USOJUDBA

PACKING SLIP

.>.§_ INSIDE MACINTOSH DOCUMENTATION

This set used to consist of 3 binders. The original
documentation has been revised, and rewritten, and
now fits into 2 binders.

The Pascal Workshop documentation and software is now
available from your local Apple Dealer.
The Apple part number is A6D0201 .

Note - presently there is no information behind the
Introduction, OS Utilities, and Other OS tabs. Also in the
"Road Map™ section, please disregard any references to
Core Edit - this does not exist.

- D " P D > AP TP T D — - G P WD D T D TS T T - - — - A - G =" o

SOFTWARE SUPPLEMENT
Note - this Installs on the base Lisa Pascal Workshop.
This supplement includes 8 diskettes, with two

documentation pieces labeled ~ The Macintosh Supplement
to the Workshop _‘ and " MacCom Instructions ~ .

THIS SECTION
INTENTIONALLY

LE!

FT BLANK.

WHEN AVAILABLE,
IT WILL BE SUPPLIED
AS PART OF THE
MACINTOSH SUPPLEMENT.

MACINTOSH PUBLICATIONS

Macintosh User Interface Guidelines USER. INTERFACE/NEWUIDOC
See Also:

Modification History: First Draft Hoffman 3/17/82

Rearranged and Revised Espinosa 5/11/82

Total Redesign Espinosa 5/21/82

Second Edition Prerelease Espinosa 7/11/82

Second Edition Espinosa 10/11/82

ABSTRACT

One of the major factors in making a system pleasant and easy to use is
the system’s consistency. This specification’s purpose is to set down
our agreements about the way programs will interact with users, so that
we have a common method for dealing with interface problems, and so that
all software written for the Macintosh computer (in-house or by outside
vendors) will be consistent with respect to the issues discussed here.

2

User Interface Guidelines

CONTENTS

UIDOC
COVER
OUTLINE

5 Introduction INTRO

5 Software Developers’ Responsibility

6 Macintosh’s Commitment

6 About Modes

8 The Graphic Screen SCREEN

9 Icons

11 Accepting User Input MOUSE

11 The Mouse

12 Mouse Actions

13 Double—Clicking

13 Changing Pointer Shapes

14 The Keyboard KEYBOARD

14 Character Keys

15 Modifier Keys

15 The COMMAND Key

15 Special Keys

16 Typeahead, Auto-repeat, and Audio Feedback

16 Versions of the Keyboard

17 The Numeric Keypad

18 Conceptual Models: Tools and Documents MODELS

19 Files

19 Tools

20 Documents

21 Resources

22 The DeskTop Model of Organization DESKTOP

22 The Desk

24 Windows WINDOWS

24 Opening and Closing Windows

25 The Active Window

25 Document Windows

25 Scroll Bars

27 Multiple Windows

27 Moving a Window

28 Changing the Size of a Window

29 Splitting a Window

39 Desk Accessories ACCESSORY

31 Who’s on Top? ONTOP

32
32
33
33
34
35
36
36
37

38
38
38
39
39
49
49
43
43
44
45

48
48
48
49
51
51
52
53
53
55

56
56
56
57
58
58
58
58
59
59
59

61
61
62
63
63
64

CONTENTS

Inside Documents INSIDE
Structure of Documents
The Visual Structure
Graphics in Documents
Appearance of Text CHARACTERS
Typefaces, Typesize and Fonts
Typestyles
Proportional vs. Monospaced Fonts
Standard Fonts

Working with Macintosh WORKING
Direct Manipulation: Controls
Buttons
Check—-Boxes
Dials
Selecting Information SELECTING
The Selection
Selection by Command
Automatic Scrolling during Selection
Extending a Selection
Making a Discontiguous Selection

Commands COMMANDS
The Menu Bar
0f Mice and Menus
Notes on General Properties of Menus
The Standard Menus
The Apple Menu
The Edit Menu
The File Menu
Keyboard-Invoked Commands
What Commands Are and Aren’t

Basic Editing Paradigms EDITING

The Selection

The Scrap

The Cut and Copy Commands

Paste

Undo

Inserting and Replacing Text
Backspacing

Cutting and Pasting Between Documents
Between Two Documents with the Same Principal Tool
Between Two Documents with Different Principal Tools

Special Conditions BOXES
Dialog Boxes
The Alert Mechanism
Alert Boxes
How to Phrase an Alert Message
Appearance of Alert Boxes

3

4

66

67
68
79

73

75

76

85

User Interface Guidelines

Appendix

Appendix
Appendix

Appendix

Appendix

Appendix

A.

Thou-Shalt-Nots of a
Friendly User Interface

Pointer Shapes
Hardware Specifications

Keyboard Layouts and
Character Assignments

Guide to Icons

Unresolved Issues

Technical Lexicon

Index

FRIENDLY

POINTERS

HARDWARE

LAYOUTS

GLOSSARY

INDEX

INTRODUCTION 5

INTRODUCTION

Macintosh is intended to be the first mass—-market personal computer.
It is designed to appeal to an audience of non-programmers, including
people who have traditionally feared and distrusted computers. To
achieve this goal, Macintosh must be friendly. The system must, once
and for all, dispel any notion that computers are difficult to use.
Two key ingredients combine in making a system easy to use:
familiarity and consistency.

Familiarity means that the conceptual underpinnings of a system are
based on premises or procedures our users already know and employ.

Most Macintosh applications are oriented towards common tasks:

writing, graphics and paste—up work, ledger sheet arithmetic, chart and
graph preparation, and sorting and filing.. The actual environment for
performing these tasks already exists in people’s offices and homes; we
mimic that environment to an extent which makes users comfortable with
the system. Extensive use of graphics plays an important part in the
creation of a familiar and intuitive environment.

Consistency means a uniform way of approaching tasks across
applications. For example, when users learn how to insert text into a
document, or how to select a column of figures in one application, they
should be able to take that knowledge with them into other applications
and build upon it. Uniformity and consistency in the user interface
reduces frustration and makes a user more amenable to trying new
techniques and new software to solve problems.

Consistency and familiarity are by no means orthogonal concepts.
Familiar models should be used in a consistent manner to avoid
confusion, and consistency should not lead to unfamiliar behavior.

Software Developers’ Responsibility
Preservation of a truly consistent working environment requires some
deliberate and conscious effort on the part of applications
programmers.

If Macintosh is to be successful as a truly mass-market personal
computer, software developers must maintain consistency throughout
applications by conforming to a common user interface.

(hand)
It is the responsibility of everyone who writes software
for Macintosh to preserve the integrity of the system.

Years of software development, testing, and research have gone into the
definition of the Macintosh user interface. The mechanisms outlined in
this document have been shown to be well-suited for a variety of
applications and tasks. If your application requires approaches not
specified in this document, we urge you to build your schemes on top of
existing ones and avoid incompatibility at all costs.

INTRO Espinosa 8/26/82

6 User Interface Guidelines

Macintosh’s Commitment

On many other computers, since little or no user interface aids are
built in, each applications programmer invents a new and original
interface for each program—-which leads to hundreds of different,
conflicting, and confusing interfaces.

We hope to avoid this situation on Macintosh by building tools for a
versatile, well-tested user interface and placing them in ROM to be
used by all applications programs. There’s no strict requirement that
an applications program must use all or any of the supplied interface
tools; but programmers who create their own interface do so at the
expense of their own development time, the user’s data space, and the
entire system’s coherency.

Consistency in the user interface is most important in three areas:
- Data selection and editing;
- Command invocation;
- Performance of common system—wide functioms.

These are common to all applications. But each application also has
its unique requirements, all of which we cannot forsee. To accommodate
each application’s specific needs, most of the features of the user
interface are extensible: a programmer can ''customize'" the appearance
or function of a common interface feature to suit the application.

Macintosh system software is designed to make the implementation of the
user interface as simple as possible for the programmer. Most of the
recommended user interface features outlined below are implemented with
simple calls to the User Interface ToolBox or the Operating System.

The substantial documentation available for those packages should serve
as an introduction to implementing the user interface described in this
document.

About Modes

"A good man will prefer that mode, by which he can produce
the greatest effect."
-- Paley, 1794

We adhere to the principles of modeless hehavior. Larry Tesler defines
a mode as follows:

A mode of an interactive computer system is a state
of the user interface that lasts for a period of time,
is not associated with any particular object, and

has no role other than to place an interpretation on
operator input.

INTRO Espinosa 8/26/82

INTRODUCTION 7

Modes are most confusing when you’re in the wrong one. Unfortunately,
this is the most common case. Being in the wrong mode is confusing
because it makes future actions contingent upon past ones; it changes
the behavior of familiar objects and commands; and it makes habitual
actions cause unexpected results.

We advocate avoidance of modes whenever possible. Of course,
exceptions must be made, however; there are certain tradeoffs among
modality, usefulness, and implementability that must be considered.
There are three cases in which modal behavior is generally tolerated:

- Long-term modes with a procedural basis: doing word processing
vs. graphics editing, etc. Each application program in Macintosh
is a mode.

- Short-term "spring-loaded" modes, in which the user is constantly
doing something to perpetuate the mode. Holding down a button or
key is the most common example of this kind of mode.

~ Alert modes, where the user must rectify an unusual situation
before proceeding. Such situations, however, should have been
avoided in the first place.

Other modes are acceptable if they meet the following requirements:

— They emulate a familiar real-life model which is itself modal,
like picking up different-sized paintbrushes in a graphics editor;
or

- They change only the attributes of something, and not its
behavior, like the boldface and underline modes of text entry; or

— They block most other normal operations of the system to emphasize
the modality, as in error conditions incurable through software
("There’s no diskette in the disk drive", for example).

Whatever the modality entails, it must be visible. There must be a

clear visual indication of the current mode, and the indication should
be near the object being most affected by the mode.

SCREEN Espinosa 10/8/82

8 User Interface Guidelines

“THE GRAPHIC SCREEN

Macintosh distinguishes itself from all other personal computers by its
high~resolution graphic screen. While other computers posess similar
or greater graphics resolution or ability, no other applies its graphic
powers as widely and generally as Macintosh.

Macintosh has a purely graphic display: there is no "text mode" in the
machine at all, Text, to Macintosh, is merely a special kind of
graphics. Problems of mixing text with graphics go away because
they’re really the same thing,.

Other computers don’t do this because of inherent limitations in their
processor speed and data path width, and because of a lack of software
support of graphics. Not only does Macintosh have a Motorola MC680p@
microprocessor (running at a nominal 7 MHz with a 16-bit data path,
giving it several times the bandwidth of the Apple II’'s 65§2), but it

also has Bill Atkinson’s QUICKDRAW graphics package, revolutionary in
its speed and ability.

But far more important than raw graphic power is what the software does
with it. What Macintosh does can be explained quite simply:

(hand)
All commands, features, and parameters of the
application, and all the user’s data, appear as graphic
objects on the screen.

Wednesday
Tuly 3a, 1982
14T M,

Figure 1, Objects on the Screen
Objects, whenever applicable, resemble the familiar material objects

they emulate. Objects that act like pushbuttons "light up" when
pressed; objects that act like tab stops look like their counterparts

SCREEN Espinosa 10/8/82

THE GRAPHIC SCREEN 9

on a typewriter. Dozens of objects, some emulating everyday objects
and some unique to Macintosh, are defined in the User Interface Tool
Box.

Objects are designed to look beautiful on the screen. Using the
graphic patterns in QuickDraw can give objects a shape and texture
beyond simple line graphics. Placing a drop-shadow slightly below and
to the right of an object can give it a three-dimensional appearance.
The highest aesthetic sensibilities should be used in the design,
placement, and animation of objects.

Graphics can distinguish different states of the same object. Many
objects on the screen have two states: a '"normal" state and a
"special" state. Most objects in their normal state are predominantly
white, with detail (lettering, symbols, etc.) in black. Inverting the
polarity of the object, to make it black with white detail, will
highlight the object to represent its special state.

Icons
A fundamental object in Macintosh software is the icon, a small,
32-by-32 square graphic that can be drawn, edited, and moved easily.
The Icon Manager has facilities for drawing icons on the screen and
setting or resetting bits within them.

N size box 0 waming

] o | A

0 closebox {1 stop

N

31

11

0 drag 0 click
- ae 1 it
: &y &

Figure 2, 1Icons

Icons should be sprinkled liherally over the screen. Wherever an
explanation or label is needed, first consider using an icon before
using text as the label or explanation. Icons not only contribute to
the understandability and attractiveness of the system, they don’t need
to be translated into foreign languages.

SCREEN Espinosa 10/8/82

10 User Interface Guidelines

- Icons are by no means unique to the software; thy appear on the
Macintosh main unit itself, on the shipping materials, unpacking
instructions, and in the user manuals. The standard icons used to
denote various parts of the Macintosh hardware are shown in the
Appendix on icons.

MOUSE , Espinosa-Hoffman 10/11/82

ACCEPTING USER INPUT 11

ACCEPTING USER INPUT

All meaningful interaction between a Macintosh and its user takes place
via a piece of hardware built in or connected to the main unit. The
principal devices for original input to the Macintosh are the mouse and
the keyboard; the Macintosh responds to these devices by displaying
images on the screen or making sounds with its speaker. No other
action of the Macintosh (such as spinning its disk drive, etc.)
constitutes a meaningful message to the user.

The Mouse
The mouse is a small device the size of a deck of playing cards,
connected to the computer by a long, flexible cable. There is a square
button on the top of the mouse. The user holds the mouse and rolls it
on a flat, smooth surface.

Figure 3. The Mouse and Pointer

A pointer on the screen follows the motion of the mouse. Simply moving
the mouse results only in a corresponding movement of the pointer and
no other action. Most actions take place when the user positions the
focus of the pointer (which should be intuitive, like the point of an
arrow or the center of a crosshairs) over an object on the screen and
presses the mouse button.

The purpose of the mouse is to allow high-resolution specification of
elements on a graphic screen. Many researchers, at Apple and
elsewhere, have conducted extensive experimentation with various
pointing devices: cursor keys, light pens, graphic tablets, trac
balls, etc. We chose the mouse for its ease of use, accuracy, size,
and cost. It is compact and lightweight; it resolves to 20§ points per
inch; it retains its position when not being used; and it requires
little muscular strain to position it.

MOUSE Espinosa~Hoffman 10/11/82

12 User Interface Guidelines

Mouse Actions
The three basic mouse actions are:

- Clicking: Positioning the pointer with the mouse, and briefly
pressing and releasing the mouse button without moving the mouse;

- Pressing: Positioning the pointer with the mouse, and pressing
and holding the mouse button without moving the mouse; and

- Dragging: Positioning the pointer with the mouse, pressing and
holding the mouse button down, moving the mouse to a new position,
and releasing the button.

Clicking something with the mouse performs an instantaneous action:
selecting a location within the user’s document or activating an
object.

Pressing an object usually has the same effect as clicking it
repeatedly. For example, clicking a scroll arrow causes a document to
scroll one line; pressing a scroll arrow causes the document to scroll
repeatedly until the mouse button is released.

Dragging can have different effects, depending upon what is under the
pointer when the button is pressed. Beginning a drag inside the
document frequently results in selection of data. Beginning a drag
over an object usually moves that object on the screen. Only certain
objects are draggable; large draggable objects have a special area with
which the user drags the entire object. Our tests show that users
understand dragging an object by a well-marked area rather than by a
large, general area.

Pressing

N |
o~
“Clicking

A
—~—f

i 72

—lf'..-"_._..._-::;_-_-_-_-_._._" ' 4.!'.'.'_"-—._.:—-__—_—:—-.;

Figure 4., Clicking, Pressing, and Dragging

Dragging is also used to choose an item from a menu, as described
below.

MOUSE Espinosa-Hoffman 10/11/82

ACCEPTING USER INPUT 13

(hand)
In general, pushing the mouse button indicates intention,
while releasing the button confirms the action.

Dragging an object attaches a flickering outline of the object to the
pointer. The outline follows the pointer around the screen while the
mouse button is being held down. When the user releases the mouse
button, the object moves to the position of the flickering outline, and
the outline vanishes.

Every object is restricted to certain boundaries. If the user tries to
drag an object out of its natural boundaries, the flickering outline
disappears when the pointer travels out of those boundaries. If the
user moves the pointer back inside the boundaries with the button still
held down, the outline reappears under the pointer and dragging
resumes, If, however, the user releases the button while the outline
is invisible, the object being dragged does not move; in this way the
user can cancel a drag in progress.

Double-Clicking

A variant of clicking involves performing a second click shortly after
the end of an initial click. If the downstroke of the second click
follows the upstroke of the first by 700 milliseconds or less, the
second click should be considered not an independent event, but rather
an extension of the first: this action is called "double-clicking".
Its most common use is as an optimized means of performing an action
that can be performed in another, slower, manner.

(hand)

To allow the software to distinguish efficiently between
single clicks and double-clicks on objects that respond
to both, a function invoked by double-clicking an object
must be an enhancement, superset, or extension of the
feature invoked by single-clicking that object.

Changing Pointer Shapes
The pointer may change shape to give feedback on the range of
activities that make sense in a particular area of the screen, in a
current mode, or both.

1. The results of any mouse action depend on the item under the
pointer when the mouse button is pressed. To emphasize the
differences among mouse actions, the pointer may assume different

appearances in different areas to indicate the mouse’s behavior in
each area.

2. Although modal behavior is generally discouraged in the Macintosh
user interface, sometimes introducing modes makes it simpler to
differentiate among the multiplicity of functions of the mouse,
For example, in the Graphics Editor, the mouse functions both to
draw graphics and to manipulate graphics already drawn. Thus, in
this particular application, the mouse is employed in two

MOUSE Espinosa-Hoffman 10/11/82

14 User Interface Guidelines

different modes. To accent the difference in behavior in these
two modes, the pointer may change shape.

The facility to change the pointer appearance to convey modal
information is not a unilateral endorsement of modal behavior; see the
discussion "About Modes" on page 6 of this document.

The Keyboard

Connected to the Macintosh main unit by a six-foot coil cord is a
compact alphanumeric keyboard. The keyboard is used mainly for text
and numeric entry.

The keys on the keyboard are arranged in familiar typewriter fashion;
there is a utility program with which the user can change the positions
of the keys or the characters they generate.

COEoOEREEEE0T.T

T4B ﬁ@]@@i@l@‘D@§@D
*romk LI @E@@D@L@@@WL‘W

SHIFT | D}@.@@@]@@@m SHIFT
ocJc i

GFTION COMMAND ENTER OPTICN

Figure 5. The Macintosh Keyboard

In terms of functionality, the keys are divided into three sets:
character keys, modifier keys, and special keys. Character keys enter
characters into the computer; modifier keys, in conjunction with
character keys, choose among different characters on a key; and special
keys give special instructions to the computer.

Character Keys
The alphabetic, numeric, and symbolic keys, and the space bar, enter
characters into the computer, Any character key may be associated
(and/or labeled) with more than one character; the modifier keys choose
among the different characters on each key.

The Basic Editing Paradigms (see that section) define the ways in which
characters are typed into a document. All text, whether it be a

file name, part of a document, or a search pattern, is typed in and can
be edited in exactly the same way.

KEYBOARD Espinosa-Hoffman 10/8/82

ACCEPTING USER INPUT 15

The keyboard hardware scans the character keys such that it can
recognize any two character keys being pressed simultaneously. This
feature is called "two-key rollover".

Modifier Keys: SHIFT, CAPS LOCK, OPTION, and COMMAND

Six keys on the keyboard-—two labeled SHIFT, two labeled OPTION, one
labeled CAPS LOCK, and one labeled COMMAND--change the interpretation
of keystrokes or other inputs to the computer. When one of these keys
is held down, the behavior of the other keys (and occasionally that of
the mouse button) may change. A program can eanquire the status of the
modifier keys at any time.

The SHIFT and OPTION keys choose among the characters on each character
key. SHIFT gives the upper character on two-character keys, or the
uppercase letter on alphabetic keys. OPTION gives an alternate
character set interpretation, for foreign characters, special symbols,
etc. SHIFT and OPTION can be used in combination.

CAPS LOCK latches in the down position when pressed, and releases when
pressed again. When down it gives the uppercase letter on alphabetic
keys. The operation of CAPS LOCK on alphabetic keys is parallel to
that of the SHIFT key, and the CAPS LOCK key has no effect whatsoever
on any of the other keys. CAPS LOCK and OPTION can be used in
combination on alphabetic keys.

The keyboard hardware can sense any or all of the modifier keys being
pressed simultaneously.

The COMMAND key
Pressing a key while holding down the COMMAND key signals that the
keypress is not data input, but rather a command invocation (see the
section on Commands).

(hand) ‘
As the OPTION and COMMAND keys are unfamiliar features to
users familiar with typewriters, their use should be
restricted to expert functions not normally encountered
by novice users.

Special keys: ENTER, TAB, RETURN, and BACKSPACE
When the user enters or edits information, the ENTER key confirms that
entry. When ENTER is pressed, the computer checks and validates the
current entry and allows the user to proceed to a different one.
Commonly used to confirm the entry of text, ENTER tells the computer to
accept changes made to a field or form (such as a spreadsheet formula
or a new file name).

The TAB key is a signal to proceed: it signals movement to the next
item in a sequence. TAB often carries the implicit meaning of ENTER
before the motion is. performed.

KEYBOARD : Espinosa-Hoffman 10/8/82

16 User Interface Guidelines

The RETURN key is another signal to proceed, but it defines a different
type of motion than TAB. A press of the RETURN key signals movement to
the leftmost field one step down (just like a carriage return on a
typewriter). RETURN also can carry the implicit meaning of ENTER
before it performs the movement.

(hand)
In applications such as the word processor, the TAB and
RETURN keys not only perform immediate actions, but store
those actions in the text; in such applications the
RETURN and TAB keys may be considered character keys.

BACKSPACE is used to delete characters from text, usually in the course

of typing that text. The exact use of BACKSPACE is described in the
section on the Basic Editing Paradigms.

Typeahead, Auto—Repeat, and Audio Feedback

If the user types at a time when Macintosh is unable to process the
keypresses immediately, or the user types more quickly than Macintosh
can process, the precocious keystrokes are queued for timely
processing. As keystrokes are handled as events through the Operating
System’s event mechanism, the only limit on the number of characters
that can be typed ahead of time is the length of the system’s event
queue.,

Normally, Macintosh "clicks" slightly at every keystroke. This audio
feedback in typing is a global preference that the user can change at
any time (see the Preferences description, in the section on Desk
Accessories).

When the user holds down a key for a certain amount of time, it starts
repeating automatically. The delays and the rates of repetition are
global preferences that can be changed by the user at any time.

All printable characters, the space bar, the BACKSPACE key, and the
RETURN key, inherently have the auto-repeat ability. The auto-repeat
ability of each key is a characteristic of the keyboard that the user
can change with the same utility program that alters the keyboard
layout.

Auto-repeat does not function during typeahead; it only operates when
the application is ready to accept keyboard input.

Versions of the Keyboard
There are two physical versions of the keyboard: American and
European. The European version has one more key than the American.
The key layout on the European version is designed to conform to the
IS0 standard; the American key layout mimics that of common American
office typewriters.

The American keyboard contains 49 character keys (including the space
bar and RETURN) that produce all the printable ASCII characters. In

KEYBOARD Espinosa-Hoffman 10/8/82

ACCEPTING USER INPUT 17

addition, there are the following modifier and special keys: SHIFT,
CAPS LOCK, COMMAND, OPTION, ENTER, TAB, and BACKSPACE.

The European keyboard contains 50 character keys; the special and
modifier keys are equivalent to those on the American keyboard, but
their labels denote their functions symbolically.

(hand)
As the keyboard interface 1is a general-purpose clocked
bidirectional serial port, other devices (such as a music
keyboard, etc.) may eventually be attached to this port.

The Numeric Keypad
An optional numeric keypad is offered that connects between the .main
unit and the standard keyboard. The keypad contains 18 keys that,
while labeled similarly to keys on the main keyboard, return different
keycodes to the main unit. An application can thus determine the
origin of a keystroke. If desired, the keypad keys can be assigned
ASCII codes equivalent to their counterparts on the main keyboard.

The character keys on the keypad are labeled with the digits O through
9, a decimal point, the four standard arithmetic operators for plus,
minus, times, and divide, and a comma. The keypad also contains the
special keys ENTER and CLEAR; it has no modifier keys.

The keys on the numeric keypad follow the same rules for typeahead
auto-repeat, and audio feedback as the main keyboard.

Four keys on the numeric keypad are labeled with "field-motion"
symbols: small rectangles with arrows exiting them in various
directions. Some applications may use these keys to move an object or
indicator orthogonally around the screen, and require the user to use
the SHIFT key to obtain the four characters (+ * / ,) normally
available on those keys.

(hand)
As the numeric keypad is optional equipment, no
application shall require it or any keys available on it
in order to perform standard functions. Specifically, as
the CLEAR key is not available on the main keybaord, a
CLEAR function may be implemented with this key only as
an optimization of another CLEAR command (such as in a
menu).

MODELS Espinosa 10/11/82

18 User Interface Guidelines

CONCEPTUAL MODELS

Macintosh, as an appliance computer, has one purpose only: to
manipulate information. With it, a user can access, display,
interpret, modify, transfer, replicate, and destroy information.
Consequently, the central concepts on which the Macintosh system is
built deal with things relating to information:

- The container of information, which we call a file;
~ The manipulator of information, which we call a tool;

- The presenter and interpreter of information, which we call a
window;

- The working environment, which we call the desk top; and
- The information itself, which we call a document.

On the continuum between pure concept and pure object, each of these
has its own place. We hope to present our users with only the physical
objects that represent these concepts, so that they can grasp the
concepts by inference; we will not require them to know the concepts
before they encounter any of the objects.

0f the above, files are the most conceptual; we will use the term
internally here to mean a generic container of information. As
described below, files have many distinct incarnations that the user
will encounter,

Figure 6. Conceptual Models

MODELS Espinosa 10/11/82

CONCEPTUAL MODELS 19

The desk top, documents, and windows are the most concrete of the above
group: users will see these as objects and not as concepts at all.

Tools are somewhere in the middle: although they have certain
distinguishable physical attributes, most of their importance is in the
conceptual realm.

Files
A file is a container of information. All the texts, pictures, charts,
and address lists that the user puts into Macintosh are stored in
files. Files also store information that the user didn’t create:
information usually more intelligible to the computer than the user.

There are three general classifications for files: those containing
documents, those containing tools, and those containing resources.
Documents are created by users and can be viewed and modified by users.
Tools are created by application programmers; the user can use them but
can’t modify them. Resources are also created by application
programmers, but can be edited by a resource editor to change the way
in which a tool communicates with the user (see RESOURCE FILES, below).

Regardless of its contents, a file has many important attributes.
Every file has a type that describes its contents and determines which
tools can manipulate it; a size that describes how large its contents
are; a name by which the user refers to the file; and a label on which
the user can put additional information about the file, It also has
the dates on which it was created and last modified.

Tools
What we call a "tool"™ is generally known as an application program: an
interactive set of procedures and data structures for manipulating
information. Writing, drawing, charting, filing, analysis, and BASIC
programming are the fundamental tools Macintosh provides; there are
also several other "housekeeping" tools, like using a pocket
calculator, note pad, and several other "mini-applications" described
later in this document. A tool manifests itself in two ways: it
displays a menu bar replete with menus of commands appropriate to that
tool; and it places a document window on the desk through which the
user can see the information contained in a file.

MODELS Espinosa 10/11/82

20 User Interface Guidelines

Figure 7. A Typical Tool

Tools, being themselves information (but intelligible to the computer
rather than to the user), are stored in files.

(hand)
Only one tool can be in use at any given time.

Documents
Documents are the information that the user has created or wishes to

manipulate. Documents can exist inside a file on a diskette or inside
the memory of Macintosh. A document comprises a coherent set of
different kinds of information.

—- Most documents comprise only one kind of information: all text,
or one picture, or a series of charts, for example. The user
manipulates the information and prints it out as a whole. Every
document thus has a principal "type" of information; this type is
determined by the tool that formed it.

- A document can comprise more than one kind of information, but it
must still form a coherent whole. The user can take information
of one kind and add it to a document of another kind. But the
document still retains its principal type, and the user can
manipulate only the information of that type.

Associated with each kind of document is a principal tool: the tool
most appropriate to manipulate that document. The principal tool of
any document is usually the tool that created it. Other tools may be
able to read and interpret the document; for example, the BASIC
language can read word processor documents anticipating the text of a
program. Such tools are the document’s secondary tools. The
distinction is important only when selecting files from the desk.

MODELS Espinosa 10/11/82

CONCEPTUAL MODELS 21

Resources

Some files contain information that is neither a tool nor the user’s
information. This information is usually fonts, system programs,
configuration information, etc. Although such information may have
principal tools (such as a font editor for fonts), it’s most commonly
used by a tool.

Files containing such information are called resource files. Tools
have internal links to the resource files they need; copying a tool
file, for example, automatically copies all resource files linked to
it. Resource files are usually created by application programmers to
accompany tools. The user can edit some resource files by using
special resource editors, such as font editors or menu editors.

DESKTOP Espinosa—~Hoffman 10/11/82

22 User Interface Guidelines

THE DESK TOP MODEL OF ORGANIZATION

The entire Macintosh working environment is based on familiar and
intuitive concepts. The Macintosh screen represents a working surface
or a desk top. Papers, writing or drawing utensils, and other common
desk accessories have their place on this desk top just as on any
other. Whenever possible, the objects on the desk top resemble their

real-life counterparts: for example, all papers are white with black
lettering. :

Figure 8. The Desk Top

The Desk

The desk top metaphor is reinforced by the central tool of the
Macintosh system, a tool called the Desk. While most tools manipulate
the documents contained in files, the Desk manipulates the files
themselves, often regardless of their contents., The basic functions of
the Desk are as follows: !

Get, Print, Examine, Delete, or Copy any file or group of files;

Initialize a diskette;

Rename or rearrange the files on a diskette;

Select which diskettes, network diskettes, and peripheral devices
to work with.

On the Desk, files are represented by icons, with each file’s name as a
caption to its icon. The icons can be dragged around the desk asnd
positioned in any order or arrangement. Other parts of the system are

also represented by icons on the desk: disks and disk drives,
printers, etc.

DESKTOP Espinosa-Hoffman 10/11/82

THE DESK TOP MODEL OF ORGANIZATION 23

The central purpose of the Desk is to allow the user to manipulate
files, and to call up the appropriate tools to work on the documents
the files contain. The user invokes a tool from the Desk, and returns
to the Desk when finished.

Once using a tool, the user can call up a subset of the standard Desk
functions, to choose a new file to work with or to specify a
destination for the new work. This subset as presently defined
includes selecting disks and files, creating a new file, and renaming
and repositioning files.

WINDOWS Hof fman-Espinosa 10/11/82

24 User Interface Guidelines

WINDOWS

Windows are objects on the desk that display information. The
information can be a user’s document, an error message, or a request
for more information. Any number of windows can be present on the desk
at any time. As on a real desk, if more windows are placed on the desk
than reasonably can fit, the windows "overlap" each other: the windows
in front partially or completely obscure those behind them.

Soroll Bar Test

| Want You

The quilty undertaker sighs

The lonesome organ unnder cries

The silver saxophones say | should refuse
The cracked hells and washed out horns

Blow into my face with scorn

But its not that way, | wasnt born to lose

I'want you, | want you, | want you so bad

The drunken politician leaps
Upon the street where mothers weep

And the saviors who are fast asleep, they
And | wait for them to thrrum

Figure 9. Windows

Each window "floats" in its own plane. Think of a number of plates of
glass stacked on top of the desk: each plate contains one and only one
window, and the plates can be moved to make the windows appear in
different places on the desk. Each window can overlap those behind it,
and can be overlapped by those in front of it. The frontmost window
cannot be overlapped. Even when windows do not overlap, they retain
their front-to-back ordering.

Opening and Closing Windows
Windows come up onto the screen in different ways appropriate to the
purpose of the window. Some windows are created automatically: for
example, when the user wants to work with a document, the tool being
used creates a document window in which to present that document.

Many windows have an icon that, when double-clicked, makes the window
go away: this icon is called the close box. (This icon is double-
clicked, rather than singly-clicked, because of the disturbing
consequences of accidentally clicking the icon). The application in
control of the window determines what is done with the window when the
close box is double-clicked: it can

WINDOWS Hof fman-Espinosa 10/11/82

WINDOWS 25

1. make the window invisible, to be retrieved later; or
2. remove and destroy the window and any information it contained.

If an application wishes not to support closing its window with a close
boxe, it should not place the box on the window.

The Active Window

At any given time, one window is of greater importance to the user than
any other. Usually, the most important window is presenting the
current document; at other times, an error message or information
request may be more important. Thus this general rule:

- The most important window at any given time is always frontmost.

Naturally, there must be rules to determine which window is most
important at any given time.

- Newly-created windows are usually brought to the front.

- If the user positions the pointer with the mouse inside any window
that is not in front, and then clicks the mouse button, that
window is brought to the front.

Being in front has more consequences for an window than merely being
more visible. The frontmost window is said to be active, and all
others. inactive.

- A window’s active state is visibly distinct from its inactive
state; usually, the title or header of the window is highlighted.

- Clicking or dragging inside the active window may pefform a useful
function; clicking or dragging inside an inactive window merely
brings that window to the front.

- All command and data input is handled by the program that is in
control of the active window.

Document Windows

Although windows display many kinds of information and requests, the
most common appearance of a window is to display the document currently
being worked on. Windows displaying documents have parts not usually
seen in other windows: scroll bars to move the document under the
window; a size box to change the size of the window; and split bars to
divide the window into several panels.

Scroll Bars
Scroll bars are used to change the user’s view of a document. Only the
active window has scroll bars; inactive windows leave black-bordered

empty rectangles where their scroll bars will appear when the window is
activated.

WINDOWS Hof fman-Espinosa 10/11/82

26 User Interface Guidelines

A scroll bar is a light gray shaft, capped on each end with square
boxes labeled with arrows; inside the shaft is a white rectangle. The
shaft represents one dimension of the entire document; the white
rectangle (called the thumb) represents the portion of the document
currently visible inside the window. As the user moves the document
under the window, the position of the rectangle in the shaft moves
correspondingly,

There are three ways to move the document under the window: by
sequential scrolling, by "paging" screenful by screenful through the
document, and by directly positioning the thumb.

Clicking a scroll arrow moves the document in the direction of the
scroll arrow. For example, when the user clicks the top scroll arrow,
the document moves down, bringing the view closer to the top of the
document., The thumb moves towards the arrow being clicked.

Each click in a scroll arrow causes movement a distance of one unit in
the chosen direction, with the unit of distance being appropriate to
the tool: omne line for the word processor, one row or column for the
spreadsheet, etc. Pressing the scroll arrow causes continuous movement
in its direction.

Clicking the mouse anywhere in the gray area of the shaft advances the
document by screenfuls. The thumb moves toward the place where the
user clicked, and the document moves in the opposite direction;
clicking below the thumb, for example, brings the user the next
screenful towards the bottom of the document. Pressing in the gray
area keeps screenfuls flipping by until the user releases the button or
the thumb reaches the pointer.

In both the above schemes the user moves the document incrementally
until it is in the proper position under the window; as the document
moves, the thumb moves accordingly. The user can also move the
document directly to any position simply by moving the thumb to the
corresponding position in the shaft. To move the thumb, the user
presses on the thumb and drags it along the shaft; a flickering outline
of the thumb follows the pointer. When the mouse button is released,
the thumb jumps to the position last held by the flickering outline,
and the document jumps to the position corresponding to the new
position of the thumb.

If the user starts dragging the thumb, and then moves the pointer a
certain distance outside the scroll bar, the thumb detaches itself from
the pointer and stops following it; if the user releases the mouse
button, the thumb returns to its original position and the document
remains unmoved. But if the user still holds the mouse button and
drags the pointer back into the shaft, the thumb reattaches itself to
the pointer and can be dragged as usual.

WINDOWS Hof fman-Espinosa 10/11/82

WINDOWS 27

Multiple Windows

Some tools may be able to keep several windows on the desk at the same
time, as part of the same logical document. Different windows can
represent:

- Different parts of the same document, such as the beginning and
end of a long term paper;

- Different interpretations of the same document, such as the
tabular and chart forms of a set of numerical dataj;

- Different parts of a logical whole, like the listing, execution,
and debugging of a BASIC program;

- Separate documents being viewed and/or edited simultaneously.

Asthor
Macineosh DeskTop Derna

written by

: “ ' andy Hertzfeld

Congrol Panel “
(Cuic] [Clear] [Doen)

Figure 10. Multiple Windows

Each tool may deal with the meaning and creation of multiple windows in
its own way.

There are occasionally better ways to perform the above functions than
with multiple windows. Showing different parts of - the same document
can be done better by splitting the window (see below). Different
interpretations of the same document occasionally merit two panes in
the same window, rather than two separate windows. The implementation
decision can best be made by experimentation and testing on actual
users.

Moving a Window

Each tool places windows on the screen wherever it wants them. The
user can move a window--to make more room on the desk or to uncover a
window it’s overlapping—-by dragging its title bar. A flickering
outline of the window follows the pointer until the user releases the

WINDOWS S Hof fman~Espinosa 10/11/82

28 User Interface Guidelines

mouse button. At the release of the button the full window is drawn in
its new location.

A window always moves in its own plane; while it’s being dragged
around, the flickering outline is visible over the windows below it but
is hidden under the windows above. Notice that clicking in the title
area does not make a window active or bring it to the top.

(hand)
Moving a window does not affect what portion of the
document it is displaying.

A window can never be moved off the screen; specifically, it can’t be
moved such that the visible area of the title bar is less than four
pixels square,

Moving a window is fully supported by the Window Manager, and is easily
performed with one procedure call; an application program need not care
where on the screen its window is placed.

Changing the Size of a Window

If a window has a certain icon in its lower right corner, where the
scroll bars come together, the user can change the size of the
window--enlarging or reducing it to the desired size. The box that
contains the icon is called the size box.

Dragging the size box drags a flickering outline of the window. The
outline’s top left cormer stays fixed, while the bottom right corner
follows the pointer. When the mouse button is released, the entire

window is redrawn in the size and form of the flickering outline.

Figure 11. Moving and Sizing a Window

Sometimes it’s not appropriate to size a window; some tools may not
support this ability. In this case, the size box is empty and clicking

WINDOWS Hoffman-Espinosa 10/11/82

WINDOWS 29

in it produces no effect. If a tool does support sizing a window,
however, changing the window’s size leaves the document’s size
unchanged; the window simply displays a larger or smaller portion of
the document.

(hand)
Sizing a window does not affect its contents, or change
the position of the top left cornmer of the window over
the document; only the portion of the view that is
visible inside the window.

At its maximum size, a window is still small enough that a seven pixel
square area of the size box is visible on the screen.

The minimum size window consists of only a title bar the width of the
title itself, a horizontal scroll bar (or a blank rectangle of
equivalent size), and the size box. If a window is made so small that
its title will no longer fit in the title bar, the title is truncated
to show as many of its initial characters as possible.

Sizing a window is fully supported by the Window Manager, and is easily

performed with one procedure call; an application program need not care
about the size of a window.

Splitting a Window
Sometimes it is desirable to be able to see disjoint parts of a
document simultaneously. Tools that accommodate such a capability
allow the window to be split into independently scrollable panels.

Tools that support split panes place split bars at the top of the
vertical scroll bar and at the left of the horizontal one, if present.
Pressing a split bar attaches it to the pointer. Dragging the

split bar positions it anywhere along the nearby scroll bar; releasing
the mouse button drops the split bar at its current position, splits
the window at that location, and creates new scroll bars for each
panel.

WINDOWS Hof fman-Espinosa 10/11/82

30 User Interface Guidelines

Figure 12. Split Views

The document appears the same, save for the split bar lying across it.
But there are now separate scroll bars for each pane; whith these, the
user can scroll each pane independently of the other.

Dragging a split bar back to its original position reunites the window
in that direction; the left or top view (and its scroll bar)
disappears, leaving the right or bottom view.

The number of views in a document does not alter the number of
selections per document: 1i.e., one, The active selection appears
highlighted in all views that present it.

Desk Accessories
Macintosh does not allow two tools to be running at once. However,
there are several mini-applications that are available while using any
tool.,

At any time the user can issue a command to call up one of several
desk accessories. The basic ones provided include:

Calculator

Alarm Clock

Note Pad

Telegram Form and In-Box (AppleGram)

Accessories are disk-based: only those accessories available on-line
can be used. The list of accessories is expanded or reduced according
to what’s available at any given time, The application can support all
accessories in the system with calls to the Desk Manager. On disk,
accessories are stored in resource files, More than one accessory can
be on the desk at any given ‘time.

ACCESSORY Espinosa-Hoffman 10/11/82

WINDOWS 31

Who’s on Top?

With a virtual three—-dimensional screen it is essential to manage the
third dimension so that important items or objects requiring immediate
attention are not obscured accidentally. Hence, in order from front to
back: :

- The pointer

An alert box

A dialog box
- The menu bar and all pull-down menus

- The active window
- All other windows

- The desk top

INSIDE Espinosa 10/1

32 User Interface Guidelines

INSIDE DOCUMENTS

(hand)
We strongly subscribe to the doctrine of preservation of
visual fidelity, i.e., what you see is what you get.

It’s important that a document as seen through a window on the desk
closely resemble the same document when committed to paper. The
differences (and there will be differences) must be natural and
unsurprising. Naturally, the ruler and graph paper used to create a
report on Tuesday morning won’t be distributed with that report when
it’s presented that afternoon; printing a document shall not carry the
vestiges of the tool that created that document.

Any given tool should be able to manipulate, in some way, everything in
the document it presents. Macintosh eventually will have many
different tools, and we do not pretend to foresee the needs of all.
However, we do provide standard means of manipulating the constituent
elements of most documents,

Structure of Documents

In order to discuss the appearance of information inside documents, it
is necessary first to digress a bit into the structure of documents.

A document is a collection of information. Each piece of information
has its own position in the document, and its own positional
relationship to the information around it.

In terms of structure, there are three principal types of documents:
texts, free-form documents, and structured documents,

1. Texts consist of a string of information (in this case,
characters) that appears two-dimensional but is really linearly
ordered., More characters can be inserted anywhere within the text
or added onto the end of the text. There is an inherent order to
the characters in a text, and definite positions between
characters.

2. Free-form documents start completely empty and unstructured, like
" a blank piece of paper. Information can be placed anywhere within
the document; each piece of information has its own position.
There may be large, empty spaces in the document that contain no
information. There is no inherent ordering among the information
in a free-form document. Pictures drawn in the graphics editor
are free-form documents.

3. Structured documents have predefined cells to contain information.
There is a fixed maximum number of cells per document; no cells
can be added, nor can they be removed. Cells are usually arranged
in rows and columns; a given cell is a member of one row and one
column. There is a definite position between two adjacent cells,

INSIDE Espinosa 10/11/82

INSIDE DOCUMENTS 33

and a position at the corner of a group of four cells. A
spreadsheet is a structured document.

'
¢
* Text
MO O HHHH OO 00000
Structured
, Free-
; form

Figure 13. Types of Documents

The type of a document affects many things—--mostly how a user selects
information inside the document. For example, information in a text
can be selected character-by-character, but information in a structured
document is selected cell by cell. The exact details ot the selection
process are described in the section "Selecting Information".

The Visual Structure
The structure can manifest itself visibly inside the document. For
example, the rows—and-columns arrangement of a spreadsheet can be
clarified by adding graphic grid lines between the cells. These lines
are not part of the user’s data, but they are part of the document.
Such supporting graphics are usually static elements within the
document, and cannot be moved or altered. Those that can be altered

usually affect only the presentation of the user’s data, not the data
itself.

At the tool’s discretion, the supporting graphics in a document may or
may not appear when the document is printed. The grid lines on a
spreadsheet might very well appear, while the rulers in a word
processor document will probably not be printed.

Graphics in Documents

Not only does Macintosh use graphics to show the structure of a
document and to otherwise communicate with its user, it also supports
tools to create and manipulate graphic documents. Two such tools are
planned: a graphics editor (to design and draw pictures, diagrams,
illustrations, signs, etc.), and a charts and graphs package (to do bar

INSIDE Espinosa 10/11/82

34 User Interface Guidelines

charts, pie charts, hi-lo graphs, etc. from a numerical data base).

Graphic documents are usually free—form: each graphic item in the
document has its own position within the document, and there is no
inherent relationship among the items (although the tool can define
such a relationship). But there’s no reason that graphic documents
can’t be structured. For example, a graphic programming language mught
have a text-like or other structure.

il

Figure 14, Graphic Documents

Graphics inside documents are produced using the QuickDraw graphics
package. The package can draw seven fundamental graphic forms--lines,
rectangles, ovals, rounded-corner rectangles, wedges, polygons, and
arbitrary regions--either in outline or filled with a solid pattern.

It can also place and manipulate images defined bit-by-bit. A tool can
give the user the ability to draw anything from simple line drawings to
finely textured halftone pictures.

The tool must itself determine how to respond to the mouse and keyboard
in creating and manipulating graphics.

Appearance of Text
Most people, even bibliophobes, are confronted with a wide variety of
printed matter on daily basis., Our eyes are so accustomed to seeing a
myriad of typestyles, typesizes and typefaces used in publications to
embellish or emphasize the content, that we no longer take special
note. Developing eye-catching and pleasing typefaces has been an art
unto itself since Gutenberg. Appropriate and aesthetically embued
typesetting has been traditionally the domain of tooled craftsmen. By
contrast, the repertoire of curreantly available computer ‘typefaces’ is
thoroughly devoid of aesthetic nuances and provides but a bleak parody
of the printed world.

CHARACTERS Hof fman-Espinosa 10/11/82

INSIDE DOCUMENTS 35

Macintosh documents can contain characters in a number of different
typefaces, typestyles, and typesizes. Type can abut closely or appear
loosely packed; parts of some characters (such as the curl of a y) can
reach back under or up over adjacent characters; and text can freely
intermix with graphics. After all, text is just a specialized form of
graphics.

Note that in this context, numbers are considered text: to users, the
external appearance of digits is the same as that of other text
characters, The following discussion thus pertains to numerical
information as well as natural-language text.

- For more information on the aesthetics of type design, see a good
typography book; David Gates’ Type is recommended. For
implementation details on how to place characters on the screen,
see the Macintosh User Interface ToolBox manual
QuickDraw: A Programmer’s Guide.

Typefaces, Typesize, and Fonts

A typeface is a set of typographical characters composed with a
coherent "feel” and consistent design. Things that relate characters
in a typeface include the thickness of vertical and horizontal lines,
the degree and position of curves and swirls, the use of serifs, etc.
Typefaces have names, usually historical: Bodoni, Goudy, Tile, etc.
The identity of a typeface is independent of its size or any particular
typestyle it may conform to (see below).

Typesize in the printing world is measured in points, a point being
reasonably close to 1/72 inch. The resolution (in points per inch) of
the Macintosh screen is quite close to this, but not close enough to
keep accurately to printers’ measurements. But we do describe typesize
loosely in "points", which have no correlation to the mathematical
entity of a point in the QuickDraw graphics package, or to anything
else for that matter. 1In talking about type, we use points as a rough
indication of vertical size.

A font is the entire set of characters of a specific typeface and
typesize. For example, Helvetica8 refers to a font that contains
characters of the typeface named Helvetica at a size of 8 points. 1In
addition to all the uppercase and lowercase letters, numerals and
punctuation marks, a font may include mathematical symbols, accented
letters or other special characters.

CHARACTERS Hof fman-Espinosa 10/11/82

36 User Interface Guidelines

Times Roman 10, Bold, s Underlined, Gugiiag, Rbhadom,
Times Roman 14, Bald fehic
Heh%ﬁfa?Ellnwhlﬂnu!hna

Type 10u
Gacha 12,

@Ilwﬁmhz‘f s
Boeklin 306v

Figure 15. Type

Typestyles
Macintosh does not require the use of separate fonts to accommodate
different styles of the same typeface., A character of any font may be
subjected to a group of transformations that modify its general
appearance: such a modification is called a typestyle. There are five
fundamental typestyles: bold characters, italic (slanted) characters,
outlined characters, underlined characters, and shadowed characters.
Any combination of these typestyles can be used, but Macintosh cannot
be held accountable for any aesthetic atrocities that may be
perpetrated by an insensitive user,

Proportionally Spaced vs. Monospace Fonts

Most printing fonts are proportionally spaced (also known as variable
pitch). This means that, for example, the "i" is narrower than an "m";
the "W" wider than the "J".

In a monospace (fixed pitch) font, all characters are of the same
width. Monospace fonts are generally less attractive than
proportionally spaced fonts. Monospace fonts are sometimes called
"typewriter" fonts.

Monospace fonts are appropriate for some applications, such as COBOL
coding forms, but generally discouraged in Macintosh. As monospaced
fonts are merely a degenerate case of proportional fonts, they can be
used just as easily as proportional fonts, when they are needed. 1It’s
necessary, for example, for proportional fonts to have monospaced
numerals, so that columns of numbers line up neatly when aligned at
decimal tab stops.

CHARACTERS : Hof fman-Espinosa 10/11/82

INSIDE DOCUMENTS 37

Standard Fonts
Macintosh uses a distinct system font when presenting its labels,
messages, and lists to the user. System—provided text in this font

cannot be edited. The Macintosh system font is Creaml(Q; users and
tools may not use this font.

There is always a standard font in which all information the user has

entered will appear: the user font is HelveticalO, a nice, sans serif,
reasonably compact face.

The use of any other fonts depends on the particular tool being used.
The word processor, in all probability, will allow the user more
multiple font ability than most other tools.,

COMMANDS Espinosa~Hoffman 10/11/82

38 User Interface Guidelines

WORKING WITH MACINTOSH

So far, this document has described many things about the Macintosh
user interface: how it accepts inpout from the user, how it displays
information on its screen, and how the conceptual underpinnings of the
system control the structure of interactions. But nothing has been
said about how these things work together.

This section describes how input affects output: how Macintosh works.

It discusses the methods the user will use to perform actions, select
information, and choose commands to operate on that information.

Direct Manipulation: Controls

"Piaget has hypothesized that infants first learn about
causation by realizing that they can directly manipulate objects
around them--pull off their blankets, throw their bottles, drop
toys.se. Such direct manipulations, even on the part of infants,
involve certain shared features that characterize the notion of
direct causation that is so integral a part of our constant
everyday functioning in our environment--as when we flip light
switches, button our shirts, open doors, etc.,"

~—~ Lakoff & Johnson, 1980

Friendly systems act on direct causation--they do what they’re told.
Performing actions on a system in an indirect fashion (by typing words
and pressing RETURN, or by obediently choosing one item from the
currently displayed list) reduces the sense of direct manipulation that
is basic to the feeling of causation. To give Macintosh users the
feeling that they are in control of their machines, many of a tool’s
features are implemented with controls: graphic objects that, when
directly manipulated by the mouse, cause instant action with graphic
results.

Three kinds of controls are supported by the Control Manager in the
User Interface ToolBox: buttons, check-boxes, and dials.

Buttons

Buttons are small objects, usually inside a window (but occasionally on
the desk top), labeled with words or an icon. Clicking or pressing a
button performs the instantaneous or continuous action described by the
button’s label.

Buttons usually perform instantaneous actions, like opening or closing
windows, or acknowledging error messages. Occasionally, they can also
perform continuous action: the scroll arrows on a scroll bar are
continuous—action buttous.

WORKING Espinosa 10/11/82

WORKING WITH MACINTOSH 39

The Control Manager defines one kind of button, an instantaneous or
continuous pushbutton, labeled with a verbal title. A tool may include
a procedure to define a custom button, which can be linked in to the
Control Manager and used just like the standard button.

Check-Boxes :
Check-boxes are a variant of buttons. Where buttons perform
instantaneous or continuous actions, check-boxes display a state that
the user can change. Most commonly seen when filling out a form or
setting parameters, check-boxes are small squares that appear either
empty or filled in with a check-mark. The boxes are usually adjacent
to a word or icon that describes the meaning of the box.

Clicking in a check-box flips its state, from checked to unchecked or
vice-~versa. Dragging through a field of check-boxes flips the state of
the first and assigns the new state to all other boxes dragged through.

A check-box may belong to a group of boxes., If there are no
interrelationships among the boxes, they are checked and unchecked as
above., But if the boxes are related such that one and only one must be
checked at any given time, they work like "radio buttons": clicking in
an unmarked box marks that box and unmarks the previously marked box.
Such groups should be labeled clearly, "Choose one of the following:".
The checked appearance of this kind of box is visually distinct from
normal, ungrouped check-boxes.

{?unrm i

o 1,

{Button]

DO Check-Box 1
O heck-Box 2

Figure 16. Buttons, Check-Boxes, and Dials

WORKING . Espinosa 10/11/82

40 User Interface Guidelines

Dials

Dials display the value, magnitude, or position of something in the
tool or system, and optionally allow the user to alter that value.
Dials are predominantly analog devices, displaying their values
graphically and allowing the user to change the value by dragging an
indicator; dials may also have a digital display.

The best example of a dial is the shaft of a scroll bar. The indicator
of the scroll bar is the thumb; it represents the position of the
window over the length of the document. The user can drag the thumb to
change that position.,

Just as with buttons, there are a few standard dials defined in the

ROM, but a programmer can implement a custom dial and link it in with
the control mechanism,

Selecting Information
A previous section mentioned that Macintosh has one purpose only: to
manipulate information. If this is true, then there is a simple
operational paradigm to cover all situations:

(hand)
First select some information, then manipulate it.

This paradigm minimizes modality in basic operations. By selecting the
information first, the user is free to select different information
without being committed to a certain manipulation.

The following sections describe the two parts of this basic paradigm:
how to select information in a document, and how to choose commands to
manipulate that information.

The Selection
The selection is the collection of information that will be acted upon
by the next command. There is always one and only one active selection
in the active window. The selection can be so large as to enclose all
the information in the document, or it can be so small as to merely
indicate the position between two pieces of information, enclosing
nothing at all; the latter selection is called an insertiom point. The
insertion point indicates the position at which newly entered
information will be placed.

Positioning the pointer over the user’s information in the active
document and pressing the mouse button usually begins a selection.
Once the button is pressed, the selection can be completed in two ways:

1. Clicking selects one piece of information or a position between
pieces of information.

2. Dragging selects a group of information.

SELECTING Espinosa-Hoffman 10/11/82

WORKING WITH MACINTOSH 41

BV EBRY 150 1 & Lext docufnent,

Hotice that characters are inverted in

atep with the moving

Figure 17. Selecting Information

The exact behavior of clicking and dragging to make the selection
depends on the structure of the document.

- Clicking in text selects the position between the two characters

nearest the pointer; this position becomes the insertion point.
The insertion point in text is represented by a blinking vertical
bar.

Clicking in a structured document selects either the cell under
the pointer, the position between two adjacent cells, or the
corner of four cells. The latter two selections are insertion

points, and are represented by blinking vertical or horizontal
bars, or by a blinking cross.

Clicking in a free-form document selects the item under the
pointer. 1If the pointer is not over a piece of the user’s
information, clicking either does nothing, or selects a position
in the document. This position, the insertion point, is marked by
an "anchor" icon.

SELECTING Espinosa-Hoffman 10/11/82

42 User Interface Guidelines

This 15 1ext in & 1ext docurnent,
Hotice that cheracters are inverted in
step with thejmoving pointer, I

Figure 18, Selection by Clicking

Clicking in editable user information always creates a new selection;
the information selected is highlighted and the previous selection is
unhighlighted. Highlighted text appears white-on-black; highlighted
graphics appear with "knobs".

Dragging through editable user information selects a group of
information. It would seem that dragging should select all items
dragged over——to select items, press the mouse button, drag across the
items, then release--but experience proves that selecting only those
items that were dragged over is inefficient. Instead, consider
dragging as defining two points: the point where the button was
pressed and the point where it was released. Dragging then selects
everything between those two points, according to the structure of the
document, regardless of the path of the mouse. The objects under the
two points are included in the selection, as are all items between
those two points.

- Dragging through text selects all characters, in textual order,
from the character under the first point to the character under
the last point.

Dragging through a structured document selects all cells in the
rectangle whose corners are the cell under the first point and the
cell under the last point.

Dragging through a free-form document selects all items completely
enclosed by the rectangle whose corners are the first and last
points.

During the dragging, the selection is visible——-the items that will be

selected are highlighted, in real time, according to the current

SELECTING Espinosa-Hoffman 10/11/82

WORKING WITH MACINTOSH 43

position of the pointer. But the selection is not actually confirmed
until the mouse button is released. If the user moves the pointer back
to the first point and releases the mouse button, the result is the
same as a click at that position (see above)

The items between the two points are selected regardless of the
relative orientation of the two points. Starting at the end of a
sentence and dragging backwards to the beginning operates just as well
as starting at the beginning and dragging to the end.

Once the selection is made, the selected items are highlighted and the
items in the previous selection are unhighlighted. There is no
mechanism for restoring the previous selection.

(hand)
After a selection is made, the pointer becomes invisible
so as not to obscure the selection. The pointer
reappears the next time the user moves the mouse.

Selection by Command
Some logical groupings of information are more commonly selected than
others--columns or rows in a spreadsheet, paragraphs in a word
processor, etc. And occasionally it’s convenient for the tool to
select a piece of information automatically--such as a word or phrase
that the user is searching for.

In these cases, the invocation of a command may explicitly or
implicitly make a new selection. For example, a tool may have a
"Select All" command to select all information in the document; a
spelling checker could have a "Select Next Misspelled Word" command,
etc. :

When any such command is invoked, the tool must scroll the document
automatically in order to present as much as p0531b1e of the new
selection.

Automatic Scrolling During Selection
The only limit on the size of the selection is the size of the document
itself; the largest possible selection is the entire document.

But the normal method of selecting as outlined above can’t handle
selections that extend outside the window. We therefore define ‘a way
to scroll the contents of the window during selection:

- If during selection the user drags beyond the borders of the
window, the contents of the window will scroll (automatically and
continuously) away from that border. New information scrolled
into the window becomes selected and is highlighted accordingly.
Scrolling stops when the user either releases the mouse button or
moves the pointer back into the window: the latter case resumes’
normal selection.

SELECTING Espinosa-Hoffman 10/11/82

44 User Interface Guidelines

"Window" in the above paragraph applies to a single panel of a split
window; beginning a selection in a panel and moving out of that panel
scrolls only that panel.

Extending the Selection

Selection by dragging and automatic scrolling is fine for relatively
small selections, but its usefulness deteriorates as the desired
selection grows larger. An alternate method can be used to make a
large selection: this process is called extending the selection. A
selection made in this way is treated the same as any other selection.

Extending the selection merely adds to the current selection. Whereas
making a normal selection removes the previous selection, making an
extended selection enlarges the previous selection to extend to the
newly selected position,

Figure 19. Extending a Selection

An extended selection is made by positioning the pointer, holding down
either of the SHIFT keys on the keyboard, then pressing the mouse

button. When the mouse button is pressed, all information between the
original selection and the current pointer position (inclusive) becomes
selected and highlighted. The user can then drag the mouse around and

complete the selection as usual, The SHIFT key may be released at any
time without affecting the selection.

Extended selections can be made across two panels of a split window.

SELECTING Espinosa-Hoffman 10/11/82

WORKING WITH MACINTOSH 45

Making a Discontiguous Selection

Some tools may choose to allow selections that are discontiguous: that
comprise one or more unconnected pieces, that have "holes", or both.
How a tool deals with operations on such selections is up to its
designers; the following is merely an outline of how such selections
are made.

(hand)
Discontiguous selection of text is not supported. It
causes ambiguity upon insertion.

Making a discontiguous selection is like making an extended selection
in that it merely augments the current selection, and also that it is
invoked by holding down a keyboard key while pressing the mouse button.

Figure 2§, Making a Discontiguous Selection

A discontiguous selection is made by positioning the pointer, holding
down the COMMAND key, and pressing the mouse button. It continues like
a normal selection: the user drags the mouse to indicate the last
point, then releases the mouse button. The COMMAND key may be released
at any time without affecting the selection. But the kind of selection
that’s being made depends upon the posiition of the pointer when the
mouse button is pressed:

- If the pointer is not inside the previous selection, the operation
is a normal selection that does not remove the previous selection.
Both selected areas are highlighted on the screen; they are both
considered parts of the selectiom.

- If the pointer is inside the previous selection, the operation

becomes a deselection: the information "selected" becomes
deselected and unhighlighted. The remaining information, even if

SELECTING Espinosa-Hoffman 10/11/82

46 User Interface Guidelines

it contains a hole, is the selection.
With this paradigm, any arbitrary collection of items in the document
may be selected. Once again, the selection comprises all highlighted
items; there is one and only one selection.

Discontiguous selections can be made in any pane of a split window.

COMMANDS Espinosa~Hoffman 10/11/82

COMMANDS 47

COMMANDS

Once the information to be operated on has been selected, a command to
operate on that information can be chosen from lists of commands called
menus.

A principal problem with menu-driven systems is that it’s difficult for
the menu to share the screen with the information being worked on, and
especially difficult to show all menus at the same time. Most systems
"solve" these problems with modal tree-structured hierarchies of menus,
where menus are chosen from a menu of menus, while the user’s
information has disappeared from the screen. Unfriendly because it
segregates information from commands, and confusing because it forces
users to "walk" up and down trees of menus, this approach will not work
for Macintosh. Instead, taking advantage of Macintosh’s ability to
overlap things on the screen, we make all menus available at all times
(with the user’s information still visible) by means of pull-down
menus.

The Menu Bar ,
The menu bar is displayed at the top of the screen. It contains a
number of words and phrases: these are the titles of the menus (see
below) associated with the current tool. The contents of the menu bar
and the corresponding menus are different for each tool. In this sense
the tool is said to "own" the menu bar. :

There is one and only one menu bar on the screen at any time.
Exceptions may be made in special cases: full-screen games may need no
menu bar, for example.

(hand) ,
The titles in the menu bar, and their corresponding
menus, should remain constant throughout the tool. ‘A
tool should not change the available menus or put up
different menu bars at different times.

Of Mice and Menus

The user positions the pointer over a menu title on the menu bar and
presses and holds the mouse button. The title becomes highlighted and
a rectangular menu descends from the menn bar under the title; it
remains down as long as the mouse button is held down, or until the
user moves the pointer away from the menu.

The menu contains a number of items, usually stacked vertically inside
the menu; each item names an operation that can be performed. The
items may contain words, icons, or both. To invoke a command in the
menu, the user drags the pointer down to the menu item (which becomes
highlighted), then releases the mouse button. As soon as the

mouse button is released, the menu item blinks briefly, the menu
disappears, and the command is executed. The menu title in the

menu bar remains highlighted until the command has completed execution.

COMMANDS Espinosa-Hoffman 10/11/82

48 User Interface Guidelines

Menu Bar

-

Menu Title
Menu Item
Menu Item
Menu tem
Weror tem

Menu Item

Menu

Figure 21, Pull-Down Menus

Because the user chooses a menu item only by pointing the pointer at
it, and its command takes effect only when the mouse button is
released, if the user drags the mouse outside the menu area (when the
menus are showing) and releases the mouse button, no command is
selected and no action takes place. Thus there is always recourse
should the user have a change of heart after pulling down a menu, and
the user is never forced to activate a command.

(hand)
The menu items, and NOT the menu titles in the menu bar,
act upon selections. Users should always be able to
peruse the inventory of commands by dragging the pointer
across the menu bar without fear of causing something to
happen.

The only way to pull down a menu is to press the mouse button while the
pointer is in the menu bar. While the user is holding down the

mouse button, the pointer does nothing but pull menus down and
highlight their items.

If the user tries to perform an operation on a selection that is not
currently visible, automatic scrolling occurs to make the selection
visible before the operation is performed. The document scrolls until
the selection is completely in view or, if the selection is very large,
the entire window is filled with the part of the selection nearest to
the current position; then the chosen operation is performed.

Notes on General Properties of Menus
Not all menu items are relevant at all times. A menu item that is
inapplicable to the current selection is visually distinct from the
others (perhaps grayed out) and will not highlight when a user tries to
choose it. Repeated attempts by the user to choose an ineffective menu

COMMANDS Espinosa~-Hoffman 10/11/82

COMMANDS 49

item warrant explanations from the alert mechanism (see SPECIAL
CONDITIONS).

(hand)
A menu in the menu bar can always be pulled down, even if
all its menu items are ineffective; in such cases, the
menu title is also grayed out. The user should always be
able to survey all the available commands, even if they
are inoperative.

Commands that may be invoked from the keyboard with the COMMAND key
(see below) have a special notation on the right side of the menu. The
notation consists at present of an apple symbol and the key that is
used with COMMAND to invoke that command.

Menu items are grouped in a menu to emphasize the logical relationships
among the groups. Groups are separated by a one-item—high blank space
that serves to visually distinguish the groups. This space is not an
item and is not highlighted when the pointer moves over it.

Experience shows us that it’s easiest for users to choose the second,
third, and fourth items in the menu: thy’re far enough away from the
menu bar to reach them without overshooting, but still not too much of
a reach down. We recommend that the most common and safest commands go
in these positions.

Also in regards to safety, the commands that cause the greatest effect
(such as Quit) should be separated from other, less "dangerous"
commands. Similarly, pairs of commands that perform similar functions
with slight differences should not be adjacent; a user may choose one
accidentally, intending the other, and not notice the subtle
difference,

{ Title Title Title Title $eeyes thie Title 3
Item
W Checked Trem

Apple-key #A
Item
Lieeged Nean

Item !

Figure 22. General Properties of Menus

COMMANDS Espinosa-Hoffman 10/11/82

50 User Interface Guidelines

Some commands come in pairs, with only one command of the pair being
appropriate at any given time. Most often these pairs control the
appearance of something on the desk: one command makes the object
visible, and the other command makes it invisible. For example, in the
Word Processor, the rulers that set margins and paragraph formatting
are normally visible in the window. If the user wishes to remove the
rulers, there is a command called "Hide Rulers". When the user invokes
this command, the rulers disappear and remain hidden; meanwhile, that
command has been replaced with its counterpart, "Show Rulers".

(hand)
These are not two different commands; they are opposite
sides of the same command. The intent of this pairing
method is to shorten and simplify menus. The pairing
does not make a good indicator of state.

Some status information can be conveniently shown in menus, with the
commands that affect that status. If all the information in the
selection shares a certain characteristic, and that characteristic can
be set with a menu command, that command is marked with a check-mark to
show the state of the selection.

Also, in situations where commands in a menu not only perform their
function on the selection, but also set a state that controls the
interpretation of subsequent input (such as the Bold command), the
commands whose states are currently in effect are similarly marked. 1Imn
this way the menu allows the user not only to change how subsequent
input will be interpreted, but also to see the interpretation before
changing it.

The Standard Menus
Although the titles on the menu bar are different in each tool, the
three menus at the left of the menu bar (the Apple, Edit, and File)
remain the same at all times.

The commands and information in these menus pertain to functions common
to all Macintosh users: inquiring the state of the current tool and
data, invoking global system functions, and loading, saving, and
printing documents.

The Apple Menu

Apple
Calculator
Alarm Clock
Note Pad
AppleGram

e o s s e s 2

Tool Information
Document Information

COMMANDS) Espinosa-Hoffman 10/11/82

COMMANDS 51

Beginning the Apple menu are the names of the desk accessories
currently available to the system. Choosing a name activates the
corresponding accessory and places it on the desk; double-clicking the
close box on the accessory makes it disappear and reactivates the
previously active window. The list of available accessories changes
with the availability of the accessories themselves.

The "Tool Information" and "Document Information" commands in the Apple
menu let the user see information pertaining to the current state of
the tool being used (its author, publisher, copyright message, version
number, perhaps a hotline number) and the current document (its size,
file name, label, creation and modification dates, "home" location or
diskette, and any other status information),

These commands, when invoked, present a window that contains the
appropriate information; the window remains on the desk top until the
user explicitly removes it by double-clicking its close box.

The document information window gives the user the ability to see
important but little—used information about the current document,
without taking up valuable screen space when the information isn’t
needed. The tool information is an important tool in the continued
support of the customer: should anything go wrong with a tool, the
users have a way to refer to the exact version number of the
problematic program when seeking help from a dealer or hotline.

In tools that have a global "help" facility, the Help command appears
at the bottom of the Apple menu.

The Edit Menu
The Edit menu includes all the editing commands necessary to manipulate
pieces of documents.

Edit
Undo {what}

Copy
Cut
Paste

Select Everything

The effects of the four editing commands are more thoroughly discussed
in the BASIC EDITING PARADIGMS, below. Briefly, Cut removes the
selection from the document, storing it in an intermediate window
called the scrap; Paste replaces the current selection with the
contents of the scrap; Copy duplicates the selection into the scrap
without removing it from the document; and Undo negates the action of
the immediately previous command.

Selection commands and other editing functions appropriate to the

current tool may also appear in the Edit menu, but the location and
order of the first four items must not change.

COMMANDS : Espinosa-Hoffman 10/11/82

52 User Interface Guidelines

The File Menu A
Although the exact functionality and layout of the File menu has yet to
be worked out, our current thinking has it resembling this:

File
Quit this tool

Save this document
Print this document

Get another document

"Save this document" saves the current document into a file; "Get
another document" gets a new document from another file; and "Print
this document" invokes the printing subsystem of the tool.

"Save" and "Get" allow the user to use a limited subset of the Desk
functions in selecting, creating, or naming the file associated with
the document.

The "Quit" command is in the Files menu to make sure that users see
their opportunity to save their work before quitting. Conversely, in
the process of saving their work, they see their opportunity to leave
the tool. If the user chooses to Quit before saving the document, the
tool should give a gentle yet firm reminder that quitting now will
cause the loss of all that information, and request confirmation before
actually quitting.

Keyboard-Invoked Commands

The editing paradigms described below allow a user to perform all basic
object manipulation--adding, removing, replacing, and moving--using the
keyboard to enter text, the mouse to select text, and the commands in
the Edit menu to manipulate it.

But this paradigm is likely to generate a lot of hand-waving-—the
user’s hand must move from the keyboard to the mouse, and move the
mouse from the document to the menu bar. As an optimization to reduce
hand motion, common commands available on the three standard menus may

also be invoked from the keyboard, by using the COMMAND key in
combination with another key.

(hand) .
When the user holds down the COMMAND key on the keyboard
and presses another key, that key is interpreted not as
text entry, but as an invocation of a menu command. If
the key does not correspond to any implemented command,
the alert mechanism is invoked to beep at the first
occurrence and give an alert message at any subsequent
occurrences.

When one of these command keys is pressed, the menu title of the menu
containing the corresponding command highlights while the operation is

- COMMANDS Espinosa-Hoffman 10/11/82

COMMANDS 53

being performed, then reverts to normal. The menu itself does not pull
down. .

The currently defined command keys are as follows:

COMMAND Z Paste
COMMAND X Cut
COMMAND C Copy
COMMAND V Undo

COMMAND space Save this document and quit
COMMAND / or ? Help
In all tools that have a Format or Typestyle menu to change the

typestyle while entering text, the following command key aliases are
supported:

COMMAND Q Plain text
COMMAND W Boldface
COMMAND E Italic style
COMMAND R Outline style
COMMAND T Underlined

COMMAND Y Shadowed
The commands, just like their counterparts in the menus, are
cumulative: pressing COMMAND E while Boldface is already in effect
results in bold italic text. The Plain Text command undoes all other
styles. '

The "OK" and "Cancel" buttons in dialog boxes (see below) also have
command aliases: :

COMMAND Enter OK
COMMAND ' or Cancel

Several emergency commands can be invoked from the keyboard. Note that
rebooting the system is not among them.

COMMAND . Stop current operation
COMMAND 1 Eject internal diskette
COMMAND 2 Eject external diskette

COMMANDS Espinosa-Hoffman 10/11/82

54 User Interface Guidelines

(hand) } .
The command keys are aranged positionally, not
mnemonically., The command keys retain their position
(not their alphabetical characters) on foreign keyboards.

What Commands Are and Aren’t

- Commands, when invoked, operate immediately and return control to
the user when completed. :

— Commands operate on something visible in the active window, or add
or remove a window on the desk.

- Commands that manipulate user information always operate upon the
active selection, never upon any nonselected data.

— Commands are either verbs or verb phrases, never nouns with an
implied verb.

- Most importantly, commands don’t put the tool into an invisible
modal state.

EDITING . o Espinosa—-Hoffman 10/11/82

BASIC EDITING PARADIGMS 55

BASIC EDITING PARADIGMS

The Macintosh User Interface ToolBox contains a set of core editing
routines that standardize the ways the user edits and manipulates text.
As long as application programmers use this package properly, every
piece of editable text the user sees on the Macintosh screen can be
edited using the same quick, consistent methods. The paradigm below
supports:

- Inserting, deleting, and replacing text;
- Moving text from one place to another in the same document;
- Carrying information between two similar or dissimilar documents.

The core editing routines also handle font changes, typestyles, and
paragraph formatting; these abilities are further discussed in the
documentation of those routines.

(hand) ‘
The following discusses only the operation of Cut, Paste,
Copy, Undo, insertion, and replacement on text. The same
procedures should operate in a conceptually parallel
manner on non-text items, i.e., graphics, spreadsheet
cells, etc., It is the responsibility of the designers
and programmers to maintain consistency in the editing
operations on non-text items.

The Selection
As described in the section on "Inside Documents', there is always one
and only one active selection in an active window that contains
editable text. A selection takes one of two forms:

l. A selection between two characters that encloses no text: this

appears as a blinking vertical bar and is called an insertion
point.

2. A selection enclosing one or more characters of text.

The editing commands Cut, Paste, Copy, and Undo, whether invoked from
the Edit menu or by the COMMAND key on the keyboard, act upon the
selection. .Typed characters also affect the selection.

The: Scrap
The scrap goes hand in hand with the Edit menu. It is a very special
kind of window with a well-defined function: it holds whatever is cut
or copied from a document. It sticks around, its contents intact, when
the user changes ‘tools. ‘

Every time the user performs a Cut or Copy on the current selection, a
copy of the text in the selection replaces the previous contents of the

EDITING - 'Espinosa—Hoffman 10/11/82

56 User Interface Guidelines

scrape.

The user can’t select the scrap or any information inside it. But the
scrap window can be dragged around by its title bar, and can be
enlarged or reduced by dragging its size box. 1In most ways the scrap
behaves just like any other window.

B} ¥ EiBul pave- ‘pout the govern- frenchcost, badge
Elment, thinkir ment, tan (TR ot, IR oy
B
Olf Subterranian Hon on the an the
R
E
Cut Paste Copy —

AlVm pavement, '

hinkin ™ trenchcoat, badge
F | thinkin on the out, [EEEERR savs
T
Ilf pn ‘bt the govern- faid off,

meent. han Bl

Figure 23. Use of the Scrap

There is only one scrap, which is on the desk for all tools that
support Cut and Paste (it’s hidden during games and such). If the user
doesn’t want the scrap to interfere with other things on the screen,
the scrap can be shrunk to its smallest size, dragged nearly off the
screen, or buried under other documents, WNothing changes the contents
of the scrap except Cut, Copy, and Undo.

As the contents of the scrap remain unchanged when applications begin
and terminate, the scrap can be used for transferring data among
mutually compatible applications (see "Cutting and Pasting between
Tools", below).

The Cut and Copy commands

The Cut command removes the current selection from the active document
and puts it in the scrap. The selection completely replaces the
previous contents of the scrap. The selection in the document is
reduced to an insertion point.

If a Cut is attempted when the selection is an insertion point, Cut
doesn’t light up in the menu when chosen. This prevents people from
accidentally cutting twice and losing the scrap.

Perfoming a Copy command puts a copy of the current selection into the
scrap, without changing the original selection in the active document.
Just as with a Cut, every Copy completely replaces the previous

contents. of the scrap. Also like Cut, the Copy item won’t light up if

EDITING ' Espinosa-Hoffman 10/11/82

BASIC EDITING PARADIGMS 57

the selection is an insertion point.

Paste

The Paste command is the effective antonym of Cut: it replaces the
current selection with the contents of the scrap. A Paste leaves the
contents of the scrap unaltered; the selection 1is set to an insertion
point at the end of the pasted text. With this, successive invocations
of Paste replicate the contents of the scrap at the selected position
in the document.

(eye)
Notice that in a Paste over an existing selection, the
contents of the selection do not go into the scrap; they
can be recovered only by an immediate invocation of Undo.
Undo

Finally, the Undo command is a one~level negation of the last command.

It always applies to all Edit commands; additionally, any larger scope

of Undo can be added by the application. If the previous operation was
an Undo, it undoes that Undo.

Inserting and Replacing Text

New text can be entered from the keyboard or numeric keypad. Typing
new text operates much like a Paste command.

Typed text replaces the current selection. If the current selection is
an insertion point, the typed characters appear at the insertion point
and the insertion point moves past the characters. If the current
selection includes text, the entire selection is automatically reduced
to an insertion point, deleting the text; insertion then proceeds as
described above.

(hand)
Notice that if a selection is replaced with an entry from
the keyboard, the selection does not go into scrap. Its
contents can be recovered only through an immediate
invocation of Undo.

Backspacing

Regardless of circumstances and context, if the selection is an
insertion point, pressing the BACKSPACE key deletes omne character
before the insertion point and moves the insertion point to the left of
the position previously held by that character. This happens during
editing as well as text entry.

Pressing BACKSPACE while the selection contains characters operates
much like a Cut, except that the deleted characters go into the
backspace buffer (see below) rather than the scrap. The first
BACKSPACE deletes the selected text, reducing the selection to an
insertion point; subsequent presses of BACKSPACE operate as described

EDITING ' Espinosa-Hoffman 10/11/82

58 User Interface Guidelines

above,

Every press of BACKSPACE stores up the deleted characters in the
backspace buffer. Invoking the Undo command reinserts all characters
in this buffer back into the document at the insertion point.
Performing any other operation, such as typing characters or invoking
another command, clears this buffer; the deleted characters are then
unrecoverable.

Cutting and Pasting Between Documents
Sometimes the user wants to transfer a portion of one document into
another., The documents may have been created with the same tool, or
with disparate tools. Macintosh allows this kind of manipulation
through the mechanism of Cut/Copy and Paste.

Between Two Documents with the Same Principal Tool
Transferring information from one document to another created by the
same application does not pose any difficulty. For example, the user
may Copy the return address from ‘Letter to Jef’, Get ‘Letter to Linda’
and Paste in the contents of the scrap.

When the user discards a tool and returns to the Desk, the scrap
retains not only its contents, but the contextual information pertinent
to the tool being used. If the user retrieves that same tool, it can
interpret that information, so there is little or no loss of context
when carrying something in the scrap from document to document.

Between Documents with Different Principal Tools
Macintosh provides a limited but adequate scheme for transferring
information from a document of one type to a document of another type.

Suppose the user wants to transfer a picture of a wolf (previously
created using the Graphics Editor) into a Word Processor document named
‘Letter to Grandma’. Beginning at the Desk, the user gets the wolf
picture, automatically entering the Graphics Editor. There the picture
is selected and Cut or Copied into the scrap; then the user returns to
the Desk. The picture remains in the scrap.

Now the user calls up the letter to Grandma and enters the Word
Processor. Upon selecting a position and attempting to Paste, the Word
Processor examines the scrap and determines whether it is palatable.

As Graphics Editor pictures are implemented with the QuickDraw picture
structure, the Word Processor has no problem interpreting and
displaying the picture, and graciously pastes it into the letter.
However, in the letter the wolf and the rectangular area around it are
selectable only as a single unit; the individual parts of the wolf are
not editable. To the Word Processor the wolf is static data.

Each tool may have its own appropriate level of interpretation of the

scrap. If the user tries to Paste the scrap in a tool that does not
understand it, the tool presents an alert message to inform the user of

EDITING Espinosa-Hoffman 10/11/82

BASIC EDITING PARADIGMS 59

the undigestability of the scrap.

BOXES Espinosa-Hoffman 10/11/82

60 User Interface Guidelines

SPECIAL CONDITIONS

The <noun>+<{verb) syntax is wonderful and clean when the operations are
simple and act on only one object. But occasionally a command will
require more than one object, or will need additional parameters in
order to be most useful to the user. And sometimes a command won’t be
able to carry out its normal function, or will be be befuddled as to
the user’s real intent. For these special circumstances we have
included two mechanisms: the Dialog Box to garmer additiomal
information, and the Alert mechanism to signal error or warning
conditions.

Dialog Boxes

Commands in menus normally act upon only one or two objects: the
current selection, the scrap, or a default object. I1f a command needs
more information before it can be performed, it presents a Dialog Box
to gather the additional information from the user.

A Dialog Box is a rectangle that may contain text, buttons, dials, and
icons. It is slightly below the menu bar, a bit narrower than the
screen, and as tall as its contents require. It is clearly labelled
with the name of the command whose invocation prompted the appearance
of the box. ,

t the Document oF
copies
032 143" vy 11" paper CAHCELY
WS 1/2" vy 14" paper
O3 14" by 11" paper SO
B Stop after printing each page

Figure 24. A Dialog Box

Some dialog boxes may affect several properties at the same time or
show several choices of the same property. 1In such cases, the choices
have check-boxes next to them. The boxes next to properties that are
currently in force are checked. Clicking on a check box or the text
accompanying it puts a check-mark in the box; this may also cause other
boxes to become unchecked.

BOXES Espinosa-Hoffman 10/11/82

SPECIAL CONDITIONS 61

If the information requested by the dialog box is textual, the user can
enter and edit that text just like any other editable text. If the
information has a default value (which it should have, if possible),
the default text appears selected in the dialog box. If the user
starts typing, the selected value will be replaced with what the user
types. For boxes with many text items, the first one is selected when
the box appears. After editing an item,

~ Pressing ENTER, TAB, or RETURN accepts the changes made to the
item, and selects the next item in sequence.

= Clicking in another item accepts the changes made to the previous
item and selects the newly clicked item.

There are, at the absolute minimum, two buttons in the Dialog Box--"0K"
and "Cancel". "OK" enforces the modifications in the properties
included in the Dialog Box, removes the Dialog Box from the screen, and
performs the command originally issued. "Cancel" dismisses the

Dialog Box without effecting any changes.

The "OK" and "Cancel" buttons should always appear in the same relative
orientation in the Dialog Box to preserve a consistent feel to the
interaction. They should be near the title of the dialog box to remind
the user of what command they will perform or cancel. They may be
marked with reinforcing icons, e.g., thumbs-up and thumbs-down.

A Dialog Box may include a "Stop" button, marked with an octagonal stop
sign, for stopping operations that are in progress, such as printing.

When a command requires some time to execute, its Dialog Box may
contain a dial that indicates the level of completion of the task in
progress.

The Alert Mechanism
Every user of every application is liable to do something that the
application won’t understand. From simple typographical errors to
slips of the mouse to trying to write on a protected diskette, users
will constantly do things an application can’t cope with in a normal
manner., The Alert mechanism gives applications a way to respond to
errors not only in a consistent manner, but in steps according to the
severity of the error, the user’s level of expertise, and the
particular history of the error.

There are three levels of alerts:

1. Note: Probably a minor slip that’s signaled by an audible
warning.

2. Caution: A condition in which the application can’t understand
the user’s input, and must request that the user change something.

3. Stop: A situation that requires definitive action on the part of
the user, such as inserting another diskette.

BOXES : Espinosa—-Hoffman 10/11/82

62 User Interface Guidelines

These are ranked in ascending order of importance. Not only are
program errors ranked in this manner, but repeating an error increases
its importance: receiving the same Note alert several times, for
example, turns it into a Caution, which warrants further explanation
and assistance.

Note alerts are signaled by a beep from the speaker; if the speaker
volume is turned off, the beep is inaudible. Caution and Stop alerts
warrant an alert box (see below). '

Alert Boxes
Alert Boxes are similar in appearance to Dialog Boxes, Alert Boxes are
intended to give the user warnings and error messages. Before
describing Alert Boxes it is worth while mentioning a few words about
alert messages in general.

Alert Boxes are displayed to:

- Clarify the system’s response to users’ actions, (e.g., "This text
is not editable"),

- Lead the user through a series of actioms required for the
completion of certain tasks, (e.g. "Please insert a diskette to
be copied to"), :

- Inform of a state that might affect users’ future activities ("The
document is getting too long to hold in memory. You may want to
break it up into pieces"),

- Warn the user against doing something irrevocable or dangerous
("You will lose the contents of this diskette if you proceed with
initialization. Do you still want to initialize?"), giving an
opportunity to cancel the command, and

- Delay while a lengthy operation is being concluded.

How to Phrase an Alert Message

It is important to phrase messages in Alert Boxes so that users are not
left guessing the real meaning. Do not use computer jargon. Sometimes
it is difficult for the jaded to recognize jargon even as they use it.
If you have any doubts of the lucidity of a message, try it on an
unsuspecting naive friend.

Use icons whenever possible. Graphics can better describe some error
situations than words, and familiar icons help users distinguish their
alternatives better. The thumbs—up icon should always lead to the

" safest route out of a situation.

Generally, it is better to be polite than abrupt, even if it means
lengthening the message. The role of the Alert Box is to be helpful
and make constructive suggestions, not to give out orders. But its
focus is to help the user solve the problem, not to give an interesting

BOXES Espinosa-Hoffman 10/11/82

SPECIAL CONDITIONS 63

but academic description of the problem itself.

Under no circumstances should an Alert message refer the user to
external documentation for further clarification. It should provide a

complete encapsulation of the information needed by the user to take
appropriate action.

(hand)
The best way to make an Alert message understandable is
to think carefully through the error condition itself.
Can the application handle this without an error? Is the
error specific enough so that the user can fix the
situation? What are the recommended solutions? Can the
exact item causing the error be displayed in the alert
message?

Be as specific as you can when signaling an error conditionm.

Appearance of Alert Boxes
An Alert Box is a rectangle just a little narrower than the screen and
of variable height. It may contain text, icons, dials and buttons. It

appears in a slightly lower position from where Dialog Boxes appear, to
emphasize that the alert message is more important,

(0K 1

CAUTION!
(CANCEL

Your document is getting too large to fit on the
diskette. Save it now before procesding or find
another disketts,

Figure 25. An Alert Box

All Alert Boxes have a '"Cancel button that dismisses the box.

Alert Boxes that require confirmation to perform an action have an
additional "OK" button. Some Alert Boxes may include a "Stop" button
to allow the user to interrupt an ongoing operation. As in

Dialog Boxes, the relative orientation of these buttons should remain
the same from box to box.

If there are a small but finite number of ways to solve the problem,
the box may contain descriptions of those ways, each marked by

BOXES Espinosa-Hoffman 10/11/82

64 User Interface Guidelines
check-boxes. The user checks the desired solution and presses the "OK"
button.

Alert Boxes that require immediate attention contain a stop sign in the
upper—-left corner of the box to emphasize the severity of the warning.

Alert Boxes that inform the user about a process’ status may display

dials to indicate the level of completion of a task, much as in
Dialog Boxes.

FRIENDLY Hoffman 10/11/82

APPENDIX A: THOU-SHALT-NOTS OF A FRIENDLY USER INTERFACE 65

APPENDIX A: THOU-SHALT-NOTS OF A FRIENDLY USER INTERFACE

Here are six things to avoid when designing a friendly user interface.

1.

2.

Assigning more than one consequence to the same action.

Giving the user several ways to perform the same function.
Generally, it is much easier for users to learn a task when there
is only one obvious way of accomplishing it. Too many
alternatives in an unfamiliar environment may paralyze the user.

Overloading an application with too many esoteric features.

Before introducing another nifty feature, ask yourself how the
feature will affect the overall complexity of the application, and
how many users will benefit from the feature.

(hand)
Featurism is the single major contributor to system
complexity and user intimidation.

4. Changing the state of the world while the user is not looking.

One way to make a user comfortable with a system is to create an
environment that is predictable and consistent. For example, if
the contents of a menu change from one invocation to another, the
user comes to think that the machine has a mind of its own, and
feels that control of it will always be elusive.

Cluttering the screen. A cluttered and busy screen is frequently
a symptom of an application design that is not carefully thought
out. Reevaluating the reasons for different features (always
keeping the end user in mind) will generally result in a simpler,
more elegant program and visually more streamlined interface.

Overenthusiastic use of modes. It is highly desirable, if not
always possible, to allow the user to go from one activity to
another without feeling trapped in a mode. For an eloquent
discussion of modes, the reader is referred to "The Smalltalk
Environment", an article by Larry Tesler in the August, 1981 issue
of BYTE magazine.

POINTERS Hof fman 10/11/82

66 User Interface Guidelines

APPENDIX B: POINTER SHAPES

Certain pointer shapes have been standardized to imply that specific
actions will occur when the mouse button is pushed.

(I-beam)
Text selection :f

(Hollow Cross)
Selection in a structured document 4#

(Plus sign)
Drawing graphics -+

(Hourglass)
Long operation in progress (sometimes associated with a I
dial in a dialog box) i

(Arrow)
All remaining cases, including menus, desk top, graphics
k: selection, button-pushing and dial-dragging, dead data,
etc,..

HARDWARE Espinosa-Hoffman 10/11/82

APPENDIX C: THE PHYSICAL BOX

67

APPENDIX C: THE PHYSICAL BOX

The following summarizes Macintosh’s salient hardware features.
Physical box:

- A main unit with a built=in 9" CRT and a built—-in minifloppy
drive;

- A detached keyboard;

- A mouse.

Figure 26. Macintosh

Memory capacity:

- 131,072 bytes (128K) of user and program memory, 21,888 bytes (21

3/8 K) of which are dedicated to the video display;
- 65,536 bytes (64K) permament (ROM) storage;
- 860,160 bytes (84fK) storage on the built-in disk drive.

Microprocessor:

- Sixteen-bit Motorola MC68P@P with eight 32-bit data registers,

seven 32-bit address registers, and two stack pointers.

- 56 instructions in 14 addressing modes; microprocessor rumns at 8

million cycles per second (8MHz).

Display:

HARDWARE Espinosa-Hoffman 10/11/82

68 User Interface Guidelines

- 512 dots wide, 342 dots tall, black and white dots on a square
grid. Dots displayed at 8§ dots per inch on a 9" screen.

This is the only configuration of Macintosh. There are no other memory
sizes, no different ROMs, no other video displays. The consistency of
the Macintosh user interface is based on the consistency of the
hardware: as every Macintosh ever sold is guaranteed to contain the
above, every application program written for this configuration will
run on 10P% of the installed base.

The only options available are:

A second 84¢K floppy disk drive;

An 18-key numeric keypad;

A dot-matrix or letter-quality printer;

Connection to a RS-232, RS-422, or network communication device.

LAYOUTS Espinosa 10/11/82

APPENDIX D: KEYBOARD LAYOUTS AND CHARACTER ASSIGGNMENTS 69

APPENDIX D: KEYBOARD LAYOUTS AND CHARACTER ASSIGGNMENTS

Here are the keyboard layouts and ASCII character assignments for the
standard character sets in Macintosh:

LAYOUTS Espinosa 10/11/82

70 User Interface Guidelines

LAYOUTS Espinosa 10/11/82

APPENDIX D: KEYBOARD LAYOUTS AND CHARACTER ASSIGGNMENTS 71

LAYOUTS ' Espinosa 10/11/82

72 User Interface Guidelines

APPENDIX E: GUIDE TO ICONS

Here are the standard icons as used on our packing materials, on the
back of the Macintosh itself, and appearing in Macintosh software:

SRR N

1
g

AN M

ICONS Espinosa 10/11/82

73

GUIDE TO ICONS

APPENDIX E:

&)

T ...;nmw@

LR SRR AN AN T T

Espinosa 10/11/82

ICONS

74 User Interface Guidelines

APPENDIX F: UNRESOLVED ISSUES

=~ What does the Close box do in the main document window for a tool?
Does it put away the document, unload the tool, and return the
user to the Desk? As Larry’s tests show that users occasionally
hit the Close box when intending to drag the title bar (or pull
down a menu), is it proper for such a commonly-misused icon to
perform such a time-consuming task?

- When inactive windows in Lisa are dragged, they are brought to the
top afterward. We don’t do this.

- Do Show Scrap/Hide Scrap exist? Where? And is the scrap called
the Clipping?

- How do Macintosh command-key assignments differ from those on
Lisa, and will we have a real Apple key rather than the word
COMMAND?

- Do Randy’s Core Editing or Word Processor routines support
backspace-by-word, or unbackspace?

- There’s a clash between the use of the stop sign as a warning icon
in Dialog and Alert Boxes and its use as an icon on the interrupt

button in the same place.

- COMMAND~Click and SHIFT-click, and their conflict .in the Craphics
Editor, is unresolved.

- The 1/4"~grey-around-the-edges was dropped in this draft. It is
superfluous, hard to code, and adds little to the illusion.

GLOSSARY Espinosa 10/2/82

TECHNICAL LEXICON 75

TECHNICAL LEXICON

These terms are defined here in their technical meaning and
relationship to one another. Users will never encounter some of the
terms mentioned here; neither will they read the descriptions as
phrased here. For a users’—eye-view of Macintosh terminology, please
see the glossaries in the Macintosh User Style Guide and in the
Macintosh Introduction manual.

Active Selection
Active Window

Alarm Clock

Alert Box

Alert Message

Automatic Scrolling

Back

Behind

Button

GLOSSARY

(Noun) See Selection, Active
(Noun) See Window, Active

(Noun) A desk accessory that displays the
current date and time, as well as allowing the
user to set an alarm date and time and an
alarm message.

Usage: Same as Desk Accessory

(Noun) A window containing warnings and
cautions, which appears when a tool encounters
an unsolvable error or a dangerous situation.
An alert box always contains two buttons,
labeled OK and Cancel.

See Also: Alert Message

Usage: Present an A.B.

(Noun) An audible or visible message or
warning generated by the computer to signal
input errors, problems interpreting data, or
situations threatening the safety of the
user’s data.

See Also: Alert box

(Noun) See Scrolling, Automatic

(Noun) The position or orientation of objects
on the desk furthest from and least visible to
the user; objects in front overlap and obscure
objects in the back.

See Also: Front Window Behind

Usage: Send to the b. In b. of another

(Adverb) In the position or orientation
towards the back. An object on the desk is
behind all the objects that are in front of
it.

(Noun) A control that causes an action when
clicked or pressed. Buttons highlight when
pressed.

Usage: Press Click

Espinosa 10/2/82

76 User Interface Guidelines

Button, Mouse (Noun) See Mouse Button.

Calculator (Noun) A desk accessory that emulates a
four-function desk calculator. Calculation
results can be cut and pasted between the
calculator and the user’s document.

Usage: Same as Desk Accessory

Cancel button (Noun) A button that, when pressed, cancels a
proposed action or action in progress. The
cancel button is labeled "Cancel" and is
marked with a thumbs-down icon.

See Also: OK button
Usage: Same as button

Check Box (Noun) A control in the shape of a square box,
which may or may not have a check mark in it.
Clicking in a check box toggles its state, and
may affect the state of related check boxes.
Usage: Check Click

Choose : (Verb) To pick a menu item from a menu.
Usage: Choose a command Choose a menu item

Click (Verb) To position the pointer and briefly
press and release the mouse button without
moving the mouse.

See Also: Drag Double-Click
Usage: Click an object Click the mouse
button

Close (Verb) To remove the window from a docupent;
you close a window to reduce it to an icon
that represents the document.

Usage: Close a window (never close a file)

Close Box (Noun) The box on the left side of the title
bar of a document window that, when clicked,
closes the window. The close box contains an
icon of a document that "winks" when ckicked.
Usage: Click the close box

Closed (Adjective) The state of a window when the
document it contains is not visible.
Documents whose windows have been closed are
represented by icons.

Command : (Noun) A word (usually appearing as a menu
item) that describes an action that a
Macintosh tool can perform; or the action
itself.
Usage: Choose a command from a menu The
command takes effect

GLOSSARY Espinosa 10/2/82

Control

Control Panel

Desk

Desk Accessories

Desktop

Dial

Dialog Box

Discontiguous Selection

Disk

Disk Drive

GLOSSARY

TECHNICAL LEXICON 77

(Noun) An object on the screen that causes an
action when clicked or dragged; buttons,
dials, and scroll bars are the most common
controls. '

Usage: Use only when necessary.

(Noun) A desk accessory full of controls.
With it, the user can change the speaker
volume, the keyboard repeat speed and delay,
system paranoia level, etc.

Usage: Same as Desk Accessory

(Noun) The tool that deals with coying,
moving, creating, deleting, and changing the
names of files. Also refers to the smaller
version used within applications.

Usage: On the desk (?)

(Noun) Mini-tools generally available at all
times, A pocket calculator, note pad,
telegram form, alarm clock, and the control
panel are the currently imagined desk
accessories,

Usage: Get a D.A. Use the D.A.

(Noun) The metaphor for the Macintosh working
environment.
See Also: Desk

(Noun) A control that acts as a pseudo-analog
output and/or input device.

See Also: Scroll Bar

Usage: Adjust a dial

(Noun) A window opened by a tool that requests
the user for entry or confirmation of
information. A dialog box is presented when a
chosen command needs more information in order
to take effect.

See Also: Alert Box

Usage: Present a d.b. Close the d.b.

(Noun) See Selection, Discontiguous

(Noun) Any kind of rotating magnetic storage
device.

See Also: Diskette Disk Drive

Usage: Save on a d. Get from a d.

(Noun) The mechanism that stores and retrieves

the information on a disk.
See Also: Diskette

Espinosa 10/2/82

78 User Interface Guidelines

Diskette

Document

Document Panel

Document Window

Double-Click

Drag

Enter

Extend (the Selection)

File

GLOSSARY

(Noun) A thin, plastic disk.
See Also: Disk Drive

Usage: Insert the d. Eject the d. On the d.

(Noun) A collection of information
intelligible to a user.

See Also: File Window Tool

Usage: Get a d. Save a d. Scroll a d.

(Noun) The pane of a document window that
presents the document itself, as opposed to
status panes, formula panes, etc.

See Also: Panel

Usage: Avoid if possible.

(Noun) A window that displays a document.
Document windows usually come equipped with a
title bar, one or two scroll bars, a size box,
and a close box.

Usage: Use only when "window" is ambiguous.

(Verb) To click the mouse button again shortly
after a previous click. Double-clicking an
object enhances or expands the action normally
caused by singly clicking that object.

Usage: D.C. an object D.C. the mouse button

(Verb) To press and hold the mouse button

while moving the mouse. Dragging either

selects items (when done inside the window) or

drags a flickering outline of an object

(outside the window).

See Also: Click Select Choose Size Window

Split a Window

Usage: D. an object D. the mouse D. out a

rectangle D. across the text

(Verb) To insert or add information into the
computer, usually by typing on the keyboard.
Entries are usually terminated by a press of
the ENTER key.

Usage: E. the name

(Verb) To make the active selection larger by
holding down the COMMAND key while making
another selection. The two selections and all
items in between become the new selection.
See Also: Select Selection

Usage: Extend the Selection Make an extended
selection

(Noun) A storage container for information.
See Also: Document Tool Window Resource
File

Espinosa 10/2/82

File

File Name

Font

Front

Highlight

Icon

Inactive Selection
Inactive Window

Insertion Point

Invert

GLOSSARY

TECHNICAL LEXICON 79

Usage: Delete a f. Copy a f. Move a f,.

Rename a f,.

(Verb) To put a document into a file, or get a
document from a file.

(Noun) The name attached to a file by its
creator,

(Noun) A set of characters of the same
typeface and size.

See Also: Typestyle

Usage: Appears in the f.

(Noun) The position or orientation of objects

on the desk that are closest and most visible

to the user; the active window is always in

front of any other windows.

See Also: Back Behind

Usage: Bring to the f. 1In f. of others
Frontmost

(Verb) To emphasize something by making it
visually distinct from its normal appearance;
by inverting it, underlining it, making it
blink, or appear in boldface, etc.

See Also: Invert Select Front Window
Usage: H. the text Title bar is highlighted

(Noun) "l. An image; representation. 2. A

similie or symbol." (AHD) A graphic

representation of a material object, a

concept, or a message. Lcons may be objects

on the desk.

Usage: Click an i, Drag an i. Labeled with
an i.

(Noun) See Selection, Inactive
(Noun) See Window, Inactive

(Noun) A selection enclosing nothing;
indicates the position between two items in a
document, or an absolute position in that
document. Indicates the point at which newly
inserted items will be placed.

See Also: Select

Usage: Make an I.P. At the I.P.

(Verb) To invert the black-and-white polarity
of an image; inverting is the most common form
of highlighting.

Usage: Inversely highlighted

Espinosa 10/2/82

80 User Interface Guidelines

Itenm

Key

Keyboard

Menu

Menu Bar

Menu Item

Menu Title

Mouse

Mouse Button

GLOSSARY

(Noun) A single piece of information in a

document. Each character in a text, each

shape or line in a picture, and each cell in a

spreadsheet is an item.

See Also: Select Drag Extend (the

- Selection)

Usage: Between two items Click an i. Drag
over items

(Noun) A button on the keyboard. Character
keys are typed; modifier keys are held;
special keys are pressed.

Usage: Press a k. Hold down a k.

(Noun) The device used for entering text and
numeric data. The keyboard has 48 character
keys, 6 modifier keys, and 4 special keys.
See Also: Press Type Hold

Usage: Type on the k.

(Noéun) A rectangular list of menu items, which
is pulled down from the menu bar; the user
chooses a menu item by pressing on a menu
title, dragging through the menu, and
releasing on a menu item,

See Also: Command

Usage: Choose from a m. Pull down a m.

(Noun) The horizontal strip at the top of the
screen that contains the menu titles.

(Noun) One item in a menu. A menu item may
contain words, an icon, or both. Menu items
usually describe commands. A menu item is
highlighted when the pointer is over it.
See Also: Choose

Usage: Choose a m.i.

(Noun) A word or phrase in the menu bar that
designates one menu. Pressing on the menu
title pulls down ite menu; dragging through
the menu highlights menu items.

Usage: Press on the m.t.

(Noun) A small device the size of a deck of
cards that rolls around on your desk. Moving
the mouse causes corresponding motion of the
pointer on the screen.

See Also: Mouse button Drag

Usage: Move the me Drag the m.

(Noun) A rectangular button on the top of the
mouse. Pressing the button initiates some
action at the position of the pointer;

Espinosa 10/2/82

Note Pad

Numeric Keypad

Object

OK button

Open (a Window)

Pane

Panel

Pointer

GLOSSARY

TECHNICAL LEXICON 81

releasing the button confirms the action.

See Also: Click Double-click Drag

Usage: Press the m.b. Release the m.b.
Click the m.b.

(Noun) A desk accessory that works as a mini
word processor, allowing the user to enter and
edit small amounts of text while working on
another document.

Usage: Same as Desk Accessory

(Noun) An auxilliary keyboard containing keys
for digits and arithmetic operators, used for
numeric input. The numeric keypad contains
sixteen character keys and two special keys.
See Also: Press Type

Usage: Same as Keyboard

(Noun) Anything distinguishable image on the
desk. Windows, the menu bar, and icons are
objects.

See Also: Drag Click Front

Usage: Click an o. Drag an o. Select an o.

(Noun) A button that, when pressed, confirms a
proposed action. The OK button is labeled
"OK" and is marked with a thumbs-up icon.

See Also: Cancel button

Usage: Same as button

(Verb) To create a window onto a document in
order to view the information.

See Also: Close Closed

Usage: Open a window

(Noun) A portion of a window with a different
function or purpose than other panes of the
same window. The tool defines the panes in
the window it presents.

See Also: Panel

Usage: One pane of the window

(Noun) A user-definable subdivision of a pane.
The user creates panels in the document pane
by using a split bar.

See Also: Splitting a Window

Usage: One panel of the window

(Noun) A small object, usually a
north-northwest arrow, that hovers above all
other objects on the screen. It moves around
as you move the mouse around.

See Also: Click Drag Press

Usage: Position the p. by moving the mouse

Espinosa 10/2/82

82 User Interface Guidelines

Press

Principal Tool

Release

Resource File

Scroll

Scroll Arrow

Scroll Bar

Scrolling, Automatic

Select

GLOSSARY

(Verb) 1. To depress the mouse button. 2. To

depress a special key on the keyboard. 3. To

position the pointer with the mouse and

depress and hold the mouse button.

See Also: Click Drag Key Release

Usage: P. the RETURN key P. the mouse button
P. on a menu title

(Noun) See Tool, Principal.

(Verb) To cease pressing. Releasing the mouse
button quickly, without moving the mouse,
results in a click.

See Also: Drag Double-Click

Usage: R. the mouse button

(Noun) A file containing information relevant
to or necessary for the operation of the
Macintosh or an individual tool.

Usage: Same as file

(Verb) To move a document so that a different
part of it is visible in the window.

See Also: Scroll Bar Scrolling

Usage: S. the document

(Noun) A button at either end of a scroll bar,
with a picture of an arrow on it. Pressing a
scroll arrow scrolls the document in its
direction, and moves the thumb closer to the
arrow.

See Also: Scroll

Usage: Same as button

(Noun) A rectangular bar along the right or
bottom edge of a window. Clicking and
dragging in various parts of the scroll bar
moves the document in the window, and moves
the thumb accordingly.

See Also: Scroll Arrow Shaft Thumb
Usage: Use the s.b.

(Noun) The process of scrolling while making a
selection.
See Also: Scroll

(Verb) To click or drag in a collection of

items or objects, in order to designate them

to be acted upon by a subsequent command.

See Also: Selection Insertion Point Extend
the Selection

Usage: S. the text S, a file

Espinosa 10/2/82

Selection

Selection, Active

Selection, Discontiguous

Selection, Inactive

Shaft

Size

Size box

Split a Window

Split bar

GLOSSARY

TECHNICAL LEXICON 83

(Noun) A collection of text or objects

designated to be acted upon by a subsequent

command. The selection appears highlighted in

the document.

See Also: Select Highlight Active/Inactive
Selection Insertion Point

Usage: Edit the s, Make a s.

(Noun) The selection that will be influenced
by the next command. The active selection is
always highlighted.

See Also: Selection, Inactive

ﬁgzge: Use "selection" unless ambiguous.

(Noun) A selection whose items are not
contiguous: that have other, nonselected
items between two selected items. A
discontiguous selection is made with the
assistance of the SHIFT key.

See Also: Selection Extending the Selection
Usage: Make a d.s.

(Noun) A selection in an inactive window, or
in a pane of the active window other than the
pane containing the active selection.

See Also: Selection, Active

Usage: Refer to this only when necessary.

(Noun) The long, thin gray area of the scroll
bar in which the thumb appears. Clicking in
the shaft to either side of the thumb moves
the document one page.

See Also: Thumb

Usage: Click in the s.

(Verb) To change the size of a window by
dragging its size box.
Usage: Size a window

(Noun) A rectangle in the bottom right corner
of a window containing an icon. Dragging this
box allows the user to alter the size of the
window by repositioning its bottom right
corner.,

See Also: Size

Usage: Drag the s.b.

(Verb) To drag a split bar in order to divide
a window into two panels.
Usage: Split the Window

(Noun) A small black bar at one end of a

scroll bar. Dragging a split bar into the
window causes the window to be split into two

Espinosa 10/2/82

84 User Interface Guidelines

Telegram Form

Thumb

Thumb

Title Bar

Tool

Tool, Principal

Type

Typeface

GLOSSARY

panels at the point where the mouse button was
released.

See Also: Split a Window

Usage: Same as object

(Noun) A desk accessory that allows the user
to send or receive messages over the AppleNet
network.

Usage: Same as Desk Accessory

(Noun) The indicator of a scroll bar. The
position of the thumb within the shaft
represents the position of the window over the
length (or breadth) of the document.

See Also: Thumb (verb)

Usage: Drag the t.

(Verb) To move to a different part of the
document by dragging the thumb, clicking or
pressing the scroll arrows, or clicking or
pressing in the shaft.

See Also: Scroll

Usage: T. through the document

(Noun) The horizontal bar at the top of a
document window. It contains the name of the
file from which the document in that window
was taken. On the left side of the title bar
is the close box.

Usage: Same as object

(Noun) A manipulator of information, otherwise
known as an Application Program.
See Also: Document File Resource File
Tool, Principal
Usage: Get a t. Use a t.

(Noun) The tool most strongly associated with
a given document.

(Verb) To press and release one or more

character keys on the keyboard or numeric

keypad. The user types information on the

keyboard.

Usage: Type the following Type on the
keybaord

(Noun) A collection of letters, digits,
punctuation marks, and other typographical
symbols with a coherent "look" and consistent
design.

See Also: Typestyle Font

Usage: Of a t.

Espinosa 10/2/82

Typestyle

Window

Window, Active

Window, Inactive

GLOSSARY

TECHNICAL LEXICON 85

(Noun) A stylistic variation that can be
applied to any typeface; examples are
boldface, italic, underlined, shadowed, and
outlined.

See Also: Font Highlight

Usage: 1In a t.

(Noun) A presenter of information. A window

is an object on the desk.

See Also: Document Window Tool

Usage: Open a w. Close a w. Size a w. Drag
a w. Bring the w. to the front

(Noun) The frontmost window, which will
receive commands and data entered.

See Also: Window, Inactive

Usage: Use "window" unless ambiguous.

(Noun) Any visible window other than the
active window.

See Also: Window

Usage: Refer to this only when necessary.

Espinosa 10/2/82

MSG#H:B411%4

IN#: 111
TO: MAC
FROM: SUPT = MAC
SENT: 30 NOV 83 16:17:25

READ:

05 DEC 83 09:59:19

FILE MENU AND FILING COMMANDS

The File menus should read:

Application Finder
New Open
Open... Duplicate
Close Get Info
Save Put Back
Save As...

Revert to Saved Close
Page Setup... Close All
Print... Print

{ your items here>

Quit Eject
New. .. in a one-document application, is disabled while a document is open.

Open...

When chosen, opens a new document window with the title "Untitled".
Get the word "Untitled” from the System Resource file,

brings up the GetFile dialog showing the contents of the disk (default
to first on-line volume in the volume queue, usually the boot volume).
User can use the Drive and Eject buttons to switch disks or drives.
The disk directory shows only decuments that the current application
can open (the application passes a type mask, or can install itself in
a filterProc to select which names to display). The user can select
one and only one document from the list. Pressing "Open" attempts to
load that document (the GetFile dialog will check to see that it‘s
there, readable, the right kind, etc.) 14 your application has
trouble loading the selected file, it should alert the user and cancel
the command. It should not automatically return to the GetFile
dialog.

Place the name of the opened file in the title bar of the document
window. Record the volume number and version byte to be used in
saving the document.

Open: is disabled if no more documents can be opened at the moment.
The user must manualily close an (or the) open document before opening
a new one. :

attempts to save the current document with the same name, volume
number, and version number as given when it was opened. 1f the
document name is "Untitled", Save drops into Save As.

Save As...

Close:

calls the PutFile dialoq, prompting "Save document as:" with the
current name as the default (unless the current name is "Untitled", in
which case the default is a null string). The default volume is the
first on-line volume in the volume queue (usually the boot volume),
not the volume the file came from (because it may be off-line). UWhen
the user clicks Save, Putfile verifies that the file is writable, and
does overwrite warnings. If you get an error while writing, or the
disk is full, etc., loop back to the PutFile dialog until a save is
successful, or cancelled.

Once the file is written, change the document’s name in the titie bar
to that of the file written. Remember the volume number and version
byte for the next Save command.

14 the frontmost window is a desk accessory, a modeless dialog, or an
accessory window, Close closes that window. .1+ the frontmost window
is a document window, Close does an implicit Save before closing the
window. Most applications should be able to function without an open
document window (so the user can open another document;, use desk
accessories, etc, without leaving the application); those that can’t
should either force an Open or Quit after closing the document window.

Page Setup: brings up the first printing dialog, with document-specific

Print...

Revert to

Quit...

information that should be saved on disk with the documents. This
includes page size and orientation, and any other information desired
by the application.

brings up the printing dialog for the confiqured printer. Settings
stick to the printer., 5See Owen for details of implementation.

Saved: confirms that the user really wants to revert to the saved
copy. 1If OK, it then confirms that the old copy exists and is 0K
before dumping the current document and loading the old copy. The
name remains the same.

confirms that the user really wants to Quit. 1 OK, then does an
implicit Close (and Save, if dirty) of all open documents, followed by
closing all other windows. 1t then returns to the Finder,.

An implicit Save begins with checking to see if the document is dirty;
the Save is skipped if it isn‘t., If the document is dirty, the user
is asked to confirm whether to save it or not. Pressing Don‘t Save
skipe the save; pressing OK drops into the Save code.

OTHER FILING ISSUES

Changing Volumes: A Drive button on the GetFile and PutFile dialogs allows the

user to cycle through the mounted volumes, showing the disk names
(and, in Get, the contents). Any resulting filename is prefixed with
the volume name {unless the user typed one in)., This does not set the
working volume. Drive does not appear on one-drive systems, and is
disabled on two-drive systems with onliy one volume on-line.

Ejecting Disks: An Eject button on the GetFile and PutFile dialogs allows the

user to eject the current volume. In the GetFile dialog, Eject cycles
to the next volume, if any; if there’s no next volume, the volume name
and directory go blank and remain blank until another disk is
inserted.

Remounting Disks: When your application gets a Disk Remount event (event bit 7)

Save!

Revert to

with an 1/0 error code, trap to package 3, which will allow the user
to initialize the disk, or eject it if it‘’s a mistake. NOTE that you
should do this on every remount event with an 1/0 error, even during
modey dialogs; be sure to check for remount errors in your modey
dialog filterProcs.

ie an optimization of Save As to reduce button clicks, and also to
work around the volume name ambiguity in saving to an off-line disk.
Although we strongly recommend you support it, it is optional.

Saved: is an optimization for a "global Undo"; the user can just do a
close and open. We recommend it for its clarity and speed, but it is
optional,

To: All Developers
From: Cary Clark Re: Above Note

Hard Copy

of the above information will be included in the next mailing.

Let me know if the info is sufficiently clear.

END/CRC

MACINTOSH USER EDUCATION

INSIDE MACINTOSH: A ROAD MAP /ROAD.MAP/ROAD

See Also: Pascal Reference Manual for the Lisa
Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
The Resource Manager: A Programmer's Guide
QuickDraw: A Programmer's Guide
The Font Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Window Manager: A Programmer's Guide
Macintosh Control Manager Programmer's Guide
The Menu Manager: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
TextEdit: A Programmer's Guide
CoreEdit: A Programmer's Guide
The Desk Manager: A Programmer's Guide
The Scrap Manager: A Programer's Guide
The Toolbox Utilities: A Programmer's Guide
The Memory Manager: A Programmer's Guide
The Segment Loader: A Programmer's Guide
Putting Together a Macintosh Application
Index to Technical Documentation

Modification History: First Draft (ROM 4.4) C. Rose 8/8/83
Second Draft (ROM 7) C. Rose 12/22/83
ABSTRACT

This manual introduces you to the "inside" of Macintosh: the Operating
System and other routines that your Macintosh application program will
call. It will help you figure out which software you need to learn more
about and how to proceed with the rest of the technical documentation.

Summary of significant changes and additions since last version:

~ The Toolbox overview has been rewritten, and the Operating System
overview has been added.

- "About Using Assembly Language' has been removed; it will be
replaced by other documentation.

- "Where to Go From Here" has been updated.

2 Inside Macintosh Road Map

TABLE OF CONTENTS

3 About This Manual

3 General Overview

5 About the User Interface Toolbox
7 About the Operating System

9 Where to Go From Here

11 Glossary

Copyright (c) 1983 Apple Computer, Inc. All rights reserved.
Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual introduces you to the "inside" of Macintosh: the Operating
System, the User Interface Toolbox, and other routines that your
application program may call. It will help you figure out which
software you need to learn more about and how to proceed with the rest
of the technical documentation. *%** Eventually it will be an
introductory chapter in a comprehensive manual that describes
everything in detail. *%%

You should already be familiar with the Macintosh User Interface
Guidelines. All Macintosh programmers should follow these guidelines
to ensure that the end user is presented with a consistent interface.
It would also be helpful for you to be familiar with an existing
Macintosh application.

This manual begins with a general overview of the software your
application program will use, followed by individual overviews of the
User Interface Toolbox and the Operating System. Following these
overviews is a section that tells you how to proceed with reading the
rest of the Toolbox and Operating System documentation. Finally,
there's a glossary of terms used in this manual.

GENERAL OVERVIEW

The routines available for use in Macintosh application programs are
divided into functional units, many of which are called "managers" of
the application feature that they support. As shown in Figure 1 on the
following page, most units are part of either the Operating System or
the User Interface Toolbox and are in the Macintosh ROM.

The Operating System is at the lowest level; it does basic tasks such
as interrupt handling, memory management, and I1/0. The User Interface
Toolbox is a level above the Operating System; it exists to help you
implement the standard Macintosh user interface in your application.
The Toolbox calls the Operating System when necessary to do low-level
operations, and you'll also call the Operating System directly
yourself.

Other software is available for performing specialized operations that
aren't integral to the user interface but may be useful to some
applications. This includes routines for doing printing and
floating=point arithmetic. Such software isn't located in the
Macintosh ROM, nor are certain special-purpose Toolbox units (such as
CoreEdit, for doing sophisticated text editing). The entire Operating
System and all the commonly used Toolbox units are in ROM.

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.2

4 Inside Macintosh Road Map

A MACINTOSH APPLICATION PROGRAM

THE USEFR INTERFACE TOOLBOX
The Resource Manager

QuickDraw
The Font Manager
The Toolbox Event Manager OTHER H'GH'EEVEL SOFTWARE
The Window Manager (not in ROM)
The Control Manager Printing
}“he tggﬁ“ Manager ‘Floating-Point Arithmetic Package
exit ot . Transcendental Functions Package
Coretdit (not in FOK) Standard File Package
he Dialog Manager . Crrgs
The Desk Manager International Utilities Packege

The Scrap Manager

The Toolbox Utilities
The System Error Handler
The Package Manager

THE OPERATING SYSTEM

The Memory Msnager
The Segment Loader
The OS Event Manager

The Keyboard/Mouse Handler
The File Manager OTHER LOW-LEVEL SOFTWARE

The Device Manager (not in ROM)

The Disk Driver

The Sound Driver

The Serial Driver

The Vertical Retrace Manager

The OS Core (Trap Dispatcher,
interrupt handlers, etc.)

The OS Utilities

Disk Formatting Package

THE MACINTOSH HARDWARE

Figure 1. Overview

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD. 2

GENERAL OVERVIEW 5

Macintosh applications can be written most easily in Pascal, since all
units have a Pascal interface *** or will eventually *%**., TFor greater
efficiency, however, you may want to use assembly language or a
combination of Pascal and assembly language. *** Currently you must
develop your application on a Lisa computer and convert it to a
Macintosh disk before trying it out. Eventually development will be
possible on the Macintosh itself. **%% '

ABOUT THE USER INTERFACE TOOLBOX

The Macintosh User Interface Toolbox provides a simple means of
constructing application programs that conform to the Macintosh User
Interface Guidelines. By offering a common set of routines that every
application calls to implement the user interface, the Toolbox not only
ensures consistency but also helps reduce the application's code size
and development time. At the same time, it allows a great deal of
flexibility: an application can use its own code instead of a Toolbox
call wherever appropriate, and can define its own types of windows,
menus, controls, and desk accessories.

Figure 2 shows the Toolbox units in rough order of their level, from
the lowest level at the bottom to the highest level at the top. There
are many interconnections between these units; the lower-level ones are
in many cases called by those at the higher levels.

Desk Manager Scrap Manager

Dialog Manager

Control Manager | | Menu Manager | | TextEdit | | CoreEdit {not in ROM)

Window Manager

Toolbox Utilities

QuickDraw Toolbox Event Manager

Font Manager (To be added:
Systemn Error Handler
and Package Manager)

Resource Manager

Figure 2. Toolbox Units

To keep the data of an application separate from its code, making the
data easier to modify and easier to share among applications, the
Toolbox includes the Resource Manager. The Resource Manager lets you,
for example, store menus separately from your code so that they can be
edited or translated without requiring recompilation of the code. It
also allows you to get standard data, such as the wristwatch graphic
that means "wait", from a shared system file. When you call other
Toolbox units that need access to the data, they call the Resource
Manager. Although most applications never need to call the Resource

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.2

6 Inside Macintosh Road Map

Manager directly, an understanding of the concepts behind it is
essential.

Graphics are an important part of every Macintosh application. All
graphic operations on the Macintosh are performed by the QuickDraw
unit. To draw something on the screen, you'll often call one of the
other Toolbox units, but that unit will in turn call QuickDraw. You'll
also call QuickDraw directly, usually to draw inside a window.
QuickDraw's underlying concepts, like those of the Resource Manager,
are important for you to understand.

Graphics include text as well as pictures. To draw text, QuickDraw
calls the Font Manager, which does the background work necessary to
make a variety of character fonts available in various sizes and
styles. Unless an application includes a font menu, it usually need
not be concerned with the Font Manager.

An application decides what to do from moment to moment by examining
input from the user, in the form of mouse and keyboard actions. It
learns of such actions by repeatedly calling the Toolbox Event Manager
(which in turn calls another, lower-level Event Manager in the
Operating System). The Toolbox Event Manager also reports occurrences
within the application that may require a response, such as when a
window that was overlapped becomes exposed and needs to be redrawn.

All information presented by a standard Macintosh application appears
in windows. To create windows, activate them, move them, resize them,
or close them, you'll call the Window Manager. It keeps track of
overlapping windows, so you can manipulate windows without concern for
how they overlap. The Window Manager, for example, tells the Toolbox
Event Manager when to inform your application that a window has to be
redrawn. Also, when the user presses the mouse button, you call the
Window Manager to learn which part of which window it was pressed in,
if any, or whether it was pressed in the menu bar or a desk accessory.

Any window may contain controls, such as buttons, check boxes, and
scroll bars. You create and manipulate controls with the Control
Manager. When you learn from the Window Manager that the user pressed
the mouse button inside a window containing controls, you call the
Control Manager to find out which control it was pressed in, if any.

A common place for the user to press the mouse button is, of course, in
the menu bar. You set up menus in the menu bar by calling the Menu
Manager. When the user gives a command, either from a menu with the
mouse or from the keyboard with the Command key, you call the Menu
Manager to find out which command was given.

To accept text typed by the user and allow the standard editing
capabilities, such as cutting and pasting within a document via the
Clipboard, your application can call either TextEdit or CoreEdit.
TextEdit is especially easy to use but doesn't support advanced editing
and formatting features such as fully justified text, tabbing, or
recognition of word boundaries during cutting and pasting; for these,
you'll have to use CoreEdit. Bear in mind, however, that CoreEdit is

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD. 2

ABOUT THE USER INTERFACE TOOLBOX 7

not in the Macintosh ROM; instead, it occupies over 6K of your
application's available memory.

When an application needs more information from the user about a
command, it presents a dialog box. In case of errors or potentially
dangerous situations, it gives the user an alert, in the form of an
alert box or sound from the Macintosh's speaker (or both). To create
and present dialogs and alerts, and find out the user's responses to
them, you call the Dialog Manager.

Every Macintosh application should support the use of desk accessories.
The user opens desk accessories through the Apple menu, which you set
up by calling the Menu Manager. When you learn that the user has
pressed the mouse button in a desk accessory, you pass that information
on to the accessory by calling the Desk Manager. The Desk Manager also
includes routines that you must call to ensure that desk accessories
behave properly.

As mentioned above, you can use TextEdit or CoreEdit to implement the
standard text editing capability of cutting and pasting via the
Clipboard in your application. However, to extend the use of the
Clipboard to allow cutting and pasting between your application and
another application or a desk accessory, you need to call the Scrap

Manager.

Finally, some generally useful operations such as fixed-point
arithmetic, string manipulation, and logical operations on bits may be
performed with the Toolbox Utilities.

**% To be added: System Error Handler, Package Manager, and other
high-level software ***

ABOUT THE OPERATING SYSTEM

The Macintosh Operating System provides the low-level support that
applications need in order to use the Macintosh hardware. As the
Toolbox is your program's interface to the user, the Operating System
is its interface to the Macintosh.

The Memory Manager dynamically allocates and releases memory for use by
applications and by the other parts of the Operating System. Most of
the memory that your program uses is in an area called the heap; the
code of the program itself occupies space in the heap. Memory space in
the heap must be obtained from the Memory Manager.

The Segment Loader is the part of the Operating System that loads the
program code into memory to be executed. Your program can be loaded
all at once as a single unit, or you can divide it up into dynamically
loaded segments to economize on memory usage.

Low—level, hardware-related events such as mouse-button presses and
keystrokes are reported by the Operating System Event Manager. (The

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD. 2

8 Inside Macintosh Road Map

Toolbox Event Manager then passes them along to the application, along
with higher-level, software-generated events added at the Toolbox
level.) The Operating System Event Manager learns of mouse and
keyboard actions in particular from the Keyboard/Mouse Handler. Your
program will ordinarily deal only with the Toolbox Event Manager and
rarely call the Operating System Event Manager or the Keyboard/Mouse
Handler directly.

File I/0 is supported by the File Manager, and device I/0 by the Device
Manager. The task of making the various types of devices present the
same interface to the application is performed by specialized device
drivers. The Operating System includes three built-in drivers:

- The Disk Driver controls data storage and retrieval on 4@@K-byte
3 1/2-inch disks.

- The Sound Driver controls sound generation, including music
composed of four simultaneous tones.

- The Serial Driver reads and writes asynchronous data through the
two serial ports, providing communication between applications and
serial peripheral devices such as a modem or printer.

Other drivers can be added independently or built on the existing
drivers. For example, a printer driver can be built on the Serial
Driver or a music driver built on the Sound Driver.

The Macintosh video circuitry generates a vertical retrace interrupt
(also known as the vertical blanking or VBL interrupt) sixty times a
second while the beam of the display tube returns from the bottom of
the screen to the top to display the next frame. The system uses this
interrupt as a convenient time to perform recurrent tasks such as
checking the state of the mouse button. An application can also
schedule routines to be executed at regular intervals based on this
"heartbeat" of the system. The Vertical Retrace Manager handles the
scheduling and execution of tasks during the vertical retrace
intetrupt.

At the very lowest level is the Operating System Core, which does the
actual interrupt handling, initialization, and other important
background work necessary to keep the Macintosh functioning. Via the
Trap Dispatcher, it provides the connection between your request for a
Toolbox or Operating System service and the physical code that performs
that service.

Finally, there are miscellaneous Operating System Utilities for doing
such things as setting the date and time or finding out the user's
preferred speaker volume.

**% To be added: other low~level software (Disk Formatting Package)
%k

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD. 2

WHERE TO GO FROM HERE 9

WHERE TO GO FROM HERE

*%% This section will be considerably rewritten for the final
comprehensive manual. *%%

The technical documentation will eventually be ordered in such a way
that you can follow it if you read it sequentially. The proposed order
for the documentation that's already written is given below. Before
you begin, you should be familiar with Lisa Pascal, as described in the
Pascal Reference Manual for the Lisa. You should also know a little
bit about the Macintosh's memory management—-heaps, handles, and the
like. For now you can read about these in the Memory Manager manual,
from "About the Memory Manager' through "Utility Data Types";
eventually there will be a separate overview of memory management.

The Resource Manager: A Programmer's Guide
QuickDraw: A Programmer's Guide

The Font Manager: A Programmer's Guide

The Event Manager: A Programmer's Guide

The Window Manager: A Programmer's Guide
Macintosh Control Manager Programmer's Guide
The Menu Manager: A Programmer's Guide
TextEdit: A Programmer's Guide

CoreEdit: A Programmer's Guide

The Dialog Manager: A Programmer's Guide
The Desk Manager: A Programmer's Guide

The Scrap Manager: A Programmer's Guide

The Toolbox Utilities: A Programmer's Guide
The Memory Manager: A Programmer's Guide
Macintosh Operating System Reference Manual
The Segment Loader: A Programmer's Guide
Putting Together a Macintosh Application

(hand)
The Macintosh Operating System Reference Manual is very
out-of-date, incomplete, and in a different format from
the other manuals. It will eventually be completely
replaced by up-to—date documentation in the usual format.

(hand)
Anything not listed above hasn't been documented yet by
Macintosh User Education, although programmer's notes or
other preliminary documentation may be available. Check
with Macintosh Technical Support.

The individual manuals identify any special—-purpose information that
can possibly be skipped. Most likely you won't need to read everything
in each manual and can even skip entire manuals. You should at least
read the manuals on the Toolbox units that deal with the fundamental
aspects of the user interface: the Resource Manager, QuickDraw, the
Toolbox Event Manager, the Window Manager, and the Menu Manager. Read
the other manuals if you're interested in what they discuss, which you
should be able to tell from the above overviews and from the

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD. 2

10 Inside Macintosh Road Map

introductions to the manuals themselves. Each manual's introduction
will also tell you what you should already know before reading that
manual. :

The documentation is oriented toward Pascal programmers. If you want
to program in assembly language, read the "Using QuickDraw from
Assembly Language" section of the QuickDraw manual. (Eventually that
section will be removed and there will be a separate, more detailed
discussion of using assembly language.) There are also notes for
assembly-language programmers throughout every manual.

Read the manual "Putting Together a Macintosh Application" when you're
ready to try something out. Currently the documentation doesn't
include any sample programs, but you can get some through Macintosh
Technical Support in the meantime.

12/22/83 Rose - CONFIDENTIAL /ROAD.MAP/ROAD. 2

GLOSSARY 11

GLOSSARY

Control Manager: A Toolbox unit that provides routines for creating
and manipulating controls (such as buttons, check boxes, and scroll
bars).

CoreEdit: A Toolbox unit that handles sophisticated text editing and
formatting, including fully justified text, tabbing, and recognition of
word boundaries during cutting and pasting.

Desk Manager: A Toolbox unit that supports the use of desk accessories
from an application.

device driver: A piece of Operating System software that controls a
peripheral device and makes it present the standard interface to the
application.

Device Manager: The part of the Operating System that supports device
1/0.

Dialog Manager: A Toolbox unit that provides routines for implementing
dialogs and alerts. '

Disk Driver: The device driver that controls data storage and
retrieval on 4@@K-byte 3 1/2-inch disks.

Event Manager: See Toolbox Event Manager or Operating System Event
Manager.

File Manager: The part of the Operating System that supports file I/0.

Font Manager: A Toolbox unit that supports the use of various
character fonts for QuickDraw when it draws text.

heap: An area of memory in which space can be allocated and released
on demand, using the Memory Manager.

Keyboard/Mouse Handler: The part of the Operating System that controls
comnunication with the keyboard and the mouse.

Memory Manager: The part of the Operating System that dynamically
allocates and releases memory space in the heap.

Menu Manager: A Toolbox unit that deals with setting up menus and
letting the user choose from them.

Operating System: The lowest-level software in the Macintosh. It does
basic tasks such as interrupt handling, memory management, and I/0.

Operating System Core: The part of the Operating System that does the

actual interrupt handling, initialization, and other important
background work necessary to keep the Macintosh functioning.

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.G

12 Inside Macintosh Road Map

Operating System Event Manager: The part of the Operating System that
reports hardware-related events such as mouse-button presses and
keystrokes.

Operating ‘System Utilities: Operating System routines that perform
miscellaneous tasks such as setting the date and time or finding out
the user's preferred speaker volume.

QuickDraw: The Toolbox unit that performs all graphic operations on
the Macintosh screen.

resource: Data used by an application (such as menus, fonts, and
icons), and also the application code itself.

Resource Manager: The Toolbox unit that reads and writes resources.

Scrap Manager: The Toolbox unit that enables cutting and pasting
between applications, desk accessories, or an application and a desk
accessorye.

Segment Loader: The part of the Operating System that loads the code
of an application into memory, either as a single unit or divided into
dynamically loaded segments. '

Serial Driver: The device driver that controls communication, via
serial ports, between applications and serial peripheral devices.

Sound Driver: The device driver that controls sound generation in an
application.

TextEdit: A Toolbox unit that supports the basic text entry and
editing capabilities of a standard Macintosh application.

Toolbox: Same as User Interface Toolbox.

Toolbox Event Manager: A Toolbox unit that allows your application
program to monitor the user's actions with the mouse, keyboard, and
keypad.

Toolbox Utilities: A Toolbox unit that performs generally useful
operations such as fixed—-point arithmetic, string manipulation, and
logical operations on bits.

Trap Dispatcher: The part of the Operating System Core that provides
the connection between your request for a Toolbox or Operating System
service and the physical code that performs that service.

User Interface Toolbox: A set of routines and data types that help you
implement the standard Macintosh user interface in your applicatiom.

vertical retrace interrupt: An interrupt generated sixty times a
second by the Macintosh video circuitry while the beam of the display
tube returns from the bottom of the screen to the top; also known as
the vertical blanking or VBL interrupt.

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.G

GLOSSARY 13

Vertical Retrace Manager: The part of the Operating System that
schedules and executes tasks during the vertical retrace interrupt.

Window Manager: A Toolbox unit that provides routines for creating and
manipulating windows.

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.G

COMMENTS?

Macintosh User Education encourages your comments on this manual.

- What do you like or dislike about it?

- Were you able to find the information you needed?
- Was it complete and accurate?
- Do you have any suggestions for improvement?

Please send your comments to the author (indicated on the cover
page) at 10460 Bandley Drive M/S 3-G, Cupertino CA 85014,
Mark up a copy of the manual or note your remarks separately.
(We’ll return your marked-up copy if you like.)

Thanks tfor your helpl

MACINTOSH USER EDUCATION

Programming Macintosh Applications in Assembly Language /INTRO/ASSEM

See Also: Macintosh Memory Management: An Overview
The Memory Manager: A Programmer's Guide
The Segment Loader: A Programmer's Guide
The Operating System Utilities: A Programmer's Guide
Putting Together a Macintosh Application

Modification History: First Draft S. Chernicoff 2/27/84

ABSTRACT

This manual tells you what you need to know to write all or part of
your Macintosh application program in assembly language. The emphasis
here is on general principles and methods; details on specific 0S and
Toolbox routines are given elsewhere.

2 Programming Macintosh Applications in Assembly Language

TABLE OF CONTENTS

3 About This Manual

3 Definition Files

4 Memory Organization
8 The Dispatch Table

19 The Trap Mechanism

1¢ Format of Trap Words

12 Trap Macros

12 Calling Conventions

12 Register—Based Calls

14 Stack—Based Calls

17 Register-Saving Conventions

18 Pascal Interface to the 0S and Toolbox
19 Mixing Pascal and Assembly Language

23 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.
Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual tells you what you need to know to write all or part of
your Macintosh application program in assembly language. The emphasis
here is on general principles and methods; details on specific O0S and
Toolbox routines are given elsewhere.

The manual assumes you already know how to write assembly language for
the Motorola MC68¢@@# (or just "68¢@@" for short), the microprocessor
used in the Macintosh. It also assumes you're familiar with Lisa
Pascal and its associated software development tools, particularly the
Assembler, the Pascal Compiler, and the Linker. *%*%* (Currently, all
software for the Macintosh must be developed on a Lisa computer and
written on a Macintosh-formatted disk for execution on the Macintosh.
Eventually development tools will be available on the Macintosh
itself.,) *#**

The manual begins by discussing the various files of definitions
pertaining to the 0S and Toolbox, and what they contain. Then it
describes the Macintosh's memory layout and organization. This is
followed by a description of the dispatch table and the trap mechanism,
which allow your program to use the 0S and Toolbox while remaining
independent of specific addresses in the Macintosh ROM. Next is a
discussion of the calling conventions for using the 0S and Toolbox from
assembly language and for mixing Pascal and assembly language in your
own programs. Finally, there's a glossary of terms used in this
manual.

DEFINITION FILES

The primary aids to assembly-language programmers are a set of
definition files that define various symbolic names for use in assembly-
language programs. By naming the definition files in an .INCLUDE
directive, you make the definitions available to your program.

The most important of the definition files are the equates files, which
use .EQU directives to define values for symbolic names. There are
separate system, QuickDraw, and Toolbox equates files for definitions
related to the Operating System, QuickDraw, and the User Interface
Toolbox. There are also a number of specialized equates files, such as
the memory equates file, which contains definitions pertaining to
memory allocation. These specialized files are discussed in the
individual manuals that apply to them (for instance, the memory equates
file is covered in the Memory Manager manual).

The equates files define a variety of symbolic names for various
purposes, such as:

= Useful numeric quantities. For example, the constant maxMenu
stands for the maximum number of menus in a menu bar.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.2

4 Programming Macintosh Applications in Assembly Language

- Fixed memory addresses. For example, sysCom is the starting
address of the system communication area.

- Addresses of system variables. For example, ticks is the address
of a long~word integer variable containing the elapsed time in
ticks (sixtieths of a second) since the system was last started
up. Often the global variable in turn contains an address: for
example, sysEvtBuf is the address of a pointer to the system event
buffer (not the address of the buffer itself!).

— Masks. For example, tagMask is a mask for extracting the tag
field from the header of a memory block.

- Bit numbers. For example, lock is the bit number of the lock bit
in the first byte of a master pointer, defined for use with the
bit manipulation instructions BTST (Bit Test), BSET (Bit Set),
BCLR (Bit Clear), and BCHG (Bit Change).

- Codes. For example, inMenuBar is the code returned by the Window
Manager function FindWindow when the user presses the mouse button
inside the menu bar.

- Offsets into data structures. For example, wVisible is the offset
of a window's "visible'" flag relative to the beginning of the
window record.

It's a good idea always to use the symbolic names defined in an equates
file in place of the corresponding numerical values (even if you know
them), since some of these values may be subject to change. One thing
to watch out for is that the names of the offsets for a data structure
don't always match the field names in the corresponding Pascal
definition. In the 0S and Toolbox documentation, the definitions are
normally shown in their Pascal form; the corresponding offset constants
for assembly-language use are listed in the summary at the end of each
manual.

In addition to the equates files, there's also a system errors file,
which defines symbolic names for all error codes returned by Operating
System routines. Finally, there are the system, QuickDraw, and Toolbox
macro files, which define the macros used to call 0S and Toolbox
routines from assembly language.

MEMORY ORGANIZATION

In its current configuration, the Macintosh has 128K bytes of volatile
read/write memory (RAM) and 64K bytes of permanent read—only memory
(ROM). The ROM contains the built—in code of the Operating System and
User Interface Toolbox, which is available for use by any application
program. In the 680@@'s l6-megabyte address space, RAM occupies
addresses $@-$1FFFF and ROM is at addresses $400@@@-$4@FFFF.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.2

MEMORY ORGANIZATION 5

In addition, the various built-in input/output devices are "memory-
mapped", meaning that they appear to the processor as addressable

memory locations with special properties. The 6522 VIA (Versatile
Interface Adapter) occupies addresses in the range SE@@@@@J-SEFFFFF, the
853¢ SCC (Serial Communications Controller) $90@@@@-S9FFFFF and $BOGQG@G-
$BFFFFF, and the IWM ("Integrated Woz Machine'") disk interface $D@@@@@~
$DFFFFF. You won't ordinarily need to know any details about these
memory-mapped devices, since you'll deal with them exclusively through
the Operating System. »

(warning)
All specific memory addresses given in this section refer
to the first-release, 128K Macintosh. The Lisa 2
Macintosh emulator uses a different memory layout, as
will future versions of Macintosh with different memory
capacities. For compatibility, always refer to these RAM
addresses by their symbolic names (given in a table
below) rather than their numeric values. For calls to 0S
and Toolbox routines located in ROM, use the 680¢@'s
unimplemented instruction trap, as described below under
"The Trap Mechanism". This ensures compatibility by
making all ROM references indirectly, through a dispatch
table kept in RAM. :

The organization of RAM is shown in Figure 1. The first $10@ bytes
(addresses $¢—$FF) are reserved by the 68@@¢ hardware for use as
exception vectors. The next $3¢¢ bytes ($10@-$3FF), referred to as the
"system communication area", contain global variables used by various
parts of the Macintosh system software. The next $40¢ bytes ($40¢@-
$7FF) contain the dispatch table for 0S and Toolbox routines, discussed
below under "The Dispatch Table'". This is followed by $3¢@ bytes ($8¢@-
$AFF) of additional system globals.

At (almost) the very end of memory are the main sound buffer ($1FD@g-
$1FFE3), used by the Sound Driver to control the sounds emitted by the
built-in speaker, and the main screen buffer ($1A7¢@-$1FC7F), which
holds the bit image to be displayed on the Macintosh screen. If an
interactive debugger such as MacsBug is installed, it immediately
precedes the screen buffer. Then comes an area reserved for the
application's parameters and global variables, which normally also
includes a block of global variables belonging to QuickDraw. When the
Segment Loader starts up an application, it adjusts the size of this
area according to the application's needs and sets register A5 to point
to the boundary between the application's parameters and globals.
(This subject is covered in more detail in the Segment Loader manual.)

(note)
For special applications, there are an alternate screen
buffer ($127@@#-$17C7F) and an alternate sound buffer
($1A196¢-$1A3E3). If you use either or both of these, the
application parameters (or the debugger, if there is one)
end at $126FF or $1AQFF instead of the normal $1A6FF, and
the space available for dynamic allocation (see below) is
reduced accordingly.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 2

6 Programming Macintosh Applications in Assembly Language

$00
$100

$400

$500

$E00

$4000

$1A700

$1FC7F

$1FDO0

1FFE3
1FFFF

2/27/84 Chernicoff

Hardware exception vectors

Systemn communication area

System dispatch table

System globals

System heap

Application heap

Stack

Application globals

Applicstion parameters

Debugger {if any)

Main screen buffer

Figure 1.

CONFIDENTIAL

RAM Organization

sysCom

dispatchTab

grafBegin

{sysZone)

{appl2one)

{heapEnd}

(SF)

{curStackBase)
(AS)
(butPtr)

screenlow

soundlow

{memTop)

/INTRO/ASSEM.2

MEMORY ORGANIZATION 7

All remaining space, between the end of the system globals ($B@@) and
the beginning of the application globals, is available for dynamic
allocation by the running program. This space is shared between the
stack and the heap, with the heap growing forward from the beginning of
the space and the stack growing backward from the end. (The stack and
the heap are discussed in general terms in the document '"Macintosh
Memory Management: An Overview" *** which will -be the chapter
preceding this one in the eventual "Inside Macintosh' manual *** and in
greater detail in the Memory Manager manual.)

Immediately following the system globals is the system heap, which is
initialized to a fixed size (currently 16.5K, or $42 bytes) when the
system is started up. The system heap is intended for the system's own
private use; your application program should use the application heap
for all of its heap allocation. (In particular, the code of the
application itself resides in the application heap.) The application
heap is initialized at the start of each new application program
(currently to 6K, or $18¢¢ bytes), and can then expand as required to
accommodate the application's needs. The stack grows and shrinks from
the other end of the space.

(warning)
Although the 680@¢ hardware provides for separate user
and supervisor stacks, each with its own stack pointer,
the Macintosh maintains only one stack. All application
programs run in supervisor mode and share the same stack
with the system; the user stack pointer isn't used.

The boundaries between the various areas of RAM are marked by global
constants and variables defined in the equates files. In the following
table (as well as in Figure 1), names not shown in parentheses are
constants that are equated directly to the designated address; those in
parentheses are variables containing long-word pointers that in turn
point to the address. Names identified as marking the end of an area
actually refer to the address followimg the last byte in that area.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.2

Programming Macintosh Applications in Assembly Language

Name Meaning
sysCom Start of system communication area
dispatchTab Start of system dispatch table
grafBegin Start of additional system globals
(sysZone) Start of system heap
(applZone) Start of application heap
(heapEnd) End of application heap
(curStackBase) Base (end) of stack;

start of application globals
(bufPtr) End of application parameters
screenLow Start of main screen buffer
(scrnBase) Start of current screen buffer
sound Low Start of main sound buffer
(soundBase) Start of current sound buffer
(memTop) End of RAM
romStart Start of ROM

THE DISPATCH TABLE

The bulk of the Operating System and Toolbox resides in read-only
memory (ROM). However, to allow flexibility for future development,
application code must be kept free of any specific ROM addresses. So
all references to 0S and Toolbox routines are made indirectly, through
a dispatch table in RAM containing the addresses of the routines. As
long as the location of the dispatch table is known, the routines
themselves can be moved to different locations in ROM without
disturbing the operation of programs that depend on them.

Information about the locations of the various 0S and Toolbox routines
is encoded in compressed form in the ROM itself. When the system is
started up, this encoded information is expanded to form the dispatch
table. Because the dispatch table resides in RAM (locations $4@¢-
$7FF), individual entries can be "patched" to point to addresses other
than the original ROM address. This allows changes to be made in the
ROM code by loading corrected versions of individual routines into RAM
at system startup and patching the dispatch table to point to them. It
also allows an application program to replace specific 0S and Toolbox
routines with its own "custom" versions. A pair of utility routines
for manipulating the dispatch table, GetTrapAddress and SetTrapAddress,
are described in the Operating System Utilities manual.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.3

THE DISPATCH TABLE 9

15 14 0 hMernoty
. ~ , \ Dispatch table entry
|
¥ o
15 10 Foutine
]

w

d

3 0. romBase 3
{1: ramBase} @

Figure 2. Dispatch Table Entry

For compactness, entries in the dispatch table are encoded into one
word each, instead of a full long-word address (see Figure 2). Since
the dispatch table is 1024 ($40@) bytes long, it has room for 512 word-
length entries. The high-order bit of each entry tells whether the
routine resides in ROM (@) or RAM (1). The remaining 15 bits give the
offset of the routine relative to a base address. For routines in ROM,
this base address is the beginning of the ROM, address $400¢@@d; for
routines in RAM, it's the beginning of the system heap, currently at
address $B@Q.

(note)
The two base addresses are kept in a pair of global
variables named romBase and ramBase.

The offset in a dispatch table entry is expressed in words instead of
bytes, taking advantage of the fact that instructions must always fall
on word boundaries (even byte addresses). To find the absolute address
of the routine, the system checks the high-order bit of the dispatch
table entry to find out which base address to use, doubles the offset
to convert it from words to bytes, and adds the result to the
designated base address.

Using 15-bit word offsets, the dispatch table can address locations
within a range of 32K words, or 64K bytes, from the base address.
Starting from romBase, this range is big enough to cover the entire
ROM; but only half of the 128K RAM lies within range of ramBase. Since
all RAM-based code resides in the heap, ramBase is set to the beginning
of the system heap to maximize the amount of useful space within range.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 3

10 Programming Macintosh Applications in Assembly Language

Locations below the start of the heap ($B@@) are used to hold global
system data (including the dispatch table itself), and can never
contain executable code; but if the heap is big enough, it's possible
for some of the application's code to lie beyond the upper end of the
dispatch table's range ($1@JAFF). Any such code is inaccessible through
the dispatch table.

(note)
This problem will become particularly acute on the Lisa 2
and on future versions of Macintosh with more than 128K
of RAM. To make sure they lie within range of ramBase,
patches to 0OS and Toolbox routines are typically placed
in the system heap rather than the application heap.

THE TRAP MECHANISM

Calls to the OS and Toolbox via the dispatch table are implemented by
means of the 680@@ processor's "1¢1¢ emulator" trap. To issue such a
call in assembly language, you use one of the trap macros defined in
the system, QuickDraw, and Toolbox macro files. When you assemble your
program, the macro generates a trap word in the machine-language code.
A trap word always begins with the hexadecimal digit $A (binary 1¢1¢);
the rest of the word identifies the routine you're calling, along with
some additional information pertaining to the call.

Instruction words beginning with $A don't correspond to any valid
machine~language instruction, and are known as unimplemented
instructions. They're used to augment the processor's native
instruction set with additional operations that are '"emulated" in
software instead of being executed directly by the hardware. On the
Macintosh, the additional operations are the 0S and Toolbox routines.
Attempting to execute an unimplemented instruction causes a trap to the
Trap Dispatcher, which examines the bit pattern of the trap word to
determine what operation it stands for, looks up the address of the
corresponding routine in the dispatch table, and jumps to the routine.

Format of Trap Words

As noted above, a trap word always begins with the digit $A in bits 12-
15, the mark of an unimplemented instruction. Bit 11 tells whether the
call is to the Operating System (@) or the Toolbox (1). The format of
the rest of the word depends on whether it's an 0S or a Toolbox call.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.3

THE TRAP MECHANISM 11

151413 121110 9 8 7 6 & 4 3 2 1 O

1:0:1:0:1
LN v > 3
Trap number
Unused
Auto-pop
Figure 3. Trap Word Format for Toolbox Calls

Figure 3 shows the trap word format for Toolbox calls.
9-bit trap number identifying the particular Toolbox routine being
Bit 9 is unused; bit 10 is called the "auto-pop" bit and is

called.

Bits ¢-8 form a

discussed below under "Pascal Interface to the 0S and Toolbox".

151413 121110 8§ 8 7 B 5 4 3 2 1 0

1

o

1

0

0

o,]
=~ l v

Trap number

Fass Al

Figure 4.

Trap Word Format for 0S Calls

Flags

For Operating System calls, only the low-order 8 bits (bits @~7) are
used for the trap number (see Figure 4). Thus of the 512 entries in
the dispatch table, only the first 256 can be used for 0OS traps. Bit 8
of an 0S trap has to do with register usage and is discussed below

under "Register-Saving Conventions".

Bits 9 and 1§ have specialized

meanings depending on which OS routine you're calling, and are covered
where relevant in other manuals.

2/27/84 Chernicoff

CONFIDENTIAL

/INTRO/ASSEM. 3

12 Programming Macintosh Applications in Assembly Language

Trap Macros

The names of all trap macros begin with the underscore character (),
followed by the name of the corresponding routine. As a rule, the
macro name is the same as the name used to call the routine from
Pascal, as given in the 0S and Toolbox documentation. For example, to
call the Window Manager routine NewWindow, you would use an instruction
with the macro name _NewWindow in the op code field. There are a few
exceptional cases, however, in which the spelling of the macro name
differs from the name of the routine itself; these exceptions are noted
in the documentation for the individual routines.

Trap macros for Toolbox calls take no arguments; those for 0S calls may
have as many as three optional arguments. The first argument, if
present, is used to load a register with a parameter value for the
routine you're calling, and is discussed below under "Register—Based
Calls". The remaining arguments control the settings of the various
flag bits in the trap word. The form of these arguments varies with
the meanings of the flag bits, and is described in the manuals on the
relevant parts of the Operating System.

CALLING CONVENTIONS

The calling conventions for Operating System and Toolbox routines fall
into two categories: register-based and stack-based. As the terms
imply, register-based routines receive their parameters and return
their results in the processor's registers; stack-based routines
communicate via the stack, following the same conventions used by the
Pascal Compiler for routines written in Pascal. Before calling any OS
or Toolbox routine, you have to set up the parameters in the way the
routine expects.

(note)
As a general rule, Operating System routines are register-—
based and Toolbox routines stack-based, but there are
exceptions on both sides. Throughout this documentation,
register-based calling conventions are given for all
routines that have them; if none is shown, then the
routine is stack=based.

Register—Based Calls

By convention, register—based routines normally use register A§ for
passing addresses (such as pointers to data objects) and DJ for other
data values (such as integers). Depending on the routine, these
registers may be used to pass parameters to the routine, result values
back to the calling program, or both. For routines that take more than
two parameters (one address and one data value), the parameters are
normally collected in a parameter block in memory and a pointer to the
parameter block is passed in Af. However, not all routines obey these

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 4

CALLING CONVENTIONS 13

conventions; for example, some expect parameters in other registers,
such as Al. See the documentation on each individual routine for
details.

Whatever the conventions may be for a particular routine, it's up to
you to set up the parameters in the appropriate registers before
calling the routine. For instance, the Memory Manager utility
procedure BlockMove, which copies a block of consecutive bytes from one
place to another in memory, expects to find the address of the first
source byte in register A@, the address of the first destination
location in Al, and the number of bytes to be copied in D@F. So to move
2¢) bytes beginning at address srcAddr to locations beginning at
destAddr, you might write something like

LEA srcAddr,Af ;source address in A@

LEA destAddr,Al sdestination address in Al
MOVEQ #2¢,D¢ ;byte count in D@
_BlockMove strap to routine

Because many register—based routines expect to find an address of some
sort in register A@, the trap macros allow you to specify the contents
of that register as an argument to the macro instead of explicitly
setting up the register yourself. The first argument you supply to the
macro, if any, represents an address to be passed in A. The macro
will load the register with an LEA (Load Effective Address) instruction
before trapping to the routine. So, for instance, to perform a Read
operation on a file, you could set up the parameter block for the
operation and then use the instruction

_Read paramBlock strap to routine with
; pointer to parameter
; block in Af

This feature is purely a convenience, and is optional: if you don't
supply any arguments to a trap macro, or if the first argument is null,
the LEA to Af will be omitted from the macro expansion. Notice that A¢
is loaded with the actual address denoted by the argument, not the
contents of that address.

(note)
You can use any of the 680@@'s addressing modes to
specify this address, with one exception: you can't use
the two-register indexing mode ('"address register
indirect with index and displacement"). An instruction
such as

_Read offset(A3,D5)
won't work properly, because the comma separating the two

registers will be taken as a delimiter marking the end of
the macro argument.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 4

14 Programming Macintosh Applications in Assembly Language

Many register-based routines return a 16-bit result code in the low-—
order half of register D@ to report successful completion or failure
due to some error condition. A negative result code always signals an
error of some kind; a code of @ denotes successful completion. (Some
routines also use D to return an actual data result. In these cases,
any nonnegative value in the low—order half of the register represents
a true result and implies successful completion of the routine.) The
system errors file defines symbolic names for all result codes reported
by the various 0S routines.

Just before returning from a register-based call, the Trap Dispatcher
tests the low-order half of D@ with a TST.W instruction to set the
processor's condition codes. You can then check for an error by
branching directly on the condition codes, without any explicit test of
your own: for example,

_PurgeMem strap to routine
BMI Error sbranch on error
« o o ;jno error——actual result

5 in low half of D@

(warning)
Not all register-based routines return a result code.
Some leave the contents of D@ unchanged; others use the
full 32 bits of the register to return a long-word
result. See the documentation of individual routines for
details.

Stack~Based Calls

To call a stack-based routine from assembly language, you have to set
up the parameters on the stack in the same way the compiled object code
would if your program were written in Pascal. The number and types of
parameters expected on the stack depend on the routine being called.
The number of bytes each parameter occupies depends on its type:

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 4

CALLING CONVENTIONS 15

Parameter type Number of bytes Contents
BOOLEAN 1 byte Low—order bit =
@ (FALSE) or 1 (TRUE)
CHAR 1 byte ASCII character code
INTEGER 2 bytes Twos—complement integer
LongInt 4 bytes Twos—complement integer
REAL 4 bytes Sign bit, 8-bit biased
exponent, 23-bit mantissa
String 4 bytes Pointer to string; first

byte pointed to gives length

of string in characters
Record, array 1-4 bytes Contents of structure if

<= 4 bytes; otherwise

pointer to structure

Pointer 4 bytes Address of value
Handle 4 bytes Address of master pointer
VAR parameter 4 bytes Address of variable,

regardless of type

If the routine you're calling is a function, the first step is to
reserve space on the stack for the function result. Then, for both
functions and procedures, push the parameters onto the stack in the
order they occur in the routine's Pascal definition. Finally, call the
routine by executing the corresponding trap macro. The trap pushes the
return address onto the stack, along with an extra word of processor
status information. The Trap Dispatcher removes this extra status
word, leaving the stack in the state shown in Figure 5 on entry to the
routine. The routine itself is responsible for removing its own
parameters from the stack before returning. If it's a function, it
leaves its result on top of the stack; if it's a procedure, it restores
the stack to the same state it was in before the call.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 4

16 Programming Macintosh Applications in Assembly Language

1 H 1

. LW Mernoty

: Lo TRermoy : (5 F })

Furction resuit

Fresdous stack contents
Feturn address .

Laszt parameter

High rnernory

) On return {functi
First parameter (tions)

Function resuit {f any)

i Low raermory ;

Frevious siack contents

3
W

[P

High memory

Frevious stack contents

High memary

On entry

On return (procedures)

Figure 5. Stack Format for Stack—Based Calls

For example, the Window Manager function GrowWindow is defined in
Pascal as follows:

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point;
sizeRect: Rect) : Longlnt;

To call this function from assembly language, you'd write something
like the following:

SUBQ.L #4,SP ;make room for LongInt result

MOVE.L theWindow,=(SP) spush window pointer

MOVE.L startPt,-(SP) ;a Point is a 4~byte record,
;s so push actual contents

PEA sizeRect ;a Rect is an 8-byte record,
3 so push a pointer to it

_GrowWindow strap to routine

MOVE.L (SP)+,D3 ;pop result from stack

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 4

CALLING CONVENTIONS 17

(warning)
Don't forget that the stack pointer must always be
aligned on a word boundary (that is, at an even byte
address). When pushing a value with an odd number of
bytes (such as a Boolean or a character), you have to add
a byte of "padding" to keep the stack pointer even.
Because all Macintosh application code runs in the
680@@'s supervisor mode, an odd stack pointer will cause
a "double bus fault': a catastrophic system failure from
which the only escape is to turn the power off and
restart the machine.

(note)
To keep the stack pointer properly aligned, the 68¢¢@
automatically adjusts the pointer by 2 instead of 1 when
you move a byte-length value to or from the stack. This
special case applies only when three conditions are met:
a one-byte value is being transferred; either the source
or the destination is specified by predecrement or
postincrement addressing; and the register being
decremented or incremented is the stack pointer (A7).
For example, you can push the Boolean value TRUE onto the
stack with the instruction

ST.B -(SP) ;byte-length
s predecrement to
sy stack pointer

and an extra, unused byte will automatically be added to
keep the stack pointer even.

However, when you use any other method to manipulate the
stack pointer, it's your responsibility to make sure the
pointer stays properly aligned. For instance, to reserve
space on the stack for a Boolean function result, you
have to remember to decrement explicitly by two bytes
instead of one:

SUBQ.L #2,SP smake room for
;3 Boolean result

The function will return its result in the high-—-order

(even—addressed) byte of the two; the other byte is just
padding and should be ignored.

Register—Saving Conventions

All 0S and Toolbox routines follow Lisa Pascal's register—saving
conventions, which require the routine to preserve the contents of all
registers except A@, Al, and DF-D2 (and of course A7, which is
special). 1In addition, for register-based routines, the Trap
Dispatcher saves some of the remaining registers before dispatching to
the routine and restores them before returning to the calling program.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 4

18 Programming Macintosh Applications in Assembly Language

Registers Al, D1, and D2 are always saved and restored in this way, so
their contents are unaffected by a register—-based trap even though the
routine itself is allowed to '"trash" them. A7 and D@ are never
restored: whatever the routine leaves in these registers is passed
back unchanged to the calling program, allowing the routine to
manipulate the stack pointer as appropriate and to return a result
code.

Whether the Trap Dispatcher preserves register A@ depends on the
setting of bit 8 of the trap word. If this bit is @, Af is saved and
restored; if it's 1, A§ is passed back from the routine unchanged.
Thus bit 8 of the trap word should be set to 1 only for those routines
that return a result in A@, and to @ for all other routines. The trap
macros automatically set this bit correctly for each routine, so you
never have to worry about it yourself.

Notice, however, that the Trap Dispatcher preserves these other
registers only on register—based traps. Stack-based traps preserve
only those registers required by the Pascal conventions (A2-A6, D3-D7).
If you want to preserve any of the other registers, you have to save
them yourself before trapping to the routine--typically on the stack
with a MOVEM (Move Multiple) instruction—--and restore them afterward.

Pascal Interface to the 0S and Toolbox

Lisa Pascal doesn't know anything about the Macintosh trap mechanism.
When you call an 0S or Toolbox routine from Pascal, you're actually
calling an jinterface routine that performs the trap for you. For
register—based calls, the interface routine fetches the parameters from
the stack where the Pascal calling program left them, puts them in the
registers where the routine expects them, then traps to the routine.
On return, it moves the routine's result, if any, from a register to
the stack and then returns to the calling program. (For routines that
return a result code, the interface routine also moves the result code
to a global variable, where it can later be accessed with a special
Pascal utility routine.) For stack-based calls, there's nothing for
the interface routine to do except trap to the routine and then return
to the calling program.

Ordinarily this would mean that each stack-based interface routine
would be two instructions long: a trap word and an RTS (Return from
Subroutine) instruction. However, to save code, the interface routines
to the Toolbox dispense with the RTS and instead use the "auto—pop"
bit, bit 10 of the trap word for Toolbox traps. When this bit is set
to 1, the Trap Dispatcher doesn't return control to the interface
routine after the trap. Instead, it just removes the trap's return
address from the stack and returns directly to the calling program.
This halves the amount of memory space taken up by the Toolbox
interface routines-—-from two words per routine to only one, the trap
word itself. When you trap to a Toolbox routine from assembly
language, the trap macro sets the auto-pop bit to #, so that control
will return normally.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.5

MIXING PASCAL AND ASSEMBLY LANGUAGE 19

MIXING PASCAL AND ASSEMBLY LANGUAGE

You can mix Pascal and assembly language freely in your own programs,
calling routines written in either language from the other. The Pascal
and assembly-language portions of the program have to be compiled and
assembled separately, then combined with the Lisa Pascal Linker. For
convenience in this discussion, we'll refer to such separately compiled
or assembled portions of a program as '"modules", although this term
isn't actually used in Lisa Pascal. You can divide a program into any
number of modules, each of which may be written in either Pascal or
assembly language.

References in one module to routines defined in another are called
external references. The Linker resolves external references by
matching them up with their definitions in other modules. You have to
identify all the external references in each module so they can be
resolved properly. To call an assembly-language routine from Pascal,
you name the routine in a .DEF, .PROC, or .FUNC directive in the module
where it's defined and declare it with an EXTERNAL declaration in the
Pascal module that refers to it. To call a Pascal routine from
assembly language, you declare it in the INTERFACE section of a Pascal
unit to make it available to other modules and name it in a .REF
directive in the assembly-language module that uses it. The actual
process of linking the modules together is covered in the document
"Putting Together a Macintosh Application'.

All calls from one language to the other, in either direction, must
obey Pascal's stack-based calling conventions (see "Calling Toolbox
Routines", above). To call a Pascal routine from assembly language,
you push the parameters onto the stack before the call and (if the
routine is a function) look for the result on the stack on return. In
an assembly-language routine to be called from Pascal, you look for the
parameters on the stack on entry and leave the result (if any) on the
stack before returning.

Under stack-based calling conventions, a convenient way to access a
routine's parameters on the stack is with a frame pointer, using the
680@@'s LINK and UNLK (Unlink) instructions. You can use any address
register for the frame pointer (except A7, which is reserved for the
stack pointer), but on the Macintosh register A6 is conventionally used
for this purpose. The instruction

LINK A6,#-12

at the beginning of a routine saves the previous contents of A6 on the
stack and sets A6 to point to them. The second operand specifies the
number of bytes of stack space to be reserved for the routine's local
variables: in this case, 12 bytes. The LINK instruction offsets the
stack pointer by this amount after copying it into A6.

(warning)

The offset is added to the stack pointer, not subtracted
from it. So to allocate stack space for local variables,

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 5

20 Programming Macintosh Applications in Assembly Language

you have to give a megative offset; the instruction won't
"work properly if the offset is positive.
the stack pointer correctly aligned, be sure the offset
is even. For a routine with no local variables on the
stack, use an offset of #@.

Also, to keep

Register A6 now points to the routine's stack frame; the routine can
locate its parameters and local variables by indexing with respect to

this register (see Figure 6).

The register itself points to its own

saved contents, which are often (but needn't necessarily be) the frame

pointer of the calling routine.
found at positive offsets from the frame pointer.

Low memory

Saved registers

Local variables

.
t

Frevious {AB)

(5P —>
(A6) —Dt
4{AB) =~

Feturn address

8(AB) —

Last parameter

First parameter

Function result (if any)

Previous stack contents

- -

High memory

Figure 6. Frame Pointer

- ol .-

The parameters and return address are

Since the saved contents of the frame pointer register occupy a long
word (4 bytes) on the stack, the return address is located at 4(A6) and

the last parameter at 8(A6).

This is followed by the rest of the

parameters in reverse order, and finally by the space reserved for the
The proper offsets for these remaining
parameters and for the function result depend on the number and types
of the parameters, according to the table above under 'Stack-Based
Calls". 1If the LINK instruction allocated stack space for any local
variables, they can be accessed at negative offsets from the frame
pointer, again depending on their number and types.

function result, if any.

2/27/84 Chernicoff

CONFIDENTIAL

/INTRO/ASSEM. 5

MIXING PASCAL AND ASSEMBLY LANGUAGE 21

At the end of the routine, the instruction

UNLK A6

reverses the process: first it releases the local variables by setting
the stack pointer equal to the frame pointer (A6), then pops the saved
contents back into register A6. This restores the register to its
original state and leaves the stack pointer pointing to the routine's
return address.

A routine with no parameters can now just return to the caller with an
RTS (Return from Subroutine) instruction. But if there are any
parameters, it's the routine's responsibility to "strip" them from the
stack before returning. The usual way of doing this is to pop the
return address into an address register, increment the stack pointer to
remove the parameters, then exit with an indirect jump through the
register.

Another point to remember is that any routine that's called from Pascal
must observe Pascal register conventions and preserve registers A2-A6é
and D3-D7. This is usually done by saving those registers the routine
will be using on the stack with a MOVEM (Move Multiple) instruction,
then restoring them before returning. Any routine you write that will
be accessed via the trap mechanism~-for instance, your own version of
an 0S or Toolbox routine that you've patched into the dispatch table-—
should observe the same conventions.

Putting all this together, the routine should begin with a sequence
like
MyRoutine LINK A6, #-dd ;jset up frame pointer——
;3 dd = number of bytes
; of local variables

MOVEM.L A2-A5/D3-D7,-(SP) ;...or whatever subset of
; these registers you use

and end with something like

MOVEM.L (SP)+,A2-A5/D3-D7 ;restore registers

UNLK A6 s;restore frame pointer

MOVE.L (SP)+,Al ;save return address in a
; ""trashable" register

ADD.W #pp,SP ;jstrip parameters--—

s pp = number of bytes
s of parameters
JMP (Al) sreturn to caller
Notice that A6 doesn't have to be included in the MOVEM instructions,
since it's saved and restored by the LINK and UNLK.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.5

22 Programming Macintosh Applications in Assembly Language

(warning)
Recall that the Segment Loader, when it starts up an
application, sets register A5 to point to the boundary
between the application's globals and parameters.
Certain parts of the system (notably QuickDraw and the
File Manager) rely on finding A5 set up properly-—so you
have to be a bit more careful about preserving this
register. The safest policy is never to touch A5 at all.
If you must use it for your own purposes, just saving its
contents at the beginning of a routine and restoring them
before returning isn't enough: you have to be sure to
restore it before any call that might depend on it. The
correct setting of A5 is always available in the long-
word global variable currentAS5.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.6

GLOSSARY 23

GLOSSARY

application heap: The portion of the heap available to the running
application program for its own memory allocation.

dispatch table: A table in RAM containing the addresses of all
Operating System and Toolbox routines in encoded form.

external reference: A reference to a routine or variable defined in a
separate compilation or assembly.

frame pointer: A pointer to a routine's stack frame, held in an
address register and manjpulated with the LINK and UNLK instructions.

heap: The area of memory in which space is dynamically allocated and
released on demand, using the Memory Manager.

interface routine: A routine called from Pascal whose purpose is to
trap to a certain Operating System or Toolbox routine.

IWM ("Integrated Woz Machine"): The Macintosh's built-in custom disk
interface.

parameter block: A table of parameter values to an Operating System
routine, stored in memory and located by means of a pointer passed in
an address register.

QuickDraw equates file: The file defining global constants and
variables pertaining to QuickDraw.

QuickDraw macro file: The file defining trap macros for calling
QuickDraw routines.

register~based: Said of an Operating System or Toolbox routine that
receives its parameters and returns its results in the processor's
registerse.

result code: A code returned by an Operating System routine to report
successful completion or failure due to some error condition.

SCC (Serial Communications Controller): The Macintosh's built-in 853
serial communication interface.

stack: The area of memory in which space is allocated and released in
LIFO (last-in-first—out) order, used primarily for routine parameters,
return addresses, local variables, and temporary storage.

stack—-based: Said of an Operating System or Toolbox routine that
receives its parameters and returns its results on the stack.

stack frame: The area of the stack used by a routine for its
parameters, return address, local variables, and temporary storage.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.6

24 Programming Macintosh Applications in Assembly Language

system communication area: An area of memory containing global
variables used by the Macintosh system software.

system equates file: The file defining global constants and variables
pertaining to the Operating System.

system errors file: The file defining all result codes returned by
Operating System routines.

system heap: The portion of the heap reserved for use by the Macintosh
system software.

system macro file: The file defining trap macros for calling Operating
System routines.

Toolbox equates file: The file defining global constants and variables
pertaining to the User Interface Toolbox.

Toolbox macro file: The file defining trap macros for calling Toolbox
routines.

trap macro: A macro that assembles into a trap word, used for calling
an Operating System or Toolbox routine from assembly language.

trap number: The identifying number of an Operating System or Toolbox
routine.’

trap word: An unimplemented instruction representing a call to an
Operating System or Toolbox routine.

unimplemented instruction: An instruction word that doesn't correspond
to any valid machine—-language instruction but instead causes a trap;
used for calling Operating System and Toolbox routines via the 680¢@'s
trap mechanisme.

VIA (Versatile Interface Adapter): The Macintosh's built-in 6522
parallel communication interface.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 6

COMMENTS?

Macintosh User Education encourages your comments on this manual.

- Yhat do you like or dislike about it?

- Were you able to find the information you needed?
- Was it complete and accurate?
- Do you have any suggestions for improvement?

Please send your comments to the author (indicated on the cover
page) at 10460 Bandley Drive M/S 3-G, Cupertino CA 95014,
Mark up a copy of the manual or note your remarks separately.
(We’ll return your marked-up copy if you like.)

Thanks for your helpl

MACINTOSH USER EDUCATION

The Resource Manager: A Programmer's Guide /RMGR/RESOURCE

See Also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
QuickDraw: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Window Manager: A Programmer's Guide
The Font Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide
Macintosh Control Manager Programmer's Guide
The Dialog Manager: A Programmer's Guide
The Desk Manager: A Programmer's Guide
Putting Together a Macintosh Application

Modification History: First Draft (ROM 2.§) Caroline Rose 2/2/83
Second Draft (ROM 4) Caroline Rose 6/21/83

Third Draft (ROM 7) Caroline Rose 1¢/3/83

Errata added Caroline Rose 3/8/84

ABSTRACT

Macintosh applications make use of many resources, such as menus, fonts,
and fcons. These resources are stored in resource files separately from
the application code, for flexibility and ease of maintenance. This
manual describes resource files and the Resource Manager routines.

Errata:

The low-order bit of the resource attribute byte is no lopger available
for use by your application; it's now reserved for internal use by the
Resource Manager.

There's a new function:
FUNCTION SizeResource {(theResource: Handle) : INTEGER;

Given a handle to a resource, SizeResource returns the size of the
resource in bytes. If the resource isn't in memory, the size is read
from the resource file. If the given handle isn't a handle to a
resource, SizeResource will return -1 and the ResError function will
return the error code resNotFound.

2 Resource Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual

4 About the Resource Manager

6 Overview of Resource Files

8 Resource Specification

1¢ Resource References

13 Using the Resource Manager

15 Resource Manager Routines

15 Initializing the Resource Manager
16 Opening and Closing Resource Files
17 Checking for Errors

18 Setting the Current Resource File
18 Getting Resource Types

19 Getting and Disposing of Resources
22 Getting Resource Information

23 Modifying Resources

28 Advanced Routines

29 Resources within Resources

31 Format of a Resource File

33 Notes for Assembly-Language Programmers
35 Summary of the Resource Manager

37 Summary of the Resource File Format
38 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. Distribution
of this draft in limited quantities does not constitute publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Resource Manager, the part of the Macintosh
User Interface Toolbox through which an application accesses various
resources that it uses, such as menus, fonts, and icons. **%*
Eventually it will become part of a large manual describing the entire
Toolbox. *** It discusses resource files, where resources are stored.
Resources form the foundation of every Macintosh application; even the
application's code is a resource. In a resource file, the resources
used by the application are stored separately from the code for
flexibility and ease of maintenance.

= You can use an existing program for creating and editing resource
files, or write one of your own. These programs will call
Resource Manager routines.

- Usually you'll access resources indirectly through other Toolbox
units, such as the Menu Manager and the Font Manager, which in
turn call the Resource Manager to do the low-level resource
operations. In some cases, you may need to call a Resource
Manager file-opening routine and possibly other routines to access
resources directly.

(hand)
This manual describes version 7 of the ROM. If you're
using a different version, the Resource Manager and the
file system may not work as discussed here.

Like all documentation about Toolbox units, this manual assumes you're
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and
the Macintosh Operating System's Memory Manager. You should also be
familiar with the following:

= The basic functions of the Finder, which are performed with the
help of the Resource Manager. (To the user, the Finder is known
as the Desktop Manager.)

- The Operating System error codes.

- The Macintosh file system, as documented *** though probably not
up-to-date *** in the Macintosh Operating System Reference Manual.
You need to know about this only if you want to understand exactly
how resources are implemented internally; you don't have to know
it to be able to use the Resource Manager.

If you're going to write your own program to create and edit resource
files, you also need to know the exact format of each type of resource.
The documentation for the Toolbox unit that deals with a particular
type of resource will tell you what you need to know for that resource.

This manual begins with an introduction to the Resource Manager and

resources, an overview of resource files, and a discussion of resource
specification, all of which offer useful general information. The next

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2

4 Resource Manager Programmer's Guide

section deals with resource references; you can skip it if you're only
going to access resources through other Toolbox units.

Next, a section on using the Resource Manager introduces you to its
routines and tells how they fit into the flow of your application.
This is followed by detailed descriptions of all Resource Manager
procedures and functions, their parameters, calling protocol, effects,
side effects, and so on.

Following these descriptions are sections that will not interest all
readers. A discussion of how resources point to each other is followed
by a section giving the exact format of a resource file. *** Also, to
be removed eventually: notes for programmers who will use the Resource
Manager routines from assembly language. *%%* '

Finally, there's a summary of the Resource Manager data structures and
routine calls and a summary of the resource file format, for quick
reference, followed by a glossary of terms used in this manual.

ABOUT THE RESOURCE MANAGER

Macintosh applications make use of many resources, such as menus,
fonts, and icons, which are stored in resource files. For example, an
icon resides in a resource file as a 32-by-32 bit image, and a font as
a large bit image containing the characters of the font. In some cases
the resource consists of descriptive information (such as, for a menu,
the menu title, the text of each command in the menu, whether the
command is checked with a check mark, and so on). The Resource Manager
keeps track of resources in resource files and provides routines that
allow applications and other Toolbox units to access them.

There's a resource file associated with each application, containing
the resources specific to that application; these resources include the
application code itself. There's also a system resource file, which
contains standard resources shared by all applications (also called
system resources).

The resources used by an application are created and changed separately
from the application's code. This separation is the main advantage to
having resource files. A change in the title of a menu, for example,
won't require any recompilation of code, nor will translation to a
foreign language. :

The Resource Manager is initialized by the system when it starts up,
and the system resource file is opened as part of the initialization.
Your application's resource file is opened when the application starts
up. When instructed to get a certain resource, the Resource Manager
normally looks first in the application's resource file and then, if
the search isn't successful, in the system resource file. This makes
it easy to share resources among applications and also to override a
system resource with one of your own (if you want to use something
other than a standard icon in an alert box, for example).

10/3/83 Rose CONFIDENTIAL ' /RMGR/RESOURCE. 2

ABOUT THE RESOURCE MANAGER 5

You refer to a resource by passing the Resource Manager a resource
specification, which consists of a type and either an ID number or a
name. Any resource type is valid, whether one of those reserved by the
Toolbox (such as for menus and fonts) or a type created for use by your
application. Given a resource specification, the Resource Manager will
read the resource into memory and return a handle to it.

(eye)
The Resource Manager knows nothing about the formats of
the individual types of resources. Only the routines in
other Toolbox units that call the Resource Manager have
this knowledge.

While most access to resources is read-only, certain applications may
want to modify resources. You can change the content of a resource or
its ID number, name, or other attributes——everything except its type.
For example, you can designate whether the resource should be kept in
memory or whether, as is normal for large resources, it can be removed
from memory and read in again when needed. You can change existing
resources, remove resources from the resource file altogether, or add
new resources to the file.

Not only can an application's resource file contain resources
themselves, but it may also contain references to resources in the
system resource file. These references need not be in the
application's resource file in order for the system resources to be
found, because the system resource file will be searched anyway as part
of the normal search process; however, the references do serve other
purposes. One is that a reference can have a different name than the
system resource itself, thus providing an "alias" for the resource.

But more important, these references let the Finder know what resources
the application uses, thus ensuring that those resources will accompany
the application if you should copy it to a disk that has a different
system resource file on it. References to system resources can be.
added or removed with Resource Manager routines.

Resource files are not limited to applications; anything stored in a
file can have its own resources. For example, documents usually have
resource files containing references to the system resources they use,
such as fonts and icons. As in an application's resource file, these
references tell the Finder what resources the document uses. An
unusual font used in only one document can be included in the resource
file for that document rather than in the system resource file.

(hand)
Although shared resources are usually stored in the
system resource file, you can have other resource files
that contain resources shared by two or more applications
(or documents, or whatever). In this case, however, the
Finder will know nothing about the connection between the
shared resources and the files that use them.

A number of resource files may be open at one time; the Resource
Manager always searches the files in the reverse of the order that they

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2

6 Resource Manager Programmer's Guide

were opened. Since the system resource file is opened when the
Resource Manager is initialized, it's always searched last. Usually
the search starts with the most recently opened resource file, but you
can change it to start with a file that was opened earlier. (See
Figure 1.)

Order of Usual seerch You can change
opening: path: it to this: or this:

Opened | Document’s /
last resource file

Opened | Application's

second resource file

Opened | System resource

first file

Figure 1. Resource File Searching

OVERVIEW OF RESOURCE FILES

Resources may be put in a resource file with the aid of the Resource
Editor, which is documented *** nowhere right now, because it isn't yet
available. Meanwhile, you can use the Resource Compiler. You describe
the resources in a text file that the Resource Compiler uses to
generate the resource file. The exact format of the input file to the
Resource Compiler is given in the manual "Putting Together a Macintosh
Application'". **%%

A resource file is not a file in the strictest sense. Although it's
functionally like a file in many ways, it's actually just one of two
parts, or "forks", of a file. (See Figure 2.) Every file has a -
resource fork and a data fork (either of which may be empty). The
resource fork of an application file contains not only the resources
used by the application but also the application code. The code is
divided into different segments, each of which is a resource; this
allows various parts of the program to be loaded and purged
dynamically. The data fork of an application file initially contains
nothing, but the application may store data there if desired, by using
the Operating System file I/0 routines. All data related to resources
is stored in the resource fork via the Resource Manager.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2

OVERVIEW OF RESOURCE FILES

The spplication’s Initially empty;
resources (which the spplication
include its code may store data
here.
Resource fork Data fork

("resource file™)

Figure 2. An Application File

é segments)

Eemecnesscseernscsvenanaseened

7

As shown in Figure 3, the system resource file has this same structure.
The resource fork contains the system resources and the data fork
contains the RAM-based Operating System routines.

Figure 3 also shows
the structure of a file containing a document; the resource fork

contains the document's resources and the data fork contains the data
that comprises the document.

(“resource file")

. | Filename |
i | The system System code:
, resources RAM-based

? 05 routines

E Resource fork Data fork

System Resource File

Figure 3.

File name

Other Files

Document File

To open a resource file, the Resource Manager calls the appropriate
Operating System routine and returns the reference number it gets from

the Operating System.

refer to the file when calling other Resource Manager routines.
of the routines, however, don't have such a parameter; instead, they
assume that the current resource file is where they should perform

their operation (or begin it, in the case of a search for a resource).

Most

The current resource file is the last one that was opened unless you

10/3/83 Rose

CONFIDENTIAL

i+ | The document's | | The deta in
i i Resourcefork Datafork
i1 ("resource file")

This is a number greater than # by which you can

/RMGR/RESOURCE.2

N L I I I I I I I N P A

8 Resource Manager Programmer's Guide

specify otherwise.

A resource file consists primarily of resource data and a resource map.
The resource data consists of the resources themselves (for example,
the bit image for an icon or the descriptive information for a menu).
The resource map provides the connection between a resource
specification and the corresponding resource data. It's like the index
of a book; the Resource Manager looks up the resource you specify in
the resource map and learns where its resource data is located. The
resource map leads to a resource in the same file as the map or
provides a reference to a system resource.

The resource map is read into memory when the file is opened and
remains there until the file is closed. Notice that although we say
the Resource Manager searches resource files, it actually searches the
resource maps that were read into memory, and not the resource files on
the disk.

Resource data is normally read into memory when needed, though you can
specify that it be read in as soon as the resource file is opened.

Once read in, the data for a particular resource may or may not be kept
in memory, depending on an attribute of that resource that's specified
in the resource map. Resources consisting of a relatively large amount
of data are usually designated as purgeable, meaning they may be
removed from the heap (purged) when space is required by the Memory
Manager. Before accessing such a resource through its handle, you can
ask the Resource Manager to read the resource into memory again if it
was purged. '

(hand)
Programmers concerned about the amount of available
memory should be aware that there's a 12-byte overhead in
the resource map for every resource and an additional
12-byte overhead for memory management if the resource is
read into memory.

To modify a resource, you change the resource data or resource map in
memory. The change becomes permanent only at your explicit request,
and then only when the application terminates or when you call a
routine specifically for updating or closing the resource file.

Each resource file also contains a partial copy of the file's directory
entry, written and used by the Finder, and up to 128 bytes of any data
the application wishes to store there.

RESOURCE SPECIFICATION

In a resource file, every resource is assigned a type, an ID number,
and optionally a name. When calling a Resource Manager routine to
access a resource, you specify the resource by passing its type and
either its ID number or its name. This section gives some general
information about resource specification.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE .2

RESOURCE SPECIFICATION 9

The resource type is a sequence of four characters. Its Pascal data
type is:

TYPE ResType = PACKED ARRAY [1l..4] OF CHAR;

The standard resource types recognized by the Macintosh User Interface
Toolbox are as follows:

Resource type Meaning

'CODE' Application code segment

'"WIND' Window template

'WDEF' Window definition function
'MENU' Menu

'MDEF' Menu definition procedure

'MBAR' Menu bar

'CNTL' Control template

'CDEF' Control definition function
'DLOG' Dialog template

'ALRT' Alert template

'DITL’ Item list in a dialog or alert
'ICON' Icon

'FONT' Font

'FWID' Font widths

"CURS' Cursor

'PICT' Picture

"PAT ' Pattern (The space is required.)
'"PAT#' Pattern list

'STR ' String (The space is required.)
'"DRVR' Desk accessory or other I/0 driver
'KEYC' Keyboard configuration

'PACK' Package

'ANYB' Any bytes

In addition, the type 'DSAT' is reserved for system use.

(eye)
Uppercase and lowercase letters are distinguished in
resource types. For example, 'Menu' will not be
recognized as the resource type for menus.

Notice that some of the resources listed above are '"templates'". A
template is a list of parameters used to build a Toolbox object; it is
not the object itself. For example, a window template contains
information specifying the size and location of the window, its title,
whether it's visible, and so on. The Window Manager uses this
information to build the window in memory and then never accesses the
template again.

You can use any four-character sequence (except those listed above) for
resource types specific to your application.

Every resource has an ID number, or resource ID. The resource ID must

be unique within each resource type, but resources of different types
may have the same ID. The standard resources in the system resource

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE .2

10 Resource Manager Programmer's Guide

file are usually numbered starting from §. The exact range of ID
numbers reserved for system resources varies according to resource
type. To be safe, if you want the ID numbers of your own resources not
to conflict with those of the system resources, you should start
numbering from at least 256 (or call a Resource Manager routine that
will return an unused resource ID).

(hand)
For assembly-language programmers, the file ResEqu.Text
contains predefined constants for the various resource
types and for the ID numbers of standard resources.

A resource may optionally have a resource name. Like the resource ID,
the resource name must be unique within each type. When comparing
resource names, The Resource Manager uses the standard Operating System
string comparison routine, which doesn't distinguish between uppercase
and lowercase and interprets diacritical marks in foreign names
properly.

RESOURCE REFERENCES

The connection between a resource specification and the corresponding
resource data is provided by the resource map, via resource references.
As illustrated in Figure 4, there are two kinds of resource reference:

- Local references, which are.references to resources in this
resource file. These point to the resource data in the file and
contain a handle to the data if it's in memory.

— System references, which are references to system resources.
These provide a resource specification for the resource in the
system resource file, which in turn leads to a local reference to
the resource in that file.

10/3/83 Rose CONFIDENTIAL /RMGR/RESQURCE .2

RESOURCE REFERENCES 11

local _| resowce
reference date

resource

Wiﬁc&tim system 1L __ rm'.'ce .
reﬁreme specification —|
for system

resource map resource

Applicstion’s resource file

System resource file

resource

. locsl resource
specification y data
for system b ‘
resource resource map

Figure 4. Resource References in Resource Maps

Every resource reference has its own type, ID number, and optional
name. In the case of local references, the ID number and name are
those of the resource itself. A system reference, on the other hand,
may have its own ID number and name, different from those of the
resource it refers to in the system resource file.

Suppose you're accessing a resource for the first time. You pass a
resource specification to the Resource Manager, which looks for a match
among all the references in the resource map; if none is found, it
looks at the references in the resource map of the next resource file
to be searched. (Remember, it looks in the resource map in memory, not
in the file.) Eventually it gets to a local reference to the resource,
which tells it where the resource data is in the file. After reading
the resource data into memory, the Resource Manager stores a handle to
that data in the local reference (again, in the resource map in memory)
and returns the handle so you can use it to refer to the resource in
subsequent routine calls.

Every resource reference also has certain resource attributes that
determine how the resource should be dealt with. In the routine calls
for setting or reading them, each attribute is specified by a-bit in
the low—-order byte of a word, as illustrated in Figure 5.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE. 2

12 Resource Manager Programmer's Guide

> 1 if system reference, O if locsl reference
—> 1 if read into system heap, O if application hesp
—> 1 if purgesable, 0 if not

—> 1 if locked, O if not

1 if protected, 0 if not
1 if to be preloaded, 0 if not
——> 1 if o be written to resource file, 0 if not
r)awaﬂabkeﬂrixnzbyyuurappﬁcaﬁon
[1 | [] -

low-order byte

¢thigh-order byte is ignored)
Figure 5. Resource Attributes

The Resource Manager provides a predefined constant for each attribute,
in which the bit corresponding to that attribute is set.

CONST resSysRef 128; {set if system reference}

resSysHeap = 64; {set if read into system heap}
resPurgeable = 32; {set if purgeable}

resLocked = 163 {set if locked}

resProtected = 8; {set if protected}

resPreload = 4; {set if to be preloaded}

resChanged = 2; {set if to be written to resource file}
resUser = 13 {available for use by your application}

(eye)
Your application should not change the setting of the
resSysRef attribute, nor should it set the resChanged
attribute directly. (ResChanged is set as a side effect
of the procedure you call to tell the Resource Manager
that you've changed a resource.))

Normally the resSysHeap attribute is set for all system resources;
however, if the resource is too large for the system heap, this
attribute will be @, and the resource will be read into the application
heap.

Since a locked resource is neither relocatable nor purgeable, the
resLocked attribute overrides the resPurgeable attribute; when
resLocked is set, the resource will not be purgeable regardless of
whether resPurgeable is set.

If the resProtected attribute is set, the application can't use
Resource Manager routines to do any of the following to the resource:
set the ID number or name in the resource reference; remove the
resource from the resource file; or remove the system reference to it,

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE .2

RESOURCE REFERENCES 13

if it's a system resource. The routine that sets the resource
attributes may be called, however, to remove the protection or just
change some of the other attributes.

The resPreload attribute tells the Resource Manager to read this
resource into memory immediately after opening the resource file. This
is useful, for example, if you immediately want to draw ten icons
stored in the file; rather than read and draw each one individually in
turn, you can have all of them read in when the file is opened and just
draw all ten. ‘

The resChanged attribute is used only while the resource map is in
memory, and must be § in the resource file. It tells the Resource
Manager whether this resource has been changed.

"USING THE RESOURCE MANAGER

This section discusses how the Resource Manager routines fit into the
general flow of an application program and gives you an idea of which
routines you'll need to use. The routines themselves are described in
detail in the next section. '

Resource Manager initialization happens automatically when the system
starts up: the system resource file is opened and its resource map is
read into memory. Your application's resource file is opened when the
application starts up; you can call CurResFile to get its reference
number. You can also call OpenResFile to open any resource file that
you specify by name, and CloseResFile to close any resource file. A
function named ResError lets you check for errors that may occur during
execution of Resource Manager routines..

(hand)
These are the only routines you need to know about to use
the Resource Manager indirectly through other Toolbox
units; you can skip to their descriptions in the next
section.

Normally when you want to access a resource for the first time, you'll
specify it by type and ID number (or type and name) in a call to
GetResource (or GetNamedResource). In special situations, you may want
to get every resource of each type. There are two routines which, used
together, will tell you all the resource types that are in all open
resource files: CountTypes and GetIndType. Similarly, CountResources
and GetIndResource may be used to get all resources of a particular

type.

If you don't specify otherwise, GetResource, GetNamedResource, and
GetIndResource read the resource data into memory and return a handle
to it. Sometimes, however, you may not need the data to be in memory.
You can use a procedure named SetResLoad to tell the Resource Manager
not to read the resource data into memory when you get a resource; in
this case, the handle returned for the resource will be an empty handle

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2

14 Programming Macintosh Applications in Assembly Language

Many register-based routines return a 16-bit result code in the low-
order half of register D@ to report successful completion or failure
due to some error condition. A negative result code always signals an
error of some kind; a code of @ denotes successful completion. (Some
routines also use DJ to return an actual data result. In these cases,
any nonnegative value in the low-order half of the register represents
a true result and implies successful completion of the routine.) The
system errors file defines symbolic names for all result codes reported
by the various OS routines.

Just before returning from a register-based call, the Trap Dispatcher
tests the low-order half of D@ with a TST.W instruction to set the
processor's condition codes. You can then check for an error by
branching directly on the condition codes, without any explicit test of
your own: for example,

_PurgeMem strap to routine
BMI Error sbranch on error
« o sno error——actual result

; in low half of D@

(warning)
Not all register-based routines return a result code.
Some leave the contents of DJ unchanged; others use the
full 32 bits of the register to return a long-word
result. See the documentation of individual routines for
details.

Stack—Based Calls

To call a stack—-based routine from assembly language, you have to set
up the parameters on the stack in the same way the compiled object code
would if your program were written in Pascal. The number and types of
parameters expected on the stack depend on the routine being called.
The number of bytes each parameter occupies depends on its type:

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 4

USING THE RESOURCE MANAGER 15

~ CloseResFile, which updates the resource file before closing it.
- UpdateResFile, which simply updates the resource file.

- WriteResource, which writes the resource data for a specified
resource to the resource file.

RESOURCE MANAGER ROUTINES

This section describes all the Resource Manager procedures and
functions. They are presented in their Pascal form; for information on
using them from assembly language, see "Using the Toolbox from Assembly
Language" *** for now, see "Using QuickDraw from Assembly Language" in
the QuickDraw manual and also "Notes For Assembly-Language Programmers"
in this manual *#**%,

(hand)
Assembly-language programmers: Except for LoadResource,
all Resource Manager routines preserve all registers

except A§ and DJ. LoadResource preserves A@ and DJ as
well.

Initializing the Resource Manager

Although you don't call these initialization routines (because they're
executed automatically for you), it's a good idea to familiarize
yourself with what they do.

FUNCTION InitResources : INTEGER;

InitResources is called by the system when it starts up, and should not
be called by the application. It initializes the Resource Manager,
opens the system resource file, reads the resource map from the file
into memory, and returns a reference number for the file.

(hand)
The application doesn't need the reference number for the
system resource file, because every Resource Manager
routine that has a reference number as a parameter
interprets § to mean the system resource file.

PROCEDURE RsrcZonelnit;

RsrcZonelInit is called automatically when your application starts up,
to initialize the resource map read from the system resource file;
normally you'll have no need to call it directly. It '"cleans up" after
any resource access that may have been done by a previous application.
First it closes all open resource files except the system resource
file. Then, for every system resource that was read into the

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

16 Programming Macintosh Applications in Assembly Language

: Low memory T

: Low memory : (SF) =

Function result

(SPy —f
4{SP) m—p

Frevious stack contents
Feturn address S ¥

High memory

- —
X

Last parameter

1
. 1]
3

First parameter Oon return (functions)

Function result (if any)

H Low memory :

Previous stack contents

B

High memory

- -
-l o

{SP) ===

Previous stack contents

On entry

High memory
On return (procedures)

Figure 5. Stack Format for Stack-Based Calls

For example, the Window Manager function GrowWindow is defined in
Pascal as follows:

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point;
sizeRect: Rect) : Longlnt;

To call this function from assembly language, you'd write something
like the following:

SUBQ.L #4,SP ;ymake room for LongInt result

MOVE.L theWindow,-(SP) spush window pointer

MOVE.L startPt,-(SP) ;a Point is a 4-byte record,

;3 so push actual contents

PEA sizeRect sa Rect is an 8-byte record,
' 3 so push a pointer to it

_GrowWindow strap to routine

MOVE.L (SP)+,D3 ;pop result from stack

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM. 4

RESOURCE MANAGER ROUTINES 17

Updates the resource file by calling the UpdateResFile procedure.

For each resource in the resource file, deallocates the memory it
occupies by calling the ReleaseResource procedure

Deallocates the memory occupied by the resource map

Closes the resource file

If there's no resource file open with the given reference number,
CloseResFile will do nothing and the ResError function will return the
error code resFNotFound. A refNum of ¢ represents the system resource
file, but if you ask to close this file, CloseResFile first closes all
other open resource files.

A CloseResFile of every open resource file except the system resource
file is done automatically when the application terminates. So you
only need to call CloseResFile if you want to close the system resource
file, or if you want to close any resource file before the application
terminates.

Checking for Errors

FUNCTION ResError : INTEGER;

Called after one of the various Resource Manager routines that may
result in an error condition, ResError identifies the error or returns
@ if no error occurred. If an error occurred at the Operating System
level, it returns one of the Operating System error codes, such as _
those for file I/0 errors and the Memory Manager "out of memory" error.
(See the Macintosh Operating System Reference Manual for the exact
codes.) If an error happened at the Resource Manager level, ResError
returns one of the following predefined error codes:

CONST resNotFound

-192; {resource not found}
resFNotFound -193; {resource file not found}
addResFailed -194; {AddResource failed}
addRefFailed = -195; {AddReference failed}
rmvResFailed = -196; {RmveResource failed}
rmvRefFailed = -197; {RmveReference failed}

Each routine description tells which errors may occur for that routine.
You can also check for an error after system startup, which calls
InitResources, and application startup, which opens the application's
resource file.

(hand)

Assembly-language programmers can access the current
value of ResError through the global variable resErr.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

18 Resource Manager Programmer's Guide

Setting the Current Resource File

FUNCTION CurResFile : INTEGER

CurResFile returns the reference number of the current resource file.
You can call it when the application starts up to get the reference
number of its resource file.

(hand)
Assembly-language programmers can access the reference
number of the current resource file through the global
variable curMap.

O
FUNCTION HomeResFile (theResource: Handle) : INTEGER;

Given a handle to a resource, HomeResFile returns the reference number
of the resource file containing that resource. If the given handle
isn't a handle to a resource, HomeResFile will return -1 and the
ResError function will return the error code resNotFound.

PROCEDURE UseResFile (refNum: INTEGER);

Given the reference number of a resource file, UseResFile sets the
current resource file to that file. If there's no resource file open
with the given reference number, UseResFile will do nothing and the
ResError function will return the error code resFNotFound. A refNum of
@ represents the system resource file.

This procedure is useful for changing which resource file is searched
first. For example, if you no longer want to override a system
resource with one by the same name in your application's resource file,
you can call UseResFile(@) to make the search begin (and end) in the
system resource file.

Getting Resource Types

FUNCTION CountTypes : INTEGER;

CountTypes returns the number of resource types in all open resource
files.

PROCEDURE GetIndType (VAR theType: ResType; index: INTEGER):

Given an index ranging from 1 to CountTypes (above), GetIndType returns
a resource type in theType. Called repeatedly over the entire range

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 19

for the index, it returns all the resource types in all open resource
files. If the given index isn't in the range from 1 to CountTypes,
GetIndType returns four NUL characters (ASCII code @).

Getting and Disposing of Resources

PROCEDURE SetResLoad (load: BOOLEAN);

Normally, the routines that return handles to resources read the
resource data into memory if it's not already in memory.
SetResLoad(FALSE) affects all those routines so that they will not read
the resource data into memory and will return an empty handle.
Resources whose resPreload attribute is set will still be read in,
however, when a resource file is opened. SetResLoad(TRUE) restores the
normal state.

(eye)
If you call SetResLoad(FALSE), be sure to restore the
normal state as soon as possible, because other Toolbox
units that call the Resource Manager rely on it.

(hand)

Assembly-language programmers can access the current
SetResLoad state (TRUE or FALSE) through the global
variable resLoad.

FUNCTION CountResources (theType: ResType) : INTEGER;

CountResources returns the total number of resources of the given type
in all open resource files.

FUNCTION GetIndResource (theType: ResType; index: INTEGER) : Handle;

Given an index ranging from 1 to CountResources(theType),
GetIndResource returns a handle to a resource of the given type (see
CountResources, above). Called repeatedly over the entire range for
the index, it returns handles to all resources of the given type in all
open resource files. GetIndResource reads the resource data into
memory if it's not already in memory, unless you've called
SetResLoad(FALSE).

(eye) ,
The handle returned will be an empty handle if you've
called SetResLoad(FALSE), or will become empty if the
resource data for a purgeable resource is read in but
later purged. (You can test for an empty handle with,
for example, myHndl™ = NIL.) To read in the data and
make the handle no longer be empty, you can call
LoadResource.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

20 Resource Manager Programmer's Guide

GetIndResource returns handles for all resources in the most recently.
opened resource file first, and then for those in the resource files
opened before it, in the reverse of the order that they were opened.

If you want to find out how many resources of a given type are in a
particular resource file, you can do so as follows: Call
GetIndResource repeatedly with the index ranging from 1 to the number
of resources of that type. Pass each handle returned by GetIndResource
to HomeResFile and count all occurrences where the reference number
returned is that of the desired file. Be sure to start the index from
1, and to call SetResLoad(FALSE) so the resources won't be read in.

(hand)
The UseResFile procedure affects which file the Resource
Manager searches first when looking for a particular
resource but not when getting indexed resources with
GetIndResource.

If the given index isn't in the range from 1 to
CountResources(theType), GetIndResource returns NIL. It also returns
NIL if the resource is to be read into memory but won't fit; in this
case, the ResError function will return an appropriate Operating System
error code.

FUNCTION GetResource (theType: ResType; theID: INTEGER) : Handle;

GetResource returns a handle to the resource having the given type and
ID number, reading the resource data into memory if it's not already in
memory and if you haven't called SetResLoad(FALSE) (see the first note
above for GetIndResource). GetResource looks in the current resource
file and all resource files opened before it, in the reverse of the
order that they were opened; the system resource file is searched last.
If it doesn't find the resource, GetResource returns NIL. It also
returns NIL if the resource is to be read into memory but won't fit; in
this case, the ResError function will return an appropriate Operating
System error code.

FUNCTION GetNamedResource (theType: ResType; name: Str255) : Handle;

GetNamedResource is the same as GetResource (above) except that you
pass a resource name instead of an ID number.

PROCEDURE LoadResource (theResource: Handle);

Given a handle to a resource (returned by GetIndResource, GetResource,
or GetNamedResource), LoadResource reads that resource into memory. It
does nothing if the resource is already in memory or if the given
handle isn't a handle to a resource; in the latter case, the ResError
function will return the error code resNotFound. Call this procedure
if you want to access the data for a resource through its handle and
either you've called SetResLoad(FALSE) or the resource is purgeable.

_16/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 21

1f you've changed the resource data for a purgeable resource and the
resource is purged before being written to the resource file, the
changes will be lost; LoadResource will reread the original resource
from the resource file. .:e the descriptions of ChangedResource and
SetResPurge for information about how to ensure that changes made to
purgeable resources will be written to the resource file.

(hand)
Assembly-language programmers: LoadResource preserves
all registers.

PROCEDURE ReleaseResource (theResource: Handle);

Given a handle to a resource, ReleaseResource deallocates the memory
occupied by the resource data, if any, and replaces the handle to that
resource in the resource map with NIL. (See Figure 6.) The given
handle will no longer be recognized as a handle to a resource; if the
Resource Manager is subsequently called to get the released resource, a
new handle will be allocated. Use this procedure only after you're
completely through with a resource.

TYPE myHndl: Handle; resource mep

myHndl : = master pointer resource data
GetResource(type, ID); - hendle —

=un

bl e e R I il R I I e 3 g S

After - i After
ReleaseResource{myHndl); : DetachResource(myHndl);
resource map i resource map
; master pointer resource data
- NIL - A [v—a!
— myHndl — i | myHnd| ———T

Figure 6. ReleaseResource and DetachResource
If the given handle isn't a handle to a resource, ReleaseResource will

do nothing and the ResError function will return the error code
resNotFound.

- 10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

22 Resource Managér Programmer's Guide

PROCEDURE DetachResource (theResource: Handle);

Given a handle to a resource, DetachResource replaces the handle to
that resource in the resource map with NIL. (See Figure 6.) The given
handle will no longer be recognized as a handle to a resource; if the
Resource Manager is subsequently called to get the detached resource, a
new handle will be allocated. DetachResource is useful if you want the
resource data to be accessed only by yourself through the given handle
and not by the Resource Manager. 1It's also useful in the unusual case
that you don't want a resource to be deallocated when a resource file
is closed.

If the given handle isn't a handle to a resource, DetachResource will

do nothing and the ResError function will return the error code
resNotFound.

Getting Resource Information

FUNCTION UniqueID (theType: ResType) : INTEGER;

UniqueID returns an ID number greater than ¢§ that isn't currently
assigned to any resource of the given type in any open resource file.
Using this number when you add a new resource to a resource file
ensures that it won't override an existing resource.

PROCEDURE GetResInfo (theResource: Handle; VAR thelD: INTEGER; VAR
theType: ResType; VAR name: Str255);

Given a handle to a resource, GetResInfo returns the ID number, type,
and name of the resource. If the current resource file contains a
system reference to the resource, it returns the ID number, type, and
name of the system reference, which may be different from those of the
resource itself in the system resource file. If the given handle isn't
a handle to a resource, GetResInfo will do nothing and the ResError
function will return the error code resNotFound.

FUNCTION GetResAttrs (theResoufce: Handle) : INTEGER;

Given a handle to a resource, GetResAttrs returns the resource
attributes for the resource. (Resource attributes are described
earlier under "Resource References'. If the current resource file
contains a system reference to the resource, GetResAttrs returns the
attributes of the system reference, which may be different from those
of the resource itself in the system resource file. If the given
handle isn't a handle to a resource, GetResAttrs will do nothing and
the ResError function will return the error code resNotFound.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 23

Modifying Resources

Except for UpdateResFile and WriteResource, all the routines described

below change the resource map in memory and not the resource file
itself.

PROCEDURE SetResInfo (theResource: Handle; theID: INTEGER; name:
Str255); .

Given a handle to a resource, SetResInfo sets the ID number and name of
the resource to the given ID number and name. If the current resource

file contains a system reference to the resource, SetResInfo sets only

the ID number and name of the system reference.

(hand)

Assembly-language programmers: If you pass NIL for the
name parameter, the name will not be changed.

(eye)
If the resource is a system resource but the current
resource file doesn't contain a reference to it,
SetResInfo will set the ID number and name in the system
resource file itself. This is a dangerous practice,
because other applications may already access the

resource and may not work properly if the ID number or
name is changed.

The change will be written to the resource file when the file is
updated if you follow SetResInfo with a call to ChangedResource.

(eye)
Even if you don't call ChangedResource for this resource,
the change may be written to the resource file when the
file is updated. If you've ever called ChangedResource
for any resource in the file, or if you've added or
removed a resource or a resource reference, the Resource
Manager will write out the entire resource map when it
updates the file, so all changes made to resource
information in the map will become permanent. If you
want any of the changes to be temporary, you'll have to
restore the original information before the file is
updated.

SetResInfo does nothing in the following cases:
- The resProtected attribute for the resource is set.

- The given handle isn't a handle to a resource. The ResError
function will return the error code resNotFound.

- The resource map becomes too large to fit in memory (which can
happen if a name is passed) or sufficient space for the modified

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

24 Resource Manager Programmer's Guide

resource file can't be reserved on the disk. ResError will return
an appropriate Operating System error code.

PROCEDURE SetResAttrs (theResource: Handle; attrs: INTEGER);

Given a handle to a resource, SetResAttrs sets the resource attributes
for the resource to attrs. (Resource attributes are described earlier
under "Resource References". 1f the current resource file contains a
system reference to the resource, SetResAttrs sets only the attributes
of the system reference. The resProtected attribute takes effect
immediately; the others take effect the next time the resource is read
in.

(eye) o
Do not use SetResAttrs to set the resChanged attribute;
you must call ChangedResource instead. Be sure that the
attrs parameter passed to SetResAttrs doesn't change the
current setting of this attribute.

The attributes set with SetResAttrs will be written to the resource
file when the file is updated if you follow SetResAttrs with a call to
ChangedResource. However, even if you don't call ChangedResource for
this resource, the change may be written to the resource file when the
file is updated. See the last warning for SetResInfo (above).

If the given handle isn't a handle to a resource, SetResAttrs will do
nothing and the ResError function will return the error code
resNotFound.

PROCEDURE ChangedResource (theResource: Handle);

Call ChangedResource after changing either the information about a
resource in the resource map (as described above under SetResInfo and
SetResAttrs) or the resource data for a resource, if you want the
change to be permanent. Given a handle to a resource, ChangedResource
sets the resChanged attribute for the resource. This attribute tells
the Resource Manager to do both of the following:

- Write the resource data for the resource to the resource file when
the file is updated or when WriteResource is called

- Write the entire resource map to the resource file when the file
is updated

(eye) :
If you change information in the resource map with
SetResInfo or SetResAttrs and then call ChangedResource,
remember that not only the resource map but also the
resource data will be written out when the resource file
is updated.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 25

To change the resource data for a purgeable resource and make the
change permanent, you have to take special precautions to ensure that
the resource won't be purged while you're changing it. You can make
the resource temporarily unpurgeable and then write it out with
WriteResource before making it purgeable again. You have to use the
Memory Manager routines HNoPurge and HPurge to make the resource
unpurgeable and purgeable; SetResAttrs can't be used because it won't
take effect immediately. For example:

myHndl := GetResource(type,ID); {or LoadResource(myHndl) if }
{ you've gotten it previously}

HNoPurge(myHndl); {make it unpurgeable}
o« o e {make the changes here}
ChangedResource(myHndl); {mark it changed}
WriteResource(myHndl); {write it out}
HPurge(myHndl); {make it purgeable again}

Or, instead of calling WriteResource to write the data out immediately,
you can call SetResPurge(TRUE) before making any changes to purgeable
resource data.

ChangedResource does nothing in the following cases:

- The given handle isn't a handle to a resource. The ResError
function will return the error code resNotFound.

- Sufficient space for the modified resource file can't be reserved
on the disk. ResError will return an appropriate Operating System
error code.

PROCEDURE AddResource (theData: Handle; theType: ResType; thelD:
INTEGER; name: Str255);

Given a handle to data in memory (not a handle to an existing
resource), AddResource adds to the current resource file a local
reference that points to the data. It sets the resChanged attribute
for the resource, so the data will be written to the resource file when
the file is updated or when WriteResource is called. If the given
handle is empty, zero-length resource data will be written.

AddResource does nothing in the following cases:

- The given handle is NIL or is already a handle to an existing
resource. The ResError function will return the error code
addResFailed.

- The resource map becomes too large to fit in memory or sufficient
space for the modified resource file.can't be reserved on the
disk. ResError will return an appropriate Operating System error
code. :

.10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

26 Resource Manager Programmer's Guide

PROCEDURE RmveResource (theResource: Handle);

Given a handle to a resource in the current resource file, RmveResource
removes the local reference to the resource. The resource data will be
removed from the resource file when the file is updated.

(hand)
It doesn't deallocate the memory occupied by the resource
data; to do that, call the Memory Manager routine
DisposeHandle after calling RmveResource.

If the resProtected attribute for the resource is set or if the given
handle isn't a handle to a resource in the current resource file,
RmveResource will do nothing and the ResError function will return the
error code rmvResFailed.

(eye)
It's dangerous to remove a resource from the system
resource file, because all system references to it will
become invalid.

PROCEDURE AddReference (theResource: Handle; theID: INTEGER; name:
Str255);

Given a handle to a system resource, AddReference adds to the current
resource file a system reference to the resource, giving it the ID
number and name specified by the parameters. It sets the resChanged
attribute for the resource, so the reference will be written to the
resource file when the file is updated. AddReference does nothing in
the following cases:

- The current resource file is the system resource file or already
contains a system reference to the specified resource, or the
given handle isn't a handle to a system resource. The ResError
function will return the error code addRefFailed. .

— The resource map becomes too large to fit in memory or sufficient
space for the modified resource file can't be reserved on the
disk. ResError will return an appropriate Operating System error
code.

PROCEDURE RmveReference (theResource: Handle);

Given a handle to a system resource, RmveReference removes the system
reference to the resource from the current resource file. (The
reference will be removed from the resource file when the file is
updated.) 1In the following cases, RmveReference will do nothing and
the ResError function will return the error code rmvRefFailed: the
resProtected attribute for the resource is set; there's no system
reference to the resource in the current resource file; or the given
handle isn't a handle to a system resource.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 27

PROCEDURE UpdateResFile (refNum: INTEGER);

Given the reference number of a resource file, UpdateResFile does the
following:

- Changes, adds, or removes resource data in the file as appropriate
to match the map. Remember that changed resource data is written
out only if you called ChangedResource. If a resource whose data
is to be written out has been purged, zero-length resource data
will be written.

— Compacts the resource file if necessary, closing up any empty
space created when a resource or a resource reference was removed
or when a resource was made larger. (If the size of a changed
resource is greater than its original size in the resource file,
it's written at the end of the file rather than at its original
location, leaving empty space at that location. UpdateResFile

doesn't close up any empty space created when a resource is made
smaller.)

- Writes out the resource map of the resource file, if you ever
called ChangedResource for any resource in the file or if you
added or removed a resource or a resource reference. All changes
to resource information in the map will become permanent as a
result of this, so if you want any such changes to be temporary,
you must restore the original information before calling
UpdateResFile.

If there's no open resource file with the given reference number,
UpdateResFile will do nothing and the ResError function will return the
error code resFNotFound. A refNum of § represents the system resource
file.

The CloseResFile procedure calls UpdateResFile before it closes the
resource file, so you only need to call UpdateResFile yourself if you
want to update the file without closing it.

PROCEDURE WriteResource (theResource: Handle);

Given a handle to a resource, WriteResource checks the resChanged
attribute for that resource and, if it's set (which it will be if you
called ChangedResource or AddResource), writes its resource data to the
resource file and clears its resChanged attribute. 7I1f the resource is
purgeable and has been purged, zero-length resource data will be
written. WriteResource does nothing if the resProtected attribute for
the resource is set or if the given handle isn't a handle to a
resource; in the latter case, the ResError function will return the
error code resNotFound.

Since the resource file is updated when the application terminates or
when you call UpdateResFile (or CloseResFile, which calls
UpdateResFile), you only need to call WriteResource if you want to
write out just one or a few resources immediately.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

28 Resource Manager Programmer's Guide

PROCEDURE SetResPurge (install: BOOLEAN);

SetResPurge(TRUE) sets a "hook" in the Memory Manager such that before
purging data specified by a handle, the Memory Manager will first pass
the handle to the Resource Manager. The Resource Manager will
determine whether the handle is that of a resource in the application
heap and, if so, will call WriteResource to write the resource data for
that resource to the resource file if its resChanged attribute is set
(see ChangedResource and WriteResource above). SetResPurge(FALSE)
restores the normal state, clearing the hook so that the Memory Manager
will once again purge without checking with the Resource Manager.

SetResPurge(TRUE) is useful in applications that modify purgeable
resources. You still have to make the resources temporarily
unpurgeable while making the changes, as shown in the description of
ChangedResource, but you can set the purge hook instead of writing the
data out immediately with WriteResource. Notice that you won't know
exactly when the resources are being written out; most applications
will want more control than this. If you wish, you can set your own
such hook.

Advanced Routines

The routines described below allow advanced programmers to have even
greater control over resource file operations. Just as individual
resources have attributes, an entire resource file also has attributes,
which these routines manipulate. Like the attributes of individual
resources, resource file attributes are specified by bits in the
low-order byte of a word. The Resource Manager provides a predefined
constant for each attribute, in which the bit corresponding to that
attribute is set.

CONST mapReadOnly = 128;
mapCompact = 64;
mapChanged = 32;

When the mapReadOnly attribute is set, the Resource Manager will
neither write anything to the resource file nor check whether there's
sufficient space for the file on the disk when the resource map is
modified.

(eye)
If you set mapReadOnly but then later clear it, the
resource file will be written even if there's no room for
it on the disk. This would destroy the file.

The mapCompact attribute causes resource file compaction to occur when
the file is updated. 1It's set by the Resource Manager when a resource
or a resource reference is removed, or when a resource is made larger
and thus has to be written at the end of the resource file. You may
want to set mapCompact to force compaction when you've only made
resources smaller.

10/3/83 Rose CONFIDENTIAL '/RMGR/RESOURCE. R

RESOURCE MANAGER ROUTINES 29

The mapChanged attribute causes the resource map to be written to the.
resource file when the file is updated. It's set by the Resource
Manager when you call ChangedResource or when you add or remove a
resource or a resource reference. You can set mapChanged if, for
example, you've changed resource attributes only and don't want to call
ChangedResource because you don't want the resource data to be written
out.

FUNCTION GetResFileAttrs (refNum: INTEGER) : INTEGER;

Given the reference number of a resource file, GetResFileAttrs returns
the resource file attributes for the file. If there's no resource file
with the given reference number, GetResFileAttrs will do nothing and
the ResError function will return the error code resFNotFound. A
refNum of § represents the system reference file.

PROCEDURE SetResFileAttrs (refNum: INTEGER; attrs: INTEGER);

Given the reference number of a resource file, SetResFileAttrs sets the
resource file attributes of the file to attrs. If there's no resource
file with the given reference number, SetResFileAttrs will do nothing
and the ResError function will return the error code resFNotFound. A
refNum of §§ represents the system reference file, but you shouldn't
change its resource file attributes.

RESOURCES WITHIN RESOURCES

Resources may point to other resources; this section discusses how this
is normally done, for programmers who are interested in background
information about resources or who are defining their own resource
types.

In a resource file, one resource points to another with the ID number
of the other resource. For example, the resource data for a menu
includes the ID number of the menu's definition procedure (a separate
resource that determines how the menu looks and behaves). To work with
the resource data in memory, however, it's faster and more convenient
to have a handle to the other resource rather than its ID number.

Since a handle occupies two words, the ID number in the resource file
is followed by a word containing @#; these two words together serve as a
placeholder for the handle. Once the other resource has been read into

memory, these two words can be replaced by a handle to it. (See Figure
7.)

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.F

30 Resource Manager Programmer's Guide

placehoider D +——

for handle 0 ..
q' * 4’
menu
menu definition
Application's resource file ' © .
Memory
-mle-——*l:]-—j X
‘ master b . Y
pointer 1 1
menu

menu definition
procedure

Figure 7. How Resources Point to Resources

(hand)
The practice of using the ID number followed by @ as a
placeholder is simply a convention. If you like, you can
set up your own resources to have the ID number followed
by a dummy word, or even a word of useful information, or
you can put the ID in the second rather than the first
word of the placeholder.

In the case of menus, the Menu Manager routine GetMenu calls the
Resource Manager to read the menu and the menu definition procedure
into memory, and then replaces the placeholder in the menu with the
handle to the procedure. There may be other cases where you call the
Resource Manager directly and store the handle in the placeholder
yourself. It might be useful in these cases to call HomeResFile to
learn which resource file the original resource is located in, and
then, before getting the resource it points to, call UseResFile to set
the current resource file to that file. This will ensure that the
resource pointed to is read from that same file (rather than one that
was opened after it).

(eye)
If you modify a resource that points to another resource
and you make the change permanent by calling
ChangedResource, be sure you reverse the process
described here, restoring the other resource's ID number
in the placeholder.

10/3/83 Rose CONFIDENTIAL ~ /RMGR/RESOURCE.F

FORMAT OF A RESOURCE FILE 31

FORMAT OF A RESOURCE FILE

This section gives the exact format of a resource file, which you need

to know if you're writing a program that will create or modify resource
files directly. You don't have to know the exact format to be able to

use the Resource Manager routines.

Resource header
{16 bytes)
Copy of directory entry
(112 bytes) - 256 bytes
User dete
(128 bytes)

1» Resource data

w

4

f Resource map

Figuré 8. Format of a Resource File

As illustrated in Figure 8, every resource file begins with a resource
header. The resource header gives the offsets to and lengths of the
resource data and resource map parts of the file, as follows:

Number of bytes Contents :
4 bytes Offset from beginning of resource file
to resource data
4 bytes Of fset from beginning of resource file
to resource map
4 bytes Length of resource data
4 bytes Length of resource map
(hand)
All offsets and lengths in the resource file are given in
bytes.

This is what immediately follows the resource header:

Number of bytes Contents
112 bytes Partial copy of directory entry for this file
128 bytes Available for user data

The directory copy is used by the Finder. The user data may. be
whatever the you want.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE. F

32 Resource Manager Programmer's Guide

The resource data follows the user data. It consists of the following
for each resource in the file:

Number of bytes
For each resource:
4 bytes
n bytes

Contents

Length of following resource data
Resource data for this resource

To learn exactly what the resource data is for a standard type of
resource, see the documentation on the Toolbox unit that deals with

that resource type.

After the resource data, the resource map begins as follows:

Number of bytes
16 bytes
4 bytes

2 bytes
2 bytes
2 bytes

2 bytes

Contents

@ (reserved for copy of resource header)

@ (reserved for handle to next resource map
to be searched)

@ (reserved for file reference number)
Resource file attributes

Of fset from beginning of resource map

to type list (see below)

Offset from beginning of resource map

to resource name list (see below)

After reading the resource map into memory, the Resource Manager stores
the indicated information in the reserved areas at the beginning of the

mape.

The resource map continues with a type list, reference lists, and a
resource name list. The type list contains the following:

Number of bytes
2 bytes
For each type:
4 bytes
2 bytes

2 bytes

Contents
Number of resource types in the map minus 1

Resource type

Number of resources of this type in the map
minus 1

Offset from beginning of type 1lfist

to reference list for resources of this type

This is followed by the reference list for each type of resource, which
contains the resource references for all resources of that type. The
reference lists are contiguous and in the same order as the types in
the type list. The format of a reference list is as follows:

10/3/83 Rose

CONFIDENTIAL /RMGR/RESOURCE. F

Number of bytes
For each reference
of this type:

2 bytes

2 bytes

1 byte
3 bytes

4 bytes

FORMAT OF A RESOURCE FILE 33
Contents

Resource ID

Offset from beginning of resource name list
to length of resource name, or -1 if none
Resource attributes

If local reference, offset from beginning
of resource data to length of data for this
resource '

1f system reference, @ (ignored)

If local reference, § (reserved for handle
to resource)

If system reference, resource specification
for system resource: in high-order word,
resource ID; in low-order word, offset from
beginning of resource name list to length
of resource name, or -1 if none

The resource name list follows the reference list and has this format:

Number of bytes
For each name:
1 byte
n bytes

Contents

Length of following resource name
Characters of resource name

Figure 9 on the following page shows where the various offsets lead to
in a resource file, in general and also specifically for a local

reference.

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS

*** This will be moved to a separate chapter of the final comprehensive
manual. For now, see the QuickDraw manual for complete information
about how to use the User Interface Toolbox from assembly language.

k%

The primary aid to assembly-language programmers is a file named
ToolEqu.Text. If you use .INCLUDE to include this file when you
assemble your program, all the Resource Manager constants and locations
of system globals will be available in symbolic form.

10/3/83 Rose

CONFIDENTIAL /RMGR/RESOURCE.F .

34 Resource Manager Programmer's Guide

Resource offset to resource data
Header offset 10 resource map
and other : :
data \ :
Resource length of resource t:lataﬂe
Data Y resource data
=)| -4

M offset to type list
offset to name list

—{ offset to reference list _ Type

-
) §

Reference

lists

{locsl reference
shown)

N

name list

Figure 9. Local Reference in a Resource File

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.F

SUMMARY OF THE RESOURCE MANAGER 35

SUMMARY OF THE RESOURCE MANAGER

CONST resSysRef = 128; {set if system reference}

resSysHeap = 64; {set if read into system heap}
resPurgeable = 32; {set if purgeable}

resLocked = 163 {set if locked}

resProtected = 8; {set if protected}

resPreload = 43 {set if to be preloaded}

resChanged = 2; {set if to be written to resource file}
resUser = 1; {available for use by your application}
resNotFound = -192; {resource not found}

resFNotFound = -193; {resource file not found}
addResFailed = -194; {AddResource failed}

addRefFailed = -195; {AddReference failed}

rmvResFailed = -196; {RmveResource failed}

rmvRefFailed = -197; {RmveReference failed}

mapReadOnly = 128;

mapCompact = 64;

mapChanged = 32;

TYPE ResType = PACKED ARRAY [1..4] OF CHAR;

Initializing the Resource Manager

FUNCTION InitResources : INTEGER;
PROCEDURE RsrcZonelnit;

Opening and Closing Resource Files

PROCEDURE CreateResFile (filename: Str255);

FUNCTION OpenResFile (fileName: Str255) :

PROCEDURE CloseResFile (refNum: INTEGER);

Checking for Errors

INTEGER;

FUNCTION ResError : INTEGER;

Setting the Current Resource File

FUNCTION CurResFile : INTEGER;

FUNCTION HomeResFile (theResource: Handle) :

PROCEDURE UseResFile (refNum: INTEGER);

10/3/83 Rose CONFIDENTIAL

INTEGER;

/RMGR/RESOURCE. S

36 Resource Manager Programmer's Guide

Getting Resource Types

FUNCTION CountTypes : INTEGER;
PROCEDURE GetIndType (VAR theType: ResType; index: INTEGER);

Getting and Disposing of Resources

PROCEDURE SetResLoad (load: BOOLEAN);
FUNCTION CountResources (theType: ResType) : INTEGER;
FUNCTION GetIndResource (theType: ResType; index: INTEGER) : Handle;

FUNCTION GetResource (theType: ResType; thelID: INTEGER) : Handle;
FUNCTION GetNamedResource (theType: ResType; name: Str255) : Handle;
PROCEDURE LoadResource (theResource: Handle); ‘

PROCEDURE ReleaseResource (theResource: Handle);
PROCEDURE DetachResource (theResource: Handle);

Getting Resource Information

FUNCTION UniquelD (theType: ResType) : INTEGER;

PROCEDURE GetResInfo (theResource: Handle; VAR theID: INTEGER; VAR
' theType: ResType; VAR name: Str255);

FUNCTION GetResAttrs (theResource: Handle) : INTEGER;

Modifying Resources

PROCEDURE SetResInfo (theResource: Handle; theID: INTEGER; name:
Str255); :

PROCEDURE SetResAttrs (theResource: Handle; attrs: INTEGER);

PROCEDURE ChangedResource (theResource: Handle);

PROCEDURE AddResource (theData: Handle; theType: ResType; thelD:

INTEGER; name: Str255);

PROCEDURE RmveResource (theResource: Handle);

PROCEDURE AddReference (theResource: Handle; theID: INTEGER; name:
Str255);

PROCEDURE RmveReference (theResource: Handle);

PROCEDURE UpdateResFile (refNum: INTEGER);

PROCEDURE WriteResource (theResource: Handle);

PROCEDURE SetResPurge (install: BOOLEAN);

Advanced Routines

FUNCTION GetResFileAttrs (refNum: INTEGER) : INTEGER;
PROCEDURE SetResFileAttrs (refNum: INTEGER; attrs: INTEGER);

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE. $

SUMMARY OF THE RESOURCE FILE FORMAT 37

SUMMARY OF THE RESOURCE FILE FORMAT

(hand)

Resource
Header
and other
data

Resource
Data

Resource

Map

Type list

Reference
lists (one
per type,
contiguous,
same order
as in type
list)

Resource
name list

10/3/83 Rose

All offsets and lengths are given in bytes.

4 bytes
4 bytes
4 bytes
4 bytes
112 bytes
128 bytes

data
map

Offset to
Of fset to
Length of resource data

Length of resource map

Partial copy of file's directory entry
User data

resource
resource

For each resource:

DN NN

2

4 bytes
n bytes

bytes
bytes

bytes
bytes
bytes
bytes

bytes

For each type:

4 bytes
2 bytes
2 bytes

Length of following resource data
Resource data for this resource

Reserved for copy of resource header
Reserved for handle to next resource map
to be searched
Reserved for file reference number
Resource file attributes

Offset to type list

Of fset to resource name list

Number of resource types minus 1

Resource type
Number of resources of this type minus 1
Offset to reference list for this type

For each reference
of this type:

2 bytes
2 bytes

1 byte
3 bytes

4 bytes

Resource ID
Offset to length of resoufce name or -1

if none
Resource attributes

If local reference, offset to length of
resource data
If system reference, @ A

If local, reserved for handle to resource
If system, resource specification for
system resource:
resource ID; in low-order word, offset to
length of resource name or -1 if none

For each name:

1 byte
n bytes

in high-order word,

Length of following resource name
Characters of resource name

CONFIDENTIAL

/RMGR/RESOURCE. S

38 Resource Manager Programmer's Guide

GLOSSARY

current resource file: The last resource file opened, unless you
specify otherwise with a Resource Manager routine.

empty handle: A pointer to a NIL master pointer.

local reference: A resource reference to a resource in the same file
as the reference. It points to the resource data in the file and
contains a handle to the data if it's in memory.

purgeable: Able to be removed from the heap (purged) when space is
required by the Memory Manager.

reference number: A number greater than ¢, returned when a file is
opened, by which you can refer to that file. In Resource Manager
routines that expect a reference number,) represents the system
resource file.

resource: Data or code stored in a resource file and managed by the
Resource Manager.

resource attribute: One of several characteristics, specified by bits
in a resource reference, that determine how the resource should be
dealt with.

resource data: 1In a resource file, the data that comprises a resource.

resource file: The resource fork of a file, which contains data used
by the application (such as menus, fonts, and icons) and also the
application code itself.

resource header: At the beginning of a resource file, data that gives
the offsets to and lengths of the resource data and resource map.

resource ID: A number that, together with the resource type,
identifies a resource in a resource file. Every resource has an ID
number.

resource map: In a resource file, data that is read into memory when
the file is opened and that, given a resource specification, leads to
the corresponding resource data.

resource name: A string that, together with the resource type,
identifies a resource in a resource file. A resource may or may not
have a name.

resource reference: 1In a resource map, a local reference leading to
resource data in the same file as the reference, or a system reference
leading to data in the system resource file.

resource specification: A resource type and either a resource ID or a

resource name.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.G

GLOSSARY 39
resource type: The type of a resource in a resource file, designated
by a sequence of four characters (such as 'MENU' for a menu).
system reference: 1In an application's resource file, a resource
reference to a system resource. It provides a resource specification
for the resource in the system resource file.
system resource: A resource in the system resource file.
system resource file: A resource file containing standard resources,

accessed if a requested resource wasn't found in any of the other
resource files that were searched.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.G

COMMENTS?

Macintosh User Education encourages your comments on this manual,

- What do you like or dislike about it?

- Were you able to find the information you needed?
- ¥as it complete and accurate?
- Do you have any suggestions for improvement?

Please send your comments to the author (indicated on the cover
page) at 10460 Bandley Drive M/S 3-G, Cupertino CA 95014,
Mark up a copy of the manual or note your remarks separately.
(We’ll return your marked-up copy if you like.)

Thanks for your help!

MACINTOSH PUBLICATIONS

QuickDraw: A Programmer”s Guide /QUICK/QUIKDRAW

See Also: Macintosh User Interface Guidelines

Macintosh Operating System Reference Manual
The Window Manager: A Programmer”s Guide

Modification History: First Draft C. Espinosa 11/27/81
Revised and Edited C. Espinosa 2/15/82
Revised and Edited C. Rose 8/16/82
Errata Added C. Rose 8/19/82
Revised C. Rose 11/15/82
Revised for ROM 2.1 C. Rose 3/2/83
ABSTRACT
This document describes the QuickDraw graphics package, heart of the

Macintosh User Interface Toolbox routines. It describes the conceptual
and physical data types used by QuickDraw and gives details of the
procedures and functions available in QuickDraw.

Summary of significant changes and additions since last version:

"Font" no longer includes type size. There is a new grafPort
field (txSize) and a procedure (TextSize) for specifying the size
(pages 25, 43). Some other grafPort fields were reordered and
some global variables were moved to the grafPort (page 18).

The character style data type was renamed Style and now includes
two new variations, condense and extend (page 23).

You can set up your application now to produce color out'put when
devices supporting it are available in the future (pages 3@, 45).

The Polygon data type was changed (page 33), and the PolyNext
procedure was removed.

There are two new grafPort routines, InitPort and ClosePort (pages
35, 36), and three new calculation routines, EqualRect and
EmptyRect (page 48) and EqualPt (page 65).

XferRgn and XferRect were removed; use CopyBits, PaintRgn,
FillRgn, PaintRect, or FillRect. CursorVis was also removed; use
HideCursor or ShowCursor.

- A section on customizing QuickDraw operations was added (page 7).

QuickDraw Programmer”s Guide

TABLE OF CONTENTS

About This Manual
About QuickDraw
How To Use QuickDraw
The Mathematical Foundation of QuickDraw
The Coordinate Plane
Points
Rectangles
Regions
Graphic Entities
The Bit Image
The BitMap
Patterns
Cursors
The Drawing Environment: GrafPort
Pen Characteristics
Text Characteristics
Coordinates in GrafPorts
General Discussion of Drawing
Transfer Modes
Drawing in Color
Pictures and Polygons
Pictures
Polygons
QuickDraw Routines
GrafPort Routines
Cursor—-Handling Routines
Pen and Line-Drawing Routines
Text-Drawing Routines
Drawing in Color
Calculations with Rectangles
Graphic Operations on Rectangles
Graphic Operations on Ovals
Graphic Operations on Rounded-Corner Rectangles
Graphic Operations on Arcs and Wedges
Calculations with Regions
Graphic Operations on Regions
Bit Transfer Operations
Pictures
Calculations with Polygons
Graphic Operations on Polygons
Calculations with Points
Miscellaneous Utilities
Customizing QuickDraw Operations
Using QuickDraw from Assembly Language
Summary of QuickDraw
Glossary

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes QuickDraw, a set of graphics procedures,
functions, and data types that allow a Pascal or assembly-language
programmer of Macintosh to perform highly complex graphic operations
very easily and very quickly. It covers the graphic concepts behind
QuickDraw, as well as the technical details of the data types,
procedures, and functions you will use in your programs.

(hand)
This manual describes version 2.1 of the ROM. 1In earlier
versions, QuickDraw may not work as discussed here.

We assume that you are familiar with the Macintosh User Interface
Guidelines, Lisa Pascal, and the Macintosh Operating System”s memory
management. This graphics package is for programmers, not end users.
Although QuickDraw may be used from either Pascal or assembly language,
this manual gives all examples in their Pascal form, to be clear,
concise, and more intuitive; a section near the end describes the
details of the assembly-language interface to QuickDraw.

The manual begins with an introduction to QuickDraw and what you can do
with it. It then steps back a little and looks at the mathematical
concepts that form the foundation for QuickDraw: coordinate planes,
points, and rectangles. Once you understand these concepts, read on
about the graphic entities based on those concepts —- how the
mathematical world of planes and rectangles is translated into the
physical phenomena of light and shadow.

Then comes some discussion of how to use several graphics ports, a
summary of the basic drawing process, and a discussion of two more
parts of QuickDraw, pictures and polygons.

Next, there”s the detailed description of all QuickDraw procedures and
functions, their parameters, calling protocol, effects, side effects,
and so on —— all the technical information you”ll need each time you
write a program for Macintosh.

Following these descriptions are sections that will not be of interest
to all readers. Special information is given for programmers who want
to customize QuickDraw operations by overriding the standard drawing
procedures, and for those who will be using QuickDraw from assembly
language.

Finally, there”s a summary of the QuickDraw data structures and routine

calls, for quick reference, and a glossary that explains terms that may
be unfamiliar to you.

3/2/83 Espinosa—Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

4 QuickDraw Programmer”s Guide

ABOUT QUICKDRAW

QuickDraw allows you to divide the Macintosh screen into a number of
individual areas. Within each area you can draw many things, as
illustrated in Figure 1.

Text
Botd

frafic
Lnderiine
Gl ine
515 0

Rectangles Cryals

FaundRects Fegions

LD

e,

Figure 1. Sémples of QuickDraw”s Abilities
You can draw:

— Text characters in a number of proportionally-spaced fonts, with
variations that include boldfacing, italicizing, underlining, and
outlining.

- Straight lines of any length and width.

- A variety of shapes, either solid or hollow, including:
rectangles, with or without rounded corners; full circles and
ovals or wedge—shaped sections; and polygons.

- Any other arbitrary shape or collection of shapes, again‘either
solid or hollow.

- A picture consisting of any combination of the above items, with
just a single procedure call.

In addition, QuickDraw has some other abilities that you won“t find in
many other graphics packages. These abilities take care of most of the
"housekeeping” —— the trivial but time—consuming and bothersome
overhead that”s necessary to keep things in order.

— The ability to define many distinct "ports” on the screen, each
with its own complete drawing environment —- its own coordinate
system, drawing location, character set, location on the screen,
and so on. You can easily switch from one such port to another.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

ABOUT QUICKDRAW 5

— Full and complete "clipping” to arbitrary areas, so that drawing
will occur only where you want. 1It“s like a super—duper coloring
book that won“t let you color outside the lines. You don”t have
to worry about accidentally drawing over something else on the
screen, or drawing off the screen and destroying memory.

— Off-screen drawing. Anything you can draw on the screen, you can
draw into an off-screen buffer, so you can prepare an image for an
output device without disturbing the screen, or you can prepare a
picture and move it onto the screen very quickly.

And QuickDraw lives up to its name! It”s very fast. The speed and
responsiveness of the Macintosh user interface is due primarily to the
speed of the QuickDraw package. You can do good-quality animation,
fast interactive graphics, and complex yet speedy text displays using
the full features of QuickDraw. This means you don”"t have to bypass
the general-purpose QuickDraw routines by writing a lot of special
routines to improve speed.

How To Use QuickDraw

QuickDraw can be used from either Pascal or MC68(@# machine language.
It has no user interface of its own; you must write and compile (or
assemble) a Pascal (or assembly-language) program that includes the
proper QuickDraw calls, link the resulting object code with the
QuickDraw code, and execute the linked object file.

Some programming models are available through your Macintosh software
coordinator; they show the structure of a properly organized QuickDraw
program. What”s best for beginners is to obtain a machine-readable
version of the text of one of these programs, read through the text,
and, using the superstructure of the program as a "shell", modify it to
sult your own purposes. Once you get the hang of writing programs
inside the presupplied shell, you can work on changing the shell
itself.

QuickDraw is stored permanently in the ROM memory. All access is made
through an indirection table in low RAM. When you write a program that
uses QuickDraw, you link it with this indirection table. Each time you
call a QuickDraw procedure or function, or load a predefined constant,
the request goes through the table into QuickDraw. You”ll never access
any QuickDraw address directly, nor will you have to code constant
addresses into your program. The linker will make sure all address
references get straightened out.

QuickDraw is an independent unit; it doesn”t use any other units, not
even HeapZone (the Pascal interface to the Operating System”s memory
management routines). This means it cannot use the data types Ptr and
Handle, because they are defined in HeapZone. Instead, QuickDraw
defines two data types that are equivalent to Ptr and Handle, QDPtr and
QDHandle. ’

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

6 QuickDraw Programmer”s Guide

TYPE QDByte = -128..127;
QDPtr = “QDByte;
QDHandle = “QDPtr;

QuickDraw includes only the graphics and utility procedures and
functions you”ll need to create graphics on the screen. Keyboard
input, mouse input, and larger user-interface constructs such as
windows and menus are implemented in separate packages that use
QuickDraw but are linked in as separate units. You don“t need these
units in order to use QuickDraw; however, you”ll probably want to read
the documentation for windows and menus and learn how to use them with
your Macintosh programs.

THE MATHEMATICAL FOUNDATION OF QUICKDRAW

To create graphics that are both precise and pretty requires not
supercharged features but a firm mathematical foundation for the
features you have. If the mathematics that underlie a graphics package
are imprecise or fuzzy, the graphics will be, too. QuickDraw defines
some clear mathematical constructs that are widely used in its
procedures, functions, and data types: the coordinate plane, the
point, the rectangle, and the region.

The Coordinate Plane

All information about location, placement, or movement that you give to
QuickDraw is in terms of coordinates on a plane. The coordinate plane
is a two—dimensional grid, as illustrated in Figure 2.

- 35768

.r

. -
-307E5 & - BEFET

Bt b T
B30T

Figure 2. The Coordinate Plane

There are two distinctive features of the QuickDraw coordinate plane:

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW. 2

THE MATHEMATICAL FOUNDATION OF QUICKDRAW 7

- All grid coordinates are integers.
- All grid lines are infinitely thin.

These concepts are important! First, they mean that the QuickDraw
plane is finite, not infinite (although it“s very large). Horizontal
coordinates range from —32768 to +32767, and vertical coordinates have
the same range. (An auxiliary package 1s available that maps real
Cartesian space, with X, Y, and Z coordinates, onto QuickDraw’s
two—-dimensional integer coordinate system.)

Second, they mean that all elements represented on the coordinate plane
are mathematically pure. Mathematical calculations using integer
arithmetic will produce intuitively correct results. If you keep in
mind that grid lines are infinitely thin, you“ll never have "endpoint

paranoia” —- the confusion that results from not knowing whether that
last dot is included in the line.

Points

On the coordinate plane are 4,294,967,296 unique points. Each point is
at the intersection of a horizontal grid line and a vertical grid line.
As the grid lines are infinitely thin, a point is infinitely small. Of
course there are more points on this grid than there are dots on the
Macintosh screen: when using QuickDraw you associate small parts of
the grid with areas on the screen, so that you aren”t bound into an
arbitrary, limited coordinate system.

The coordinate origin (#,0) is in the middle of the grid. Horizontal
coordinates increase as you move from left to right, and vertical
coordinates increase as you move from top to bottom. This is the way
both a TV screen and a page of English text are scanned: from the top
left to the bottom right.

You can store the coordinates of a point into a Pascal variable whose
type is defined by QuickDraw. The type Point is a record of two
integers, and has this structure:

TYPE VHSelect
Point

(V,H);
RECORD CASE INTEGER OF

@#: (v: INTEGER;
h: INTEGER);

1: (vh: ARRAY [VHSelect] OF INTEGER)

END;
The variant part allows you to access the vertical and horizontal
components of a point either individually or as an array. For example,

if the variable goodPt were declared to be of type Point, the following
would all refer to the coordinate parts of the point:

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

8 QuickDraw Programmer”s Guide

goodPt.v goodPt.h
goodPt.vh[V] goodPt.vh[H]
Rectangles

Any two points can define the top left and bottom right corners of a
rectangle. As these points are infinitely small, the borders of the
rectangle are infinitely thin (see Figure 3).

Left

Tap

Botgam

I
Kight

Figure 3. A Rectangle

Rectangles are used to define active areas on the screen, to assign
coordinate systems to graphic entities, and to specify the locations
and sizes for various drawing commands. QuickDraw also allows you to

perform many mathematical calculations on rectangles —— changing their
sizes, shifting them around, and so on.

(hand)
Remember that rectangles, like points, are mathematical
concepts that have no direct representation on the
screen. The association between these conceptual

elements and their physical representations is made by a
bitMap, described below.

The data type for rectangles is called Rect, and consists of four
integers or two points:

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW .2

THE MATHEMATICAL FOUNDATION OF QUICKDRAW 9

TYPE Rect = RECORD CASE INTEGER OF

@: (top: INTEGER;
left: INTEGER;
bottom: INTEGER;
right: INTEGER) ;

1: (topLeft: Point;
botRight: Point)

END;

Again, the record variant allows you to access a variable of type Rect
either as four boundary coordinates or as two diagonally opposing
corner points. Combined with the record variant for points, all of the
following references to the rectangle named bRect are legal:

bRect {type Rect}
bRect.topleft bRect.botRight {type Point}
bRect.top bRect.left {type INTEGER}
bRect.topLeft.v bRect.topLeft.h {type INTEGER}
bRect.topLeft.vh[V] bRect .topLeft.vh[H] {type INTEGER}
bRect.bottom bRect.right {type INTEGER}
bRect.botRight.v bRect .botRight.h {type INTEGER}
bRect.botRight.vh{[V] bRect.botRight.vh[H] {type INTEGER}

(eye)
If the bottom coordinate of a rectangle is equal to or
less than the top, or the right coordinate is equal to or
less than the left, the rectangle is an empty rectangle
(i.e., one that contains no bits).

Regions

Unlike most graphics packages that can manipulate only simple, geometric
structures (usually rectilinear, at that), QuickDraw has the unique and
amazing ability to gather an arbitrary set of spatially coherent points
into a structure called a region, and perform complex yet rapid
manipulations and calculations on such structures. This remarkable
feature not only will make your standard programs simpler and faster,
but will let you perform operations that would otherwise be nearly
impossible; it is fundamental to the Macintosh user interface.

You define a region by drawing lines, shapes such as rectangles and
ovals, or even other regions. The outline of a region should be one or
more closed loops. A region can be concave or convex, can consist of
one area or many disjoint areas, and can even have "holes” in the
middle. 1In Figure 4, the region on the left has a hole in the middle,
and the region on the right consists of two disjoint areas.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

10 QuickDraw Programmer”s Guide

L
a4l

T

PR 0 Y
0500 9
TTrTrT
LTI TEL,

ebodederd oL e

gy g o S

Figure 4. Regions

Because a region can be any arbitrary area or set of areas on the
coordinate plane, it takes a variable amount of information to store
the outline of a region. The data structure for a region, therefore,
is a variable-length entity with two fixed fields at the beginning,
followed by a variable-length data field:

TYPE Region = RECORD
rgnSize: INTEGER;
rgnBBox: Rect;
{optional region definition data}
END;

The rgnSize field contains the size, in bytes, of the region variable.
The rgnBBox field is a rectangle which completely encloses the region.

The simplest region is a rectangle. 1In this case, the rgnBBox field
defines the entire region, and there is no optional region data. For
rectangular regions (or empty regions), the rgnSize field contains 10.

The region definition data for nonrectangular regions is stored in a
compact way which allows for highly efficient access by QuickDraw
procedures. ‘

As regions are of variable size, they are stored dynamically on the
heap, and the Operating System”s memory management moves them around as
their sizes change. Being dynamic, a region can be accessed only
through a pointer; but when a region is moved, all pointers referring
to it must be updated. For this reason, all regions are accessed
through handles, which point to one master pointer which in turn points
to the region.

TYPE RgnPtr = “Region;
RgnHandle = “RgnPtr;

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

THE MATHEMATICAL FOUNDATION OF QUICKDRAW 11

When the memory management relocates a region”s data in memory, it
updates only the RgnPtr master pointer to that region. The references
through the master pointer can find the region”s new home, but any
references pointing directly to the region”s previous position in
memory would now point at dead bits. To access individual fields of a
region, use the region handle and double indirection:

myRgn"".rgnSize {size of region whose handle is myRgn}
myRgn"“~.rgnBBox {rectangle enclosing the same region}
myRgn”~“~.rgnBBox.top {minimum vertical coordinate of all

points in the region}

myRgn~.rgnBBox {syntactically incorrect; will not compile
if myRgn is a rgnHandle}

Regions are created by a QuickDraw function which allocates space for
the region, creates a master pointer, and returns a rgnHandle. When
you“re done with a region, you dispose of it with another QuickDraw
routine which frees up the space used by the region. Only these calls
allocate or deallocate regions; do NOT use the Pascal procedure NEW to
create a new region!

You specify the outline of a region with procedures that draw lines and
shapes, as described in the section "QuickDraw Routines”. An example
is given in the discussion of CloseRgn under "Calculations with
Regions” in that section.

Many calculations can be performed on regions. A region can be
"expanded” or "shrunk” and, given any two regions, QuickDraw can find
their union, intersection, difference, and exclusive-OR; it can also
determine whether a given point or rectangle intersects a given region,
and so on. There is of course a set of graphic operations on regions
to draw them on the screen.

GRAPHIC ENTITIES

Coordinate planes, points, rectangles, and regions are all good
mathematical models, but they aren”t really graphic elements —- they
don“t have a direct physical appearance. Some graphic entities that do
have a direct graphic interpretation are the bit image,. bitMap,
pattern, and cursor. This section describes the data structure of
these graphic entities and how they relate to the mathematical
constructs described above.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

12 QuickDraw Programmer”s Guide

The Bit Image

A bit image 1s a collection of bits in memory which have a rectilinear
representation. Take a collection of words in memory and lay them end
to end so that bit 15 of the lowest-numbered word is on the left and
bit @ of the highest-numbered word is on the far right. Then take this
array of bits and divide it, on word boundaries, into a number of
equal-size rows. Stack these rows vertically so that the first row is
on the top and the last row is on the bottom. The result is a matrix
like the one shown in Figure 5 —— rows and columns of bits, with each
row containing the same number of bytes. The number of bytes in each
row of the bit image is called the row width of that image.

Firsg
Byte

Row
Width
1;:5

3 bytes

Last
Buyte

Figure 5. A Bit Image

A bit image can be stored in any static or dynamic variable, and can be
of any length that is a multiple of the row width.

The Macintosh screen itself is one large visible bit image. The upper
21,888 bytes of memory are displayed as a matrix of 175,104 pixels on
the screen, each bit corresponding to one pixel. If a bit”s value is
P, its pixel is white; if the bit”s value is 1, the pixel is black.

The screen 1s 342 pixels tall and 512 pixels wide, and the row width of
its bit image is 64 bytes. Each pixel on the screen is square; there
are 72 pixels per inch in each direction.

(hand)
Since each pixel on the screen represents one bit in a
bit image, wherever this document says "bit", you can
substitute "pixel” if the bit image is the Macintosh
screen. Likewise, this document often refers to pixels
on the screen where the discussion applies equally to
bits in an off-screen bit image.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

GRAPHIC ENTITIES 13

The BitMap

When you combine the physical entity of a bit image with the conceptual
entities of the coordinate plane and rectangle, you get a bitMap. A
bitMap has three parts: a pointer to a bit image, the row width (in
bytes) of that image, and a boundary rectangle which gives the bitMap
both its dimensions and a coordinate system. Notice that a bitMap does
not actually include the bits themselves: it points to them.

There can be several bitMaps pointing to the same bit image, each
imposing a different coordinate system on it. This important feature
is explained more fully in "Coordinates in GrafPorts™, below.

As shown in Figure 6, the data structure of a bitMap is as follows:
TYPE BitMap = RECORD

baseAddr: QDPtr;
rowBytes: INTEGER;

bounds: Rect
END;

Base

Address
base Addr /
o Bytes
bounds

e Ry Wtdth, ———F

-

Figure 6. A BitMap

The baseAddr field is a pointer to the beginning of the bit image in
memory, and the rowBytes field is the number of bytes in each row of
the image. Both of these should always be even: a bitMap should
always begin on a word boundary and contain an integral number of words
in each row.

The bounds field is a boundary rectangle that both encloses the active
area of the bit image and imposes a coordinate system on it. The
relationship between the boundary rectangle and the bit image in a
bitMap 1is simple yet very important. First, a few general rules:

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

14 QuickDraw Programmer”s Guide

Bits in a bit image fall between points on the coordinate plane.

- A rectangle divides a bit image into two sets of bits: those bits
inside the rectangle and those outside the rectangle.

A rectangle that is H points wide and V points tall encloses
exactly (H-1)*(V-1) bits.

The top left corner of the boundary rectangle is aligned around the
first bit in the bit image. The width of the rectangle determines how
many bits of one row are logically owned by the bitMap; the
relationship

8*map.rowBytes >= map.bounds.right-map.bounds.left

must always be true. The height of the rectangle determines how many
rows of the image are logically owned by the bitMap; the relationship

SIZEOF (map.baseAddr”) >= (map.bounds.bottom-map.bounds.top)
* map.rowBytes

must always be true to ensure that the number of bits in the logical
bitMap area is not larger than the number of bits in the bit image.

Normally, the boundary rectangle completely encloses the bit image:
the width of the boundary rectangle is equal to the number of bits in
one row of the image, and the height of the rectangle is equal to the
number of rows in the image. If the rectangle is smaller than the
dimensions of the image, the least significant bits in each row, as
well as the last rows in the image, are not affected by any operations
on the bitMap.

The bitMap also imposes a coordinate system on the image. Because bits
fall between coordinate points, the coordinate system assigns integer
values to the lines that border and separate bits, not to the bit
positions themselves. For example, if a bitMap is assigned the
boundary rectangle with corners (1¢,-8) and (34,8), the bottom right
bit in the image will be between horizontal coordinates 33 and 34, and
between vertical coordinates 7 and 8 (see Figure 7).

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

GRAPHIC ENTITIES 15

10,-8) (34,-8)
T LY

10,3} (34,5}

Figure 7. Coordinates and BitMaps

Patterns

A pattern is a 64-bit image, organized as an 8-by-8-bit square, which
is used to define a repeating design (such as stripes) or tone (such as
gray). Patterns can be used to draw lines and shapes or to fill areas
on the screen.

When a pattern is drawn, it is aligned such that ad jacent areas of the
same pattern in the same graphics port will blend with it into a
continuous, coordinated pattern. QuickDraw provides the predefined
patterns white, black, gray, ltGray, and dkGray. Any other 64-bit
variable or constant can be used as a pattern, too. The data type
definition for a pattern is as follows:

TYPE Pattern = PACKED ARRAY [@..7] OF @..255;

The row width of a pattern is 1 byte.

Cursors

A cursor is a small image that appears on the screen and is controlled
by the mouse. (It appears only on the screen, and never in an
off-screen bit image.)

(hand)
Other Macintosh documentation calls this image a
"pointer”, since it points to a location on the screen.
To avoid confusion with other meanings of "pointer” in
this manual and other Toolbox documentation, we use the
alternate term "cursor”.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

16 QuickDraw Programmer”s Guide

A cursor is defined as a 256-bit image, a 16-by-16-bit square. The row
width of a cursor is 2 bytes. Figure 8 illustrates four cursors. :

a 16

-

I !
2]]
Figure 8. Cursors
A cursor has three fields: a l6-word data field that contains the
image itself, a 16-word mask field that contains information about the

screen appearance of each bit of the cursor, and a hotSpot point that
aligns the cursor with the position of the mouse.

TYPE Cursor = RECORD

data: ARRAY [#..15] OF INTEGER;
mask: ARRAY [@..15] OF INTEGER;
hotSpot: Point

END;

The data for the cursor must begin on a word boundary.

The cursor appears on the screen as a 16-by-16-bit square. The
appearance of each bit of the square is determined by the corresponding
bits in the data and mask and, if the mask bit is ¢, by the pixel
"under” the cursor (the one already on the screen in the same position
as this bit of the cursor):

Data Mask Resulting pixel on screen
[/} 1 White
1 1 Black
1) ¢ Same as pixel under cursor
1 ¢ Inverse of pixel under cursor

Notice that if all mask bits are @, the cursor is completely
transparent, in that the image under the cursor can still be viewed:
pixels under the white part of the cursor appear unchanged, while under
the black part of the cursor, black pixels show through as white.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

GRAPHIC ENTITIES 17

The hotSpot aligns a point in the image (not a bit, a point!) with the
mouse position. Imagine the rectangle with corners (f,®) and (16,16)
framing the image, as in each of the examples in Figure 8; the hotSpot
is defined in this coordinate system. A hotSpot of (#,f) is at the top
left of the image. For the arrow in Figure 8 to point to the mouse
position, (@,®) would be its hotSpot. A hotSpot of (8,8) is in the
exact center of the image; the center of the plus sign or circle in
Figure 8 would coincide with the mouse position if (8,8) were the
hotSpot for that cursor. Similarly, the hotSpot for the pointing hand
would be (16,9).

Whenever you move the mouse, the low-level interrupt—-driven mouse
routines move the cursor”s hotSpot to be aligned with the new mouse
position.

(hand)
The mouse position is always linked to the cursor
position. You can”t reposition the cursor through
software; the only control you have is whether it”s
visible or not, and what shape it will assume. Think of
it as being hard-wired: if the cursor is visible, it
always follows the mouse over the full size of the
screen.

QuickDraw supplies a predefined arrow cursor, an arrow pointing
north-northwest. '

THE DRAWING ENVIRONMENT: GRAFPORT

A grafPort is a complete drawing environment that defines how and where
graphic operations will have their effect. It contains all the
information about one instance of graphic output that is kept separate
from all other instances. You can have many grafPorts open at once,
and each one will have its own coordinate system, drawing pattern,
background pattern, pen size and location, character font and style,
and bitMap in which drawing takes place. You can instantly switch from
one port to another. GrafPorts are the structures on which a program
builds windows, which are fundamental to the Macintosh "overlapping
windows"™ user interface.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

18 QuickDraw Programmer”s Guide

A grafPort is a dynamic data structure, defined as follows:

TYPE GrafPtr = “GrafPort;
GrafPort = RECORD

device: INTEGER;
portBits: BitMap;
portRect: Rect;
visRgn: RgnHandle;
clipRgn: RgnHandle;
bkPat: Pattern;
fillPat: Pattern;
pnLoc: Point;
pnSize: Point;
pnMode: INTEGER;
pnPat: Pattern;
pnVis: INTEGER;
txFont: INTEGER;
txFace: Style;
txMode: INTEGER;
txSize: INTEGER;
spExtra: INTEGER;
fgColor: LongInt;
bkColor: LongInt;
colrBit: INTEGER;
patStretch: INTEGER;
picSave: QDHandle;
rgnSave: QDHandle}

polySave: QDHandle;
grafProcs: QDProcsPtr
END;

All QuickDraw operations refer to grafPorts via grafPtrs. You create a
grafPort with the Pascal procedure NEW and use the resulting pointer in
calls to QuickDraw. You could, of course, declare a static VAR of type
grafPort, and obtain a pointer to that static structure (with the @
operator), but as most grafPorts will be used dynamically, their data
structures should be dynamic also.

(hand)
You can access all fields and subfields of a grafPort
normally, but you should not store new values directly
into them. QuickDraw has procedures for altering all
fields of a grafPort, and using these procedures ensures
that changing a grafPort produces no unusual side
effects.

The device field of a grafPort is the number of the logical output
device that the grafPort will be using. The Font Manager uses this
information, since there are physical differences in the same logical
font for different output devices. The default device number is @, for
the Macintosh screen. For more Information about device numbers, see
the *%*%* not yet existing *** Font Manager documentation.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

- THE DRAWING ENVIRONMENT: GRAFPORT 19

The portBits field is the bitMap that points to the bit image to be
used by the grafPort. All drawing that is done in this grafPort will
take place in this bit image. The default bitMap uses the entire
Macintosh screen as its bit image, with rowBytes of 64 and a boundary
rectangle of ($,0,512,342). The bitMap may be changed to indicate a
different structure in memory: all graphics procedures work in exactly
the same way regardless of whether their effects are visible on the
screen. A program can, for example, prepare an image to be printed on
a printer without ever displaying the image on the screen, or develop a
picture in an off-screen bitMap before transferring it to the screen.
By altering the coordinates of the portBits.bounds rectangle, you can
change the coordinate system of the grafPort; with a QuickDraw
procedure call, you can set an arbitrary coordinate system for each
grafPort, even if the different grafPorts all use the same bit image
(e.g., the full screen).

The portRect field is a rectangle that defines a subset of the bitMap
for use by the grafPort. Its coordinates are in the system defined by
the portBits.bounds rectangle. All drawing done by the application
occurs inside this rectangle. The portRect usually defines the
"writable” interior area of a window, document, or other object on the
screen.

The visRgn field is manipulated by the Window Manager; users and
programmers will normally never change a grafPort”s visRgn. It
indicates that region (remember, an arbitrary area or set of areas)
which is actually visible on the screen. For example, if you move one
window in front of another, the Window Manager logically removes the
area of overlap from the visRgn of the window in the back. When you
draw into the back window, whatever”s being drawn is clipped to the
visRgn so that it doesn”t run over onto the front window. The default
visRgn is set to the portRect. The visRgn has no effect on images that
are not displayed on the screen.

The clipRgn is an arbitrary region that the application can use to
limit drawing to any region within the portRect. If, for example, you
want to draw a half circle on the screen, you can set the clipRgn to
half the square that would enclose the whole circle, and go ahead and
draw the whole circle. Only the half within the clipRgn will actually
be drawn in the grafPort. The default clipRgn is set arbitrarily
large, and you have full control over its setting. Notice that unlike
the visRgn, the clipRgn affects the image even if it is not displayed
on the screen. ‘

Figure 9 illustrates a typical bitMap (as defined by portBits),
portRect, visRgn, and clipRgn.

3/2/83 Espinosa-Rose CONFIDENTTAL /QUICK/QUIKDRAW.3

20 QuickDraw Programmer”s Guide

GrafPort PORIBi1sY
bounds)

Figure 9. GrafPort Regions

The bkPat and fillPat fields of a grafPort contain patterns used by
certain QuickDraw routines. BkPat is the "background”™ pattern that is
used when an area is erased or when bits are scrolled out of it. When
asked to fill an area with a specified pattern, QuickDraw stores the
given pattern in the fillPat field and then calls a low-level drawing
routine which gets the pattern from that field. The various graphic
operations are discussed in detail later in the descriptions of
individual QuickDraw routines.

O0f the next ten fields, the first five determine characteristics of the
graphics pen and the last five determine characteristics of any text
that may be drawn; these are described in subsections below.

The fgColor, bkColor, and colrBit fields contain values related to
drawing in color, a capability that will be available in the future
when Apple supports color output devices for the Macintosh. FgColor is
the grafPort”s foreground color and bkColor is its background color.
ColrBit tells the color imaging software which plane of the color
picture to draw into. TFor more information, see "Drawing in Color"” in
the general discussion of drawing.

The patStretch field is used during output to a printer to expand
patterns if necessary. The application should not change its value.

The picSave, rgnSave, and polySave fields reflect the state of picture,
region, and polygon defintion, respectively. To define a region, for
example, you “"open" it, call routines that draw it, and then "close”
it. If no region is open, rgnSave contains NIL; otherwise, it contains
a handle to information related to the region definition. The
application should not be concerned about exactly what information the
handle leads to; you may, however, save the current value of rgnSave,
set the field to NIL to disable the region definition, and later
restore it to the saved value to resume the region definition. The

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW .3

THE DRAWING ENVIRONMENT: GRAFPORT 21

picSave and polySave fields work similarly for pictures and polygons.

Finally, the grafProcs field may point to a special data structure that
the application stores into if it wants to customize QuickDraw drawing
procedures or use QuickDraw in other advanced, highly specialized ways.
(For more information, see "Customizing QuickDraw Operations™.) If
grafProcs is NIL, QuickDraw responds in the standard ways described in
this manual.

Pen Characteristics

The pnLoc, pnSize, pnMode, pnPat, and pnVis fields of a grafPort deal
with the graphics pen. Each grafPort has one and only one graphics
pen, which is used for drawing lines, shapes, and text. As illustrated
in Figure 1@, the pen has four characteristics: a location, a size, a
drawing mode, and a drawing pattern.

Height
=3 "™ Patiern
— Width
Lacation

Figure 1. A Graphics Pen

The pen location is a point in the coordinate system of the grafPort,
and is where QuickDraw will begin drawing the next line, shape, or
character. It can be anywhere on the coordinate plane: there are no
restrictions on the movement or placement of the pen. Remember that
the pen location is a point on the coordinate plane, not a pixel in a
bit image!

The pen is rectangular in shape, and has a user-definable width and
height. The default size is a 1-by-l~bit square; the width and height
can range from (9,8) to (32767,32767). If either the pen width or the
pen height 1is less than 1, the pen will not draw on the screen.

— The pen appears as a rectangle with its top left corner at the pen
location; it hangs below and to the right of the pen location.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

22 QuickDraw Programmer”s Guide

The pnMode and pnPat fields of a grafPort determine how the bits under
the pen are affected when lines or shapes are drawn. The pnPat is a
pattern that is used like the "ink"™ in the pen. This pattern, like all
other patterns drawn in the grafPort, is always aligned with the port~”s
coordinate system: the top left corner of the pattern is aligned with
the top left corner of the portRect, so that adjacent areas of the same
pattern will blend into a continuous, coordinated pattern. Five
patterns are predefined (white, black, and three shades of gray); you
can also create your own pattern and use it as the pnPat. (A utility
procedure, called StuffHex, allows you to fill patterns easily.)

The pnMode field determines how the pen pattern is to affect what”s
already on the bitMap when lines or shapes are drawn. When the pen
draws, QuickDraw first determines what bits of the bitMap will be
affected and finds their corresponding bits in the pattern. It then
does a bit-by-bit evaluation based on the pen mode, which specifies one
of eight boolean operations to perform. The resulting bit is placed
into its proper place in the bitMap. The pen modes are described under
"Transfer Modes” in the general discussion of drawing below.

The pnVis field determines the pen”s visibility, that is, whether it
draws on the screen. For more information, see the descriptions of
HidePen and ShowPen under "Pen and Line-Drawing Routines” in the
"QuickDraw Routines" section.

Text Characteristics

The txFont, txFace, txMode, txSize, and spExtra fields of a grafPort
determine how text will be drawn -- the font, style, and size of
characters and how they will be placed on the bitMap.

(hand)
In the Macintosh User Interface Toolbox, character style
means stylistic variations such as bold, italic, and
underline; font means the complete set of characters of
one typeface, such as Helvetica, and does not include the
character style or size.

QuickDraw can draw characters as quickly and easily as it draws lines
and shapes, and in many prepared fonts. Figure 11 shows two QuickDraw
characters and some terms you should become familiar with.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

THE DRAWING ENVIRONMENT: GRAFPORT 23

aacent line

Q hase line

: descent line

ascent

degcent

Figure 11. QuickDraw Characters

QuckDraw can display characters in any size, as well as boldfaced,
italicized, outlined, or shadowed, all without changing fonts. It can
also underline the characters, or draw them closer together or farther
apart.

The txFont field is a font number that identifies the character font to
be used in the grafPort. The font number ¢ represents the system font.
For more information about the system font, the other font numbers
recognized by the Font Manager, and the comnstruction, layout, and
loading of fonts, see the **%* not yet existing *** Font Manager
documentation.

A character font is defined as a collection of bit images: these
images make up the individual characters of the font. The characters
can be of unequal widths, and they“re not restricted to their "cells”:
the lower curl of a lowercase j, for example, can stretch back under
the previous character (typographers call this kerning). A font can
consist of up to 256 distinct characters, yet not all characters need
be defined in a single font. Each font contains a missing symbol to be
drawn in case of a request to draw a character that is missing from the
font.

The txFace field controls the appearance of the font with values from
the set defined by the Style data type:

TYPE StyleItem = (bold, italic, underline, outline, shadow,
condernise, extend);

SET OF Styleltem;

"

Style

You can apply these either alone or in combination (see Figure 12).
Most combinations usually look good only for large fonts.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

24 QuickDraw Programmer”s Guide

Normal Characters
Bold Characters
ot Dhangedses

Underlined Characters xy2

Outlined Cheresters
Shadowsd Charasiars

Condensed Characters
Extended Characters

... and in other fonts, wol
Figure 12. Character Styles

If you specify bold, each character is repeatedly drawn one bit to the
right an appropriate number of times for extra thickness.

Italic adds an italic slant to the characters. Character bits above
the base line are skewed right; bits below the base line are skewed
left.

Underline draws a line below the base line of the characters. If part
of a character descends below the base line (as "y" in Figure 12), the
underline is not drawn through the pixel on either side of the
descending part. ’

You may specify either outline or shadow. Outline makes a hollow,
outlined character rather than a solid one. With shadow, not only is
the character hollow and outlined, but the outline is thickened below
and to the right of the character to achieve the effect of a shadow.
If you speclfy bold along with outline or shadow, the hollow part of
the character is widenéd.

Condense and extend affect the horizontal distance between all
characters, including spaces. Condense decreases the distance between
characters and extend increases it, by an amount which the Font Manager
determines is appropriate.

The txMode field controls the way characters are placed on a bit image.
It functions much like a pnMode: when a character is drawn, QuickDraw
determines which bits of the bit image will be affected, does a
bit-by-bit comparison based on the mode, and stores the resulting bits
into the bit image. These modes are described under "Transfer Modes™
in the general discussion of drawing below. Only three of them ——
srcOr, srcXor, and srcBic -- should be used for drawing text.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

THE DRAWING ENVIRONMENT: GRAFPORT 25

The txSize field specifies the type size for the font, in points (where
"point"” here is a printing term meaning 1/72 inch). Any size may be
specified. If the Font Manager does not have the font in a specified
size, it will scale a size it does have as necessary to produce the
size desired. A value of @ in this field directs the Font Manager to
choose the size from among those it has for the font; it will choose
whichever size 1is closest to the system font size.

Finally, the spExtra field is useful when a line of characters is to be
drawn justified such that it is aligned with both a left and a right
margin (sometimes called "full justification”). SpExtra is the number
of pixels by which each space character should be widened to fill out
the line.

COORDINATES IN GRAFPORTS

Each grafPort has its own local coordinate system. All fields in the
grafPort are expressed in these coordinates, and all calculations and
actions performed in QuickDraw use the local coordinate system of the
currently selected port.

Two things are important to remember:

- Each grafPort maps a portion of the coordinate plane into a
similarly-sized portion of a bit image.

— The portBits.bounds rectangle defines the local coordinates for a
grafPort.

The top left corner of portBits.bounds is always aligned around the
first bit in the bit image; the coordinates of that cornmer "anchor” a
point on the grid to that hit in the bit image. This forms a common
reference point for multiple grafPorts using the same bit image (such
as the screen). Given a portBits.bounds rectangle for each port, you
know that their top left corners coincide.

The interrelationship between the portBits.bounds and portRect
rectangles is very important. As the portBits.bounds rectangle
establishes a coordinate system for the port, the portRect rectangle
indicates the section of the coordinate plane (and thus the bit image)
that will be used for drawing. The portRect usually falls inside the
portBits.bounds rectangle, but it”s not required to do so.

When a new grafPort is created, its bitMap is set to point to the
entire Macintosh screen, and both the portBits.bounds and the portRect
rectangles are set to 512-by-342-bit rectangles, with the point (0,0)
at the top left corner of the screen.

You can redefine the local coordinates of the top left cormer of the
grafPort”s portRect, using the SetOrigin procedure. This changes the
local coordinate system of the grafPort, recalculating the coordinates
of all points in the grafPort to be relative to the new corner

3/2/83 -Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

26 QuickDraw Programmer”s Guide

coordinates. For example, consider these procedure calls:

SetPort(gamePort);
SetOrigin(40,80);

The call to SetPort sets the current grafPort to gamePort; the call to
SetOrigin changes the local coordinates of the top left corner of that
port”s portRect to (40,80) (see Figure 13).

0 g5 00 512 —5 40 245 457
b b | it
o= m 40 S
120 Fien 50—
pnLoc s fis
e portFiect i
275 fi 235 — Fi
W o
visfgn (95,120)(300,275) wisRgn (40,80)(245,235)
chpfign {95,120)(300,27% chpFan £95,120%7300,275)
Before SetOrigin After SecOriging40,a0)

Figure 13. Changing Local Coordinates
This recalculates the coordinate components of the following elements:
gamePort”.portBits.bounds gamePort”.portRect
gamePort”.visRgn

These elements are always kept "in syne”, so that all calculations,
comparisons, or operations that seem right, work right.

Notice that when the local coordinates of a grafPort are offset, the
visRgn of that port is offset also, but the clipRgn 1is not. A good way
to think of it is that if a document is being shown inside a grafPort,
the document "sticks"” to the coordinate system, and the port”s
structure "sticks” to the screen. Suppose, for example, that the
visRgn and clipRgn in Figure 13 before SetOrigin are the same as the
portRect, and a document is being shown. After the SetOrigin call, the
top left corner of the clipRgn is still (95,12¢), but this location has
moved down and to the right, and the location of the pen within the
document has similarly moved. The locations of portBits.bounds,
portRect, and visRgn did not change; their coordinates were offset. As
always, the top left corner of portBits.bounds remains aligned around
the first bit in the bit image (the first pixel on the screen).

If you are moving, comparing, or otherwise dealing‘with mathematical
items in different grafPorts (for example, finding the intersection of

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

COORDINATES IN GRAFPORTS 27

two regions in two different grafPorts), you must adjust to a common
coordinate system before you perform the operation. A QuickDraw
procedure, LocalToGlobal, lets you convert a point”s local coordinates
to a global system where the top left cormer of the bit image is (9,0);
by converting the various local coordinates to global coordinates, you
can compare and mix them with confidence. For more information, see
the description of this procedure under "Calculations with Points”™ in
the section "QuickDraw Routines”.

 GENERAL DISCUSSION OF DRAWING

Drawing occurs:

Always inside a grafPort, in the bit image and coordinate system
defined by the grafPort”s bitMap.

Always within the intersection of the grafPort”s portBits.bounds
and portRect, and clipped to its visRgn and clipRgn.

Always at the grafPort”s pen location.

Usually with the grafPort”s pen size, pattern, and mode.

With QuickDraw procedures, you can draw lines, shapes, and text.
Shapes include rectangles, ovals, rounded-corner rectangles,
wedge-shaped sections of ovals, regions, and polygons.

Lines are defined by two points: the current pen location and a
destination location. When drawing a line, QuickDraw moves the top
left corner of the pen along the mathematical trajectory from the
current location to the destination. The pen hangs below and to the
right of the trajectory (see Figure 14).

LR e ry
LI A AT S N i) . s
r"‘.’(f‘l"’."‘:.:‘0‘:’:’:’:’:’:.:'*;.:.:.:
S EDEESOEIEN S
LA A S D0l O S Al o 6 S S S e e
LX) ’

r ¥, l?t "0‘0‘9’.’!‘4‘0‘0.Q.O‘g..f‘»!v.i.l ??Q?’l?t

Figure 14. Drawing Lines

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

28 QuickDraw Programmer”s Guide

(hand)
No mathematical element (such as the pen location) is
ever affected by clipping; clipping only determines what
appears where in the bit image. If you draw a line to a
location outside your grafPort, the pen location will
move there, but only the portion of the line that is
inside the port will actually be drawn. This is true for
all drawing procedures.

Rectangles, ovals, and rounded-corner rectangles are defined by two
corner points. The shapes always appear inside the mathematical
rectangle defined by the two points. A region is defined in a more
complex manner, but also appears only within the rectangle enclosing
it. Remember, these enclosing rectangles have infinitely thin borders
and are not visible on the screen.

As illustrated in Figure 15, shapes may be drawn either solid (filled
in with a pattern) or framed (outlined and hollow).

pen height

pen
width

Figure 15. Solid Shapes and Framed Shapes

In the case of framed shapes, the outline appears completely within the
enclosing rectangle —- with one exception —— and the vertical and
horizontal thickness of the outline is determined by the pen size. The
exception is polygons, as discussed in "Pictures and Polygons” below.

The pen pattern is used to fill in the bits that are affected by the
drawing operation. The pen mode defines how those bits are to be
affected by directing QuickDraw to apply one of eight boolean
operations to the bits in the shape and the corresponding pixels on the
screen.

Text drawing does not use the pnSize, pnPat, or pnMode, but it does use
the pnLoc. Each character is placed to the right of the current pen
location, with the left end of its base line at the pen”s location.

The pen is moved to the right to the location where it will draw the

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

GENERAL DISCUSSION OF DRAWING 29

next character. No wrap or carriage return is performed automatically.

The method QuickDraw uses in placing text is controlled by a mode
similar to the pen mode. This is explained in "Transfer Modes", below.

Clipping of text is performed In exactly the same manner as all other
clipping in QuickDraw.

Transfer Modes

When lines or shapes are drawn, the pnMode field of the grafPort
determines how the drawing is to appear in the port”s bit image;
similarly, the txMode field determines how text is to appear. There is
also a QuickDraw procedure that transfers a bit image from one bitMap
to another, and this procedure has a mode parameter that determines the
appearance of the result. 1In all these cases, the mode, called a
transfer mode, specifies one of eight boolean operations: for each bit
in the item to be drawn, QuickDraw finds the corresponding bit in the
destination bit image, performs the boolean operation on the pair of
bits, and stores the resulting bit into the bit image.

There are two types of transfer mode:

- Pattern transfer modes, for drawing lines or shapes with a
pattern.

- Source transfer modes, for drawing text or transferring any bit
image between two bitMaps.

For each type of mode, there are four basic operations -- Copy, Or,
Xor, and Bic. The Copy operation simply replaces the pixels in the
destination with the pixels in the pattern or source, "painting” over
the destination without regard for what is already there. The Or, Xor,
and Bic operations leave the destination pixels under the white part of
the pattern or source unchanged, and differ in how they affect the
pixels under the black part: Or replaces those pixels with black
pixels, thus "overlaying”™ the destination with the black part of the
pattern or source; Xor inverts the pixels under the black part; and Bic
erases them to white.

Each of the basic operations has a variant in which every pixel in the
pattern or source is inverted before the operation is performed, giving
eight operations in all. Each mode is defined by name as a constant in
QuickDraw (see Figure 16).

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

30 QuickDraw Programmer”s Guide

pattern or source deatination
"Brirt® "Overlay® "Invert" “Erage®
patopy patdr pat Xor patBic
arcCopy aredir arcxor srehic

notPaiCopy notPaidr notPat¥er notPatBic
not3reCopy notSee0r notSee¥oer notSreBic

Figure 16. Transfer Modes

Pattern Source Action on each pixel in destination:
transfer transfer If black pixel in If white pixel in
mode mode pattern or source pattern or source
patCopy srcCopy Force black Force white

patOr srcOr Force black Leave alone
patXor srcXor Invert Leave alone
patBic srcBic Force white Leave alone
notPatCopy notSrcCopy Force white Force black
notPatOr notSrcOr Leave alone Force black
notPatXor notSrcXor Leave alone Invert

notPatBic notSrcBic Leave alone Force white

Drawing in Color

Currently you can only look at QuickDraw output on a black—and-white
screen or printer. Eventually, however, Apple will support color
output devices. If you want to set up your application now to produce
color output in the future, you can do so by using QuickDraw procedures
to set the foreground color and the background color. Eight standard
colors may he specified with the following predefined constants:
blackColor, whiteColor, redColor, greenColor, blueColor, cyanColor,
magentaColor, and yellowColor. Initially, the foreground color is
blackColor and the background color is whiteColor. If you specify a
color other than whiteColor, it will appear as black on a
black-and-white output device.

To apply the table in the "Transfer Modes" section above to drawing in
color, make the following translation: where the table shows "Force
black”, read "Force foreground color"”, and where it shows "Force
white"”, read "Force background color”. When you eventually receive the

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

GENERAL DISCUSSION OF DRAWING 31

color output device, you”ll find out the effect of inverting a coior on
it.

(hand)
QuickDraw can support output devices that have up to 32
bits of color information per pixel. A color picture may
be thought of, then, as having up to 32 planes. At any
one time, QuickDraw draws into only one of these planes.
A QuickDraw routine called by the color-imaging software
specifies which plane.

PICTURES AND POLYGONS

QuickDraw lets you save a sequence of drawing commands and "play them
back" later with a single procedure call. There are two such
mechanisms: one for drawing any picture to scale in a destination
rectangle that you specify, and another for drawing polygons in all the
ways you can draw other shapes in QuickDraw.

Pictures

A picture in QuickDraw is a transcript of calls to routines which draw
something —— anything —-- on a bitMap. Pictures make it easy for onme
program to draw something defined in another program, with great
flexibility and without knowing the details about what”s being drawn.

For each picture you define, you specify a rectangle that surrounds the
picture; this rectangle is called the picture frame. When you later
call the procedure that draws the saved picture, you supply a
destination rectangle, and QuickDraw scales the picture so that its
frame is completely aligned with the destination rectangle. Thus, the
plcture may be expanded or shrunk to fit its destination rectangle.

For example, if the picture is a circle inside a square picture frame,
and the destination rectangle is not square, the picture is drawn as an
oval.

Since a picture may include any sequence of drawing commands, its data
structure is a variable-length entity. It consists of two fixed fields
followed by a variable-length data field:

TYPE Picture = RECORD
picSize: INTEGER;
picFrame: Rect;
{picture definition data}
END;

The picSize field contains the size, in bytes, of the picture variable.
The picFrame field is the picture frame which surrounds the picture and
gives a frame of reference for scaling when the picture is drawn. The
rest of the structure contains a compact representation of the drawing

3/2/83 Rose CONFIDENTIAL /QUICK/QUIKDRAW.P

32 QuickDraw Programmer”s Guide

commands that define the picture.

All pictures are accessed through handles, which point to one master
pointer which in turn points to the picture.

TYPE PicPtr
PicHandle

“Picture;
“PicPtr;

To define a picture, you call a QuickDraw function that returns a
picHandle and then call the routines that draw the picture. There is a
procedure to call when you“ve finished defining the picture, and
another for when you“re done with the picture altogether.

QuickDraw also allows you to intersperse picture comments in with the
definition of a picture. These comments, which do not affect the
picture”s appearance, may be used to provide additional information
about the picture when it“s played back. This 1is especially wvaluable
when plctures are transmitted from one application to another. There
are two standard types of comment which, like parentheses, serve to
group drawing commands together (such as all the commands that draw a
particular part of a picture):

CONST picLParen = (f;
picRParen 1;

The application defining the picture can use these standard comments as
well as comments of its own design.

To include a comment in the definition of a picture, the application
calls a QuickDraw procedure that specifies the comment with three
parameters: the comment kind, which identifies the type of comment; a
handle to additional data if desired; and the size of the additional
data, if any. When playing back a picture, QuickDraw passes any
comments in the picture”s definition to a low-level procedure accessed
indirectly through the grafProcs field of the grafPort (see
"Customizing QuickDraw Operations” for more information). To process
comments, the application must include a procedure to do the processing
and store a pointer to it in the data structure pointed to by the
grafProcs field. .

(hand)

The standard low-level procedure for processing picture
comments simply ignores all comments.

Polygons

Polygons are similar to pictures in that you define them by a sequence
of calls to QuickDraw routines. They are also similar to other shapes
that QuickDraw knows about, since there is a set of procedures for
performing graphic operations and calculations on them.

A polygon 1is simply any sequence of connected lines (see Figure 17).
You define a polygon by moving to the starting point of the polygon and

3/2/83 Rose CONFIDENTIAL /QUICK/QUIKDRAW.P

PICTURES AND POLYGONS 33

drawing lines from there to the next point, from that point to the
next, and so on.

Figure 17. Polygons

The data structure for a polygon is a variable-length entity. It
consists of two fixed fields followed by a variable—length array:

TYPE Polygon = RECORD
polySize: INTEGER;
polyBBox: Rect;
polyPoints: ARRAY [§..§] OF Point
END;

The polySize field contains the size, in bytes, of the polygon
variable. The polyBBox field is a rectangle which just encloses the
entire polygon. The polyPoints array expands as necessary to contain
the points of the polygon ——- the starting point followed by each
succesive point to which a line is drawn.

Like pictures and regions, polygons are accessed through handles.

TYPE PolyPtr = “Polygon;
PolyHandle “PolyPtr;

To define a polygon, you call a QuickDraw function that returns a
polyHandle and then form the polygon by calling procedures that draw
lines. You call a procedure when you“ve finished defining the polygon,
and another when you“re done with the polygon altogether.

Just as for other shapes that QuickDraw knows about, there is a set of
graphic operations on polygons to draw them on the screen. QuickDraw
draws a polygon by moving to the starting point and then drawing lines
to the remaining points in succession, just as when the routines were
called to define the polygon. In this sense it "plays back” those

routine calls. As a result, polygons are not treated exactly the same

3/2/83 Rose CONFIDENTIAL /QUICK/QUIKDRAW.P

34 QuickDraw Programmer”s Guide

as other QuickDraw shapes. For example, the procedure that frames a
polygon draws outside the actual boundary of the polygon, because
QuickDraw line—drawing routines draw below and to the right of the pen
location. The procedures that fill a polygon with a pattern, however,
stay within the boundary of the polygon; they also add an additional line
between the ending point and the starting point if those points are not
the same, to complete the shape.

There is also a difference In the way QuickDraw scales a polygon and a
similarly-shaped region if it“s being drawn as part of a picture: when
stretched, a slanted line is drawn more smoothly if it”s part of a
polygon rather than a region. You may find it helpful to keep in mind
the conceptual difference between polygons and regions: a polygon is
treated more as a continuous shape, a region more as a set of bits.

QUICKDRAW ROUTINES

This section describes all the procedures and functions in QuickDraw,
their parameters, and their operation. They are presented in their
Pascal form; for information on using them from assembly language, see
"Using QuickDraw from Assembly Language"”.

GrafPort Routines

PROCEDURE InitGraf (globalPtr: QDPtr);

Call InitGraf once and only once at the beginning of your program to

initialize QuickDraw. It initializes the QuickDraw global variables
listed below.

Variable Type Initial setting

thePort GrafPtr NIL

white Pattern all-white pattern

black Pattern all-black pattern

gray Pattern 5@% gray pattern

1tGray Pattern 25% gray pattern

dkGray Pattern 75%Z gray pattern

arrow Cursor pointing arrow cursor
screenBits BitMap Macintosh screen, (9,0,512 342)
randSeed LongInt 1

The globalPtr parameter tells QuickDraw where to store its global
variables, beginning with thePort. From Pascal programs, this
parameter should always be set to CthePort; assembly-language
programmers may choose any location, as long as it can accommodate the
number of bytes specified by GRAFSIZE in GRAFTYPES.TEXT (see "Using
QuickDraw from Assembly Language”).

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW. 4

QUICKDRAW ROUTINES 35

(hand)
To initialize the cursor, call InitCursor (described
under "Cursor-Handling Routines” below).

PROCEDURE OpenPort (gp: GrafPtr);

OpenPort allocates space for the given grafPort”s visRgn and clipRgn,
initializes the fields of the grafPort as indicated below, and makes
the grafPort the current port (see SetPort). You must call OpenPort
before using any grafPort; first perform a NEW to create a grafPtr and
then use that grafPtr in the OpenPort call.

Field Type Initial setting

device INTEGER @ (Macintosh screen)

portBits BitMap screenBits (see InitGraf)

portRect Rect screenBits.bounds (§,0,512,342)

visRgn RgnHandle handle to the rectangular region
(9,9,512,342)

clipRgn RgnHandle handle to the rectangular region
(-30000,-30000,30000, 30000)

bkPat Pattern white

fillPat Pattern black

pnLoc Point 0,9

pnSize Point (1,1)

pnMode INTEGER patCopy

pnPat Pattern black

pnVis INTEGER @ (visible)

txFont INTEGER @ (system font)

txFace Style normal

txMode INTEGER srcOr

txSize INTEGER @ (Font Manager decides)

spExtra INTEGER ¢

fgColor LongInt blackColor

bkColor LongInt whiteColor

colrBit INTEGER 1)

patStretch INTEGER 1]

picSave QDHandle NIL

rgnSave QDHandle NIL

polySave QDHandle NIL

grafProcs QDProcsPtr NIL

PROCEDURE InitPort (gp: GrafPtr);

Given a pointer to a grafPort that has been opened with OpenPort,
InitPort reinitializes the fields of the grafPort and makes it the
current port (if it”s not already).

(hand)
InitPort does everything OpenPort does except allocate
space for the visRgn and clipRgn.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4

36 QuickDraw Programmer”s Guide

PROCEDURE ClosePort (gp: GrafPtr);

ClosePort deallocates the space occupied by the given grafPort”s visRgn
and clipRgn. When you are completely through with a grafPort, call
this procedure and then dispose of the grafPort (with a DISPOSE of the
grafPtr).

(eye)
If you do not call ClosePort before disposing of the
grafPort, the memory used by the visRgn and clipRgn will
be unrecoverable.

(eye)
After calling ClosePort, be sure not to use any copies of
the visRgn or clipRgn handles that you may have made.

PROCEDURE SetPort (gp: GrafPtr);

SetPort sets the grafPort indicated by gp to be the current port. The
global pointer thePort always points to the current port. All
QuickDraw drawing routines affect the bitMap thePort”.portBits and use
the local coordinate system of thePort”. Note that OpenPort and
InitPort do a SetPort to the given port.

(eye)
Never do a SetPort to a port that has not been opened
with OpenPort.

Each port possesses its own pen and text characteristics which remain
unchanged when the port is not selected as the current port.

PROCEDURE GetPort (VAR gp: GrafPtr);

GetPort returns a pointer to the current grafPort. If you have a
program that draws into more than one grafPort, it”s extremely useful
to have each procedure save the current grafPort (with GetPort), set
its own grafPort, do drawing or calculations, and then restore the
previous grafPort (with SetPort). The pointer to the current grafPort
is also available through the global pointer thePort, but you may
prefer to use GetPort for better readability of your program text. For
example, a procedure could do a GetPort(savePort) before setting its
own grafPort and a SetPort(savePort) afterwards to restore the previous
port.

PROCEDURE GrafDevice (device: INTEGER);
GrafDevice sets thePort”.device to the given number, which identifies
the logical output device for this grafPort. The Font Manager uses

this information. The initial device number is @, which represents the
Macintosh screen. :

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4

QUICKDRAW ROUTINES 37

PROCEDURE SetPortBits (bm: BitMap);

SetPortBits sets thePort”.portBits to any previously defined bitMap.
This allows you to perform all normal drawing and calculations on a
buffer other than the Macintosh screen -—- for example, a 64@-by-7
output buffer for a C. Itoh printer, or a small off-screen image for
later "stamping” onto the screen.

Remember to prepare all fields of the bitMap before you call
SetPortBits.

PROCEDURE PortSize (width,height: INTEGER);

PortSize changes the size of the current grafPort”s portRect. THIS
DOES NOT AFFECT THE SCREEN; it merely changes the size of the "active
area” of the grafPort.

(hand)
This procedure is normally called only by the Window
Manager.

The top left corner of the portRect remains at its same location; the
width and height of the portRect are set to the given width and height.
In other words, PortSize moves the bottom right corner of the portRect
to a position relative to the top left corner.

PortSize does not change the clipRgn or the visRgn, nor does it affect
the local coordinate system of the grafPort: it changes only the
portRect”s width and height. Remember that all drawing occurs only in
the intersection of the portBits.bounds and the portRect, clipped to
the visRgn and the clipRgn. ‘

PROCEDURE MovePortTo (leftGlobal,topGlobal: INTEGER);

MovePortTo changes the position of the current grafPort”s portRect.
THIS DOES NOT AFFECT THE SCREEN; it merely changes the location at
which subsequent drawing inside the port will appear.

.

(hand)
This procedure is normally called only by the Window
Manager.

The leftGlobal and topGlobal parameters sec the distance between the
top left corner of portBits.bounds and the top left corner of the new
portRect. For example,

MovePortTo(256,171);
will move the top left corner of the portRect to the center of the

screen (if portBits is the Macintosh screen) regardless of the local
coordinate system.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4

38 QuickDraw Programmer”s Guide

Like PortSize, MovePortTo does not change the clipRgn or the visRgn,
nor does it affect the local coordinate system of the grafPort.

PROCEDURE SetOrigin (h,v: INTEGER);

SetOrigin changes the local coordinate system of the current grafPort.
THIS DOES NOT AFFECT THE SCREEN; it does, however, affect where
subsequent drawing and calculation will appear in the grafPort.
SetOrigin updates the coordinates of the portBits.bounds, the portRect,
and the visRgn. All subsequent drawing and calculation routines will
use the new coordinate system.

The h and v parameters set the coordinates of the top left corner of
the portRect. All other coordinates are calculated from this point.
All relative distances among any elements in the port will remain the
same; only their absolute local coordinates will change.

(hand)
SetOrigin does not update the coordinates of the clipRgn
or the pen; these items stick to the coordinate system
(unlike the port”s structure, which sticks to the
screen).

SetOrigin is useful for ad justing the coordinate system after a
scrolling operation. (See ScrollRect under "Bit Transfer Operations™
below.)

PROCEDURE SetClip (rgn: RgnHandle);

SetClip changes the clipping region of the current grafPort to a region
equivalent to the given region. Note that this does not change the
region handle, but affects the clipping region itself. Since SetClip
makes a copy of the given region, any subsequent changes you make to
that region will not affect the clipping region of the port.

You can set the clipping region to any arbitrary region, to aid you in

drawing inside the grafPort. The initial clipRgn is an arbitrarily
large rectangle.

PROCEDURE GetClip (rgn: RgnHandle);
GetClip changes the given region to a region equivalent to the clipping

region of the current grafPort. This is the reverse of what SetClip
does. Like SetClip, it does not change the region handle.

PROCEDURE ClipRect (r: Rect);

ClipRect changes the clipping region of the current grafPort to a
rectangle equivalent to given rectangle. Note that this does not
change the region handle, but affects the region itself.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4

QUICKDRAW ROUTINES 39

PROCEDURE BackPat (pat: Pattern);

BackPat sets the background pattern of the current grafPort to the
given pattern. The background pattern is used in ScrollRect and in all
QuickDraw routines that perform an "erase” operation.

Cursor—-Handling Routines

PROCEDURE InitCursor;

InitCursor sets the current cursor to the predefined arrow cursor, an
arrow pointing north-northwest, and sets the cursor level to @, making
the cursor visible. The cursor level, which is initialized to ¢ when
the system 1Is booted, keeps track of the number of times the cursor has
been hidden to compensate for nested calls to HideCursor and ShowCursor
(below).

Before you call InitCursor, the cursor is undefined (or, if set by a
previous process, it”s whatever that process set it to).

PROCEDURE SetCursor (crsr: Cursor);

SetCursor sets the current cursor to the 16-by-16-bit image in crsr.
If the cursor is hidden, it remains hidden and will attain the new
appearance when it”s uncovered; 1f the cursor is already visible, it
changes to the new appearance immediately.

The cursor image is initialized by InitCursor to a north—-northwest
arrow, visible on the screen. There is no way to retrieve the current
cursor image.

PROCEDURE HideCursor;

HideCursor removes the cursor from the screen, restoring the bits under
it, and decrements the cursor level (which InitCursor initialized to
#). Every call to HideCursor should be balanced by a subsequent call
to ShowCursor.

PROCEDURE ShowCursor;

ShowCursor Iincrements the cursor level, which may have been decremented
by HideCursor, and displays the cursor on the screen if the level
becomes #. A call to ShowCursor should balance each previous call to
HideCursor. The level is not incremented beyond @, so extra calls to
ShowCursor don“t hurt.

QuickDraw low-level interrupt—driven routines link the cursor with the
mouse position, so that if the cursor level is ¢ (visible), the cursor

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW .4

40 QuickDraw Programmer”s Guide

automatically follows the mouse. You don“t need to do anything but a
ShowCursor to have a cursor track the mouse. There is no way to
"disconnect” the cursor from the mouse; you can”"t force the cursor to a
certain position, nor can you easily prevent the cursor from entering a
certain area of the screen.

I1f the cursor has been changed (with SetCursor) while hidden,
ShowCursor presents the new cursor.

The cursor is initialized by InitCursor to a north-northwest arrow, not
hiddeno

PROCEDURE ObscureCursor;

ObscureCursor hides the cursor until the next time the mouse is moved.

Unlike HideCursor, it has no effect on the cursor level and must not be
balanced by a call to ShowCursor.

Pen and Line-Drawing Routines

The pen and line—-drawing routines all depend on the coordinate system
of the current grafPort. Remember that each grafPort has its own pen;
if you draw in one grafPort, change to another, and return to the
first, the pen will have remained in the same location.

PROCEDURE HidePen;

HidePen decrements the current grafPort”s pnVis field, which is
initialized to ¢ by OpenPort; whenever pnVis is negative, the pen does
not draw on the screen. PnVis keeps track of the number of times the
pen has been hidden to compensate for nested calls to HidePen and
ShowPen (below). HidePen is called by OpenRgn, OpenPicture, and
OpenPoly so that you can define regions, pictures, and polygons without
drawing on the screen.

PROCEDURE ShowPen;

ShowPen increments the current grafPort”s pnVis field, which may have
been decremented by HidePen; if pnVis becomes #, QuickDraw resumes
drawing on the screen. Extra calls to ShowPen will increment pnVis
beyond @), so every call to ShowPen should be balanced by a subsequent
call to HidePen. ShowPen is called by CloseRgn, ClosePicture, and
ClosePoly.

PROCEDURE GetPen (VAR pt: Point);

GetPen returns the current pen location, in the local coordinates of
the current grafPort.

3/2/83 Espinosa-Rose ' CONFIDENTIAL /QUICK/QUIKDRAW .4

QUICKDRAW ROUTINES 41

PROCEDURE GetPenState (VAR pnState: PenState);

GetPenState saves the pen location, size, pattern, and mode into a
storage variable, to be restored later with SetPenState (below). This
is useful when calling short subroutines that operate in the current
port but must change the graphics pen: each such procedure can save
the pen”s state when it“s called, do whatever it needs to do, and
restore the previous pen state immediately before returning.

The PenState data type is not useful for anything except saving the
pen”s state.

PROCEDURE SetPenState (pnState: PenState);

SetPenState sets the pen location, size, pattern, and mode in the
current grafPort to the values stored in pnState. This is usually
called at the end of a procedure that has altered the pen parameters
and wants to restore them to their state at the beginning of the
procedure. (See GetPenState, above.)

PROCEDURE PenSize (width,height: INTEGER);

PenSize sets the dimensions of the graphics pen in the current
grafPort. All subsequent calls to Line, LineTo, and the procedures
that draw framed shapes in the current grafPort will use the new pen
dimensions.

The pen dimensions can be accessed in the variable thePort”.pnSize,
which is of type Point. If either of the pen dimensions is set to a
negative value, the pen assumes the dimensions (#,#) and no drawing is
performed. For a discussion of how the pen draws, see the "General
Discussion of Drawing” earlier in this manual.

PROCEDURE PenMode (mode: INTEGER);

PenMode sets the transfer mode through which the pnPat is transferred
onto the bitMap when lines or shapes are drawn. The mode may be any
one of the pattern transfer modes:

patCopy patXor notPatCopy notPatXor
pator patBic notPatOr notPatBic

If the mode is one of the source transfer modes (or negative), no
drawing is performed. The current pen mode can be obtained in the
variable thePort”.pnMode. The initial pen mode is patCopy, in which
the pen pattern is copied directly to the bitMap.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4

42 QuickDraw Programmer”s Guide

PROCEDURE PenPat (pat: Pattern);

PenPat sets the pattern that is used by the pen in the current
grafPort. The standard patterns white, black, gray, ltGray, and dkGray
are predefined; the initial pnPat is black. The current pen pattern
can be obtained in the variable thePort”.pnPat, and this value can be
assigned (but not compared!) to any other variable of type Pattern.

PROCEDURE PenNormal;

PenNormal resets the initial state of the pen in the current grafPort,
as follows:

Field Setting
pnSize (1,1)
pnMode patCopy
pnPat black

The pen location is not changed.

PROCEDURE MoveTo (h,v: INTEGER);

MoveTo moves the pen to location (h,v) in the local coordinates of the
current grafPort. No drawing is performed.

PROCEDURE Move (dh,dv: INTEGER);

This procedure moves the pen a distance of dh horizontally and dv
vertically from its current location; it calls MoveTo(h+dh,v+dv), where
(h,v) is the current location. The positive directions are to the
right and down. No drawing 1is performed.

PROCEDURE LineTo (h,v: INTEGER);

LineTo draws a line from the current pen location to the location
specified (in local coordinates) by h and v. The new pen location is
(h,v) after the line is drawn. See the general discussion of drawing.

If a region or polygon is open and being formed, its outline is
infinitely thin and is not affected by the pnSize, pnMode, or pnPat.
(See OpenRgn and OpenPoly.)

PROCEDURE Line (dh,dv: INTEGER);

This procedure draws a line to the location that is a distance of dh
horizontally and dv vertically from the current pen location; it calls
LineTo(h+dh,v+dv), where (h,v) is the current location. The positive
directions are to the right and down. The pen location becomes the
coordinates of the end of the line after the line is drawn. See the

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4

QUICKDRAW ROUTINES 43

general discussion of drawing.
If a region or polygon is open and being formed, its outline is

infinitely thin and is not affected by the pnSize, pnMode, or pnPat.
(See OpenRgn and OpenPoly.)

Text-Drawing Routines

Each grafPort has its own text characteristics, and all these
procedures deal with those of the current port.

PROCEDURE TextFont (font: INTEGER);

TextFont sets the current grafPort”s font (thePort”.txFont) to the
given font number. The initial font number is @, which represents the
system font.

PROCEDURE TextFace (face: Style);

TextFace sets the current grafPort”s character style (thePort”.txFace).
The Style data type allows you to specify a set of one or more of the
following predefined constants: bold, italic, underline, outline,
shadow, condense, and extend. For example:

TextFace([bold]); {bold}
TextFace([bold,italic]); {bold and italic}
TextFace(thePort".txFace+[bold]); {whatever it was plus bold}
TextFace(thePort”.txFace-[bold]); {whatever it was but not bold}

TextFace([]); {normal}

PROCEDURE TextMode (mode: INTEGER);

TextMode sets the current grafPort”s transfer mode for drawing text
(thePort”~.txMode). The mode should be srcOr, srcXor, or srcBic. The
initial transfer mode for drawing text is srcOr.

PROCEDURE TextSize (size: INTEGER);

TextSize sets the current grafPort”s type size (thePort”.txSize) to the
given number of points. Any size may be specified, but the result will
look best if the Font Manager has the font in that size (otherwise it
will scale a size it does have). The next best result will occur if
the given size is an even multiple of a size available for the font.

If @ is specified, the Font Manager will choose one of the available
sizes —— whichever is closest to the system font size. The initial
txSize setting is @.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4

44 QuickDraw Programmer”s Guide

PROCEDURE SpaceExtra (extra: INTEGER);

SpaceExtra sets the current grafPort”s spExtra field, which specifies
the number of pixels by which to widen each space in a line of text.
This is useful when text is being fully justified (that is, aligned
with both a left and a right margin). Consider, for example, a line
that contains three spaces; if there would normally be six pixels
between the end of the line and the right margin, you would call
SpaceExtra(2) to print the line with full justification. The initial
spExtra setting is @. :

(hand)
SpaceExtra will also take a negative argument, but be
careful not to narrow spaces so much that the text is
unreadable. '

PROCEDURE DrawChar (ch: CHAR);

DrawChar places the given character to the right of the pen location,

with the left end of its base line at the pen”s location, and advances
the pen accordingly. If the character is not in the font, the font”s

missing symbol is drawn.

PROCEDURE DrawString (s: Str255);

DrawString performs consecutive calls to DrawChar for each character in
the supplied string; the string is placed beginning at the current pen
location and extending right. No formatting (carriage returns, line
feeds, etc.) 1is performed by QuickDraw. The pen location ends up to
the right of the last character in the string. :

PROCEDURE DrawText (textBuf: QDPtr; firstByte,byteCount: INTEGER);

DrawText draws text from an arbitrary structure in memory specified by
textBuf, starting firstByte bytes into the structure and continuing for
byteCount bytes. The string of text is placed beginning at the current
pen location and extending right. No formatting (carriage réturns,
line feeds, etc.) 1is performed by QuickDraw. The pen location ends up
to the right of the last character in the string.

FUNCTION CharWidth (ch: CHAR) : INTEGER;

CharWidth returns the value that will be added to the pen horizontal
coordinate if the specified character is drawn. CharWidth includes the
effects of the stylistic variations set with TextFace; if you change
these after determining the character width but before actually drawing
the character, the predetermined width may not be correct. If the
character is a space, CharWidth also includes the effect of SpaceExtra.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4

QUICKDRAW ROUTINES 45

FUNCTION StringWidth (s: Str255) : INTEGER;

StringWidth returns the width of the given text string, which it
calculates by adding the CharWidths of all the characters in the string
(see above). This value will be added to the pen horizontal coordinate
1f the specified string is drawn.

FUNCTION TextWidth (textBuf: QDPtr; firstByte,byteCount: INTEGER) :
INTEGER;

TextWidth returns the width of the text stored in the arbitrary
structure in memory specified by textBuf, starting firstByte bytes into
the structure and continuing for byteCount bytes. It calculates the
width by adding the CharWidths of all the characters in the text. (See
CharWidth, above.) ‘

PROCEDURE GetFontInfo (VAR info: FontInfo);

GetFontInfo returns the following information about the current
grafPort”s character font, taking into consideration the style and size
in which the characters will be drawn: the ascent, descent, maximum
character width (the greatest distance the pen will move when a
character is drawn), and leading (the vertical distance between the
descent line and the ascent line below it), all in pixels. The
FontInfo data structure is defined as:

TYPE FontInfo = RECORD
ascent: INTEGER;
descent: INTEGER;
widMax: INTEGER;
leading: INTEGER
END;

Drawing in Color

These routines will enable applications to do color drawing in the
future when Apple supports color output devices for the Macintosh. All
nonwhite colors will appear as black on black—-and-white output devices.

PROCEDURE ForeColor (color: LonglInt);

ForeColor sets the foreground color for all drawing in the current
grafPort (“thePort.fgColor) to the given color. The following standard
colors are predefined: blackColor, whiteColor, redColor, greenColor,
blueColor, cyanColor, magentaColor, and yellowColor. The initial
foreground color is blackColor.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW .4

46 QuickDraw Programmer”s Guide

PROCEDURE BackColor (color: LonglInt);

BackColor sets the background color for all drawing in the current
grafPort (“thePort.bkColor) to the given color. Eight standard colors
are predefined (see ForeColor above). The initial background color is
whiteColor.

PROCEDURE ColorBit (whichBit: INTEGER);

ColorBit 1is called by printing software for a color printer, or other
color-imaging software, to set the current grafPort”s colrBit field to
whichBit; this tells QuickDraw which plane of the color picture to draw
into. QuickDraw will draw into the plane corresponding to bit number
whichBit. Since QuickDraw can support output devices that have up to
32 bits of color information per pixel, the possible range of values
for whichBit is @ through 31. The initial value of the colrBit field
is @.

Calculations with Rectangles

Calculation routines are independent of the current coordinate system;
a calculation will operate the same regardless of which grafPort is
active.

(hand)
Remember that if the parameters to one of the calculation
routines were defined in different grafPorts, you must
first adjust them to be in the same coordinate system.
If you do not adjust them, the result returned by the
routine may be different from what you see on the screen.
To ad just to a common coordinate system, see
LocalToGlobal and GlobalToLocal under “"Calculations with
Points"” below.

PROCEDURE SetRect (VAR r: Rect; left,top,right,bottom: INTEGER);

SetRect assigns the four boundary coordinates to the rectangle. The
result is a rectangle with coordinates (left,top,right,bottom).

This procedure is supplied as a utility to help you shorten your
program text. If you want a more readable text at the expense of
length, you can assign integers (or points) directly into the
rectangle”s fields. There is no significant code size or execution
speed advantage to either method; one”s just easier to write, and the
other”s easier to read.

PROCEDURE OffsetRect (VAR r: Rect; dh,dv: INTEGER);

OffsetRect moves the rectangle by adding dh to each horizontal
coordinate and dv to each vertical coordinate. If dh and dv are

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

QUICKDRAW ROUTINES 47

positive, the movement is to the right and down; if either is negative,
the corresponding movement is in the opposite direction. The rectangle
retains its shape and size; it”s merely moved on the coordinate plane.

This does not affect the screen unless you subsequently call a routine

to draw within the rectangle.

PROCEDURE InsetRect (VAR r: Rect; dh,dv: INTEGER);

InsetRect shrinks or expands the rectangle. The left and right sides
are moved in by the amount specified by dh; the top and bottom are
moved towards the center by the amount specified by dv. If dh or dv is
negative, the appropriate pair of sides is moved outwards instead of
inwards. The effect is to alter the size by 2*dh horizontally and 2*dv
vertically, with the rectangle remaining centered in the same place on
the coordinate plane.

If the resulting width or height becomes less than 1, the rectangle is
set to the empty rectangle (9,0,0,8).

FUNCTION SectRect (srcRectA,srcRectB: Rect; VAR dstRect: Rect) :
BOOLEAN;

SectRect calculates the rectangle that is the intersection of the two
input rectangles, and returns TRUE if they indeed intersect or FALSE if
they do not. Rectangles that "touch” at a line or a point are not
considered intersecting, because their intersection rectangle (really,
in this case, an intersection line or point) does not enclose any bits
on the bitMap.

If the rectangles do not intersect, the destination rectangle is set to
(0,0,0,8). SectRect works correctly even if one of the source
rectangles is also the destination.

PROCEDURE UnionRect (srcRectA,srcRectB: Rect; VAR dstRect: Rect);
UnionRect calculates the smallest rectangle which encloses both input
rectangles. It works correctly even if one of the source rectangles is
also the destination.

FUNCTION PtInRect (pt: Point; r: Rect) : BOOLEAN;

PtInRect determines whether the pixel below and to the right of the
given coordinate point is enclosed in the specified rectangle, and
returns TRUE if so or FALSE if not.

PROCEDURE Pt2Rect (ptA,ptB: Point; VAR: dstRect: Rect);

Pt2Rect returns the smallest rectangle which encloses the two input

points.

3/2/83 Espinosa—-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

48 QuickDraw Programmer”s Guide

PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: INTEGER);

PtToAngle calculates an integer angle between a line from the center of
the rectangle to the given point and a line from the center of the
rectangle pointing straight up (12 o“clock high). The angle is in
degrees from ¢ to 359, measured clockwise from 12 o“clock, with 9¢
degrees at 3 o“clock, 18@ at 6 o”"clock, and 27@ at 9 o”"clock. Other
angles are measured relative to the rectangle: If the line to the
given point goes through the top right corner of the rectangle, the
angle returned is 45 degrees, even 1f the rectangle is not square; if
it goes through the bottom right corner, the angle is 135 degrees, and
so on (see Figure 18).

Figure 18. PtToAngle

The angle returned might be used as input to one of the procedures that
manipulate arcs and wedges, as described below under "Graphic
Operations on Arcs and Wedges".

FUNCTION EqualRect (rectA,rectB: Rect) : BOOLEAN;

EqualRect compares the two rectangles and returns TRUE if they are
equal or FALSE if not. The two rectangles must have identical boundary
coordinates to be considered equal.

FUNCTION EmptyRect (r: Rect) : BOOLEAN;

EmptyRect returns TRUE if the given rectangle is an empty rectangle or
FALSE if not. A rectangle is considered empty if the bottom coordinate

is equal to or less than the top or the right coordinate is equal to or
less than the left.

3/2/83'Espinosé~Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

QUICKDRAW ROUTINES 49

Graphic Operations on Rectangles

These procedures perform graphic operations on rectangles. See also
ScrollRect under "Bit Transfer Operations”.

PROCEDURE FrameRect (r: Rect);

FrameRect draws a hollow outline just inside the specified rectangle,
using the current grafPort”s pen pattern, mode, and size. The outline
is as wide as the pen width and as tall as the pen height. It is drawn
with the pnPat, according to the pattern transfer mode specified by
pnMode. The pen location is not changed by this procedure.

If a region is open and being formed, the outside outline of the new
rectangle is mathematically added to the region”s boundary.

PROCEDURE PaintRect (r: Rect);

PaintRect paints the specified rectangle with the current grafPort”s
pen pattern and mode. The rectangle on the bitMap is filled with the
pnPat, according to the pattern transfer mode specified by pnMode. The
pen location is not changed by this procedure.

PROCEDURE EraseRect (r: Rect);

EraseRect paints the specified rectangle with the current grafPort”s
background pattern bkPat (in patCopy mode). The grafPort”s pnPat and
pnMode are ignored; the pen location is not changed.

PROCEDURE InvertRect (r: Rect);

InvertRect inverts the pixels enclosed by the specified rectangle:
every white pixel becomes black and every black pixel becomes white.
The grafPort”s pnPat, pnMode, and bkPat are all ignored; the pen
location is not changed.

PROCEDURE FillRect (r: Rect; pat: Pattern);

FillRect fills the specified rectangle with the given pattern (in

patCopy mode). The grafPort”s pnPat, pnMode, and bkPat are all
ignored; the pen location is not changed.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

50 QuickDraw Programmer”s Guide

Graphic Operations on Ovals

Ovals are drawn inside rectangles that you specify. If the rectangle
you specify is square, QuickDraw draws a circle.

PROCEDURE FrameOval (r: Rect);

FrameOval draws a hollow outline just inside the oval that fits inside
the specified rectangle, using the current grafPort”s pen pattern,
mode, and size. The outline is as wide as the pen width and as tall as
the pen height. It is drawn with the pnPat, according to the pattern
transfer mode specified by pnMode. The pen location is not changed by
this procedure.

If a region is open and being formed, the outside outline of the new
oval is mathematically added to the region”s boundary.

PROCEDURE PaintOval (r: Rect);

PaintOval paints an oval just inside the specified rectangle with the
current grafPort”s pen pattern and mode. The oval on the bitMap is
filled with the pnPat, according to the pattern transfer mode specified
by pnMode. The pen location is not changed by this procedure.

PROCEDURE EraseOval (r: Rect);

EraseOval paints an oval just inside the specified rectangle with the
current grafPort”s background pattern bkPat (in patCopy mode). The
grafPort”s pnPat and pnMode are ignored; the pen location is not
changed.

PROCEDURE InvertOval (r: Rect);

InvertOval inverts the pixels enclosed by an oval just inside the
specified rectangle: every white pixel becomes black and every black
pixel becomes white. The grafPort”s pnPat, pnMode, and bkPat are all
ignored; the pen location is not changed.

PROCEDURE FillOval (r: Rect; pat: Pattern);
FillOval fills an oval just inside the specified rectangle with the

given pattern (in patCopy mode). The grafPort”s pnPat, pnMode, and
bkPat are all ignored; the pen location is not changed.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

QUICKDRAW ROUTINES 51

Graphic Operations on Rounded-Corner Rectangles

PROCEDURE FrameRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

FrameRoundRect draws a hollow outline just inside the specified
rounded-corner rectangle, using the current grafPort”s pen pattern,
mode, and size. OvalWidth and ovalHeight specify the diameters of
curvature for the corners (see Figure 19). The outline is as wide as
the pen width and as tall as the pen height. It is drawn with the
pnPat, according to the pattern transfer mode specified by pnMode. The
pen location 1s not changed by this procedure.

oval Width oval Height
~ ""’-., & - ‘\\-.
—— P
.'.‘-b—,__——"‘.-"l — -
; T “.“./-.——h" -,
*) {)
__.b‘- _1-".'4. ~.~“‘- L <

Figure 19. Rounded-Corner Rectangle

If a region is open and being formed, the outside outline of the new
rounded—-corner rectangle is mathematically added to the region”s
boundary.

PROCEDURE PaintRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

PaintRoundRect paints the specified rounded-corner rectangle with the
current grafPort”s pen pattern and mode. OvalWidth and ovalHeight
specify the diameters of curvature for the corners. The rounded—corner
rectangle on the bitMap is filled with the pnPat, according to the
pattern transfer mode specified by pnMode. The pen location is not
changed by this procedure.

PROCEDURE EraseRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);
EraseRoundRect paints the specified rounded—corner rectangle with the

current grafPort”s background pattern bkPat (in patCopy mode).

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

52 QuickDraw Programmer”s Guide

OvalWidth and ovalHeight specify the diameters of curvature for the
corners. The grafPort”s pnPat and pnMode are ignored; the pen location
is not changed.

PROCEDURE InvertRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

InvertRoundRect inverts the pixels enclosed by the specified
rounded-corner rectangle: every white pixel becomes black and every
black pixel becomes white. OvalWidth and ovalHeight specify the
diameters of curvature for the corners. The grafPort”s pnPat, pnMode,
and bkPat are all ignored; the pen location is not changed.

PROCEDURE FillRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER; pat:
Pattern);

FillRoundRect fills the specified rounded-corner rectangle with the
given pattern (in patCopy mode). OvalWidth and ovalHeight specify the
diameters of curvature for the corners. The grafPort”s pnPat, pnMode,
and bkPat are all ignored; the pen location is not changed.

Graphic Operations on Arcs and Wedges

These procedures perform graphic operations on arcs and wedge-shaped
sections of ovals. See also PtToAngle under "Calculations with
Rectangles”.

PROCEDURE FrameArc (r: Rect; startAngle,arcAngle: INTEGER);

FrameArc draws an arc of the oval that fits inside the specified
rectangle, using the current grafPort”s pen pattern, mode, and size.
StartAngle indicates where the arc begins and is treated mod 36(.
ArcAngle defines the extent of the arc. The angles are given in
positive or negative degrees; a positive angle goes clockwise, while a
negative angle goes counterclockwise. Zero degrees is at 12 o”clock
high, 98 (or -27¢) is at 3 o”clock, 180 (or -18¢) is at 6 o”“¢lock, and
278 (or -9¢) is at 9 o”clock. Other angles are measured relative to
the enclosing rectangle: a line from the center of the rectangle
through its top right corner is at 45 degrees, even if the rectangle is
not square; a line through the bottom right corner is at 135 degrees,
and so on (see Figure 28).

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

QUICKDRAW ROUTINES 53

starmngle =
 arcAngle = 45
?ffﬁrﬁ¥“

startAngle =10 Stsrmngle. =0

arcAngte =-45 ‘arcAngle=45 (1

’ \ Framedrc

JtartAngle =9
r £ ‘arcAngle = 45
Framearc i r)
|t
Paintarc

Figure 2@. Operations on Arcs and Wedges

The arc is as wide as the pen width and as tall as the pen height. It
is drawn with the pnPat, according to the pattern transfer mode
specified by pnMode. The pen location is not changed by this
procedure.

(eye)
FrameArc differs from other QuickDraw procedures that
frame shapes in that the arc is not mathematically added
to the boundary of a region that is open and being
formed.

PROCEDURE PaintArc (r: Rect; startAngle,arcAngle: INTEGER);

PaintArc paints a wedge of the oval just inside the specified rectangle
with the current grafPort”s pen pattern and mode. StartAngle and
arcAngle define the arc of the wedge as in FrameArc. The wedge on the
bitMap is filled with the pnPat, according to the pattern transfer mode
specified by pnMode. The pen location is not changed by this
procedure.

PROCEDURE EraseArc (r: Rect; startAngle,arcAngle: INTEGER);

EraseArc paints a wedge of the oval just inside the specified rectangle
with the current grafPort”s background pattern bkPat (in patCopy mode).
StartAngle and arcAngle define the arc of the wedge as in FrameArc.

The grafPort”s pnPat and pnMode are ignored; the pen location is not
changed.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

54 QuickDraw Programmer”s Guide

PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: INTEGER);

InvertArc inverts the pixels enclosed by a wedge of the oval just
inside the specified rectangle: every white pixel becomes black and
every black pixel becomes white. StartAngle and arcAngle define the
arc of the wedge as in FrameArc. The grafPort”s pnPat, pnMode, and
bkPat are all ignored; the pen location is not changed.

PROCEDURE FillArc (r: Rect; startAngle,arcAngle: INTEGER; pat:
Pattern);

FillArc fills a wedge of the oval just inside the specified rectangle
with the given pattern (in patCopy mode). StartAngle and arcAngle
define the arc of the wedge as In FrameArc. The grafPort”s pnPat,
pnMode, and bkPat are all ignored; the pen location is not changed.

Calculations with Regions

(hand)
Remember that if the parameters to one of the calculation
routines were defined in different grafPorts, you must
first adjust them to be in the same coordinate system.
If you do not adjust them, the result returned by the
routine may be different from what you see on the screen.
To adjust to a common coordinate system, see
LocaltoGlobal and GlobalToLocal under "Calculations with
Points" below.

FUNCTION NewRgn : RgnHandle;

NewRgn allocates space for a new, dynamic, variable-size region,
initializes it to the empty region (9,%,08,8), and returns a handle to
the new region. Only this function creates new regions; all other
procedures just alter the size and shape of regions you create.
OpenPort calls NewRgn to allocate space for the port”s visRgn and
clipRgn.

(eye)
Except when using visRgn or clipRgn, you MUST call NewRgn
before specifying a region”s handle in any drawing or
calculation procedure.

(eye)
Never refer to a region without using its handle.

PROCEDURE DisposeRgn (rgn: RgnHandle);

DisposeRgn deallocates space for the region whose handle is supplied,

and returns the memory used by the region to the free memory pool. Use

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

QUICKDRAW ROUTINES 55

this only after you are completely through with a temporary region.

(eye)
Never use a region once you have deallocated it, or you
will risk being hung by dangling pointers!

PROCEDURE CopyRgn (srcRgn,dstRgn: RgnHandle);

CopyRgn coples the mathematical structure of srcRgn into dstRgn; that
is, it makes a duplicate copy of srcRgn. Once this is done, srcRgn may
be altered (or even disposed of) without affecting dstRgn. COPYRGN
DOES NOT CREATE THE DESTINATION REGION: you must use NewRgn to create
the dstRgn before you call CopyRgn.

PROCEDURE SetEmptyRgn (rgn: RgnHandle);

SetEmptyRgn destroys the previous structure of the given region, then
sets the new structure to the empty region (9,0,0,0).

PROCEDURE SetRectRgn (rgn: RgnHandle; left,top,right,bottom: INTEGER);

SetRectRgn destroys the previous structure of the given region, then
sets the new structure to the rectangle specified by left, top, right,
and bottom.

If the specified rectangle is empty (i.e., leftd=right or top>=bottom),
the region is set to the empty region (§,0,0,0).

PROCEDURE RectRgn (rgn: RgnHandle; r: Rect);

RectRgn destroys the previous structure of the given region, then sets
the new structure to the rectangle specified by r. This is
operationally synonymous with SetRectRgn, except the input rectangle is
defined by a rectangle rather than by four boundary coordinates.

PROCEDURE OpenRgn;

OpenRgn tells QuickDraw to allocate temporary space and start saving
lines and framed shapes for later processing as a region definition.
While a region is open, all calls to Line, LineTo, and the procedures
that draw framed shapes (except arcs) affect the outline of the region.
Only the line endpoints and shape boundaries affect the region
definition; the pen mode, pattern, and size do not affect it. 1In fact,
OpenRgn calls HidePen, so nmo drawing occurs on the screen while the
region is open (unless you called ShowPen just after OpenRgn, or you
called ShowPen previously without balancing it by a call to HidePen).
Since the pen hangs below and to the right of the pen location, drawing
lines with even the smallest pen will change bits that lie outside the
region you define.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

56 QuickDraw Programmer”s Guide

The outline of a region is mathematically defined and infinitely thin,
and separates the bitMap into two groups of bits: those within the
region and those outside it. A region should consist of one or more
closed loops. Each framed shape itself constitutes a loop. Any lines
drawn with Line or LineTo should connect with each other or with a
framed shape. Even though the on—screen presentation of a region is
clipped, the definition of a region is not; you can define a region
anywhere on the coordinate plane with complete disregard for the
location of various grafPort entities on that plane.

When a region is open, the current grafPort”s rgnSave field contains a
handle to information related to the region definition. If you want to
temporarily disable the collection of lines and shapes, you can save
the current value of this field, set the field to NIL, and later
restore the saved value to resume the region definition.

(eye)
Do not call OpenRgn while another region is already open.
All open regions but the most recent will behave
strangely.

PROCEDURE CloseRgn (dstRgn: RgnHandle);

CloseRgn stops the collection of lines and framed shapes, organizes
them into a region definition, and saves the resulting region into the
region indicated by dstRgn. You should perform one and only one
CloseRgn for every OpenRgn. CloseRgn calls ShowPen, balancing the
HidePen call made by OpenRgn.

Here”s an example of how to create and open a region, define a barbell
shape, close the region, and draw it: '

barbell := NewRgn; {make a new region}
OpenRgn {begin collecting stuff}
SetRect (tempRect ,20,2@3,30,50); {form the left weight}
FrameOval (tempRect);
SetRect(tempRect ,30,30,80,40); {form the bar}
FrameRect (tempRect);
SetRect (tempRect ,8,20,90,50); {form the right weight}
FrameOval (tempRect);

CloseRgn(barbell); {we“re done; save in barbell}
FillRgn(barbell,black); {draw it on the screen}
DisposeRgn(barbell); {we don"t need you anymore...}

PROCEDURE OffsetRgn (rgn: RgnHandle; dh,dv: INTEGER);

OffsetRgn moves the region on the coordinate plane, a distance of dh
horizontally and dv vertically. This does not affect the screen unless
you subsequently call a routine to draw the region. If dh and dv are
positive, the movement is to the right and down; if either is negative,
the corresponding movement is in the opposite direction. The region
retains its size and shape.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

QUICKDRAW ROUTINES 57

(hand)
OffsetRgn is an especlally efficient operation, because
most of the data defining a region is stored relative to
rgnBBox and so isn“t actually changed by OffsetRgn.

PROCEDURE InsetRgn (rgn: RgnHandle; dh,dv: INTEGER);

InsetRgn shrinks or expands the region. All points on the region
boundary are moved inwards a distance of dv vertically and dh
horizontally; if dh or dv 1s negative, the points are moved outwards in
that direction. InsetRgn leaves the region "centered"” at the same
position, but moves the outline in (for positive values of dh and dv)
or out (for negative values of dh and dv). InsetRgn of a rectangular
region works just like InsetRect. '

PROCEDURE SectRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

SectRgn calculates the intersection of two regions and places the
intersection in a third region. THIS DOES NOT CREATE THE DESTINATION
REGION: you must use NewRgn to create the dstRgn before you call
SectRgn. The dstRgn can be one of the source regions, if desired.

If the regions do not intersect, or one of the regions is empty, the
destination 1is set to the empty region (9,0,8,0).

PROCEDURE UnionRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

UnionRgn calculates the union of two regions and places the union in a
third region. THIS DOES NOT CREATE THE DESTINATION REGION: you must
use NewRgn to create the dstRgn before you call UnionRgn. The dstRgn
can be one of the source regions, if desired.

If both regions are empty, the destination is set to the empty region
(9,9,9,9).

PROCEDURE DiffRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

DiffRgn subtracts srcRgnB from srcRgnA and places the difference in a
third region. THIS DOES NOT CREATE THE DESTINATION REGION: you must
use NewRgn to create the dstRgn before you call DiffRgn. The dstRgn
can be one of the source regions, if desired.

If the first source region is empty, the destination is set to the
empty region (9,0,0,8).

PROCEDURE XorRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

XorRgn calculates the difference between the union and the intersection

of two regions and places the result in a third region. THIS DOES NOT

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

58 QuickDraw Programmer”s Guide

CREATE THE DESTINATION REGION: you must use NewRgn to create the
dstRgn before you call XorRgn. The dstRgn can be one of the source
regions, if desired.

If the regions are coincident, the destination is set to the empty
region (0,0,9,0).

FUNCTION PtInRgn (pt: Point; rgn: RgnHandle) : BOOLEAN;

PtInRgn checks whether the pixel below and to the right of the given
coordinate point is within the specified region, and returns TRUE if so
or FALSE if not.

FUNCTION RectInRgn (r: Rect; rgn: RgnHandle) : BOOLEAN;

RectInRgn checks whether the given rectangle intersects the specified
region, and returns TRUE if the intersection encloses at least one bit
or FALSE if not.

FUNCTION EqualRgn (rgnA,rgnB: RgnHandle) : BOOLEAN;

EqualRgn compares the two regions and returns TRUE if they are equal or
FALSE if not. The two regions must have identical sizes, shapes, and
locations to be considered equal. Any two empty regions are always
equal.

FUNCTION EmptyRgn (rgn: RgnHandle) : BOOLEAN;

EmptyRgn returns TRUE if the region is an empty region or FALSE if not.
Some of the circumstances in which an empty region can be created are:
a NewRgn call; a CopyRgn of an empty region; a SetRectRgn or RectRgn
with an empty rectangle as an argument; CloseRgn without a previous
OpenRgn or with no drawing after an OpenRgn; OffsetRgn of an empty
region; InsetRgn with an empty region or too large an inset; SectRgn of
nonintersecting regions; UnionRgn of two empty regions; and DiffRgn or
XorRgn of two identical or nonintersecting regions.

Graphic Operations on Regions

These routines all depend on the coordinate system of the current
grafPort. If a region is drawn in a different grafPort than the one in
which it was defined, it may not appear in the proper position inside
the port. :

PROCEDURE FrameRgn (rgn: RgnHandle);

FrameRgn draws a hollow outline just inside the specified region, using
the current grafPort”s pen pattern, mode, and size. The outline is as

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6

QUICKDRAW ROUTINES 59

wide as the pen width and as tall as the pen height; under no
circumstances will the frame go outside the region boundary. The pen
location is not changed by this procedure.

If a region is open and being formed, the outside outline of the region
being framed is mathematically added to that region”s boundary.

PROCEDURE PaintRgn (rgn: RgnHandle);

PaintRgn paints the specified region with the current grafPort”s pen
pattern and pen mode. The region on the bitMap is filled with the
pnPat, according to the pattern transfer mode specified by pnMode. The
pen location 1s not changed by this procedure.

PROCEDURE EraseRgn (rgn: RgnHandle);

EraseRgn paints the specified region with the current grafPort”s
background pattern bkPat (in patCopy mode). The grafPort”s pnPat and
pnMode are ignored; the pen location is not changed.

PROCEDURE InvertRgn (rgn: RgnHandle);

InvertRgn inverts the pixels enclosed by the specified region: every
white pixel becomes black and every black pixel becomes white. The
grafPort”s pnPat, pnMode, and bkPat are all ignored; the pen location
is not changed.

PROCEDURE FillRgn (rgn: RgnHandle; pat: Pattern);

FillRgn fills the specified region with the given pattern (in patCopy
mode). The grafPort”s pnPat, pnMode, and bkPat are all ignored; the
pen location is not changed.

Bit Transfer Operations

PROCEDURE ScrollRect (r: Rect; dh,dv: INTEGER; updateRgn: RgnHandle);

ScrollRect shifts ("scrolls”) those bits inside the intersection of the
specified rectangle, visRgn, clipRgn, portRect, and portBits.bounds.
The bits are shifted a distance of dh horizontally and dv vertically.
The positive directions are to the right and down. No other bits are
affected. Bits that are shifted out of the scroll area are lost; they
are neither placed outside the area nor saved. The grafPort”s
background pattern bkPat fills the space created by the scroll. 1In
addition, updateRgn is changed to the area filled with bkPat (see
Figure 21).

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6

60 QuickDraw Programmer”s Guide

Before SemllFect After ScrollReceddscRect, - 10,5...)

e Fat

- P ONLOC
CuickDraw, &

NA

dstRect

JA—

UpdateRan 10

Figure 21. Scrolling

Figure 21 shows that the pen location after a ScrollRect is in a
different position relative to what was scrolled in the rectangle. The
entire scrolled item has been moved to different coordinates. To
restore it to its coordinates before the ScrollRect, you can use the
SetOrigin procedure. For example, suppose the dstRect here is the
portRect of the grafPort and its top left corner is at (95,12¢).
SetOrigin(1¢5,115) will offset the coordinate system to compensate for
the scroll. Since the clipRgn and pen location are not offset, they
move down and to the left.

PROCEDURE CopyBits (srcBits,dstBits: BitMap; srcRect,dstRect: Rect;
mode: INTEGER; maskRgn: RgnHandle);

CopyBits transfers a bit image between any two bitMaps and clips the
result to the area specified by the maskRgn parameter. The transfer
may be performed in any of the eight source transfer modes. The result
is always clipped to the maskRgn and the boundary rectangle of the
destination bitMap; if the destination bitMap is the current grafPort”s
portBits, it is also clipped to the intersection of the grafPort”s
clipRgn and visRgn. If you do not want to clip to a maskRgn, just pass
NIL for the maskRgn parameter. »

The dstRect and maskRgn coordinates are in terms of the dstBits.bounds
coordinate system, and the srcRect coordinates are in terms of the
srcBits.bounds coordinates.

The bits enclosed by the source rectangle are transferred into the
destination rectangle according to the rules of the chosen mode. The
source transfer modes are as follows:

srcCopy srcXor notSrcCopy notSrcXor

srcOr srcBic notSrcOr notSrcBic

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6

QUICKDRAW ROUTINES 61

The source rectangle is completely aligned with the destination
rectangle; if the rectangles are of different sizes, the bit image is -

- expanded or shrunk as necessary to fit the destination rectangle. For
example, if the bit image is a circle in a square source rectangle, and
the destination rectangle is not square, the bit image appears as an
oval in the destination (see Figure 22).

T SpERaEaaias, fiaskRen
~ "

‘ Source
HH Transfer
Source BitMap ~ Mode

-

Deztination BitMap

& © maskRen

Inanswnnun 80

: =}NIL
Soufrce T
HHEH Tranades
Sonroe BitMap Mode T

Destination BitMap

Figure 22. Operation of CopyBits

Pictures

FUNCTION OpenPicture (picFrame: Rect) : PicHandle;

OpenPicture returns a handle to a new picture which has the given
rectangle as its picture frame, and tells QuickDraw to start saving as
the picture definition all calls to drawing routines and all picture
comments (if any).

OpenPicture calls HidePen, so no drawing occurs on the screen while the
picture is open (unless you call ShowPen just after OpenPicture, or you
called ShowPen previously without balancing it by a call to HidePen).

When a picture is open, the current grafPort”s picSave field contains a
handle to information related to the picture definition. If you want
to temporarily disable the collection of routine calls and picture
comments, you can save the current value of this field, set the field
to NIL, and later restore the saved value to resume the picture
definition.

(eye)
Do not call OpenPicture while another picture is already
open.

3/2/83 -Espinosa-Rose ~ CONFIDENTIAL /QUICK.2/QUIKDRAW.6

62 QuickDraw Programmer”s Guide

PROCEDURE ClosePicture;

ClosePicture tells QuickDraw to stop saving routine calls and picture
comments as the definition of the currently open picture. You should
perform one and only one ClosePicture for every OpenPicture.
ClosePicture calls ShowPen, balancing the HidePen call made by
OpenPicture.

PROCEDURE PicComment (kind,dataSize: INTEGER; dataHandle: QDHandle);

PicComment inserts the specified comment into the definition of the
currently open picture. Kind identifies the type of comment.
DataHandle is a handle to additional data if desired, and dataSize is
the size of that data in bytes. If there is no additional data for the
comment, dataHandle should be NIL and dataSize should be @. The
application that processes the comment must include a procedure to do
the processing and store a pointer to the procedure in the data
structure pointed to by the grafProcs field of the grafPort (see
"Customizing QuickDraw Operations™).

PROCEDURE DrawPicture (myPicture: PicHandle; dstRect: Rect);

DrawPicture draws the given picture to scale in dstRect, expanding or
shrinking it as necessary to align the borders of the picture frame
with dstRect. DrawPicture passes any plicture comments to the procedure
accessed indirectly through the grafProcs field of the grafPort (see
PicComment above).

PROCEDURE KillPicture (myPicture: PicHandle);

KillPicture deallocates space for the picture whose handle is supplied,
and returns the memory used by the picture to the free memory pool.
Use this only when you are completely through with a picture.

Calculations with Polygons

FUNCTION OpenPoly : PolyHandle;

OpenPoly returns a handle to a new polygon and tells QuickDraw to start
saving the polygon definition as specified by calls to line~drawing
routines. While a polygon is open, all calls to Line and LineTo affect
the outline of the polygon. Only the line endpoints affect the polygon
definition; the pen mode, pattern, and size do not affect it. In fact,
OpenPoly calls HidePen, so no drawing occurs on the screen while the
polygon is open (unless you call ShowPen just after OpenPoly, or you
called ShowPen previously without balancing it by a call to HidePen).

3/2/83 Espinosa-Rose CONFIDENTTIAL /QUICK.2/QUIKDRAW.6

QUICKDRAW ROUTINES 63

A polygon should consist of a sequence of connected lines. Even though
the on—-screen presentation of a polygon is clipped, the definition of a
polygon is not; you can define a polygon anywhere on the coordinate
plane with complete disregard for the location of various grafPort
entities on that plane.

When a polygon is open, the current grafPort”s polySave field contains
a handle to information related to the polygon definition. If you want
to temporarily disable the polygon definition, you can save the current
value of this field, set the field to NIL, and later restore the saved
value to resume the polygon definition.

(eye)
Do not call OpenPoly while another polygon is already
open.

PROCEDURE ClosePoly;

ClosePoly tells QuickDraw to stop saving the definition of the
currently open polygon and computes the polyBBox rectangle. You should
perform one and only one ClosePoly for every OpenPoly. ClosePoly calls
ShowPen, balancing the HidePen call made by OpenPoly.

Here”s an example of how to open a polygon, define it as a triangle,
close it, and draw it: '

triPoly := OpenPoly; {save handle and begin collecting stuff}
MoveTo (30¢,100); { move to first point and }
LineTo (40@,200); { form }
LineTo(20@,200); { the }
LineTo(3¢0@,100); { triangle }
ClosePoly; {stop collecting stuff}
FillPoly(triPoly,gray); {draw it on the screen}
KillPoly(triPoly); {we"re all done}

PROCEDURE KillPoly (poly: PolyHandle);

KillPoly deallocates space for the polygon whose handle is supplied,
and returns the memory used by the polygon to the free memory pool.
Use this only after you are completely through with a polygon.

PROCEDURE OffsetPoly (poly: PolyHandle; dh,dv: INTEGER);

OffsetPoly moves the polygon on the coordinate plane, a distance of dh
horizontally and dv vertically. This does not affect the screen unless
you subsequently call a routine to draw the polygon. If dh and dv are
positive, the movement is to the right and down; if either is negative,
the corresponding movement is in the opposite direction. The polygon
retains its shape and size.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6

64 QuickDraw Programmer”s Guide

(hand)
OffsetPoly is an especially efficient operation, because
the data defining a polygon is stored relative to
polyStart and so isn“t actually changed by OffsetPoly.

Graphic Operations on Polygons

PROCEDURE FramePoly (poly: PolyHandle);‘

FramePoly plays back the line-drawing routine calls that define the
given polygon, using the current grafPort”s pen pattern, mode, and
size. The pen will hang below and to the right of each point on the
boundary of the polygon; thus, the polygon drawn will extend beyond the
right and bottom edges of poly~".polyBBox by the pen width and pen
height, respectively. All other graphic operations occur strictly
within the boundary of the polygon, as for other shapes. You can see
this difference in Figure 23, where each of the polygons is shown with
its polyBBox.

FramsFoly PaintPoly

Figure 23. Drawing Polygons

If a polygon is open and being formed, FramePoly affects the outline of
the polygon just as if the line-drawing routines themselves had been
called. If a region is open and being formed, the outside outline of
the polygon being framed is mathematically added to the region”s
boundary.

PROCEDURE PaintPoly (poly: PolyHandle);

PaintPoly paints the specified polygon with the current grafPort”s pen
pattern and pen mode. The polygon on the bitMap is filled with the
pnPat, according to the pattern transfer mode specified by pnMode. The

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW .6

QUICKDRAW ROUTINES 65

pen location is not changed by this procedure.

PROCEDURE ErasePoly (poly: PolyHandle);

ErasePoly paints the specified polygon with the current grafPort”s
background pattern bkPat (in patCopy mode). The pnPat and pnMode are
ignored; the pen location is not changed.

PROCEDURE InvertPoly (poly: PolyHandle);
InvertPoly inverts the pixels enclosed by the specified polygon: every
white pixel becomes black and every black pixel becomes white. The

grafPort”s pnPat, pnMode, and bkPat are all ignored; the pen location
is not changed.

PROCEDURE Fil11Poly (poly: PolyHandle; pat: Pattern);

FillPoly fills the specified polygon with the given pattern (in patCopy
mode). The grafPort”s pnPat, pnMode, and bkPat are all ignored; the
pen location is not changed.

Calculations with Points

PROCEDURE AddPt (srcPt: Point; VAR dstPt: Point);

AddPt adds the coordinates of srcPt to the coordinates of dstPt, and
returns the result in dstPt.

PROCEDURE SubPt (srcPt: Point; VAR dstPt: Point);

SubPt subtracts the coordinates of srcPt from the coordinates of dstPt,
and returns the result in dstPt.

PROCEDURE SetPt (VAR pt: Point; h,v: INTEGER);

SetPt assigns two integer coordinates to a variable of type Point.
FUNCTION EqualPt (ptA,ptB: Point) : BOOLEAN;

EqualPt compares the two points and returns true if they are equal or
FALSE if not.

3/2/83 Espinosa-Rose " CONFIDENTIAL /QUICK.2/QUIKDRAW.6

66 QuickDraw Programmer”s Guide

PROCEDURE LocalToGlobal (VAR pt: Point);

LocalToGlobal converts the given point from the current grafPort”s
local coordinate system into a global coordinate system with the origin
(8,8) at the top left corner of the port”s bit image (such as the
screen). This global point can then be compared to other global
points, or be changed into the local coordinates of another grafPort.

Since a rectangle is defined by two points, you can convert a rectangle
into global coordinates by performing two LocalToGlobal calls. You can
also convert a rectangle, region, or polygon into global coordinates by
calling OffsetRect, OffsetRgn, or OffsetPoly. For examples, see
GlobalToLocal below.

PROCEDURE GlobalToLocal (VAR pt: Point);

GlobalToLocal takes a point expressed in global coordinates (with the
top left corner of the bitMap as coordinate (§,8)) and converts it into
the local coordinates of the current grafPort. The global point can be
obtained with the LocalToGlobal call (see above). For example, suppose
a game draws a "ball” within a rectangle named ballRect, defined in the
grafPort named gamePort (as illustrated below in Figure 24). If you
want to draw that ball in the grafPort named selectPort, you can
calculate the ball”s selectPort coordinates like this:

SetPort(gamePort); {start in origin port}

selectBall := ballRect; {make a copy to be moved}
LocalToGlobal(selectBall.topLeft); {put both corners into }
LocalToGlobal(selectBall.botRight); { global coordinates }

SetPort(selectPort); {switch to destination port}
GlobalToLocal(selectBall.topLeft); {put both corners into }
GlobalToLocal(selectBall.botRight); { these local coordinates }
Fil1l0val(selectBall,ballColor); {now you have the ball!}

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW .6

QUICKDRAW ROUTINES 67

samePort aeiectPort
30 -1 N

‘:'1 -------------

LocalToGlobal %" i CabalToLocal
&0 - fuded

",

f L

Figure 24. Converting between Coordinate Systems

You can see from Figure 24 that LocalToGlobal and GlobalToLocal simply
offset the coordinates of the rectangle by the coordinates of the top
left corner of the local grafPort”s boundary rectangle. You could also
do this with OffsetRect. In fact, the way to convert regions and
polygons from one coordinate system to another is with OffsetRgn or
OffsetPoly rather than LocalToGlobal and GlobalToLocal. For example,
if myRgn were a region enclosed by a rectangle having the same
coordinates as ballRect in gamePort, you could convert the region to
global coordinates with

OffsetRgn(myRgn, -2@, -40);
and then convert it to the coordinates of the selectPort grafPort with

OffsetRgn(myRgn, 15, -30);

Miscellaneous Utilities

FUNCTION Random : INTEGER;

This function returns an integer, uniformly distributed pseudo-random,

in the range from -32768 through 32767. The value returned depends on

the global variable randSeed, which InitGraf initializes to 1; you can

start the sequence over again from where it began by resetting randSeed
to 1.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6

68 QuickDraw Programmer”s Guide

FUNCTION GetPixel (h,v: INTEGER) : BOOLEAN;

GetPixel looks at the pixel assoclated with the given coordinate point
and returns TRUE if it is black or FALSE if it is white. The selected
pixel 1s immediately below and to the right of the point whose
coordinates are given in h and v, in the local coordinates of the
current grafPort. There is no guarantee that the specified pixel
actually belongs to the port, however; it may have been drawn by a port
overlapping the current one. To see if the point indeed belongs to the
current port, perform a PtInRgn(pt,thePort”.visRgn).

PROCEDURE StuffHex (thingPtr: QDPtr; s: Str255);

StuffHex pokes bits (expressed as a string of hexadecimal digits) into
any data structure. This is a good way to create cursors, patterns, or
bit images to be "stamped” onto the screen with CopyBits. For example,

StuffHex(@stripes, " @10204081020438¢7)
places a striped pattern into the pattern variable stripes.

(eye)
There is no range checking on the size of the destination
variable. 1It“s easy to overrun the variable and destroy
something if you don”"t know what you“re doing.

PROCEDURE ScalePt (VAR pt: Point; srcRect,dstRect: Rect);

A width and height are passed in pt; the horizontal component of pt 1is
the width, and the vertical component of pt is the height. ScalePt
scales these measurements as follows and returns the result in pt: it
multiplies the given width by the ratio of dstRect”s width to srcRect”s
width, and multiplies the given height by the ratio of dstRect”s height
to srcRect”s height. 1In Figure 25, where dstRect”s width is twice
srcRect”s width and its height is three times srcRect”s height, the pen
width is scaled from 3 to 6 and the pen height is scaled from 2 to 6.

3/2/83 Espinosa-Rose ~ CONFIDENTIAL /QUICK.2/QUIKDRAW .6

QUICKDRAW ROUTINES 69

MapPt maps point (3,2} to {1

]
f-.,i':‘.-

ScalePt scales pen size {3,2) 1o {6,5),

Figure 25. ScalePt and MapPt

PROCEDURE MapPt (VAR pt: Point; srcRect,dstRect: Rect);

Given a point within srcRect, MapPt maps it to a similarly located
point within dstRect (that is, to where it would fall if it were part
of a drawing being expanded or shrunk to fit dstRect). The result is
returned in pt. A cornmer point of srcRect would be mapped to the
corresponding corner point of dstRect, and the center of srcRect to the
center of dstRect. In Figure 25 above, the point (3,2) in srcRect is
mapped to (18,7) in dstRect. TFromRect and dstRect may overlap, and pt
need not actually be within srcRect.

(eye)
Remember, 1f you are going to draw inside the rectangle
in dstRect, you will probably also want to scale the pen
size accordingly with ScalePt.

PROCEDURE MapRect (VAR r: Rect; srcRect,dstRect: Rect);

Given a rectangle within srcRect, MapRect maps it to a similarly
located rectangle within dstRect by calling MapPt to map the top left
and bottom right corners of the rectangle. The result is returned in
r.

PROCEDURE MapRgn (rgn: RgnHandle; srcRect,dstRect: Rect);
Given a region within srcRect, MapRgn maps it to a similarly located

region within dstRect by calling MapPt to map all the points in the
region.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6

70 QuickDraw Programmer”s Guide

PROCEDURE MapPoly (poly: PolyHandle; srcRect,dstRect: Rect);

Given a polygon within srcRect, MapPoly maps it to a similarly located
polygon within dstRect by calling MapPt to map all the points that
define the polygon.

CUSTOMIZING QUICKDRAW OPERATIONS

For each shape that QuickDraw knows how to draw, there are procedures
that perform these basic graphic operations on the shape: frame,
paint, erase, invert, and fill. Those procedures in turn call a
low-level drawing routine for the shape. For example, the FrameOval,
PaintOval, EraseOval, InvertOval, and FillOval procedures all call a.
low—level routine that draws the oval. For each type of object
QuickDraw can draw, including text and lines, there is a pointer to
such a routine. By changing these pointers, you can install your own
routines, and either completely override the standard ones or call them
after your routines have modified parameters as necessary.

Other low-level routines that you can install in this way are:
- The procedure that does bit transfer and is called by CopyBits.

- The function that measures the width of text and is called by
CharWidth, StringWidth, and TextWidth.

- The procedure that processes picture comments and is called by
DrawPicture. The standard such procedure ignores picture
comments.

- The procedure that saves drawing commands as the definition of a
picture, and the one that retrieves them. This enables the
application to draw on remote devices, print to the disk, get
picture input from the disk, and support large pictures.

The grafProcs field of a grafPort determines which low-level routines
are called; if it contains NIL, the standard routines are called, so
that all operations in that grafPort are done in the standard ways
described in this manual. You can set the grafProcs field to point to
a record of pointers to routines. The data type of grafProcs is
QDProcsPtr:

3/2/83 Rose CONFIDENTIAL /QUICK.2/QUIKDRAW .7

CUSTOMIZING QUICKDRAW OPERATIONS 71

TYPE QDProcsPtr = ~“QDProcs;
QDProcs = RECORD
textProc: QDPtr; {text drawing}
lineProc: QDPtr; {line drawing}
rectProc: QDPtr; {rectangle drawing}
rRectProc: QDPtr; {roundRect drawing}
ovalProc: QDPtr; {oval drawing}

arcProc: QPtr; {arc/wedge drawing}
polyProc: QDPtr; {polygon drawing}
rgnProc: QDPtr; {region drawing}

bitsProc: QDPtr; {bit transfer}
commentProc: QDPtr; {plicture comment processing}
txMeasProc: QDPtr; {text width measurement}
getPicProc: QDPtr; {picture retrieval}
putPicProc: QDPtr {picture saving}

END; '

To assist you in setting up a QDProcs record, QuickDraw provides the
following procedure:

PROCEDURE SetStdProcs (VAR procs: QDProcs);

This procedure sets all the fields of the given QDProcs record to point
to the standard low-level routines. You can then change the ones you
wish to point to your own routines. For example, if your procedure
that processes picture comments is named MyCommernts, you will store
@MyComments in the commentProc field of the QDProcs record.

The routines you install must of course have the same calling sequences
as the standard routines, which are described below. The standard
drawing routines tell which graphic operation to perform from a
parameter of type GrafVerb.

TYPE GrafVerb = (frame, paint, erase, invert, fill);

When the grafVerb is fill, the pattern to use when filling is passed in
the fillPat field of the grafPort.

PROCEDURE StdText (byteCount: INTEGER; textBuf: QDPtr; numer,denom:
INTEGER);

StdText is the standard low-level routine for drawing text. It draws
text from the arbitrary structure in memory specified by textBuf,
starting from the first byte and continuing for byteCount bytes. Numer
and denom specify the scaling, if any: numer.v over denom.v gives the
vertical scaling, and numer.h over denom.h gives the horizontal
scaling.

PROCEDURE StdLine (newPt: Point);

StdLine is the standard low-level routine for drawing a line. It draws
a line from the current pen location to the location specified (in

3/2/83 Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.7

72 QuickDraw Programmer”s Guide
local coordinates) by newPt.

PROCEDURE StdRect (verb: GrafVerb; r: Rect);

StdRect is the standard low-level routine for drawing a rectangle. It
draws the given rectangle according to the specified grafVerb.

PROCEDURE StdRRect (verb: GrafVerb; r: Rect; ovalwidth,ovalHeight:
INTEGER);

StdRRect is the standard low-level routine for drawing a rounded-corner
rectangle. It draws the given rounded-corner rectangle according to
the specified grafVerb. OvalWidth and ovalHeight specify the diameters
of curvature for the corners.

PROCEDURE StdOval (verb: GrafVerb; r: Rect);

StdOval is the standard low-level routine for drawing an oval. Tt
draws an oval inside the given rectangle according to the specified
grafVerb.

PROCEDURE StdArc (verb: GrafVerb; r: Rect; startAngle,arcAngle:
INTEGER) ;

StdArc is the standard low-~level routine for drawing an arc or a wedge.
It draws an arc or wedge of the oval that fits inside the given
rectangle. The grafVerb specifies the graphic operation; if it”s the
frame operation, aun arc is drawn; otherwise, a wedge is drawn.

PROCEDURE StdPoly (verb: GrafVerb; poly: PolyHandle);

StdPoly is the standard low-level routine for drawing a polygon. It

draws the given polygon according to the specified grafVerb.

PROCEDURE StdRgn (verb: GrafVerb; rgn: RgnHandle);

StdRgn is the standard low—-level routine for drawing a region. 1t

draws the given region according to the specified grafVerb.

PROCEDURE StdBits (VAR srcBits: BitMap; VAR srcRect,dstRect: Rect;
mode: INTEGER; maskRgn: RgnHandle);

StdBits is the standard low-level routine for doing bit transfer. It

transfers a bit image between the given bitMap and thePort”.portBits,

just as if CopyBits were called with the same parameters and with a
destination bitMap equal to thePort”.portBits.

3/2/83 Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.7

CUSTOMIZING QUICKDRAW OPERATIONS 73

PROCEDURE StdComment (kind,dataSize: INTEGER; dataHandle: QDHandle);

StdComment 1is the standard low—level routine for processing a picture
comment. Kind identifies the type of comment. DataHandle is a handle
to additional data, and dataSize is the size of that data in bytes. If
there is no additional data for the command, dataHandle will be NIL and
dataSize will be . StdComment simply ignores the comment.

FUNCTION StdTxMeas (byteCount: INTEGER; textBuf: QDPtr; VAR
numer,denom: Point; VAR info: FontInfo) : INTEGER;

StdTxMeas is the standard low-level routine for measuring text width.
It returns the width of the text stored in the arbitrary structure in
memory specified by textBuf, starting with the first byte and
continuing for byteCount bytes. Numer and denom specify the scaling as
in the StdText procedure; note that StdTxMeas may change them.

PROCEDURE StdGetPic (dataPtr: QDPtr; byteCount: INTEGER);

StdGetPic is the standard low-level routine for retrieving information
from the definition of a picture. It retrieves the next byteCount
bytes from the definition of the currently open picture and stores them
in the data structure pointed to by dataPtr.

PROCEDURE StdPutPic (dataPtr: QDPtr; byteCount: INTEGER);

StdPutPic is the standard low—level routine for saving information as
the definition of a picture. It saves as the definition of the
currently open picture the drawing commands stored in the data
structure pointed to by dataPtr, starting with the first byte and
continuing for the next byteCount bytes.

USING QUICKDRAW FROM ASSEMBLY LANGUAGE

All Macintosh User Interface Toolbox routines can be called from
assembly-language programs as well as from Pascal. When you write an
assembly-language program to use these routines, though, you must
emulate Pascal”s parameter passing and variable transfer protocols.

This section discusses how to use the QuickDraw constants, global
variables, data types, procedures, and functions from assembly
language.

The primary aid to assembly-language programmers is a file named
GRAFTYPES.TEXT. 1If you use .INCLUDE to include this file when you
assemble your program, all the QuickDraw constants, offsets to
locations of global variables, and offsets into the fields of
structured types will be available in symbolic form.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW .A

74 QuickDraw Programmer”s Guide

Constants

QuickDraw constants are stored in the GRAFTYPES.TEXT file, and you can
use the constant values symbolically. For example, if you“ve loaded
the effective address of the thePort”.txMode field into address
register A2, you can set that field to the srcXor mode with this
statement:

MOVE.W #SRCXOR,(A2)
To refer to the number of bytes occupied by the QuickDraw global
variables, you can use the constant GRAFSIZE. When you call the

InitGraf procedure, you must pass a pointer to an area at least that
large.

Data Types

Pascal”s strong typing ability lets you write Pascal programs without
really considering the size of a variable. But in assembly language,
you must keep track of the size of every variable. The sizes of the
standard Pascal data types are as follows:

Type Size

INTEGER Word (2 bytes)
LongInt Long (4 bytes)
BOOLEAN Word (2 bytes)
CHAR Word (2 bytes)
REAL Long (4 bytes)

INTEGERs and LongInts are in two”s complement form; BOOLEANs have their
boolean value in bit 8 of the word (the low-order bit of the byte at
the same location); CHARs are stored in the high-order byte of the
word; and REALs are in the KCS standard format.

The QuickDraw simple data types listed below are constructed out of
these fundamental types.

Type Size

QDPtr Long (4 bytes)
QDHandle Long (4 bytes)
Word Long (4 bytes)
Str255 Page (256 bytes)
Pattern 8 bytes

Bitslé 32 bytes

Other data types are constructed as records of variables of the above
types. The size of such a type is the sum of the sizes of all the
fields in the record; the fields appear in the variable with the first
field in the lowest address. For example, consider the data type
BitMap, which 1s defined like this:

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.A

USING QUICKDRAW FROM ASSEMBLY LANGUAGE 75

TYPE BitMap = RECORD
baseAddr: QDPtr;
rowBytes: INTEGER;
bounds: Rect
END;

This data type would be arranged In memory as seven words: a long for
the baseAddr, a word for the rowBytes, and four words for the top,
left, right, and bottom parts of the bounds rectangle. To assist you
in referring to the fields inside a variable that has a structure like
this, the GRAFTYPES.TEXT file defines constants that you can use as
offsets into the fields of a structured variable. For example, to move
a bitMap”s rowBytes value into D3, you would execute the following
instruction:

MOVE.W MYBITMAP+ROWBYTES,D3

Displacements are given in the GRAFTYPES.TEXT file for all fields of
all data types defined by QuickDraw.

To do double indirection, you perform an LEA indirectly to obtain the
effective address from the handle. For example, to get at the top
coordinate of a region”s enclosing rectangle:

MOVE.L MYHANDLE,Al ;3 Load handle into Al
MOVE.L (Al),Al ; Use handle to get pointer
MOVE.W RGNBBOX+TOP(Al),D3 ; Load value using pointer

(eye)
For regions (and all other variable-length structures
with handles), you must not move the pointer into a
register once and just continue to use that pointer; you
must do the double indirection each time. Every
QuickDraw, Toolbox, or memory management call you make
can possibly trigger a heap compaction that renders all
pointers to movable heap items (like regions) invalid.
The handles will remain valid, but pointers you“ve
obtained through handles can be rendered invalid at any
subroutine call or trap in your program.

Global Variables

Global variables are stored in a special section of Macintosh low
memory; register A5 always points to this section of memory. The
GRAFTYPES.TEXT file defines a constant GRAFGLOB that points to the
beginning of the QuickDraw variables in this space, and other constants
that point to the individual variables. To access one of the
variables, put GRAFGLOB in an address register, sum the constants, and
index off of that register. For example, if you want to know the
horizontal coordinate of the pen location for the current grafPort,
which the global variable thePort points to, you can give the following
instructions:

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.A

76

QuickDraw Programmer”s Guide

MOVE.L GRAFGLOB(A5),AQ ; Point to QuickDraw globals
MOVE.L THEPORT(A®),Al ; Get current grafPort
MOVE.W PNLOC+H(Al),D® ; Get thePort”.pnLoc.h

Procedures and Functions

To call a QuickDraw procedure or function, you must push all parameters
to 1t on the stack, then JSR to the function or procedure. When you
link your program with QuickDraw, these JSRs are adjusted to refer to
the jump table in low RAM, so that a JSR into the table redirects you
to the actual location of the procedure or function.

The only difficult part about calling QuickDraw procedures and
functions is stacking the parameters. You must follow some strict
rules:

This
mock

Save all registers you wish to preserve BEFORE you begin pushing
parameters. Any QuickDraw procedure or function can destroy the
contents of the registers Af, Al, D@, D1, and D2, but the others
are never altered.

Push the parameters in the order that they appear in the Pascal
procedural interface.

For booleans, push a byte; for integers and characters, push a
word; for pointers, handles, long integers, and reals, push a
long.

For any structured variable longer than four (4) bytes, push a
pointer to the wvariable.

For all VAR parameters, regardless of size, push a pointer to the
variable.

When calling a function, FIRST push a null entry equal to the size
of the function result, THEN push all other parameters. The
result will be left on the stack after the function returns to
you.

makes for a lengthy interface, but it also guarantees that you can
up a Pascal version of your program, and later translate it into

assembly code that works the same. For example, the Pascal statement

blackness := GetPixel(5@,mousePos.v);

would be written in assembly language like this:

CLR.W ~—(SP)

MOVE.W #5@,~-(SP)
MOVE.W MOUSEPOS+V,-(SP)
JSR GETPI XEL

MOVE.W (SP)+,BLACKNESS

Save space for boolean result
Push constant 5@ (decimal)
Push the value of mousePos.v
Call routine

Fetch result from stack

we we we we v

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.A

USING QUICKDRAW FROM ASSEMBLY LANGUAGE 77

This is a simple example, pushing and pulling word-long constants.
Normally, you”ll be pushing more pointers, using the PEA (Push

Effective Address) instruction:

FillRoundRect(myRect,l,thePort”.pnSize.v,white);

PEA MYRECT

MOVE.W #1,-(SP)

MOVE.L GRAFGLOB(AS5),AQ
MOVE.L THEPORT(A®),Al
MOVE.W PNSIZE+V(Al),-(SP)
PEA WHITE(AQ)

JSR FILLROUNDRECT

we Ve we We Ve Ve ve

To call the TextFace procedure, push

Push pointer to myRect

Push constant 1

Point to QuickDraw globals

Get current grafPort

Push value of thePort”.pnSize.v

Push pointer to global variable white
Call the subroutine

a word in which each of seven bits

represents a stylistic variation: set bit ¢ for bold, bit 1 for
italic, bit 2 for underline, bit 3 for outline, bit 4 for shadow, bit 5

for condense, and bit 6 for extend.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.S

78 QuickDraw Programmer”s Guide

SUMMARY OF QUICKDRAW

CONST srcCopy = (;
srcOr = 1;
srcXor = 23
srcBic = 33
notSrcCopy = 4;
notSrcOr = 53
notSrcXor = 6;
notSrcBic = 7;
patCopy = 8;
patOr = 9;
patXor = 1¢;
patBic = 11;
notPatCopy = 12;
notPatOr = 13;
notPatXor = 1l4;
notPatBic = 15;
blackColor = 33;
whiteColor = 30;
redColor = 205;
greenColor = 341;
blueColor = 409;
cyanColor = 273;
magentaColor = 137;
yellowColor = 69;
picLParen = (3
picRParen = 1;

TYPE QDByte = -128..127;
QDPtr = “QDByte;
QDHandle = ~QDPtr;
Str255 = STRING[255];
Pattern = PACKED ARRAY [@..7] OF @..255;
Bitsl6 = ARRAY [§..15] OF INTEGER;

GrafVerb = (frame, paint, erase, invert, fill);

StyleItem = (bold, italic, underline, outline, shadow, condense,

extend);

Style = SET OF StyleItem;

FontInfo = RECORD
ascent: INTEGER;
descent: INTEGER;
widMax: INTECER;
leading: INTEGER

END;
3/2/83 Espinosa-Rose CONFIDENTIAL

/QUICK.2/QUIKDRAW.S

VHSelect =

Point

(v,h);

SUMMARY OF QUICKDRAW

RECORD CASE INTEGER OF

@: (v: INTEGER;
h: INTEGER);

1: (vh: ARRAY[VHSelect] OF INTEGER)
END;
Rect = RECORD CASE INTEGER OF
@: (top: INTEGER;
left: INTEGER;
bottom: INTEGER;
right: INTEGER) ;

1: (topLeft:

Point;

botRight: Point)

END;
BitMap = RECORD
baseAddr: QDPtr;
rowBytes: INTEGER;
bounds: Rect
END;
Cursor = RECORD
data: Bitsl6;
mask: Bitsl6;
hotSpot: Point
END;
PenState = RECORD
pnLoc: Point;
pnSize: Point;
pnMode: INTEGER;
pnPat: Pattern
END;
RgnHandle = “RgnPtr;
RgnPtr = "Region;
Region = RECORD
rgnSize: INTEGER;

rgnBBox Rect

{more
END;

3/2/83 Espinosa-Rose

data if not rectangular}

CONFIDENTIAL

79

/QUICK.2/QUIKDRAW.S

80 QuickDraw Programmer”s Guide

PicHandle = “PicPtr;
PicPtr = “Picture;
Picture = RECORD
picSize: INTEGER;
picFrame: Rect;
{picture definition data}
END; -
PolyHandle = “PolyPtr;
PolyPtr = “Polygon;
Polygon = RECORD
polySize: INTEGER;
polyBBox: Rect
polyPoints: ARRAY [§..0] OF Point
END;
QDProcsPtr = “QDProcs;
QDProcs = RECORD
textProc: QDPtr;
lineProc: QDPtr;
rectProc: QDPtr;
rRectProc: QDPtr;
ovalProc: QDPtr;
arcProc: QDPtr;
polyProc: QDPtr;
rgnProc: QDPtr;
bitsProc: QDPtr;
commentProc: QDPtr;
txMeasProc: QDPtr;
getPicProc: QDPtr;
putPicProc: QDPtr
END;
3/2/83 Espinosa-Rose CONFIDENTIAL

/QUICK.2/QUIKDRAW.S

GrafPtr
GrafPort

VAR thePort:

white:
black:

gray:

1tGray:
dkGray:

arrow:

screenBits:
randSeed:

[

RE

“GrafPort;

CORD
device:
portBits
portRect
visRgn:
clipRgn:
bkPat:
fillPat:
pnlLoc:
pnSize:
pnMode:
pnPat:
pnVis:
txFont:
txFace:
txMode:
txSize:
spExtra:
fgColor:
bkColor:
colrBit:

s oo

patStretch:

picSave:
rgnSave:
polySave:
grafProcs:

END;

GrafPtr;

Pattern;
Pattern;
Pattern;

Pattern;
Patterns

Cursor;

BitMap;
LongInt;

INTEGER;
BitMap;
Rect}
RgnHandle;
RgnHandle;
Pattern;
Pattern;
Point;
Point;
INTEGER;
Pattern;
INTEGER;
INTEGER;
Style;
INTEGER;
INTEGER;
INTEGER;
LongInt;
LongInt;
INTEGER;
INTEGER;
QDHandle;
QDHand le}
QDHandle;
QDProcsPtr

SUMMARY OF QUICKDRAW

GrafPort Routines

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

InitGraf
OpenPort
InitPort
ClosePort
SetPort
GetPort
GrafDevice

(globalPtr: QDPtr);
(gp: GrafPtr);

(gp: GrafPtr);

(gp: GrafPtr);

(gp: GrafPtr);

(VAR gp: GrafPtr);
(device: INTEGER);

SetPortBits (bm: BitMap);

PortSize
MovePortTo
SetOrigin

3/2/83 Espinosa-Rose

(width,height: INTEGER);
(leftGlobal,topGlobal: INTEGER);
(h,v: INTEGER);

CONFIDENTIAL /QUICK.2/QUIKDRAW.S

82 QuickDraw Programmer”s Guide

PROCEDURE

SetClip

PROCEDURE GetClip

PROCEDURE
PROCEDURE

ClipRect
BackPat

Cursor Handling

(rgn: RgnHandle);
(rgn: RgnHandle);
(r: Rect);

(pat: Pattern);

PROCEDURE InitCursor;
PROCEDURE SetCursor
PROCEDURE HideCursor;
PROCEDURE ShowCursor;
PROCEDURE ObscureCursor;

(crsr: Cursor);

Pen and Line Drawing

PROCEDURE HidePen;

PROCEDURE ShowPen;

PROCEDURE GetPen (VAR pt: Point);
PROCEDURE GetPenState (VAR pnState: PenState);
PROCEDURE SetPenState (pnState: PenState);
PROCEDURE PenSize (width,height: INTEGER);
PROCEDURE PenMode (mode: INTEGER);
PROCEDURE PenPat (pat: Pattern);
PROCEDURE PenNormal;

PROCEDURE MoveTo (h,v: INTEGER);
PROCEDURE Move (dh,dv: INTEGER);
PROCEDURE LineTo (h,v: INTEGER);
PROCEDURE Line (dh,dv: INTEGER);

Text Drawing

PROCEDURE TextFont (font: INTEGER);

PROCEDURE TextFace (face: Style);

PROCEDURE TextMode (mode: INTEGER);

PROCEDURE TextSize (size: INTEGER);

PROCEDURE SpaceExtra (extra: INTEGER);

PROCEDURE DrawChar (ch: CHAR);

PROCEDURE DrawString (s: Str255);

PROCEDURE DrawText (textBuf: QDPtr; firstByte,byteCount: INTEGER);

FUNCTION CharWidth (ch: CHAR) : INTEGER; :

FUNCTION StringWidth (s: Str255) : INTEGER;

FUNCTION TextWidth (textBuf: QDPtr; firstByte,byteCount: INTEGER) :
INTEGER;

PROCEDURE GetFontInfo (VAR info: FontInfo);

3/2/83 Espinosa-Rose

CONFIDENTIAL /QUICK.2/QUIKDRAW.S

SUMMARY OF QUICKDRAW 83

Drawing in Color

PROCEDURE ForeColor (color: LongInt);
PROCEDURE BackColor (color: LonglInt);
PROCEDURE ColorBit (whichBit: INTEGER);

Calculations with Rectangles

PROCEDURE SetRect (VAR r: Rect; left,top,right,bottom: INTEGER);

PROCEDURE OffsetRect (VAR r: Rect; dh,dv: INTEGER);

PROCEDURE InsetRect (VAR r: Rect; dh,dv: INTEGER);

FUNCTION SectRect (srcRectA,srcRectB: Rect; VAR dstRect: Rect) :
BOOLEAN;

PROCEDURE UnionRect (srcRectA,srcRectB: Rect; VAR dstRect: Rect)

FUNCTION PtInRect (pt: Point; r: Rect) : BOOLEAN;

PROCEDURE Pt2Rect (ptA,ptB: Point; VAR dstRect: Rect);

PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: INTEGER);

FUNCTION EqualRect (rectA,rectB: Rect) : BOOLEAN;

FUNCTION EmptyRect (r: Rect) : BOOLEAN;

Graphic Operations on Rectangles

PROCEDURE FrameRect (r: Rect);
PROCEDURE PaintRect (r: Rect);
PROCEDURE EraseRect (r: Rect);
PROCEDURE InvertRect (r: Rect);
PROCEDURE FillRect (r: Rect; pat: Pattern);

Graphic Operations on Ovals

PROCEDURE FrameOval (r: Rect);
PROCEDURE PaintOval (r: Rect):
PROCEDURE EraseOval (r: Rect);
PROCEDURE InvertOval (r: Rect);
PROCEDURE FillOval (r: Rect; pat: Pattern);

Graphic Operations on Rounded-Corner Rectangles

PROCEDURE FrameRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

PROCEDURE PaintRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

PROCEDURE EraseRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

PROCEDURE InvertRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

PROCEDURE FillRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER;
pat: Pattern);

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.S

84 QuickDraw Programmer”s Guide

Graphic Operations on Arcs and Wedges

PROCEDURE
PROCEDURE
PROCEDURE

FrameArc
PaintArc
EraseArc

(r: Rect; startAngle,arcAngle: INTEGER);
(r: Rect; startAngle,arcAngle: INTEGER);
(r: Rect; startAngle,arcAngle: INTEGER);

PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: INTEGER);

PROCEDURE

FillArc

(r: Rect; startAngle,arcAngle: INTEGER; pat:
Pattern);

Calculations with Regions

FUNCTION VNewRgn : RgnHandle;

PROCEDURE DisposeRgn (rgn: RgnHandle);

PROCEDURE CopyRgn (srcRgn,dstRgn: RgnHandle);

PROCEDURE SetEmptyRgn (rgn: RgnHandle);

PROCEDURE SetRectRgn (rgn: RgnHandle; left,top,right,bottom: INTEGER);
PROCEDURE RectRgn (rgn: RgnHandle; r: Rect);

PROCEDURE OpenRgn;

PROCEDURE CloseRgn (dstRgn: RgnHandle);

PROCEDURE OffsetRgn (rgn: RgnHandle; dh,dv: INTEGER);
PROCEDURE InsetRgn (rgn: RgnHandle; dh,dv: INTEGER);
PROCEDURE SectRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);
PROCEDURE UnionRgn (srcRgnA, srcRgnB,dstRgn: RgnHandle);
PROCEDURE DiffRgn (srcRgnA, srcRgnB,dstRgn: RgnHandle);
PROCEDURE XorRgn (srcRgnA, srcRgnB,dstRgn: RgnHandle);
FUNCTION PtInRgn (pt: Point; rgn: RgnHandle) : BOOLEAN;
FUNCTION RectInRgn (r: Rect; rgn: RgnHandle) : BOOLEAN;
FUNCTION EqualRgn (rgnA,rgnB: RgnHandle) : BOOLEAN;
FUNCTION EmptyRgn (rgn: RgnHandle) : BOOLEAN;

Graphic Operations on Regions

PROCEDURE FrameRgn
PROCEDURE PaintRgn (rgn: RgnHandle);
PROCEDURE EraseRgn (rgn: RgnHandle);
PROCEDURE InvertRgn (rgn: RgnHandle);
PROCEDURE FillRgn

(rgn: RgnHandle);

Bit Transfer Operations

(rgn: RgnHandle; pat: Pattern);

PROCEDURE ScrollRect (r: Rect; dh,dv: INTEGER
(srcBits,dstBits: BitMap;

PROCEDURE CopyBits

updateRgn: RgnHandle);
srcRect,dstRect: Rect;

mode: INTEGER; maskRgn: RgnHandle);

3/2/83 Espinosa-Rose CONFIDENTIAL

/QUICK.2/QUIKDRAW.S

SUMMARY OF QUICKDRAW 85

Pictures

FUNCTION OpenPicture (picFrame: Rect) : PicHandle;

PROCEDURE PicComment (kind,dataSize: INTEGER; dataHandle: (DHandle);
PROCEDURE ClosePicture;

PROCEDURE DrawPicture (myPicture: PicHandle; dstRect: Rect);
PROCEDURE KillPicture (myPicture: PicHandle);

Calculations with Polygons

FUNCTION OpenPoly : PolyHandle;

PROCEDURE ClosePoly;

PROCEDURE KillPoly (poly: PolyHandle);

PROCEDURE OffsetPoly (poly: PolyHandle; dh,dv: INTEGER);

Graphic Operations on Polygons

PROCEDURE FramePoly (poly: PolyHandle);
PROCEDURE PaintPoly (poly: PolyHandle);
PROCEDURE ErasePoly (poly: PolyHandle);
PROCEDURE InvertPoly (poly: PolyHandle);
PROCEDURE FillPoly (poly: PolyHandle; pat: Pattern);

Calculations with Points

PROCEDURE AddPt (srcPt: Point; VAR dstPt: Point);
PROCEDURE SubPt (srcPt: Point; VAR dstPt: Point);
PROCEDURE SetPt (VAR pt: Point; h,v: INTEGER);
FUNCTION EqualPt (ptA,ptB: Point) : BOOLEAN;

PROCEDURE LocalToGlobal (VAR pt: Point);
PROCEDURE GlobalToLocal (VAR pt: Point);

Miscellaneous Utilities

FUNCTION Random : INTEGER;

FUNCTION GetPixel (h,v: INTEGER) : BOOLEAN;

PROCEDURE StuffHex (thingPtr: QDPtr; s: Str255);

PROCEDURE ScalePt (VAR pt: Point; srcRect,dstRect: Rect);
PROCEDURE MapPt (VAR pt: Point; srcRect,dstRect: Rect);
PROCEDURE MapRect (VAR r: Rect; srcRect,dstRect: Rect);
PROCEDURE MapRgn (rgn: RgnHandle; srcRect,dstRect: Rect);
PROCEDURE MapPoly (poly: PolyHandle; srcRect,dstRect: Rect);

3/2/83 Espinosa—-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.S

86

QuickDraw Programmer”s Guide

Customizing QuickDraw Operations

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
FUNCTION

PROCEDURE
PROCEDURE

3/2/83 Espinosa—-Rose

SetStdProcs (VAR procs: QDProcs);

StdText

StdLine
StdRect
StdRRect

StdOval
StdArc

StdPoly
StdRgn
StdBits

StdComment
StdTxMeas

StdGetPic
StdPutPic

(byteCount: INTEGER; textAddr: QDPtr; numer,denom:
Point);

(newPt: Point);
(verb: GrafVerb; r:
(verb: GrafVerb; r:
INTEGER) ;

(verb: GrafVerb; r:
(verb: GrafVerb; r:
INTEGER) ;

(verb: GrafVerb; poly: PolyHandle);

(verb: GrafVerb; rgn: RgnHandle);

(VAR srcBits: BitMap; VAR srcRect,dstRect: Rect;
mode: INTEGER; maskRgn: RgnHandle);
(kind,dataSize: INTEGER; dataHandle: QDHandle);
(byteCount: INTEGER; textBuf: QDPtr; VAR numer,
denom: Point; VAR info: FontInfo) : INTEGER;
(dataPtr: QDPtr; byteCount: INTEGER);

(dataPtr: QDPtr; byteCount: INTEGER);

Rect);
Rect; ovalwidth,ovalHeight:

Rect);
Rect; startAngle,arcAngle:

CONFIDENTIAL /QUICK.2/QUIKDRAW.S

GLOSSARY 87

GLOSSARY

bit image: A collection of bits in memory which have a rectilinear
representation. The Macintosh screen is a visible bit image.

bitMap: A pointer to a bit image, the row width of that image, and its
boundary rectangle.

boundary rectangle: A rectangle defined as part of a bitMap, which
encloses the active area of the bit image and imposes a coordinate
system on it. 1Its top left corner is always aligned around the first
bit in the bit image.

character style: A set of stylistic variations, such as bold, italic,
and underline. The empty set indicates normal text (no stylistic
variations).

clipping: Limiting drawing to within the bounds of a particular area.
clipping region: Same as clipRgn.

clipRgn: The region to which an application limits drawing in a
grafPort.

coordinate plane: A two—dimensional grid. 1In QuickDraw, the grid
coordinates are integers ranging from -32768 to +32767, and all grid
lines are infinitely thin.

cursor: A 16-by-16-bit image that appears on the screen and is
controlled by the mouse; called the "pointer” in other Macintosh
documentation.

cursor level: A value, initialized to ¢ when the system is booted,
that keeps track of the number of times the cursor has been hidden.

empty: Containing no bits, as a shape defined by only one point.

font: The complete set of characters of one typeface, such as
Helvetica.

frame: To draw a shape by drawing an outline of it.

global coordinate system: The coordinate system based on the top left
corner of the bit image being at (9,0).

grafPort: A complete drawing environment, including such elements as a
bitMap, a subset of it in which to draw, a character font, patterns for
drawing and erasing, and other pen characteristics.

grafPtr: A pointer to a grafPort.

handle: A pointer to one master pointer to a dynamic, relocatable data

structure (such as a region).

3/2/83 Rose CONFIDENTIAL /QUICK.2/QUIKDRAW .G

88 QuickDraw Programmer”s Guide
hotSpot: The point in a cursor that is aligned with the mouse
position.

kern: To stretch part of a character back under the previous
character.

local coordinate system: The coordinate system local to a grafPort,
imposed by the boundary rectangle defined in its bitMap.

missing symbol: A character to be drawn in case of a request to draw a
character that is missing from a particular font.

pattern: An 8-by-8-bit image, used to define a repeating design (such
as stripes) or tone (such as gray).

pattern transfer mode: One of eight transfer modes for drawing lines
or shapes with a pattern.

picture: A saved sequence of QuickDraw drawing commands (and,
optionally, picture comments) that you can play back later with a
single procedure call; also, the image resulting from these commands.

picture comments: Data stored in the definition of a picture which
does not affect the picture”s appearance but may be used to provide
additional information about the picture when 1it”s played back.
picture frame: A rectangle, defined as part of a picture, which
surrounds the picture and gives a frame of reference for scaling when
the picture is drawn.

pixel: The visual representation of a bit on the screen (white if the
bit is @, black if it”s 1).

point: The intersection of a horizontal grid line and a vertical grid
line on the coordinate plane, defined by a horizontal and a vertical
coordinate.

polygon: A sequence of connected lines, defined by QuickDraw
line~drawing commands.

port: Same as grafPort.
portBits: The bitMap of a grafPort.
portBits.bounds: The boundary rectangle of a grafPort”s bitMap.

portRect: A rectangle, defined as part of a grafPort, which ehcloses a
subset of the bitMap for use by the grafPort.

region: An arbitrary area or set of areas on the coordinate plane.
The outline of a region should be one or more closed loops.

row width: The number of bytes in each row of a bit image.

3/2/83 Rose V CONFIDENTIAL /QUICK.2/QUIKDRAW.G

GLOSSARY 89

solid: Filled in with any pattern.

source transfer mode: One of eight transfer modes for drawing text or
transferring any bit image between two bitMaps.

style: See character style.
thePort: A global variable that points to the current grafPort.

transfer mode: A specification of which boolean operation QuickDraw
should perform when drawing or when transferring a bit image from one
bitMap to another.

visRgn: The region of a grafPort, manipulated by the Window Manager,
which is actually visible on the screen.

3/2/83 Rose " CONFIDENTIAL /QUICK.2/QUIKDRAW.G

MACINTOSH USER EDUCATION

The Font Manager: A Programmer's Guide /FMGR/FONT

See Also: Macintosh User Interface Guidelines
The Memory Manager: A Programmer's Guide
Macintosh Operating System Reference Manual
QuickDraw: A Programmer's Guide
The Resource Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide
Programming Macintosh Applications in Assembly Language

Modification History: Preliminary Draft Caroline Rose 4/2¢/83
First Draft (ROM 3.§) Caroline Rose 4/22/83
Second Draft (ROM 7) Brad Hacker 2/7/84

Third Draft Caroline Rose & Brad Hacker 6/11/84

ABSTRACT

The Font Manager is the part of the Macintosh User Interface Toolbox
that supports the use of various character fonts when you draw text with
QuickDraw. This manual introduces you to the Font Manager and describes
the routines your application can call to get font information. It also
describes the data structures of fonts and discusses how the Font
Manager communicates with QuickDraw.

Summary of significant changes and additions since last draft:
- The default application font has changed from New York to Geneva.

- Details are now given on the font characterization table (page
13).

~ Programmers defining their own fonts must include the characters
with ASCII codes $¢¢, $#9, and $@D (page 18).

- The sample location table and offset/width table have been
corrected, as has the calculation of the offset in the font

record's owTLoc field (page 21).

— Some assembly-language information has been changed and added.

2 Font Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual

3 About the Font Manager

6 Font Numbers

7 Characters in a Font

7 Font Scaling

9 Using the Font Manager

9 Font Manager Routines

9 Initializing the Font Manager
14 Getting Font Information

1¢ Keeping Fonts in Memory

19 Advanced Routine

11 Communication Between QuickDraw and the Font Manager
16 Format of a Font

20 Font Records

23 Font Widths

23 How QuickDraw Draws Text

24 Fonts in a Resource File

26 Summary of the Font Manager

31 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

The Font Manager is the part of the Macintosh User Interface Toolbox
that supports the use of various character fonts when you draw text
with QuickDraw. This manual introduces you to the Font Manager and
describes the routines your application can call to get font
information. It also describes the data structures of fonts and
discusses how the Font Manager communicates with QuickDraw. **%
Eventually this will become part of the comprehensive Inside Macintosh
manual. *%*

Like all documentation about Toolbox units, this manual assumes you're
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and
the Macintosh Operating System's Memory Manager. You should also be
familiar with:

- resources, as described in the Resource Manager manual

— the basic concepts and structures behind QuickDraw, particularly
bit images and how to draw text

This manual is intended to serve the needs of both Pascal and assembly-
language programmers. Information of interest to assembly-language
programmers only is isolated and labeled so that Pascal programmers can
conveniently skip it.

The manual begins with an overview of the Font Manager and what you can
do with it. It then discusses the font numbers by which fonts are
identified, the characters in a font, and the scaling of fonts to
different sizes. Next, a section on using the Font Manager introduces
its routines and tells how they fit into the flow of your application.
This is followed by detailed descriptions of Font Manager procedures
and functions, their parameters, calling protocol, effects, side
effects, and so on.

Following these descriptions are sections that will not interest all
readers. There's a discussion of how QuickDraw and the Font Manager
communicate, followed by a section that describes the format of the
data structures used to define fonts, and how QuickDraw uses the data
to draw characters. Next is a section that gives the exact format of
fonts in a resource file.

Finally, there's a summary of the Font Manager, for quick reference,
followed by a glossary of terms used in this manual.

ABOUT THE FONT MANAGER

The main function of the Font Manager is to provide font support for
QuickDraw. To the Macintosh user, font means the complete set of
characters of one typeface; it doesn't include the size of the
characters, and usually doesn't include any stylistic variations (such

6/11/84 Rose-Hacker , /FMGR/FONT.2

4 Font Manager Programmer's Guide

as bold and italic).

(note)
Usually fonts are defined in the normal style and
stylistic variations are applied to them; for example,
the italic style simply slants the normal characters.
However, fonts may be designed to include stylistic
variations in the first place.

The way you identify a font to QuickDraw or the Font Manager is with a
font number. Every font also has a name (such as "New York") that's
appropriate to include in a menu of available fonts.

The siz