functions associated
with a given port, you must supply individual Engine Components. So, for example, if
you have a display port, you will need separate Engine Components for Contrast,
Geometry, and VPT (

Virtual Photometry Technology

).

Figure 1-4

Engine Components

Using Engine Components to provide this kind of access has the following advantages:

■

Specific hardware elements are separated from the user interface.

■

Engine Components act as a sort of

hardware abstraction

 layer, and provide common
APIs (application programming interfaces) to hardware functionality. These are
high-level APIs that are easy to use and contain calls such as

GetBrightness()

 and

SetContrast()

, rather than

SetDeviceRegister

.

■

Engine Components contain the mechanism for controlling specific attributes, such
as the Geometry functionality of a display port.

■

Several development teams can work independently on different elements of the
software at the same time. For example, some developers may be working on
hardware drivers while others are developing human interface panels for the
user interface.

AV application

Macintosh

Toolbox

AV Architecture

Hardware

abstraction

layer

Drivers

Panel Component

For every panel needed

in the human interface

Engine Component

For each function or

set of related

functions of each port

C H A P T E R 1

Overview of the AV Architecture and Application Software

10

Architectural Components

■

Elements such as Contrast or Brightness are quite different from each other and share
only the mechanism for communicating with the hardware. Because the mechanism
for controlling specific element functionality is encapsulated in an Engine
Component, the architecture is more modular, and specific engines can be upgraded
without disturbing other engines.

■

If you are viewing only the human interface of a specific element, such as Brightness,
the code for the other elements, such as Contrast, need not be in memory at the same
time. This type of code may be voluminous and viewing elements in this way saves
memory space.

Refer to Chapter 3 for further information about Engine Components.

Port Components 1

Each AV product has a port for each audio or video I/O element. Port Components
group control panels by their functionality and are defined in terms of type (category),
port, physical element, and attributes, as shown in Table 1-1. Figure 1-5 shows how Port
Components relate to other components in the AV Architecture.

Table 1-1

Port Component definition

Type or category Port Physical elements Attributes

Audio input Microphone port Microphone
CD player

Gain
Playthrough
Balance

Audio output Speaker port
Headphone port

Speakers
Headphones

Volume
Balance

Video input Video port Camera
VCR

Inputs
Format
Filter

Video output Display port Monitor
Display
Television screen
VCR
Camcorder

Contrast
Brightness

C H A P T E R 1

Overview of the AV Architecture and Application Software

Architectural Components

11

Figure 1-5

Port Components

Port Components contain calls that return the name and image of the port, and they
provide access to the hardware. In addition, they can turn an individual piece of
hardware, such as the headphone port, on and off. Access may be directly to the
hardware, using calls such as

SetDeviceRegister()

 and

GetDeviceRegister()

.

Port Components also help the Display Manager to detect and identify displays
connected to the system. “Implementing Wiggling” on page 42 provides more
information on detecting and identifying hardware elements on ports that have more
than one communication/control path.

Refer to Chapter 4 for further information about Port Components.

AV application

Macintosh

Toolbox

AV architecture

Hardware

abstraction

layer

Drivers

Panel Component

For every panel needed

in the human interface

Engine Component

For each function or

set of related related

functions of each port

Port Component

For every input or

output element in

the desktop device

C H A P T E R 1

Overview of the AV Architecture and Application Software

12

Architectural Components

Device Components 1

Device Components represent the collection of features or ports associated with a
particular physical device. A device can be a single display with one port; or a display,
such as the AppleVision 1710AV, with multiple ports and complex audio/video features;
or a CPU with audio capabilities. Figure 1-6 shows the position of Device Components in
the architectural hierarchy.

Figure 1-6

Device Components

All Device Components perform the following functions:

■ They contain a call that returns the name of the device, such as AudioVision, or
AppleVision.

■ They contain a picture (icon) of the device that can be displayed in a graphical
representation of the control panel or application.

■ They can act as drivers, with an expanded API that has additional calls such as
SetDeviceRegister() and GetDeviceRegister() for communicating directly
with the device’s hardware.

AV application

Desktop audio

and/or video device

Macintosh

Toolbox

AV Architecture

Hardware

abstraction

layer

Drivers

Panel Component

For every panel needed

in the human interface

Device Component

For every desktop

device

Engine Component

For each function or

set of related

functions of each port

Port Component

For every input or

output element in

the desktop device

C H A P T E R 1

Overview of the AV Architecture and Application Software

Architectural Components 13

Note
Port Components can also act as drivers. However, if more than one port
shares a common communication mechanism, it makes sense to use the
Device Component to implement this functionality. ◆

Refer to Chapter 5 for further information about Device Components.

Delivering Your Components 1
The components that you provide should be built into one or more system extensions.
The components can be encapsulated in the extension(s) in one of several ways:

■ as separate ‘thng’ files, each containing a separate AV component

■ as one ‘thng’ file containing all your AV components

■ as an INIT, which registers one Manager Component, which in turn registers all your
other AV components

You must use option two or option three if your components need to load in a predeter-
mined order. Appendix A provides more information on the Manager Component. The
“Component Manager” chapter of Inside Macintosh: More Macintosh Toolbox provides
information about ‘thng’ files. You should also refer to develop Issue 15, and the article
“Managing Component Registration” for more information about various methods of
registering Component Manager components. You will find develop in the Periodicals
folder on the CD ROM, Developer CD Series Reference Library, December 1994.

Advantages of a Component-Based Architecture 1
After looking at the different components that are part of the AV Architecture, it becomes
apparent why the architecture is component based. Like object-oriented architectures,
the AV Architecture is dynamic and modular. It allows you to replace or redesign indivi-
dual components without replacing the entire structure. This means that individual
functionality can be customized; new features, such as Contrast and Brightness, can be
changed and added; troubleshooting can be done at the component level, making it
easier to identify and fix problems.

In addition, separating Engine Components from Port Components allows each port to
be upgraded independently. It also allows the Engine Components to be used on newer
devices and even on different hardware with different Port Components, provided that
the API to the port is kept constant.

C H A P T E R 2

Panel Components 2Figure 2-0
Listing 2-0
Table 2-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 2

Panel Components

16

Panel Owner Search for Candidate Panels

This chapter describes the sequence of calls to each of the Panel Component functions.
When a panel window is being created, the chain of calls to AV Panel Components is
similar to the call sequence shown in Figure 2-1. This chapter describes how the panel
owner searches for candidate panels, opens candidates for display to the user, runs the
setup application, and then closes the panel window.

Figure 2-1

Overview of call sequence

Panel Owner Search for Candidate Panels 2

When the panel owner, which may be the AV application, searches for candidate panels
to display to the user, it usually asks the Display Manager to provide a list of candidates.
During this search, the calls shown in Figure 2-2 are made. During the first part of the
sequence the panel is opened, and a fidelity check is made to see how well the panel
functions on the specified port. If you get an acceptable fidelity measurement, the panel
closes and then reopens, and the call is made to get the specific class of the AV functionality.
The class may be sound, geometry control, color correction, and so forth. If the fidelity
measurement is not acceptable, indicating that the panel generally does not function
with the given port, the panel closes and is not reopened.

Search for

candidate panels

AVPanelOpen

AVPanelGetFidelity

AVPanelGetPanelClass

AVPanelClose

Panel opened

for display

to the user

AVPanelOpen

AVPanelSetCustomData

AVPanelGetDITL

AVPanelComponentGetPanelAdornment

AVPanelInstall

AVPanelTargetDevice

AVPanelGetSettingsIdentifiers

AVPanelSetSettings

AVPanelGetTitle

AVPanelClose

Setup

application

running

AVPanelEvent

AVPanelValidateInput

AVPanelTargetDevice

Closing the

panel window

AVPanelValidateInput

AVPanelGetSettings

AVPanelGetSettingsIdentifiers

AVPanelRemove

AVPanelClose

Always occur

in this order

Always occur

in this order

May occur

in this order

Always occur

in this order

C H A P T E R 2

Panel Components

Panel Owner Search for Candidate Panels

17

Figure 2-2

Call sequence—panel owner search for candidate panels

IMPORTANT

The functions are described from the panel viewpoint. The parameters
to the functions are not the same as the parameters to the functions
called by the controlling application. This is because the Component
Manager translates a component selector call from the format of the
calling function, to the format of the function being called.

▲

AVPanelOpen 2

AVPanelOpen

 is a standard component function, as described in standard Component
Manager documentation.

pascal ComponentResult AVPanelOpen (Handle storage,

ComponentInstance self)

storage

The handle that was associated with the panel by the

SetComponentInstanceStorage()

 call.

self

An instance of your panel component.

Supplementary Information 2

This panel should perform the following functions as a minimum:

■

It should decide whether it is safe to open another instance of the component. Some
AV panels restrict themselves to having only one instance open at a time, while others
allow an unlimited number of instances to be open.

■

AVPanelOpen

 must also allocate a handle to hold the instance globals. Refer to
“Creating and Destroying Common Globals” on page 57 for information on this
subject. There is a single data structure that a panel defines for itself. This structure
holds all the information needed for the panel to manage itself. The handle allocated
by the panel is equivalent to the size of the data structure.

■

The panel initializes the

self

 field of the instance globals. Panels are free to store
whatever information they need. However, one of the fields of the instance globals
data structure should be a

Component

 type. This field should be initialized to hold
the

self

 parameter that was passed into the

AVPanelOpen()

 routine. It is useful to
have this information available at certain times.

AVPanelOpen

AVPanelClose

AVPanelGetFidelity

Sequence 2

Sequence 1

AVPanelGetPanelClass

C H A P T E R 2

Panel Components

18

Panel Owner Search for Candidate Panels

■

The panel sets the component instance storage. In order to have the instance globals
handle passed back each time one of the component selectors is called, the panel must
call

SetComponentInstanceStorage (self, (Handle) globals)

. Doing this
allows the panel to associate the newly allocated handle with the panel instance.

Sample Code: AV Architecture 2

In the following example, the variable

globals

 was the local parameter used to allocate
the handle.

pascal ComponentResult

AVPanelOpen (Handle storage, ComponentInstance self)

{

#pragma unused (storage)

// NOTE: This code assumes the definition of a data structure

// called MyPanelGlobals, a data type called

// MyPanelGlobalsHdl, and a constant called

// kMaxNumberofMyPanelInstances

ComponentResult result = noErr;

MyPanelGlobalsHdl globals;

SetComponentInstanceA5 (self, (long) LMGetCurrentA5());

// Can we open another instance?

if (CountComponentInstances ((Component) self) <=

kMaxNumberOfMyPanelInstances)

{

// Allocate our storage:

globals = (MyPanelGlobalsHdl) NewHandleClear (sizeof

(MyPanelGlobals));

if (globals != nil)

{

// Keep a reference to self:

(*globals)->self = (Component) self;

// Set storage ref:

SetComponentInstanceStorage (self, (Handle) globals);

}

else// NewHandleClear failed

C H A P T E R 2

Panel Components

Panel Owner Search for Candidate Panels

19

{

result = MemError();

}

}

else// No more instances can be opened

{

result = kAVOpenComponentInstanceError;

}

return (result);

}

AVPanelGetFidelity 2

This function allows the panel to tell the caller how well the panel functions on a
particular port.

pascal ComponentResult AVPanelGetFidelity

(ComponentInstance panelComponent,

 AVIDType portID,

 DMFidelityType* panelFidelity);

panelComponent

An instance of the panel component.

portID

The ID of the port for which fidelity is being returned.

panelFidelity

A number passed back to the caller that measures how well the
panel supports the port in question.

Supplementary Information 2

During the process of searching for a candidate, the Display Manager opens the Panel
Component and call its

AVPanelGetFidelity

 function. At this point, the panel should
examine the port ID that is passed in and determine how well it supports that port.
Typically, if a good fidelity number is returned, the parent application will probably call

AVPanelTargetDevice

 later and then open the panel for that port.

If a panel, such as a bit depth panel, needs no engines but instead needs a gDevice, it can
just call:

DMGetGDeviceByDisplayID(portID);

If no gDevices come back, it will return

kNoFidelity

.

If the panel needs one or more engines, it will search for the available engine type(s) it
needs by making the following call for each engine type:

DMNewAVEngineList (portID, engineType, minimumFidelity,

 engineListFlags,reserved, engineCount,

 engineList);

C H A P T E R 2

Panel Components

20

Panel Owner Search for Candidate Panels

The parameters to this call are as follows:

portID

The ID of the port for which fidelity is being returned.

engineType

This is the component subtype of the particular kind of engine for
which you are searching. For example, if the Brightness panel needs
to find its engine, you would provide the component subtype of
your brightness engine here. Note that there may be more than one
engine registered with this subtype. Some of these engines may not
belong to you.

minimumFidelity

This parameter sets the minimum level of fidelity you will accept.
The interfaces shipped with the SDK (Software Developer Kit)
enumerate the constants used to define the levels of fidelity.

engineListFlags

Currently you should set this parameter to

0.

reserved

Set this parameter to

0.

engineCount

When this parameter is returned, it contains the number of engine
components that responded to this call.

engineList

This is the list of engine components. To get the relevant
information about each engine, you can use an engine iterator
function to cycle through the list.

There may be several engines of

theType

. The Display Manager will find all registered
engine components that match the criteria to the function, and it will call their

AVGetFidelity

 functions. The returned engine list contains a reference to each of the
engines that succeeded in responding to this query. If there is more than one engine in
the returned list, your panel will need to query each one to find the one that the panel
expects. One way to do this is have one or more selector functions that your engine and
panel know about. Using this communication mechanism, your panel can determine
whether it has found the engine it needs.

The

AVPanelFidelity

 value that your component passes back from this function
should be set based on the results of the steps taken:

■

If the panel determines that it has the ability to control the specified port completely
by means of the port ID (

portID

), it can return

kManufacturerFidelity

.

■

If the panel determines that it is not the owner of the port, but it knows how to control
the functions of the port, it can return

kDefaultFidelity

.

■

If the panel determines that it knows nothing about how to control the port, it can
return

kNoFidelity

.

C H A P T E R 2

Panel Components

Panel Owner Search for Candidate Panels

21

AVPanelClose 2

This function is a standard component function, as described in the Component
Manager documentation.

pascal ComponentResult AVPanelClose

(Handle storage, ComponentInstance self)

storage

The handle that was allocated in the

AVPanelOpen()

 routine and
that was associated with the panel by the

SetComponentInstanceStorage()

 call.

self

An instance of your panel component.

Supplementary Information 2

The panel should be able to do the following:

■

Dispose of any data handles or component references that are referenced from this
panel’s instance globals.

■

Dispose of the instance globals handle.

AVPanelGetPanelClass 2

Apple Computer defines standard classes of AV functionality, such as sound, geometry
control, color correction control, standard video/graphics control, and so forth. Classes
allow you to use one method of grouping and displaying panels to the user.

pascal ComponentResult AVPanelGetPanelClass

(Handle storage, resType* panelClass,

 resType* panelSubClass, Ptr reserved1,

 Ptr reserved2)

storage

Your panel’s storage data, created in the

AVPanelOpen

 routine.

panelClass

A pointer to the

resType

 which receives the class of your panel.
This is either one of the pre-defined constants (see the sample code,
page 18 for the definitions), or a class of your own definition.

panelSubClass

This is also a pointer to a

resType

. It is currently not used, so you
should set it to

nil

.

reserved 1

 and

2 Set these parameters to nil.

Supplementary Information 2

There is no supplementary information about this function.

C H A P T E R 2

Panel Components

22 Opening Panels for Display to Users

Opening Panels for Display to Users 2

Selected panels are opened for users in the sequence shown in Figure 2-3. If an error
occurs while the panels are being opened, a call is made immediately to AVPanelClose.

Figure 2-3 Opening panels for display to users

AVPanelOpen 2
The AVPanelOpen function is described on page 17, and it works in exactly the same
way for this sequence.

AVPanelClose

AVPanelOpen

AVPanelSetCustomData

No errors occur

Error occurs

AVPanelGetDITL

AVPanelComponentGetPanelAdornment

AVPanelInstall

AVPanelTargetDevice

AVPanelGetSettingsIdentifiers

AVPanelSetSettings

AVPanelGetTitle

C H A P T E R 2

Panel Components

Opening Panels for Display to Users 23

AVPanelSetCustomData 2
This function allows two components to share specific data. It enables one component to
share information with another component that is being launched. The entity that creates
the parameters to launch a given panel has the option of specifying the custom data,
usually as a handle to a later structure.

pascal ComponentResult AVPanelSetCustomData (Handle storage,

long theCustomData)

storage The handle that was allocated in the AVPanelOpen() routine and
that was associated with the panel by the
SetComponentInstanceStorage() call.

long A long integer.
theCustomData Field of data structure.

Supplementary Information 2

There are occasions when one panel may need to create and launch a separate panel
window. The process of doing this involves creating a variety of data structures that tell
the panel window what panels should be in the window. One of the fields of one of the
data structures is the custom data field. This is a long integer that can be treated as a
standard refCon-type field. The function is a mechanism that allows a panel to pass
specific data to the panel that is being launched. The data may be

■ a four-byte value

■ a handle to a data structure that both of the panels can manipulate

■ the component reference of the panel that is causing the new panel window to
be launched

AVPanelGetDITL 2
This function allows the parent application to determine which dialog box items are
managed by your panel. The parent application uses this information to build the
configuration window for users.

pascal ComponentResult AVPanelGetDITL

(ComponentInstance panelComponent, Handle *ditl);

panelComponent An instance of the panel component.
ditl Refers to the Handle that is to receive the component’s dialog item

list. The component should allocate a handle to the DITL, either
through a GetResource() call, or by manually creating a DITL
and returning this handle.

C H A P T E R 2

Panel Components

24 Opening Panels for Display to Users

Supplementary Information 2

The parent application calls your AVPanelGetDITL function to obtain the list of dialog
box items supported by your panel. The panel then puts these items into a window and
presents the window to users.

The component returns the item list in a Handle provided by the panel.

Note
The parent application disposes of this Handle after retrieving the item,
so you should make sure the item list is not stored in a resource. If your
item list is already in a resource handle, you can use the Resource
Manager’s DetachResource function to convert that resource Handle
into one that is suitable for use with the AVPanelGetDITL function. ◆

The parent application will open your resource file before calling the function, unless
you instructed the parent application not to open your resource file by setting the
channelFlagDontOpenResFile component flag to 1.

Note
If the panel needs to add any items to the DITL dynamically, this is the
time to do it. The DITL handle should be resized appropriately, and the
necessary items inserted into the structure. ◆

Note
You will have the opportunity to adjust the DITL items in the
AVPanelTargetDevice function. ◆

AVPanelComponentGetPanelAdornment 2
This function allows the panel to request how it will be adorned when it is displayed in
the panel window. A panel’s adornment consists of the border and the name.

pascal ComponentResult AVPanelComponentGetPanelAdornment

(Handle storage, long *panelBorderType, long *panelNameType)

storage The handle that was allocated in the AVPanelOpen() routine and
that was associated with the panel by the
SetComponentInstanceStorage() call.

long A long integer

Supplementary Information 2

There is no supplementary information about this function.

C H A P T E R 2

Panel Components

Opening Panels for Display to Users

25

Sample Code 2

This section shows how a panel should request to be adorned. The options currently
available for adornment are as follows:

enum {

kAVPanelAdornmentNoBorder = 0,

kAVPanelAdornmentStandardBorder

};

enum {

kAVPanelAdornmentNoName = 0,

kAVPanelAdornmentStandardName

};

Figure 2-4 shows an example of a panel that has both name and border displayed.
Figure 2-5 shows a panel with a name but no border. Figure 2-6 shows a panel with
no name and no border. The text “AudioVision 14 Display” shown in Figure 2-6 is
just a text string that is part of the panel. It is not the name of the panel.

Figure 2-4

Panel with name and border

Figure 2-5

Panel with name and no border

Color Depth

Name

Border

Name

No border

C H A P T E R 2

Panel Components

26 Opening Panels for Display to Users

Figure 2-6 Panel with no name and no border

AVPanelInstall 2
The parent application calls the AVPanelInstall function after adding your items to
the window. This routine is called only once throughout the life of the panel, so the
operations performed should be actions that need to be taken only once.

pascal ComponentResult AVPanelInstall

(ComponentInstance panelComponent,

 DialogPtr theDialog,

 short itemOffset);

panelComponent An instance of the panel component.
theDialog A pointer identifying the panel’s dialog box.
itemOffset Specifies the offset to the panel’s first item in the window. Because

the parent application builds your dialog box items into a larger
window containing other items, this value may be different each
time your panel is installed. Do not depend on it being the same.

Supplementary Information 2

The parent application provides the panel with the information that identifies the
window and the offset of the panel’s items in the DITL. Since this function is called only
once, you may use this opportunity to do the things that need to be done only once. This
might include creating a new empty list handle if any of your DITL items are lists;
positioning items within your panel’s boundaries if they need to be adjusted; loading
resources that are not specific to any particular port or device, and saving them in the
instance globals.

IMPORTANT

At this time, the panel does not have any knowledge of the specific port
it will be asked to control, so there are limitations to the kinds of things
that can be accomplished. For example, the Bit Depth panel can allocate
an empty list, but it cannot fill in the list entries with the bits depths
supported for a given port until it knows which port it will be
controlling. This information becomes available through the
AVPanelTargetDevice() function. ▲

C H A P T E R 2

Panel Components

Opening Panels for Display to Users 27

AVPanelTargetDevice 2
This function controls specific ports and the device referred to is a port. The function
may be thought of as the continuation of AVPanelInstall(). However, unlike
AVPanelInstall(), it may be called more than once during the life of the panel.

pascal ComponentResult AVPanelTargetDevice

(Handle storage, AVIDType displayID,

 DialogPtr theDialog, long itemsOffset)

storage The handle that was allocated in the AVPanelOpen() routine and
that was associated with the panel by the
SetComponentInstanceStorage() call.

displayID The AV ID (audiovideo ID) of the port that is being targeted.
theDialog The dialog box window that owns this panel.
itemsoffset The offset into the DITL of the window for this panel’s items.

Supplementary Information 2

The targeting action of this function gives the panel an opportunity to configure itself
based on the specific capabilities of the port it will be controlling. If the panel requires an
engine to manipulate the hardware, it can find and open an instance of the appropriate
engine, as it did during the AVPanelGetFidelity() function. However, this time it
should save a reference to the Engine Component in its globals, for use as the panel is
receiving events from the user.

The panel can get the current state of the hardware by making engine (or Macintosh
Toolbox/driver) calls. It can then set its controls and globals fields appropriately.

The important thing to remember about this function is that it can be called multiple
times while the panel is open. The AV Architecture is designed this way to allow
flexibility in the human interface design of AV applications. For example, an application
may wish to keep a pop-up menu of the monitors connected to a Macintosh computer.
When the user chooses a new item from the pop-up menu, the application simply asks
the existing panels to target themselves to this new port.

Because targeting can happen multiple times, it is important that you do not rely on
the state of the hardware-specific globals fields that were not initialized in the
AVPanelInstall() routine. For example, if some of the fields have significance
when their value is 0, and the globals handle was originally allocated with a
NewHandleClear() toolbox call, it may seem safe to assume that you can rely on
them being clear after the panel leaves the targeting routine. However, this is not true,
since the panel may have been running and modifying the fields of the globals and
was subsequently asked to target again. It is important to set any hardware-specific
fields in the globals that need to be initialized when the targeting routine is complete, in
case there are other functions in the panel component that rely on this information.

C H A P T E R 2

Panel Components

28 Opening Panels for Display to Users

AVPanelGetSettingsIdentifiers 2
The parent application calls the component’s AVPanelGetSettingsIdentifiers
function to get the identifier (number) and the type under which your settings are
stored. The identifier is an integer. The type is a four-character resource ID that fits into
the long word format. The identifier and type uniquely identify the information that will
be stored to disk.

pascal ComponentResult AVPanelGetSettingsIdentifiers

(ComponentInstance panelComponent,

 short *theID, OSType *theType);

panelComponent An instance of your panel component.
theID The identifier under which your settings should be stored.
theType The type under which your settings should be stored.

Supplementary Information 2

There is no supplementary information about this function.

AVPanelSetSettings 2
The parent application calls the component’s AVPanelSetSettings function to restore
the panel’s settings using previously saved values.

pascal ComponentResult AVPanelSetSettings (Handle globals,

 Handle ud, long flags);

globals The panel’s Handle for global data.
ud Identifies a Handle that contains new settings information for your

panel. Your component must not dispose of this Handle.
flags Reserved for future use.

Supplementary Information 2

The parent application calls the AVPanelSetSettings function to restore your panel’s
settings. It may use this call to set default values before displaying the panel to the user.

Your component originally creates the settings information when the parent application
calls the AVPanelGetSettings function. The parent application passes this configura-
tion information back to you in the ud parameter to the AVPanelSetSettings
function. Your component should parse the configuration information and use it to
establish your panel’s current settings.

C H A P T E R 2

Panel Components

Opening Panels for Display to Users 29

Note
Your component may not be able to accommodate the original settings.
For example, settings may have been stored for some time, and the
hardware environment may not be able to support the values in the
settings. You should try to make the new settings match the original
settings as closely as possible. If you cannot make a perfect match,
return an appropriate result code. ◆

Note
Do not save settings that are managed by the system, such as bit depth,
resolution, and so forth. Configure the panel to reflect these settings
during the AVPanelTargetDevice routine. ◆

The parent application uses the component’s AVPanelGetSettings function to
retrieve this configuration information.

AVPanelGetTitle 2
The parent application calls the AVPanelGetTitle routine if it wants to obtain the title
of the panel. The parent application uses this string whenever an identifier for your
panel is required. The identifier is used, for example, in the border title of a panel in the
panel window.

pascal ComponentResult AVPanelGetTitle (Handle globals,

 StringPtr title);

globals The panel’s Handle for global data.
title Refers to the StringPtr to hold your title. Fill in this StringPtr

with the string you want to represent the title of your AV panel.

Supplementary Information 2

This routine is used to get the title of a panel. The parent application then uses this title,
which is a string, to identify the panel to the user. The title is generally displayed in the
panel border. The component returns the title in the StringPtr that is provided by the
parent application.

The parent application opens the resource file before calling the function unless you have
instructed the parent application not to open the resource file. That is, you have set the
channelFlagDontOpenResFile component flag to 1. This string could be stored in
the resource fork of your component.

AVPanelClose 2
The AVPanelClose function is described on page 21, and it works in exactly the same
way for this sequence.

C H A P T E R 2

Panel Components

30 Running the Setup Application

Running the Setup Application 2

When the setup application is running and interacting with the user, calls are made to
the functions shown in Figure 2-7 and described in this section.

Figure 2-7 Call sequence—setup application running

AVPanelEvent 2
The AVPanelEvent function allows your component to receive and process individual
dialog box events. This function is similar to a modal dialog box filter function.

pascal ComponentResult AVPanelEvent(Handle globals, DialogPtr

dialog, short itemOffset,

Eventrecord *theEvent,

short *itemHit,

Boolean *handled);

globals The panel’s Handle for global data.
dialog A dialog pointer identifying the settings dialog box.
itemOffset Specifies the offset to the panel’s first item in the dialog box.
theEvent Contains an event record, which contains information identifying

the nature of the event.
itemHit Refers to a field that is to receive the item number in cases where

the component handles the event.
handled Refers to a Boolean value. Set this Boolean to indicate whether or

not the component handles the event. Set it to TRUE if it handles the
event, and to FALSE if it does not.

Repeated calls

These calls may occur in any order

AVPanelEvent

Calls made when panel window

receives enter/return key events

AVPanelValidateInput

Calls may be made, depending

on the human interface of the

setup application

AVPanelTargetDevice

C H A P T E R 2

Panel Components

Running the Setup Application 31

Supplementary Information 2

The parent application calls your AVPanelEvent function whenever an event occurs in
the settings dialog box. The AVPanelEvent function is similar to a modal dialog box
filter function. The main difference is that rather than returning a Boolean value to
indicate whether or not the event was handled, the AVPanelEvent function sets a
Boolean that is provided by the calling function. If you handle the event, be sure to
update the field referred to by the itemHit parameter. By default, this value will be
initialized to true by the parent application, so you need only be concerned with
setting it to false. Some events, such as mouse down, focus on one panel. Others, such
as update, activate, deactivate, suspend, and resume, go to all panels. When you handle
a single-panel event, the value should be set to true. If you do not handle the
single-panel event, the value should be set to false. The value is always set to false
for events that go to all panels, regardless of whether or not they are handled.

AVPanelValidateInput 2
The parent application calls the AVPanelValidateInput function to allow you to
validate the contents of the user window.

pascal ComponentResult AVPanelValidateInput (Handle globals

Boolean *ok);

globals The panel’s Handle for global data.
ok Contains a pointer to a Boolean value. You set this Boolean to

indicate whether user settings are acceptable. Set it to TRUE if the
settings are correct, otherwise, set it to FALSE.

Supplementary Information 2

The parent application calls the AVPanelValidateInput function to allow you to
validate the settings chosen by the user. This is your opportunity to validate them in
their entirety, including those for which you may not have received dialog box events or
mouse clicks. For example, if your panel uses a TextEdit box, you should validate its
contents at this time. Be sure to give the user some indication of how to fix the settings.

AVPanelTargetDevice 2
The AVPanelTargetDevice function is described page 27, and it works in exactly the same
way for this sequence.

C H A P T E R 2

Panel Components

32 Closing the Panel Window

Closing the Panel Window 2

When you are ready to close the window that holds the panel, calls are made to the
functions shown in Figure 2-8 and described in this section.

Figure 2-8 Call sequence—closing the panel window

AVPanelValidateInput 2
The AVPanelValidateInput function is described page 31, and it works in exactly the
same way for this sequence.

AVPanelGetSettings 2
The parent application calls the component’s AVPanelGetSettings function to
retrieve the panel’s current settings.

pascal ComponentResult AVPanelGetSettings (Handle globals,

 Handle ud, long flags);

globals The panel’s Handle for global data.
ud Contains a Handle to your panel’s configuration data. Your

component is responsible for creating a new Handle and returning
it as ud. Your component is not responsible for disposing of the
Handle.

flags Reserved for future use.

AVPanelClose

AVPanelValidateInput

AVPanelGetSettings

AVPanelGetSettingsIdentifiers

AVPanelRemove

C H A P T E R 2

Panel Components

Closing the Panel Window 33

Supplementary Information 2

The parent application calls your AVPanelGetSettings function to obtain a copy of
your panel’s current settings. The parent application stores these settings and may use
them to restore the panel’s settings by calling the AVPanelSetSettings function. Your
component should store whatever values are necessary to configure the associated panel
component properly.

These settings may be stored as part of a larger panel configuration, and they must
remain valid across system restarts. Therefore, you should not store values that may
change without your knowledge, such as a component ID. In addition, saving a file
reference number or component instance is not valid.

You are free to format the data in the Handle in any way you wish. Make sure you
can retrieve the settings information from the user data item when the
AVPanelSetSettings function is called. You may choose to format the data in
such a way that other components can parse it easily, allowing the component to
operate with other panels.

The parent application uses the component’s AVPanelSetSettings function to restore
this configuration information.

Note
Do not save settings that are managed by the system, such as bit depth,
resolution, and so forth. Configure the panel to reflect these settings
during the AVPanelTargetDevice routine. ◆

AVPanelGetSettingsIdentifiers 2
The function is described on page 28 and it works in exactly the same way for
this sequence.

AVPanelRemove 2
The parent application calls the component’s AVPanelRemove function before it
removes the panel from the settings dialog box.

pascal ComponentResult AVPanelRemove(Handle globals,

 DialogPtr dialog,

 short itemOffset);

globals The panel’s Handle for global data.
dialog Contains a dialog pointer identifying the settings dialog box.
itemOffset Specifies the offset to the panel’s first item in the dialog box.

C H A P T E R 2

Panel Components

34 Closing the Panel Window

Supplementary Information 2

The parent application provides you with the information that identifies the dialog box,
and the offset of the panel’s items into the dialog box. You may use this opportunity to
save any changes you have made to the dialog box or to retrieve the contents of
TextEdit items. If the parent application opened your resource file, it will still be open
when it calls this function.

The AVPanelRemove() routine is the place to get rid of any data that pertains to the
panel’s membership in the panel window from which it is being removed. This is
different from getting rid of the globals handle in AVPanelClose(), because the
panel still exists after the AVPanelRemove() function has been completed.

You can use this routine, for example, to

■ remove the display event notification registration, if one was created, by calling
DMRemoveExtendedNotifyProc()

■ remove any Apple event handler routines by calling AERemoveEventHandler()

You use AVPanelRemove to perform these functions because once the panel does not
belong to a panel window any longer, it has no need to receive notification or Apple
events. Any other ties to the system that are relevant only when this panel is installed
should be removed at this time.

AVPanelClose 2
The AVPanelClose function is described on page 21, and it works in exactly the same
way for this sequence.

C H A P T E R 3

Engine Components 3Figure 3-0
Listing 3-0
Table 3-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 3

Engine Components

36

Engine Component Description

When Engine Components are required to operate a Panel Component, they are opened
and closed by the Panel Component, usually when the panel itself is opened and
closed.This chapter describes the Engine Component functions that are part of the basic
AV Architecture, it describes how to register Engine Components multiple times, and
also explains how notification takes place. Refer to “Engine Components” on page 9 for
an overview of Engine Component functions and the functional advantages associated
with Engine Components.

Engine Component Description 3

Engine Components have the following component description:

Engine Component Functions 3

This section describes the Engine Component functions used in the AV Architecture .

AVEngineComponentGetFidelity 3

This function allows your engine to tell the caller (typically a panel with its own

GetFidelity

 function) how well your engine can perform on a particular port.

pascal ComponentResult AVEngineComponentGetFidelity

(ComponentInstance engineComponent,

 AVIDType portID,

 DMFidelityType* engineFidelity);

engineComponent

An instance of your engine component.

portID

The ID of the port for which to return the fidelity measurement.

engineFidelity

A number that is passed back to the caller to indicate how well the
engine supports the port in question.

componentType = 'avec';

Indicates whether the
component is an audio
or video panel.

componentSubType = '????'

Identifies the specific engine.

componentManufacturer = '????';

Identifies the manufacturer.

componentFlags = cmpWantsRegisterMessage;

Makes sure the component
is suitable for the machine.

C H A P T E R 3

Engine Components

Registering Engine Components Multiple Times

37

Supplementary Information 3

The Engine Component checks its own port ID to see if it matches. If it does, the
component returns a fidelity measurement (

engineFidelity

) that indicates the engine
should be used for this port ID, overriding any engines that are more generic.

AVEngineComponentTargetDevice 3

Your engine makes its connection to a particular port in response to a call to

AVEngineComponentTargetDevice

.

pascal ComponentResult AVEngineComponentTargetDevice

(ComponentInstance engineComponent,

 AVIDType portID);

engineComponent

An instance of your engine component.

portID

The ID of the port for which to return the fidelity measurement.

Supplementary Information 3

To find its port, the engine calls

DMNewDevicePortList(portID);

. The engine needs
to talk to hardware, so it opens an instance of the Port Component. The Open selector of
the port also opens an instance of the Device Component.

If the functionality for communicating with the hardware is stored in the Device
Component, rather than the Port Component, the engine asks the port for the Device
Component instance by calling

AVDevicePortGetDeviceComponent();

.

Registering Engine Components Multiple Times 3

There are special cases where you may need to register an Engine Component more than
once. This occurs specifically if the Engine Component needs to share global data with
other instances that might be open for the same device. For example, if the device is a
display with a contrast control feature, it may take too long to read the contrast value
from hardware each time you want to change contrast. In this case, the contrast value
may be cached in the Engine Component.

The Manager Component registers the engine separately for each device, and stores the
cached values in separate refCon globals for each registered engine. This means that the
Manager Component, rather than the Panel Component, can call the engine’s target
selector. However, it can call it only once, at INIT time, to set the port ID for the engine.
Later attempts to call the target selector will be ignored, since the engine is fixed on one
device. When any call is made to the engine’s

GetFidelity

 selector, the engine can
simply check its own port ID to see if it matches.

C H A P T E R 3

Engine Components

38

Notification

This is preferable to other solutions for a number of reasons:

■

If the value is stored in the instance globals, other engines that are open for other
panels will not have access to the updated value of the first engine and that engine’s
cache will become out of date without the engine realizing this.

■

If the value is stored in the refCon globals, it conflicts with engines that are operating
on different devices with different values.

Notification 3

When there are changes in the machine state, such as an increase or decrease in speaker
volume, a change in contrast or brightness, and so forth, all components affected by the
change are notified, provided they are registered with the Display Manager. The
notification mechanism used in the AV Architecture allows these types of changes to be
synchronized across multiple devices.

All components use the following notification messages. However, if you have a fully-
featured suite of components (Panel, Engine, Port, and Device Components), it is the
Engine Component that sends out the notification.

typedef pascal void (*DMExtendedNotificationProcPtr)(void*

userData,short theMessage,void* notifyData);

pascal OSErr

DMRegisterExtendedNotifyProc(DMExtendedNotificationProcPtr

notifyProc, void* notifyUserData,unsigned short

nofifyOnFlags,ProcessSerialNumberPtr whichPSN)

 = {0x303C,0x07EF,_DisplayDispatch};

pascal OSErr

DMRemoveExtendedNotifyProc(DMExtendedNotificationProcPtr

notifyProc,void* notifyUserData,ProcessSerialNumberPtr

whichPSN,unsigned short removeFlags)

 = {0x303C,0x0726,_DisplayDispatch};// Allows multiple

registrations to remove by userData, NOT just ProcPtr (which is

good for components).

pascal OSErr DMSendDependentNotification(ResType

notifyType,ResType notifyClass,DisplayIDType

portID,ComponentInstance notifyComponent)

 = {0x303C,0x0830,_DisplayDispatch};

This is not the only method of sending out a notification. “Notification Mechanisms” on
page 58 provides additional information on this subject.

C H A P T E R 4

Port Components 4Figure 4-0
Listing 4-0
Table 4-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 4

Port Components

40

Why Have Ports?

This chapter describes the Port Components that are part of the AV Architecture . The
chapter explains why ports are a critical part of the AV Architecture; explains why Port
Components are necessary, and describes how they work; describes the software
functions associated with the Port Components.

Why Have Ports? 4

Each AV device (computer, display, and so on) has ports that enable audio and video
elements (such as displays, microphones, cameras, VCRs, and so on) to be connected
to them.

With products, such as the Apple AudioVision display, that have many functions
(brightness, contrast, speaker volume, headphone volume, microphone on/off, and
so forth), it would be very confusing if all the panels associated with the functions
appeared in one window at the same time.

The AV Architecture therefore partitions the control panels in a logical way that allows
you to see groups of related panels in the same window. The most logical way to
group the panels is by port, since each audio or video I/O function of an AV device
has a discrete port associated with it. Figure 4-1 shows the Sound & Displays setup
window. This window is typical of setups that group their panels by port. Three
devices are displayed, as described below. Each device is surrounded by icons for
the ports it supports.

Figure 4-1

Audio/Video Setup window

1. The first icon represents a display, such as an AudioVision display. The display has an
integral microphone and speaker; ports for external speakers or headphone; and a
port for a sound input, such as a microphone or CD player.

1. 2.

3.

Devices

Device

Ports

C H A P T E R 4

Port Components

Why Have Ports?

41

2. The second icon represents a regular display or monitor. This device has no external
ports, but it does have intrinsic features that can be changed, for example brightness,
contrast, resolution, and color depth.

3. The third icon represents a Macintosh computer. It has an internal CD port, internal
speakers, ports for an external microphone or other sound input, a port for external
speakers or headphones, and a port for a digital camera.

The lists on the left side of the window indicate which displays are connected to the
system. In the example shown in Figure 4-2, there are two available displays: Display (2),
and AudioVision Display (2). The other lists show the audio/video I/O ports associated
with the devices shown on the right. The listings change according to the I/O devices
connected to your system, and whether or not the ones present are functioning. For
example, if you have a computer with an audio CD drive, Audio CD will not appear in
the list if there is no CD in the drive.

When you select one of the devices, an associated panel is displayed on the screen. For
example, if you select the AudioVision (1) display, you will see the panel shown in
Figure 4-2. This panel allows you to change color depth, resolution, gamma correction,
and brightness and contrast. It also allows you to identify the displays in your
configuration, and to hide the pointer (cursor) on the display. The query button (?)
allows you to access on-line help.

Figure 4-2

Setup control panel for an AudioVision 14 display

Each port is identified by an AV ID (audio/video identification) requested from the
Display Manager at boot time. When an AV application wishes to show all applicable
panels for a specific port, it asks the Display Manager for a list of panels. The Display
Manager in turn asks all the Panel Components if they work on the selected port by
calling the

AVPanelGetFidelity

 function and passing in the AV ID of the port
in question.

Color depth
panel

Resolution
panel

Gamma
correction
panel

Contrast and
brightness
panel

C H A P T E R 4

Port Components

42

Why Have Port Components?

Why Have Port Components? 4

Each port has an associated Port Component that contains calls that return the name and
image of the port, turn the port on and off, and provide hardware access to the port.

Storing Names and Icons 4

The Port Component stores the name string and icons that represent the port. It
implements two functions,

AVPortGetName

, which returns the name of the port, and

AVPortGetGraphicInfo

, which returns the icon that is displayed to show the port on
the user interface.

Turning the Port On and Off 4

In some cases, it is necessary simply to turn the port on or off. The meaning of

on

 and

off

varies depending on the port. However, most ports have this option, and can implement
it without actually opening a Panel Component or an Engine Component.

The

AVPortSetActive

 and

AVPortGetActive

 functions are used for this purpose.
The caller calls the port’s

AVPortSetActive

 function to turn the port on or off, and
then calls the

AVPortGetActive

 function to check whether or not current is being
supplied to the Port Component. The port does this by communicating directly with the
hardware or with the Device Component.

Implementing Wiggling 4

Wiggling is important for hardware that has ports with more than one control path. For
example, a computer may be connected to several AV displays, as shown in Figure 4-3.
The computer has a video card for each display and is connected to each display by
means of individual video cables. In addition, the computer is connected to each display,
in daisy-chain fashion, by the Apple Desktop Bus (ADB) cable, and each display has a
unique ADB address. Both the video cable and the ADB cable are used to control what
appears on the display.

For example, if you are using an AppleVision display, when you press the Contrast Up
button on the bezel of the display, the display sends a signal to the computer through the
ADB. The computer then displays a pop-up window on the screen of the display on
which the button was pressed. When you have more than one display connected, it is
important to identify the display (device) associated with the ADB address, otherwise,
the pop-up window may appear on the wrong screen.

C H A P T E R 4

Port Components

Why Have Port Components?

43

Figure 4-3

Ports with more than one control path

Port Components have wiggle functions,

AVPortGetWiggle

 and

AVPortSetWiggle

,
that allow the correspondence to be made between each ADB address and the gDevice.
These functions are generally used when multiple displays are present, but they may
also be used for any ports that have more than one communications/control path.

Note

Wiggling is a process similar to toggling. The level of the sense line
(Sense Line 2) in the video cable is changed, from 0 to 1, or from 1 to 0,
to alert the computer that a given display is present. Wiggling is
implemented only on display ports

◆

When wiggling is implemented, the entity that actually performs the pairing operation
must be identified. For video/display ports, the Display Manager performs this function
immediately after you register the port with the Display Manager. It does so by calling

DMNewAVIDbyPortComponent

. If the

portKind

 is

AVVideoDisplayPortKind

, the
Display Manager calls the

AVPortSetWiggle

 function of the Port Component, and
returns the value

true

. The Port Component then instructs the display, via the ADB (or
other serial control path) to change Sense Line 2 to an abnormal state, meaning if it was 0
to change it to 1, and if it was 1 to change it to 0. In other words, it instructs the display
to wiggle the line.

1
2

Display #1

Macintosh computer

Keyboard
Mouse

Video cards

Display #2 Display #3

3 ADB cable

Video cables

C H A P T E R 4

Port Components

44

Port Component Description

The Display Manager then queries each video driver to see which one detects this
change. When it finds the appropriate driver, the pairing is made, and the Display
Manager calls the

AVPortSetWiggle

 function, and returns the value

false

. The Port
Component then returns Sense Line 2 to its normal state.

If your port does not implement wiggling, the Display Manager cannot tell whether the
two communication paths are for a single display or for two AV devices. This means
that the user will see two ports listed under the list of ports in such applications as
Sound & Displays. For instance, in the example described above, two ports would
appear: one display port for controlling graphics device functions, such as bit depth;
and one AppleVision display port for controlling contrast, brightness, and other
AppleVision functions. The user could select either of these ports to access all of the
display’s functions.

Note

In some Apple publications, the term

tagging

is used instead of

wiggling

.

◆

Interfacing Between Engine Components and Hardware 4

When the physical hardware is grouped by port, different circuitry operates the screen,
the microphone, speakers, and so forth. In this case, the Port Component is a convenient
way for the Engine Components to communicate with the hardware, using a port call.
This use of Port Components is optional. However, it makes sense, especially when the
Port Component has to communicate with the hardware anyway, in order to turn a port
on or off, or to implement wiggling. The Port Component can in turn call the Device
Component, as described in Chapter 5, or communicate directly with the hardware.

Port Component Description 4

Port Components have the following component description:

componentType = 'avdp';

Indicates whether the
component is an audio or
video panel.

componentSubType = '????'

Identifies the specific
engine.

componentManufacturer = '????';

Identifies the manufacturer.

componentFlags = cmpWantsRegisterMessage;

Makes sure the component
is suitable for the machine.

C H A P T E R 4

Port Components

Port Component Functions

45

Port Component Functions 4

There are several types of Port Component functions, those that:

■

store names and icons

■

turn the port on and off

■

retrieve information from the Port Component

■

detect changes on ports and implement wiggling

Storing Names and Icons 4

The functions in this section store the name and the icon of each port.

AVPortGetName 4

This function allows the caller to get the name of the port component, for example,
External Microphone, External Headphones, and so on. The name is returned in

portName

. All Port Components must support this call.

pascal ComponentResult AVPortGetName

(ComponentInstance portComponent,

 StringPtr portName);

portComponent

An instance of your Port Component.

portName

The name of the port to be returned by the function.

Supplementary Information 4

There is no supplementary information about this function.

AVPortGetGraphicInfo 4

This function allows the caller to get graphical information about the Port Component,
that is the icon (or image) of the selected port. This could be a picture of a microphone,
headphones, camera, and so forth. This function also allows you to set the position of the
port icon with respect to the device icon. All Port Components must support this call.

pascal ComponentResult AVPortGetGraphicInfo

(ComponentInstance portComponent,PicHandle *thePict,

 Handle *theIconSuite, AVLocationPtr theLocation);

portComponent

An instance of your Port Component.

PicHandle

Standard data type.

*thePict

Address of the

PicHandle

 data type.

C H A P T E R 4

Port Components

46

Port Component Functions

*theIconSuite

Address of a

Handle

.

AVLocationPtr

Address of an AV location data structure.

theLocation

Indicates the position of the AV location data structure. This is the
position of the port icon with respect to the device icon. This field is
defined as follows:

theLocation->locationConstant=k

Refer to the following section and to Figure 4-4 for further
information.

Supplementary Information 4

In response to this call, the Port Component should check the return parameters

thePict

,

theIconSuite

, and

theLocation

, to determine what information the
caller is requesting.

If

thePict

 is non nil (that is not 0), a handle to a picture of the port in PICT format
should be returned in

*thePict

. If the picture is a resource that is retrieved via

GetResource

,

GetPicture, and so on, you must be sure to detach the resource.
If theIconSuite is non nil, a handle to an icon suite should be returned in
*theIconSuite. If theLocation is non nil, the AVLocationRec that it points to
should be filled out. The information that goes into the AVLocationRec is specific to
each port and must be determined by each port.

The port icons are arranged round the device icons in a grid, as shown in Figure 4-4.
The device may be a CPU, an AV display, a monitor, or any other piece of equipment
with audio or video capabilitites. The grid has 12 different positions, and each port
icon is assigned a position in the grid. The position is defined by the constant in the
theLocation field, as shown in the listing below. These constants are in
AVComponents.h.

/* Port Component Graphic Location Constants */

enum {

kAVPortFirstPosition= 1,

kAVPortSecondPosition,

kAVPortThirdPosition,

kAVPortFourthPosition,

kAVPortFifthPosition,

kAVPortSixthPosition,

kAVPortSeventhPosition,

kAVPortEighthPosition,

kAVPortNinthPosition,

kAVPortTenthPosition,

kAVPortEleventhPosition,

kAVPortTwelfthPosition,

};

C H A P T E R 4

Port Components

Port Component Functions 47

Figure 4-4 Port location grid

Turning the Port On and Off 4
The functions in this category turn the related port on and off.

AVPortSetActive 4

This function allows clients to change the state of the port from active to inactive, or from
inactive to active.

pascal ComponentResult AVPortSetActive

(ComponentInstance portComponent,Boolean SetActive);

portComponent An instance of your Port Component.
SetActive Boolean that determines whether the port is active or inactive.

Supplementary Information 4

Ports may have inactive and inactive states, for example, the sound ports may be muted
(inactive) or unmuted (active). AVPortSetActive provides the mechanism for toggling
between states. If a port is called and AVPortSetActive is true, then the port is set to
the active state. If AVPortSetActive is false, the port is set to the inactive state. If the
port cannot be deactivated, it responds with an error message to this call.

Device

12

11

3

45

67

89

1012

Numbers 1 thriugh 12
indicate port location

Device
icon

Constants 1 through 12 represent
port icon positions

C H A P T E R 4

Port Components

48 Port Component Functions

AVPortGetActive 4

This function allows clients to query the state of the port and find out if it is active or
inactive. All Port Components should support this call.

pascal ComponentResult AVPortGetActive

(ComponentInstance portComponent, Boolean *isPortActive,

 Boolean *portCanBeActivated, Ptr Reserved);

portComponent An instance of your Port Component.
*isPortActive Boolean that indicates whether the port is active or inactive.
*portCanBeActivated

Boolean that indicates whether or not the port can be activated.

Supplementary Information 4

If the port is active, *isPortActive should be set to true, otherwise, it should be set
to false. If the port is the type that can be activated and deactivated,
*portCanBeActivated should be set to true, otherwise, it should be set to false.

Retrieving Information From the Port Component 4
This section describes the two functions that enable you to retrieve information from
Port Components.

AVDevicePortGetName 4

This function allows the caller to get the name of the associated port. A name must be
returned. An empty string () is not an acceptable response.

pascal ComponentResult AVDevicePortGetName

(ComponentInstance portComponent, Str255* portName);

portComponent An instance of your Port Component.
portName The name of the port to be returned by the function.

Supplementary Information 4

There is no supplementary information about this function.

AVDevicePortGetDeviceComponent 4

This function allows the caller to identify the Device Component that owns the port.

pascal ComponentResult AVDeviceGetPortDeviceComponent

(ComponentInstance portComponent,

 CopmponentInstance* deviceComponentInstance);

C H A P T E R 4

Port Components

Port Component Functions

49

portComponent

An instance of your port component.

deviceComponentInstance

The port’s associated device component instance.

Supplementary Information 4

There is no supplementary information about this function.

Detecting Changes on Ports 4

This section describes the Port Component functions that enable the Display Manager to
detect how many displays have been connected to a device and to be aware of changes
that may be made while the device is powered down or in a sleep state. Refer to
“Implementing Wiggling” on page 42 for more information on this subject.

AVPortSetWiggle 4

This function sets the path code that allows the Display Manager to distinguish between
different displays, video cards, and so on, present in the system.

pascal ComponentResult AVDevicePortSetWiggle

(ComponentInstance portComponent, Boolean wiggleDevice);

portComponent

An instance of your port component.

wiggleDevice

Boolean representing the video port ID of the related display or
video card.

Supplementary Information 4

Refer to “Implementing Wiggling” on page 42 for further information.

AVPortGetWiggle 4

This function allows the Display Manager get the path code set by

AVPortSetWiggle

.

pascal ComponentResult AVDevicePortGetWiggle

(ComponentInstance portComponent, Boolean* wiggleDevice);

portComponent

An instance of your port component.

wiggleDevice

Boolean representing the video port ID of the related display or
video card.

Supplementary Information 4

Refer to “Implementing Wiggling” on page 42 for further information.

C H A P T E R 5

Device Components 5Figure 5-0
Listing 5-0
Table 5-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 5

Device Components

52

Why Have Device Components?

This chapter describes the Device Components that are part of the AV Architecture .
They are the lowest-level components in the architecture and represent an actual audio
or video product. A device can be an intelligent display, a video card, a computer, and so
forth. Device Components represent the physical box that contains all the ports. Refer to
Chapter 4 for information on Port Components. This chapter explains why Device
Components are a necessary part of the AV Architecture, and describes the software calls
associated with Device Components.

Why Have Device Components? 5

Each device has an associated Device Component that contains the name and image of
the device. The Device Component also provides access to the actual hardware layer, and
provides storage space for information that is shared among the ports and engines.

Storing Names and Icons 5

The Device Component stores the name string and icons that represent the device. It
implements two functions,

AVDeviceGetName

, which returns the name of the device,
and

AVDeviceGetGraphicInfo

, which returns the icon that is displayed to show the
device on the user interface.

Providing Interface With Hardware 5

It is sometimes convenient to have a common point through which all calls can be made
to the hardware. This is particularly useful if all ports share the same communication
path to the hardware and the same protocol. When it is providing this common point,
the Device Component is acting as a kind of device driver. Both Engine Components and
Port Components can communicate with the hardware through the Device Component.
This is an optional use of the Device Component.

Providing Storage for Shared Information 5

Providing storage for shared information is another optional use of the Device
Component. You may find it useful to cache hardware settings in the Device Component
under any of the following conditions:

■

When it is time-consuming to retrieve hardware settings directly from the hardware.

■

When hardware settings are write only and cannot be read or checked.

■

When the hardware functionalities of more than one engine or port are interrelated.
For instance, if turning off a microphone port has the side effect of turning off the
speaker port, then you might want to store flags for this side effect in the Device
Component.

C H A P T E R 5

Device Components

Device Component Functions

53

If the microphone panel and the speaker panel are displayed at the same time and
you turn on the microphone by means of the microphone panel, the following
sequence occurs:

■

The microphone panel instructs its engine to turn on.

■

The engine tells its Device Component to turn on the microphone, or alternatively
issues the request to the Port Component, which in turn communicates with the
Device Component.

■

The Device Component changes its flags to show that the microphone is now on,
and the speakers are now off.

■

The engine sends out a Display Manager notification, indicating that something
has changed.

■

The speakers panel receives the notification and checks its engine to see if the
speakers are on or off.

■

The engine asks the Device Component if the speakers are on. Alternatively, the
engine queries the Port Component, which in turn queries the Device Component.

■

The Device Component checks its flags and reports that the speakers are off.

It is also possible to have a case where the functionality is not interrelated, but where
two identical panels are displayed at the same time. The above process is used to make
sure that the two panels remain synchronized with each other.

If you do not want to use this type of procedure, you may choose to register the engine
separately and cache the engine settings in the refCon globals of the engine. You should
be aware, though, that this is a limited solution. It is also more complicated, since the
Manager Component must register and unregister the engines, depending on how many
devices are present. The solution also fails to address the situation where the functioning
of different engines on different ports is interrelated.

Device Component Functions 5

There are two Device Component functions that store the name and icon of the device.
These functions are described below.

AVDeviceGetName 5

In response to the call, the Device Component returns the name of the device in the
parameter

deviceName

. All Device Components must support this call.

AVDeviceGetName(ComponentInstance deviceComponent,

 StringPtr deviceName);

deviceName

Name of the AV device, such as AudioVision, or AppleVision, that is
being selected.

C H A P T E R 5

Device Components

54

Device Component Functions

Supplementary Information 5

There is no supplementary information about this function.

AVDeviceGetGraphicInfo 5

This function allows the caller to retrieve graphic information about the Device
Component. When a call is made to this function, it loads a

PicHandle

 resource and
returns the address of the

Handle

. It then loads an icon suite resource and returns its
address in

theIconSuite

. All Device Components must support this call.

AVDeviceGetGraphicInfo (ComponentInstance deviceComponent,

 PicHandle *thePict,

 Handle *theIconSuite,

 AVLocationPtr theLocation);

PicHandle

Standard data type.

thePict

Address of a

PicHandle

 data type.

theIconSuite

Address of a

Handle

.

AVLocationPtr

Address of an AV location data structure.

theLocation

Indicates the location of an AV location data structure. Currently it
is always 0, as shown below:

theLocation->LocationConstant=0

Supplementary Information 5

In response to this call, the Device Component should check the return parameters

thePict

,

theIconSuite

, and

theLocation

, to determine what information the
caller is requesting.

If

thePict

 is non nil (that is not 0), a handle to a picture of the device in PICT format
should be returned in

*thePict

. If the picture is a resource that is retrieved via

GetResource

,

GetPicture

, and so on, you must be sure to detach the resource.
If

theIconSuite

 is non nil, a handle to an icon suite should be returned in

*theIconSuite

. If

theLocation

 is non nil, the

AVLocationRec

 that it points to
should be filled out.

Currently, all devices have a nil (zero) location constant. In this case, they should be
ignored and not filled out.

C H A P T E R 6

More Information About

the AV Architecture 6

Figure 6-0
Listing 6-0
Table 6-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 6

More Information About the AV Architecture

56

Strategies for Storing Data in Components

This chapter contains supplementary information about the AV Architecture. It covers
the following topics:

■

storing data in components

■

managing component storage

■

the notification mechanism

■

utility components

■

library of utility functions

Strategies for Storing Data in Components 6

Components have two mechanisms for storing data: instance globals and common
globals. Instance globals are private to a given instance of the component, and they are
retrieved through the

Set/GetComponentInstanceStorage()

 functions. Common
globals apply to all instances of a given component.

Note

An

instance

 is one particular representative
within a group of components.

◆

If components are of the same type or subtype, any number of them can share a single
set of common globals. A handle to this data structure is stored in the component’s
refCon, and it is accessed through the

Set/GetComponentRefCon

 functions. Figure 6-1
shows the ownership model for two instances of an AV component, which might be a
Panel, Engine, Port, or Device Component. Generally, an AV component always needs
a set of instance globals and may never need to share common globals with other
components.

Managing Component Storage 6

There are certain well-defined times when you may want to create or destroy the
two types of storage provided by instance and common globals. You must be careful
to create or destroy the appropriate storage, particularly when you are dealing with
common globals.

Creating and Destroying Instance Globals 6

Instance globals are normally created in the

AVPanelOpen()

 routine.
“AVPanelSetCustomData” on page 23 provides detailed information about this
routine. To create an instance global:

■

Allocate a handle large enough to store the information you will need.

■

Call

SetComponentInstanceStorage()

.

C H A P T E R 6

More Information About the AV Architecture

Managing Component Storage

57

Figure 6-1

Ownership model

You can dispose of an instance global in the

AVPanelClose()

 routine. “AVPanelClose”
on page 21 provides detailed information about this routine. To dispose of an
instance global:

■

Dispose of any handles that are stored within the global. This is very critical.

■

Dispose of the global’s handle.

Creating and Destroying Common Globals 6

There are also well-defined times when common globals (if used) are allocated and
disposed of. However, management of common globals is dependent on how many
instances of a given component are open at the time you wish to allocate or dispose of
the common global.

If you are sharing common globals among multiple instances, and you wish to allocate a
common global, you may use the following process:

■

In the

PanelOpen()

 routine, count the number of open instances of the component.

■

If there is only one open instance, it is safe to allocate a handle for the common
globals, initialize it as needed, and then call

SetComponentRefCon(

) with
that handle.

■

If there is more than one instance open, you need not call

SetComponentRefCon()

,
because all instances will share the refCon, and will therefore share the common
globals handle.

The process is similar for disposing of common globals:

■

In the

PanelClose()

 routine, count the number of instances of the component.

■

If there is only one, then it is time to dispose of the common globals.

AV component

Instance 1

Type: X

Subtype: Y

AV component

Instances 1 and 2

Type: X

Subtype: Y

AV component

Instance 1

Private globals

GetComponentInstanceStorage()

AV component

Instance 2

Type: X

Subtype: Y

AV component

Instance 2

Private globals

GetComponentInstanceStorage()

GetComponentRefCon()

C H A P T E R 6

More Information About the AV Architecture

58

Notification Mechanisms

■

Dispose of any handles contained in the globals, then dispose of the globals
themselves.

■

When you have disposed of the common globals, you can go on to dispose of the
instance globals, as described in the previous section.

Notification Mechanisms 6

If you have a fully featured suite of components, consisting of Panel, Engine, Port, and
Device Components, notification of changes in the machine state is generally provided
by the Engine Component. “Notification” on page 38 provides information about this
type of notification. However, there are other methods of sending notification, as
described in the following sections.

Display Notification 6

The Display Manager provides a mechanism that allows any software entity to notify
any other software entity that a change has been made in the system configuration. This
mechanism is known as a display notification.

IMPORTANT

This is type of notification is not the same as that
provided by the Toolbox Notification Manager.

▲

The AV Architecture uses display event notification to keep all open components
synchronized with what is happening. For example, if multiple instances of the Bit
Depth panel are open, and you make a

SetDepth()

 Toolbox call, then all the open Bit
Depth panels will update themselves to reflect the current bit depth and the color state of
the screen that was changed.

The AV Architecture is able to keep track of these types of changes because the open
Bit Depth panels are registered with the Display Manager and are therefore notified
whenever there is a change in the graphics environment. If you have a variety of
AV components that need to track with each other, you can use the AV notification
mechanism. To do this, components should register themselves with a call to

DMRegisterExtendedNotifyProc()

, usually from within the

PanelInstall()

function.

Whenever there is a change in the graphics environment, the Display Manager
automatically broadcasts an event using the

kDMNotifyEvent

 message. The types
of changes include

■

bit depth, implemented through

SetDepth()

■

resolution, implemented through

DMSetDisplayMode()

■

gDevice position, implemented through

DMMoveDisplay()

■

mirroring, implemented through

DMMirrorDevices()

C H A P T E R 6

More Information About the AV Architecture

Utility Components

59

■

adding displays, implemented through

DMAddDisplay()

■

removing displays, implemented through

DMRemoveDisplay()

One of the parameters to the

DMRegisterExtendedNotifyProc()

 function is the
address of a notification handler routine. Whenever the Display Manager broadcasts a
notification event, this handler routine is called.

Resolution Panel Notification 6

The Resolution Panel uses the Display Manager as its hardware abstraction. When this
panel asks for a resolution change, the Display Manager panel automatically sends out a
notification.

Cursor Visibility Panel Notification 6

The Cursor Visibility Panel does not use Engine, Port, or Device Components. In
addition, the Display Manager knows nothing about this panel. When a change is made
in the panel, the panel itself makes a couple of new Toolbox calls, and then explicitly
sends out the notification.

Utility Components 6

Utility components handle service requests and have the tools needed to respond to such
requests from a component client. Currently, there is only one utility component. This is
the Preferences Component described below.

Preferences Component 6

When an AV component needs to save information on disk, and you choose not to save it
in the standard AV preferences file, you can save it in your own preferences file using the
Preferences Component.

Your Component (Panel, Engine, Device, Port) can open an instance of the Preferences
Component and save a reference to it in the panel’s instance globals. “Strategies for
Storing Data in Components” on page 56 provides further information on this subject.
When the panel is being closed, you can use this component to create a private file and
store your data there. Later, when the panel is being opened, it can open an instance of
the Preferences Component and ask it to retrieve the information that was previously
stored. Your panel can then set up its internal data using this information.

C H A P T E R 6

More Information About the AV Architecture

60

Library of Utility Functions

Library of Utility Functions 6

Utility functions are tools provided by Apple for developers as part of the software
development kit. The AV library of utility functions contains common pieces of
functionality that may be useful to developers. Currently, they are utilities associated
with getting globals from a panel, and with getting and setting the application’s resFile.

Getting Globals 6

This utility enables you to get the globals from a panel within a dialog box filter function.
Since AV panels create their human interface pieces using dialog box items and dialog
box windows, anything that is not a standard item, such as a radio button, checkbox,
static text, and so on, must have its drawing and updating managed by the panel itself.
This means that you must write a custom dialog box item draw procedure, which has a
fixed API. This API gives only the dialog box window pointer and the DITL index of the
item that needs to be drawn. The assumption is that you will use the refCon of the dialog
box window to store a handle to your private information. You can then get the
information needed to draw or update your custom item using this handle.

Because the AV panel window uses the refCon for storing a wide variety of information
that is not necessarily related to any given panel in the window, you do not want to open
up the storage format and expose the data. For this reason, you should use the following
utility routine provided in the AV library of utility functions:

Handle AVGetPanelGlobalsFromPanelWindow()

This function requires only the dialog box window pointer and the absolute item index
as input for any item in the panel. The function knows how to traverse the information
in the panel window storage handle, and it will return a handle to the globals for the
panel. The caller must not dispose of this handle. It will be taken care of when the panel
is closed.

IMPORTANT

The absolute item index is required, not the relative item index.

▲

Getting and Setting the resFile 6

This utility enables you to get the application’s resource file (resFile) from an arbitrary
component, or to set the application’s resFile in an arbitrary component. When a
component needs to access any of its resources, it must first make sure that it sets the
current resource file to its own resFile, using the

SetComponentResFile()

 function.

C H A P T E R 6

More Information About the AV Architecture

Library of Utility Functions

61

Because the component is likely to be called from some kind of controlling application, it
is important to save and restore whatever resource file was current before the component
changed files. It is not sufficient merely to call

CurResFile()

 to find out what the
current file is before switching to the component’s file.

For this reason, the AV architecture provides the following routine:

short AVGetApplicationResFile()

Your panel can either save the value

()

 in its private globals, or it can call the function
each time it needs this information. Whenever your panel sets its component resource
file, you should make a call to

UseResFile(appResFile)

 before leaving the
component function.

A P P E N D I X

Manager Component A

The Manager Component is not a required part of the AV Architecture. However, it is
often convenient and, in certain cases essential, to define one Manager Component that
registers and unregisters all your other components. The Manager Component is needed
if your components must load in a certain order, or if it is possible to remove or add
essential hardware while the computer, for example a PowerBook, is asleep. This chapter
explains the key functions of the Manager Component.

The Manager Component is responsible for:

■

 Loading all the other components.

■

Registering Device and Port Components with the Display Manager and establishing
connections between Device and Port Components.

■

Registering and unregistering components when the system is initialized, shuts down,
goes into sleep mode, wakes from sleep mode.

■

Answering queries about the status of the component group as a whole.

Figure A-1 shows the relationship between the Manager Component and the AV
Architecture components.

Figure A-0
Listing A-0
Table A-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X

Manager Component

64

Loading Components

Figure A-1

Manager Component

Loading Components A

The Manager Component shields your components from the Component Manager,
making sure that the Component Manager does not load them in the wrong order. It is
also responsible for loading the components in the correct order.

The Manager Component is the only component that has a ‘thng’ resource, and is
therefore the only component automatically loaded by the Component Manager at boot
time. All other components should have ‘gnht’ resources. The Manager Component
performs in a similar way to the Loader Component, the only difference being that no
‘thld’ resource is used, since registration may vary depending on the state of the
hardware present.

Typically you will ship one extension file for your product. This extension file contains
the Panel, Engine, Port, and Device Components as ‘gnht’ resources, rather than ‘thng’
resources. This means the Component Manager will not try to register them. The

AV application

Desktop audio

and/or video device

Macintosh

Toolbox

AV Architecture

Hardware

abstraction

layer

Drivers

Panel Component

For every panel needed

in the human interface

Device Component

For every desktop

device

Engine Component

For each function or

set of related

functions of each port

Port Component

For every input or

output element in

the desktop device

Manager

Component

Registers and maintains

components based on

hardware state

A P P E N D I X

Manager Component

Loading Components

65

Manager Component is stored in the extensions as a regular ‘thng’ resource, and when it
is registered, it in turn finds the ‘gnht’ resources for the device, ports, and engines, and
registers them according to the hardware that is present.

Registering Components A

The Manager Component should be able to determine how many devices are present. If
there is more than one hardware device attached to the Macintosh, it is preferable to
register the Device and Port Components multiple times, once for each like device
attached to the system. This means that there will be separate refcon globals for device
variables. You may question whether it is better to create multiple instances of the
Device Component or to register separately. Generally you should register separately.

Component vs. INIT A

In most case you should use a component rather than an INIT. This is because systems
earlier than System 7.1 need QuickTime INIT to install the Component Manage.
Therefore, if you use an INIT, you run the risk of the name of the INIT starting with a
letter earlier in the alphabet than Q (QuickTime). In which case, your components would
not be registered, since the Component Manager would not have been installed.

There is one case when you must use an INIT, and take a chance with systems earlier
than System 7.1. This is when you need a ‘sysz’ resource, such as the following example,
to temporarily allocate more heap space for your components during boot time.

Example:

data ‘sysz’ (0) {

$”0002 0000”

};

However, ‘sysz’ resources only take effect when you have an ‘INIT’ in the same files as
the ‘sysz’ resource. You should therefore simply load the Manager Component in a very
small INIT. When you do this, make sure you change the Manager Component’s ‘thng’
resource to a ‘gnht’ resource, to hide it from the Component Manager. Otherwise, it will
load twice.

Source code sample:

#include <Components.h>

void MyINIT()

{

Component theCompID;

ComponentResourceHandle componentResHdl;

componentResHdl = (ComponentResourceHandle)

A P P E N D I X

Manager Component

66

Interaction With Device and Port Components

Get1Resource('gnht',

kManagerComponentResourceID);

if (componentResHdl)

theCompID = RegisterComponentResource (componentResHdl,

registerComponentGlobal);

return;

}

Interaction With Device and Port Components A

The Manager Component provides a convenient way of registering Device and Port
Components with the Display Manager and of establishing connections between Device
and Port Components.

All Device and Port Components must be registered with the Display Manager. You can
do this using the

DMNewAVIDByDeviceComponent

 and

DMNewAVIDByPortComponent

calls. When these calls return new AV IDs, you let your Device and Port Components
knows what their own AV IDs are by making the standard

AVDeviceSetAVID

 and

AVPortSetAVID

 calls.

In addition, you must establish connections between the Device and Port Components.
Port Components should know to which Device Component they are attached. You can
do this using the port call

AVPortSetDeviceAVID

.

Cleaning Up During Sleep or Shutdown A

The PowerBook computer goes into sleep mode during periods of inactivity. During this
time you might add or remove critical devices. For example you might add or remove a
display. Similarly, devices may be removed or connected while the PowerBook is
shutdown and then be present when it is powered up again.

The Manager Component manages the registration and unregistration of components
during these periods. The following points are critical:

■

You should not register a component when the related hardware is not available.

■

If the hardware your components use changes while the PowerBook is asleep, you
must make sure that they are registered (if added), or unregistered (if removed) when
the PowerBook wakes from sleep mode.

■

You should perform some kind of initialization when the PowerBook wakes from
sleep mode.

■

At shutdown you should clean up and remove unwanted components.

A P P E N D I X

Manager Component

Cleaning Up During Sleep or Shutdown

67

The Manager Component receives sleep, wakeup, and shutdown notifications, and goes
through the processes necessary to handle these situations. The source code required to
accomplish this is shown in the following sample.

Source Code Sample A

#include <Power.h>

typedef struct SleepInfoRec

{

SleepQRec mySleepQRec;

long mySlpRefCon;

} SleepInfoRec, *SleepInfoRecPtr, **SleepInfoRecHandle;

void MySleepProc(void);

{ // install a sleep task

OSErr result = noErr;

long pmgrAttributes;

result = Gestalt(gestaltPowerMgrAttr, &pmgrAttributes);

if (result == noErr && (pmgrAttributes & (1<<gestaltPMgrExists)))

{ // Power Manager is present

SleepInfoRecPtr sleepInfoRecPtr = NULL;

Handle mySleepProcHandle = NULL;

result = LoadPieceOfCode(kMyCodeResourceType,

kMySleepResID,

&mySleepProcHandle);

if (result == noErr)

{

sleepInfoRecPtr = (SleepInfoRecPtr) NewPtrSysClear(

sizeof(SleepInfoRec));

if (sleepInfoRecPtr != NULL)

{

sleepInfoRecPtr->mySleepQRec.sleepQLink = NULL;

sleepInfoRecPtr->mySleepQRec.sleepQType = slpQType;

sleepInfoRecPtr->mySleepQRec.sleepQProc = (SleepQUPP)

*mySleepProcHandle;

sleepInfoRecPtr->mySleepQRec.sleepQFlags = 0;

sleepInfoRecPtr->mySlpRefCon = 0; // could use this for something

SleepQInstall((SleepQRecPtr)sleepInfoRecPtr);

}

}

}

}

A P P E N D I X

Manager Component

68

Cleaning Up During Sleep or Shutdown

{ // install a shutdown task

Handle myShutdownProcHandle = NULL;

result = LoadPieceOfCode(kMyCodeResourceType, kMyShutdownResID,

&myShutdownProcHandle);

if (result == noErr)

ShutDwnInstall((ShutDwnUPP) *myShutdownProcHandle, (sdOnDrivers));

}

OSErr LoadPieceOfCode(ResType theType, short theID, Handle *theProcHandle)

{

OSErr result = noErr;

Handle myProcHandle = NULL;

long myProcSize;

*theProcHandle = NULL;

// first get the resource without actually loading it

SetResLoad(false);

myProcHandle = GetResource(theType, theID);

SetResLoad(true);

if (myProcHandle != NULL)

{

// see how big it is

myProcSize = GetResourceSizeOnDisk(myProcHandle);

result = ResError();

if (result == noErr)

{

// reserve this much memory at the bottom of the System heap

ReserveMemSys(myProcSize);

LoadResource(myProcHandle);

result = ResError();

if (result == noErr)

{

DetachResource(myProcHandle);

HLock(myProcHandle);

*theProcHandle = myProcHandle;

}

}

}

else result = -1;

return result;

}

A P P E N D I X

Manager Component

Cleaning Up During Sleep or Shutdown

69

The sleep procedure is loaded in the previous code sample as a separate code resource,
and it may look like the following code sample.

Source Code Sample A

#include <Components.h>

extern void MyAllowSleepRequest(void)

ONEWORDINLINE(0x7000); // MOVEQ #0, D0

extern void MyDenySleepRequest(void)

ONEWORDINLINE(0x7001); // MOVEQ #1, D0

extern SleepInfoRecPtr MyGetSleepInfoPtr(void)

ONEWORDINLINE(0x2E88); // MOVE.L A0, (A7)

extern long MyGetSleepCommand(void)

ONEWORDINLINE(0x2E80); // MOVE.L D0, (A7)

void MySleepProc()

{

SleepInfoRecPtrmySleepInfoPtr;

long mySleepCommand;

mySleepInfoPtr = MyGetSleepInfoPtr();

mySleepCommand = MyGetSleepCommand();

switch (mySleepCommand)

{

case sleepRequest:

MyAllowSleepRequest();

break;

case sleepDemand:

case sleepWakeUp:

{

ComponentDescription compDesc;

Component managerCompID = NULL;

compDesc.componentType = kManagerType;

compDesc.componentSubType = kManagerSubType;

compDesc.componentManufacturer = kManufacturerType;

compDesc.componentFlags = 0;

compDesc.componentFlagsMask = kAnyComponentFlagsMask;

managerCompID = FindNextComponent(managerCompID, &compDesc);

A P P E N D I X

Manager Component

70

Reporting on the State of the Component Group

if (managerCompID != NULL)

{

ComponentInstance managerInstance;

managerInstance = OpenComponent(managerCompID);

if (mySleepCommand == sleepDemand)

ManagerComponentSleep(managerInstance);

else

ManagerComponentWake(managerInstance);

CloseComponent(managerInstance);

}

}

break;

case sleepRevoke:

default:

break;

}

}

You can define the

ManagerComponentSleep

 and

ManagerComponentWake

 selectors
in the Manager Component so that they register and unregister your other components
as needed to match the hardware that is present. The shutdown procedure can be even
simpler. You can just find the Manager Component and call a

ManagerComponentShutdown

 selector that you have defined.

Reporting on the State of the Component Group A

The Manager Component can also serve as a representative of your software as a whole.
If you have a custom AV application that makes heavy use of the AV components, you
may decide that it should not run at all if your components are not loaded correctly.

Your application should first check for the existence of the Manager Component, using
the

FindNextComponen

t call. If the Manager Component cannot be found, the
components are definitely not loaded.

If the Manager Component is found, then your application, using

MyManagerComponentGetState()

, can request that it check the state of the
component set. If all your components were not loaded at boot time,

MyManagerComponentGetState()

 can return an error or a constant to indicate that
your application should not run.

71

Apple event

An Apple event is a high-level
event that adheres to the Apple Event Interprocess
Messaging Protocol. An Apple event consists of
attributes, including the event class and event ID
that identify the event and its task. It also
contains parameters that contain data used only
by the target application. You will find detailed
information about Apple events in

Inside
Macintosh, Volume VI

.

architecture

A set of design principles that
specifies the relationship among components,
in this context, Panel, Engine, Port, and Device
Components.

DITL

 The DITL (dialog item list) is a list of
resources associated with a given control panel.

hardware abstraction

 This is a process that
takes hardware functionality and gives it a name,
thus concealing the hardware implementation
from the software. The hardware abstraction
layer acts as a liaison between the software
element and the hardware element.

Virtual Photometry Technology (VPT)

A
proprietary Apple technique used in imaging
devices, such as video displays, to ensure
accurate color on the screen.

Glossary

Thi d t t d ith F M k 4 0 4

73

Index

A, B

abbreviations x
ADB

address 42
cable 42

adornment 24
APDA addresses xi
APIs 13, 60

extended 12
high-level 9

Apple events 71
application functions 5
architectural components 6 to 13

Device Components 12 to 13, 52 to 54
Engine Components 9 to 10, 36 to 38
Panel Components 6 to 8, 16 to 34
Port Components 10 to 11, 40 to 49

architectural features 5 to 6
architecture

component-based 13
definition of 71
functions 5

audio devices 2
audio input ports

CD player 10
microphone 10

audio output ports
headphones 10
speakers 10

AVDeviceGetGraphicInfo

 function 54

AVDeviceGetName

 function 53

AVDevicePortGetDeviceComponent

 function 48

AVDevicePortGetName

 function 48
AV devices 2

AVEngineComponentGetFidelity

 function 36

AVEngineComponentTargetDevice

 function 37
AV ID (identification) 41

AVPanelClose

 function 21, 29, 34

AVPanelComponentGetPanelAdornment

function 24

AVPanelEvent

 function 30

AVPanelGetDITL

 function 23

AVPanelGetFidelity

 function 19

AVPanelGetPanelClass

 function 21

AVPanelGetSettings

 function 32

AVPanelGetSettingsIdentifiers

 function 28

AVPanelGetTitle

 function 29

AVPanelInstall

 function 26

AVPanelOpen

 function 17, 22

AVPanelRemove

 function 33

AVPanelSetCustomData

 function 23

AVPanelSetSettings

 function 28

AVPanelTargetDevice

 function 27

AVPanelValidateInput

 function 31

AVPortGetActive

 function 48

AVPortGetGraphicInfo

 function 45

AVPortGetName

 function 45

AVPortGetWiggle

 function 49

AVPortSetActive

 function 47

AVPortSetWiggle

 function 49
AV setup panel 6, 40

C

call sequences
closing the panel window 32
Panel Components 16
searching for panel owner 17
setup application running 30

Cancel buttons 8
candidate panels 16
candidate search 19
changes in graphics environment 58
classification of AV functions 21
common globals 56, 57
component-based architecture, advantages of 13
Component Manager 4
components, architectural 6 to 13
components, delivering 13
component storage, managing 56
control panels 3

elements 8
partitioning 40

conventions x
Cursor Visibility Panel 59

D

delivering components 13
detecting changes on ports 49
Device Components 12 to 13, 52 to 54
Device Manager Component 37
dialog box window pointer 60

Thi d t t d ith F M k 4 0 4

I N D E X

74

dialog item list (DITL) 71
Display Manager 16, 19, 38, 41, 43, 49, 58, 66
display notification 58
dynamic linked library (DLL) 4

E

Engine Components 9 to 10, 36 to 38
extended APIs 12

F

fidelity mechanism 19 to 20

FindNextComponent

70
functions

AVDeviceGetGraphicInfo

54

AVDeviceGetName

53

AVDevicePortGetDeviceComponent

48

AVDevicePortGetName

48

AVEngineComponentGetFidelity

36

AVEngineComponentTargetDevice

37

AVPanelClose

21, 29, 34

AVPanelComponentGetPanelAdornment

24

AVPanelEvent

30

AVPanelGetDITL

23

AVPanelGetFidelity

19

AVPanelGetPanelClass

21

AVPanelGetSettings

32

AVPanelGetSettingsIdentifiers

28

AVPanelGetTitle

29

AVPanelInstall

26

AVPanelOpen

17, 22

AVPanelRemove

33

AVPanelSetCustomData

23

AVPanelSetSettings

28

AVPanelTargetDevice

27

AVPanelValidateInput

31

AVPortGetActive

48

AVPortGetGraphicInfo

45

AVPortGetName

45

AVPortGetWiggle

49

AVPortSetActive

47

AVPortSetWiggle

49

G

globals 60
common 56, 57
creating 56, 57
destroying 56, 57
instance 38, 56
refCon 38

graphics environment, changes 58

H

hardware, interfacing with 44, 52
hardware abstraction 9, 71
high-level APIs 9
human interface 8, 10

I, J, K

icons, storing 42, 52
implementation technology 4
INITs 65
instance globals 38, 56
interfacing with hardware 44, 52
Interprocess Messaging Protocol 71

L

Loader Component 64
loading components 64

M

Macintosh Toolbox 6, 8
Manager Component 37, 53, 63 to 70

ManagerComponentSleep

 selector 70

ManagerComponentWake

 selector 70
Monitors control panel 3
multimedia applications 3
multiple AV device connections 42
multiple control paths 43
multiple displays, identifying 42

MyManagerComponentGetState()

 function 70

I N D E X

75

N

names, storing 42, 52
notification 38

Cursor Visibility Panel 59
display 58
mechanisms 58
Resolution Panel 59

O

OK buttons 8
opening panels 22

P

Panel Components 6 to 8, 16 to 34
panel owner call sequence 17
panels

adornment 24, 25
border 25
name 25
opening 22
owners 16

partitioning control panels 40
Port Components 10 to 11, 40 to 49

description 44
retrieving information from 48

ports
audio 10
audio output 10
detecting changes on 49
with multiple control paths 43
turning on and off 42
video 10
video input 10
video output 10

PowerBook applications 66
Preferences Component 59

Q

QuickTime INITs 65

R

refCon globals 38
reference material xi
registering components 65, 66
registering Engine Components 37
reporting on component group 70
Resolution Panel 59

S

searching for candidates 19
selectors

ManagerComponentSleep 70
ManagerComponentWake 70

setup panels 6
shared information, storing 52
shutdown 66
sleep mode 66
Sound & Displays 6, 7

application 3
setup window 4

Sound control panel 3
storing

data in components 56
icons 42, 52
names 42, 52
shared information 52

System 7.1 65

T

targeting 27
toggling sense lines 49
Toolbox 6, 8
turning ports on and off 42

U

unregistering components 66
utility components 59
utility functions

getting globals 60
getting the resFile 60
library 60
setting the resFile 60

I N D E X

76

V

video devices 2
video input ports

camera 10
VCR 10

video output ports
camcorder 10
display 10
monitor 10
TV screen 10
VCR 10

Virtual Photometry Technology (VPT) 71

W, X, Y, Z

wiggle selectors 43
wiggling 42, 49

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Select 360 printer. Final
pages were created on the Apple
LaserWriter Pro 630. Line art was created
using Adobe



 Illustrator. PostScript



,
the page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino



 and display type is
Helvetica



. Bullets are ITC Zapf
Dingbats



. Some elements, such as
program listings, are set in Apple Courier.

WRITER

Joyce D. Mann

DEVELOPMENTAL EDITOR

John Hammett

ILLUSTRATOR

Sandee Karr

Special thanks to
Aaron Ludtke, Mark Taylor,
Greg Mullins, and William Sheet

Thi d t t d ith F M k 4 0 4

	AV Architecture
	Contents
	Figures and Tables
	About This Note
	Conventions Used in This Note
	List of Abbreviations
	Other Reference Material
	For More Information

	Overview of the AV Architecture and Application Software
	AV Devices
	Why the AV Architecture Was Developed
	Status Quo — Control Panels
	Problem Areas
	Apple’s Solution
	Architectural Features
	Developer’s Role

	Architectural Components
	Panel Components
	Engine Components
	Port Components
	Device Components
	Delivering Your Components
	Advantages of a Component-Based Architecture

	Panel Components
	Panel Owner Search for Candidate Panels
	AVPanelOpen
	AVPanelGetFidelity
	AVPanelClose
	AVPanelGetPanelClass

	Opening Panels for Display to Users
	AVPanelOpen
	AVPanelSetCustomData
	AVPanelGetDITL
	AVPanelComponentGetPanelAdornment
	AVPanelInstall
	AVPanelTargetDevice
	AVPanelGetSettingsIdentifiers
	AVPanelSetSettings
	AVPanelGetTitle
	AVPanelClose

	Running the Setup Application
	AVPanelEvent
	AVPanelValidateInput
	AVPanelTargetDevice

	Closing the Panel Window
	AVPanelValidateInput
	AVPanelGetSettings
	AVPanelGetSettingsIdentifiers
	AVPanelRemove
	AVPanelClose

	Engine Components
	Engine Component Description
	Engine Component Functions
	AVEngineComponentGetFidelity
	AVEngineComponentTargetDevice

	Registering Engine Components Multiple Times
	Notification

	Port Components
	Why Have Ports?
	Why Have Port Components?
	Storing Names and Icons
	Turning the Port On and Off
	Implementing Wiggling
	Interfacing Between Engine Components and Hardware

	Port Component Description
	Port Component Functions
	Storing Names and Icons
	AVPortGetName
	AVPortGetGraphicInfo

	Turning the Port On and Off
	AVPortSetActive
	AVPortGetActive

	Retrieving Information From the Port Component
	AVDevicePortGetName
	AVDevicePortGetDeviceComponent

	Detecting Changes on Ports
	AVPortSetWiggle

	Device Components
	Why Have Device Components?
	Storing Names and Icons
	Providing Interface With Hardware
	Providing Storage for Shared Information

	Device Component Functions
	AVDeviceGetName
	AVDeviceGetGraphicInfo

	More Information About the AV Architecture
	Strategies for Storing Data in Components
	Managing Component Storage
	Creating and Destroying Instance Globals
	Creating and Destroying Common Globals

	Notification Mechanisms
	Display Notification
	Resolution Panel Notification
	Cursor Visibility Panel Notification

	Utility Components
	Preferences Component

	Library of Utility Functions
	Getting Globals
	Getting and Setting the resFile

	Manager Component
	Loading Components
	Registering Components
	Component vs. INIT

	Interaction With Device and Port Components
	Cleaning Up During Sleep or Shutdown
	Reporting on the State of the Component Group

	Glossary
	Index

