
Inside Macintosh
Volume II

A
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Mcnlo Park, California New York Don Mills, Ontario
Wokingham, England Amsterdam Bonn Sydney Singapore Tokyo Madrid San Juan

i

Copyright © 1985 by Apple Computer, Inc.

All rights reserved. N o part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, mechanical ,
electronic, photocopying, recording, or otherwise, without prior written
permission of Apple Computer, Inc. Printed in the United States of America.

© Apple Computer, Inc., 1985
20525 Mariani Avenue
Cupertino, C A 95014
(408) 996-1010

Apple , the Apple logo, LaserWriter, Lisa, Macintosh, the Macintosh logo, and
Mac Works are registered trademarks of Apple Computer, Inc.

MacDraw, MacPaint, and MacWrite are registered trademarks of Claris
Corporation.

Simultaneously published in the United States and Canada.

Writ ten by Caroline Rose with Bradley Hacker, Robert Anders, Katie Withey,
Mark Metzler, Steve Chernicoff, Chris Espinosa, Andy Averill, Brent Davis , and
Brian Howard, assisted by Sandy Tompkins-Leffler and Louella Pizzuti. Special
thanks to Cary Clark and Scott Knaster.

This book was produced using the Apple Macintosh computer and the LaserWriter
printer.

I S B N 0-201-17732-3
IJ -MU-898
Ninth Printing, December 1988

Inside Macintosh
Volume II

WARRANTY INFORMATION

ALL IMPLIED WARRANTIES ON THIS MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this manual, APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL
IS SOLD "AS IS ," AND YOU, THE PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING
FROM ANY DEFECT OR INACCURACY IN THIS MANUAL, even if advised of
the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or employee is authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for
incidental or consequential damages, so the above limitation or exclusion may not apply to you.
This warranty gives you specific legal rights, and you may also have other rights which vary
from state to state.

Contents
1 P r e f a c e
3 About Inside Macintosh
4 A Horse of a Different Color
5 The Structure of a Typical Chapter
5 Conventions

7 1 T h e M e m o r y M a n a g e r
9 About This Chapter
9 About the Memory Manger

11 Pointers and Handles
12 H o w Heap Space is Allocated
17 The Stack and the Heap
18 General-Purpose Data Types
19 Memory Organization
20 Memory Manager Data Structures
25 Using the Memory Manager
27 Memory Manager Routines
45 Creating a Heap Zone on the Stack
46 Summary of the Memory Manager

53 2 T h e S e g m e n t L o a d e r
55 About This Chapter
55 About the Segment Loader
55 Finder Information
57 Using the Segment Loader
57 Segment Loader Routines
60 The Jump Table
63 Summary of the Segment Loader

65 3 T h e O p e r a t i n g S y s t e m E v e n t M a n a g e r
67 About This Chapter
67 About the Operating System Event Manager
67 Using the Operating System Event Manager
68 Operating System Event Manager Routines
70 Structure of the Event Queue
72 Summary of the Operating System Event Manager

I

Inside Macintosh

11 4 T h e F i l e M a n a g e r
79 About This Chapter
79 About the File Manager
84 File Information Used by the Finder
85 Using the File Manager
8 8 High-Level File Manager Routines
97 Low-Level File Manager Routines

119 Data Organization on Volumes
124 Data Structures in Memory
128 Using an External File System
130 Summary of the File Manager

145 5 T h e P r i n t i n g M a n a g e r
147 About This Chapter
147 About the Printing Manager
148 Print Records and Dialogs
153 Methods of Printing
153 Background Processing
154 Using the Printing Manager
157 Printing Manager Routines
162 The Printer Driver
166 Summary of the Printing Manager

173 6 T h e Dev ice M a n a g e r
175 About This Chapter
175 About the Device Manager
177 Using the Device Manager
177 Device Manager Routines
187 The Structure of a Device Driver
193 Writing Your Own Device Drivers
195 Interrupts
201 Summary of the Device Manager

209 7 T h e D i s k D r i v e r
211 About This Chapter
211 About the Disk Driver
212 Using the Disk Driver
214 Disk Driver Routines
216 Assembly-Language Example
217 Summary of the Disk Driver

221 8 T h e S o u n d D r i v e r
223 About This Chapter
223 About the Sound Driver
225 Sound Driver Synthesizers
230 Using the Sound Driver
231 Sound Driver Routines
233 Sound Driver Hardware
235 Summary of the Sound Driver

243 9 T h e S e r i a l D r i v e r s
245 About This Chapter
245 Serial Communication
246 About the Serial Drivers
247 Using the Serial Drivers
249 Serial Driver Routines
254 Advanced Control Calls
256 Summary of the Serial Drivers

261 10 T h e A p p l e T a l k M a n a g e r
263 About This Chapter
263 AppleTalk Protocols
267 AppleTalk Transaction Protocol
271 About the AppleTalk Manager
273 Calling the AppleTalk Manager from Pascal
304 Calling the AppleTalk Manager from Assembly Language
324 Protocol Handlers and Socket Listeners
331 Summary of the AppleTalk Manager

347 11 T h e V e r t i c a l R e t r a c e M a n a g e r
349 About This Chapter
349 About the Vertical Retrace Manager
351 Using the Vertical Retrace Manager
351 Vertical Retrace Manager Routines
353 Summary of the Vertical Retrace Manager

355 12 T h e S y s t e m E r r o r H a n d l e r
357 About This Chapter
357 About the System Error Handler
358 Recovering From System Errors
359 System Error Alert Tables
362 System Error Handler Routine

Inside Macintosh

364 Summary of the System Error Handler

367 13 T h e O p e r a t i n g S y s t e m Ut i l i t i e s
369 About This Chapter
369 Parameter R A M
372 Operating System Queues
373 General Operating System Data Types
374 Operating System Utility Routines
387 Summary of the Operating System Utilities

393 14 T h e D i s k I n i t i a l i z a t i o n P a c k a g e
395 About This Chapter
395 Using the Disk Initialization Package
396 Disk Initialization Package Routines
400 Summary of the Disk Initialization Package

403 15 T h e F l o a t i n g - P o i n t A r i t h m e t i c a n d T r a n s c e n d e n t a l F u n c t i o n s
P a c k a g e s

405 About This Chapter
405 About the Packages
405 The Floating-Point Arithmetic Package
407 The Transcendental Functions Package

409 I n d e x

PREFACE

3 About Inside Macintosh
3 The Language
4 What 's in Each Volume
4 Version Numbers
4 A Horse of a Different Color
5 The Structure of a Typical Chapter
5 Conventions

Inside Macintosh

n-2

Preface

ABOUT INSIDE MACINTOSH

Inside Macintosh is a three-volume set of manuals that tells you whatyou need to know to write
software for the Apple® Macintosh™ 128K, 512K, or XL (or a Lisa® running MacWorks™
XL). Although directed mainly toward programmers writing standard Macintosh applications,
Inside Macintosh also contains the information needed to write simple utility programs, desk
accessories, device drivers, or any other Macintosh software. It includes:

• the user interface guidelines for applications on the Macintosh

• a complete description of the routines available for your program to call (both those built
into the Macintosh and others on disk), along with related concepts and background
information

• a description of the Macintosh 128K and 512K hardware

It does not include information about:

• Programming in general.

• Getting started as a developer. For this, write to:

Developer Relations
Mail Stop 27-S
Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

• Any specific development system, except where indicated. You'll need to have additional
documentation for the development system you're using.

• The Standard Apple Numeric Environment (SANE), which your program can access to
perform extended-precision floating-point arithmetic and transcendental functions. This
environment is described in the Apple Numerics Manual.

You should already be familiar with the basic information that's in Macintosh, the owner's guide,
and have some experience using a standard Macintosh application (such as MacWrite™).

The Language

The routines you'll need to call are written in assembly language, but (with a few exceptions)
they're also accessible from high-level languages, such as Pascal on the Lisa Workshop
development system. Inside Macintosh documents the Lisa Pascal interfaces to the routines and
the symbolic names defined for assembly-language programmers using the Lisa Workshop; if
you're using a different development system, its documentation should tell you how to apply the
information presented here to that system.

Inside Macintosh is intended to serve the needs of both high-level language and assembly-
language programmers. Every routine is shown in its Pascal form (if it has one), but assembly-
language programmers are told how they can access the routines. Information of interest only to
assembly-language programmers is isolated and labeled so that other programmers can
conveniently skip i t

About Inside Macintosh II-3

1

Inside Macintosh

Familiarity with Lisa Pascal (or a similar high-level language) is recommended for all readers,
since it's used for most examples. Lisa Pascal is described in the documentation for the Lisa
Pascal Workshop.

What's in Each Volume

Inside Macintosh consists of three volumes. Volume I begins with the following information of
general interest:

• a "road map" to the software and the rest of the documentation

• the user interface guidelines

• an introduction to memory management (the least you need to know, with a complete
discussion following in Volume II)

• some general information for assembly-language programmers

It then describes the various parts of the User Interface Toolbox, the software in ROM that
helps you implement the standard Macintosh user interface in your application. This is followed
by descriptions of other, RAM-based software that's similar in function to the User Interface
Toolbox. (The software overview in the Road Map chapter gives further details.)

Volume II describes the Operat ing System, the software in ROM that does basic tasks such as
input and output, memory management, and interrupt handling. As in Volume I, some
functionally similar RAM-based software is then described.

Volume III discusses your program's interface with the Finder and then describes the Macintosh
128K and 512K hardware. A comprehensive summary of all the software is provided, followed
by some useful appendices and a glossary of all terms defined in Inside Macintosh.

Version Numbers

This edition of Inside Macintosh describes the following versions of the software:

• version 105 of the ROM in the Macintosh 128K or 512K

• version 112 of the ROM image installed by MacWorks in the Macintosh XL

• version 1.1 of the Lisa Pascal interfaces and the assembly-language definitions

Some of the RAM-based software is read from the file named System (usually kept in the System
Folder). This manual describes the software in the System file whose creation date is May 2,
1984.

A HORSE OF A DIFFERENT COLOR

On an innovative system like the Macintosh, programs don't look quite the way they do on other
systems. For example, instead of carrying out a sequence of steps in a predetermined order, your
program is driven primarily by user actions (such as clicking and typing) whose order cannot be
predicted.

II-4 About Inside Macintosh

Preface

You'll probably find that many of your preconceptions about how to write applications don't
apply here. Because of this, and because of the sheer volume of information in Inside Macintosh,
it's essential that you read the Road Map chapter. It will help you get oriented and figure out
where to go next.

THE STRUCTURE OF A TYPICAL CHAPTER

Most chapters of Inside Macintosh have the same structure, as described below. Reading through
this now will save you a lot of time and effort later on. It contains important hints on how to find
what you're looking for within this vast amount of technical documentation.

Every chapter begins with a very brief description of its subject and a list of what you should
already know before reading that chapter. Then there's a section called, for example, "About the
Window Manager", which gives you more information about the subject, telling you what you
can do with it in general, elaborating on related user interface guidelines, and introducing
terminology that will be used in the chapter. This is followed by a series of sections describing
important related concepts and background information; unless they're noted to be for advanced
programmers only, you'll have to read them in order to understand how to use the routines
described later.

Before the routine descriptions themselves, there's a section called, for example, "Using the
Window Manager". It introduces you to the routines, telling you how they fit into the general
flow of an application program and, most important, giving you an idea of which ones you'll
need to use. Often you'll need only a few routines out of many to do basic operations; by reading
this section, you can save yourself the trouble of learning routines you'll never use.

Then, for the details about the routines, read on to the next section. It gives the calling sequence
for each routine and describes all the parameters, effects, side effects, and so on.

Following the routine descriptions, there may be some sections that won't be of interest to all
readers. Usually these contain information about advanced techniques, or behind the scenes
details for the curious.

For review and quick reference, each chapter ends with a summary of the subject matter,
including the entire Pascal interface and a separate section for assembly-language programmers.

CONVENTIONS

The following notations are used in Inside Macintosh to draw your attention to particular items of
information:

Note: A note that may be interesting or useful

Warning: A point you need to be cautious about

A s s e m b l y - l a n g u a g e note: A note of interest to assembly-language programmers only

Conventions II-5

1

Inside Macintosh

[Not in ROM]

Routines marked with this notation are not part of the Macintosh ROM. Depending on how
the interfaces have been set up on the development system you're using, these routines may or
may not be available. They're available to users of Lisa Pascal; other users should check the
documentation for their development system for more information. (For related information of
interest to assembly-language programmers, see chapter 4 of Volume I.)

II-6 Conventions

1 THE MEMORY MANAGER

9 About This Chapter
9 About the Memory Manager

11 Pointers and Handles
12 H o w Heap Space Is Allocated
14 Dereferencing a Handle
17 The Stack and the Heap
18 General-Purpose Data Types
19 Memory Organization
20 Memory Manager Data Structures
22 Structure of Heap Zones
23 Structure of Blocks
25 Structure of Master Pointers
25 Using the Memory Manager
27 Memory Manager Routines
28 Initialization and Allocation
31 Heap Zone Access
32 Allocating and Releasing Relocatable Blocks
3 6 Allocating and Releasing Nonrelocatable Blocks
3 8 Freeing Space in the Heap
41 Properties of Relocatable Blocks
42 Grow Zone Operations
44 Miscellaneous Routines
45 Creating a Heap Zone on the Stack
46 Summary of the Memory Manager

Inside Macintosh

!

11-8

The Memory Manager

ABOUT THIS CHAPTER

This chapter describes the Memory Manager, the part of the Macintosh Operating System that
controls the dynamic allocation of memory space in the heap.

ABOUT THE MEMORY MANAGER

Using the Memory Manager, your program can maintain one or more independent areas of heap
memory (called heap zones) and use them to allocate blocks of memory of any desired size.
Unlike stack space, which is always allocated and released in strict LIFO (last-in-first-out) order,
blocks in the heap can be allocated and released in any order, according to your program's needs.
So instead of growing and shrinking in an orderly way like the stack, the heap tends to become
fragmented into a patchwork of allocated and free blocks, as shown in Figure 1. The Memory
Manager does all the necessary "housekeeping" to keep track of the blocks as it allocates and
releases them.

high memory

relocatable blocks

nonrelocatable blocks

• free blocks

low memory

Figure 1. Fragmented Heap

The Memory Manager always maintains at least two heap zones: a system heap zone that's
used by the Operating System and an application heap zone that's used by the Toolbox and
your application program. The system heap zone is initialized to a fixed size when the system
starts up; typically this size is 16.75K bytes on a Macintosh 128K, and 48K on a Macintosh
5 1 2 K o r XL.

Note: The initial size of the system heap zone is determined by the system startup
information stored on a volume; for more information, see the section "Data Organization

About the Memory Manager 11-9

Inside Macintosh

on Volumes" in chapter 4. The default initial size of this zone depends on the memory size
of the machine and may be different in future versions of the Macintosh.

Objects in the system heap zone remain allocated even when one application terminates and
another starts up. In contrast, the application heap zone is automatically reinitialized at the start of
each new application program, and the contents of any previous application zone are lost.

Assembly-language note : If desired, you can prevent the application heap zone from
being reinitialized when an application starts up; see the discussion of the Chain procedure
in chapter 2 for details.

The initial size of the application zone is 6K bytes, but it can grow as needed. Your program can
create additional heap zones if it chooses, either by subdividing this original application zone or
by allocating space on the stack for more heap zones.

Note: In this chapter, unless otherwise stated, the term "application heap zone" (or
"application zone") always refers to the original application heap zone provided by the
system, before any subdivision.

Your program's code typically resides in the application zone, in space reserved for it at the
request of the Segment Loader. Similarly, the Resource Manager requests space in the
application zone to hold resources it has read into memory from a resource file. Toolbox routines
that create new entities of various kinds, such as NewWindow, NewControl, and NewMenu,
also call the Memory Manager to allocate the space they need.

At any given time, there's one current heap zone, to which most Memory Manager operations
implicitly apply. You can control which heap zone is current by calling a Memory Manager
procedure. Whenever the system needs to access its own (system) heap zone, it saves the setting
of the current heap zone and restores it later.

Space within a heap zone is divided into contiguous pieces called blocks. The blocks in a zone
fill it completely: Every byte in the zone is part of exactly one block, which may be either
allocated (reserved for use) or free (available for allocation). Each block has a block header
for the Memory Manager's own use, followed by the block's contents, the area available for use
by your application or the system (see Figure 2). There may also be some unused bytes at the
end of the block, beyond the end of the contents. A block can be of any size, limited only by the
size of the heap zone itself.

Assembly-language note : Blocks are always aligned on even word boundaries, so you
can access them with word (.W) and long-word (.L) instructions.

An allocated block may be relocatable or nonrelocatable. Relocatable blocks can be moved
around within the heap zone to create space for other blocks; nonrelocatable blocks can never be
moved. These are permanent properties of a block. If relocatable, a block may be locked or
unlocked; if unlocked, it may be purgeable or unpurgeable . These attributes can be set and
changed as necessary. Locking a relocatable block prevents it from being moved. Making a
block purgeable allows the Memory Manager to remove it from the heap zone, if necessary, to

11-10 About the Memory Manager

The Memory Manager

block header

contents

unused bytes i:::::!:::-:^

Figure 2. A Block

make room for another block. (Purging of blocks is discussed further below under "How Heap
Space Is Allocated".) A newly allocated relocatable block is initially unlocked and unpurgeable.

Relocatable blocks are moved only by the Memory Manager, and only at well-defined, predictable
times. In particular, only the routines listed in Appendix B can cause blocks to move, and these
routines can never be called from within an interrupt. If your program doesn't call these routines,
you can rely on blocks not being moved.

POINTERS AND HANDLES

Relocatable and nonrelocatable blocks are referred to in different ways: nonrelocatable blocks by
pointers, relocatable blocks by handles. When the Memory Manager allocates a new block, it
returns a pointer or handle to the contents of the block (not to the block's header) depending on
whether the block is nonrelocatable (Figure 3) or relocatable (Figure 4).

heap zone

pointer

nonrelocatable
block

Figure 3. A Pointer to a Nonrelocatable Block

Pointers and Handles 11-11

Inside Macintosh

A pointer to a nonrelocatable block never changes, since the block itself can't move. A pointer to
a relocatable block can change, however, since the block can move. For this reason, the Memory
Manager maintains a single nonrelocatable master pointer to each relocatable block. The master
pointer is created at the same time as the block and set to point to it. When you allocate a
relocatable block, the Memory Manager returns a pointer to the master pointer, called a handle to
the block (see Figure 4). If the Memory Manager later has to move the block, it has only to
update the master pointer to point to the block's new location.

heap zone

master
pointer

relocatable
block

Figure 4. A Handle to a Relocatable Block

HOW HEAP SPACE IS ALLOCATED

The Memory Manager allocates space for relocatable blocks according to a "first fit" strategy. It
looks for a free block of at least the requested size, scanning forward from the end of the last
block allocated and "wrapping around" from the top of the zone to the bottom if necessary. As
soon as it finds a free block big enough, it allocates the requested number of bytes from that
block.

If a single free block can't be found that's big enough, the Memory Manager will try to create the
needed space by compacting the heap zone: moving allocated blocks together in order to collect
the free space into a single larger block. Only relocatable, unlocked blocks are moved. The
compaction continues until either a free block of at least the requested size has been created or the
entire heap zone has been compacted. Figure 5 illustrates what happens when the entire heap
must be compacted to create a large enough free block.

Nonrelocatable blocks (and relocatable ones that are temporarily locked) interfere with the
compaction process by forming immovable "islands" in the heap. This can prevent free blocks
from being collected together and lead to fragmentation of the available free space, as shown in
Figure 6. (Notice that the Memory Manager will never move a relocatable block around a
nonrelocatable block.) To minimize this problem, the Memory Manager tries to keep all the
nonrelocatable blocks together at the bottom of the heap zone. When you allocate a
nonrelocatable block, the Memory Manager will try to make room for the new block near the
bottom of the zone, by moving other blocks upward, expanding the zone, or purging blocks from
it (see below).

Warning: To avoid heap fragmentation, use relocatable instead of nonrelocatable blocks.

handle

11-12 Pointers and Handles

high memory

low memory

B e f o r e c o m p a c t i o n

relocatable blocks

nonrelocatable blocks

| | free blocks

Figure 5. Heap Compaction

The Memory Manager

high memory

low memory

A f t e r c o m p a c t i o n

high memory high memory

relocatable blocks

nonrelocatable blocks

| | free blocks

low memory ' " l o w memory 1

B e f o r e c o m p a c t i o n A f t e r c o m p a c t i o n

Figure 6. Fragmentation of Free Space

If the Memory Manager can't satisfy the allocation request after compacting the entire heap zone,
it next tries expanding the zone by the requested number of bytes (rounded up to the nearest IK
bytes). Only the original application zone can be expanded, and only up to a certain limit

How Heap Space Is Allocated 11-13

Inside Macintosh

(discussed more fully under "The Stack and the Heap"). If any other zone is current, or if the
application zone has already reached or exceeded its limit, this step is skipped.
Next the Memory Manager tries to free space by purging blocks from the zone. Only relocatable
blocks can be purged, and then only if they're explicitly marked as unlocked and purgeable.
Purging a block removes it from its heap zone and frees the space it occupies. The space
occupied by the block's master pointer itself remains allocated, but the master pointer is set to
NIL. Any handles to the block now point to a NIL master pointer, and are said to be empty. If
your program later needs to refer to the purged block, it must detect that the handle has become
empty and ask the Memory Manager to reallocate the block. This operation updates the master
pointer (see Figure 7).

Warning: Reallocating a block recovers only its space, not its contents (which were lost
when the block was purged). It's up to your program to reconstitute the block's contents.

Finally, if all else fails, the Memory Manager calls the grow zone function, if any, for the
current heap zone. This is an optional routine that an application can provide to take any last-
ditch measures to try to "grow" the zone by freeing some space in it. The grow zone function can
try to create additional free space by purging blocks that were previously marked unpurgeable,
unlocking previously locked blocks, and so on. The Memory Manager will call the grow zone
function repeatedly, compacting the heap again after each call, until either it finds the space it's
looking for or the grow zone function has exhausted all possibilities. In the latter case, the
Memory Manager will finally give up and report that it's unable to satisfy the allocation request.

Note: The Memory Manager moves a block by copying the entire block to a new location;
it won't "slide" a block up or down in memory. If there isn't free space at least as large as
the block, the block is effectively not relocatable.

Dereferencing a Handle

Accessing a block by double indirection, through its handle instead of through its master pointer,
requires an extra memory reference. For efficiency, you may sometimes want to dereference
the handle—that is, make a copy of the block's master pointer, and then use that pointer to access
the block by single indirection. But be careful! Any operation that allocates space from the heap
may cause the underlying block to be moved or purged. In that event, the master pointer itself
will be correctly updated, but your copy of it will be left dangling.
One way to avoid this common type of program bug is to lock the block before dereferencing its
handle. For example:

VAR aPointer: Ptr;
aHandle: Handle;

aHandle := NewHandle(...);

HLock(aHandle);
aPointer := aHandle""";
WHILE ... DO

BEGIN
...aPointerA...
END;

HUnlock(aHandle)

{create relocatable block}

{lock before dereferencing}
{dereference handle}

{use simple pointer}

{unlock block when finished}

11-14 How Heap Space Is Allocated

The Memory Manager

heap

handle

master
pointer

relocatable
block

B e f o r e p u r g i n g

heap

handle (empty)

master
pointer

A f t e r p u r g i n g

heap

handle
relocatable
block(contents
undefined)

master
pointer

A f t e r r e a l l o c a t i n g

Figure 7. Purging and Reallocating a Block

How Heap Space Is Allocated 11-15

Inside Macintosh

Assembly-language note : To dereference a handle in assembly language, just copy the
master pointer into an address register and use it to access the block by single indirection.

Remember, however, that when you lock a block it becomes an "island" in the heap that may
interfere with compaction and cause free space to become fragmented. It's recommended that you
use this technique only in parts of your program where efficiency is critical, such as inside tight
inner loops that are executed many times (and that don't allocate other blocks).

Warn ing : Don't forget to unlock the block again when you're through with the
dereferenced handle.

Instead of locking the block, you can update your copy of the master pointer after any
"dangerous" operation (one that can invalidate the pointer by moving or purging the block it
points to). For a complete list of all routines that may move or purge blocks, see Appendix B.

The Lisa Pascal compiler frequently dereferences handles during its normal operation. You
should take care to write code that will protect you when the compiler dereferences handles in the
following cases:

• Use of the WITH statement with a handle, such as

WITH aHandle A A DO ...

• Assigning the result of a function that can move or purge blocks (or of any function in a
package or another segment) to a field in a record referred to by a handle, such as

aHandle A A.field := NewHandle(...)

A problem may arise because the compiler generates code that dereferences the handle
before calling NewHandle—and NewHandle may move the block containing the field.

• Passing an argument of more than four bytes referred to by a handle, to a routine that can
move or purge a block or to any routine in a package or another segment. For example:

TEUpdate (hTE A A. viewRect, hTE)

or

Drawstring(theControlAA.contrlTitle)

You can avoid having the compiler generate and use dangling pointers by locking a block before
you use its handle in the above situations. Or you can use temporary variables, as in the
following:

temp := NewHandle(...);
aHandle A A.field := temp

11-16 How Heap Space Is Allocated

The Memory Manager

THE STACK AND THE HEAP

The LIFO nature of the stack makes it particularly convenient for memory allocation connected
with the activation and deactivation of routines (procedures and functions). Each time a routine is
called, space is allocated for a stack frame. The stack frame holds the routine's parameters,
local variables, and return address. Upon exit from the routine, the stack frame is released,
restoring the stack to the same state it was in when the routine was called.

In Lisa Pascal, all stack management is done by the compiler. When you call a routine, the
compiler generates code to reserve space if necessary for a function result, place the parameter
values and return link on the stack, and jump to the routine. The routine can then allocate space
on the stack for its own local variables.

Before returning, the routine releases the stack space occupied by its local variables, return link,
and parameters. If the routine is a function, it leave its result on the stack for the calling program.

The application heap zone and the stack share the same area in memory, growing toward each
other from opposite ends (see Figure 8). Naturally it would be disastrous for either to grow so
far that it collides with the other. To help prevent such collisions, the Memory Manager enforces
a limit on how far the application heap zone can grow toward the stack. Your program can set
this application heap limit to control the allotment of available space between the stack and the
heap.

high memory

stack

unused
space

application
heap

application heap
limit

low memory

Figure 8. The Stack and the Heap

The application heap limit marks the boundary between the space available for the application
heap zone and the space reserved exclusively for the stack. At the start of each application
program, the limit is initialized to allow 8K bytes for the stack. Depending on your program's
needs, you can adjust the limit to allow more heap space at the expense of the stack or vice versa.

Assembly-language note: The global variables DefltStack and MinStack contain the
default and minimum sizes of the stack, respectively.

The Stack and the Heap 11-17

Inside Macintosh

Notice that the limit applies only to expansion of the heap; it has no effect on how far the stack
can expand. Athough the heap can never expand beyond the limit into space reserved for the
stack, there's nothing to prevent the stack from crossing the limit. It's up to you to set the limit
low enough to allow for the maximum stack depth your program will ever need.

Note: Regardless of the limit setting, the application zone is never allowed to grow to
within IK of the current end of the stack. This gives a little extra protection in case the
stack is approaching the boundary or has crossed over onto the heap's side, and allows
some safety margin for the stack to expand even further.

To help detect collisions between the stack and the heap, a "stack sniffer" routine is run sixty
times a second, during the Macintosh's vertical retrace interrupt. This routine compares the
current ends of the stack and the heap and invokes the System Error Handler in case of a
collision.

The stack sniffer can't prevent collisions, it can only detect them after the fact: A lot of
computation can take place in a sixtieth of a second. In fact, the stack can easily expand into the
heap, overwrite it, and then shrink back again before the next activation of the stack sniffer,
escaping detection completely. The stack sniffer is useful mainly during software development;
the alert box the System Error Handler displays can be confusing to your program's end user. Its
purpose is to warn you, the programmer, that your program's stack and heap are colliding, so
that you can adjust the heap limit to correct the problem before the user ever encounters it.

GENERAL-PURPOSE DATA TYPES

The Memory Manager includes a number of type definitions for general-purpose use. The types
listed below are explained in chapter 3 of Volume I.

TYPE SignedByte =
Byte
Ptr
Handle =

-128..127;
0. .255;
A SignedByte;
APtr;

Str255
StringPtr
StringHandle

= STRING[255];
= AStr255;
- AStringPtr;

ProcPtr = Ptr;

Fixed = LONGINT;

For specifying the sizes of blocks in the heap, the Memory Manager defines a special type called
Size:

TYPE Size = LONGINT;

All Memory Manager routines that deal with block sizes expect parameters of type Size or return
them as results.

11-18 The Stack and the Heap

The Memory Manager

MEMORY ORGANIZATION

This section discusses the organization of memory in the Macintosh 128K, 512K, and XL.

Note: The information presented in this section may be different in future versions of
Macintosh system software.

The organization of the Macintosh 128K and 512K RAM is shown in Figure 9. The variable
names listed on the right in the figure refer to global variables for use by assembly-language
programmers.

3ize (bytes)

28
740
128

21888

796
740

9344

o
CO Q.
n
C

_o
CO O

"EL
CL
CO

32

206

high memory

21888 i

{

{

2816 {

main sound buffer

System Error Handler use

main screen buffer

alternate sound buffer

alternate screen buffer

jump table

application parameters

application globals

QuickDraw globals

stack

application heap

system heap

system globals

variable

(MemTop)

(ScrnBase)

(BufPtr)

A5 = (CurrentA5)

(A5)
(CurStackBase)

SP = A7
< — (ApplLimit)
< — (HeapEnd)

< — (ApplZone)

< — (SysZone)

low memory

Figure 9. Macintosh 128K and 512K RAM

Memory Organization 11-19

Inside Macintosh

Assembly-language note : The global variables, shown in parentheses, contain the
addresses of the indicated areas. Names identified as marking the end of an area actually
refer to the address following the last byte in that area.

The lowest 2816 bytes are used for system globals. Immediately following this are the system
heap and the application space, which is memory available for dynamic allocation by
applications. Most of the application space is shared between the stack and the application heap,
with the heap growing forward from the bottom of the space and the stack growing backward
from the top. The remainder of the application space is occupied by QuickDraw global variables,
the application's global variables, the application parameters, and the jump table. The
application parameters are 32 bytes of memory located above the application globals; they're
reserved for use by the system. The first application parameter is the address of the first
QuickDraw global variable (thePort). The jump table is explained in chapter 2.

Note: Some development systems may place the QuickDraw global variables in a
different location, but the first application parameter will always point to them.

Assembly-language note: The location pointed to by register A5 will always point to
the first QuickDraw global variable.

At (almost) the very end of memory are the main sound buffer, used by the Sound Driver to
control the sounds emitted by the built-in speaker and by the Disk Driver to control disk motor
speed, and the main screen buffer, which holds the bit image to be displayed on the Macintosh
screen. The area between the main screen and sound buffers is used by the System Error
Handler.

There are alternate screen and sound buffers for special applications. If you use either or both of
these, the memory available for use by your application is reduced accordingly. The Segment
Loader provides routines for specifying that an alternate screen or sound buffer will be used.

Note: The alternate screen and sound buffers may not be supported in future versions of
the Macintosh. The main and alternate sound buffers, as well as the alternate screen
buffer, are not supported on the Macintosh XL.

The memory organization of a Macintosh XL is shown in Figure 10.

MEMORY MANAGER DATA STRUCTURES

This section discusses the internal data structures of the Memory Manager. You don't need to
know this information if you're just using the Memory Manager routinely to allocate and release
blocks of memory from the application heap zone.

11-20 Memory Organization

3ize (bytes)

32768

CO

o
CO
C L <n
C

_o
CO

o
Q.
CL
CO

high memory

32 {

206 {

2816 {

screen buffer

hardware interface

jump tab le

app l i ca t ion parameters

app l i ca t ion g l o b a l

QuickDraw g l o b a l 3

i stack

^ app l i ca t ion heap

3y3tem heap

system g l o b a l 3

The Memory Manager

var iab le

(ScrnBa3e)

(MemTop) or (BufPtr)

A5 = (CurrentA5)

(A5)
(CurStackBase)

SP = A7

(App IL im i t)

(HeapEnd)

(App lZone)

(SysZone)

low memory

Figure 10. Macintosh XL RAM

zone
header

ava i lab le
space

zone t ra i le r l:::::::-:::-::-:::::^::-:-:-:-:-:^

Figure 11. Structure of a Heap Zone

Memory Manager Data Structures 11-21

Inside Macintosh

Structure of Heap Zones

Each heap zone begins with a 52-byte zone header and ends with a 12-byte zone trailer (see
Figure 11). The header contains all the information the Memory Manager needs about that heap
zone; the trailer is just a rmnimum-size free block (described in the next section) placed at the end
of the zone as a marker. All the remaining space between the header and trailer is available for
allocation.

In Pascal, a heap zone is defined as a zone record of type Zone. It's always referred to with a
zone pointer of type THz ("the heap zone"):

TYPE THz = AZone;
Zone = RECORD

bkLim: Ptr; {zone trailer block}
purgePtr: Ptr; {used internally}
hFstFree: Ptr; {first free master pointer}
zcbFree: LONGINT, {number of free bytes}
gzProc: ProcPtr, {grow zone function}
moreMast: INTEGER, {master pointers to allocate}
flags: INTEGER {used internally}
cntRel: INTEGER {not used}
maxRel: INTEGER {not used}
cntNRel: INTEGER • {not used}
maxNRel: INTEGER {not used}
cntEmpty: INTEGER {not used}
cntHandles: INTEGER {not used}
minCBFree: L0NQINT {not used}
purgeProc: ProcPtr {purge warning procedure}
sparePtr: Ptr; {used internally}
allocPtr: Ptr; {used internally}
heapData: INTEGER {first usable byte in zone}

END;

Warning : The fields of the zone header are for the Memory Manager's own internal use.
You can examine the contents of the zone's fields, but in general it doesn't make sense for
your program to try to change them. The few exceptions are noted below in the
discussions of the specific fiejds.

BkLim is a pointer to the zone's trailer block. Since the trailer is the last block in the zone, bkLim
is a pointer to the byte following the last byte of usable space in the zone.

HFstFree is a pointer to the first free master pointer in the zone. Instead of just allocating space
for one master pointer each time a relocatable block is created, the Memory Manager
"preallocates" several master pointers at a time; as a group they form a nonrelocatable block. The
moreMast field of the zone record tells the Memory Manager how many master pointers at a time
to preallocate for this zone.

Note: Master pointers are allocated 32 at a time for the system heap zone and 64 at a time
for the application zone; this may be different on future versions of the Macintosh.

All master pointers that are allocated but not currently in use are linked together into a list
beginning in the hFstFree field. When you allocate a new relocatable block, the Memory

11-22 Memory Manager Data Structures

The Memory Manager

Manager removes the first available master pointer from this list, sets it to point to the new block,
and returns its address to you as a handle to the block. (If the list is empty, it allocates a fresh
block of moreMast master pointers.) When you release a relocatable block, its master pointer
isn't released, but is linked onto the beginning of the list to be reused. Thus the amount of space
devoted to master pointers can increase, but can never decrease until the zone is reinitialized.

The zcbFree field always contains the number of free bytes remaining in the zone. As blocks are
allocated and released, the Memory Manager adjusts zcbFree accordingly. This number
represents an upper limit on the size of block you can allocate from this heap zone.

Warning: It may not actually be possible to allocate a block as big as zcbFree bytes.
Because nonrelocatable and locked blocks can't be moved, it isn't always possible to
collect all the free space into a single block by compaction.

The gzProc field is a pointer to the grow zone function. You can supply a pointer to your own
grow zone function when you create a new heap zone and can change it at any time.

Warn ing : Don't store direcdy into the gzProc field; if you want to supply your own grow
zone function, you must do so with a procedure call (InitZone or SetGrowZone).

PurgeProc is a pointer to the zone's purge warn ing procedure , or NIL if there is none. The
Memory Manager will call this procedure before it purges a block from the zone.

Warn ing : Whenever you call the Resource Manager with SetResPurge(TRUE), it installs
its own purge warning procedure, overriding any purge warning procedure you've
specified to the Memory Manager; for further details, see chapter 5 of Volume I.

The last field of a zone record, heapData, is a dummy field marking the bottom of the zone's
usable memory space. HeapData nominally contains an integer, but this integer has no
significance in itself—it's just the first two bytes in the block header of the first block in the zone.
The purpose of the heapData field is to give you a way of locating the effective bottom of the
zone. For example, if myZone is a zone pointer, then

@(myZoneA.heapData)

is a pointer to the first usable byte in the zone, just as

myZoneA.bkLim

is a pointer to the byte following the last usable byte in the zone.

Structure of Blocks

Every block in a heap zone, whether allocated or free, has a block header that the Memory
Manager uses to find its way around in the zone. Block headers are completely transparent to
your program. All pointers and handles to allocated blocks point to the beginning of the block's
contents, following the end of the header. Similarly, all block sizes seen by your program refer
to the block's logical size (the number of bytes in its contents) rather than its physical size (the
number of bytes it actually occupies in memory, including the header and any unused bytes at the
end of the block).

Memory Manager Data Structures 11-23

Inside Macintosh

Since your program shouldn't normally have to deal with block headers directly, there's no
Pascal record type defining their structure. A block header consists of eight bytes, as shown in
Figure 12.

31 24 23 0
tag byte physical block 3ize

[r e l o c a t a b l e block: re la t i ve handle
— nonrelocatable block: pointer to heap zone

free block: not used

Figure 12. Block Header

The first byte of the block header is the tag byte, discussed below. The next three bytes contain
the block's physical size in bytes. Adding this number to the block's address gives the address
of the next block in the zone.

The contents of the second long word (four bytes) in the block header depend on the type of
block. For relocatable blocks, it contains the block's relative handle: a pointer to the block's
master pointer, expressed as an offset relative to the start of the heap zone rather than as an
absolute memory address. Adding the relative handle to the zone pointer produces a true handle
for this block. For nonrelocatable blocks, the second long word of the header is just a pointer to
the block's zone. For free blocks, these four bytes are unused.

The structure of a tag byte is shown in Figure 13.

6 5 4 3

L 3ize cor rect ion

not used

00: f ree block
01: nonre I ocatab I e b I ock
10: re locatab le block

Figure 13. Tag Byte

A s s e m b l y - l a n g u a g e n o t e : You can use the global constants tyBkFree, tyBkNRel, and
tyBkRel to test whether the value of the tag byte indicates a free, nonrelocatable, or
relocatable block, respectively.

The "size correction" in the tag byte of a block header is the number of unused bytes at the end of
the block, beyond the end of the block's contents. It's equal to the difference between the block's
logical and physical sizes, excluding the eight bytes of overhead for the block header:

physicalSize = logicalSize + sizeCorrection + 8

11-24 Memory Manager Data Structures

The Memory Manager

There are two reasons why a block may contain such unused bytes:
• The Memory Manager allocates space only in even numbers of bytes. If the block's logical

size is odd, an extra, unused byte is added at the end to keep the physical size even.

• The rmnimum number of bytes in a block is 12. This minimum applies to all blocks, free as
well as allocated. If allocating the required number of bytes from a free block would leave a
fragment of fewer than 12 free bytes, the leftover bytes are included unused at the end of
the newly allocated block instead of being returned to free storage.

Structure of Master Pointers

The master pointer to a relocatable block has the structure shown in Figure 14. The low-order
three bytes of the long word contain the address of the block's contents. The high-order byte
contains some flag bits that specify the block's current status. Bit 7 of this byte is the lock bit (1
if the block is locked, 0 if it's unlocked); bit 6 is the purge bit (1 if the block is purgeable, 0 if
it's unpurgeable). Bit 5 is used by the Resource Manager to identify blocks containing resource
information; such blocks are marked by a 1 in this b i t

7 6 5 4 0
not used address of b l o c k s contents

1— resource b i t
purge b i t
lock b i t

Figure 14. Structure of a Master Pointer

Warning: Note that the flag bits in the high-order byte have numerical significance in any
operation performed on a master pointer. For example, the lock bit is also the sign bit.

Assembly-language note : You can use the mask in the global variable Lo3Bytes to
determine the value of the low-order three bytes of a master pointer. To determine the
value of bits 5, 6, and 7, you can use the global constants resourc, purge, and lock,
respectively.

USING THE MEMORY MANAGER

There's ordinarily no need to initialize the Memory Manager before using it. The system heap
zone is automatically initialized each time the system starts up, and the application heap zone each
time an application program starts up. In the unlikely event that you need to reinitialize the
application zone while your program is running, you can call InitApplZone.

When your application starts up, it should allocate the memory it requires in the most space-
efficient manner possible, ensuring that most of the nonrelocatable blocks it will need are packed
together at the bottom of the heap. The main segment of your program should call the

Using the Memory Manager 11-25

Inside Macintosh

MaxApplZone procedure, which expands the application heap zone to its limit. Then call the
procedure MoreMasters repeatedly to allocate as many blocks of master pointers as your
application and any desk accessories will need. Next initialize QuickDraw and the Window
Manager (if you're going to use it).

To allocate a new relocatable block, use NewHandle; for a nonrelocatable block, use NewPtr.
These functions return a handle or a pointer, as the case may be, to the newly allocated block. To
release a block when you're finished with it, use DisposHandle or Disrx)sPtr.

You can also change the size of an already allocated block with SetHandleSize or SetPtrSize, and
find out its current size with GetHandleSize or GetPtrSize. Use HLock and HUnlock to lock and
unlock relocatable blocks. Before locking a relocatable block, call MoveHHi.

Note: If you lock a relocatable block, unlock it at the earliest possible opportunity.
Before allocating a block that you know will be locked for long periods of time, call
ResrvMem to make room for the block as near as possible to the bottom of the zone.

In some situations it may be desirable to determine the handle that points to a given master
pointer. To do this you can call the RecoverHandle function. For example, a relocatable block of
code might want to find out the handle that refers to it, so it can lock itself down in the heap.

Ordinarily, you shouldn't have to worry about compacting the heap or purging blocks from it; the
Memory Manager automatically takes care of this for you. You can control which blocks are
purgeable with HPurge and HNoPurge. If for some reason you want to compact or purge the
heap explicitly, you can do so with CompactMem or PurgeMem. To explicitly purge a specific
block, use EmptyHandle.

Warning: Before attempting to access any purgeable block, you must check its handle to
make sure the block is still allocated. If the handle is empty, then the block has been
purged; before accessing it, you have to reallocate it by calling ReallocHandle, and then
recreate its contents. (If it's a resource block, just call the Resource Manager procedure
LoadResource; it checks the handle and reads the resource into memory if it's not already
in memory.)

You can find out how much free space is left in a heap zone by calling FreeMem (to get the total
number of free bytes) or MaxMem (to get the size of the largest single free block and the
maximum amount by which the zone can grow). Beware: MaxMem compacts the entire zone
and purges all purgeable blocks. To determine the current application heap limit, use
GetApplLimit; to limit the growth of the application zone, use SetApplLimiL To install a grow
zone function to help the Memory Manager allocate space in a zone, use SetGrowZone.

You can create additional heap zones for your program's own use, either within the original
application zone or in the stack, with InitZone. If you do maintain more than one heap zone, you
can find out which zone is current at any given time with GetZone and switch from one to another
with SetZone. Almost all Memory Manager operations implicitly apply to the current heap zone.
To refer to the system heap zone or the (original) application heap zone, use the Memory Manager
function SystemZone or ApplicZone. To find out which zone a particular block resides in, use
HandleZone (if the block is relocatable) or PtrZone (if it's nonrelocatable).

Warning: Be sure, when calling routines that access blocks, that the zone in which the
block is located is the current zone.

11-26 Using the Memory Manager

The Memory Manager

Note: Most applications will just use the original application heap zone and never have to
worry about which zone is current.

After calling any Memory Manager routine, you can determine whether it was successfully
completed or failed, by calling MemError.

Warning: Code that will be executed via an interrupt must not make any calls to the
Memory Manager, directly or indirectly, and can't depend on handles to unlocked blocks
being valid.

MEMORY MANAGER ROUTINES

In addition to their normal results, many Memory Manager routines yield a result code that you
can examine by calling the MemError function. The description of each routine includes a list of
all result codes it may yield.

Assembly-language note: When called from assembly language, not all Memory
Manager routines return a result code. Those that do always leave it as a word-length
quantity in the low-order word of register DO on return from the trap. However, some
routines leave something else there instead; see the descriptions of individual routines for
details. Just before returning, the trap dispatcher tests the low-order word of DO with a
TST.W instruction, so that on return from the trap the condition codes reflect the status of
the result code, if any.

The stack-based interface routines called from Pascal always yield a result code. If the
underlying trap doesn't return one, the interface routine "manufactures" a result code of
noErr and stores it where it can later be accessed with MemError.

A s s e m b l y - l a n g u a g e n o t e : You can specify that some Memory Manager routines apply
to the system heap zone instead of the current zone by setting bit 10 of the routine trap
word. If you're using the Lisa Workshop Assembler, you do this by supplying the word
SYS (uppercase) as the second argument to the routine macro:

_FreeMem ,SYS

If you want a block of memory to be cleared to zeroes when it's allocated by a NewPtr or
NewHandle call, set bit 9 of the routine trap word. You can do this by supplying the word
CLEAR (uppercase) as the second argument to the routine macro:

_NewHandle ,CLEAR

You can combine SYS and CLEAR in the same macro call, but SYS must come first:

NewHandle ,SYS,CLEAR

Memory Manager Routines 11-27

Inside Macintosh

The description of each routine lists whether SYS or CLEAR is applicable. (The syntax
shown above and in the routine descriptions applies to the Lisa Workshop Assembler;
programmers using another development system should consult its documentation for the
proper syntax.)

Initialization and Allocation

PROCEDURE InitApplZone;

Trap macro _InitApplZone

On exit DO: result code (word)

InitApplZone initializes the application heap zone and makes it the current zone. The contents of
any previous application zone are lost; all previously existing blocks in that zone are discarded.
The zone's grow zone function is set to NIL. InitApplZone is called by the Segment Loader
when starting up an application; you shouldn't normally need to call it.

Warning: Reinitializing the application zone from within a ranning program is tricky,
since the program's code itself normally resides in the application zone. To do it safely,
the code containing the InitApplZone call cannot be in the application zone..

Result codes noErr No error

PROCEDURE SetApplBase (startPtr: P t r) ;

Trap macro SetAppBase

On entry AO: startPtr (pointer)

On exit DO: result code (word)

SetApplBase changes the starting address of the application heap zone to the address designated
by startPtr, and then calls InitApplZone. SetApplBase is normally called only by the system
itself; you should never need to call this procedure.

Since the application heap zone begins immediately following the end of the system zone,
changing its starting address has the effect of changing the size of the system zone. The system
zone can be made larger, but never smaller; if startPtr points to an address lower than the current
end of the system zone, it's ignored and the application zone's starting address is left unchanged.

Warn ing : Like InitApplZone, SetApplBase is a tricky operation, because the program's
code itself normally resides in the application heap zone. To do it safely, the code
containing the SetApplBase call cannot be in the application zone.

Result codes noErr No error

11-28 Memory Manager Routines

The Memory Manager

PROCEDURE InitZone (pGrowZone: ProcPtr; cMoreMasters: INTEGER;
limitPtr,startPtr: Ptr) ;

Trap macro InitZone

On entry AO: pointer to parameter block

Parameter block
0 startPtr pointer
4 limitPtr pointer
8 cMoreMasters word

10 pGrowZone pointer

On exit DO: result code (word)

InitZone creates a new heap zone, initializes its header and trailer, and makes it the current zone.
The startPtr parameter is a pointer to the first byte of the new zone; limitPtr points to the first byte
beyond the end of the zone. The new zone will occupy memory addresses from ORD(startPtr)
through ORD(limitPtr)-l.

CMoreMasters tells how many master pointers should be allocated at a time for the new zone.
This number of master pointers are created initially; should more be needed later, they'll be added
in increments of this same number.

The pGrowZone parameter is a pointer to the grow zone function for the new zone, if any. If
you're not defining a grow zone function for this zone, pass NIL.

The new zone includes a 52-byte header and a 12-byte trailer, so its actual usable space runs from
ORD(startPtr)+52 through ORD(limitPtr)-13. In addition, there's an eight-byte header for the
master pointer block, as well as four bytes for each master pointer, within this usable area. Thus
the total available space in the zone, in bytes, is initially

ORD(limitPtr) - ORD(startPtr) - 64 - (8 + (4*cMoreMasters))

This number must not be less than 0. Note that the amount of available space in the zone will
decrease as more master pointers are allocated.

Result codes noErr No error

FUNCTION GetApplLimit : Ptr; [Not in ROM]

GetApplLimit returns the current application heap limit. It can be used in conjunction with
SetApplLimit, described below, to determine and then change the application heap limit.

Assembly-language note: The global variable ApplLimit contains the current
application heap limit.

Memory Manager Routines 11-29

Inside Macintosh

PROCEDURE SetApplLimit (zoneLimit: P t r) ;

Trap macro _SetApplLimit

On entry AO: zoneLirnit (pointer)

On exit DO: result code (word)

SetApplLimit sets the application heap limit, beyond which the application heap can't be
expanded. The actual expansion isn't under your program's control, but is done automatically by
the Memory Manager when necessary to satisfy allocation requests. Only the original application
zone can be expanded.

ZoneLimit is a pointer to a byte in memory beyond which the zone will not be allowed to grow.
The zone can grow to include the byte preceding zoneLimit in memory, but no farther. If the
zone already extends beyond die specified limit it won't be cut back, but it will be prevented from
growing any more.

Warning: Notice that zoneLimit is not a byte count. To limit the application zone to a
particular size (say 8K bytes), you have to write something like

SetApplLimit(Ptr(ApplicZone)+8192)

The Memory Manager function ApplicZone is explained below.

Assembly-language note: You can just store the new application heap limit in the
global variable ApplLimiL

Result codes noErr No error
memFullErr Not enough room in heap zone

PROCEDURE MaxApplZone; [Not in ROM]

MaxApplZone expands the application heap zone to the application heap limit without purging any
blocks currently in the zone. If the zone already extends to the limit, it won't be changed.

Assembly-language note: To expand the application heap zone to the application heap
limit from assembly language, call this Pascal procedure from your program.

Result codes noErr No error

11-30 Memory Manager Routines

The Memory Manager

Trap macro _MoreMasters

MoreMasters allocates another block of master pointers in the current heap zone. This procedure
is usually called very early in an application.

Result codes noErr No error
memFullErr Not enough room in heap zone

Heap Zone Access

FUNCTION GetZone : THz;

Trap macro GetZone

On exit AO: function result (pointer)
DO: result code (word)

GetZone returns a pointer to the current heap zone.

A s s e m b l y - l a n g u a g e note: The global variable TheZone contains a pointer to the current
heap zone.

Result codes noErr No error

PROCEDURE SetZone (hz: T H z) ;

Trap macro _SetZone

On entry AO: hz (pointer)

On exit DO: result code (word)

SetZone sets the current heap zone to the zone pointed to by hz.

Assembly-language note: You can set the current heap zone by storing a pointer to it
in the global variable TheZone.

Result codes noErr No error

PROCEDURE MoreMasters;

Memory Manager Routines 11-31

Inside Macintosh

FUNCTION SystemZone : THz; [Not in ROM]

SystemZone returns a pointer to the system heap zone.

Assembly-language note : The global variable SysZone contains a pointer to the
system heap zone.

FUNCTION ApplicZone : THz; [Not in ROM]

ApplicZone returns a pointer to the original application heap zone.

Assembly-language note : The global variable ApplZone contains a pointer to the
original application heap zone.

Allocating and Releasing Relocatable Blocks

FUNCTION NewHandle (l o g i c a l S i z e : S i z e) : Handle;

Trap macro NewHandle
NewHandle ,SYS (applies to system heap)
NewHandle ,CLEAR (clears allocated block)

_NewHandle ,SYS,CLEAR (applies to system heap and clears
allocated block)

On entry DO: logicalSize (long word)

On exit AO: function result (handle)
DO: result code (word)

NewHandle attempts to allocate a new relocatable block of logicalSize bytes from the current heap
zone and then return a handle to it. The new block will be unlocked and unpurgeable. If
logicalSize bytes can't be allocated, NewHandle returns NIL.

NewHandle will pursue all available avenues to create a free block of the requested size,
including compacting the heap zone, increasing its size, purging blocks from it, and calling its
grow zone function, if any.

Result codes noErr No error
memFullErr Not enough room in heap zone

11-32 Memory Manager Routines

The Memory Manager

PROCEDURE DisposHandle (h: Handle);

Trap macro DisposHandle

On entry AO: h (handle)

On exit DO: result code (word)

DisposHandle releases the memory occupied by the relocatable block whose handle is h.

Warning: After a call to DisposHandle, all handles to the released block become invalid
and should not be used again. Any subsequent calls to DisposHandle using an invalid
handle will damage the master pointer list.

Result codes noErr No error
memWZErr Attempt to operate on a free block

FUNCTION GetHandleSize (h: Handle) : Size;

Trap macro _GetHandleSize

On entry AO: h (handle)

On exit DO: if >= 0, function result (long word)
if < 0, result code (word)

GetHandleSize returns the logical size, in bytes, of the relocatable block whose handle is h. In
case of an error, GetHandleSize returns 0.

Assembly-language note: Recall that the trap dispatcher sets the condition codes
before returning from a trap by testing the low-order word of register DO with a TST.W
instruction. Since the block size returned in DO by _GetHandleSize is a full 32-bit long
word, the word-length test sets the condition codes incorrectly in this case. To branch on
the contents of DO, use your own TST.L instruction on return from the trap to test the full
32 bits of the register.

Result codes noErr No error [Pascal only]
nilHandleErr NIL master pointer
memWZErr Attempt to operate on a free block

Memory Manager Routines 11-33

Inside Macintosh

PROCEDURE SetHandleSize (h: Handle; newSize: Size);

Trap macro _SetHandleSize

On entry AO: h (handle)
DO: newSize (long word)

On exit DO: result code (word)

SetHandleSize changes the logical size of the relocatable block whose handle is h to newSize
bytes.

Note: Be prepared for an attempt to increase the size of a locked block to fail, since there
may be a block above it that's either nonrelocatable or locked.

Result codes noErr No error
memFullErr Not enough room in heap zone
nilHandleErr NIL master pointer
memWZErr Attempt to operate on a free block

FUNCTION HandleZone (h: Handle) : THz;

Trap macro HandleZone

On entry AO: h (handle)

On exit AO: function result (pointer)
DO: result code (word)

HandleZone returns a pointer to the heap zone containing the relocatable block whose handle is h.
In case of an error, the result returned by HandleZone is undefined and should be ignored.

Warn ing : If handle h is empty (points to a NIL master pointer), HandleZone returns a
pointer to the current heap zone.

Result codes noErr No error
memWZErr Attempt to operate on a free block

11-34 Memory Manager Routines

The Memory Manager

FUNCTION RecoverHandle (p: Ptr) : Handle;

Trap macro _RecoverHandle Trap macro
_RecoverHandle ,SYS (applies to system heap)

On entry AO: p (pointer)

On exit AO: function result (handle)
DO: unchanged

RecoverHandle returns a handle to the relocatable block pointed to by p.

Assembly-language note : The trap RecoverHandle doesn't return a result code in
register DO; the previous contents of DO are preserved unchanged.

Result codes noErr No error [Pascal only]

PROCEDURE ReallocHandle (h: Handle; logicalSize: Size);

Trap macro JReallocHandle

On entry AO: h (handle)
DO: logicalSize (long word)

On exit DO: result code (word)

ReallocHandle allocates a new relocatable block with a logical size of logicalSize bytes. It then
updates handle h by setting its master pointer to point to the new block. The main use of this
procedure is to reallocate space for a block that has been purged. Normally h is an empty handle,
but it need not be: If it points to an existing block, that block is released before the new block is
created.

In case of an error, no new block is allocated and handle h is left unchanged.

Result codes noErr No error
memFullErr Not enough room in heap zone
memWZErr Attempt to operate on a free block
memPurErr Attempt to purge a locked block

Memory Manager Routines 11-35

Inside Macintosh

Allocating and Releasing Nonrelocatable Blocks

FUNCTION NewPtr (logicalSize: Size) : Ptr;

Trap macro _NewPtr
_NewPtr ,SYS (applies to system heap)
_NewPtr ,CLEAR (clears allocated block)

NewPtr ,SYS,CLEAR (applies to system heap and clears allocated
block)

On entry DO: logicalSize (long word)

On exit AO: function result (pointer)
DO: result code (word)

NewPtr attempts to allocate a new nonrelocatable block of logicalSize bytes from the current heap
zone and then return a pointer to it. If logicalSize bytes can't be allocated, NewPtr returns NIL.

NewPtr will pursue all available avenues to create a free block of the requested size at the lowest
possible location in the heap zone, including compacting the heap zone, increasing its size,
purging blocks from it, and calling its grow zone function, if any.

Result codes noErr No error
memFullErr Not enough room in heap zone

PROCEDURE DisposPtr (p: P t r) ;

Trap macro DisposPtr

On entry AO: p (pointer)

On exit DO: result code (word)

DisposPtr releases the memory occupied by the nonrelocatable block pointed to by p.

Warning: After a call to DisposPtr, all pointers to the released block become invalid and
should not be used again. Any subsequent calls to DisposPtr using an invalid pointer will
damage the master pointer list.

Result codes noErr No error
memWZErr Attempt to operate on a free block

11-36 Memory Manager Routines

The Memory Manager

FUNCTION GetPtrSize (p: Ptr) : Size;

Trap macro _GetPtrSize

On entry AO: p (pointer)

On exit DO: if >= 0, function result (long word)
if < 0, result code (word)

GetPtrSize returns the logical size, in bytes, of the nonrelocatable block pointed to by p. In case
of an error, GetPtrSize returns 0.

Assembly-language note: Recall that the trap dispatcher sets the condition codes
before returning from a trap by testing the low-order word of register DO with a TST.W
instruction. Since the block size returned in DO by _GetPtrSize is a full 32-bit long word,
the word-length test sets the condition codes incorrectiy in this case. To branch on the
contents of DO, use your own TST.L instruction on return from the trap to test the full 32
bits of the register.

Result codes noErr No error [Pascal only]
memWZErr Attempt to operate on a free block

PROCEDURE SetPtrSize (p: Ptr; newSize: Size);

Trap macro SetPtrSize

On entry AO: p (pointer)
DO: newSize (long word)

On exit DO: result code (word)

SetPtrSize changes the logical size of the nonrelocatable block pointed to by p to newSize bytes.

Result codes noErr No error
memFullErr Not enough room in heap zone
memWZErr Attempt to operate on a free block

Memory Manager Routines 11-37

Inside Macintosh

FUNCTION PtrZone (p: Ptr) i^THz;

Trap macro _PtrZone

On entry AO: p (pointer)

On exit AO: function result (pointer)
DO: result code (word)

PtrZone returns a pointer to the heap zone containing the nonrelocatable block pointed to by p. In
case of an error, the result returned by PtrZone is undefined and should be ignored.

Result codes noErr No error
memWZErr Attempt to operate on a free block

Freeing Space in the Heap

FUNCTION FreeMem : LONGINT;

Trap macro JFreeMem
JFreeMem ,SYS (applies to system heap)

On exit DO: function result (long word)

FreeMem returns the total amount of free space in the current heap zone, in bytes. Note that it
usually isn't possible to allocate a block of this size, because of fragmentation due to
nonrelocatable or locked blocks.

Result codes noErr No error [Pascal only]

FUNCTION MaxMem (VAR grow: Size) : Size;

Trap macro _MaxMem
_MaxMem ,SYS (applies to system heap)

On exit DO: function result (long word)
AO: grow (long word)

MaxMem compacts the current heap zone and purges all purgeable blocks from the zone. It
returns as its result the size in bytes of the largest contiguous free block in the zone after the
compaction. If the current zone is the original application heap zone, the grow parameter is set to
the maximum number of bytes by which the zone can grow. For any other heap zone, grow is
set to 0. MaxMem doesn't actually expand the zone or call its grow zone function.

11-38 Memory Manager Routines

The Memory Manager

Result codes noErr No error [Pascal only]

FUNCTION CompactMem (cbNeeded: Size) : Size;

Trap macro CompactMem Trap macro
_CompactMem ,SYS (applies to system heap)

On entry DO: cbNeeded (long word)

On exit DO: function result (long word)

CompactMem compacts the current heap zone by moving relocatable blocks down and collecting
free space together until a contiguous block of at least cbNeeded free bytes is found or the entire
zone is compacted; it doesn't purge any purgeable blocks. CompactMem returns the size in bytes
of the largest contiguous free block remaining. Note that it doesn't actually allocate the block.

Result codes noErr No error [Pascal only]

PROCEDURE ResrvMem (cbNeeded: Size);

Trap macro _ResrvMem

_ResrvMem ,SYS (applies to system heap)

On entry DO: cbNeeded (long word)

On exit DO: result code (word)

ResrvMem creates free space for a block of cbNeeded contiguous bytes at the lowest possible
position in the current heap zone. It will try every available means to place the block as close as
possible to the bottom of the zone, including moving other blocks upward, expanding the zone,
or purging blocks from it. Note that ResrvMem doesn't actually allocate the block.

Note: When you allocate a relocatable block that you know will be locked for long
periods of time, call ResrvMem first. This reserves space for the block near the bottom of
the heap zone, where it will interfere with compaction as little as possible. It isn't
necessary to call ResrvMem for a nonrelocatable block; NewPtr calls it automatically. It's
also called automatically when locked resources are read into memory.

Result codes noErr No error
memFullErr Not enough room in heap zone

Memory Manager Routines 11-39

Inside Macintosh

PROCEDURE PurgeMem (cbNeeded: Size);

Trap macro JPurgeMem
_PurgeMem ,SYS (applies to system heap)

On entry DO: cbNeeded (long word)

On exit DO: result code (word)

PurgeMem sequentially purges blocks from the current heap zone until a contiguous block of at
least cbNeeded free bytes is created or the entire zone is purged; it doesn't compact the heap zone.
Only relocatable, unlocked, purgeable blocks can be purged. Note that PurgeMem doesn't
actually allocate the block.

Result codes noErr No error
memFullErr Not enough room in heap zone

PROCEDURE EmptyHandle (h: Handle);

Trap macro _Empty Handle

On entry AO: h (handle)

On exit AO: h (handle)
DO: result code (word)

EmptyHandle purges the relocatable block whose handle is h from its heap zone and sets its
master pointer to NIL (making it an empty handle). If h is already empty, EmptyHandle does
nothing.

Note: Since the space occupied by the block's master pointer itself remains allocated, all
handles pointing to it remain valid but empty. When you later reallocate space for the
block with ReallocHandle, the master pointer will be updated, causing all existing handles
to access the new block correctly.

The block whose handle is h must be unlocked, but need not be purgeable.

Result codes noErr No error
memWZErr Attempt to operate on a free block
memPurErr Attempt to purge a locked block

11-40 Memory Manager Routines

The Memory Manager

Properties of Relocatable Blocks

PROCEDURE HLock (h: Handle);

Trap macro HLock

On entry AO: h (handle)

On exit DO: result code (word)

HLock locks a relocatable block, preventing it from being moved within its heap zone. If the
block is already locked, HLock does nothing.

Warning: To prevent heap fragmentation, you should always call MoveHHi before
locking a relocatable block.

Result codes noErr No error
nilHandleErr NIL master pointer
memWZErr Attempt to operate on a free block

PROCEDURE HUnlock (h: Handle);

Trap macro _HUnlock

On entry AO: h (handle)

On exit DO: result code (word)

HUnlock unlocks a relocatable block, allowing it to be moved within its heap zone. If the block
is already unlocked, HUnlock does nothing.

Result codes noErr No error
nilHandleErr NIL master pointer
memWZErr Attempt to operate on a free block

PROCEDURE HPurge (h: Handle);

Trap macro _HPurge

On entry AO: h (handle)

On exit DO: result code (word)

HPurge marks a relocatable block as purgeable.
nothing.

If the block is already purgeable, HPurge does

Memory Manager Routines 11-41

Inside Macintosh

Note: If you call HPurge on a locked block, it won't unlock the block, but it will mark
the block as purgeable. If you later call HUnlock, the block will be subject to purging.

Result codes noErr No error
nilHandleErr NIL master pointer
memWZErr Attempt to operate on a free block

PROCEDURE HNoPurge (h: Handle);

Trap macro _HNoPurge

On entry AO: h (handle)

On exit DO: result code (word)

HNoPurge marks a relocatable block as unpurgeable. If the block is already unpurgeable,
HNoPurge does nothing.

Result codes noErr No error
nilHandleErr NIL master pointer
memWZErr Attempt to operate on a free block

Grow Zone Operations

PROCEDURE SetGrowZone (growZone: ProcPtr);

Trap macro _SetGrowZone

On entry AO: growZone (pointer)

On exit DO: result code (word)

SetGrowZone sets the current heap zone's grow zone function as designated by the growZone
parameter. A NIL parameter value removes any grow zone function the zone may previously
have had.

Note: If your program presses the limits of the available heap space, it's a good idea to
have a grow zone function of some sort. At the very least, the grow zone function should
take some graceful action—such as displaying an alert box with the message "Out of
memory"—instead of just failing unpredictably.

If it has failed to create a block of the needed size after compacting the zone, increasing its size (in
the case of the original application zone), and purging blocks from it, the Memory Manager calls
the grow zone function as a last resort.

11-42 Memory Manager Routines

The Memory Manager

The grow zone function should be of the form

FUNCTION MyGrowZone (cbNeeded: Size) : LONGINT;

The cbNeeded parameter gives the physical size of the needed block in bytes, including the block
header. The grow zone function should attempt to create a free block of at least this size. It
should return a nonzero number if it's able to allocate some memory, or 0 if it's not able to
allocate any.

If the grow zone function returns 0, the Memory Manager will give up trying to allocate the
needed block and will signal failure with the result code memFullErr. Otherwise it will compact
the heap zone and try again to allocate the block. If still unsuccessful, it will continue to call the
grow zone function repeatedly, compacting the zone again after each call, until it either succeeds
in allocating the needed block or receives a zero result and gives up.

The usual way for the grow zone function to free more space is to call EmptyHandle to purge
blocks that were previously marked unpurgeable. Another possibility is to unlock blocks that
were previously locked

Note: Although just unlocking blocks doesn't actually free any additional space in the
zone, the grow zone function should still return a nonzero result in this case. This signals
the Memory Manager to compact the heap and try again to allocate the needed block.

Warning: Depending on the circumstances in which the grow zone function is called,
there may be a particular block within the heap zone that must not be moved. For this
reason, it's essential that your grow zone function call the function GZSaveHnd (see
below).

Result codes noErr No error

FUNCTION GZSaveHnd : Handle; [Not in ROM]

GZSaveHnd returns a handle to a relocatable block that must not be moved by the grow zone
function, or NIL if there is no such block. Your grow zone function must be sure to call
GZSaveHnd; if a handle is returned, it must ensure that this block is not moved.

Assembly-language note : You can find the same handle in the global variable
GZRootHnd.

Memory Manager Routines 11-43

Inside Macintosh

Miscellaneous Routines
!

i

I PROCEDURE BlockMove (sourcePtr,destPtr: Ptr; byteCount: Size);

Trap macro BlockMove

On entry AO: sourcePtr (pointer)
A l : destPtr (pointer)
DO: byteCount (long word)

On exit DO: result code (word)

BlockMove moves a block of byteCount consecutive bytes from the address designated by
sourcePtr to that designated by destPtr. No pointers are updated. BlockMove works correctly
even if the source and destination blocks overlap.

Result codes noErr No error

FUNCTION TopMem : Ptr; [Not in ROM]

On a Macintosh 128K or 512K, TopMem returns a pointer to the end of RAM; on the Macintosh
XL, it returns a pointer to the end of the memory available for use by the application.

A s s e m b l y - l a n g u a g e note: This value is stored in the global variable MemTop.

PROCEDURE Mo veHHi (h : H a n d l e) ; [Not in ROM]

MoveHHi moves the relocatable block whose handle is h toward the top of the current heap zone,
until the block hits either a nonrelocatable block, a locked relocatable block, or the last block in
the current heap zone. By calling MoveHHi before you lock a relocatable block, you can avoid
fragmentation of the heap, as well as make room for future pointers as low in the heap as
possible.

Result codes noErr No error
nilHandleErr NIL master pointer
memLockedErr Block is locked

FUNCTION MemError : OSErr; [Not in ROM]

MemError returns the result code produced by the last Memory Manager routine called directly by
your program. (OSErr is an Operating System Utility data type declared as INTEGER.)

11-44 Memory Manager Routines

The Memory Manager

Assemby-language note: To get a routine's result code from assembly language, look in
register DO on return from the routine (except for certain routines as noted).

CREATING A HEAP ZONE ON THE STACK

The following code is an example of how advanced programmers can get the space for a new
heap zone from the stack:

CONST zoneSize = 2048;
VAR zoneArea: PACKED ARRAY[1..zoneSize] OF SignedByte;

stackZone: THz;
limit: Ptr;

stackZone := @zoneArea;
limit := POINTER(ORD(stackZone)+zoneSize);
InitZone(NIL,16,limit,@zoneArea)

The heap zone created by this method will be usable until the routine containing this code is
completed (because its variables will then be released).

Assembly-language note : Here's how you might do the same thing in assembly language:

zoneSize -EQU 2048

MOVE.L
SUB.W
MOVE.L
MOVE.L

SP,A2
#zoneSize,SP
SP,A1
Al,stackZone

;save stack pointer for limit
;make room on stack
;save stack pointer for start
;store as zone pointer

SUB.W #14,SP
CLR.L pGrowZone(SP)
MOVE.W #16,cMoreMasters(SP)
MOVE.L A2,limitPtr(SP)
MOVE.L Al,startPtr(SP)

allocate space on stack
NIL grow zone function
16 master pointers
pointer to zone trailer
pointer to first byte
of zone

MOVE.L SP,A0 ;point to argument block
_InitZone ;create zone 1
ADD.W #14,SP ;pop arguments off stack

Creating a Heap Zone on the Stack 11-45

Inside Macintosh

SUMMARY OF THE MEMORY MANAGER

Constants

CONST { Result codes }

memFullErr = -108
memLockedErr = -117
memPurErr - -112
memWZErr = -111
nilHandleErr = -109
noErr = 0;

{not enough room in heap zone}
{block is locked}
{attempt to purge a locked block}
{attempt to operate on a free block}
{NIL master pointer}
{no error}

Data Types

TYPE SignedByte = -128..127;
Byte = 0..255;
Ptr = ASignedByte;
Handle = "Ptr;
Str255 = STRING[255];
StringPtr = "Str255;
StringHandle = AStringPtr;
ProcPtr = Ptr;
Fixed = LONGINT;
Size = LONGINT;
THz = AZone;
Zone = RECORD

bkLim: Ptr; {zone trailer block}
purgePtr: Ptr; {used internally}
hFstFree: Ptr; {first free master pointer}
zcbFree: LONGINT {number of free bytes}.
gzProc: ProcPtr {grow zone function}
moreMast: INTEGER {master pointers to allocate}
flags: INTEGER {used internally}
cntRel: INTEGER {not used}
maxRel: INTEGER {not used}
cntNRel: INTEGER {not used}
maxNRel: INTEGER {not used}
cntEmpty: INTEGER {not used}
cntHandles: INTEGER {not used}
minCBFree: LONGINT {not used}
purgeProc: ProcPtr {purge warning procedure}
sparePtr: Ptr; {used internally}
allocPtr: Ptr; {used internally}
heapData: INTEGER {first usable byte in zone}

END;

11-46 Summary of the Memory Manager

The Memory Manager

Routines

Initialization and Allocation

PROCEDURE InitApplZone;
PROCEDURE SetApplBase
PROCEDURE InitZone

FUNCTION GetApplLimit
PROCEDURE SetApplLimit
PROCEDURE MaxApplZone;
PROCEDURE MoreMasters;

(startPtr: Ptr);
(pGrowZone: ProcPtr; cMoreMasters:
limitPtr,startPtr: Ptr);
Ptr; [Not in ROM]
(zoneLimit: Ptr);
[Not in ROM]

INTEGER;

Heap Zone Access

FUNCTION GetZone : THz;
PROCEDURE SetZone (hz: THz);
FUNCTION SystemZone : THz; [Not in ROM]
FUNCTION ApplicZone : THz; [Not in ROM]

Allocating and Releasing Relocatable Blocks

FUNCTION
PROCEDURE
FUNCTION
PROCEDURE
FUNCTION
FUNCTION
PROCEDURE

(logicalSize: Size) : Handle;
(h: Handle);

GetHandleSize (h: Handle) : Size;
SetHandleSize (h: Handle; newSize: Size);
HandleZone (h: Handle) : THz;
RecoverHandle (p: Ptr) : Handle;
ReallocHandle (h: Handle; logicalSize: Size);

NewHandle
DisposHandle

Allocating and Releasing Nonrelocatable Blocks

FUNCTION NewPtr (logicalSize: Size) : Ptr;
PROCEDURE DisposPtr (p: Ptr);
FUNCTION GetPtrSize (p: Ptr) : Size;
PROCEDURE SetPtrSize (p: Ptr; newSize: Size);
FUNCTION PtrZone (p: Ptr) : THz;

Freeing Space in the Heap

FUNCTION FreeMem : LONGINT;
FUNCTION MaxMem (VAR grow: Size) : Size;
FUNCTION CompactMem (cbNeeded: Size) : Size;
PROCEDURE ResrvMem (cbNeeded: Size);
PROCEDURE PurgeMem (cbNeeded: Size);
PROCEDURE EmptyHandle (h: Handle);

Summary of the Memory Manager 11-47

Inside Macintosh

Properties of Relocatable Blocks

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

HLock
HUnlock
HPurge
HNoPurge

(h: Handle)
(h: Handle)
(h: Handle)
(h: Handle)

Grow Zone Operations

PROCEDURE SetGrowZone (growZone: ProcPtr);
FUNCTION GZSaveHnd : Handle; [NotinROM]

Miscellaneous Routines

PROCEDURE BlockMove (sourcePtr,destPtr: Ptr; byteCount: Size);
FUNCTION TopMem : Ptr; [NotinROM]
PROCEDURE MoveHHi (h: Handle) ; [NotinROM]
FUNCTION MemError : OSErr; [Not in ROM]

Grow Zone Function

FUNCTION MyGrowZone (cbNeeded: Size) : LONGINT;

Assembly-Language Information

Constants

; Values for tag byte of a block header

tyBkFree .EQU 0 ;free block
tyBkNRel .EQU 1 ;nonrelocatable block
tyBkRel • EQU 2 relocatable block

; Flags for the high-order byte of a master pointer

lock • EQU 7 ;lock bit
purge .EQU 6 ;purge bit
resourc .EQU 5 ;resource bit

; Result codes

memFullErr .EQU -108 ;not enough room in heap zone
memLockedErr .EQU -117 ;block is locked
memPurErr .EQU -112 ;attempt to purge a locked block
memWZErr .EQU -111 ;attempt to operate on a free block
nilHandleErr .EQU -109 ;NIL master pointer
noErr .EQU 0 ;no error

11-48 Summary of the Memory Manager

The Memory Manager

Zone Record Data Structure

bkLim Pointer to zone trailer block
hFstFree Pointer to first free master pointer
zcbFree Number of free bytes (long)
gzProc Address of grow zone function
mAllocCnt Master pointers to allocate (word)
purgeProc Address of purge warning procedure
heapData First usable byte in zone

Block Header Data Structure

tagBC Tag byte and physical block size (long)
handle Relocatable block: relative handle

Nonrelocatable block: zone pointer
blkData First byte of block contents

Parameter Block Structure for InitZone

startPtr Pointer to first byte in zone
limitPtr Pointer to first byte beyond end of zone
cMoreMasters Number of master pointers for zone (word)
pGrowZone Address of grow zone function

Routines

T r a p macro
_InitApplZone

SetApplBase

InitZone

SetApplLimit

MoreMasters

GetZone

SetZone

NewHandle

On entry

AO: startPtr (ptr)

AO: ptr to parameter block
0 startPtr (ptr)
4 limitPtr (ptr)
8 cMoreMasters (word)

10 pGrowZone (ptr)

AO: zoneLimit (ptr)

AO: hz(ptr)

DO: logicalSize (long)

On exit
DO: result code (word)

DO: result code (word)

DO: result code (word)

DisposHandle AO: h (handle)

DO: result code (word)

AO: function result (ptr)
DO: result code (word)

DO: result code (word)

AO: function result (handle)
DO: result code (word)

DO: result code (word)

Summary of the Memory Manager 11-49

Inside Macintosh

T r a p macro

GetHandleSize

_SetHandleSize

HandleZone

ReallocHandle

NewPtr

DisposPtr

GetPtrSize

SetPtrSize

PtrZone

FreeMem

_MaxMem

CompactMem

ResrvMem

PurgeMem

EmptyHandle

HLock

HUnlock

HPurge

HNoPurge

SetGrowZone

BlockMove

On entry
AO: h (handle)

AO: h (handle)
DO: newSize (long)

AO: h (handle)

RecoverHandle AO: p (ptr)

AO: h (handle)
DO: logicalSize (long)

DO: logicalSize (long)

AO: p(ptr)

AO: p(ptr)

AO: p(ptr)
DO: newSize (long)

AO: p(ptr)

DO: cbNeeded (long)

DO: cbNeeded (long)

DO: cbNeeded (long)

AO: h (handle)

AO: h (handle)

AO: h (handle)

AO: h (handle)

AO: h (handle)

AO: growZone (ptr)

AO: sourcePtr (ptr)
A l : destPtr(ptr)
DO: byteCount (long)

On exit
DO: if >=0, function result (long)

if <0, result code (word)

DO: result code (word)

AO: function result (ptr)
DO: result code (word)

AO: function result (handle)
DO: unchanged

DO: result code (word)

AO: function result (ptr)
DO: result code (word)

DO: result code (word)

DO: if >=0, function result (long)
if <0, result code (word)

DO: result code (word)

AO: function result (ptr)
DO: result code (word)

DO: function result (long)

DO: function result (long)
AO: grow (long)

DO: function result (long)

DO: result code (word)

DO: result code (word)

AO: h (handle)

DO: result code (word)

DO: result code (word)

DO: result code (word)

DO: result code (word)

DO: result code (word)

DO: result code (word)

DO: result code (word)

11-50 Summary of the Memory Manager

The Memory Manager

Variables

DefltStack Default space allotment for stack (long)
MinStack Minimum space allotment for stack (long)
MemTop Address of end of RAM (on Macintosh XL, end of RAM available to MemTop

applications)
ScrnBase Address of main screen buffer
BufPtr Address of end of jump table
CurrentA5 Address of boundary between application globals and application parameters
CurStackBase Address of base of stack; start of application globals
ApplLimit Application heap limit
HeapEnd Address of end of application heap zone
ApplZone Address of application heap zone
SysZone Address of system heap zone
TheZone Address of current heap zone
GZRootHnd Handle to relocatable block not to be moved by grow zone function

Summary of the Memory Manager 11-51

Inside Macintosh

11-52

2 THE SEGMENT LOADER

55 About This Chapter
55 About the Segment Loader
55 Finder Information
57 Using the Segment Loader
57 Segment Loader Routines
59 Advanced Routines
60 The Jump Table
63 Summary of the Segment Loader

Inside Macintosh

11-54

The Segment Loader

ABOUT THIS CHAPTER

This chapter describes the Segment Loader, the part of the Macintosh Operating System that lets
you divide your application into several parts and have only some of them in memory at a time.
The Segment Loader also provides routines for accessing information about documents that the
user has selected to be opened or printed.

You should already be familiar with:

• the basic concepts behind the Resource Manager

• the Memory Manager

ABOUT THE SEGMENT LOADER

The Segment Loader allows you to divide the code of your application into several parts or
segments. The Finder starts up an application by calling a Segment Loader routine that loads in
the main segment (the one containing the main program). Other segments are loaded in
automatically when they're needed. Your application can call the Segment Loader to have these
segments removed from memory when they're no longer needed.

The Segment Loader enables you to have programs larger than 32K bytes, the maximum size of a
single segment. Also, any code that isn't executed often (such as code for printing) needn't
occupy memory when it isn't being used, but can instead be in a separate segment that's
"swapped in" when needed.

This mechanism may remind you of the resources of an application, which the Resource Manager
reads into memory when necessary. An application's segments are in fact themselves stored as
resources; their resource type is 'CODE'. A "loaded" segment has been read into memory by the
Resource Manager and locked (so that it's neither relocatable nor purgeable). When a segment is
unloaded, it's made relocatable and purgeable.

Every segment has a name. If you do nothing about dividing your program into segments, it will
consist only of the main segment. Dividing your program into segments means specifying in
your source file the beginning of each segment by name. The names are for your use only;
they're not kept around after linking.

FINDER INFORMATION

When the Finder starts up your application, it passes along a list of documents selected by the
user to be printed or opened, if any. This information is called the Finder information; its
structure is shown in Figure 1.

It's up to your application to access the Finder information and open or print the documents
selected by the user.

The message in the first word of the Finder information indicates whether the documents are to be
opened (0) or printed (1), and the count following it indicates the number of documents (0 if
none). The rest of the Finder information specifies each of the selected documents by volume

Finder Information 11-55

Inside Macintosh

message (word)

count (word)

volume reference number (word)

f i le type (long word)

version number (byte)

not used (byte)

f i le name length (byte)

f i le name (characters)

2 Z
volume reference number (word)

f i le type (long word)

version number (byte)

not used (byte)

f i le name length (byte)

f i le name (characters)

h first document

h Ia3t document

Figure 1. Finder Information

reference number, file type, version number, and file name; these terms are explained in chapter 4
of Volume II and chapter 1 of Volume HI. File names are padded to an even number of bytes if
necessary.

Your application should start up with an empty untitled document on the desktop if there are no
documents listed in the Finder information. If one or more documents are to be opened, your
application should go through each document one at a time, and determine whether it can be
opened. If it can be opened, you should do so, and then check the next document in the list
(unless you've opened your maximum number of documents, in which case you should ignore
the rest). If your application doesn't recognize a document's file type (which can happen if the
user selected your application along with another application's document), you may want to open
the document anyway and check its internal structure to see if it's a compatible type. Display an
alert box including the name of each document that can't be opened.

If one or more documents are to be printed, your application should go through each document in
the list and determine whether it can be printed. If any documents can be printed, the application
should display the standard Print dialog box and then print each document—preferably without
doing its entire startup sequence. For example, it may not be necessary to show the menu bar or
the document window. If the document can't be printed, ignore it; it may be intended for another
application.

11-56 Finder Information

The Segment Loader

USING THE SEGMENT LOADER

When your application starts up, you should determine whether any documents were selected to
be printed or opened by it. First call CountAppFiles, which returns the number of selected
documents and indicates whether they're to be printed or opened. If the number of selected
documents is 0, open an empty untitled document in the normal manner. Otherwise, call
GetAppFiles once for each selected document. GetAppFiles returns information about each
document, including its file type. Based on the file type, your application can decide how to treat
the document, as described in the preceding section. For each document that your application
opens or prints, call ClrAppFiles, which indicates to the Finder that you've processed it.

To unload a segment when it's no longer needed, call UnloadSeg. If you don't want to keep
track of when each particular segment should be unloaded, you can call UnloadSeg for every
segment in your application at the end of your main event loop. This isn't harmful, since the
segments aren't purged unless necessary.

Note: The main segment is always loaded and locked.

Warning: A segment should never unload the segment that called it, because the return
addresses on the stack would refer to code that may be moved or purged.

Another procedure, GetAppParms, lets you get information about your application such as its
name and the reference number for its resource file. The Segment Loader also provides the
ExitToShell procedure—a way for an application to quit and return the user to the Finder.

Finally, there are three advanced routines that can be called only from assembly language: Chain,
Launch, and LoadSeg. Chain starts up another application without disturbing the application
heap. Thus the current application can let another application take over while still keeping its data
around in the heap. Launch is called by the Finder to start up an application; it's like Chain but
doesn't retain the application heap. LoadSeg is called indirectly (via the jump table, as described
later) to load segments when necessary—that is, whenever a routine in an unloaded segment is
invoked.

SEGMENT LOADER ROUTINES

Assembly-language note : Instead of using CountAppFiles, GetAppFiles, and
ClrAppFiles, assembly-language programmers can access the Finder information via the
global variable AppParmHandle, which contains a handle to the Finder information. Parse
the Finder information as shown in Figure 1 above. For each document that your
application opens or prints, set the file type in the Finder information to 0.

PROCEDURE CountAppFiles (VAR message: INTEGER; VAR count:
INTEGER) ; [Not in ROM]

CountAppFiles deciphers the Finder information passed to your application, and returns
information about the documents that were selected when your application started up. It returns

Segment Loader Routines 11-57

Inside Macintosh

the number of selected documents in the count parameter, and a number in the message parameter
that indicates whether the documents are to opened or printed:

CONST appOpen = 0 ; {open the document(s)}
appPrint = 1; {print the document(s)}

PROCEDURE GetAppFiles (index: INTEGER; VAR theFile: AppFile);
[Not in ROM]

GetAppFiles returns information about a document that was selected when your application
started up (as listed in the Finder information). The index parameter indicates the file for which
information should be returned; it must be between 1 and the number returned by CountAppFiles,
inclusive. The information is returned in the following data structure:

TYPE AppFile RECORD
vRefNum:
fType:
versNum:
f Name:

END;

INTEGER; {volume reference number}
OSType; {file type}
INTEGER; {version number}
Str255 {file name}

PROCEDURE ClrAppFiles (index: INTEGER); [Not in ROM]

ClrAppFiles changes the Finder information passed to your application about the specified file
such that the Finder knows you've processed the file. The index parameter must be between 1
and the number returned by CountAppFiles. You should call ClrAppFiles for every document
your application opens or prints, so that the information returned by CountAppFiles and
GetAppFiles is always correct. (ClrAppFiles sets the file type in the Finder information to 0.)

PROCEDURE GetAppParms (VAR apName: Str255; VAR apRefNum: INTEGER;
VAR apParam: Handle);

GetAppParms returns information about the current application. It returns the application name in
apName and the reference number for the application's resource file in apRefNum. A handle to
the Finder information is returned in apParam, but the Finder information is more easily accessed
with the GetAppFiles call.

Assembly-language note : Assembly-language programmers can instead get the
application name, reference number, and handle to the Finder information direcdy from the
global variables CurApName, CurApRefNum, and AppParmHandle.

Note: If you simply want the application's resource file reference number, you can call
the Resource Manager function CurResFile when the application starts up.

11-58 Segment Loader Routines

The Segment Loader

PROCEDURE UnloadSeg (routineAddr: P t r) ;

UnloadSeg unloads a segment, making it relocatable and purgeable; routineAddr is the address of
any externally referenced routine in the segment. The segment won't actually be purged until the
memory it occupies is needed. If the segment is purged, the Segment Loader will reload it the
next time one of the routines in it is called.

Note: UnloadSeg will work only if called from outside the segment to be unloaded.

PROCEDURE ExitToShell;

ExitToShell provides an exit from an application by starting up the Finder (after releasing the
entire application heap).

Assembly-language note: ExitToShell actually launches the application whose name is
stored in the global variable FinderName.

Advanced Routines

The routines below are provided for advanced programmers; they can be called only from
assembly language.

Chain p rocedure

Trap macro _Chain

On entry (AO): pointer to application's file name (preceded by length byte)
4(A0): configuration of sound and screen buffers (word)

Chain starts up an application without doing anything to the application heap, so the current
application can let another application take over while still keeping its data around in the heap.

Chain also configures memory for the sound and screen buffers. The value you pass in 4(A0)
determines which sound and screen buffers are allocated:

• If you pass 0 in 4(A0), you get the main sound and screen buffers; in this case, you have
the largest amount of memory available to your application.

• Any positive value in 4(A0) causes the alternate sound buffer and main screen buffer to be
allocated.

• Any negative value in 4(A0) causes the alternate sound buffer and alternate screen buffer to
be allocated.

The memory map in chapter 1 shows the locations of the screen and sound buffers.

Segment Loader Routines 11-59

Inside Macintosh

Warning: The sound buffers and alternate screen buffer are not supported on the
Macintosh XL, and the alternate sound and screen buffers may not be supported in future
versions of the Macintosh.

Note: You can get the most recent value passed in 4(A0) to the Chain procedure from the
global variable CurPageOption.

Chain closes the resource file for any previous application and opens the resource file for the
application being started; call DetachResource for any resources that you still wish to access.

L a u n c h p rocedu re

Trap macro Launch

On entry (AO): pointer to application's file name (preceded by length byte)
4(A0): configuration of sound and screen buffers (word)

Launch is called by the Finder to start up an application and will rarely need to be called by an
application itself. It's the same as the Chain procedure (described above) except that it frees the
storage occupied by the application heap and restores the heap to its original size.

Note: Launch preserves a special handle in the application heap which is used for
preserving the desk scrap between applications; see chapter 15 of Volume I for details.

LoadSeg p r o c e d u r e

Trap macro JLoadSeg

On entry stack: segment number (word)

LoadSeg is called indirectly via the jump table (as described in the following section) when the
application calls a routine in an unloaded segment. It loads the segment having the given segment
number, which was assigned by the Linker. If the segment isn't in memory, LoadSeg calls the
Resource Manager to read it in. It changes the jump table entries for all the routines in the
segment from the "unloaded" to the "loaded" state and then invokes the routine that was called.

Note: Since LoadSeg is called via the jump table, there isn't any need for you to call it
yourself.

THE JUMP TABLE

This section describes how the Segment Loader works internally, and is included here for
advanced programmers; you don't have to know about this to be able to use the common
Segment Loader routines.

11-60 Segment Loader Routines

The Segment Loader

The loading and unloading of segments is implemented through the application's j u m p table .
The jump table contains one eight-byte entry for every externally referenced routine in every
segment; all the entries for a particular segment are stored contiguously. The location of the jump
table is shown in chapter 1.

When the Linker encounters a call to a routine in another segment, it creates a jump table entry for
the routine (see Figure 2). The jump table refers to segments by segment numbers assigned by
the Linker. If the segment is loaded, the jump table entry contains code that jumps to the routine.
If the segment isn't loaded, the entry contains code that loads the segment.

"unloaded" state

offset of this routine from
beginning of segment (2 bytes)

instruction that moves the
segment number onto the

stack for LoadSeg
(4 bytes)

LoadSeg trap
(2 bytes)

"loaded" state

segment number
(2 bytes)

instruction that jumps to the
address of this routine

(6 bytes)

Figure 2. Format of a lump Table Entry

When a segment is unloaded, all its jump table entries are in the "unloaded" state. When a call to
a routine in an unloaded segment is made, the code in the last six bytes of its jump table entry is
executed. This code calls LoadSeg, which loads the segment into memory, transforms all of its
jump table entries to the "loaded" state, and invokes the routine by executing the instruction in the
last six bytes of the jump table entry. Subsequent calls to the routine also execute this instruction.
If UnloadSeg is called to unload the segment, it restores the jump table entries to their "unloaded"
state. Notice that whether the segment is loaded or unloaded, the last six bytes of the jump table
entry are executed; the effect depends on the state of the entry at the time.

To be able to set all the jump table entries for a segment to a particular state, LoadSeg and
UnloadSeg need to know exactiy where in the jump table all the entries are located. They get this
information from the segment header, four bytes at the beginning of the segment which contain
the following:

N u m b e r of bytes Contents
2 bytes Offset of the first routine's entry from the beginning of the jump table

2 bytes Number of entries for this segment

When an application starts up, its jump table is read in from segment 0 (which is the 'CODE'
resource with an ID of 0). This is a special segment created by the Linker for every executable
file. It contains the following:

The Jump Table 11-61

Inside Macintosh

N u m b e r of by tes Con ten t s
4 bytes "Above At "Above A5" size; size in bytes from location pointed to by A5 to upper

end of application space

"Below A5" size; size in bytes of application globals plus QuickDraw
globals

Length of jump table in bytes

Offset to jump table from location pointed to by A5

Jump table

4 bytes

4 bytes

4 bytes

n bytes

Note: For all applications, the offset to the jump table from the location pointed to by A5
is 32, and the "above A5" size is 32 plus the length of the jump table.

The Segment Loader then executes the first entry in the jump table, which loads the main segment
('CODE' resource 1) and starts the application.

Assembly-language note: The offset to the jump table from the location pointed to by
A5 is stored in the global variable CurJTOffset.

11-62 The Jump Table

The Segment Loader

SUMMARY OF THE SEGMENT LOADER

Constants

CONST { Message returned by CountAppleFiles }

appOpen = 0 ; {open the document(s)}
appPrint = 1; {print the document(s)}

Data Types

TYPE AppFile = RECORD
vRefNum: INTEGER; {volume reference number}
fType: OSType; {file type}
versNum: INTEGER; {version number}
fName: Str255 {file name}

END;

Routines

PROCEDURE CountAppFiles (VAR message: INTEGER; VAR count: INTEGER); [Not
in ROM]

PROCEDURE GetAppFiles (index: INTEGER; VARtheFile: AppFile); [Notin
ROM]

PROCEDURE ClrAppFiles (index: INTEGER); [NotinROM]
PROCEDURE GetAppParms (VAR apName: Str255; VAR apRefNum: INTEGER; VAR

apParam: Handle);
PROCEDURE UnloadSeg (routineAddr: Ptr);
PROCEDURE ExitToShell;

Assembly-Language Information

Advanced Routines

Trap macro

Chain

_Launch

JLoadSeg

On entry
(AO): pointer to application's file name (preceded by length byte)

configuration of sound and screen buffers (word) 4(A0)

(AO)
4(A0)

stack:

pointer to application's file name (preceded by length byte)
configuration of sound and screen buffers (word)

segment number (word)

Summary of the Segment Loader 11-63

Inside Macintosh

Variables

AppParmHandle
CurApName
CurApRefNum
CurPageOption
CurJTOffset
FinderName

Handle to Finder information
Name of current application (length byte followed by up to 31 characters)
Reference number of current application's resource file (word)
Sound/screen buffer configuration passed to Chain or Launch (word)
Offset to jump table from location pointed to by A5 (word)
Name of the Finder (length byte followed by up to 15 characters)

11-64 Summary of the Segment Loader

3 THE OPERATING SYSTEM EVENT MANAGER

67 About This Chapter
67 About the Operating System Event Manager
67 Using the Operating System Event Manager
68 Operating System Event Manager Routines
68 Posting and Removing Events
69 Accessing Events
70 Setting the System Event Mask
70 Structure of the Event Queue
72 Summary of the Operating System Event Manager

Inside Macintosh

11-66

The Operating System Event Manager

ABOUT THIS CHAPTER

This chapter describes the Operating System Event Manager, the part of the Operating System
that reports low-level user actions such as mouse-button presses and keystrokes. Usually your
application will find out about events by calling the Toolbox Event Manager, which calls the
Operating System Event Manager for you, but in some situations you'll need to call the Operating
System Event Manager directly.

Note: All references to "the Event Manager" in this chapter refer to the Operating System
Event Manager.

You should already be familiar with the Toolbox Event Manager.

Note: Constants and data types defined in the Operating System Event Manager are
presented in detail in the Toolbox Event Manager chapter (chapter 8 of Volume I), since
they're necessary for using that part of the Toolbox. They're also listed in the summary of
this chapter.

ABOUT THE OPERATING SYSTEM EVENT MANAGER

The Event Manager is the part of the Operating System that detects low-level, hardware-related
events: mouse, keyboard, disk-inserted, device driver, and network events. It stores
information about these events in the event queue and provides routines that access the queue
(analogous to GetNextEvent and EventAvail in the Toolbox Event Manager). It also allows your
application to post its own events into the event queue. Like the Toolbox Event Manager, the
Operating System Event Manager returns a null event if it has no other events to report.

The Toolbox Event Manager calls the Operating System Event Manager to retrieve events from
the event queue; in addition, it reports activate and update events, which aren't kept in the queue.
It's extremely unusual for an application not to have to know about activate and update events, so
usually you'll call the Toolbox Event Manager to get events.

The Operating System Event Manager also lets you:

• remove events from the event queue

• set the system event mask, to control which types of events get posted into the queue

USING THE OPERATING SYSTEM EVENT MANAGER

If you're using application-defined events in your program, you'll need to call the Operating
System Event Manager function PostEvent to post them into the event queue. This function is
sometimes also useful for reposting events that you've removed from the event queue with
GetNextEvent

Using the Operating System Event Manager 11-67

Inside Macintosh

In some situations you may want to remove from the event queue some or all events of a certain
type or types. You can do this with the procedure FlushEvents. A common use of FlushEvents
is to get rid of any stray events left over from before your application started up.

You'll probably never call the other Operating System Event Manager routines: GetOSEvent,
which gets an event from the event queue, removing it from the queue in the process;
OSEventAvail, for looking at an event without dequeueing it; and SetEventMask, which changes
the setting of the system event mask.

OPERATING SYSTEM EVENT MANAGER ROUTINES

Posting and Removing Events

FUNCTION PostEvent (eventCode: INTEGER; eventMsg: LONGINT) :
OSErr;

Trap macro _PostEvent

On entry AO: eventCode (word)
DO: eventMsg (long word)

On exit DO: result code (word)

PostEvent places in the event queue an event of the type designated by eventCode, with the event
message specified by eventMsg and with the current time, mouse location, and state of the
modifier keys and mouse button. It returns a result code (of type OSErr, defined as INTEGER in
the Operating System Utilities) equal to one of the following predefined constants:

CONST noErr = 0; {no error (event posted) }
evtNotEnb = 1 ; {event type not designated in system event mask}

Warning: Be very careful when posting any events other than your own application-
defined events into the queue; attempting to post an activate or update event, for example,
will interfere with the internal operation of the Toolbox Event Manager, since such events
aren't normally placed in the queue at all.

W a r n i n g : If you use PostEvent to repost an event, remember that the event time,
location, and state of the modifier keys and mouse button will all be changed from their
values when the event was originally posted, possibly altering the meaning of the event.

11-68 Using the Operating System Event Manager

The Operating System Event Manager

PROCEDURE FlushEvents (eventMask,stopMask: INTEGER);

Trap macro _FlushEvents

On entry DO: low-order word: eventMask
high-order word: stopMask

On exit DO: 0 or event code (word)

FlushEvents removes events from the event queue as specified by the given event masks. It
removes all events of the type or types specified by eventMask, up to but not including the first
event of any type specified by stopMask; if the event queue doesn't contain any events of the
types specified by eventMask, it does nothing. To remove all events specified by eventMask, use
a stopMask value of 0.

At the beginning of your application, it's usually a good idea to call FlushEvents(everyEvent,0) to
empty the event queue of any stray events that may have been left lying around, such as
unprocessed keystrokes typed to the Finder.

Assembly-language note: On exit from this routine, DO contains 0 if all events were
removed from the queue or, if not, an event code specifying the type of event that caused
the removal process to stop.

Accessing Events

FUNCTION GetOSEvent (eventMask: INTEGER; VAR theEvent:
EventRecord) : BOOLEAN;

Trap macro _GetOSEvent

On entry AO: pointer to event record theEvent
DO: eventMask (word)

On exit DO: 0 if non-null event returned, or - 1 if null event returned (byte)

GetOSEvent returns the next available event of a specified type or types and removes it from the
event queue. The event is returned as the value of the parameter theEvent. The eventMask
parameter specifies which event types are of interest. GetOSEvent will return the next available
event of any type designated by the mask. If no event of any of the designated types is available,
GetOSEvent returns a null event and a function result of FALSE; otherwise it returns TRUE.

Note: Unlike the Toolbox Event Manager function GetNextEvent, GetOSEvent doesn't
call the Desk Manager to see whether the system wants to intercept and respond to the
event; nor does it perform GetNextEvent's processing of the alarm and Command-Shift-
number combinations.

Operating System Event Manager Routines 11-69

Inside Macintosh

FUNCTION OSEventAvail (eventMask: INTEGER; VAR theEvent:
EventRecord) : BOOLEAN;

Trap macro _OSEventAvail

On entry AO: pointer to event record theEvent
DO: eventMask (word)

On exit DO: 0 if non-null event returned, or - 1 if null event returned (byte)

OSEventAvail works exactly the same as GetOSEvent (above) except that it doesn't remove the
event from the event queue.

Note: An event returned by OSEventAvail will not be accessible later if in the meantime
the queue becomes full and the event is discarded from it; since the events discarded are
always the oldest ones in the queue, however, this will happen only in an unusually busy
environment.

Setting the System Event Mask

PROCEDURE SetEventMask (theMask: INTEGER); [NotinROM]

SetEventMask sets the system event mask to the specified event mask. The Operating System
Event Manager will post only those event types that correspond to bits set in the mask. (As
usual, it will not post activate and update events, which are generated by the Window Manager
and not stored in the event queue.) The system event mask is initially set to post all except key-
up events.

Warn ing : Because desk accessories may rely on receiving certain types of events, your
application shouldn't set the system event mask to prevent any additional types (besides
key-up) from being posted. You should use SetEventMask only to enable key-up events in
the unusual case that your application needs to respond to them.

Assembly-language note: The system event mask is available to assembly-language
programmers in the global variable SysEvtMask.

STRUCTURE OF THE EVENT QUEUE

The event queue is a standard Macintosh Operating System queue, as described in chapter 13.
Most programmers will never need to access the event queue directly; some advanced
programmers, though, may need to do so for special purposes.

11-70 Operating System Event Manager Routines

The Operating System Event Manager

Each entry in the event queue contains information about an event:

TYPE EvQEl = RECORD
qLink:
qType:
evtQWhat:
evtQMessage:
evtQWhen:
evtQWhere:
evtQModifiers:

QElemPtr;
INTEGER,
INTEGER,
LONGINT,
LONGINT
Point;
INTEGER

{next queue entry}
{queue type}
{event code}
{event message}
{ticks since startup}
{mouse location}
{modifier flags}

END;

QLink points to the next entry in the queue, and qType indicates the queue type, which must be
ORD(evType). The remaining five fields of the event queue entry contain exactly the same
information about the event as do the fields of the event record for that event; see chapter 8 of
Volume I for a detailed description of the contents of these fields.

You can get a pointer to the header of the event queue by calling the Operating System Event
Manager function GetEvQHdr.

FUNCTION GetEvQHdr : QHdrPtr; [NotinROM]

GetEvQHdr returns a pointer to the header of the event queue.

Assembly-language note: The global variable EventQueue contains the header of the
event queue.

Structure of the Event Queue 11-71

Inside Macintosh

SUMMARY OF THE OPERATING SYSTEM EVENT MANAGER

Constants

CONST { Event codes }

nullEvent = 0; {null}
mouseDown = 1; {mouse-down}
mouseUp = 2; {mouse-up}
keyDown 3; {key-down}
keyUp = 4; {key-up}
autoKey 5; {auto-key}
updateEvt 6; {update; Toolbox only}
diskEvt - 7; {disk-inserted}
activateEvt = 8; {activate; Toolbox only}
networkEvt = 10 ; {network}
driverEvt = 11 ; {device driver}
applEvt = 12 ; {application-defined}
app2Evt = 13 ; {application-defined}
app3Evt = 14 ; {application-defined}
app4Evt = 15 ; {application-defined}

{ Masks for keyboard event message }

charCodeMask = $000000FF; {character code}
keyCodeMask = $0000FF00; {key code}

{ Masks for forming event mask }

mDownMask 2; {mouse-down}
mUpMask = 4; {mouse-up}
keyDownMask = 8; {key-down}
keyUpMask = 16; {key-up}
autoKeyMask = 32; {auto-key}
updateMask = 64; {update}
diskMask = 128; {disk-inserted}
activMask = 256; {activate}
networkMask = 1024; {network}
driverMask = 2048; {device driver}
applMask 4096; {application-defined}
app2Mask = 8192; {application-defined}
app3Mask = 16384; {application-defined}
app4Mask = -32768; {application-defined}
everyEvent = -1; {all event types}

11-72 Summary of the Operating System Event Manager

The Operating System Event Manager

{ Modifier flags in event record }

activeFlag = 1; {set if window being activated}
btnState = 128; {set if mouse button up}
cmdKey = 256; {set if Command key down}
shiftKey = 512; {set if Shift key down}
alphaLock = 1024; {set if Caps Lock key down}
optionKey = 2048; {set if Option key down}

{ Result codes returned by PostEvent }

noErr = 0; {no error (event posted) }
evtNotEnb = 1; {event type not designated in system event mask}

Data Types

TYPE EventRecord RECORD
what:
message:
when:
where:
modifiers:

END;

INTEGER
LONGINT
LONGINT
Point;
INTEGER

EvQEl = RECORD
qLink: QElemPtr;
qType: INTEGER;
evtQWhat: INTEGER;
evtQMes sage: LONGINT;
evtQWhen: LONGINT;
evtQWhere: Point;
evtQModifiers: INTEGER

END;

{event code}
{event message}
{ticks since startup}
{mouse location}
{modifier flags}

{next queue entry}
{queue type}
{event code}
{event message}
{ticks since startup}
{mouse location}
{modifier flags}

Routines

Posting and Removing Events

FUNCTION PostEvent (eventCode: INTEGER; eventMsg: LONGINT) : OSErr;
PROCEDURE FlushEvents (eventMask,stopMask: INTEGER);

Accessing Events

FUNCTION GetOSEvent (eventMask: INTEGER; VAR theEvent: EventRecord)
BOOLEAN;

FUNCTION OSEventAvail (eventMask: INTEGER; VAR theEvent: EventRecord)
BOOLEAN;

Summary of the Operating System Event Manager 11-73

Inside Macintosh

; Event codes

nullEvt .EQU 0 ; null
mButDwnEvt .EQU 1 ;mouse-down
mButUpEvt • EQU 2 ;mouse-up
keyDwnEvt .EQU 3 ;key-down
keyUpEvt • EQU 4 ;key-up
autoKeyEvt .EQU 5 ;auto-key
updatEvt .EQU 6 ;update; Toolbox only
disklnsertEvt .EQU 7 ;disk-inserted
activateEvt .EQU 8 ;activate; Toolbox only
networkEvt .EQU 10 ;network
ioDrvrEvt .EQU 11 ;device driver
applEvt .EQU 12 ;application-defined
app2Evt .EQU 13 ;application-defined
app3Evt .EQU 14 ;application-defined
app4Evt .EQU 15 ;application-defined

; Modifier flags in event record

activeFlag .EQU 0 ;set if window being activated
btnState .EQU 2 ;set if mouse button up
cmdKey .EQU 3 ;set if Command key down
shiftKey .EQU 4 ;set if Shift key down
alphaLock .EQU 5 ;set if Caps Lock key down
optionKey .EQU 6 ;set if Option key down

; Result codes returned by PostEvent

noErr .EQU 0 ;no error (event posted)
evtNotEnb .EQU 1 ;event type not designated in

; event mask

11-74 Summary of the Operating System Event Manager

Setting the System Event Mask

PROCEDURE SetEventMask (theMask: INTEGER); [Not in ROM]

Directly Accessing the Event Queue

FUNCTION GetEvQHdr : QHdrPtr; [Not in ROM]

Assembly-Language Information

Constants

The Operating System Event Manager

Event Record Data Structure

evtNum Event code (word)
evtMessage Event message (long)
evtTicks Ticks since startup (long)
evtMouse Mouse location (point; long)
evtMeta State of modifier keys (byte)
evtMBut State of mouse button (byte)
evtBlkSize Size in bytes of event record

Event Queue Entry Data Structure

qLink Pointer to next queue entry
qType Queue type (word)
evtQWhat Event code (word)
evtQMessage Event message (long)
evtQWhen Ticks since startup (long)
evtQWhere Mouse location (point; long)
evtQMeta State of modifier keys (byte)
evtQMBut State of mouse button (byte)
evtQBlkSize Size in bytes of event queue entry

Routines

Trap macro
_PostEvent

_FlushEvents

_GetOSEvent
and

OSEventAvail

On entry
AO: eventCode (word)
DO: eventMsg (long)

DO: low word: eventMask
high word: stopMask

AO: ptr to event record
theEvent

DO: eventMask (word)

On exit
DO: result code (word)

DO: 0 or event code (word)

DO: 0 if non-null event,
- 1 if null event (byte)

Variables

SysEvtMask System event mask (word)
EventQueue Event queue header (10 bytes)

Summary of the Operating System Event Manager 11-75

Inside Macintosh

I

11-76

4 THE FILE MANAGER

79 About This Chapter
79 About the File Manager
79 Volumes
80 Accessing Volumes
81 Files
83 Accessing Files
84 File Information Used by the Finder
85 Using the File Manager
8 8 High-Level File Manager Routines
89 Accessing Volumes
90 Accessing Files
95 Changing Information About Files
97 Low-Level File Manager Routines
98 Routine Parameters

100 I/O Parameters
101 File Information Parameters
102 Volume Information Parameters
102 Routine Descriptions
103 Initializing the File I/O Queue
103 Accessing Volumes
107 Accessing Files
115 Changing Information About Files
119 Data Organization on Volumes
121 Volume Information
122 Volume Allocation Block Map
122 File Directory
124 Data Structures in Memory
124 The File I/O Queue
125 Volume Control Blocks
126 File Control Blocks
127 The Drive Queue
128 Using an External File System
130 Summary of the File Manager

Inside Macintosh

11-78

The File Manager

ABOUT THIS CHAPTER

This chapter describes the File Manager, the part of the Operating System that controls the
exchange of information between a Macintosh application and files. The File Manager allows you
to create and access any number of files containing whatever information you choose.

ABOUT THE FILE MANAGER

The File Manager is the part of the Operating System that handles communication between an
application and files on block devices such as disk drives. (Block devices are discussed in
chapter 6.) Files are a principal means by which data is stored and transmitted on the Macintosh.
A file is a named, ordered sequence of bytes. The File Manager contains routines used to read
from and write to files.

Volumes

A volume is a piece of storage medium, such as a disk, formatted to contain files. A volume can
be an entire disk or only part of a disk. The 400K-byte 3 1/2-inch Macintosh disk is one volume.

Note: Specialized memory devices other than disks can also contain volumes, but the
information in this chapter applies only to volumes on disk.

You identify a volume by its volume name, which consists of any sequence of 1 to 27 printing
characters. When passed to a routine, volume names must always be followed by a colon (:) to
distinguish them from other names. You can use uppercase and lowercase letters when naming
volumes, but the File Manager ignores case when comparing names (it doesn't ignore diacritical
marks).

Note: The colon after a volume name should be used only when calling File Manager
routines; it should never be seen by the user.

A volume contains descriptive information about itself, including its name and a file directory
that lists information about files contained on the volume; it also contains files. The files are
contained in allocation blocks, which are areas of volume space occupying multiples of 512
bytes.
A volume can be mounted or unmounted. A volume becomes mounted when it's in a disk drive
and the File Manager reads descriptive information about the volume into memory. Once
mounted, a volume may remain in a drive or be ejected. Only mounted volumes are known to the
File Manager, and an application can access information on mounted volumes only. A volume
becomes unmounted when the File Manager releases the memory used to store the descriptive
information. Your application should unmount a volume when it's finished with the volume, or
when it needs the memory occupied by the volume.

The File Manager assigns each mounted volume a volume reference number that you can use
instead of its volume name to refer to it. Every mounted volume is also assigned a volume
buffer, which is temporary storage space in the heap used when reading or writing information

About the File Manager 11-79

Inside Macintosh

on the volume. The number of volumes that may be mounted at any time is limited only by the
number of drives attached and available memory.

A mounted volume can be on-line or off-line. A mounted volume is on-line as long as the
volume buffer and all the descriptive information read from the volume when it was mounted
remain in memory (about IK to 1.5K bytes); it becomes off-line when all but 94 bytes of
descriptive information are released. You can access information on on-line volumes
immediately, but off-line volumes must be placed on-line before their information can be
accessed. An application should place a volume off-line whenever it needs most of the memory
the volume occupies. When an application ejects a volume from a drive, the File Manager
automatically places the volume off-line.

To prevent unauthorized writing to a volume, volumes can be locked. Locking a volume
involves either setting a software flag on the volume or changing some part of the volume
physically (for example, sliding a tab from one position to another on a disk). Locking a volume
ensures that none of the data on the volume can be changed.

Accessing Volumes

You can access a mounted volume via its volume name or volume reference number. On-line
volumes in disk drives can also be accessed via the drive number of the drive on which the
volume is mounted (the internal drive is number 1, the external drive is number 2, and any
additional drives connected to the Macintosh will have larger numbers). When accessing a
mounted volume, you should always use the volume name or volume reference number, rather
than a drive number, because the volume may have been ejected or placed off-line. Whenever
possible, use the volume reference number (to avoid confusion between volumes with the same
name).

One volume is always the default volume. Whenever you call a routine to access a volume but
don't specify which volume, the default volume is accessed. Initially, the volume used to start up
the application is the default volume, but an application can designate any mounted volume as the
default volume.

Whenever the File Manager needs to access a mounted volume that's been ejected from its drive,
the dialog box shown in Figure 1 is displayed, and the File Manager waits until the user inserts
the disk named volName into a drive.

OH Please insert the disk:

uolName

Figure 1. Disk-Switch Dialog

Note: This dialog is actually a system error alert, as described in chapter 12.

11-80 About the File Manager

The File Manager

Files

A file is a finite sequence of numbered bytes. Any byte or group of bytes in the sequence can be
accessed individually. A file is identified by its file name and version number . A file name
consists of any sequence of 1 to 255 printing characters, excluding colons (:). You can use
uppercase and lowercase letters when naming files, but the File Manager ignores case when
comparing names (it doesn't ignore diacritical marks). The version number is any number from 0
to 255, and is used by the File Manager to distinguish between different files with the same name.
A byte within a file is identified by its position within the ordered sequence.

Warning: Your application should constrain file names to fewer than 64 characters,
because the Finder will generate an error if given a longer name. You should always
assign files a version number of 0, because the Resource Manager, Segment Loader, and
Standard File Package won't operate on files with nonzero version numbers, and the
Finder ignores version numbers.

There are two parts or forks to a file: the data fork and the resource fork. Normally the
resource fork of an application file contains the resources used by the application, such as menus,
fonts, and icons, and also the application code itself. The data fork can contain anything an
application wants to store there. Information stored in resource forks should always be accessed
via the Resource Manager. Information in data forks can only be accessed via the File Manager.
For simplicity, "file" will be used instead of "data fork" in this chapter.

The size of a file is limited only by the size of the volume it's on. Each byte is numbered: The
first byte is byte 0. You can read bytes from and write bytes to a file either singly or in sequences
of unlimited length. Each read or write operation can start anywhere in the file, regardless of
where the last operation began or ended. Figure 2 shows the structure of a file.

current byte

first I—rNr
byte I

previous by

last
byte

e next byte
Figure 2. A File

A file's maximum size is defined by its physical end-of-file, which is 1 greater than the
number of the last byte in its last allocation block (see Figure 3). The physical end-of-file is
equivalent to the maximum number of bytes the file can contain. A file's actual size is defined by
its logical end-of-file, which is 1 greater than the number of the last byte in the file. The
logical end-of-file is equivalent to the actual number of bytes in the file, since the first byte is byte
number 0. The physical end-of-file is always greater than the logical end-of-file. For example,
an empty file (one with 0 bytes) in a lK-byte allocation block has a logical end-of-file of 0 and a
physical end-of-file of 1024. A file with 50 bytes has a logical end-of-file of 50 and a physical
end-of-file of 1024.

About the File Manager 11-81

Inside Macintosh

mark
logical physical

end-of-f i I e end-of-f i I e

K V

X X X

-Nr
X X X X X X X

N

byte 0 byte 1024

Figure 3. End-of-File and Mark

The current position marker, or mark , is the number of the next byte that will be read or written.
The value of the mark can't exceed the value of the logical end-of-file. The mark automatically
moves forward one byte for every byte read from or written to the file. If, during a write
operation, the mark meets the logical end-of-file, both are moved forward one position for every
additional byte written to the file. Figure 4 shows the movement of the mark and logical end-of-
file.

logical end-of-file

L
mark

B e g i n n i n g p o s i t i o n

logical end-of-file

1
mark

A f t e r r e a d i n g t w o b y t e s

logical end-of-file

T mark

A f t e r w r i t i n g t w o b y t e s

Figure 4. Movement of Mark and Logical End-of-File

11-82 About the File Manager

The File Manager

If, during a write operation, the mark must move past the physical end-of-file, another allocation
block is added to the file—the physical end-of-file is placed one byte beyond the end of the new
allocation block, and the mark and logical end-of-file are placed at the first byte of the new
allocation block.

An application can move the logical end-of-file to anywhere from the beginning of the file to the
physical end-of-file (the mark is adjusted accordingly). If the logical end-of-file is moved to a
position more than one allocation block short of the current physical end-of-file, the unneeded
allocation block will be deleted from the file. The mark can be placed anywhere from the first
byte in the file to the logical end-of-file.

Accessing Files

A file can be open or closed. An application can perform only certain operations, such as
reading and writing, on open files; other operations, such as deleting, can be performed only on
closed files.

To open a file, you must identify the file and the volume containing it. When a file is opened, the
File Manager creates an access path, a description of the route to be followed when accessing
the file. The access path specifies the volume on which the file is located (by volume reference
number, drive number, or volume name) and the location of the file on the volume. Every access
path is assigned a unique pa th reference number (a number greater than 0) that's used to refer
to it. You should always refer to a file via its path reference number, to avoid confusion between
files with the same name.

A file can have one access path open for writing or for both reading and writing, and one or more
access paths for reading only; there cannot be more than one access path that writes to a file.
Each access path is separate from all other access paths to the file. A maximum of 12 access
paths can be open at one time. Each access path can move its own mark and read at the position it
indicates. All access paths to the same file share common logical and physical end-of-file
markers.

The File Manager reads descriptive information about a newly opened file from its volume and
stores it in memory. For example, each file has open permission information, which indicates
whether data can only be read from it, or both read from and written to it. Each access path
contains read/wri te permission information that specifies whether data is allowed to be read
from the file, written to the file, both read and written, or whatever the file's open permission
allows. If an application wants to write data to a file, both types of permission information must
allow writing; if either type allows reading only, then no data can be written.

When an application requests that data be read from a file, the File Manager reads the data from
the file and transfers it to the application's data buffer. Any part of the data that can be
transferred in entire 512-byte blocks is transferred directly. Any part of the data composed of
fewer than 512 bytes is also read from the file in one 512-byte block, but placed in temporary
storage space in memory. Then, only the bytes containing the requested data are transferred to
the application.

When an application writes data to a file, the File Manager transfers the data from the
application's data buffer and writes it to the file. Any part of the data that can be transferred in
entire 512-byte blocks is written directly. Any part of the data composed of fewer than 512 bytes
is placed in temporary storage space in memory until 512 bytes have accumulated; then the entire
block is written all at once.

About the File Manager 11-83

Inside Macintosh

Normally the temporary space in memory used for all reading and writing is the volume buffer,
but an application can specify that an access path buffer be used instead for a particular access
path (see Figure 5).

appl icat ion^

data buffer

^ ^ a c c e 3 3 path buffer ^ ^

volume buffer

Figure 5. Buffers For Transferring Data

f i le "A"

^ ^ acce33 path buffer ^ ^
f i le "B"

Warning: You must lock any access path buffers of files in relocatable blocks, so their
location doesn't change while the file is open.

Your application can lock a file to prevent unauthorized writing to it. Locking a file ensures that
none of the data in it can be changed. This is distinct from the user-accessible lock maintained by
the Finder, which won't let you rename or delete a locked file, but will let you change the data
contained in the file.

Note: Advanced programmers: The File Manager can also read a continuous stream of
characters or a line of characters. In the first case, you ask the File Manager to read a
specific number of bytes: When that many have been read or when the mark has reached
the logical end-of-file, the read operation terminates. In the second case, cal lednewline
mode, the read will terminate when either of the above conditions is met or when a
specified character, the newline character, is read. The newline character is usually
Return (ASCII code $0D), but can be any character. Information about newline mode is
associated with each access path to a file, and can differ from one access path to another.

FILE INFORMATION USED BY THE FINDER

A file directory on a volume lists information about all the files on the volume. The information
used by the Finder is contained in a data structure of type FInfo:

TYPE FInfo = RECORD
fdType: OSType;
fdCreator: OSType;
fdFlags: INTEGER;
fdLocation: Point;
fdFldr: INTEGER

END;

{file type}
{file's creator}
{flags}
{file's location}
{file's window}

11-84 About the File Manager

The File Manager

Normally an application need only set the file type and creator when a file is created, and the
Finder will manipulate the other fields. (File type and creator are discussed in chapter 1 of
Volume HI.)

FdFlags indicates whether the file's icon is invisible, whether the file has a bundle, and other
characteristics used internally by the Finder:

Bit Meaning
13 Set if file has a bundle

14 Set if file's icon is invisible

Masks for these two bits are available as predefined constants:

CONST fHasBundle = 8192; {set if file has a bundle}
flnvisible = 16384; {set if file's icon is invisible}

For more information about bundles, see chapter 1 of Volume III.

The last two fields indicate where the file's icon will appear if the icon is visible. FdLocation
contains the location of the file's icon in its window, given in the local coordinate system of the
window. It's used by the Finder to position the icon; when creating a file you should set it to 0
and let the Finder position the icon for you. FdFldr indicates the window in which the file's icon
will appear, and may contain one of the following values:

CONST fTrash = -3; {file is in Trash window}
fDesktop = -2; {file is on desktop}
fDisk = 0; {file is in disk window}

If fdFldr contains a positive number, the file's icon will appear in a folder; the numbers that
identify folders are assigned by the Finder. You can also get the folder number of an existing
file, and place additional files in that same folder.

USING THE FILE MANAGER

You can call File Manager routines via three different methods: high-level Pascal calls, low-level
Pascal calls, and assembly language. The high-level Pascal calls are designed for Pascal
programmers interested in using the File Manager in a simple manner; they provide adequate file
I/O and don't require much special knowledge to use. The low-level Pascal and assembly-
language calls are designed for advanced Pascal programmers and assembly-language
programmers interested in using the File Manager to its fullest capacity; they require some special
knowledge to be used most effectively.

Information for all programmers follows here. The next two sections contain special information
for high-level Pascal programmers and for low-level Pascal and assembly-language
programmers.

Note: The names used to refer to File Manager routines here are actually the assembly-
language macro names for the low-level routines, but the Pascal routine names are very
similar.

Using the File Manager 11-85

Inside Macintosh

The File Manager is automatically initialized each time the system starts up.

To create a new, empty file, call Create. Create allows you to set some of the information stored
on the volume about the file.

To open a file, call Open. The File Manager creates an access path and returns a path reference
number that you'll use every time you want to refer to it. Before you open a file, you may want
to call the Standard File Package, which presents the standard interface through which the user
can specify the file to be opened. The Standard File Package will return the name of the file, the
volume reference number of the volume containing the file, and additional information. (If the
user inserts an unmounted volume into a drive, the Standard File Package will automatically call
the Disk Initialization Package to attempt to mount it.)

After opening a file, you can transfer data from it to an application's data buffer with Read, and
send data from an application's data buffer to the file with Write. You can't use Write on a file
whose open permission only allows reading, or on a file on a locked volume.

You can specify the byte position of the mark before calling Read or Write by calling SetFPos.
GetFPos returns the byte position of the mark.

Once you've completed whatever reading and writing you want to do, call Close to close the file.
Close writes the contents of the file's access path buffer to the volume and deletes the access path.
You can remove a closed file (both forks) from a volume by calling Delete.

To protect against power loss or unexpected disk ejection, you should periodically call FlushVol
(probably after each time you close a file), which writes the contents of the volume buffer and all
access path buffers (if any) to the volume and updates the descriptive information contained on
the volume.

Whenever your application is finished with a disk, or the user chooses Eject from a menu, call
Eject. Eject calls FlushVol, places the volume off-line, and then physically ejects the volume
from its drive.

The preceding paragraphs covered the simplest File Manager routines. The remainder of this
section describes the less commonly used routines, some of which are available only to advanced
programmers.

Applications will normally use the Resource Manager to open resource forks and change the
information contained within, but programmers writing unusual applications (such as a disk-
copying utility) might want to use the File Manager to open resource forks. This is done by
calling OpenRF. As with Open, the File Manager creates an access path and returns a path
reference number that you'll use every time you want to refer to this resource fork.

When the Toolbox Event Manager function GetNextEvent receives a disk-inserted event, it calls
the Desk Manager function SystemEvent. SystemEvent calls the File Manager function
MountVol, which attempts to mount the volume on the disk. GetNextEvent then returns the disk-
inserted event: The low-order word of the event message contains the number of the drive, and
the high-order word contains the result code of the attempted mounting. If the result code
indicates that an error occurred, you'll need to call the Disk Initialization Package to allow the user
to initialize or eject the volume.

Note: Applications that rely on the Operating System Event Manager function
GetOSEvent to learn about events (and don't call GetNextEvent) must explicidy call
MountVol to mount volumes.

11-86 Using the File Manager

The File Manager

After a volume has been mounted, your application can call GetVolInfo, which will return the
name of the volume, the amount of unused space on the volume, and a volume reference number
that you can use to refer to that volume.

To minimize the amount of memory used by mounted volumes, an application can unmount or
place off-line any volumes that aren't currently being used. To unmount a volume, call
UnmountVol, which flushes a volume (by calling FlushVol) and releases all of the memory used
for it (about 1 to 1.5K bytes). To place a volume off-line, call Offline, which flushes a volume
and releases all of the memory used for it except for 94 bytes of descriptive information about the
volume. Off-line volumes are placed on-line by the File Manager as needed, but your application
must remount any unmounted volumes it wants to access. The File Manager itself may place
volumes off-line during its normal operation.

If you would like all File Manager calls to apply to one volume, you can specify that volume as
the default. You can use SetVol to set the default volume to any mounted volume, and GetVol to
learn the name and volume reference number of the default volume.

Normally, volume initialization and naming is handled by the Standard File Package, which calls
the Disk Initialization Package. If you want to initialize a volume explicitly or erase all files from
a volume, you can call the Disk Initialization Package directly. When you want to change the
name of a volume, call the File Manager function Rename.

Whenever a disk has been reconstructed in an attempt to salvage lost files (because its directory or
other file-access information has been destroyed), the logical end-of-flle of each file will probably
be equal to each physical end-of-file, regardless of where the actual logical end-of-file is. The
first time an application attempts to read from a file on a reconstructed volume, it will blindly pass
the correct logical end-of-fue and read misinformation until it reaches the new, incorrect logical
end-of-file. To prevent this from happening, an application should always maintain an
independent record of the logical end-of-file of each file it uses. To determine the File Manager's
conception of the length of a file, or find out how many bytes have yet to be read from it, call
GetEOF, which returns the logical end-of-file. You can change the length of a file by calling
SetEOF.

Allocation blocks are automatically added to and deleted from a file as necessary. If this happens
to a number of files alternately, each of the files will be contained in allocation blocks scattered
throughout the volume, which increases the time required to access those files. To prevent such
fragmentation of files, you can allocate a number of contiguous allocation blocks to an open file
by calling Allocate.

Instead of calling FlushVol, an unusual application might call FlushFile. FlushFile forces the
contents of a file's volume buffer and access path buffer (if any) to be written to its volume.
FlushFile doesn't update the descriptive information contained on the volume, so the volume
information won't be correct until you call FlushVol.

To get information about a file stored on a volume (such as its name and creation date), call
GetFilelnfo. You can change this information by calling SetFilelnfo. Changing the name or
version number of a file is accomplished by calling Rename or SetFilType, respectively, they
have a similar effect, since both the file name and version number are needed to identify a file.
You can lock or unlock a file by calling SetFilLock or RstFilLock, respectively. Given a path
reference number, you can get the volume reference number of the volume containing that file by
calling GetVRefNum.

Using the File Manager 11-87

Inside Macintosh

HIGH-LEVEL FILE MANAGER ROUTINES

This section describes all the high-level Pascal routines of the File Manager. For information on
calling the low-level Pascal and assembly-language routines, see the next section.

When accessing a volume other than the default volume, you must identify it by its volume name,
its volume reference number, or the drive number of its drive. The parameter names used in
identifying a volume are volName, vRefNum, and drvNum. VRefNum and drvNum are both
integers. VolName is a pointer, of type StringPtr, to a volume name.

Note: VolName is declared as type StringPtr instead of type STRING to allow you to
pass NIL in routines where the parameter is optional.

The File Manager determines which volume to access by using one of the following:

1. VolName. (If volName points to a zero-length name, an error is returned.)

2. If volName is NIL or points to an improper volume name, then vRefNum or drvNum
(only one is given per routine).

3. If vRefNum or drvNum is 0, the default volume. (If there isn't a default volume, an error
is returned.)

Warning: Before you pass a parameter of type StringPtr to a File Manager routine, be
sure that memory has been allocated for the variable. For example, the following
statements will ensure that memory is allocated for the variable myStr:

VAR myStr: Str255;

result := GetVol(@myStr,myRefNum)

When accessing a closed file on a volume, you must identify the volume by the method given
above, and identify the file by its name in the fileName parameter. (The high-level File Manager
routines will work only with files having a version number of 0.) FileName can contain either the
file name alone or the file name prefixed by a volume name.

Note: Although fileName can include both the volume name and the file name,
applications shouldn't encourage users to prefix a file name with a volume name.

You can't specify an access path buffer when calling high-level Pascal routines. All access paths
open on a volume will share the volume buffer, causing a slight increase in the amount of time
required to access files.

All high-level File Manager routines return an integer result code of type OSErr as their function
result. Each routine description lists all of the applicable result codes, along with a short
description of what the result code means. Lengthier explanations of all the result codes can be
found in the summary at the end of this chapter.

11-88 High-Level File Manager Routines

The File Manager

Accessing Volumes

FUNCTION GetVInfo (drvNum: INTEGER; volName: StringPtr; VAR
vRefNum: INTEGER; VAR freeBytes: LONGINT) : OSErr;
[Not in ROM]

GetVInfo returns the name, reference number, and available space (in bytes), in volName,
vRefNum, and freeBytes, for the volume in the drive specified by drvNum.

Result codes noErr No error
nsvErr No default volume
paramErr Bad drive number

FUNCTION GetVRefNum (pathRefNum: INTEGER; VAR vRefNum: INTEGER) :
OSErr ; [Not in ROM]

Given a path reference number in pathRefNum, GetVRefNum returns the volume reference
number in vRefNum.

Result codes noErr No error
rfNumErr Bad reference number

FUNCTION GetVol (volName: StringPtr; VAR vRefNum: INTEGER) :
OSErr ; [Not in ROM]

GetVol returns the name of the default volume in volName and its volume reference number in
vRefNum.

Result codes noErr No error
nsvErr No such volume

FUNCTION SetVol (volName: StringPtr; vRefNum: INTEGER) : OSErr;
[Not in ROM]

SetVol sets the default volume to the mounted volume specified by volName or vRefNum.

Result codes noErr No error
bdNamErr Bad volume name
nsvErr No such volume
paramErr No default volume

FUNCTION FlushVol (volName: StringPtr; vRefNum: INTEGER) : OSErr;
[Not in ROM]

On the volume specified by volName or vRefNum, FlushVol writes the contents of the associated
volume buffer and descriptive information about the volume (if they've changed since the last
time FlushVol was called).

High-Level File Manager Routines 11-89

Inside Macintosh

Result codes noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

No error
Bad volume name
External file system
I/O error
No such drive
No such volume
No default volume

FUNCTION UnmountVol (volName: StringPtr; vRefNum: INTEGER) :
OSErr; [NotinROM]

UnmountVol unmounts the volume specified by volName or vRefNum, by calling FlushVol to
flush the volume buffer, closing all open files on the volume, and releasing the memory used for
the volume.

W a r n i n g : Don't unmount the startup volume.

Result codes noErr No error
bdNamErr Bad volume name
extFSErr External file system
ioErr I/O error
nsDrvErr No such drive
nsvErr No such volume
paramErr No default volume

FUNCTION Eject (volName: StringPtr; vRefNum: INTEGER) : OSErr;
[NotinROM]

Eject flushes the volume specified by volName or vRefNum, places it off-line, and then ejects the
volume.

Result codes noErr No error
bdNamErr Bad volume name
extFSErr External file system
ioErr I/O error
nsDrvErr No such drive
nsvErr No such volume
paramErr No default volume

Accessing Files

FUNCTION Create (fileName: Str255; vRefNum: INTEGER; creator:
OSType; fileType: OSType) : OSErr; [Not inROM]

Create creates a new file (both forks) with the specified name, file type, and creator, on the
specified volume. (File type and creator are discussed in chapter 1 of Volume III.) The new file
is unlocked and empty. The date and time of its creation and last modification are set to the
current date and time.

11-90 High-Level File Manager Routines

The File Manager

Result codes noErr No error
bdNamErr Bad file name
dupFNErr Duplicate file name and version
dirFulErr File directory full
extFSErr External file system
ioErr I/O error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

FUNCTION FSOpen (fileName: Str255; vRefNum: INTEGER; VAR refNum:
INTEGER) : OSErr; [Not in ROM]

FSOpen creates an access path to the file having the name fileName on the volume specified by
vRefNum. A path reference number is returned in refNum. The access path's read/write
permission is set to whatever the file's open permission allows.

Result codes noErr No error
bdNamErr Bad file name
extFSErr External file system
fnfErr File not found
ioErr I/O error
nsvErr No such volume
opWrErr File already open for writing
tmfoErr Too many files open

FUNCTION OpenRF (fileName: Str255; vRefNum: INTEGER; VAR refNum:
INTEGER) : OSErr; [Not in ROM]

OpenRF is similar to FSOpen; the only difference is that OpenRF opens the resource fork of the
specified file rather than the data fork. A path reference number is returned in refNum. The
access path's read/write permission is set to whatever the file's open permission allows.

Note: Normally you should access a file's resource fork through the routines of the
Resource Manager rather than the File Manager. OpenRF doesn't read the resource map
into memory; it's really only useful for block-level operations such as copying files.

Result codes noErr No error
bdNamErr Bad file name
extFSErr External file system
fnfErr File not found
ioErr I/O error
nsvErr No such volume
opWrErr File already open for writing
tmfoErr Too many files open

High-Level File Manager Routines 11-91

Inside Macintosh

FUNCTION FSRead (refNum: INTEGER; VAR count: LONGINT; buffPtr:
Ptr) : OSErr; [NotinROM]

FSRead attempts to read the number of bytes specified by the count parameter from the open file
whose access path is specified by refNum, and transfer them to the data buffer pointed to by
buffPtr. The read operation begins at the current mark, so you might want to precede this with a
call to SetFPos. If you try to read past the logical end-of-file, FSRead moves the mark to the
end-of-file and returns eofErr as its function result. After the read is completed, the number of
bytes actually read is returned in the count parameter.

Result codes noErr No error
eofErr End-of-file .
extFSErr External file system
fnOpnErr File not open
ioErr I/O error
paramErr Negative count
rfNumErr B ad reference number

FUNCTION FSWrite (refNum: INTEGER; VAR count: LONGINT; buffPtr:
Ptr) : OSErr; [NotinROM]

FSWrite takes the number of bytes specified by the count parameter from the buffer pointed to by
buffPtr and attempts to write them to the open file whose access path is specified by refNum.
The write operation begins at the current mark, so you might want to precede this with a call to
SetFPos. After the write is completed, the number of bytes actually written is returned in the
count parameter.

Result codes noErr No error
dskFulErr Disk full
fLckdErr File locked
fnOpnErr File not open
ioErr I/O error
paramErr Negative count
rfNumErr Bad reference number
vLckdErr Software volume lock
wPrErr Hardware volume lock
wrPermErr Read/write permission doesn't allow writing

FUNCTION GetFPos (refNum: INTEGER; VAR filePos: LONGINT) : OSErr;
[NotinROM]

GetFPos returns, in filePos, the mark of the open file whose access path is specified by refNum.

Result codes noErr No error
extFSErr External file system
fnOpnErr File not open
ioErr I/O error
rfNumErr Bad reference number

11-92 High-Level File Manager Routines

The File Manager

FUNCTION SetFPos (refNum: INTEGER; posMode: INTEGER; posOff:
LONGINT) : OSErr; [NotinROM]

SetFPos sets the mark of the open file whose access path is specified by refNum, to the position
specified by posMode and posOff. PosMode indicates how to position the mark; it must contain
one of the following values:

CONST fsAtMark = 0
fsFromStart = 1
fsFromLEOF = 2
fsFromMark = 3

{at current mark}
{offset relative to beginning of file}
{offset relative to logical end-of-file}
{offset relative to current mark}

PosOff specifies the byte offset (either positive or negative), relative to the position specified by
posMode, where the mark should be set (except when posMode is equal to fsAtMark, in which
case posOff is ignored). If you try to set the mark past the logical end-of-file, SetFPos moves the
mark to the end-of-file and returns eofErr as its function result.

Result codes noErr No error
eofErr End-of-file
extFSErr External file system
fnOpnErr File not open
ioErr I/O error
posErr Attempt to position before start of file
rfNumErr Bad reference number

FUNCTION GetEOF (refNum: INTEGER; VAR logEOF: LONGINT) : OSErr;
[NotinROM]

GetEOF returns, in logEOF, the logical end-of-file of the open file whose access path is specified
by refNum.

Result codes noErr No error
extFSErr External file system
fnOpnErr File not open
ioErr I/O error
rfNumErr Bad reference number

FUNCTION SetEOF (refNum: INTEGER; logEOF: LONGINT) : OSErr; [Notin
ROM]

SetEOF sets the logical end-of-file of the open file whose access path is specified by refNum, to
the position specified by logEOF. If you attempt to set the logical end-of-file beyond the physical
end-of-file, the physical end-of-file is set to one byte beyond the end of the next free allocation
block; if there isn't enough space on the volume, no change is made, and SetEOF returns
dskFulErr as its function result. If logEOF is 0, all space occupied by the file on the volume is
released.

High-Level File Manager Routines 11-93

Inside Macintosh

Result codes noErr No error
dskFulErr Disk full
extFSErr External file system
fLckdErr File locked
fhOpnErr File not open
ioErr I/O error
rfNumErr Bad reference number
vLckdErr Software volume lock
wPrErr Hardware volume lock
wrPermErr Read/write permission doesn't allow writing

FUNCTION Allocate (refNum: INTEGER; VAR count: LONGINT) : OSErr;
[Not in ROM]

Allocate adds the number of bytes specified by the count parameter to the open file whose access
path is specified by refNum, and sets the physical end-of-file to one byte beyond the last block
allocated. The number of bytes actually allocated is rounded up to the nearest multiple of the
allocation block size, and returned in the count parameter. If there isn't enough empty space on
the volume to satisfy the allocation request, Allocate allocates the rest of the space on the volume
and returns dskFulErr as its function result.

Result codes noErr No error

FUNCTION FSClose (refNum: INTEGER) : OSErr; [NotinROM]

FSClose removes the access path specified by refNum, writes the contents of the volume buffer
to the volume, and updates the file's entry in the file directory.

Note: Some information stored on the volume won't be correct until FlushVol is called.

dskFulErr
fLckdErr
fhOpnErr
ioErr

Disk full
File locked
File not open
I/O error
Bad reference number
Software volume lock
Hardware volume lock
Read/write permission doesn't allow writing

rfNumErr
vLckdErr
wPrErr
wrPermErr

Result codes noErr No error
extFSErr External file system
fnfErr File not found
fhOpnErr File not open
ioErr I/O error
nsvErr No such volume
rfNumErr Bad reference number

11-94 High-Level File Manager Routines

The File Manager

Changing Information About Files

All of the routines described in this section affect both forks of the file, and don't require the file
to be open.

FUNCTION GetFInfo (f i leName: Str255; vRefNum: INTEGER; VAR
f n d r l n f o : FInfo) : OSErr; [NotinROM]

For the file having the name fileName on the specified volume, GetFInfo returns information
used by the Finder in fndrlnfo (see the section "File Information Used by the Finder").

Result codes noErr
bdNamErr
extFSErr
fnfErr
ioErr
nsvErr
paramErr

No error
Bad file name
External file system
File not found
I/O error
No such volume
No default volume

FUNCTION SetFInfo (f i leName: S tr255; vRefNum: INTEGER; f n d r l n f o :
FInfo) : OSErr; [NotinROM]

For the file having the name fileName on the specified volume, SetFInfo sets information used by
the Finder to fndrlnfo (see the section "File Information Used by the Finder").

Result codes noErr No error
extFSErr External file system
fLckdErr File locked
fnfErr File not found
ioErr I/O error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

FUNCTION SetFLock (f i leName: S tr255; vRefNum: INTEGER) : OSErr;
[NotinROM]

SetFLock locks the file having the name fileName on the specified volume. Access paths
currently in use aren't affected.

Note: This lock is controlled by your application, and is distinct from the user-accessible
lock maintained by the Finder.

High-Level File Manager Routines 11-95

Inside Macintosh

Result codes noErr No error
extFSErr External file system
fnfErr File not found
ioErr I/O error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

FUNCTION RstFLock (fileName: Str255; vRefNum: INTEGER) : OSErr;
[Not in ROM]

RstFLock unlocks the file having the name fileName on the specified volume. Access paths
I currently in use aren't affected.
!!

j! Result codes noErr
i extFSErr

fnfErr
j ioErr
j nsvErr

vLckdErr
wPrErr

No error
External file system
File not found
I/O error
No such volume
Software volume lock
Hardware volume lock

FUNCTION Rename (oldName: Str255; vRefNum: INTEGER; newName:
Str255) : OSErr; [Not in ROM]

Given a file name in oldName, Rename changes the name of the file to newName. Access paths
currently in use aren't affected. Given a volume name in oldName or a volume reference number
in vRefNum, Rename changes the name of the specified volume to newName.

Warn ing : If you're renaming a volume, be sure that oldName ends with a colon, or
Rename will consider it a file name.

Result codes noErr No error
bdNamErr Bad file name
dirFulErr Directory full
dupFNErr Duplicate file name
extFSErr External file system
fLckdErr File locked
fnfErr File not found
fsRnErr Problem during rename
ioErr I/O error
nsvErr No such volume
paramErr No default volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

11-96 High-level File Manager Routines

The File Manager

FUNCTION FSDelete (fileName: Str255; vRefNum: INTEGER) : OSErr;
[NotinROM]

FSDelete removes the closed file having the name fileName from the specified volume.

Note: This function will delete both forks of the file.

This section contains information for programmers using the low-level Pascal or assembly-
language routines of the File Manager, and describes them in detail.

Most low-level File Manager routines can be executed either synchronously (meaning that the
application can't continue until the routine is completed) or asynchronously (meaning that the
application is free to perform other tasks while the routine is executing). Some cannot be
executed asynchronously, because they use the Memory Manager to allocate and release memory.

When an application calls a File Manager routine asynchronously, an I/O request is placed in the
file I /O queue, and control returns to the calling program—possibly even before the actual I/O is
completed. Requests are taken from the queue one at a time, and processed; meanwhile, the
calling program is free to work on other things.

The calling program may specify a completion routine to be executed at the end of an
asynchronous operation.

At any time, you can clear all queued File Manager calls except the current one by using the
InitQueue procedure. InitQueue is especially useful when an error occurs and you no longer want
queued calls to be executed.

Routine parameters passed by an application to the File Manager and returned by the File Manager
to an application are contained in a parameter block, which is a data structure in the heap or
stack. Most low-level calls to the File Manager are of the form

FUNCTION PBCallName (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

PBCallName is the name of the routine. ParamBlock points to the parameter block containing the
parameters for the routine. If async is TRUE, the call is executed asynchronously; otherwise the
call is executed synchronously. The routine returns an integer result code of type OSErr. Each
routine description lists all of the applicable result codes, along with a short description of what
the result code means. Lengthier explanations of all the result codes can be found in the summary
at the end of this chapter.

Result codes noErr
bdNamErr
extFSErr
fflsyErr
fLckdErr
fnfErr
ioErr
nsvErr
vLckdErr
wPrErr

No error
Bad file name
External file system
File busy
File locked
File not found
I/O error
No such volume
Software volume lock
Hardware volume lock

LOW-LEVEL FILE MANAGER ROUTINES

Low-Level File Manager Routines 11-97

Inside Macintosh

Assembly-language note: When you call a File Manager routine, AO must point to a
parameter block containing the parameters for the routine. If you want the routine to be
executed asynchronously, set bit 10 of the routine trap word. You can do this by
supplying the word ASYNC as the second argument to the routine macro. For example:

_Read ,ASYNC

You can set or test bit 10 of a trap word by using the global constant asyncTrpBit (The
syntax shown above applies to the Lisa Workshop Assembler; programmers using another
development system should consult its documentation for the proper syntax.)

All routines except InitQueue return a result code in DO.

Routine Parameters

There are three different kinds of parameter blocks you'll pass to File Manager routines. Each
kind is used with a particular set of routine calls: I/O routines, file information routines, and
volume information routines.

The lengthy, variable-length data structure of a parameter block is given below. The Device
Manager and File Manager use this same data structure, but only the parts relevant to the File
Manager are discussed here. Each kind of parameter block contains eight fields of standard
information and nine to 16 fields of additional information:

TYPE ParamBlkType (ioParam,fileParam,volumeParam,cntrlParam);

ParamBlockRec = RECORD
qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:

QElemPtr;
INTEGER;
INTEGER;
Ptr;
ProcPtr;
OSErr;
StringPtr;
INTEGER;

OF

{next queue entry}
{queue type}
{routine trap}
{routine address}
{completion routine}
{result code}
{volume or file name}
{volume reference or }
{ drive number}

CASE ParamBlkType
ioParam:
. . . {I/O routine parameters}

fileParam:
. . . {file information routine parameters}

volumeParam:
. . . {volume information routine parameters}

cntrlParam:
. . . {used by the Device Manager}

END;

ParmBlkPtr = "ParamBlockRec;

11-98 Low-Level File Manager Routines

The File Manager

The first four fields in each parameter block are handled entirely by the File Manager, and most
programmers needn't be concerned with them; programmers who are interested in them should
see the section "Data Structures in Memory".

IOCompletion contains a pointer to a completion routine to be executed at the end of an
asynchronous call; it should be NIL for asynchronous calls with no completion routine, and is
automatically set to NIL for all synchronous calls.

Warning: Completion routines are executed at the interrupt level and must preserve all
registers other than AO, A l , and D0-D2. Your completion routine must not make any calls
to the Memory Manager, directly or indirectly, and can't depend on handles to unlocked
blocks being valid. If it uses application globals, it must also ensure that register A5
contains the address of the boundary between the application globals and the application
parameters; for details, see SetUpA5 and RestoreA5 in chapter 13.

Assembly-language note: When your completion routine is called, register AO points
to the parameter block of the asynchronous call and register DO contains the result code.

Routines that are executed asynchronously return control to the calling program with the result
code noErr as soon as the call is placed in the file I/O queue. This isn't an indication of
successful call completion, but simply indicates that the call was successfully queued. To
determine when the call is actually completed, you can poll the ioResult field; this field is set to
1 when the call is made, and receives the actual result code upon completion of the call.
Completion routines are executed after the result code is placed in ioResult.

IONamePtr points to either a volume name or a file name (which can be prefixed by a volume
name).

Note: Although ioNamePtr can include both the volume name and the file name,
applications shouldn't encourage users to prefix a file name with a volume name.

IOVRefNum contains either the reference number of a volume or the drive number of a drive
containing a volume.

For routines that access volumes, the File Manager determines which volume to access by using
one of the following:

1. IONamePtr, a pointer to the volume name (which must be followed by a colon).

2. If ioNamePtr is NIL, or points to an improper volume name, then ioVRefNum. (If
ioVRefNum is negative, it's a volume reference number; if positive, it's a drive number.)

3. If ioVRefNum is 0, the default volume. (If there isn't a default volume, an error is
returned.)

For routines that access closed files, the File Manager determines which file to access by using
ioNamePtr, a pointer to the name of the file (and possibly also of the volume).

• If the string pointed to by ioNamePtr doesn't include the volume name, the File Manager
uses steps 2 and 3 above to determine the volume.

• If ioNamePtr is NIL or points to an improper file name, an error is returned.

Low-Level File Manager Routines 11-99

Inside Macintosh

I/O Parameters

When you call one of the I/O routines, you'll use these nine additional fields after the standard
eight fields in the parameter block:

ioParam:
(ioRefNum:
ioVersNum:
ioPermssn:
ioMisc:
ioBuffer:
ioReqCount:
ioActCount:
ioPosMode:
ioPosOffset:

INTEGER; {path reference number}
SignedByte; {version number}
SignedByte; {read/write permission}
Ptr; {miscellaneous}
Ptr; {data buffer}
LONGINT; {requested number of bytes}
LONGINT; {actual number of bytes}
INTEGER; {positioning mode and newline character}
LONGINT); {positioning offset}

For routines that access open files, the File Manager determines which file to access by using the
path reference number in ioRefNum. IOVersNum is the file's version number, normally 0.
IOPermssn requests permission to read or write via an access path, and must contain one of the
following values:

CONST fsCurPerm = 0
fsRdPerm = 1
fsWrPerm = 2
fsRdWrPerm = 3

{whatever is currently allowed}
{request to read only}
{request to write only}
{request to read and write}

This request is compared with the open permission of the file. If the open permission doesn't
allow I/O as requested, a result code indicating the error is returned.

The content of ioMisc depends on the routine called. It contains either a new logical end-of-file, a
new version number, a pointer to an access path buffer, or a pointer to a new volume or file
name. Since ioMisc is of type Ptr, you'll need to perform type coercion to correcdy interpret the
value of ioMisc when it contains an end-of-file (a LONGINT) or version number (a SignedByte).

IOBuffer points to a data buffer into which data is written by Read calls and from which data is
read by Write calls. IOReqCount specifies the requested number of bytes to be read, written, or
allocated. IOActCount contains the number of bytes actually read, written, or allocated.

IOPosMode and ioPosOffset contain positioning information used for Read, Write, and SetFPos
calls. IOPosMode contains the positioning mode; bits 0 and 1 indicate how to position the mark,
and you can use the following predefined constants to set or test their value:

CONST fsAtMark = 0
fsFromStart = 1
fsFromLEOF = 2
fsFromMark = 3

{at current mark}
{offset relative to
{offset relative to
{offset relative to

beginning of file}
logical end-of-file}
current mark}

IOPosOffset specifies the byte offset (either positive or negative), relative to the position specified
by the positioning mode, where the operation will be performed (except when the positioning
mode is fsAtMark, in which case ioPosOffset is ignored).

To have the File Manager verify that all data written to a volume exacdy matches the data in
memory, make a Read call right after the Write call. The parameters for a read-verify operation

11-100 Low-Level File Manager Routines

The File Manager

are the same as for a standard Read call, except that the following constant must be added to the
positioning mode:

CONST rdVerify = 64; {read-verify mode}

The result code ioErr is returned if any of the data doesn't match.

Note: Advanced programmers: Bit 7 of ioPosMode is the newline flag; it's set if read
operations should terminate at a newline character. The ASCII code of the newline
character is specified in the high-order byte of ioPosMode. If the newline flag is set, the
data will be read one byte at a time until the newline character is encountered, ioReqCount
bytes have been read, or the end-of-file is reached. If the newline flag is clear, the data will
be read one byte at a time until ioReqCount bytes have been read or the end-of-file is
reached.

File Information Parameters

Some File Manager routines, including GetFilelnfo and SetFilelnfo, use the following 16
additional fields after the standard eight fields in the parameter block:

f ileParairt:
(ioFRefNum:
ioFVersNum:
fillerl:
ioFDirlndex:
ioFlAttrib:
ioFlVersNum:
ioFlFndrlnfo:
ioFlNum:
ioFlStBlk:
ioFlLgLen:
ioFlPyLen:
ioFlRStBlk:
ioFlRLgLen:
ioFlRPyLen:
ioFlCrDat:
ioFlMdDat:

INTEGER; {path reference number}
SignedByte; {version number}
SignedByte; {not used}
INTEGER; {sequence number of file}
SignedByte; {file attributes}
SignedByte; {version number}
FInfo; {information used by the Finder}
LONGINT; {file number}
INTEGER; {first allocation block of data fork}
LONGINT; {logical end-of-file of data fork}
LONGINT; {physical end-of-file of data fork}
INTEGER; {first allocation block of resource fork}
LONGINT; {logical end-of-file of resource fork}
LONGINT; {physical end-of-file of resource fork}
LONGINT; {date and time of creation}
LONGINT) ; {date and time of last modification}

IOFDirlndex contains the sequence number of the file, and can be used as a way of indexing all
the files on a volume. IOFlNum is a unique number assigned to a file; most programmers needn't
be concerned with file numbers, but those interested can read the section "Data Organization on
Volumes".

Note: IOFDirlndex maintains the sequence numbers without gaps, so you can use it as a
way of indexing all the files on a volume.

IOHAttrib contains the following file attributes:

Bit M e a n i n g
0 Set if file is locked

Low-Level File Manager Routines 11-101

Inside Macintosh

IOFlStBlk and ioFlRStBlk contain 0 if the file's data or resource fork is empty, respectively. The
date and time in the ioFlCrDat and ioFlMdDat fields are specified in seconds since midnight,
January 1, 1904.

Volume Information Parameters

When you call GetVolInfo, you'll use the following 14 additional fields:

volumeParam:
(filler2:
ioVolIndex:
ioVCrDate:
ioVLsBkUp:
ioVAtrb:
ioVNmFls:
ioVDirSt:
ioVBILn:
ioVNmAlBlks:
ioVAlBlkSiz:
ioVClpSiz:
ioAlBlSt:
ioVNxtFNum:
ioVFrBlk:

LONGINT; {not used}
INTEGER; {volume index}
LONGINT; {date and time of initialization}
LONGINT; {date and time of last backup}
INTEGER; {bit 15=1 if volume locked}
INTEGER; {number of files in directory}
INTEGER; {first block of directory}
INTEGER; {length of directory in blocks}
INTEGER; {number of allocation blocks}
LONGINT; {size of allocation blocks}
LONGINT; {number of bytes to allocate}
INTEGER; {first block in volume block map}
LONGINT; {next unused file number}
INTEGER); {number of unused allocation blocks}

IOVolIndex contains the volume index, another method of referring to a volume; the first
volume mounted has an index of 1, and so on.

Note: IOVolIndex maintains the volume numbers sequentially (without gaps), so you can
use it as a way of indexing all mounted volumes.

Most programmers needn't be concerned with the parameters providing information about file
directories and block maps (such as ioVNmFls), but interested programmers can read the section
"Data Organization on Volumes".

Routine Descriptions

This section describes the procedures and functions. Each routine description includes the low-
level Pascal form of the call and the routine's assembly-language macro. A list of the fields in the
parameter block affected by the call is also given.

Assembly-language note : The field names given in these descriptions are those of the
ParamBlockRec data type; see the summary at the end of this chapter for the names of the
corresponding assembly-language offsets. (The names for some offsets differ from their
Pascal equivalents, and in certain cases more than one name for the same offset is
provided.)

11-102 Low-Level File Manager Routines

The File Manager

The number next to each parameter name indicates the byte offset of the parameter from the start
of the parameter block pointed to by register AO; only assembly-language programmers need be
concerned with it. An arrow next to each parameter name indicates whether it's an input, output,
or input/output parameter:

A r r o w Meaning
—> Parameter is passed to the routine

<— Parameter is returned by the routine

<-» Parameter is passed to and returned by the routine

Initializing the File I/O Queue

PROCEDURE FInitQueue;

Trap macro InitQueue

FInitQueue clears all queued File Manager calls except the current one.

Accessing Volumes

To get the volume reference number of a volume, given the path reference number of a file on that
volume, both Pascal and assembly-language programmers should call the high-level File Manager
function GetVRefNum.

FUNCTION PBMountVol (paramBlock: ParmBlkPtr) : OSErr;

Trap macro _MountVol

Parameter block
<— 16 ioResult word
<H> 22 ioVRefNum word

PBMountVol mounts the volume in the drive specified by ioVRefNum, and returns a volume
reference number in ioVRefNum. If there are no volumes already mounted, this volume becomes
the default volume. PBMountVol is always executed synchronously.

Result codes noErr No error
badMDBErr Bad master directory block
extFSErr External file system
ioErr I/O error
memFullErr Not enough room in heap zone
noMacDskErr Not a Macintosh disk
nsDrvErr No such drive
paramErr Bad drive number
volOnLinErr Volume already on-line

Low-Level File Manager Routines 11-103

Inside Macintosh

FUNCTION PBGetVInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

—> 12 ioCompletion pointer
<- 16 ioResult word
<-> 18 ioNamePtr pointer
<-» 22 ioVRefNum word
—» 28 ioVollhdex word

30 ioVCrDate long word
<— 34 ioVLsBkUp long word
<— 38 ioVAtrb word
<— 40 ioVNmFls word
<— 42 ioVDirSt word
<— 44 ioVBILn word
<— 46 ioVNmAlBlks word
<— 48 ioVAlBlkSiz long word
<- 52 ioVClpSiz long word
<— 56 ioAlBlSt word
<— 58 ioVNxtFNum long word
<— 62 ioVFrBlk word

PBGetVInfo returns information about the specified volume. If ioVolIndex is positive, the File
Manager attempts to use it to find the volume; for instance, if ioVolIndex is 2, the File Manager
will attempt to access the second mounted volume. If ioVolIndex is negative, the File Manager
uses ioNamePtr and ioVRefNum in the standard way to determine which volume. If ioVolIndex
is 0, the File Manager attempts to access the volume by using ioVRefNum only. The volume
reference number is returned in ioVRefNum, and the volume name is returned in ioNamePtr
(unless ioNamePtr is NIL).

Result codes noErr No error
nsvErr No such volume
paramErr No default volume

FUNCTION PBGetVol (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro _GetVol

Parameter block
—> 12 ioCompletion pointer
<— 16 ioResult word
<— 18 ioNamePtr pointer
<r- 22 ioVRefNum word

PBGetVol returns the name of the default volume in ioNamePtr (unless ioNamePtr is NIL) and
its volume reference number in ioVRefNum.

11-104 Low-Level File Manager Routines

Trap macro GetVolInfo

Parameter block

The File Manager

Result codes noErr No error
nsvErr No default volume

FUNCTION PBSetVol (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro SetVol

Parameter block
—> 12 ioCompletion pointer
<— 16 ioResult word
—» 18 ioNamePtr pointer
—> 22 ioVRefNum word

PBSetVol sets the default volume to the mounted volume specified by ioNamePtr or ioVRefNum.

Result codes noErr No error
bdNamErr Bad volume name
nsvErr No such volume
paramErr No default volume

FUNCTION PBFlushVol (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro _FlushVol

Parameter block
—» 12 ioCompletion pointer
<— 16 ioResult word
—> 18 ioNamePtr pointer
- » 22 ioVRefNum word

On the volume specified by ioNamePtr or ioVRefNum, PBFlushVol writes descriptive
information about the volume, the contents of the associated volume buffer, and all access path
buffers for the volume (if they've changed since the last time PBFlushVol was called). The date
and time of the last modification to the volume are set to the current date and time.

Result codes noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

No error
Bad volume name
External file system
I/O error
No such drive
No such volume
No default volume

Low-Level File Manager Routines 11-105

Inside Macintosh

FUNCTION PBUnmountVol (paramBlock: ParmBlkPtr) : OSErr;

Trap macro _UnmountVol

Parameter block
4— 16 ioResult word
—> 18 ioNamePtr pointer
- > 22 io VRefNum word

PBUnmountVol unmounts the volume specified by ioNamePtr or io VRefNum, by calling
PBFlushVol to flush the volume, closing all open fdes on the volume, and releasing the memory
used for the volume. PBUnmountVol is always executed synchronously.

Warn ing : Don't unmount the startup volume.

Result codes noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

No error
Bad volume name
External file system
I/O error
No such drive
No such volume
No default volume

FUNCTION PBOffLine (paramBlock: ParmBlkPtr) : OSErr;

Trap macro _OffLine

Parameter block
—» 12 ioCompletion pointer
<— 16 ioResult word
—> 18 ioNamePtr pointer
—» 22 io VRefNum word

PBOffLine places off-line the volume specified by ioNamePtr or io VRefNum, by calling
PBFlushVol to flush the volume, and releasing all the memory used for the volume except for 94
bytes of descriptive information. PBOffLine is always executed synchronously.

Result codes noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

No error
Bad volume name
External file system
I/O error
No such drive
No such volume
No default volume

11-106 Low-Level File Manager Routines

The File Manager

FUNCTION PBEject (paramBlock: ParmBlkPtr) : OSErr;

Assembly-language note : You may invoke the macro _Eject asynchronously; the first
part of the call is executed synchronously, and the actual ejection is executed
asynchronously.

Result codes noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

No error
Bad volume name
External file system
I/O error
No such drive
No such volume
No default volume

Accessing Files

FUNCTION PBCreate (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro _Create

Parameter block
—> 12 ioCompletion pointer
<- 16 ioResult word
—> 18 ioNamePtr pointer

22 ioVRefNum word
—> 26 ioFVersNum byte

PBCreate creates a new file (both forks) having the name ioNamePtr and the version number
ioFVersNum, on the volume specified by ioVRefNum. The new file is unlocked and empty.
The date and time of its creation and last modification are set to the current date and time. If the
file created isn't temporary (that is, if it will exist after the application terminates), the application
should call PBSetFInfo (after PBCreate) to fill in the information needed by the Finder.

Low-Level File Manager Routines 11-107

Trap macro _Eject

Parameter block
—> 12 ioCompletion pointer
<— 16 ioResult word
—> 18 ioNamePtr pointer
- » 22 ioVRefNum word

PBEject flushes the volume specified by ioNamePtr or ioVRefNum, places it off-line, and then
ejects the volume.

Inside Macintosh

Assembly-language note: If a desk accessory creates a file, it should always create it
on the system startup volume (and not on the default volume) by passing the reference
number of the system startup volume in io VRefNum. The volume reference number can
be obtained by calling the high-level File Manager function GetVRefNum with the
reference number of the system resource file, which is stored in the global variable
SysMap.

noErr No error
bdNamErr Bad file name
dupFNErr Duplicate file name and version
dirFulErr File directory full
extFSErr External file system
ioErr I/O error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

FUNCTION PBOpen (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Open

Parameter block
12 ioCompletion pointer

<— 16 ioResult word
—> 18 ioNamePtr pointer
—> 22 io VRefNum word

24 ioRefNum word
—> 26 ioVersNum byte
—> 27 ioPermssn byte

28 ioMisc pointer

PBOpen creates an access path to the file having the name ioNamePtr and the version number
ioVersNum, on the volume specified by ioVRefNum. A path reference number is returned in
ioRefNum.

IOMisc either points to a 524-byte portion of memory to be used as the access path's buffer, or is
NIL if you want the volume buffer to be used instead.

Warning: All access paths to a single file that's opened multiple times should share the
same buffer so that they will read and write the same data.

IOPermssn specifies the path's read/write permission. A path can be opened for writing even if it
accesses a file on a locked volume, and an error won't be returned until a PBWrite, PBSetEOF,
or PB Allocate call is made.

If you attempt to open a locked file for writing, PBOpen will return permErr as its function result.
If you attempt to open a file for writing and it already has an access path that allows writing,
PBOpen will return the reference number of the existing access path in ioRefNum and opWrErr
as its function result.

11-108 Low-Level File Manager Routines

The File Manager

noErr No error
bdNamErr Bad file name
extFSErr External file system
fnffirr File not found
ioErr I/O error
nsvErr No such volume
opWrErr File already open for writing
permErr Attempt to open locked file for writing
tmfoErr Too many files open

FUNCTION PBOpenRF (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro _OpenRF

Parameter block
12 ioCompletion pointer

<— 16 ioResult word
—» 18 ioNamePtr pointer
—» 22 ioVRefNum word

24 ioRefNum word
—> 26 ioVersNum byte

27 ioPermssn byte
-» 28 ioMisc pointer

PBOpenRF is identical to PBOpen, except that it opens the file's resource fork instead of its data
fork.

Note: Normally you should access a file's resource fork through the routines of the
Resource Manager rather than the File Manager. PBOpenRF doesn't read the resource
map into memory; it's really only useful for block-level operations such as copying files.

noErr No error
bdNamErr Bad file name
extFSErr External file system
fnfErr File not found
ioErr I/O error
nsvErr No such volume
opWrErr File already open for writing
permErr Attempt to open locked file for writing
tmfoErr Too many files open

Low-Level File Manager Routines 11-109

Inside Macintosh

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro Read

Parameter block
—» 12 ioCompletion pointer
<- 16 ioResult word

24 ioRefNum word
—> 32 ioBuffer pointer
—> 36 ioReqCount long word
<— 40 ioActCount long word
- > 44 ioPosMode word
<r-> 46 ioPosOffset long word

PBRead attempts to read ioReqCount bytes from the open file whose access path is specified by
ioRefNum, and transfer them to the data buffer pointed to by ioBuffer. The position of the mark
is specified by ioPosMode and ioPosOffset. If you try to read past the logical end-of-file,
PBRead moves the mark to the end-of-file and returns eofErr as its function result. After the read
is completed, the mark is returned in ioPosOffset and the number of bytes actually read is
returned in ioActCount.

Result codes noErr No error
eofErr End-of-file
extFSErr External file system
fnOpnErr File not open
ioErr I/O error
paramErr Negative ioReqCount
rfNumErr Bad reference number

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Write

Parameter block
—» 12 ioCompletion pointer
<— 16 ioResult word
—> 24 ioRefNum word
—> 32 ioBuffer pointer
—» 36 ioReqCount long word
<— 40 ioActCount long word
—» 44 ioPosMode word
4-» 46 ioPosOffset long word

PBWrite takes ioReqCount bytes from the buffer pointed to by ioBuffer and attempts to write
them to the open file whose access path is specified by ioRefNum. The position of the mark is
specified by ioPosMode and ioPosOffset. After the write is completed, the mark is returned in
ioPosOffset and the number of bytes actually written is returned in ioActCount.

11-110 Low-Level File Manager Routines

The File Manager

noErr No error
dskFulErr Disk full
fLckdErr File locked
fnOpnErr File not open
ioErr I/O error
paramErr Negative ioReqCount
posErr Attempt to position before start of file
rfNumErr Bad reference number
vLckdErr Software volume lock
wPrErr Hardware volume lock
wrPermErr Read/write permission doesn't allow writing

FUNCTION PBGetFPos (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro _GetFPos

Parameter block

—> 12 ioCompletion pointer
16 ioResult word

-> 24 ioRefNum word
<- 36 ioReqCount long word
<r- 40 ioActCount long word
<r- 44 ioPosMode word
<r- 46 ioPosOffset long word

PBGetFPos returns, in ioPosOffset, the mark of the open file whose access path is specified by
ioRefNum. It sets ioReqCount, ioActCount, and ioPosMode to 0.

Result codes noErr No error
extFSErr External file system
fnOpnErr File not open
gfpErr Error during GetFPos
ioErr I/O error
rfNumErr Bad reference number

FUNCTION PBSetFPos (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro _SetFPos

Parameter block
-» 12 ioCompletion pointer
<— 16 ioResult word
—> 24 ioRefNum word
—> 44 ioPosMode word

46 ioPosOffset long word

PBSetFPos sets the mark of the open file whose access path is specified by ioRefNum, to the
position specified by ioPosMode and ioPosOffset. The position at which the mark is actually set

Low-Level File Manager Routines 11-111

Inside Macintosh

is returned in ioPosOffset. If you try to set the mark past the logical end-of-file, PBSetFPos
moves the mark to the end-of-file and returns eofErr as its function result.

Result codes noErr No error
eofErr End-of-file
extFSErr External file system
fnOpnErr File not open
ioErr I/O error
posErr Attempt to position before start of file
rfNumErr Bad reference number

FUNCTION PBGetEOF (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro _GetEOF

Parameter block
—> 12 ioCompletion pointer
<— 16 ioResult word
—» 24 ioRefNum word
4— 28 ioMisc long word

PBGetEOF returns, in ioMisc, the logical end-of-file of the open file whose access path is
specified by ioRefNum.

Result codes noErr No error
extFSErr External file system
fnOpnErr File not open
ioErr I/O error
rfNumErr Bad reference number

FUNCTION PBSetEOF (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro SetEOF

Parameter block
—> 12 ioCompletion pointer
4— 16 ioResult word
—> 24 ioRefNum word
—» 28 ioMisc long word

PBSetEOF sets the logical end-of-file of the open file whose access path is specified by
ioRefNum, to ioMisc. If you attempt to set the logical end-of-file beyond the physical end-of-
file, the physical end-of-file is set to one byte beyond the end of the next free allocation block; if
there isn't enough space on the volume, no change is made, and PBSetEOF returns dskFulErr as
its function result. If ioMisc is 0, all space occupied by the file on the volume is released.

II-112 Low-Level File Manager Routines

The File Manager

Result codes noErr No error
dskFulErr Disk full
extFSErr External file system
fLckdErr File locked
fnOpnErr File not open
ioErr I/O error
rfNumErr Bad reference number
vLckdErr Software volume lock
wPrErr Hardware volume lock
wrPermErr Read/write permission doesn't allow writing

FUNCTION PBAllocate (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro _Allocate

Parameter block

-> 12 ioCompletion pointer
<r- 16 ioResult word
-» 24 ioRefNum word
-> 36 ioReqCount long word
<- 40 ioActCount long word

PBAllocate adds ioReqCount bytes to the open file whose access path is specified by ioRefNum,
and sets the physical end-of-file to one byte beyond the last block allocated. The number of bytes
actually allocated is rounded up to the nearest multiple of the allocation block size, and returned in
ioActCount. If there isn't enough empty space on the volume to satisfy the allocation request,
PBAllocate allocates the rest of the space on the volume and returns dskFulErr as its function
result.

Result codes noErr No error
dskFulErr Disk full
fLckdErr File locked
fnOpnErr File not open
ioErr I/O error
rfNumErr Bad reference number
vLckdErr Software volume lock
wPrErr Hardware volume lock
wrPermErr Read/write permission doesn't allow writing

Low-Level File Manager Routines 11-113

Inside Macintosh

FUNCTION PBFlushFi le (paramBlock: ParmBlkPtr; a sync : BOOLEAN) :
OSErr;

No error
External file system
File not found
File not open
I/O error
No such volume
Bad reference number

FUNCTION PBClose (paramBlock: ParmBlkPtr; a sync : BOOLEAN) :
OSErr;

Trap macro Close

Parameter block
—> 12 ioCompletion pointer
<— 16 ioResult word
—> 24 ioRefNum word

PBClose writes the contents of the access path buffer specified by ioRefNum to the volume and
removes the access path.

Warn ing : Some information stored on the volume won't be correct until PBFlushVol is
called.

Result codes noErr No error
extFSErr External file system
fnfErr File not found
fnOpnErr File not open
ioErr I/O error
nsvErr No such volume
rfNumErr Bad reference number

11-114 Low-Level File Manager Routines

Trap macro _FlushFile

Parameter block
—» 12 ioCompletion pointer
<r- 16 ioResult word
—> 24 ioRefNum word

PBFlushFile writes the contents of the access path buffer indicated by ioRefNum to the volume,
and updates the file's entry in the file directory.

Warning : Some information stored on the volume won't be correct until PBFlushVol is
called.

Result codes noErr
extFSErr
fnfErr
fnOpnErr
ioErr
nsvErr
rfNumErr

The File Manager

Changing Information About Files

All of the routines described in this section affect both forks of a file, and don't require the file to
be open.

FUNCTION PBGetFInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro _GetFileInfo

Parameter block

-» 12 ioCompletion pointer
<— 16 ioResult word
<-» 18 ioNamePtr pointer
—> 22 ioVRefNum word
<— 24 ioFRefNum word
-» 26 ioFVersNum byte
-> 28 ioFDirlndex word
<— 30 ioFlAttrib byte
<— 31 ioFlVersNum byte
<r- 32 ioFlFndrlnfo 16 bytes
<— 48 ioRNum long word
<— 52 ioFlStBlk word
<— 54 ioFlLgLen long word
<— 58 ioFlPyLen long word
<— 62 ioFlRStBlk word
<— 64 ioHRLgLen long word
<— 68 ioFlRPyLen long word
<— 72 ioFlCrDat long word
<— 76 ioHMdDat long word

PBGetFInfo returns information about the specified file. If ioFDirlndex is positive, the File
Manager returns information about the file whose sequence number is ioFDirlndex on the volume
specified by ioVRefNum (see the section "Data Organization on Volumes" if you're interested in
using this method). If ioFDirlndex is negative or 0, the File Manager returns information about
the file having the name ioNamePtr and the version number ioFVersNum, on the volume
specified by ioFVRefNum. If the file is open, the reference number of the first access path found
is returned in ioFRefNum, and the name of the file is returned in ioNamePtr (unless ioNamePtr is
NIL).

Result codes noErr
bdNamErr
extFSErr
fnfErr
ioErr
nsvErr
paramErr

No error
Bad file name
External file system
File not found
170 error
No such volume
No default volume

Low-Level File Manager Routines 11-115

Inside Macintosh

FUNCTION PBSetFInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro SetFilelnfo

Parameter block
-> 12 ioCompletion pointer
<— 16 ioResult word
—> 18 ioNamePtr pointer

22 io VRefNum word
—» 26 ioFVersNum byte
—» 32 ioFlFndrlnfo 16 bytes

72 ioFlCrDat long word
-» 76 ioFlMdDat long word

PBSetFInfo sets information (including the date and time of creation and modification, and
information needed by the Finder) about the file having the name ioNamePtr and the version
number ioFVersNum, on the volume specified by ioVRefNum. You should call PBGetFInfo
just before PBSetFInfo, so the current information is present in the parameter block.

Result codes noErr No error
bdNamErr Bad file name
extFSErr External file system
fLckdErr File locked
fnfErr File not found
ioErr I/O error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

FUNCTION PBSetFLock (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro _SetFilLock

Parameter block
—» 12 ioCompletion pointer

16 ioResult word
—> 18 ioNamePtr pointer

22 io VRefNum word
—» 26 ioFVersNum byte

PBSetFLock locks the file having the name ioNamePtr and the version number ioFVersNum on
the volume specified by ioVRefNum. Access paths currentiy in use aren't affected.

Note: This lock is controlled by your application, and is distinct from the user-accessible lock
maintained by the Finder.

11-116 Low-Level File Manager Routines

The File Manager

Result codes noErr No error
extFSErr External file system
fnfErr File not found
ioErr I/O error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

FUNCTION PBRstFLock (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro _RstFilLock

Parameter block
—> 12 ioCompletion pointer

16 ioResult word
—> 18 ioNamePtr pointer
—> 22 ioVRefNum word

26 ioFVersNum byte

PBRstFLock unlocks the file having the name ioNamePtr and the version number ioFVersNum
on the volume specified by ioVRefNum. Access paths currently in use aren't affected.

Result codes noErr No error
extFSErr External file system
fnfErr File not found
ioErr I/O error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

FUNCTION PBSetFVers (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro _SetFilType

Parameter block
—» 12 ioCompletion pointer
<— 16 ioResult word
—> 18 ioNamePtr pointer
—> 22 ioVRefNum word

26 ioVersNum byte
—> 28 ioMisc byte

PBSetFVers changes the version number of the file having the name ioNamePtr and version
number ioVersNum, on the volume specified by ioVRefNum, to the version number stored in the
high-order byte of ioMisc. Access paths currently in use aren't affected.

Low-Level File Manager Routines II-l 17

Inside Macintosh

Warning : The Resource Manager, the Segment Loader, and the Standard File Package
operate only on files with version number 0; changing the version number of a file to a
nonzero number will prevent them from operating on it.

noErr No error
bdNamErr Bad file name
dupFNErr Duplicate file name and version
extFSErr External file system
fLckdErr File locked
fnfErr File not found
nsvErr No such volume
ioErr I/O error
paramErr No default volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

FUNCTION PBRename (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro _Rename

Parameter block
—> 12 ioCompletion pointer

16 ioResult word
—> 18 ioNamePtr pointer
—» 22 ioVRefNum word
-> 26 ioVersNum byte
—> 28 ioMisc pointer

Given a file name in ioNamePtr and a version number in ioVersNum, PBRename changes the
name of the file to the name specified by ioMisc. Access paths currently in use aren't affected.
Given a volume name in ioNamePtr or a volume reference number in ioVRefNum, it changes the
name of the volume to the name specified by ioMisc.

Warn ing : If you're renaming a volume, be sure that the volume name given in
ioNamePtr ends with a colon, or Rename will consider it a fde name.

Result codes noErr No error
bdNamErr Bad file name
dirFulErr File directory full
dupFNErr Duplicate file name and version
extFSErr External file system
fLckdErr File locked
fnfErr File not found
fsRnErr Problem during rename
ioErr I/O error
nsvErr No such volume
paramErr No default volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

11-118 Low-Level File Manager Routines

The File Manager

FUNCTION PBDelete (paramBlock: ParmBlkPtr; a s y n c : BOOLEAN) :
OSErr;

Trap macro JDelete

Parameter block

-» 12 ioCompletion pointer
<- 16 ioResult word
-» 18 ioNamePtr pointer
-> 22 io VRefNum word
-> 26 ioFVersNum byte

PBDelete removes the closed file having the name ioNamePtr and the version number
ioFVersNum, from the volume specified by ioVRefNum.

Note: This function will delete both forks of the file.

Result codes noErr No error
bdNamErr Bad file name
extFSErr External file system
fflsyErr File busy
fLckdErr File locked
fnfErr File not found
nsvErr No such volume
ioErr I/O error
vLckdErr Software volume lock
wPrErr Hardware volume lock

DATA ORGANIZATION ON VOLUMES

This section explains how information is organized on volumes. Most of the information is
accessible only through assembly language, but some advanced Pascal programmers may be
interested.
The File Manager communicates with device drivers that read and write data via block-level
requests to devices containing Macintosh-initialized volumes. (Macintosh-initialized volumes are
volumes initialized by the Disk Initialization Package.) The actual type of volume and device is
unimportant to the File Manager; the only requirements are that the volume was initialized by the
Disk Initialization Package and that the device driver is able to communicate via block-level
requests.
The 3 1/2-inch built-in and optional external drives are accessed via the Disk Driver. If you want
to use the File Manager to access files on Macintosh-initialized volumes on other types of devices,
you must write a device driver that can read and write data via block-level requests to the device
on which the volume will be mounted. If you want to access files on volumes not initialized by
the Macintosh, you must write your own external file system (see the section "Using an External
File System").
The information on all block-formatted volumes is organized in logical blocks and allocation
blocks. Logical blocks contain a number of bytes of standard information (512 bytes on
Macintosh-initialized volumes), and an additional number of bytes of information specific to the

Data Organization on Volumes 11-119

Inside Macintosh

Disk Driver (12 bytes on Macintosh-initialized volumes; for details, see chapter 7). Allocation
blocks are composed of any integral number of logical blocks, and are simply a means of
grouping logical blocks together in more convenient parcels.

The remainder of this section applies only to Macintosh-initialized volumes; the information may
be different in future versions of Macintosh system software. Other volumes must be accessed
via an external file system, and the information on them must be organized by an external
initializing program.

A Macintosh-initialized volume contains system s tar tup information in logical blocks 0 and 1
(see Figure 6) that's read in at system startup. This information consists of certain configurable
system parameters, such as the capacity of the event queue, the initial size of the system heap, and
the number of open files allowed. The development system you're using may include a utility
program for modifying the system startup blocks on a volume.

logical block 0

logical block 1

logical block 2

logical block 3

logical block 4

Z
logical block n

logical block n + 1

z
logical block 799

3y3tem startup
information

volume information
block map

unused

file directory

unused

file contents

zero if not a startup disk

master directory block

z

allocation block 2

z
allocation block m

Figure 6. A 400K-Byte Volume with lK-Byte Allocation Blocks

Logical block 2 of the volume begins the master directory block. The master directory block
contains volume information and the volume allocation block m a p , which records whether
each block on the volume is unused or what part of a file it contains data from.

The master directory "block" always occupies two blocks—the Disk Initialization Package varies
the allocation block size as necessary to achieve this constraint.

In the next logical block following the block map begins the file directory, which contains
descriptions and locations of all the files on the volume. The rest of the logical blocks on the

11-120 Data Organization on Volumes

The File Manager

volume contain files or garbage (such as parts of deleted files). The exact format of the volume
information, volume allocation block map, and file directory is explained in the following
sections.

Volume Information

The volume information is contained in the first 64 bytes of the master directory block (see Figure
7). This information is written on the volume when it's initialized, and modified thereafter by the
File Manager.

byte 0 drSigWord (word) always $D2D7

2 drCrDate (long word) date and time of initialization

6 drLsBkUp (long word) date and time of last backup

10 drAtrb (word) volume attributes

12 drNmFl3 (word) number of files in directory

14 drDirSt (word) first block of directory

16 drBILen (word) length of directory in blocks

18 drNmAIBIks (word) number of allocation blocks on volume

20 drAIBIkSiz (long word) size of allocation blocks

24 drClpSiz (long word) number of bytes to allocate

28 drAIBISt (word) first allocation block in block map

30 drNxtFNum (long word) next unused f i le number

34 drFreeBks (word) number of unused allocation blocks

36 drVN (byte) length of volume name

37 drVN + 1 (bytes) characters of volume name

Figure 7. Volume Information

DrAtrb contains the volume at tr ibutes, as follows:

Bit M e a n i n g
7 Set if volume is locked by hardware

15 Set if volume is locked by software

Data Organization on Volumes 11-121

Inside Macintosh

DrClpSiz contains the minimum number of bytes to allocate each time the Allocate function is
called, to minimize fragmentation of files; it's always a multiple of the allocation block size.
DrNxtFNum contains the next unused file number (see the "File Directory" section below for an
explanation of file numbers).

Warn ing : The format of the volume information may be different in future versions of
Macintosh system software.

Volume Allocation Block Map

The volume allocation block map represents every allocation block on the volume with a 12-bit
entry indicating whether the block is unused or allocated to a file. It begins in the master directory
block at the byte following the volume information, and continues for as many logical blocks as
needed.

The first entry in the block map is for block number 2; the block map doesn't contain entries for
the system startup blocks. Each entry specifies whether the block is unused, whether it's the last
block in the file, or which allocation block is next in the file:

E n t r y Meaning
0 Block is unused

1 Block is the last block of the file

2 to 4095 Number of next block in the file

For instance, assume that there's one file on the volume, stored in allocation blocks 8, 11, 12,
and 17; the first 16 entries of the block map would read

0 0 0 0 0 0 11 0 0 12 17 0 0 0 0 1

The first allocation block on a volume typically follows the file directory. It's numbered 2
because of the special meaning of numbers 0 and 1.

Note: As explained below, it's possible to begin the allocation blocks immediately
following the master directory block and place the file directory somewhere within the
allocation blocks. In this case, the allocation blocks occupied by the file directory must be
marked with $FFF's in the allocation block map.

File Directory

The file directory contains an entry for each file. Each entry lists information about one file on the
volume, including its name and location. Each file is listed by its own unique file number ,
which the File Manager uses to distinguish it from other files on the volume.

A file directory entry contains 51 bytes plus one byte for each character in the file name. If the
file names average 20 characters, a directory can hold seven file entries per logical block. Entries
are always an integral number of words and don't cross logical block boundaries. The length of a
file directory depends on the maximum number of files the volume can contain; for example, on a
400K-byte volume the file directory occupies 12 logical blocks.

11-122 Data Organization on Volumes

The File Manager

The file directory conventionally follows the block map and precedes the allocation blocks, but a
volume-initializing program could actually place the file directory anywhere within the allocation
blocks as long as the blocks occupied by the file directory are marked with $FFF's in the block
map.

The format of a file directory entry is shown in Figure 8.

byte 0 fIFIags (byte) bit 7 = 1 if entry U3ed; bit 0 = 1 if f i le locked

1 fITyp (byte) version number

2 flUsrWds (16 byte3) information U3ed by the Finder

18 f IFINum (long word) f i le number

22 fIStBlk (word) first allocation block of data fork

24 fILgLen (long word) logical end-of-file of data fork

28 flPyLen (long word) physical end-of-file of data fork

32 fIRStBlk (word) first allocation block of resource fork

34 fIRLgLen (long word) logical end-of-file of resource fork

38 fIRPyLen (long word) physical end-of-file of resource fork

42 fICrDat (long word) date and time of creation

46 flMdDat (long word) date and time of last modification

50 fINam (byte) length of f i le name

51 flNam + 1 (byte3) characters of f i le name

Figure 8. A File Directory Entry

FIStBlk and fIRStBlk are 0 if the data or resource fork doesn't exist. FICrDat and flMdDat are
given in seconds since midnight, January 1, 1904.

Each time a new file is created, an entry for the new file is placed in the file directory. Each time a
file is deleted, its entry in the file directory is cleared, and all blocks used by that file on the
volume are released.

Warning: The format of the file directory may be different in future versions of
Macintosh system software.

Data Organization on Volumes 11-123

Inside Macintosh

DATA STRUCTURES IN MEMORY

This section describes the memory data structures used by the File Manager and any external file
system that accesses files on Macintosh-initialized volumes. Some of this data is accessible only
through assembly language.

The data structures in memory used by the File Manager and all external file systems include:

• the file I/O queue, listing all asynchronous routines awaiting execution (including the
currendy executing routine, if any)

• the volume-control-block queue, listing information about each mounted volume

• copies of volume allocation block maps (one for each on-line volume)

• the file-control-block buffer, listing information about each access path

• volume buffers (one for each on-line volume)

• optional access path buffers (one for each access path)

• the drive queue, listing information about each drive connected to the Macintosh

The File I/O Queue

The file I/O queue is a standard Operating System queue (described in chapter 13) that contains
parameter blocks for all asynchronous routines awaiting execution. Each time a routine is called,
an entry is placed in the queue; each time a routine is completed, its entry is removed from the
queue.

Each entry in the file I/O queue consists of a parameter block for the routine that was called. Most
of the fields of this parameter block contain information needed by the specific File Manager
routines; these fields are explained above in the section "Low-Level File Manager Routines". The
first four fields of the parameter block, shown below, are used by the File Manager in processing
the I/O requests in the queue.

TYPE ParamBlockRec = RECORD

QLink points to the next entry in the queue, and qType indicates the queue type, which must
always be ORD(ioQType). IOTrap and ioCmdAddr contain the trap word and address of the File
Manager routine that was called.

You can get a pointer to the header of the file I/O queue by calling the File Manager function
GetFSQHdr.

qLink:
qType:
ioTrap:

QElemPtr;
INTEGER;
INTEGER;

{next queue entry}
{queue type}
{routine trap}
{routine address}
{rest of block}

ioCmdAddr: Ptr;

END;

11-124 Data Structures in Memory

The File Manager

FUNCTION GetFSQHdr : QHdrPtr; [NotinROM]

GetFSQHdr returns a pointer to the header of the file I/O queue.

Assembly-language note: The global variable FSQHdr contains the header of the file

Volume Control Blocks

Each time a volume is mounted, its volume information is read from it and is used to build a new
volume control block in the volume-control-block queue (unless an ejected or off-line
volume is being remounted). A copy of the volume allocation block map is also read from the
volume and placed in the system heap, and a volume buffer is created in the system heap.

The volume-control-block queue is a standard Operating System queue that's maintained in the
system heap. It contains a volume control block for each mounted volume. A volume control
block is a 94-byte nonrelocatable block that contains volume-specific information, including the
first 64 bytes of the master directory block (bytes 8-71 of the volume control block match bytes
0-63 of the volume information). It has the following structure:

TYPE VCB =

I/O queue.

RECORD
qLink:
qType:
vcbFlags:
vcbSigWord:
vcbCrDate:
vcbLsBkUp:
vcbAtrb:
vcbNmFls:
vcbDirSt:
vcbBILn:
vcbNmBlks:
vcbAlBlkSiz:
vcbClpSiz:
vcbAlBlSt:
vcbNxtFNum:
vcbFreeBks:
vcbVN:
vcbDrvNum:
vcbDRefNum:
vcbFSID:
vcbVRefNum:
vcbMAdr:
vcbBufAdr:
vcbMLen:
vcbDirlndex:
vcbDirBlk:

QElemPtr;
INTEGER;
INTEGER;
INTEGER;
LONGINT;
LONGING-
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
LONGINT;
LONGING-
INTEGER;
LONGING-
INTEGER;

Ptr;

INTEGER,
INTEGER,
INTEGER,
INTEGER,
Ptr;

STRING[27] ;

INTEGER;
INTEGER;
INTEGER

{next queue entry}
{queue type}
{bit 15=1 if dirty}
{always $D2D7}
{date and time of initialization}
{date and time of last backup}
{volume attributes}
{number of files in directory}
{first block of directory}
{length of directory in blocks}
{number of allocation blocks}
{size of allocation blocks}
{number of bytes to allocate}
{first allocation block in block map}
{next unused file number}
{number of unused allocation blocks}
{volume name}
{drive number}
{driver reference number}
{file-system identifier}
{volume reference number}
{pointer to block map}
{pointer to volume buffer}
{number of bytes in block map}
{used internally}
{used internally}

END;

Data Structures in Memory 11-125

Inside Macintosh

QLink points to the next entry in the queue, and qType indicates the queue type, which must
always be ORD(fsQType). Bit 15 of vcbFlags is set if the volume information has been changed
by a routine call since the volume was last affected by a FlushVol call. VCBAtrb contains the
volume attributes, as follows:

Bit Meaning
0-2 Set if inconsistencies were found between the volume information and the file

directory when the volume was mounted

6 Set if volume is busy (one or more fdes are open)

7 Set if volume is locked by hardware

15 Set if volume is locked by software

VCBDirSt contains the number of the first logical block of the file directory; vcbNmBlks, the
number of allocation blocks on the volume; vcbAlBlSt, the number of the first logical block in the
block map; and vcbFreeBks, the number of unused allocation blocks on the volume.

VCBDrvNum contains the drive number of the drive on which the volume is mounted;
vcbDRefNum contains the driver reference number of the driver used to access the volume.
When a mounted volume is placed off-line, vcbDrvNum is cleared. When a volume is ejected,
vcbDrvNum is cleared and vcbDRefNum is set to the negative of vcbDrvNum (becoming a
positive number). VCBFSID identifies the fde system handling the volume; it's 0 for volumes
handled by the File Manager, and nonzero for volumes handled by other file systems.

When a volume is placed off-line, its buffer and block map are released. When a volume is
unmounted, its volume control block is removed from the volume-control-block queue.

You can get a pointer to the header of the volume-control-block queue by calling the File Manager
function GetVCBQHdr.

FUNCTION GetVCBQHdr : QHdrPtr; [Not in ROM]

GetVCBQHdr returns a pointer to the header of the volume-control-block queue.

Assembly-language note: The global variable VCBQHdr contains the header of the
volume-control-block queue. The default volume's volume control block is pointed to by
the global variable DefVCBPtr.

File Control Blocks

Each time a file is opened, the file's directory entry is used to build a file control block in the
file-control-block buffer, which contains information about all access paths. Each open fork
of a file requires one access path. Two access paths are used for the system and application
resource files (whose resource forks are always open); this leaves a capacity of up to 10 file
control blocks on a Macintosh 128K, and up to 46 file control blocks on the Macintosh 512K and
XL.

Note: The size of the file-control-block buffer is determined by the system startup
information stored on a volume.

11-126 Data Structures in Memory

The File Manager

The file-control-block buffer is a nonrelocatable block in the system heap; the first word contains
the length of the buffer. You can refer to the file-control-block buffer by using the global variable
FCBSPtr, which points to the length word. Each file control block contains 30 bytes of
information about an access path (Figure 9).

byte 0 fcbFINum (long word) f i le number

4 fcbMdRByt (byte) flags

5 fcbTypByt (byte) version number

6 fcbSBIk (word) first allocation block of f i le

8 fcbEOF (long word) logical end-of-file

12 fcbPLen (long word) physical end-of-file

16 fcbCrP3 (long word) mark

20 fcbVPtr (pointer) pointer to volume control block

24 fcbBfAdr (pointer) pointer to access path buffer

28 fcbFIPos (word) for internal use of File Manager

Figure 9. A File Control Block

Warning: The size and structure of a file control block may be different in future versions
of Macintosh system software.

Bit 7 of fcbMdRByt is set if the fde has been changed since it was last flushed; bit 1 is set if the
entry describes a resource fork; bit 0 is set if data can be written to the file.

The Drive Queue

Disk drives connected to the Macintosh are opened when the system starts up, and information
describing each is placed in the drive queue. This is a standard Operating System queue, and
each entry in it has the following structure:

TYPE DrvQEl = RECORD
qLink:
qType:
dQDrive:
dQRefNum:
dQFSID:
dQDrvSize:

END;

QElemPtr; {next queue entry}
INTEGER; {queue type}
INTEGER; {drive number}
INTEGER; {driver reference number}
INTEGER; {file-system identifier}
INTEGER {number of logical blocks}

Data Structures in Memory 11-127

Inside Macintosh

QLink points to the next entry in the queue, and qType indicates the queue type, which must
always be ORD(drvQType). DQDrive contains the drive number of the drive on which the
volume is mounted; dQRefNum contains the driver reference number of the driver controlling the
device on which the volume is mounted. DQFSID identifies the file system handling the volume
in the drive; it's 0 for volumes handled by the File Manager, and nonzero for volumes handled by
other file systems. If the volume isn't a 3 1/2-inch disk, dQDrvSize contains the number of 512-
byte blocks on the volume mounted in this drive; if the volume is a 3 1/2-inch disk, this field isn't
used. Four bytes of flags precede each drive queue entry; they're accessible only from assembly
language.

Assembly-language note : These bytes contain the following:

By te Con ten t s
0 Bit 7=1 if volume is locked

1 0 if no disk in drive; 1 or 2 if disk in drive; 8 if nonejectable disk in drive;
$FC-$FF if disk was ejected within last 1.5 seconds

2 Used internally during system startup

3 Bit 7=0 if disk is single-sided

You can get a pointer to the header of the drive queue by calling the File Manager function
GetDrvQHdr.

FUNCTION GetDrvQHdr : QHdrPtr; [NotinROM]

GetDrvQHdr returns a pointer to the header of the drive queue.

Assembly-language note: The global variable DrvQHdr contains the header of the
drive queue.

The drive queue can support any number of drives, limited only by memory space.

USING AN EXTERNAL FILE SYSTEM

The File Manager is used to access files on Macintosh-initialized volumes. If you want to access
files on other volumes, you must write your own external file system and volume-initializing
program. After the external file system has been written, it must be used in conjunction with the
File Manager as described in this section.

Before any File Manager routines are called, you must place the memory location of the external
file system in the global variable ToExtFS, and link the drive(s) accessed by your file system into
the drive queue. As each volume is mounted, you must create your own volume control block for
each mounted volume and link each one into the volume-control-block queue. As each access

11-128 Data Structures in Memory

The File Manager

path is opened, you must create your own file control block and add it to the file-control-block
buffer.

All SetVol, GetVol, and GetVolInfo calls then can be handled by the File Manager via the
volume-control-block queue and drive queue; external file systems needn't support these calls.

When the application calls any other File Manager routine accessing a volume, the File Manager
passes control to the address contained in ToExtFS (if ToExtFS is 0, the File Manager returns
directly to the application with the result code extFSErr). The external file system must then use
the information in the file 170 queue to handle the call as it wishes, set the result code, and return
control to the File Manager. Control is passed to an external file system for the following specific
routine calls:

• for MountVol if the drive queue entry for the requested drive has a nonzero file-system
identifier

• for Create, Open, OpenRF, GetFilelnfo, SetFilelnfo, SetFilLock, RstFilLock, SetFilType,
Rename, Delete, FlushVol, Eject, Offline, and UnmountVol, if the volume control block
for the requested file or volume has a nonzero file-system identifier

• for Close, Read, Write, Allocate, GetEOF, SetEOF, GetFPos, SetFPos, and FlushFile, if
the file control block for the requested file points to a volume control block with a nonzero
file-system identifier

Using an External File System 11-129

Inside Macintosh

SUMMARY OF THE FILE MANAGER

Constants

CONST { Flags in file information used by the Finder }

fHasBundle =
fInvisible =
fTrash =
fDesktop =
fDisk

8192; {set if file has a bundle}
16384; {set if file's icon is invisible}

-3; {file is in Trash window}
-2; {file is on desktop}
0; {file is in disk window}

{ Values for requesting read/write access }

fsCurPerm = 0;
fsRdPerm - 1;
fsWrPerm = 2;
fsRdWrPerm = 3;

{whatever is currently allowed}
{request to read only}
{request to write only}
{request to read and write}

{ Positioning modes }

fsAtMark = 0
fsFromStart = 1
fsFromLEOF = 2
fsFromMark = 3

{at current mark}
{offset relative to beginning of file}
{offset relative to logical end-of-file}
{offset relative to current mark}

rdVerify = 64; {add to above for read-verify}

Data Types

TYPE FInfo = RECORD
fdType: OSType; {file type}
fdCreator: OSType; {file's creator}
fdFlags: INTEGER; {flags}
fdLocation: Point; {file's location}
fdFldr: INTEGER {file's window}

END;

ParamBlkType (ioParam,fileParam,volumeParam,cntrlParam);

ParmBlkPtr = "ParamBlockRec;
ParamBlockRec =

qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:

RECORD
QElemPtr; {next queue entry}
INTEGER; {queue type}
INTEGER; {routine trap}
Ptr; {routine address}
ProcPtr; {completion routine}
OSErr; {result code}
StringPtr; {volume or file name}
INTEGER; {volume reference or drive number}

11-130 Summary of the File Manager

The File Manager

CASE ParamBlkType
ioParam:
(ioRefNum:
ioVersNum:
ioPermssn:
ioMisc:
ioBuffer:
ioReqCount:
ioActCount:
ioPosMode:
ioPosOffset:

fileParam:
(ioFRefNum:
ioFVersNum:
fillerl:
ioFDirlndex:
ioFlAttrib:
ioFlVersNum:
ioFlFndrlnfo
ioFlNum:
ioFlStBlk:
ioFlLgLen:
ioFlPyLen:
ioFlRStBlk:

ioFlRLgLen:
ioFlRPyLen:

ioFlCrDat:
ioFlMdDat:

volumeParam:

OF

{path reference number}
{version number}
{read/write permission}
{miscellaneous}
{data buffer}
{requested number of bytes}
{actual number of bytes}
{positioning mode and newline character}
{positioning offset}

{path reference number}
{version number}
{not used}
{sequence number of file}
{file attributes}
{version number}
{information used by the Finder}
{file number}
{first allocation block of data fork}
{logical end-of-file of data fork}
{physical end-of-file of data fork}
{first allocation block of resource }
{ fork}
{logical end-of-file of resource fork}
{physical end-of-file of resource }
{ fork}
{date and time of creation}
{date and time of last modification}

(filler2: LONGINT,
ioVolIndex: INTEGER,
ioVCrDate: LONGINT,
ioVLsBkUp: LONGINT,
ioVAtrb: INTEGER
ioVNmFls: INTEGER
ioVDirSt: INTEGER
ioVBILn: INTEGER
ioVNmAlBlks: INTEGER
ioVAlBlkSiz: LONGINT
ioVClpSiz: LONGINT
ioAlBlSt: INTEGER
ioVNxtFNum: LONGINT
ioVFrBlk: INTEGER);

{not used}
{volume index}
{date and time of initialization}
{date and time of last backup}
{bit 15=1 if volume locked}
{number of files in directory}
{first block of directory}
{length of directory in blocks}
{number of allocation blocks}
{size of allocation blocks}
{number of bytes to allocate}
{first allocation block in block map}
{next unused file number}
{number of unused allocation blocks}

cntrlParam:
. . . {used by Device Manager}

END;

Summary of the File Manager 11-131

INTEGER;
SignedByte;
SignedByte;
Ptr;
Ptr;
LONGINT,
LONGINT,
INTEGER;
LONGINT);

INTEGER;
SignedByte;
SignedByte;
INTEGER;
SignedByte;
SignedByte
FInfo;
LONGING-
INTEGER;
LONGINT;
LONGING-
INTEGER;

LONGINT;
LONGINT;

LONGINT;
LONGINT);

Inside Macintosh

VCB = RECORD
qLink:: QElemPtr;
qType: INTEGER
vcbFlags: INTEGER
vcbSigWord: INTEGER
vcbCrDate: LONGINT
vcbLsBkUp: LONGINT
vcbAtrb: INTEGER
vcbNmFls: INTEGER
vcbDirSt: INTEGER
vcbBILn: INTEGER
vcbNmBlks: INTEGER
vcbAlBlkSiz: LONGINT
vcbClpSiz: LONGINT
vcbAlBlSt: INTEGER
vcbNxtFNum: LONGINT
vcbFreeBks: INTEGER
vcbVN: STRING[27];
vcbDrvNum INTEGER
vcbDRefNum: INTEGER
vcbFSID: INTEGER
vcbVRefNum: INTEGER,
vcbMAdr: Ptr;
vcbBufAdr: Ptr;
vcbMLen: INTEGER;
vcbDirlndex: INTEGER;
vcbDirBlk: INTEGER

END;

{next queue entry}
{queue type}
{bit 15=1 if dirty}
{always $D2D7}
{date and time of initialization}
{date and time of last backup}
{volume attributes}
{number of files in directory}
{first block of directory}
{length of directory in blocks}
{number of allocation blocks}
{size of allocation blocks}
{number of bytes to allocate}
{first allocation block in block map}
{next unused file number}
{number of unused allocation blocks}
{volume name}
{drive number}
{driver reference number}
{file-system identifier}
{volume reference number}
{pointer to block map}
{pointer to volume buffer}
{number of bytes in block map}
{used internally}
{used internally}

DrvQEl RECORD
qLink:
qType:
dQDrive:
dQRefNum:
dQFSID:

QElemPtr; {next queue entry}
INTEGER; {queue type}
INTEGER; {drive number}
INTEGER; {driver reference number}
INTEGER; {file-system identifier}

dQDrvSize: INTEGER {number of logical blocks}
END;

High-Levei Routines [Not in ROM]

Accessing Volumes

FUNCTION GetVInfo

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

GetVRefNum
GetVol
SetVol
FlushVol
UnmountVol
Eject

(drvNum: INTEGER; volName: StringPtr; VAR vRefNum:
INTEGER; VAR freeBytes: LONGINT) : OSErr;
(pathRefNum: INTEGER; VAR vRefNum: INTEGER) : OSErr;
(volName: StringPtr; VAR vRefNum: INTEGER) : OSErr;
(volName: StringPtr; vRefNum: INTEGER) : OSErr;
(volName: StringPtr; vRefNum: INTEGER) : OSErr;
(volName: StringPtr; vRefNum: INTEGER) : OSErr;
(volName: StringPtr; vRefNum: INTEGER) : OSErr;

11-132 Summary of the File Manager

The File Manager

Accessing Files

FUNCTION Create

FUNCTION FSOpen

FUNCTION OpenRF

FUNCTION FSRead

FUNCTION FSWrite

FUNCTION GetFPos
FUNCTION SetFPos

FUNCTION GetEOF
FUNCTION SetEOF
FUNCTION Allocate
FUNCTION FSClose

(fileName: Str255; vRefNum: INTEGER; creator: OSType;
fileType: OSType) : OSErr;
(fileName: Str255; vRefNum: INTEGER; VAR refNum:
INTEGER) : OSErr;
(fileName: Str255; vRefNum: INTEGER; VAR refNum:
INTEGER) : OSErr;
(refNum: INTEGER; VAR count: LONGINT; buffPtr: Ptr) :
OSErr;
(refNum: INTEGER; VAR count: LONGINT; buffPtr: Ptr) :
OSErr;
(refNum: INTEGER; VAR filePos: LONGINT) : OSErr;
(refNum: INTEGER; posMode: INTEGER; posOff: LONGINT)
OSErr;
(refNum: INTEGER; VAR logEOF: LONGINT) : OSErr;
(refNum: INTEGER; logEOF: LONGINT) : OSErr;
(refNum: INTEGER; VAR count: LONGINT) : OSErr;
(refNum: INTEGER) : OSErr;

Changing Information About Files

FUNCTION GetFInfo (fileName: Str255; vRefNum: INTEGER; VAR fndrlnfo:
FInfo) : OSErr;

FUNCTION SetFInfo (fileName: Str255; vRefNum: INTEGER; fndrlnfo: FInfo)
OSErr;

FUNCTION SetFLock (fileName: Str255; vRefNum: INTEGER) : OSErr;
FUNCTION RstFLock (fileName: Str255; vRefNum: INTEGER) : OSErr;
FUNCTION Rename (oldName: Str255; vRefNum: INTEGER; newName: Str255)

OSErr;
FUNCTION FSDelete (fileName: Str255; vRefNum: INTEGER) : OSErr;

Low-Level Routines

Initializing the File I/O Queue

PROCEDURE FInitQueue;

Accessing Volumes

FUNCTION PBMountVol (paramBlock: ParmBlkPtr) : OSErr;
<r- 16 ioResult word

22 ioVRefNum word

Summary of the File Manager 11-133

Inside Macintosh

FUNCTION PBGetVInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
<-» 18 ioNamePtr pointer
<-4 22 ioVRefNum word
-» 28 ioVolIhdex word
<r- 30 ioVQDate long word
<- 34 ioVLsBkUp long word
<— 38 ioVAtrb word
<- 40 ioVNmFls word
<— 42 ioVDirSt word
<— 44 ioVBILn word
<— 46 ioVNmAlBlks word
<r- 48 ioVAIBlkSiz long word
«- 52 ioVClpSiz long word
<— 56 ioAlBlSt word
<— 58 ioVNxtFNum long word
<— 62 ioVFrBlk word

FUNCTION PBGetVol (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—» 12 ioCompletion pointer
<— 16 ioResult word
<— 18 ioNamePtr pointer
<— 22 ioVRefNum word

FUNCTION PBSetVol (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—» 12 ioCompletion pointer
<— 16 ioResult word
—> 18 ioNamePtr pointer
—> 22 ioVRefNum word

FUNCTION PBFlushVol (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—» 12 ioCompletion pointer
—̂ 16 ioResult word

—> 18 ioNamePtr pointer
—» 22 ioVRefNum word

FUNCTION PBUnmountVol (paramBlock: ParmBlkPtr) : OSErr;
<— 16 ioResult word
—> 18 ioNamePtr pointer
—> 22 ioVRefNum word

FUNCTION PBOffLine (paramBlock: ParmBlkPtr) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
—> 18 ioNamePtr pointer

22 ioVRefNum word

11-134 Summary of the File Manager

The File Manager

FUNCTION PBEject (paramBlock: ParmBlkPtr) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
—> 18 ioNamePt pointer
- » 22 ioVRefNum word

Accessing Files

FUNCTION PBCreate (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
-> 12 ioCompletion pointer
4— 16 ioResult word
—» 18 ioNamePtr pointer

22 ioVRefNum word
—> 26 ioFVersNum byte

FUNCTION PBOpen (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
-» 12 ioCompletion pointer
4 - 16 ioResult word

18 ioNamePtr pointer
—> 22 ioVRefNum word
4 - 24 ioRefNum word
- > 26 ioVersNum byte
—> 27 ioPermssn byte
—> 28 ioMisc pointer

FUNCTION PBOpenRF (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—» 12 ioCompletion pointer
4— 16 ioResult word
-> 18 ioNamePtr pointer
—> 22 ioVRefNum word
4 - 24 ioRefNum word
—» 26 ioVersNum byte

27 ioPermssn byte
-» 28 ioMisc pointer

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
12 ioCompletion pointer

4 - 16 ioResult word
—» 24 ioRefNum word
—» 32 ioBuffer pointer
—» 36 ioReqCount long word
4 - 40 ioActCount long word
—> 44 ioPosMode word
4-» 46 ioPosOffset long word

Summary of the File Manager 11-135

Inside Macintosh

FUNCTION PBWrite (paramBlock ParmBl)
—» 12 ioCompletion pointer

16 ioResult word
—» 24 ioRefNum word
—» 32 ioBuffer pointer
—> 36 ioReqCount long word
<— 40 ioActCount long word
- » 44 ioPosMode word
<-> 46 ioPosOffset long word

OSErr;

FUNCTION PBGetFPos (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—» 12 ioCompletion pointer
<r- 16 ioResult word
—> 24 ioRefNum word
4— 36 ioReqCount long word
4— 40 ioActCount long word
4— 44 ioPosMode word
<— 46 ioPosOffset long word

FUNCTION PBSetFPos (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
—> 24 ioRefNum word
—> 44 ioPosMode word
«-» 46 ioPosOffset long word

FUNCTION PBGetEOF (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<r- 16 ioResult word
—> 24 ioRefNum word
<— 28 ioMisc long word

FUNCTION PBSetEOF (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
—> "2A ioRefNum word
—> 28 ioMisc long word

FUNCTION PBAllocate (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—» 12 ioCompletion pointer
<— 16 ioResult word
—> 24 ioRefNum word
—> 36 ioReqCount long word
<r- 40 ioActCount long word

FUNCTION PBFlushFile (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—» 12 ioCompletion pointer
<r- 16 ioResult word
—> 24 ioRefNum word

11-136 Summary of the File Manager

The File Manager

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
4— 16 ioResult word
—» 24 ioRefNum word

Changing Information About Files

FUNCTION PBGetFInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
- » 12 ioCompletion pointer
4 - 16 ioResult word

18 ioNamePtr pointer
—> 22 ioVRefNum word
<— 24 ioFRefNum word
—» 26 ioFVersNum byte
—> 28 ioFDirlndex word
4— 30 ioFlAttrib byte
4 - 31 ioFlVersNum byte
4 - 32 ioFlFndrlnfo 16 bytes
4 - 48 ioFlNum long word
4 - 52 ioHStBlk word
4— 54 ioFlLgLen long word
4— 58 ioFlPyLen long word
4 - 62 ioFlRStBlk word
4 - 64 ioFlRLgLen long word
4 - 68 ioFlRPyLen long word
4 - 72 ioHCrDat long word
4 - 76 ioFlMdDat long word

FUNCTION PBSetFInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—» 12 ioCompletion pointer
4 - 16 ioResult word
—> 18 ioNamePtr pointer
-> 22 ioVRefNum word
-> 26 ioFVersNum byte
—» 32 ioFlFndrlnfo 16 bytes

72 ioFlCrDat long word
—> 76 ioFlMdDat long word

FUNCTION PBSetFLock (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—» 12 ioCompletion pointer
4 - 16 ioResult word

18 ioNamePtr pointer
22 ioVRefNum word
26 ioFVersNum byte

FUNCTION PBRstFLock (paramBlock: ParmBlkPtr; async: BOOLEAN)': OSErr;
—» 12 ioCompletion pointer
4 - 16 ioResult word
—> 18 ioNamePtr pointer
—> 22 ioVRefNum word
—> 26 ioFVersNum byte

Summary of the File Manager 11-137

Inside Macintosh

FUNCTION PBSetFVers (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
-> 12 ioCompletion pointer
< - 16 ioResult word
- > 18 ioNamePtr pointer

22 ioVRefNum word
- » 26 ioVersNum byte
- » 28 ioMisc byte

FUNCTION PBRename (paramBlock: ParmBlkPtr;
- » 12 ioCompletion pointer
<r- 16 ioResult word
—>• 18 ioNamePtr pointer
—> 22 ioVRefNum word
- » 26 ioVersNum byte
-> 28 ioMisc pointer

FUNCTION PBDelete (paramBlock: ParmBlkPtr;
-> 12 ioCompletion pointer
< - 16 ioResult word
-> 18 ioNamePtr pointer
-> 22 ioVRefNum word
- » 26 ioFVersNum byte

OSErr;

Accessing Queues [Not in ROM]

FUNCTION GetFSQHdr : QHdrPtr;
FUNCTION GetVCBQHdr : QHdrPtr;
FUNCTION GetDrvQHdr : QHdrPtr;

Result Codes

N a m e Value M e a n i n g
badMDBErr -60 Master directory block is bad; must reinitialize volume

bdNamErr -37 Bad file name or volume name (perhaps zero-length)

dirFulErr -33 File directory full

dskFulErr -34 All allocation blocks on the volume are full

dupFNErr -48 A file with the specified name and version number already exists

eofErr -39 Logical end-of-file reached during read operation

extFSErr -58 External file system; file-system identifier is nonzero, or path

reference number is greater than 1024

fBsyErr —47 One or more files are open

fLckdErr -45 File locked

fnfErr -43 File not found

fnOpnErr -38 File not open

11-138 Summary of the File Manager

The File Manager

N a m e Value M e a n i n g
fsRnErr -59 Problem during rename

gfpErr -52 Error during GetFPos

ioErr -36 I/O error

memFullErr -108 Not enough room in heap zone

noErr 0 No error

noMacDskErr -57 Volume lacks Macintosh-format directory

nsDrvErr -56 Specified drive number doesn't match any number in the drive queue

nsvErr -35 Specified volume doesn't exist

opWrErr -49 The read/write permission of only one access path to a file can allow

paramErr
wnting

-50 Parameters don't specify an existing volume, and there's no default
volume

permErr -54 Attempt to open locked file for writing

posErr ^10 Attempt to position before start of file

rfNumErr -51 Reference number specifies nonexistent access path

tmfoErr -42 Too many files open

volOffLinErr -53 Volume not on-line

volOnLinErr -55 Specified volume is already mounted and on-line

vLckdErr -46 Volume is locked by a software flag

wrPermErr -61 Read/write permission doesn't allow writing

wPrErr Volume is locked by a hardware setting

Assembly-Language Information

Constants

; Flags in file information used by the Finder

fHasBundle .EQU 13 ;set if file has a bundle
fInvisible .EQU 14 ;set if file's icon is invisible

; Flags in trap words

asnycTrpBit .EQU 10 ;set for an asynchronous call
noQueueBit .EQU 9 ;set for immediate execution

Summary of the File Manager 11-139

Inside Macintosh

Values for requesting read/write access

fsCurPerm
fsRdPerm
fsWrPerm
fsRdWrPerm

.EQU

.EQU

.EQU

.EQU

0 ;whatever is currently allowed
1 /request to read only
2 ;request to write only
3 /request to read and write

Positioning modes

fsAtMark .EQU 0 ;at current mark
fsFromStart .EQU 1 /offset relative to beginning of file
fsFromLEOF .EQU 2 /offset relative to logical end-of-file
fsFromMark .EQU 3 /offset relative to current mark
rdVerify .EQU 64 /add to above for read-verify

Structure of File Information Used by the Finder

fdType File type (long)
fdCreator File's creator (long)
fdFlags Flags (word)
fdLocation File's location (point; long)
fdFldr File's window (word)

Standard Parameter Block Data Structure

qLink Pointer to next queue entry
qType Queue type (word)
ioTrap Routine trap (word)
ioCmdAddr Routine address
ioCompletion Address of completion routine
ioResult Result code (word)
ioFileName Pointer to file name (preceded by length byte)
ioVNPtr Pointer to volume name (preceded by length byte)
ioVRefNum Volume reference number (word)
ioDrvNum Drive number (word)

I/O Parameter Block Data Structure

ioRefNum Path reference number (word)
ioFileType Version number (byte)
ioPermssn Read/write permission (byte)
ioNewName Pointer to new file or volume name for Rename
ioLEOF Logical end-of-file for SetEOF (long)
ioOwnBuf Pointer to access path buffer
ioNewType New version number for SetFilType (byte)
ioBuffer Pointer to data buffer
ioReqCount Requested number of bytes (long)
ioActCount Actual number of bytes (long)
ioPosMode Positioning mode and newline character (word)

11-140 Summary of the File Manager

The File Manager

ioPosOffset Positioning offset (long)
ioQElSize Size in bytes of I/O parameter block

Structure of File Information Parameter Block

ioRefNum Path reference number (word)
ioFileType Version number (byte)
ioFDirlndex Sequence number of file (word)
ioHAttrib File attributes (byte)
ioFHType Version number (byte)
ioFlUsrWds Information used by the Finder (16 bytes)
ioFFlNum File number (long)
ioFlStBlk First allocation block of data fork (word)
ioFlLgLen Logical end-of-file of data fork (long)
ioFlPyLen Physical end-of-file of data fork (long)
ioFlRStBlk First allocation block of resource fork (word)
ioFlRLgLen Logical end-of-file of resource fork (long)
ioFlRPyLen Physical end-of-file of resource fork (long)
ioFlCrDat Date and time of creation (long)
ioFlMdDat Date and time of last modification (long)
ioFQElSize Size in bytes of file information parameter block

Structure of Volume Information Parameter Block

ioVolIndex Volume index (word)
ioVQDate Date and time of initialization (long)
ioVLsBkUp Date and time of last backup (long)
ioVAtrb Volume attributes (word)
ioVNmRs Number of files in directory (word)
ioVDirSt First block of directory (word)
ioVBILn Length of directory in blocks (word)
ioVNmAlBlks Number of allocation blocks on volume (word)
ioVAlBlkSiz Size of allocation blocks (long)
ioVClpSiz Number of bytes to allocate (long)
ioAlBlSt First allocation block in block map (word)
ioVNxtFNum Next unused file number (long)
ioVFrBlk Number of unused allocation blocks (word)
ioVQElSize Size in bytes of volume information parameter block

Volume Information Data Structure

drSigWord Always $D2D7 (word)
drCrDate Date and time of initialization (long)
drLsBkUp Date and time of last backup (long)
drAtrb Volume attributes (word)
drNmFls Number of files in directory (word)
drDirSt First block of directory (word)
drBILn Length of directory in blocks (word)
drNmAlBlks Number of allocation blocks on volume (word)
drAlBlkSiz Size of allocation blocks (long)

Summary of the File Manager 11-141

Inside Macintosh

drClpSiz Number of bytes to allocate (long)
drAlBlSt First allocation block in block map (word)
drNxtFNum Next unused file number (long)
drFreeBks Number of unused allocation blocks (word)
drVN Volume name preceded by length byte (28 bytes)

File Directory Entry Data Structure

flFlags Bit 7= 1 if entry used; bit 0= 1 if file locked (byte)
flTyp Version number (byte)
flUsrWds Information used by the Finder (16 bytes)
flFlNum File number (long)
flStBlk First allocation block of data fork (word)
flLgLen Logical end-of-file of data fork (long)
flPyLen Physical end-of-file of data fork (long)
flRStBlk First allocation block of resource fork (word)
flRLgLen Logical end-of-file of resource fork (long)
flRPyLen Physical end-of-file of resource fork (long)
flCrDat Date and time file of creation (long)
flMdDat Date and time of last modification (long)
flNam File name preceded by length byte

Volume Control Block Data Structure

qLink Pointer to next queue entry
qType Queue type (word)
vcbFlags Bit 15=1 if volume control block is dirty (word)
vcbSigWord Always $D2D7 (word)
vcbCrDate Date and time of initialization (word)
vcbLsBkUp Date and time of last backup (long)
vcbAtrb Volume attributes (word)
vcbNmFls Number of files in directory (word)
vcbDirSt First block of directory (word)
vcbBILn Length of directory in blocks (word)
vcbNmBlks Number of allocation blocks on volume (word)
vcbAlBlkSiz Size of allocation blocks (long)
vcbClpSiz Number of bytes to allocate (long)
vcbAlBlSt First allocation block in block map (word)
vcbNxtFNum Next unused file number (long)
vcbFreeBks Number of unused allocation blocks (word)
vcbVN Volume name preceded by length byte (28 bytes)
vcbDrvNum Drive number of drive in which volume is mounted (word)
vcbDRefNum Driver reference number of driver for drive in which volume is mounted

(word)
vcbFSID File-system identifier (word)
vcb VRefNum Volume reference number (word)
vcbMAdr Pointer to volume block map
vcbBufAdr Pointer to volume buffer
vcbMLen Number of bytes in volume block map (word)

11-142 Summary of the File Manager

The File Manager

File Control Block Data Structure

fcbFINum File number (long)
fcbMdRByt Flags (byte)
fcbTypByt Version number (byte)
fcbSBlk First allocation block of file (word)
fcbEOF Logical end-of-file (long)
fcbPLen Physical end-of-file (long)
fcbCrPs Mark (long)
fcbVPtr Pointer to volume control block (long)
fcbBfAdr Pointer to access path buffer (long)

Drive Queue Entry Data Structure

qLink Pointer to next queue entry
qType Queue type (word)
dQDrive Drive number (word)
dQRefNum Driver reference number (word)
dQFSID File-system identifier (word)
dQDrvSize Number of logical blocks (word)

Macro Names

Pascal n a m e Macro name
FInitQueue _InitQueue
PBMountVol MountVol
PBGetVInfo GetVolInfo
PBGetVol GetVol
PBSetVol SetVol
PBFlushVol FlushVol
PBUnmountVol UnmountVol
PBOffLine _OffLine
PBEject _Eject
PBCreate _Create
PBOpen Open
PBOpenRF OpenRF
PBRead Read
PBWrite Write
PBGetFPos GetFPos
PBSetFPos SetFPos
PB GetEOF GetEOF
PB SetEOF _SetEOF
PB Allocate Allocate
PBFlushFile _FlushFile
PBClose Close
PBGetFInfo GetFilelnfo
PBSetFInfo SetFilelnfo
PBSetFLock SetFilLock
PBRstFLock RstFilLock

Summary of the File Manager 11-143

Inside Macintosh

PBSetFVers SetFilType
PBRename _Rename
PBDelete Delete

Variables

FSQHdr File I/O queue header (10 by tes)
VCBQHdr Volume-control-block queue header (10 bytes)
DefVCBPtr Pointer to default volume control block
FCBSPtr Pointer to file-control-block buffer
DrvQHdr Drive queue header (10 by tes)
ToExtFS Pointer to external file system

11-144 Summary of the File Manager

5 THE PRINTING MANAGER

147 About This Chapter
147 About the Printing Manager
148 Print Records and Dialogs
150 The Printer Information Subrecord
150 The Job Subrecord
152 Additional Device Information
153 Methods of Printing
153 Background Processing
154 Using the Printing Manager
154 The Printing Loop
156 Printing a Specified Range of Pages
156 Using QuickDraw for Printing
157 Printing F r o m the Finder
157 Printing Manager Routines
157 Imtialization and Termination
158 Print Records and Dialogs
159 Printing
161 Error Handling
162 The Printer Driver
162 Low-Level Driver Access Routines
163 Printer Control
164 Bit M a p Printing
165 Text Streaming
166 Summary of the Printing Manager

Contents 11-145

Inside Macintosh

11-146

The Printing Manager

ABOUT THIS CHAPTER

The Printing Manager is a set of RAM-based routines and data types that allow you to use
standard QuickDraw routines to print text or graphics on a printer. The Printing Manager calls the
Printer Driver, a device driver in RAM. It also includes low-level calls to the Printer Driver so
that you can implement alternate, low-level printing routines.

You should already be familiar with the following:

• the Resource Manager

• QuickDraw

• dialogs, as described in chapter 13 of Volume I

• the Device Manager, if you're interested in writing your own Printer Driver

ABOUT THE PRINTING MANAGER

The Printing Manager isn't in the Macintosh ROM; to access the Printing Manager routines, you
must link with an object file or files provided as part of your development system.

The Macintosh user prints a document by choosing the Print command from the application's File
menu; a dialog then requests information such as the print quality and number of copies. The
Page Setup command in the File menu lets the user specify formatting information, such as the
page size, that rarely needs to be changed and is saved with the document. The Printing Manager
provides your application with two standard dialogs for obtaining Page Setup and Print
information. The user can also print directly from the Finder by selecting one or more documents
and choosing Print from the Finder's File menu; the Print dialog is then applied to all of the
documents selected.

The Printing Manager is designed so that your application doesn't have to be concerned with
what kind of printer is connected to the Macintosh; you call the same printing routines, regardless
of the printer. This printer independence is possible because the actual printing code (which is
different for different printers) is contained in a separate pr in ter resource file on the user's
disk. The printer resource file contains a device driver, called the Pr inter Driver, that
communicates between the Printing Manager and the printer.

The user installs a new printer with the Choose Printer desk accessory, which gives the Printing
Manager a new printer resource file. This process is transparent to your application, and your
application should not make any assumptions about the printer type.

Figure 1 shows the flow of control for printing on the Macintosh.

You define the image to be printed by using a printing grafPort, a QuickDraw grafPort with
additional fields that customize it for printing:

TYPE TPPrPort = ATPrPort;
TPrPort = RECORD

gPort: GrafPort; {grafPort to draw in}
{more fields for internal use}

END;

About the Printing Manager 11-147

Inside Macintosh

style dialog
(Page Setup command) C job dialog

(Print command)
Choose Printer
de3k accessory

print record

Printing
Manager

activates selected
Printing Manager

Printer Driver

activates selected
Printer Driver

printer

Figure 1. Printing Overview

The Printing Manager gives you a printing grafPort when you open a document for printing.
You then print text and graphics by drawing into this port with QuickDraw, just as if you were
drawing on the screen. The Printing Manager installs its own versions of QuickDraw's low-level
drawing routines in the printing grafPort, causing your higher-level QuickDraw calls to drive the
printer instead of drawing on the screen.

Warning: You should not try to do your own customization of QuickDraw routines in the
printing grafPort unless you're sure of what you're doing.

PRINT RECORDS AND DIALOGS

To format and print a document, your application must know the following:

• the dimensions of the printable area of the page

• if the application must calculate the margins, the size of the physical sheet of paper and the
printer's vertical and horizontal resolution

• which printing method is being used (draft or spool, explained below)

11-148 About the Printing Manager

The Printing Manager

This information is contained in a data structure called a print record. The Printing Manager
fills in the entire print record for you. Information that the user can specify is set through two
standard dialogs.
The style dialog should be presented when the user selects the application's Page Setup
command from the File menu. It lets the user specify any options that affect the page dimensions,
that is, the information you need for formatting the document to match the printer. Figure 2
shows the standard style dialog for the Imagewriter printer.

P a p e r : (5) US L e t t e r O H4 L e t t e r (OK

O US Lega l O I n t e r n a t i o n a l F a n f o l d

O r i e n t a t i o n : © T a l l O Tall A d j u s t e d O W ide Cance l

Figure 2. The Style Dialog

The job dialog should be presented when the user chooses to start printing with the Print
command. It requests information about how to print the document this time, such as the print
quality (for printers that offer a choice of resolutions), the type of paper feed (such as fanfold or
cut-sheet), the range of pages to print, and the number of copies. Figure 3 shows the standard
job dialog for the Imagewriter.

Qual i ty : O H i g h <•) S t a n d a r d O D r a f t
r \

OK
Page R a n g e : <S)HH O F r o m : | To:

Copies: 1
P a p e r F e e d : (•) Cont inuous O Cut Shee t Cance l]

Figure 3. The Job Dialog

Note: The dialogs shown in Figures 2 and 3 are examples only; the actual content of these
dialogs is customized for each printer.

Print records are referred to by handles. Their structure is as follows:

TYPE THPrint
TPPrint
TPrint

"TPPrint;
ATPrint;
RECORD

iPrVersion:
prlnfo:
rPaper:
prStl:
prlnfoPT:
prXInfo:
prJob:
printX:

END;

INTEGER; {Printing Manager version}
TPrlnfo; {printer information subrecord.}
Rect; {paper rectangle}
TPrStl; {additional device information}
TPrlnfo; {used internally}
TPrXInfo; {additional device information}
TPrJob; {job subrecord}
ARRAY[1..19] OF INTEGER {not used}

Print Records and Dialogs 11-149

Inside Macintosh

Warning: Your application should not change the data in the print record—be sure to use
the standard dialogs for setting this information. The only fields you'll need to set directly
are some containing optional information in the job subrecord (explained below).
Attempting to set other values directly in the print record can produce unexpected results.

EPrVersion identifies the version of the Printing Manager that initialized this print record. If you
try to use a print record that's invalid for the current version of the Printing Manager or for the
currently installed printer, the Printing Manager will correct the record by filling it with default
values.

The other fields of the print record are discussed in separate sections below.

Note: Whenever you save a document, you should write an appropriate print record in
the document's resource file. This lets the document "remember" its own printing
parameters for use the next time it's printed.

The Printer Information Subrecord

The printer information subrecord (field prlnfo of the print record) gives you the information
needed for page composition. It's defined as follows:

TYPE TPrlnfo = RECORD

RPage is the page rectangle, representing the boundaries of the printable page: The printing
grafPort's boundary rectangle, portRect, and clipRgn are set to this rectangle. Its top left comer
always has coordinates (0,0); the coordinates of the bottom right comer give the maximum page
height and width attainable on the given printer, in dots. Typically these are slightly less than the
physical dimensions of the paper, because of the printer's mechanical limitations. RPage is set as
a result of the style dialog.

The rPage rectangle is inside the paper rectangle, specified by the rPaper field of the print
record. RPaper gives the physical paper size, defined in the same coordinate system as rPage
(see Figure 4). Thus the top left coordinates of the paper rectangle are typically negative and its
bottom right coordinates are greater than those of the page rectangle.

IVRes and iHRes give the printer's vertical and horizontal resolution in dots per inch. Thus, if
you divide the width of rPage by iHRes, you get the width of the page rectangle in inches.

The Job Subrecord

The job subrecord (field prJob of the print record) contains information about a particular printing
job. Its contents are set as a result of the job dialog.

11-150 Print Records and Dialogs

iDev:
iVRes:
iHRes:
rPage:

INTEGER,
INTEGER,
INTEGER,
Rect

{used internally}
{vertical resolution of printer}
{horizontal resolution of printer}
{page rectangle}

END;

The Printing Manager

paper rectangle

page rectangle

Figure 4. Page and Paper Rectangles

The job subrecord is defined as follows:

TYPE TPrJob =
RECORD

iFstPage: INTEGER; {first page to print}
iLstPage: INTEGER; {last page to print}
iCopies: INTEGER; {number of copies}
bJDocLoop: SignedByte; {printing method}
fFromUsr: BOOLEAN; {used internally}
pldleProc: ProcPtr; {background procedure}
pFileName: StringPtr; {spool file name}
iFileVol: INTEGER; {spool file volume reference number}
bFileVers; SignedByte; {spool file version number}
bJobX: SignedByte {used internally}

END;

BJDocLoop designates the printing method that the Printing Manager will use. It will be one of
the following predefined constants:

CONST bDraftLoop = 0; {draft printing}
bSpoolLoop = 1; {spool printing}

Draft pr int ing means that the document will be printed immediately. Spool pr int ing means
that printing may be deferred: The Printing Manager writes out a representation of the
document's printed image to a disk file (or possibly to memory); this information is then
converted into a bit image and printed. For details about the printing methods, see the "Methods
of Printing" section below. The Printing Manager sets the bJDocLoop field; your application
should not change it.

Print Records and Dialogs 11-151

Inside Macintosh

JJFstPage and iLstPage designate the first and last pages to be printed. These page numbers are
relative to the first page counted by the Printing Manager. The Printing Manager knows nothing
about any page numbering placed by an application within a document.

ICopies is the number of copies to print. The Printing Manager automatically handles multiple
copies for spool printing or for printing on the LaserWriter. Your application only needs this
number for draft printing on the Imagewriter.

PIdleProc is a pointer to the background procedure (explained below) for this printing operation.
In a newly initialized print record this field is set to NIL, designating the default background
procedure, which just polls the keyboard and cancels further printing if the user types Command-
period. You can install a background procedure of your own by storing a pointer to your
procedure directly into the pldleProc field.

For spool printing, your application may optionally provide a spool file name, volume reference
number, and version number (described in chapter 4):

• PFileName is the name of the spool file. This field is initialized to NIL, and generally not
changed by the application. NIL denotes the default file name (normally Print File') stored
in the printer resource file.

• IFileVol is the volume reference number of the spool file. This field is initialized to 0,
representing the default volume. You can use the File Manager function SetVol to change
the default volume, or you can override the default setting by storing directly into this field.

• BFileVers is the version number of the spool file, initialized to 0.

Additional Device Information

The prStl and prXInfo fields of the print record provide device information that your application
may need to refer to.

The prSd field of the print record is defined as follows:

TYPE TPrStl = RECORD
wDev: INTEGER; {high byte specifies device}
{more fields for internal use}

END;

The high-order byte of the wDev field indicates which printer is currently selected:

CONST bDevCItoh = 1; {Imagewriter printer}
bDevLaser = 3; {LaserWriter printer}

A value of 0 indicates the Macintosh screen; other values are reserved for future use. The low-
order byte of wDev is used internally.

The prXInfo field of the print record is defined as follows:

TYPE TPrXInfo = RECORD
iRowBytes: INTEGER; {used internally}
iBandV: INTEGER; {used internally}
iBandH: INTEGER; {used internally}
iDevBytes: INTEGER; {size of buffer}
{more fields for internal use}

END;

11-152 Print Records and Dialogs

The Printing Manager

IDevBytes is the number of bytes of memory required as a buffer for spool printing. (You need
this information only if you choose to allocate your own buffer.)

METHODS OF PRINTING

There are two basic methods of printing documents: draft and spool. The Printing Manager
determines which method to use; the two methods are implemented in different ways for different
printers.

In draft printing, your QuickDraw calls are converted direcdy into command codes the printer
understands, which are then immediately used to drive the printer:

• On the Imagewriter, draft printing is used for printing quick, low-quality drafts of text
documents that are printed straight down the page from top to bottom and left to right.

• On the LaserWriter, draft printing is used to obtain high-quality output. (This typically
requires 15K bytes of memory for your data and printing code.)

Spool printing is a two-stage process. First, the Printing Manager writes out ("spools") a
representation of your document's printed image to a disk file or to memory. This information is
then converted into a bit image and printed. On the Imagewriter, spool printing is used for
standard or high-quality printing.

Spooling and printing are two separate stages because of memory considerations: Spooling a
document takes only about 3K bytes of memory, but may require large portions of your
application's code and data in memory; printing the spooled document typically requires from
20K to 40K for the printing code, buffers, and fonts, but most of your application's code and
data are no longer needed. Normally you'll make your printing code a separate program segment,
so you can swap the rest of your code and data out of memory during printing and swap it back
in after you're finished (see chapter 2).

Note: This chapter frequently refers to spool files, although there may be cases when the
document is spooled to memory. This difference will be transparent to the application.

Note: The internal format of spool files is private to the Printing Manager and may vary
from one printer to another. This means that spool files destined for one printer can't be
printed on another. In spool files for the Imagewriter, each page is stored as a QuickDraw
picture. It's envisioned that most other printers will use this same approach, but there may
be exceptions. Spool files can be identified by their file type ('PFJL') and creator
('PSYS'). File type and creator are discussed in chapter 1 of Volume III.

BACKGROUND PROCESSING

As mentioned above, the job subrecord includes a pointer, pldleProc, to an optional
background procedure to be run whenever the Printing Manager has directed output to the
printer and is waiting for the printer to finish. The background procedure takes no parameters
and returns no result; the Printing Manager simply runs it at every opportunity.

If you don't designate a background procedure, the Printing Manager uses a default procedure for
canceling printing: The default procedure just polls the keyboard and sets a Printing Manager

Background Processing 11-153

Inside Macintosh

error code if the user types Command-period. If you use this option, you should display a dialog
box during printing to inform the user that the Command-period option is available.

Note: If you designate a background procedure, you must set pldleProc after presenting
the dialogs, validating the print record, and initializing the printing grafPort: The routines
that perform these operations reset pldleProc to NIL.

Warn ing : If you write your own background procedure, you must be careful to avoid a
number of subde concurrency problems that can arise. For instance, if the background
procedure uses QuickDraw, it must be sure to restore the printing grafPort as the current
port before returning. It's particularly important not to attempt any printing from within the
background procedure: The Printing Manager is not reentrant! If you use a background
procedure that runs your application concurrently with printing, it should disable all menu
items having to do with printing, such as Page Setup and Print.

USING THE PRINTING MANAGER

To use the Printing Manager, you must first initialize QuickDraw, the Font Manager, the Window
Manager, the Menu Manager, TextEdit, and the Dialog Manager. The first Printing Manager
routine to call is PrOpen; the last routine to call is PrClose.

Before you can print a document, you need a valid print record. You can either use an existing
print record (for instance, one saved with a document), or initialize one by calling PrintDefault or
PrValidate. If you use an existing print record, be sure to call PrValidate to make sure it's valid
for the current version of the Printing Manager and for the currently installed printer. To create a
new print record, you must first create a handle to it with the Memory Manager function
NewHandle, as follows:

prRecHdl := THPrint(NewHandle(SIZEOF(TPrint)))

Print record information is obtained via the style and job dialogs:

• Call PrStlDialog when the user chooses the Page Setup commmand, to get the page
dimensions. From the rPage field of the printer information subrecord, you can then
determine where page breaks will be in the document. You can show rulers and margins
correctly by using the information in the iVRes, iHRes, and rPaper fields.

• Call PrJobDialog when the user chooses the Print commmand, to get the specific
information about that printing job, such as the page range and number of copies.

You can apply the results of one job dialog to several documents (when printing from the Finder,
for example) by calling PrJobMerge.

After getting the job information, you should immediately print the document.

The Printing Loop

To print a document, you call the following procedures:

1. PrOpenDoc, which returns a printing grafPort that's set up for draft or spool printing
(depending on the bJDocLoop field of the job subrecord)

11-154 Background Processing

The Printing Manager

2. PrOperiPage, which starts each new page (reinitializing the grafPort)

3. QuickDraw routines, for drawing the page in the printing grafPort created by PrOpenDoc

4. PrClosePage, which terminates the page

5. PrCloseDoc, at the end of the entire document, to close the printing grafPort

Each page is either printed immediately (draft printing) or written to the disk or to memory (spool
printing). You should test to see whether spooling was done, and if so, print the spooled
document: First, swap as much of your program out of memory as you can (see chapter 2), and
then call PrPicFile.

It's a good idea to call PrError after each Printing Manager call, to check for any errors. To
cancel a printing operation in progress, use PrSetError. If an error occurs and you cancel printing
(or if the user aborts printing), be sure to exit normally from the printing loop so that all files are
closed properly; that is, be sure that every PrOpenPage is matched by a PrClosePage and
PrOpenDoc is matched by PrCloseDoc.

To sum up, your application's printing loop will typically use the following basic format for
printing:

myPrPort := PrOpenDoc(prRecHdl,NIL,NIL); {open printing grafPort}
FOR pg := 1 TO myPgCount DO {page loop: ALL pages of document}

IF PrError = noErr
THEN
BEGIN
PrOpenPage (myPrPort,NIL) ; {start new page}
IF PrError = noErr

THEN MyDrawingProc(pg); {draw page with QuickDraw}
PrClosePage(myPrPort); {end current page}
END;

PrCloseDoc(myPrPort); {close printing grafPort}
IF prRecHdl^.prJob.bJDocLoop = bSpoolLoop AND PrError = noErr

THEN
BEGIN
MySwapOutProc; {swap out code and data}
PrPicFile(prRecHdl,NIL,NIL,NIL,myStRec); {print spooled document}
END;

IF PrError <> noErr THEN MyPrErrAlertProc {report any errors}

Note an important assumption in this example: The MyDrawingProc procedure must be able to
determine the page boundaries without stepping through each page of the document.

Although spool printing may not be supported on all printers, you must be sure to include
PrPicFile in your printing code, as shown above. The application should make no assumptions
about the printing method.

Note: The maximum number of pages in a spool file is defined by the following constant:

CONST iPFMaxPgs = 128;

If you need to print more than 128 pages at one time, just repeat the printing loop (without
calling PrValidate, PrSdDialog, or PrJobDialog).

Using the Printing Manager 11-155

Inside Macintosh

Printing a Specified Range of Pages

The above example loops through every page of the document, regardless of which pages the
user has selected; the Printing Manager draws each page but actually prints only the pages from
iFstPage to iLstPage.

If you know the page boundaries in the document, it's much faster to loop through only the
specified pages. You can do this by saving the values of iFstPage and iLstPage and then
changing these fields in the print record: For example, to print pages 20 to 25, you would set
iFstPage to 1 and iLstPage to 6 (or greater) and then begin printing at your page 20. You could
implement this for all cases as follows:

myFirst := prRecHdlAA.prJob.iFstPage;
myLast := prRecHdlAA.prJob.iLstPage;
prRecHdlAA.prJob.iFstPage := 1;
prRecHdlAA.prJob.iLstPage := 999;
FOR pg := myFirst TO myLast DO

{save requested page numbers}

{print "all" pages in loop}

{page loop: requested pages only}
{print as in first example}

Remember that iFstPage and iLstPage are relative to the first page counted by the Printing
Manager. The Printing Manager counts one page each time PrOpenPage is called; the count
begins at 1.

Using QuickDraw for Printing

When drawing to the printing grafPort, you should note the following:

• With each new page, you get a completely reinitialized grafPort, so you'll need to reset font
information and other grafPort characteristics as desired.

• Don't make calls that don't do anything on the printer. For example, erase operations are
quite time-consuming and normally aren't needed on the printer.

• Don't use clipping to select text to be printed. There are a number of subtle differences
between how text appears on the screen and how it appears on the printer; you can't count
on knowing the exact dimensions of the rectangle occupied by the text.

• Don't use fixed-width fonts to align columns. Since spacing gets adjusted on the printer,
you should explicitly move the pen to where you want it.

For printing to the LaserWriter, you'll need to observe the following limitations:

• Regions aren't supported; try to simulate them with polygons.

• Clipping regions should be limited to rectangles.

• "Invert" routines aren't supported.

• Copy is the only transfer mode supported for all objects except text and bit images. For
text, Bic is also supported. For bit images, the only transfer mode not supported is Xor.

• Don't change the grafPort's local coordinate system (with SetOrigin) within the printing
loop (between PrOpenPage and PrClosePage).

For more information about optimizing your printing code for the LaserWriter, see the Inside
LaserWriter manual.

11-156 Using the Printing Manager

The Printing Manager

Printing From the Finder

The Macintosh user can choose to print from the Finder as well as from an application. Your
application should support both alternatives.

To print a document from the Finder, the user selects the document's icon and chooses the Print
command from the File menu. Note that the user can select more than one document, or even a
document and an application, which means that the application must verify that it can print the
document before proceeding. When the Print command is chosen, the Finder starts up the
application, and passes information to it indicating that the document is to be printed rather than
opened (see chapter 2). Your application should then do the following, preferably without going
through its entire startup sequence:

1. Call PrJobDialog. (If the user selected more than one document, you can use PrJobMerge
to apply one job dialog to all of the documents.)

2. Print the document(s).

PRINTING MANAGER ROUTINES

This section describes the high-level Printing Manager routines; low-level routines are described
below in the section "The Printer Driver".

Assembly-language note: There are no trap macros for these routines. To print from
assembly language, call these Pascal routines from your program.

Initialization and Termination

PROCEDURE PrOpen; [NotinROM]

PrOpen prepares the Printing Manager for use. It opens the Printer Driver and the printer
resource file. If either of these is missing, or if the printer resource file isn't properly formed,
PrOpen will do nothing, and PrError will return a Resource Manager result code.

PROCEDURE PrClose; [NotinROM]

PrClose releases the memory used by the Printing Manager. It closes the printer resource file,
allowing the file's resource map to be removed from memory. It doesn't close the Printer Driver.

Note: To close the Printer Driver, call the low-level routine PrDrvrClose, described in the
section "The Printer Driver".

Printing Manager Routines 11-157

Inside Macintosh

Print Records and Dialogs

PROCEDURE P r i n t D e f a u l t (h P r i n t : T H P r i n t) ; [NotinROM]

PrintDefault fills the fields of the specified print record with default values that are stored in the
printer resource file. HPrint is a handle to the record, which may be a new print record that
you've just allocated with NewHandle or an existing one (from a document, for example).

FUNCTION P r V a l i d a t e (h P r i n t : T H P r i n t) : BOOLEAN; [NotinROM]

PrValidate checks the contents of the specified print record for compatibility with the current
version of the Printing Manager and with the currently installed printer. If the record is valid, the
function returns FALSE (no change); if invalid, the record is adjusted to the default values stored
in the printer resource file, and the function returns TRUE.

PrValidate also makes sure all the information in the print record is internally self-consistent and
updates the print record as necessary. These changes do not affect the function's Boolean result.

Warn ing : You should never call PrValidate (or PrStlDialog or PrJobDialog, which call it)
between pages of a document.

FUNCTION PrStlDialog (hPrint: THPrint) : BOOLEAN; [NotinROM]

PrStlDialog conducts a style dialog with the user to determine the page dimensions and other
information needed for page setup. The initial settings displayed in the dialog box are taken from
the most recent print record. If the user confirms the dialog, the results of the dialog are saved in
the specified print record, PrValidate is called, and the function returns TRUE. Otherwise, the
print record is left unchanged and the function returns FALSE.

Note: If the print record was taken from a document, you should update its contents in
the document's resource file if PrStlDialog returns TRUE. This makes the results of the
style dialog "stick" to the document.

FUNCTION PrJobDialog (hPrint: THPrint) : BOOLEAN; [NotinROM]

PrJobDialog conducts a job dialog with the user to determine the print quality, range of pages to
print, and so on. The initial settings displayed in the dialog box are taken from the printer
resource file, where they were remembered from the previous job (with the exception of the page
range, set to all, and the copies, set to 1).

If the user confirms the dialog, both the print record and the printer resource file are updated,
PrValidate is called, and the function returns TRUE. Otherwise, the print record and printer
resource file are left unchanged and the function returns FALSE.

Note: Since the job dialog is associated with the Print command, you should proceed
with the requested printing operation if PrJobDialog returns TRUE.

11-158 Printing Manager Routines

The Printing Manager

PROCEDURE PrJobMerge (hPrintSrc,hPrintDst: THPrint); [NotinROM]

PrJobMerge first calls PrValidate for each of the given print records. It then copies all of the
information set as a result of a job dialog from hPrintSrc to hPrintDst. Finally, it makes sure that
all the fields of hPrintDst are internally self-consistent.

PrJobMerge allows you to conduct a job dialog just once and then copy the job information to
several print records, which means that you can print several documents with one dialog. This is
useful when printing from the Finder.

Printing

FUNCTION PrOpenDoc (hPrint: THPrint; pPrPort: TPPrPort; pIOBuf:
Ptr) : TPPrPort; [NotinROM]

PrOpenDoc initializes a printing grafPort for use in printing a document, makes it the current port,
and returns a pointer to it.

HPrint is a handle to the print record for this printing operation; you should already have
validated this print record.

Depending on the setting of the bJDocLoop field in the job subrecord, the printing grafPort will
be set up for draft or spool printing. For spool printing, the spool file's name, volume reference
number, and version number are taken from the job subrecord.

PPrPort and pIOBuf are normally NIL. PPrPort is a pointer to the printing grafPort; if it's NIL,
PrOpenDoc allocates a new printing grafPort in the heap. Similarly, pIOBuf points to an area of
memory to be used as an input/output buffer; if it's NIL, PrOpenDoc uses the volume buffer for
the spool file's volume. If you allocate your own buffer, it must be 522 bytes long.

Note: These parameters are provided because the printing grafPort and input/output
buffer are both nonrelocatable objects; to avoid fragmenting the heap, you may want to
allocate them yourself.

You must balance every call to PrOpenDoc with a call to PrCloseDoc.

PROCEDURE PrOpenPage (pPrPort: TPPrPort; pPageFrame: TPRect);
[NotinROM]

PrOpenPage begins a new page. The page is printed only if it falls within the page range given in
the job subrecord.

For spool printing, the pPageFrame parameter is used for scaling. It points to a rectangle to be
used as the QuickDraw picture frame for this page:

TYPE TPRect = ARect;

When you print the spooled document, this rectangle will be scaled (with the QuickDraw
procedure DrawPicture) to coincide with the rPage rectangle in the printer information subrecord.
Unless you want the printout to be scaled, you should set pPageFrame to NIL—this uses the
rPage rectangle as the picture frame, so that the page will be printed with no scaling.

Printing Manager Routines 11-159

Inside Macintosh

Warning: Don't call the QuickDraw function OpenPicture while a page is open (after a
call to PrOpenPage and before the following PrClosePage). You can, however, call
DrawPicture at any time.

Warning: The printing grafPort is completely reinitialized by PrOpenPage. Therefore,
you must set grafPort features such as the font and font size for every page that you draw.

You must balance every call to PrOpenPage with a call to PrClosePage.

PROCEDURE PrClosePage (pPrPort: TPPrPort) ; [NotinROM]

PrClosePage finishes the printing of the current page. It lets the Printing Manager know that
you're finished with this page, so that it can do whatever is required for the current printer and
printing method.

PROCEDURE PrCloseDoc (pPrPort: TPPrPort); [NotinROM]

PrCloseDoc closes the printing grafPort. For draft printing, PrCloseDoc ends the printing job.
For spool printing, PrCloseDoc ends the spooling process: The spooled document must now be
printed. Before printing it, call PrError to find out whether spooling succeeded; if it did, you
should swap out as much code as possible and then call PrPicFile.

PROCEDURE PrPicFile (hPrint: THPrint; pPrPort: TPPrPort; pIOBuf:
Ptr; pDevBuf: Ptr; VAR prStatus: TPrStatus) ; [Notin
ROM]

PrPicFile prints a spooled document. If spool printing is being used, your application should
normally call PrPicFile after PrCloseDoc.

HPrint is a handle to the print record for this printing job. The spool file's name, volume
reference number, and version number are taken from the job subrecord of this print record.
After printing is successfully completed, the Printing Manager deletes the spool file from the disk.

You'll normally pass NIL for pPrPort, pIOBuf, and pDevBuf. PPrPort is a pointer to the
printing grafPort for this operation; if it's NIL, PrPicFile allocates a new printing grafPort in the
heap. Similarly, pIOBuf points to an area of memory to be used as an input /output buffer for
reading the spool file; if it's NIL, PrPicFile uses the volume buffer for the spool file's volume.
PDevBuf points to a device-dependent buffer; if NIL, PrPicFile allocates a buffer in the heap.

Note: If you provide your own storage for pDevBuf, it has to be big enough to hold the
number of bytes indicated by the iDevBytes field of the PrXInfo subrecord.

Warn ing : Be sure not to pass, in pPrPort, a pointer to the same printing grafPort you
received from PrOpenDoc. If that port was allocated by PrOpenDoc itself (that is, if the
pPrPort parameter to PrOpenDoc was NIL), then PrCloseDoc will have disposed of the
port, making your pointer to it invalid. Of course, if you earlier provided your own
storage to PrOpenDoc, there's no reason you can't use the same storage again for
PrPicFile.

The prStatus parameter is a printer status record that PrPicFile will use to report on its progress:

11-160 Printing Manager Routines

The Printing Manager

TYPE TPrStatus = RECORD

pPrPort:
hPic:

iTotPages:
iCurPage:
iTotCopies
iCurCopy:
iTotBands:
iCurBand:
fPgDirty:
fImaging:
hPrint:

TPPrPort;
PicHandle

INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGER,
BOOLEAN,
BOOLEAN,
THPrint,

{number of pages in spool file}
{page being printed}
{number of copies requested}
{copy being printed}
{used internally}
{used internally}
{TRUE if started printing page}
{used internally}
{print record}
{printing grafPort}
{used internally}

END;

The fPgDirty field is TRUE if anything has already been printed on the current page, FALSE if
not.

Your background procedure (if any) can use this record to monitor the state of the printing
operation.

Error Handling

FUNCTION PrError : INTEGER; [Not in ROM]

PrError returns the result code left by the last Printing Manager routine. Some possible result
codes are:

CONST noErr = 0 ; {no error}

ControlErr is returned by the Device Manager. Other Operating System or Toolbox result codes
may also be returned; a list of all result codes is given in Appendix A (Volume HI).

Assembly-language note: The current result code is contained in the global variable

PROCEDURE PrSetError (iErr: INTEGER); [Not in ROM]

PrSetError stores the specified value into the global variable where the Printing Manager keeps its
result code. This procedure is used for canceling a printing operation in progress. To do this,
call:

IF PrError <> noErr THEN PrSetError(iPrAbort)

iPrSavPFil
controlErr
ilOAbort
iMemFullErr
iPrAbort

= -1;
- -17;
= -27;
= -108;
= 128;

{saving print file}
{unimpLamented control instruction}
{I/O error}
{not enough room in heap zone}
{application or user requested abort}

PrintErr.

Printing Manager Routines 11-161

Inside Macintosh

Assembly-language note: You can achieve the same effect as PrSetError by storing
directly into the global variable PrintErr. You shouldn't, however, store into this variable
if it already contains a nonzero value.

THE PRINTER DRIVER

The Printing Manager provides a high-level interface that interprets QuickDraw commands for
printing; it also provides a low-level interface that lets you direcdy access the Printer Driver.

Note: You should not use the high-level and low-level calls together.

The Printer Driver is the device driver that communicates with a printer. You only need to read
this section if you're interested in low-level printing or writing your own device driver. For more
information, see chapter 6.

The printer resource file for each type of printer includes a device driver for that printer. When
the user chooses a printer, the printer's device driver becomes the active Printer Driver.

You can communicate with the Printer Driver via the following low-level routines:

• PrDrvrOpen opens the Printer Driver; it remains open until you call PrDrvrClose.

• PrCdCall enables you to perform low-level printing operations such as bit map printing and
direct streaming of text to the printer.

• PrDrvrVers tells you the version number of the Printer Driver.

• PrDrvrDCE gets a handle to the driver's device control entry.

Note: Advanced programmers: You can also communicate with the Printer Driver
through the standard Device Manager calls OpenDriver, CloseDriver, and Control. The
driver name and driver reference number are available as predefined constants:

CONST sPrDrvr = '.Print'; {Printer Driver resource name}
iPrDrvrRef = -3; {Printer Driver reference number}

Note also that when you make direct Device Manager calls, the driver I/O queue entries
should be initialized to all zeroes.

Low-Level Driver Access Routines

The routines in this section are used for communicating direcdy with the Printer Driver.

Assembly-language note: See chapter 6 for information about how to make the Device
Manager calls corresponding to these routines.

11-162 Printing Manager Routines

The Printing Manager

PROCEDURE PrDrvrOpen; [NotinROM]

PROCEDURE PrDrvrClose; [Not in ROM]

PrDrvrClose closes the Printer Driver, releasing the memory it occupies. (Notice that PrClose
doesn't close the Printer Driver.)

PROCEDURE PrCtlCall (iWhichCtl: INTEGER; lParaml,IParam2,lParam3:
LONGINT) ; [Not in ROM]

PrCtlCall calls the Printer Driver's control routine. The iWhichCtl parameter identifies the
operation to perform. The following values are predefined:

CONST iPrBitsCtl = 4; {bit map printing}
iPrlOCtl = 5 ; {text streaming}
iPrDevCtl = 7 ; {printer control}

These operations are described in detail in the following sections of this chapter. The meanings
of the lParaml, lParam2, and lParam3 parameters depend on the operation.

Note: Advanced programmers: If you're making a direct Device Manager Control call,
iWhichCtl will be the csCode parameter, and lParaml, lParam2, and lParam3 will be
csParam, csParam+4, and csParam+8.

FUNCTION PrDrvrDCE : Handle; [NotinROM]

PrDrvrDCE returns a handle to the Printer Driver's device control entry.

FUNCTION PrDrvrVers : INTEGER; [Not in ROM]

PrDrvrVers returns the version number of the Printer Driver in the system resource file.

The version number of the Printing Manager is available as the predefined constant iPrRelease.
You may want to compare the result of PrDrvrVers with iPrRelease to see if the Printer Driver in
the resource file is the most recent version.

Printer Control

The iPrDevCtl parameter to PrCdCall is used for several printer control operations. The high-
order word of the lParaml parameter specifies the operation to perform:

CONST lPrReset = $00010000
lPrLineFeed = $00030000
lPrLFSixth = $0003FFFF
lPrPageEnd = $00020000

{reset printer}
{carriage return only}
{standard 1/6-inch line feed}
{end page}

The Printer Driver 11-163

PrDrvrOpen opens the Printer Driver, reading it into memory if necessary.

Inside Macintosh

The low-order word of lParaml may specify additional information. The lParam2 and lParam3
parameters should always be 0.

Before starting to print, use

PrCtlCall(iPrDevCtl,lPrReset,0,0)

to reset the printer to its standard initial state. This call should be made only once per document.
You can also specify the number of copies to make in the low-order byte of this parameter; for
example, a value of $00010002 specifies two copies.

The lPrLineFeed and IPrLFSixth parameters allow you to achieve the effect of carriage returns
and line feeds in a printer-independent way:

• LPrLineFeed specifies a carriage return only (with a line feed of 0).

• LPrLFSixth causes a carriage return and advances the paper by 1/6 inch (the standard "CR
L F ' sequence).

You can also specify the exact number of dots the paper advances in the low-order word of the
lParaml parameter. For example, a value of $00030008 for lParaml causes a carriage return and
advances the paper eight dots.

You should use these methods instead of sending carriage returns and line feeds direcdy to the
printer.

The call

PrCtlCall(iPrDevCtl,lPrPageEnd,0,0)

does whatever is appropriate for the given printer at the end of each page, such as sending a form
feed character and advancing past the paper fold. You should use this call instead of just sending
a form feed yourself.

Bit Map Printing

To send all or part of a QuickDraw bit map directly to the printer, use

PrCtlCall(iPrBitsCtl,pBitMap,pPortRect,IControl)

The pBitMap parameter is a pointer to a QuickDraw bit map; pPortRect is a pointer to the
rectangle to be printed, in the coordinates of the printing grafPort.

LControl should be one of the following predefined constants:

CONST IScreenBits = 0; {default for printer}
lPaintBits = 1; {square dots (72 by 72)}

The Imagewriter, in standard resolution, normally prints rectangular dots that are taller than they
are wide (80 dots per inch horizontally by 72 vertically). Since the Macintosh 128K and 512K
screen has square pixels (approximately 72 per inch both horizontally and vertically), lPaintBits
gives a truer reproduction of the screen, although printing is somewhat slower.

On the LaserWriter, IControl should always be set to lPaintBits.

11-164 The Printer Driver

The Printing Manager

Putting all this together, you can print the entire screen at the default setting with

PrCtlCall(iPrBitsCtl,ORD(SscreenBits),
ORD (SscreenBits.bounds),IScreenBits)

To print the contents of a single window in square dots, use

PrCtlCall(iPrBitsCtl,ORD(gtheWindow".portBits),
ORD(gtheWindow".portRect),lPaintBits)

Text Streaming

Text streaming is useful for fast printing of text when speed is more important than fancy
formatting or visual fidelity. It gives you full access to the printer's native text facilities (such as
control or escape sequences for boldface, italic, underlining, or condensed or extended type), but
makes no use of QuickDraw.

You can send a stream of characters (including control and escape sequences) direcdy to the
printer with

PrCtlCall(iPrIOCtl,pBuf, lBufCount,0)

The pBuf parameter is a pointer to the beginning of the text The low-order word of lBufCount is
the number of bytes to transfer; the high-order word must be 0.

Warning: Relying on specific printer capabilities and control sequences will make your
application printer-dependent. You can use iPrDevCd to perform form feeds and line feeds
in a printer-independent way.

Note: Advanced programmers who need more information about sending commands
directly to the LaserWriter should see the Inside LaserWriter manual.

The Printer Driver 11-165

Inside Macintosh

SUMMARY OF THE PRINTING MANAGER

Constants

CONST { Printing methods }

bDraftLoop = 0;
bSpoolLoop = 1;

{draft printing}
{spool printing}

{ Printer specification in prStl field of print record }

bDevCItoh = 1;
bDevLaser = 3;

{Imagewriter printer}
{LaserWriter printer}

{ Maximum number of pages in a spool file }

iPFMaxPgs = 128;

{ Result codes }

noErr = 0; {no error}
iPrSavPFil = -1; {saving spool file}
controlErr = -17; {unimplemented control instruction}
ilOAbort = -27; {I/O abort error}
iMemFullErr = -108; {not enough room in heap zone}
iPrAbort = 128; {application or user requested abort}

{ PrCtlCall parameters }

iPrDevCtl
lPrReset
lPrLineFeed
lPrLFSixth
lPrPageEnd
iPrBitsCtl
IScreenBits
IPaintBits
iPrlOCtl

7;
$00010000
$00030000
$0003FFFF
$00020000
4
0
1
5

{printer control}
{reset printer}
{carriage return only}
{standard 1/6-inch line
{end page}

{bit map printing}
{default for printer}
{square dots (72 by 72)}

{text streaming}

feed}

{ Printer Driver information }

sPrDrvr = '.Print'; {Printer Driver resource name}
iPrDrvrRef = -3; {Printer Driver reference number}

11-166 Summary of the Printing Manager

Data Types

The Printing Manager

TYPE TPPrPort
TPrPort

"TPrPort;
RECORD

gPort: GrafPort; {grafPort to draw in}
{more fields for internal use}

END;

THPrint
TPPrint
TPrint

ATPPrint;
"TPrint;
RECORD
iPrVersion:
prlnfo:
rPaper:
prStl:
prlnfoPT:
prXInfo:
prJob:
printX:

END;

INTEGER; {Printing Manager version}
TPrlnfo; {printer information subrecord}
Rect; {paper rectangle}
TPrStl; {additional device information}
TPrlnfo; {used internally}
TPrXInfo; {additional device information}
TPrJob; {job subrecord}
ARRAY[1..19] OF INTEGER {not used}

TPrlnfo = RECORD
iDev: INTEGER
iVRes: INTEGER
iHRes: INTEGER
rPage: Rect

END;

{used internally}
{vertical resolution of printer}
{horizontal resolution of printer}
{page rectangle}

TPrJob =
RECORD

iFstPage: INTEGER; {first page to print}
iLstPage: INTEGER; {last page to print}
iCopies: INTEGER; {number of copies}
bJDocLoop: SignedByte; {printing method}
fFromUsr: BOOLEAN; {used internally}
pldleProc: ProcPtr; {background procedure}
pFileName: StringPtr; {spool file name}
iFileVol: INTEGER; {spool file volume reference number}
bFileVers: SignedByte; {spool file version number}
bJobX: SignedByte {used internally}

END;

TPrStl = RECORD
wDev: INTEGER; {high byte specifies device}
{more fields for internal use}

END;

Summary of the Printing Manager 11-167

Inside Macintosh

TPrXInfo RECORD
iRowBytes:
iBandV:
iBandH:
iDevBytes:

INTEGER,
INTEGER,
INTEGER,
INTEGER,

{used internally}
{used internally}
{used internally}
{size of buffer}

{more fields for internal use}
END;

TPRect = ARect;

TPrStatus RECORD
iTotPages:
iCurPage:
iTotCopies:
iCurCopy:
iTotBands:
iCurBand:
fPgDirty:
fImaging:
hPrint:
pPrPort:
hPic:

END;

INTEGER; {number of pages in spool file}
INTEGER; {page being printed}
INTEGER; {number of copies requested}
INTEGER; {copy being printed}
INTEGER; {used internally}
INTEGER; {used internally}
BOOLEAN; {TRUE if started printing page}
BOOLEAN; {used internally}
THPrint; {print record}
TPPrPort; {printing grafPort}
PicHandle {used internally}

Routines [Not in ROM]

Initialization and Termination

PROCEDURE PrOpen;
PROCEDURE PrClose;

Print Records and Dialogs

PROCEDURE PrintDefault (hPrint: THPrint);
(hPrint: THPrint) FUNCTION PrValidate

FUNCTION PrStlDialog (hPrint: THPrint)
FUNCTION PrJobDialog (hPrint: THPrint)
PROCEDURE PrJobMerge

BOOLEAN-
BOOLEAN;
BOOLEAN;

(hP rint S rc,hPrintDst: THP rint);

Printing

FUNCTION PrOpenDoc

PROCEDURE PrOpenPage

(hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: Ptr)
TPPrPort;
(pPrPort: TPPrPort; pPageFrame: TPRect);

PROCEDURE PrClosePage (pPrPort: TPPrPort);
PROCEDURE PrCloseDoc
PROCEDURE PrPicFile

(pPrPort: TPPrPort);
(hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: Ptr;
pDevBuf: Ptr; VAR prStatus: TPrStatus);

11-168 Summary of the Printing Manager

The Printing Manager

Error Handling

FUNCTION PrError : INTEGER;
PROCEDURE PrSetError (iErr: INTEGER);

Low-Level Driver Access

PROCEDURE PrDrvrOpen;
PROCEDURE PrDrvrClose;
PROCEDURE PrCtlCall (iWhichCtl: INTEGER; lParaml,lParam2,lParam3:

LONGINT);
FUNCTION PrDrvrDCE : Handle;
FUNCTION PrDrvrVers : INTEGER;

Assembly-Language Information

Constants

; Printing methods

bDraftLoop .EQU 0 ;draft printing
bSpoolLoop -EQU 1 ;spool printing

; Result codes

noErr .EQU 0 ;no error
iPrSavPFil .EQU -1 ;saving spool file
controlErr .EQU -17 ;unimpLamented control instruction
ilOAbort .EQU -27 ;I/0 abort error
iMemFullErr • EQU -108 ;not enough room in heap zone
iPrAbort .EQU 128 ;application or user requested abort

; Printer Driver i Control call parameters

iPrDevCtl .EQU 7 ;printer control
lPrReset .EQU 1 ; reset printer
iPrLineFeed .EQU 3 ; carriage return/paper advance
iPrLFSixth .EQU 3 ;standard 1/6-inch line feed
lPrPageEnd .EQU 2 ; end page
iPrBitsCtl .EQU 4 ;bit map printing
IScreenBits .EQU 0 ; default for printer
lPaintBits • EQU 1 ; square dots (72 by 72)
iPrlOCtl • EQU 5 ;text streaming

; Printer Driver information

iPrDrvrRef • EQU -3 ;Printer Driver reference number

Summary of the Printing Manager 11-169

Inside Macintosh

Printing GrafPort Data Structure

gPort GrafPort to draw in (portRec bytes)
iPrPortSize Size in bytes of printing grafPort

Print Record Data Structure

iPrVersion Printing Manager version (word)
prlnfo Printer information subrecord (14 bytes)
rPaper Paper rectangle (8 bytes)
prStl Additional device information (8 bytes)
prXInfo Additional device information (16 bytes)
prJob Job subrecord (iPrJobSize bytes)
iPrintSize Size in bytes of print record

Structure of Printer Information Subrecord

iVRes Vertical resolution of printer (word)
iHRes Horizontal resolution of printer (word)
rPage Page rectangle (8 bytes)

Structure of Job Subrecord

iFstPage First page to print (word)
iLstPage Last page to print (word)
iCopies Number of copies (word)
bJDocLoop Printing method (byte)
pldleProc Address of background procedure
pFileName Pointer to spool file name (preceded by length byte)
iFileVol Spool file volume reference number (word)
bFileVers Spool file version number (byte)
iPrJobSize Size in bytes of job subrecord

Structure of PrXInfo Subrecord

iDevBytes Size of buffer (word)

Structure of Printer Status Record

iTotPages Number of pages in spool file (word)
iCurPage Page being printed (word)
iTotCopies Number of copies requested (word)
iCurCopy Copy being printed (word)
fPgDirty Nonzero if started printing page (byte)
hPrint Handle to print record
pPrPort Pointer to printing grafPort
iPrStatSize Size in bytes of printer status record

11-170 Summary of the Printing Manager

The Printing Manager

Variables

PrintErr Result code from last Printing Manager routine (word)

Summary of the Printing Manager 11-171

Inside Macintosh

i

I

|

11-172

6 THE DEVICE MANAGER

175 About This Chapter
175 About the Device Manager
177 Using the Device Manager
177 Device Manager Routines
178 High-Level Device Manager Routines
180 Low-Level Device Manager Routines
181 Routine Parameters
183 Routine Descriptions
187 The Structure of a Device Driver
189 Device Control Entry
191 The Driver I/O Queue
191 The Unit Table
193 Writing Your Own Device Drivers
194 Routines for Writing Drivers
195 Interrupts
197 Level-1 (VIA) Interrupts
198 Level-2 (SCC) Interrupts
200 Writing Your Own Interrupt Handlers
201 Summary of the Device Manager

Inside Macintosh

11-174

The Device Manager

ABOUT THIS CHAPTER

This chapter describes the Device Manager, the part of the Operating System that controls the
exchange of information between a Macintosh application and devices. It gives general
information about using and writing device drivers, and also discusses interrupts: how the
Macintosh uses them and how you can use them if you're writing your own device driver.

Note: Specific information about the standard Macintosh drivers is contained in separate
chapters.

You should already be familiar with resources, as discussed in chapter 5 of Volume I.

ABOUT THE DEVICE MANAGER

The Device Manager is the part of the Operating System that handles communication between
applications and devices. A device is a part of the Macintosh, or a piece of external equipment,
that can transfer information into or out of the Macintosh. Macintosh devices include disk drives,
two serial communications ports, and printers.

Note: The display screen is not a device; drawing on the screen is handled by
QuickDraw.

There are two kinds of devices: character devices and block devices. A character device reads
or writes a stream of characters, or bytes, one at a time: It can neither skip bytes nor go back to a
previous byte. A character device is used to get information from or send information to the
world outside of the Operating System and memory: It can be an input device, an output device,
or an input/output device. The serial ports and printers are all character devices.

A block device reads and writes blocks of bytes at a time; it can read or write any accessible
block on demand. Block devices are usually used to store and retrieve information; for example,
disk drives are block devices.

Applications communicate with devices through the Device Manager—either directly or indirectly
(through another part of the Operating System or Toolbox). For example, an application can
communicate with a disk drive directly via the Device Manager, or indirectly via the File Manager
(which calls the Device Manager). The Device Manager doesn't manipulate devices directly; it
calls device drivers that do (see Figure 1). Device drivers are programs that take data coming
from the Device Manager and convert them into actions of devices, or convert device actions into
data for the Device Manager to process.

The Operating System includes three standard device drivers in ROM: the Disk Driver, the Sound
Driver, and the ROM Serial Driver. There are also a number of standard RAM drivers, including
the Printer Driver, the RAM Serial Driver, the AppleTalk drivers, and desk accessories. RAM
drivers are resources, and are read from the system resource file as needed.

You can add other drivers independendy or build on top of the existing drivers (for example, the
Printer Driver is built on top of the Serial Driver); the section "Writing Your Own Device Drivers"
describes how to do this. Desk accessories are a special type of device driver, and are
manipulated via the routines of the Desk Manager.

About the Device Manager 11-175

Inside Macintosh

c application

File Manager ^Printing Manager

Device Manager

^ Disk Driver J ^ Printer Driver ^

c di3k drive J printer

Figure 1. Communication with Devices

Warning: Information about desk accessories covered in chapter 14 of Volume I is not
repeated here. Some information in this chapter may not apply to desk accessories.

A device driver can be either open or closed. The Sound Driver and Disk Driver are opened
when the system starts up; the rest of the drivers are opened at the specific request of an
application. After a driver has been opened, an application can read data from and write data to it.
You can close device drivers that are no longer in use, and recover the memory used by them.
Up to 32 device drivers may be open at any one time.

Before it's opened, you identify a device driver by its driver name; after it's opened, you identify
it by its reference number. A driver name consists of a period (.) followed by any sequence of
1 to 254 printing characters. A RAM driver's name is the same as its resource name. You can
use uppercase and lowercase letters when naming drivers, but the Device Manager ignores case
when comparing names (it doesn't ignore diacritical marks).

Note: Although device driver names can be quite long, there's litde reason for them to be
more than a few characters in length.

The Device Manager assigns each open device driver a driver reference number , from - 1 to
-32 , that's used instead of its driver name to refer to it.

Most communication between an application and an open device driver occurs by reading and
writing data. Data read from a driver is placed in the application's data buffer, and data written
to a driver is taken from the application's data buffer. A data buffer is memory allocated by the
application for communication with drivers.

In addition to data that's read from or written to device drivers, drivers may require or provide
other information. Information transmitted to a driver by an application is called con t ro l
information; information provided by a driver is called status information. Control
information may select modes of operation, start or stop processes, enable buffers, choose
protocols, and so on. Status information may indicate the current mode of operation, the
readiness of the device, the occurrence of errors, and so on. Each device driver may respond to a

II-l 76 About the Device Manager

The Device Manager

number of different types of control information and may provide a number of different types of
status information.

Each of the standard Macintosh drivers includes predefined calls for transmitting control
information and receiving status information. Explanations of these calls can be found in the
chapters describing the drivers.

USING THE DEVICE MANAGER

You can call Device Manager routines via three different methods: high-level Pascal calls, low-
level Pascal calls, and assembly language. The high-level Pascal calls are designed for Pascal
programmers interested in using the Device Manager in a simple manner; they provide adequate
device I/O and don't require much special knowledge to use. The low-level Pascal and assembly-
language calls are designed for advanced Pascal programmers and assembly-language
programmers interested in using the Device Manager to its fullest capacity; they require some
special knowledge to be used most effectively.

Note: The names used to refer to routines here are actually assembly-language macro
names for the low-level routines, but the Pascal routine names are very similar.

The Device Manager is automatically initialized each time the system starts up.

Before an application can exchange information with a device driver, the driver must be opened.
The Sound Driver and Disk Driver are opened when the system starts up; for other drivers, the
application must call Open. The Open routine will return the driver reference number that you'll
use every time you want to refer to that device driver.

An application can send data from its data buffer to an open driver with a Write call, and transfer
data from an open driver to its data buffer with Read. An application passes control information
to a device driver by calling Control, and receives status information from a driver by calling
Status.

Whenever you want to stop a device driver from completing I/O initiated by a Read, Write,
Control, or Status call, call KilllO. KilllO halts any current I/O and deletes any pending I/O.

When you're through using a driver, call Close. Close forces the device driver to complete any
pending I/O, and then releases all the memory used by the driver.

DEVICE MANAGER ROUTINES

This section describes the Device Manager routines used to call drivers. It's divided into two
parts: The first describes all the high-level Pascal routines of the Device Manager, and the second
presents information about calling the low-level Pascal and assembly-language routines.

All the Device Manager routines in this section return an integer result code of type OSErr. Each
routine description lists all of the applicable result codes, along with a short description of what
the result code means. Lengthier explanations of all the result codes can be found in the summary
at the end of this chapter.

Device Manager Routines 11-177

Inside Macintosh

FUNCTION CloseDriver (refNum: INTEGER) : OSErr; [NotinROM]

CloseDriver closes the device driver having the reference number refNum. Any pending I/O is
completed, and the memory used by the driver is released.

Warning: Before using this command to close a particular driver, refer to the chapter
describing the driver for the consequences of closing it.

Result codes noErr No error

FUNCTION FSRead (refNum: INTEGER; VAR count: LONGINT; buffPtr:
Ptr) : OSErr; [NotinROM]

FSRead attempts to read the number of bytes specified by the count parameter from the open
device driver having the reference number refNum, and transfer them to the data buffer pointed to
by buffPtr. After the read operation is completed, the number of bytes actually read is returned in
the count parameter.

Result codes noErr No error

badUnitErr
dlnstErr
openErr
unitEmptyErr

Bad reference number
Couldn't find driver in resource file
Driver can't perform the requested reading or writing
Bad reference number

badUnitErr
dRemoveErr
unitEmptyErr

Bad reference number
Attempt to remove an open driver
Bad reference number

badUnitErr
notOpenErr
unitEmptyErr
readErr

Bad reference number
Driver isn't open
Bad reference number
Driver can't respond to Read calls

11-178 Device Manager Routines

High-Level Device Manager Routines

Note: As described in chapter 4, the FSRead and FSWrite routines are also used to read
from and write to files.

FUNCTION OpenDriver (name: Str255; VAR refNum: INTEGER) : OSErr;
[NotinROM]

OpenDriver opens the device driver specified by name and returns its reference number in
refNum.

Result codes noErr No error

The Device Manager

FUNCTION FSWrite (refNum: INTEGER; VAR count: LONGINT; buffPtr:
Ptr) : OSErr; [Not in ROM]

FSWrite takes the number of bytes specified by the count parameter from the buffer pointed to by
buffPtr and attempts to write them to the open device driver having the reference number refNum.
After the write operation is completed, the number of bytes actually written is returned in the
count parameter.

Result codes noErr
badUnitErr
notOpenErr
unitEmptyErr
writEir

No error
Bad reference number
Driver isn't open
Bad reference number
Driver can't respond to Write calls

FUNCTION Control (refNum: INTEGER; csCode: INTEGER; csParamPtr:
Ptr) : OSErr; [Not in ROM]

Control sends control information to the device driver having the reference number refNum. The
type of information sent is specified by csCode, and the information itself is pointed to by
csParamPtr. The values passed in csCode and pointed to by csParamPtr depend on the driver
being called.

Result codes noErr No error
badUnitErr Bad reference number
notOpenErr Driver isn't open
unitEmptyErr Bad reference number
controlErr Driver can't respond to this Control call

FUNCTION Status (refNum: INTEGER; csCode: INTEGER; csParamPtr:
Ptr) : OSErr; [NotinROM]

Status returns status information about the device driver having the reference number refNum.
The type of information returned is specified by csCode, and the information itself is pointed to
by csParamPtr. The values passed in csCode and pointed to by csParamPtr depend on the driver
being called.

Result codes noErr
badUnitErr
notOpenErr
unitEmptyErr
statusErr

No error
Bad reference number
Driver isn't open
Bad reference number
Driver can't respond to this Status call

FUNCTION KilllO (refNum: INTEGER) : OSErr; [NotinROM]

KilllO terminates all current and pending I/O with the device driver having the reference number
refNum.

Device Manager Routines II-179

Inside Macintosh

Result codes noErr
badUnitErr
unitEmptyErr

No error
Bad reference number
Bad reference number

Low-Level Device Manager Routines

This section contains special information for programmers using the low-level Pascal or
assembly-language routines of the Device Manager, and describes them in detail.

Note: The Device Manager routines for writing device drivers are described in the section
"Writing Your Own Device Drivers".

All low-level Device Manager routines can be executed either synchronously (meaning that the
application can't continue until the routine is completed) or asynchronously (meaning that the
application is free to perform other tasks while the routine is executing). Some cannot be
executed asynchronously, because they use the Memory Manager to allocate and release memory.

When an application calls a Device Manager routine asynchronously, an I/O request is placed in
the driver I/O queue, and control returns to the calling program—possibly even before the actual
I/O is completed. Requests are taken from the queue one at a time, and processed; meanwhile,
the calling program is free to work on other things.

The calling program may specify a completion routine to be executed at the end of an
asynchronous operation.

Routine parameters passed by an application to the Device Manager and returned by the Device
Manager to an application are contained in a parameter block, which is a data structure in the
heap or stack. All low-level Pascal calls to the Device Manager are of the form

FUNCTION PBCallName (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

PBCallName is the name of the routine. ParamBlock points to the parameter block containing the
parameters for the routine. If async is TRUE, the call is executed asynchronously; otherwise the
call is executed synchronously. Each call returns an integer result code of type OSErr.

Assembly-language note: When you call a Device Manager routine, AO must point to a
parameter block containing the parameters for the routine. If you want the routine to be
executed asynchronously, set bit 10 of the routine trap word. You can do this by
supplying the word ASYNC as the second argument to the routine macro. For example:

_Read ,ASYNC

You can set or test bit 10 of a trap word by using the global constant asyncTrpBit.

If you want a routine to be executed immediately (bypassing the driver I/O queue), set bit 9
of the routine trap word. This can be accomplished by supplying the word IMMED as the
second argument to the routine macro. (The driver must be able to handle immediate calls
for this to work.) For example:

Write ,IMMED

11-180 Device Manager Routines

The Device Manager

You can set or test bit 9 of a trap word by using the global constant noQueueBit. You can
specify either ASYNC or IMMED, but not both. (The syntax shown above applies to the
Lisa Workshop Assembler; programmers using another development system should
consult its documentation for the proper syntax.)

All routines return a result code in DO.

Routine Parameters

There are two different kinds of parameter blocks you'll pass to Device Manager routines: one
for I/O routines and another for Control and Status calls.

The lengthy, variable-length data structure of a parameter block is given below. The Device
Manager and File Manager use this same data structure, but only the parts relevant to the Device
Manager are discussed here. Each kind of parameter block contains eight fields of standard
information and three to nine fields of additional information:

TYPE ParamBlkType (ioParam,fileParam,voiumeParam,cntrlParam);

ParamBlockRec =
RECORD

qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:

QElemPtr; (next queue entry}
INTEGER; {queue type}
INTEGER; {routine trap}
Ptr; {routine address}
ProcPtr; {completion routine}
OSErr; {result code}
StringPtr; {driver name}
INTEGER; {volume reference or drive number} ioVRefNum:

CASE ParamBlkType OF
ioParam:
. . . {I/O routine parameters}

fileParam:
. . . {used by the File Manager}

voiumeParam:
. . . {used by the File Manager}

cntrlParam:
. . . {Control and Status call parameters}

END;

ParmBlkPtr = AParamBlockRec;

The first four fields in each parameter block are handled entirely by the Device Manager, and most
programmers needn't be concerned with them; programmers who are interested in them should
see the section "The Structure of a Device Driver".

IOCompletion contains a pointer to a completion routine to be executed at the end of an
asynchronous call; it should be NIL for asynchronous calls with no completion routine, and is
automatically set to NIL for all synchronous calls.

Warning: Completion routines are executed at the interrupt level and must preserve all
registers other than AO, A l , and D0-D2. Your completion routine must not make any calls

Device Manager Routines 11-181

Inside Macintosh

to the Memory Manager, directly or indirectly, and can't depend on handles to unlocked
blocks being valid. If it uses application globals, it must also ensure that register A5
contains the address of the boundary between the application globals and the application
parameters; for details, see SetUpA5 and RestoreA5 in chapter 13.

Assembly-language note: When your completion routine is called, register AO points
to the parameter block of the asynchronous call and register DO contains the result code.

Routines that are executed asynchronously return control to the calling program with the result
code noErr as soon as the call is placed in the driver I/O queue. This isn't an indication of
successful call completion, but simply indicates that the call was successfully queued. To
determine when the call is actually completed, you can poll the ioResult field; this field is set to 1
when the call is made, and receives the actual result code upon completion of the call.
Completion routines are executed after the result code is placed in ioResult.

IONamePtr is a pointer to the name of a driver and is used only for calls to the Open function.
IOVRefNum is used by the Disk Driver to identify drives.

I/O routines use the following additional fields:

ioParam:
(ioRefNum:
ioVersNum:
ioPermssn:
ioMisc:
ioBuffer:
ioReqCount:
ioActCount:
ioPosMode:
ioPosOffset:

INTEGER; {driver reference number}
SignedByte; {not used}
SignedByte; {read/write permission}
Ptr; {not used}
Ptr; {pointer to data buffer}
LONGINT; {requested number of bytes}
LONGINT; {actual number of bytes}
INTEGER; {positioning mode}
LONGINT); {positioning offset}

IOPermssn requests permission to read from or write to a driver when the driver is opened, and
must contain one of the following values:

CONST fsCurPerm = 0 ; {whatever is currently allowed}
fsRdPerm = 1 ; {request to read only}
fsWrPerm = 2 ; {request to write only}
fsRdWrPerm = 3 ; {request to read and write}

This request is compared with the capabilities of the driver (some drivers are read-only, some are
write-only). If the driver is incapable of performing as requested, a result code indicating the
error is returned.

IOBuffer points to a data buffer into which data is written by Read calls and from which data is
read by Write calls. IOReqCount specifies the requested number of bytes to be read or written.
IOActCount contains the number of bytes actually read or written.

IOPosMode and ioPosOffset contain positioning information used for Read and Write calls by
drivers of block devices. IOPosMode contains the positioning mode; bits 0 and 1 indicate where

11-182 Device Manager Routines

The Device Manager

an operation should begin relative to the physical beginning of the block-formatted medium (such
as a disk). You can use the following predefined constants to test or set the value of these bits:

IOPosOffset specifies the byte offset (either positive or negative), relative to the position specified
by the positioning mode, where the operation will be performed (except when the positioning
mode is fsAtMark, in which case ioPosOffset is ignored). IOPosOffset must be a 512-byte
multiple.

To verify that data written to a block device matches the data in memory, make a Read call right
after the Write call. The parameters for a read-verify operation are the same as for a standard
Read call, except that the following constant must be added to the positioning mode:

CONST rdVerify = 64; {read-verify mode}

The result code ioErr is returned if any of the data doesn't match.

Control and Status calls use three additional fields:

cntrlParam:
(ioCRefNum: INTEGER; {driver reference number}
csCode: INTEGER; {type of Control or Status call}
csParam: ARRAY[0..10] OF INTEGER); {control or status information}

IOCRefNum contains the reference number of the device driver. The csCode field contains a
number identifying the type of call; this number may be interpreted differendy by each driver.
The csParam field contains the control or status information for the call; it's declared as up to 22
bytes of information because its exact contents will vary from one Control or Status call to the
next. To store information in this field, you must perform the proper type coercion.

Routine Descriptions

This section describes the procedures and functions. Each routine description includes the low-
level Pascal form of the call and the routine's assembly-language macro. A list of the fields in the
parameter block affected by the call is also given.

Assembly-language note: The field names given in these descriptions are those of the
ParamBlockRec data type; see the summary at the end of this chapter for the names of the
corresponding assembly-language offsets. (The names for some offsets differ from their
Pascal equivalents, and in certain cases more than one name for the same offset is

The number next to each parameter name indicates the byte offset of the parameter from the start
of the parameter block pointed to by register AO; only assembly-language programmers need be
concerned with it. An arrow next to each parameter name indicates whether it's an input, output,
or input/output parameter:

CONST fsAtMark = 0
fsFromStar = 1
fsFromMark = 3

{at current position}
{offset relative to beginning of medium}
{offset relative to current position}

provided.)

Device Manager Routines 11-183

Inside Macintosh

A r r o w M e a n i n g
—» Parameter is passed to the routine

<— Parameter is returned by the routine

<-> Parameter is passed to and returned by the routine

Note: As described in chapter 4, the Open and Close functions are also used to open and
close files.

FUNCTION PBOpen (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Open

Parameter block
12 ioCompletion pointer

<— 16 ioResult word
—» 18 ioNamePtr pointer
<— 24 ioRefNum word
—> 27 ioPermssn byte

PBOpen opens the device driver specified by ioNamePtr, reading it into memory if necessary,
and returns its reference number in ioRefNum. IOPermssn specifies the requested read/write
permission.

Result codes noErr
badUnitErr
dlnstErr
openErr
unitEmptyErr

No error
Bad reference number
Couldn't find driver in resource file
Driver can't perform the requested reading or writing
Bad reference number

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr

Trap macro Close

Parameter block
—> 12 ioCompletion pointer
4— 16 ioResult word
—> 24 ioRefNum word

PBClose closes the device driver having the reference number ioRefNum. Any pending I/O is
completed, and the memory used by the driver is released.

Result codes noErr No error
badUnitErr Bad reference number
dRemovErr Attempt to remove an open driver
unitEmptyErr Bad reference number

11-184 Device Manager Routines

The Device Manager

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
Trap macro Read

Parameter block

—> 12 ioCompletion pointer
16 ioResult word

-> 22 ioVRefNum word
-» 24 ioRefNum word
-> 32 ioBuffer pointer
-> 36 ioReqCount long word
<— 40 ioActCount long word
-> 44 ioPosMode word
<-» 46 ioPosOffset long word

PBRead attempts to read ioReqCount bytes from the device driver having the reference number
ioRefNum, and transfer them to the data buffer pointed to by ioBuffer. The drive number, if any,
of the device to be read from is specified by ioVRefNum. After the read is completed, the
position is returned in ioPosOffset and the number of bytes actually read is returned in
ioActCount.

Result codes noErr
badUnitErr
notOpenErr
unitEmptyErr
readErr

No error
Bad reference number
Driver isn't open
Bad reference number
Driver can't respond to Read calls

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro _Write

Parameter block

-» 12 ioCompletion pointer
<r- 16 ioResult word
-» 22 ioVRefNum word
-> 24 ioRefNum word
-» 32 ioBuffer pointer
-» 36 ioReqCount long word

40 ioActCount long word
—> 44 ioPosMode word

46 ioPosOffset long word

PBWrite takes ioReqCount bytes from the buffer pointed to by ioBuffer and attempts to write
them to the device driver having the reference number ioRefNum. The drive number, if any, of
the device to be written to is specified by ioVRefNum. After the write is completed, the position
is returned in ioPosOffset and the number of bytes actually written is returned in ioActCount.

Result codes noErr No error
badUnitErr Bad reference number
notOpenErr Driver isn't open
unitEmptyErr Bad reference number
writErr Driver can't respond to Write calls

Device Manager Routines 11-185

Inside Macintosh

FUNCTION PBControl (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

—» 12 ioCompletion pointer
<— 16 ioResult word
—> 22 ioVRefNum word
—> 24 ioRefNum word

26 csCode word
—> 28 csParam record

PBControl sends control information to the device driver having the reference number ioRefNum;
the drive number, if any, is specified by ioVRefNum. The type of information sent is specified
by csCode, and the information itself begins at csParam. The values passed in csCode and
csParam depend on the driver being called.

Result codes noErr
badUnitErr
notOpenErr
unitEmptyErr
controlErr

No error
Bad reference number
Driver isn't open
Bad reference number
Driver can't respond to this Control call

FUNCTION PBStatus (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

Trap macro Status

Parameter block
—> 12 ioCompletion pointer
<— 16 ioResult word
- > 22 ioVRefNum word
—> 24 ioRefNum word
-» 26 csCode word
<— 28 csParam record

PBStatus returns status information about the device driver having the reference number
ioRefNum; the drive number, if any, is specified by ioVRefNum. The type of information
returned is specified by csCode, and the information itself begins at csParam. The values passed
in csCode and csParam depend on the driver being called.

Result codes noErr
badUnitErr
notOpenErr
unitEmptyErr
statusErr

No error
Bad reference number
Driver isn't open
Bad reference number
Driver can't respond to this Status call

11-186 Device Manager Routines

Trap macro Control

Parameter block

The Device Manager

FUNCTION PBKilllO (paramBlock: ParmBlkPtr; async: BOOLEAN) :
OSErr;

THE STRUCTURE OF A DEVICE DRIVER

This section describes the structure of device drivers for programmers interested in writing their
own driver or manipulating existing drivers. Some of the information presented here is
accessible only through assembly language.

RAM drivers are stored in resource files. The resource type for drivers is 'DRVR'. The resource
name is the driver name. The resource ID for a driver is its unit number (explained below) and
must be between 0 and 31 inclusive.

Warn ing : Don't use the unit number of an existing driver unless you want the existing
driver to be replaced.

As shown in Figure 2, a driver begins with a few words of flags and other data, followed by
offsets to the routines that do the work of the driver, an optional title, and finally the routines
themselves.

Every driver contains a routine to handle Open and Close calls, and may contain routines to
handle Read, Write, Control, Status, and KilllO calls. The driver routines that handle Device
Manager calls are as follows:

Device M a n a g e r call Driver rou t ine
Open Open

Read Prime

Write Prime

Control Control

KilllO Control

Status Status

Close Close

The Structure of a Device Driver 11-187

Trap macro KilllO

Parameter block
—> 12 ioCompletion pointer
<— 16 ioResult word
—> 24 ioRefNum word

PBKilllO stops any current I/O request being processed, and removes all pending I/O requests
from the I/O queue of the device driver having the reference number ioRefNum. The completion
routine of each pending I/O request is called, with the ioResult field of each request equal to the
result code abortErr.

Result codes noErr No error
badUnitErr Bad reference number
unitEmptyErr Bad reference number

Inside Macintosh

byte 0 drvrFlag3 (word) flags

2 drvrDelay (word) number of tick3 between periodic actions

4 drvrEMa3k (word) desk accessory event mask

6 drvrMenu (word) menu ID of menu associated with driver

8 drvrOpen (word) offset to open routine

10 drvrPrime (word) offset to prime routine

12 drvrCtl (word) offset to control routine

14 drvrStatus (word) offset to status routine

16 drvrClo3e (word) offset to close routine

18 drvrName (byte) length of driver name

19 drvrName + 1 (byte3) characters of driver name

r driver routines *

Figure 2. Driver Structure

For example, when a KilllO call is made to a driver, the driver's control routine must implement
the call.

Each bit of the high-order byte of the drvrFlags word contains a flag:

dReadEnable .EQU 0 ;set if driver can respond to Read calls
dWritEnable • EQU 1 ;set if driver can respond to Write calls
dCtlEnable .EQU 2 ; set if driver can respond to Control calls
dStatEnable • EQU 3 ;set if driver can respond to Status calls
dNeedGoodBye • EQU 4 ;set if driver needs to be called before the

; application heap is reinitialized
dNeedTime .EQU 5 ;set if driver needs time for performing a

; periodic action
dNeedLock • EQU 6 ;set if driver will be locked in memory as

; soon as it's opened (always set for ROM
; drivers)

Bits 8-11 (bits 0-3 of the high-order byte) indicate which Device Manager calls the driver's
routines can respond to.

Unlocked RAM drivers in the application heap will be lost every time the heap is reinitialized
(when an application starts up, for example). If dNeedGoodBye is set, the control routine of the

11-188 The Structure of a Device Driver

The Device Manager

device driver will be called before the heap is reinitialized, and the driver can perform any "clean­
up" actions it needs to. The driver's control routine identifies this "good-bye" call by checking
the csCode parameter—it will be the global constant

goodBye .EQU -1 ;heap will be reinitialized, clean up if necessary

Device drivers may need to perform predefined actions periodically. For example, a network
driver may want to poll its input buffer every ten seconds to see if it has received any messages.
If the dNeedTime flag is set, the driver does need to perform a periodic action, and the drvrDelay
word contains a tick count indicating how often the periodic action should occur. A tick count of
0 means it should happen as often as possible, 1 means it should happen at most every sixtieth of
a second, 2 means at most every thirtieth of a second, and so on. Whether the action actually
occurs this frequently depends on how often the application calls the Desk Manager procedure
SystemTask. SystemTask calls the driver's control routine (if the time indicated by drvrDelay has
elapsed), and the control routine must perform whatever predefined action is desired. The
driver's control routine identifies the SystemTask call by checking the csCode parameter—it will
be the global constant

accRun .EQU 65 ;take the periodic action, if any, for this driver

Note: Some drivers may not want to rely on the application to call SystemTask. They can
instead install a task to be executed during the vertical retrace interrupt. There are,
however, certain restrictions on tasks performed during interrupts, such as not being able
to make calls to the Memory Manager. For more information on these restrictions, see
chapter 11. Periodic actions performed in response to SystemTask calls are not performed
via an interrupt and so don't have these restrictions.

DrvrEMask and drvrMenu are used only for desk accessories and are discussed in chapter 14 of
Volume I.

Following drvrMenu are the offsets to the driver routines, a tide for the driver (preceded by its
length in bytes), and the routines that do the work of the driver.

Note: Each of the driver routines must be aligned on a word boundary.

Device Control Entry

The first time a driver is opened, information about it is read into a structure in memory called a
device control entry. A device control entry contains the header of the driver's I/O queue, the
location of the driver's routines, and other information. A device control entry is a 40-byte
relocatable block located in the system heap. It's locked while the driver is open, and unlocked
while the driver is closed.

Most of the data in the device control entry is stored and accessed only by the Device Manager,
but in some cases the driver itself must store into it. The structure of a device control entry is
shown below; note that the first four words of the driver are copied into the dCtlFlags,
dCdDelay, dCtlEMask, and dCtlMenu fields.

The Structure of a Device Driver 11-189

Inside Macintosh

TYPE DCtlEntry =
RECORD

dCtlDriver:
dCtlFlags:
dCtlQHdr:
dCtlPosition:
dCtlStorage:
dCtlRefNum:
dCtlCurTicks:
dCtlWindow:
dCtlDelay:
dCtlEMask:
dCtlMenu:

END;

DCtlPtr = ADCtlEntry;
DCtlHandle = ADCtlPtr;

The low-order byte of the dCtlFlags word contains the following flags:

Bit n u m b e r M e a n i n g
5 Set if driver is open

6 Set if driver is RAM-based

7 Set if driver is currendy executing

Assembly-language note : These flags can be accessed with the global constants
dOpened, dRAMBased, and drvrActive.

The high-order byte of the dCdFlags word contains flags copied from the drvrFlags word of the
driver, as described above.

DCdQHdr contains the header of the driver's I/O queue (described below). DCdPosition is used
only by drivers of block devices, and indicates the current source or destination position of a
Read or Write call. The position is given as a number of bytes beyond the physical beginning of
the medium used by the device. For example, if one logical block of data has just been read from
a 3 1/2-inch disk via the Disk Driver, dCdPosition will be 512.

ROM drivers generally use locations in low memory for their local storage. RAM drivers may
reserve memory within their code space, or allocate a relocatable block and keep a handle to it in
dCtlStorage (if the block resides in the application heap, its handle will be set to NIL when the
heap is reinitialized).

You can get a handle to a driver's device control entry by calling the Device Manager function
GetDCtlEntry.

FUNCTION GetDCtlEntry (refNum: INTEGER) : DCtlHandle; [Not in ROM]

GetDCtlEntry returns a handle to the device control entry of the device driver having the reference
number refNum.

Ptr; {pointer to ROM driver or handle to RAM driver}
INTEGER; {flags}
QHdr; {driver I/O queue header}
LONGINT; {byte position used by Read and Write calls}
Handle; {handle to RAM driver's private storage}
INTEGER; {driver reference number}
LONGINT; {used internally}
WindowPtr; {pointer to driver's window}
INTEGER; {number of ticks between periodic actions}
INTEGER; {desk accessory event mask}
INTEGER {menu ID of menu associated with driver}

11-190 The Structure of a Device Driver

The Device Manager

Assembly-language note: You can get a handle to a driver's device control entry from
the unit table, as described below.

The Driver I/O Queue

Each device driver has a driver I/O queue; this is a standard Operating System queue (described in
chapter 13) that contains the parameter blocks for all asynchronous routines awaiting execution.
Each time a routine is called, the driver places an entry in the queue; each time a routine is
completed, its entry is removed from the queue. The queue's header is located in the dCtlQHdr
field of the driver's device control entry. The low-order byte of the queue flags field in the queue
header contains the version number of the driver, and can be used for distinguishing between
different versions of the same driver.

Each entry in the driver I/O queue consists of a parameter block for the routine that was called.
Most of the fields of this parameter block contain information needed by the specific Device
Manager routines; these fields are explained above in the section "Low-Level Device Manager
Routines". The first four fields of this parameter block, shown below, are used by the Device
Manager in processing the I/O requests in the queue.

TYPE ParamBlockRec = RECORD

QLink points to the next entry in the queue, and qType indicates the queue type, which must
always be ORD(ioQType). IOTrap and ioCmdAddr contain the trap and address of the Device
Manager routine that was called.

The Unit Table

The location of each device control entry is maintained in a list called the unit table. The unit
table is a 128-byte nonrelocatable block containing 32 four-byte entries. Each entry has a
number, from 0 to 31, called the unit number, and contains a handle to the device control entry
for a driver. The unit number can be used as an index into the unit table to locate the handle to a
specific driver's device control entry; it's equal to

- 1 * (refNum + 1)

where refNum is the driver reference number. For example, the Sound Driver's reference
number is - 4 and its unit number is 3.

Figure 3 shows the layout of the unit table with the standard drivers and desk accessories
installed.

qLink:
qType:
ioTrap:

QElemPtr;
INTEGER;
INTEGER;

{next queue entry}
{queue type}
{routine trap}
{routine address}
{rest of block}

ioCmdAddr: Ptr;

END;

The Structure of a Device Driver 11-191

Inside Macintosh

byte 0 reserved unit number 0

4 hard disk driver (XL only) 1

8 Printer Driver 2

12 Sound Driver 3

16 Disk Driver 4

20 Serial Driver port A input 5

24 Serial Driver port A output 6

28 Serial Driver port B input 7

32 Serial Driver port B output 8

36 AppleTalk .MPP Driver 9

40 AppleTalk .ATP Driver 10

44 reserved 11

48 Calculator 12

52 Alarm Clock 13

56 Key Caps 1 4

60 Puzzle 15

6 4 Note Pad 16

68 Scrapbook 17

72 Control Panel 18

7 not used *

124 not U3ed 31

Figure 3. The Unit Table

Warning: Any new drivers contained in resource files should have resource IDs that
don't conflict with the unit numbers of existing drivers—unless you want an existing
driver to be replaced. Be sure to check the unit table before installing a new driver; the
base address of the unit table is stored in the global variable UTableBase.

11-192 The Structure of a Device Driver

The Device Manager

WRITING YOUR OWN DEVICE DRIVERS

Drivers are usually written in assembly language. The structure of your driver must match that
shown in the previous section. The routines that do the work of the driver should be written to
operate the device in whatever way you require. Your driver must contain routines to handle
Open and Close calls, and may choose to handle Read, Write, Control, Status, and KilllO calls as
well.

Warn ing : A device driver doesn't "own" the hardware it operates, and has no way of
determining whether another driver is attempting to use that hardware at the same time.
There's a possiblity of conflict in situations where two drivers that operate the same device
are installed concurrently.

When the Device Manager executes a driver routine to handle an application call, it passes a
pointer to the call's parameter block in register AO and a pointer to the driver's device control
entry in register A l . From this information, the driver can determine exacdy what operations are
required to fulfill the call's requests, and do them.

Open and close routines must execute synchronously and return via an RTS instruction. They
needn't preserve any registers that they use. Close routines should put a result code in register
DO. Since the Device Manager sets DO to 0 upon return from an Open call, open routines should
instead place the result code in the ioResult field of the parameter block.

The open routine must allocate any private storage required by the driver, store a handle to it in
the device control entry (in the dCtlStorage field), initialize any local variables, and then be ready
to receive a Read, Write, Status, Control, or KilllO call. It might also install interrupt handlers,
change interrupt vectors, and store a pointer to the device control entry somewhere in its local
storage for its interrupt handlers to use. The close routine must reverse the effects of the open
routine, by releasing all used memory, removing interrupt handlers, and replacing changed
interrupt vectors. If anything about the operational state of the driver should be saved until the
next time the driver is opened, it should be kept in the relocatable block of memory pointed to by
dCtlStorage.

Prime, control, and status routines must be able to respond to queued calls and asynchronous
calls, and should be interrupt-driven. Asynchronous portions of the routines can use registers
A0-A3 and D0-D3, but must preserve any other registers used; synchronous portions can use all
registers. Prime, control, and status routines should return a result code in DO. They must return
via an RTS if called immediately (with noQueueBit set in the ioTrap field) or if the device couldn't
complete the I/O request right away, or via a JMP to the IODone routine (explained below) if not
called immediately and if the device completed the request.

Warning: If the prime, control, and status routines can be called as the result of an
interrupt, they must preserve all registers other than AO, A l , and D0-D2. They can't make
any calls to the Memory Manager and cannot depend on unlocked handles being valid. If
they use application globals, they must also ensure that register A5 contains the address of
the boundary between the application globals and the application parameters; for details,
see SetUpA5 and RestoreA5 in chapter 13.

The pr ime routine implements Read and Write calls made to the driver. It can distinguish
between Read and Write calls by comparing the low-order byte of the ioTrap field with the
following predefined constants:

Writing Your Own Device Drivers 11-193

Inside Macintosh

aRdCmd
aWrCmd

.EQU

.EQU
2
3

;Read call
; Write call

You may want to use the Fetch and Stash routines (described below) to read and write characters.
If the driver is for a block device, it should update the dCtlPosition field of the device control
entry after each read or write.

The control routine accepts the control information passed to it, and manipulates the device as
requested. The status routine returns requested status information. Since both the control and
status routines may be subjected to Control and Status calls sending and requesting a variety of
information, they must be prepared to respond correctly to all types. The control routine must
handle KilllO calls. The driver identifies KilllO calls by checking the csCode parameter—it will
be the global constant

killCode .EQU 1 /handle the KilllO call

Warning: KilllO calls must return via an RTS, and shouldn't jump (via JMP) to the
IODone routine.

Routines for Writing Drivers

The Device Manager includes three routines—Fetch, Stash, and IODone—that provide low-level
support for driver routines. These routines can be used only with a pending, asynchronous
request; include them in the code of your device driver if they're useful to you. A pointer to the
device control entry is passed to each of these routines in register A l . The device control entry
contains the driver I/O queue header, which is used to locate the pending request. If there are no
pending requests, these routines generate the system error dsIOCoreErr (see chapter 12 for more
information).

Fetch, Stash, and IODone are invoked via "jump vectors" (stored in the global variables JFetch,
JStash, and JIODone) rather than macros, in the interest of speed. You use a jump vector by
moving its address onto the stack. For example:

Fetch and Stash don't return a result code; if an error occurs, the System Error Handler is
invoked. IODone may return a result code.

Fe t ch funct ion

Jump vector JFetch

Fetch gets the next character from the data buffer pointed to by ioBuffer and places it in DO.
IOActCount is incremented by 1. If ioActCount equals ioReqCount, bit 15 of DO is set. After
receiving the last byte requested, the driver should call IODone.

MOVE.L
RTS

JIODone,-(SP)

On entry

On exit

A l : pointer to device control entry

DO: character fetched; bit 15=1 if it's the last character in data buffer

11-194 Writing Your Own Device Drivers

The Device Manager

Stash function

Jump vector JStash

On entry A l : pointer to device control entry
DO: character to stash

On exit DO: bit 15=1 if it's the last character requested

Stash places the character in DO into the data buffer pointed to by ioBuffer, and increments
ioActCount by 1. If ioActCount equals ioReqCount, bit 15 of DO is set. After stashing the last
byte requested, the driver should call IODone.

I O D o n e function

Jump vector JIODone

On entry A l : pointer to device control entry
DO: result code (word)

IODone removes the current I/O request from the driver I/O queue, marks the driver inactive,
unlocks the driver and its device control entry (if it's allowed to by the dNeedLock bit of the
dCdFlags word), and executes the completion routine (if there is one). Then it begins executing
the next I/O request in the driver I/O queue.

Warning: Due to the way the File Manager does directory lookups, block device drivers
should take care to support asynchronous I/O operations. If the driver's prime routine has
completed an asynchronous Read or Write call just prior to calling IODone and its
completion routine starts an additional Read or Write, large amounts of the stack may be
used (potentially causing the stack to expand into the heap). To avoid this problem, the
prime routine should exit via an RTS instruction and then jump to IODone via an interrupt.

INTERRUPTS

This section discusses how interrupts are used on the Macintosh 128K and 512K; only
programmers who want to write interrupt-driven device drivers need read this section.

Warning: Only the Macintosh 128K and 512K are covered in this section. Much of the
information presented here is hardware-dependent; programmers are encouraged to write
code that's hardware-independent to ensure compatibility with future versions of the
Macintosh.

An interrupt is a form of exception: an error or abnormal condition detected by the processor in
the course of program execution. Specifically, an interrupt is an exception that's signaled to the
processor by a device, as distinct from a trap, which arises direcdy from the execution of an
instruction. Interrupts are used by devices to notify the processor of a change in condition of the
device, such as the completion of an I/O request. An interrupt causes the processor to suspend
normal execution, save the address of the next instruction and the processor's internal status on
the stack, and execute an interrupt handler.

Interrupts 11-195

Inside Macintosh

The MC68000 recognizes seven different levels of interrupt, each with its own interrupt handler.
The addresses of the various handlers, called in terrupt vectors, are kept in a vector table in
low memory. Each level of interrupt has its own vector located in the vector table. When an
interrupt occurs, the processor fetches the proper vector from the table, uses it to locate the
interrupt handler for that level of interrupt, and jumps to the handler. On completion, the handler
restores the internal status of the processor from the stack and resumes normal execution from the
point of suspension.

There are three devices that can create intermpts: the Synertek SY6522 Versatile Interface
Adapter (VIA), the Zilog Z8530 Serial Communications Controller (SCC), and the debugging
switch. They send a three-bit number called the in ter rupt priori ty level to the processor. This
number indicates which device is intenupting, and which interrupt handler should be executed:

Leve l I n t e r rup t i ng device
0 None

1 VIA

2 SCC

3 VIA and SCC

4-7 Debugging switch

A level-3 interrupt occurs when both the VIA and the SCC interrupt at the same instant; the
interrupt handler for a level-3 interrupt is simply an RTE instruction. Debugging interrupts
shouldn't occur during the normal execution of an application.

The interrupt priority level is compared with the processor priority in bits 8-10 of the status
register. If the interrupt priority level is greater than the processor priority, the MC68000
acknowledges the interrupt and initiates interrupt processing. The processor priority determines
which interrupting devices are ignored, and which are serviced:

Level S e r v i c e s
0 All interrupts

1 SCC and debugging interrupts only

2-6 Debugging interrupts only

7 No interrupts

When an interrupt is acknowledged, the processor priority is set to the interrupt priority level, to
prevent additional interrupts of equal or lower priority, until the interrupt handler has finished
servicing the interrupt.

The interrupt priority level is used as an index into the primary interrupt vector table. This table
contains seven long words beginning at address $64. Each long word contains the starting
address of an interrupt handler (see Figure 4).

Execution jumps to the interrupt handler at the address specified in the table. The interrupt
handler must identify and service the interrupt. Then it must restore the processor priority, status
register, and program counter to the values they contained before the interrupt occurred.

1-196 Interrupts

The Device Manager

$64

$68

$6C

$70

$74

$78

$7C

autolntl

autolnt2

autolnt3

autolnt4

autolnt5

auto!nt6

autolnt7

vector to I eve 1-1 interrupt handler

vector to level-2 interrupt handler

vector to level-3 interrupt handler

vector to I eve I-4 interrupt handler

vector to I eve I-5 interrupt handler

vector to I eve I-6 interrupt handler

vector to I eve I-7 interrupt handler

Figure 4. Primary Interrupt Vector Table

Level-1 (VIA) Interrupts

Level-1 interrupts are generated by the VIA. You'll need to read the Synertek manual describing
the VIA to use most of the information provided in this section. The level-1 interrupt handler
determines the source of the interrupt (via the VIA's interrupt flag register and interrupt enable
register) and then uses a table of secondary vectors in low memory to determine which interrupt
handler to call (see Figure 5).

byte 0 one-3econd interrupt VIA'3 CA2 control line

4 vertical retrace interrupt VIA'3 CA1 control line

8 shift-register interrupt VIA's shift register

12 not U3ed

16 not U3ed

20 T2 timer: Disk Driver VIA's timer 2

24 T1 timer: Sound Driver VIA's timer 1

28 not U3ed

Figure 5. Level-1 Secondary Interrupt Vector Table

The level-1 secondary interrupt vector table is stored in the global variable LvllDT. Each vector
in the table points to the interrupt handler for a different source of interrupt. The interrupts are
handled in order of their entry in the table, and only one interrupt handler is called per level-1
interrupt (even if two or more sources are interrupting). This allows the level-1 interrupt handler

Interrupts 11-197

Inside Macintosh

to be reentrant; interrupt handlers should lower the processor priority as soon as possible in order
to enable other pending interrupts to be processed.

The one-second interrupt updates the global variable Time (explained in chapter 13); it's also
used for inverting ("blinking") the apple symbol in the menu bar when the alarm goes off.
Vertical retrace interrupts are generated once every vertical retrace interval; control is passed to the
Vertical Retrace Manager, which performs recurrent system tasks (such as updating the global
variable Ticks) and executes tasks installed by the application. (For more information, see
chapter 11.)

If the cumulative elapsed time for all tasks during a vertical retrace interrupt exceeds about 16
milliseconds (one video frame), the vertical retrace interrupt may itself be interrupted by another
vertical retrace interrupt. In this case, tasks to be performed during the second vertical retrace
interrupt are ignored, with one exception: The global variable Ticks will still be updated.

The shift-register interrupt is used by the keyboard and mouse interrupt handlers. Whenever the
Disk Driver or Sound Driver isn't being used, you can use the T l and T2 timers for your own
needs; there's no way to tell, however, when they'll be needed again by the Disk Driver or Sound
Driver.

The base address of the VIA (stored in the global variable VIA) is passed to each interrupt handler
in register A l .

Level-2 (SCC) Interrupts

Level-2 interrupts are generated by the SCC. You'll need to read the Zilog manual describing the
SCC to effectively use the information provided in this section. The level-2 interrupt handler
determines the source of the interrupt, and then uses a table of secondary vectors in low memory
to determine which interrupt handler to call (see Figure 6).

byte 0 channel B transmit buffer empty

4 channel B external/status change mouse vertical

8 channel B receive character available

12 channel B special receive condition

16 channel A transmit buffer empty

20 channel A external/status change mouse horizontal

24 channel A receive character available

28 channel A special receive condition

Figure 6. Level-2 Secondary Interrupt Vector Table

1-198 Interrupts

The Device Manager

The level-2 secondary interrupt vector table is stored in the global variable Lvl2DT. Each vector
in the table points to the interrupt handler for a different source of interrupt. The interrupts are
handled according to the following fixed priority:

channel A receive character available and special receive
channel A transmit buffer empty
channel A external/status change
channel B receive character available and special receive
channel B transmit buffer empty
channel B external/status change

Only one interrupt handler is called per level-2 interrupt (even if two or more sources are
interrupting). This allows the level-2 interrupt handler to be reentrant; interrupt handlers should
lower the processor priority as soon as possible in order to enable other pending interrupts to be
processed.

External/status interrupts pass through a tertiary vector table in low memory to determine which
interrupt handler to call (see Figure 7).

byte 0 channel B communications interrupt

4 mouse vertical interrupt

8 channel A communications interrupt

12 mome horizontal interrupt

Figure 7. Level-2 External/Status Interrupt Vector Table

The external/status interrupt vector table is stored in the global variable ExtStsDT. Each vector in
the table points to the interrupt handler for a different source of interrupt. Communications
interrupts (break/abort, for example) are always handled before mouse interrupts.

When a level-2 interrupt handler is called, DO contains the address of the SCC read register 0
(external/status interrupts only), and Dl contains the bits of read register 0 that have changed
since the last external/status interrupt. AO points to the SCC channel A or channel B control read
address and A l points to SCC channel A or channel B control write address, depending on which
channel is interrupting. The SCC's data read address and data write address are located four
bytes beyond AO and A l , respectively; they're also contained in the global variables SCCWr and

SCCRd. You can use the following predefined constants as offsets from these base addresses to
locate the SCC control and data lines:

aData • EQU 6 ;channel A data in or out
aCtl .EQU 2 ;channel A control
bData • EQU 4 /channel B data in or out
bCtl • EQU 0 /channel B control

Interrupts 11-199

Inside Macintosh

Writing Your Own Interrupt Handlers

You can write your own interrupt handlers to replace any of the standard interrupt handlers just
described. Be sure to place a vector that points to your interrupt handler in one of the vector
tables.

Both the level-1 and level-2 interrupt handlers preserve registers A0-A3 and D0-D3. Every
interrupt handler (except for external/status interrupt handlers) is responsible for clearing the
source of the interrupt, and for saving and restoring any additional registers used. Interrupt
handlers should return directly via an RTS instruction, unless the interrupt is completing an
asynchronous call, in which case they should jump (via JMP) to the IODone routine.

1-200 Interrupts

The Device Manager

SUMMARY OF THE DEVICE MANAGER

Constants

CONST { Values for requesting read/write access }

fsCurPerm = 0
fsRdPerm = 1
fsWrPerm = 2
fsRdWrPerm = 3

{whatever is currently allowed}
{request to read only}
{request to write only}
{request to read and write}

{ Positioning modes }

fsAtMark = 0 ; {at current position}
fsFromStart = 1; {offset relative to beginning of medium}
fsFromMark = 3; {offset relative to current position}
rdVerify = 64; {add to above for read-verify}

Data Types

TYPE ParamBlkType = (ioParam,fileParam,volumeParam,cntrlParam);

AParamBlockRec;
RECORD
QElemPtr;
INTEGER;
INTEGER;
Ptr;
ProcPtr;
OSErr;
StringPtr;
INTEGER;
OF

ParmBlkPtr
ParamBlockRec

qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:

CASE ParamBlkType
ioParam:
(ioRefNum:
ioVersNum:
ioPermssn:
ioMisc:
ioBuffer:
ioReqCount:
ioActCount:
ioPosMode:
ioPosOffset

fileParam:
. . . {used by File Manager}

volumeParam:
. . . {used by File Manager}

INTEGER;
SignedByte;
SignedByte;
Ptr;
Ptr;
LONGINT;
LONGING-
INTEGER;
LONGINT);

{next queue entry}
{queue type}
{routine trap}
{routine address}
{completion routine}
{result code}
{driver name}
{volume reference or drive number}

{driver reference number}
{not used}
{read/write permission}
{not used}
{pointer to data buffer}
{requested number of bytes}
{actual number of bytes}
{positioning mode}
{positioning offset}

Summary of the Device Manager 11-201

Inside Macintosh

cntrlParam:
(ioCRefNum: INTEGER; {driver reference number}
csCode: INTEGER; {type of Control or Status call}
csParam: ARRAY[0..10] OF INTEGER) {control or status information}

END;

DCtlHandle = ADCtlPtr;
DCtlPtr = "DCtlEntry;
DCtlEntry =
RECORD
dCtlDriver: Ptr;

dCtlFlags:
dCtlQHdr:

INTEGER;
QHdr;

dCtlPosition: LONGINT;

dCtISt orage: Handle;

dCtlRefNum: INTEGER;
dCtlCurTicks: LONGINT;
dCtlWindow: WindowPtr;
dCtlDelay: INTEGER;

dCtlEMask:
dCtlMenu:

END;

INTEGER;
INTEGER

pointer to ROM driver or handle to }
RAM driver}
flags}
driver I/O queue header}
byte position used by Read and }
Write calls}
handle to RAM driver's private }
storage}

driver reference number}
used internally}
pointer to driver's window}
number of ticks between periodic }
actions}

desk accessory event mask}
menu ID of menu associated with }
driver}

High-Level Routines [Not in ROM]

FUNCTION OpenDriver
FUNCTION CloseDriver
FUNCTION FSRead

FUNCTION FSWrite

FUNCTION Control

FUNCTION Status

FUNCTION KilllO

(name: Str255; VAR refNum: INTEGER) : OSErr;
(refNum: INTEGER) : OSErr;
(refNum: INTEGER; VAR count: LONGINT; buffPtr: Ptr)
: OSErr;
(refNum: INTEGER; VAR count: LONGINT; buffPtr: Ptr)
: OSErr;
(refNum: INTEGER; csCode: INTEGER; csParamPtr: Ptr)
: OSErr;
(refNum: INTEGER; csCode: INTEGER; csParamPtr: Ptr)
: OSErr;
(refNum: INTEGER) : OSErr;

Low-Level Routines

FUNCTION PBOpen (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
4— 16 ioResult word
—» 18 ioNamePtr pointer
<— 24 ioRefNum word
—> 27 ioPermssn byte

11-202 Summary of the Device Manager

The Device Manager

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—» 12 ioCompletion pointer
<— 16 ioResult word
—» 24 ioRefNum word

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
- 4 22 ioVRefNum word
-» 24 ioRefNum word
—> 32 ioBuffer pointer
- > 36 ioReqCount long word
<— 40 ioActCount long word
—> 44 ioPosMode word

46 ioPosOffset long word

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
-» 22 ioVRefNum word
-> 24 ioRefNum word
—> 32 ioBuffer pointer
-> 36 ioReqCount long word
<— 40 ioActCount long word
-» 44 ioPosMode word
<H> 46 ioPosOffset long word

FUNCTION PBControl (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer

16 ioResult word
22 ioVRefNum word

—> 24 ioRefNum word
—> 26 csCode word

28 csParam record

FUNCTION PBStatus (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer

16 ioResult word
22 ioVRefNum word

—» 24 ioRefNum word
26 csCode word
28 csParam record

FUNCTION PBKilllO (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
—> 24 ioRefNum word

Summary of the Device Manager 11-203

Inside Macintosh

Accessing a Driver's Device Control Entry

FUNCTION GetDCtlEntry (refNum: INTEGER) : DCtlHandle; [NotinROM]

Result Codes

N a m e Value Meaning
abortErr -27 I/O request aborted by KilllO

badUnitErr -21 Driver reference number doesn't match unit table

controlErr -17 Driver can't respond to this Control call

dlnstErr -26 Couldn't find driver in resource file

dRemovErr -25 Attempt to remove an open driver

noErr 0 No error

notOpenErr -28 Driver isn't open

openErr -23 Requested read/write permission doesn't match driver's

open permission

readErr -19 Driver can't respond to Read calls

statusErr -18 Driver can't respond to this Status call

unitEmptyErr -22 Driver reference number specifies NIL handle in unit table

writErr -20 Driver can't respond to Write calls

Assembly-Language Information

Constants

; Flags in trap words

asnycTrpBit .EQU 10 ;set for an asynchronous call
noQueueBit .EQU 9 ;set for immediate execution

; Values for requesting read/write access

fsCurPerm .EQU 0 /whatever is currently allowed
fsRdPerm .EQU 1 /request to read only
fsWrPerm .EQU 2 /request to write only
fsRdWrPerm .EQU 3 /request to read and write

; Positioning modes

fsAtMark .EQU 0 /at current position
fsFromStart .EQU 1 /offset relative to beginning of medium
fsFromMark .EQU 3 /offset relative to current position
rdVerify .EQU 64 /add to above for read-verify

11-204 Summary of the Device Manager

The Device Manager

; Driver flags

dReadEnable .EQU 0
dWritEnable • EQU 1
dCtlEnable .EQU 2
dStatEnable • EQU 3
dNeedGoodBye .EQU 4

dNeedTime .EQU 5

dNeedLock .EQU 6

;set if driver can respond to Read calls
;set if driver can respond to Write calls
;set if driver can respond to Control calls
;set if driver can respond to Status calls
;set if driver needs to be called before the
; application heap is reinitialized
;set if driver needs time for performing a
; periodic action
;set if driver will be locked in memory as
; soon as it's opened (always set for ROM
; drivers)

Device control entry flags

dOpened
dRAMBased
drvr Active

• EQU
.EQU
• EQU

5
6
7

;set if driver is open
;set if driver is RAM-based
;set if driver is currently executing

; csCode values for driver control routine

accRun .EQU 65 ;take the periodic action, if any, for this
; driver

goodBye .EQU -1 ;heap will be reinitialized, clean up if
; necessary

killCode .EQU 1 ;handle the KilllO call

; Low-order byte of Device Manager traps

aRdCmd .EQU 2 ;Read call (trap $A002)
aWrCmd .EQU 3 ;Write call (trap $A003)

; Offsets from SCC base addresses

aData • EQU 6 ;channel A data in or out
aCtl .EQU 2 ;channel A control
bData .EQU 4 ;channel B data in or out
bCtl • EQU 0 ;channel B control

Standard Parameter Block Data Structure

qLink Pointer to next queue entry
qType Queue type (word)
ioTrap Routine trap (word)
ioCmdAddr Routine address
ioCompletion Address of completion routine
ioResult Result code (word)
ioVNPtr Pointer to driver name (preceded by length byte)
ioVRefNum Volume reference number (word)
ioDrvNum Drive number (word)

Summary of the Device Manager 11-205

Inside Macintosh

Control and Status Parameter Block Data Structure

ioRefNum Driver reference number (word)
csCode Type of Control or Status call (word)
csParam Parameters for Control or Status call (22 bytes)

I/O Parameter Block Data Structure

ioRefNum Driver reference number (word)
ioPermssn Open permission (byte)
ioBuffer Pointer to data buffer
ioReqCount Requested number of bytes (long)
ioActCount Actual number of bytes (long)
ioPosMode Positioning mode (word)
ioPosOffset Positioning offset (long)

Device Driver Data Structure

drvrFlags Flags (word)
drvrDelay Number of ticks between periodic actions (word)
drvrEMask Desk accessory event mask (word)
drvrMenu Menu ID of menu associated with driver (word)
drvrOpen Offset to open routine (word)
drvrPrime Offset to prime routine (word)
drvrCd Offset to control routine (word)
drvrStatus Offset to status routine (word)
drvrClose Offset to close routine (word)
drvrName Driver name (preceded by length byte)

Device Control Entry Data Structure

dCdDriver Pointer to ROM driver or handle to RAM driver
dCtlFlags Rags (word)
dCdQueue Queue flags: low-order byte is driver's version number (word)
dCdQHead Pointer to first entry in driver's I/O queue
dCtlQTail Pointer to last entry in driver's I/O queue
dCtlPosition Byte position used by Read and Write calls (long)
dCtlStqrage Handle to RAM driver's private storage
dCdRefNum Driver's reference number (word)
dCdWindow Pointer to driver's window
dCtlDelay Number of ticks between periodic actions (word)
dCtlEMask Desk accessory event mask (word)
dCdMenu Menu ID of menu associated with driver (word)

Structure of Primary Interrupt Vector Table

autolntl Vector to level-1 interrupt handler
autolnt2 Vector to level-2 interrupt handler

11-206 Summary of the Device Manager

The Device Manager

autolht3 Vector to level-3 interrupt handler
autoInt4 Vector to level-4 interrupt handler
autoInt5 Vector to level-5 interrupt handler
autoInt6 Vector to level-6 interrupt handler
autolnt? Vector to level-7 interrupt handler

Macro Names

Pascal n a m e
PBRead
PBWrite
PBControl
PBStatus
PBKilllO

Macro name
_Read
_Write
_Control
_Status

KilUO

Routines for Writing Drivers

R o u t i n e
Fetch

Stash

IODone

J u m p vector
JFetch

JStash

JIODone

On entry
Al : ptr to device

control entry

Al : ptr to device
control entry

DO: character to stash

A l :

DO:

ptr to device
control entry
result code (word)

On exit
DO: character fetched; bit 15=1

if last character in buffer

DO: bit 15=1 if last character
requested

Variables

UTableBase Base address of unit table
JFetch Jump vector for Fetch function
JStash Jump vector for Stash function
JIODone Jump vector for IODone function
LvllDT Level-1 secondary interrupt vector table (32 bytes)
Lvl2DT Level-2 secondary interrupt vector table (32 bytes)
VIA VIA base address
ExtStsDT External/status interrupt vector table (16 bytes)
SCCWr SCC write base address
SCCRd SCC read base address

Summary of the Device Manager 11-207

Inside Macintosh

11-208

7 THE DISK DRIVER

211 About This Chapter
211 About the Disk Driver
212 Using the Disk Driver
214 Disk Driver Routines
216 Assembly-Language Example
217 Summary of the Disk Driver

Inside Macintosh

11-210

The Disk Driver

ABOUT THIS CHAPTER

The Disk Driver is a Macintosh device driver used for storing and retrieving information on
Macintosh 3 1/2-inch disk drives. This chapter describes the Disk Driver in detail. It's intended
for programmers who want to access Macintosh drives direcdy, bypassing the File Manager.

You should already be familiar with:

• events, as discussed in chapter 8 of Volume I and in chapter 3 of this volume

• files and disk drives, as described in chapter 4

• interrupts and the use of devices and device drivers, as described in chapter 6

ABOUT THE DISK DRIVER

The Disk Driver is a standard Macintosh device driver in ROM. It allows Macintosh applications
to read from disks, write to disks, and eject disks.

Note: The Disk Driver cannot format disks; this task is accomplished by the Disk
Initialization Package.

Information on disks is stored in 512-byte sectors. There are 800 sectors on one 400K-byte
Macintosh disk. Each sector consists of an address m a r k that contains information used by the
Disk Driver to determine the position of the sector on the disk, and a data mark that primarily
contains data stored in that sector.

Consecutive sectors on a disk are grouped into tracks. There are 80 tracks on one 400K-byte
Macintosh disk. Track 0 is the outermost and track 79 is the innermost. Each track corresponds
to a ring of constant radius around the disk.

Macintosh disks are formatted in a manner that allows a more efficient use of disk space than
most microcomputer formatting schemes: The tracks are divided into five groups of 16 tracks
each, and each group of tracks is accessed at a different rotational speed from the other groups.
(Those at the edge of the disk are accessed at slower speeds than those toward the center.)

Each group of tracks contains a different number of sectors:

T r a c k s Sectors per t rack Sec to r s

0-15 12 0-191

16-31 11 192-367

32-47 10 368-527

48-63 9 528-671

64-79 8 672-799

An application can read or write data in whole disk sectors only. The application must specify the
data to be read or written in 512-byte multiples, and the Disk Driver automatically calculates
which sector to access. The application specifies where on the disk the data should be read or

About the Disk Driver 11-211

Inside Macintosh

written by providing a positioning mode and a positioning offset. Data can be read from or
written to the disk:

• at the current sector on the disk (the sector following the last sector read or written)

• from a position relative to the current sector on the disk

• from a position relative to the beginning of first sector on the disk

The following constants are used to specify the positioning mode:

CONST fsAtMark = 0 ; {at current sector}
fsFromStart = 1; {relative to first sector}
fsFromMark = 3 ; {relative to current sector}

If the positioning mode is relative to a sector (fsFromStart or fsFromMark), the relative offset
from that sector must be given as a 512-byte multiple.

In addition to the 512 bytes of standard information, each sector contains 12 bytes of file tags.
The file tags are designed to allow easy reconstruction of files from a volume whose directory or
other file-access information has been destroyed. Whenever the Disk Driver reads a sector from a
disk, it places the sector's file tags at a special location in low memory called the file tags buffer
(the remaining 512 bytes in the sector are passed on to the File Manager). Each time one sector's
file tags are written there, the previous file tags are overwritten. Conversely, whenever the Disk
Driver writes a sector on a disk, it takes the 12 bytes in the file tags buffer and writes them on the
disk.

Assembly-language note: The information in the file tags buffer can be accessed
through the following global variables:

N a m e Con ten t s
BufTgFNum File number (long)

BufTgFFlag Flags (word: bit 1=1 if resource fork)

BufTgFBkNum Logical block number (word)

BufTgDate Date and time of last modification (long)

The logical block number indicates which relative portion of a file the block contains—the
first logical block of a file is numbered 0, the second is numbered 1, and so on.

The Disk Driver disables interrupts during disk accesses. While interrupts are disabled, it stores
any serial data received via the modem port and later passes the data to the Serial Driver. This
allows the modem port to be used simultaneously with disk accesses without fear of hardware
overrun errors. (For more information, see chapter 9.)

USING THE DISK DRIVER

The Disk Driver is opened automatically when the system starts up. It allocates space in the
system heap for variables, installs entries in the drive queue for each drive that's attached to the

11-212 About the Disk Driver

The Disk Driver

Macintosh, and installs a task into the vertical retrace queue. The Disk Driver's name is '.Sony',
and its reference number is - 5 .

To write data onto a disk, make a Device Manager Write call. You must pass the following
parameters:

• the driver reference number - 5

• the drive number 1 (internal drive) or 2 (external drive)

• a positioning mode indicating where on the disk the information should be written

• a positioning offset that's a multiple of 512 bytes

• a buffer that contains the data you want to write

• the number of bytes (in multiples of 512) that you want to write

The Disk Driver's prime routine returns one of the following result codes to the Write function:

noErr No error
nsDrvErr No such drive
paramErr Bad positioning information
wPrErr Volume is locked by a hardware setting
firstDskErr Low-level disk error
through lastDskErr

To read data from a disk, make a Device Manager Read call. You must pass the following
parameters:

• the driver reference number - 5

• the drive number 1 (internal drive) or 2 (external drive)

• a positioning mode indicating where on the disk the information should be read from

• a positioning offset that's a multiple of 512 bytes

• a buffer to receive the data that's read

• the number of bytes (in multiples of 512) that you want to read

The Disk Driver's prime routine returns one of the following result codes to the Read function:

noErr No error
nsDrvErr No such drive
paramErr Bad positioning information
firstDskErr Low-level disk error
through lastDskErr

To verify that data written to a disk exactly matches the data in memory, make a Device Manager
Read call right after the Write call. The parameters for a read-verify operation are the same as for
a standard Read call, except that the following constant must be added to the positioning mode:

CONST rdVerify = 64; {read-verify mode}

The result code dataVerErr will be returned if any of the data doesn't match.

The Disk Driver can read and write sectors in any order, and therefore operates faster on one large
data request than it would on a series of equivalent but smaller data requests.

Using the Disk Driver 11-213

Inside Macintosh

There are three different calls you can make to the Disk Driver's control routine:

• KilllO causes all current I/O requests to be aborted. KilllO is a Device Manager call.

• SetTagBuffer specifies the information to be used in the file tags buffer.

• DiskEject ejects a disk from a drive.

An application using the File Manager should always unmount the volume in a drive before
ejecting the disk.

You can make one call, DriveStatus, to the Disk Driver's status routine, to learn about the state of
the driver.

An application can bypass the implicit mounting of volumes done by the File Manager by calling
the Operating System Event Manager function GetOSEvent and looking for disk-inserted events.
Once the volume has been inserted in the drive, it can be read from normally.

DISK DRIVER ROUTINES

The Disk Driver routines return an integer result code of type OSErr; each routine description lists
all of the applicable result codes.

FUNCTION DiskEject (drvNum: INTEGER) : OSErr; [NotinROM]

Assembly-language note : DiskEject is equivalent to a Control call with csCode equal
to the global constant ejectCode.

DiskEject ejects the disk from the internal drive if drvNum is 1, or from the external drive if
drvNum is 2.

Result codes noErr No error
nsDrvErr No such drive

FUNCTION SetTagBuffer (buffPtr: Ptr) : OSErr; [NotinROM]

Assembly-language note: SetTagBuffer is equivalent to a Control call with csCode
equal to the global constant tgBuffCode.

An application can change the information used in the file tags buffer by calling SetTagBuffer.
The buffPtr parameter points to a buffer that contains the information to be used. If buffPtr is
NIL, the information in the file tags buffer isn't changed.

If buffPtr isn't NIL, every time the Disk Driver reads a sector from the disk, it stores the file tags
in the file tags buffer and in the buffer pointed to by buffPtr. Every time the Disk Driver writes a

11-214 Using the Disk Driver

The Disk Driver

sector onto the disk, it reads 12 bytes from the buffer pointed to by buffPtr, places them in the
file tags buffer, and then writes them onto the disk.

The contents of the buffer pointed to by buffPtr are overwritten at the end of every read request
(which can be composed of a number of sectors) instead of at the end of every sector. Each read
request places 12 bytes in the buffer for each sector, always beginning at the start of the buffer.
This way an application can examine the file tags for a number of sequentially read sectors. If a
read request is composed of a number of sectors, the Disk Driver places 12 bytes in the buffer for
each sector. For example, for a read request of five sectors, the Disk Driver will place 60 bytes in
the buffer.

Result codes noErr No error

FUNCTION DriveStatus (drvNum: INTEGER; VAR status: DrvSts) :
OSErr; [NotinROM]

Assembly-language note : DriveStatus is equivalent to a Status call with csCode equal
to the global constant drvStsCode; status is returned in csParam through csParam+21.

DriveStatus returns information about the internal drive if drvNum is 1, or about the external
drive if drvNum is 2. The information is returned in a record of type DrvSts:

TYPE DrvSts = RECORD
track: INTEGER; {current track}
writeProt: SignedByte; {bit 7=1 if volume is locked}
disklnPlace: SignedByte; {disk in place}
installed: SignedByte; {drive installed}
sides: SignedByte; {bit 7=0 if single-side drive}
qLink: QElemPtr; {next queue entry}
qType: INTEGER; {reserved for future use}
dQDrive: INTEGER; {drive number}
dQRefNum: INTEGER; {driver reference number}
dQFSID: INTEGER; {file-system identifier}
twoSideFmt: SignedByte; {-1 if two-sided disk}
needsFlush: SignedByte; {reserved for future use}
diskErrs: INTEGER {error count}

END;

The disklnPlace field is 0 if there's no disk in the drive, 1 or 2 if there is a disk in the drive, or - 4
to - 1 if the disk was ejected in the last 1.5 seconds. The installed field is 1 if the drive is
connected to the Macintosh, 0 if the drive might be connected to the Macintosh, and - 1 if the
drive isn't installed. The value of twoSideFmt is valid only when diskInPlace=2. The value of
diskErrs is incremented every time an error occurs internally within the Disk Driver.

Result codes noErr No error
nsDrvErr No such drive

Disk Driver Routines 11-215

Inside Macintosh

ASSEMBLY-LANGUAGE EXAMPLE

The following assembly-language example ejects the disk in drive 1:

MyEject MOVEQ #<ioVQElSize/2>-l,D0 /prepare an I/O
81 CLR.W -(SP) ; parameter block

DBRA D0,@1 ; on the stack
MOVE.L SP,A0 ;A0 points to it
MOVE.W #-5,ioRefNum (AO) /driver refNum
MOVE.W #l,ioDrvNum(AO) /internal drive
MOVE.W #ejectCode,csCode(AO) /eject control code
_Eject /synchronous call
ADD #ioVQE!Size,SP /clean up stack

asynchronously read sector 4 from the disk in drive 1, you would do the following:

MyRead MOVEQ #<ioQElSize/2>-l,D0 /prepare an I/O
@1 CLR.W -(SP) / parameter block

DBRA DO,@I ; on the stack
MOVE.L SP,A0 ;A0 points to it
MOVE.W #-5,ioRefNum(AO) /driver refNum
MOVE.W #l,ioDrvNum(AO) /internal drive
MOVE.W #1,ioPosMode(AO) /absolute positioning
MOVE.L #<512*4>,ioPosOffset(AO) /sector 4

MOVE.L #512,ioReqCount(AO) /read one sector
LEA myBuffer,Al
MOVE.L Al,ioBuffer(AO) /buffer address
_Read ,ASYNC /read data

; Do any other processing here. Then, when the sector is needed:

@2 MOVE.W ioResult(AO),D0 /wait for completion
BGT.S @2
ADD #ioQElSize,SP /clean up stack

myBuffer .BLOCK 512,0

11-216 Assembly-Language Example

The Disk Driver

SUMMARY OF THE DISK DRIVER

Constants

CONST { Positioning modes }

fsAtMark = 0 ; {at current sector}
fsFromStart = 1; {relative to first sector}
fsFromMark = 3; {relative to current sector}
rdVerify = 64; {add to above for read-verify}

Data Types

TYPE DrvSts = RECORD
track: INTEGER; {current track}
writeProt: SignedByte; {bit 7=1 if volume is locked}
disklnPlace: SignedByte; {disk in place}
installed: SignedByte; {drive installed}
sides: SignedByte; {bit 7=0 if single-sided drive}
qLink: QElemPtr; {next queue entry}
qType: INTEGER; {reserved for future use}
dQDrive: INTEGER; {drive number}
dQRefNum: INTEGER; {driver reference number}
dQFSID: INTEGER; {file-system identifier}
twoSideFmt: SignedByte; {-1 if two-sided disk}
needsFlush: SignedByte; {reserved for future use}
diskErrs: INTEGER {error count}

END;

Routines [Not in ROM]

FUNCTION DiskEject (drvNum: INTEGER) : OSErr;
FUNCTION SetTagBuffer (buffPtr: Ptr) : OSErr;
FUNCTION DriveStatus (drvNum: INTEGER; VAR status: DrvSts) : OSErr;

Result Codes

N a m e
noErr

nsDrvErr

paramErr

wPrErr

Va lue M e a n i n g
0 No error

-56 No such drive

-50 Bad positioning information

-44 Volume is locked by a hardware setting

Summary of the Disk Driver 11-217

Inside Macintosh

N a m e Va lue
firstDskErr -84

sectNFErr -81
seekErr -80
spdAdjErr -79
twoSideErr -78
initlWMErr -77
tkOBadErr -76
cantStepErr -75
wrUnderrun -74
badDBtSlp - 7 3
badDCksum -72
noDtaMkErr -71
badBtSlpErr -70
badCksmErr -69
dataVerErr -68
noAdrMkErr -67
noNybErr -66
offLinErr -65
noDriveErr -64

Mean ing
First of the range of low-level disk errors

Can't find sector
Drive error
Can't correctly adjust disk speed
Tried to read side 2 of a disk in a single-sided drive
Can't initialize disk controller chip
Can't find track 0
Drive error
Write underrun occurred
Bad data mark
Bad data mark
Can't find data mark
Bad address mark
Bad address mark
Read-verify failed
Can't find an address mark
Disk is probably blank
No disk in drive
Drive isn't connected

lastDskErr -64 Last of the range of low-level disk errors

Assembly-Language Information

Constants

; Positioning modes

fsAtMark
fsFromStart
fsFromMark
rdVerify

.EQU

.EQU

.EQU

.EQU

0 ;at current sector
1 ;relative to first sector
3 /relative to current sector
64 /add to above for read-verify

csCode values for Control/Status calls

ejectCode
tgBuffCode
drvStsCode

• EQU
• EQU
.EQU

/Control call, DiskEject
/Control call, SetTagBuffer
/Status call, DriveStatus

Structure of Status Information

dsTrack Current track (word)
dsWriteProt Bit 7=1 if volume is locked (byte)
dsDisklnPlace Disk in place (byte)
dslnstalled Drive installed (byte)
dsSides Bit 7=0 if single-sided drive (byte)
dsQLink Pointer to next queue entry
dsDQDrive Drive number (word)

11-218 Summary of the Disk Driver

The Disk Driver

dsDQRefNum
dsDQFSID
dsTwoSideFmt
dsDiskErrs

Driver reference number (word)
File-system identifier (word)
- 1 if two-sided disk (byte)
Error count (word)

Equivalent Device Manager Calls

Pascal rou t ine
DiskEject

SetTagBuffer

DriveStatus

Call
Control with csCode=ejectCode

Control with csCode=tgBuffCode

Status with csCode=drvStsCode, status returned in csParam through
csParam+21

Variables

BufTgFNum
BufTgFFlag
BufTgFBkNum
BufTgDate

File tags buffer: file number (long)
File tags buffer: flags (word: bit 1=1 if resource fork)
File tags buffer: logical block number (word)
File tags buffer: date and time of last modification (long)

Summary of the Disk Driver 11-219

Inside Macintosh

11-220

8 THE SOUND DRIVER

223 About This Chapter
223 About the Sound Driver
225 Sound Driver Synthesizers
225 Square-Wave Synthesizer
226 Four-Tone Synthesizer
228 Free-Form Synthesizer
230 Using the Sound Driver
231 Sound Driver Routines
233 Sound Driver Hardware
235 Summary of the Sound Driver

Inside Macintosh

11-222

The Sound Driver

ABOUT THIS CHAPTER

The Sound Driver is a Macintosh device driver for handling sound and music generation in a
Macintosh application. This chapter describes the Sound Driver in detail.

You should already be familiar with:

• events, as discussed in chapter 8 of Volume I

• the Memory Manager

• the use of devices and device drivers, as described in chapter 6

ABOUT THE SOUND DRIVER

The Sound Driver is a standard Macintosh device driver in ROM that's used to synthesize sound.
You can generate sound characterized by any kind of waveform by using the three different
sound synthesizers in the Sound Driver:

• The four-tone synthesizer is used to make simple harmonic tones, with up to four
"voices" producing sound simultaneously; it requires about 50% of the microprocessor's
attention during any given time interval.

• The square-wave synthesizer is used to produce less harmonic sounds such as beeps,
and requires about 2% of the processor's time.

• The free-form synthesizer is used to make complex music and speech; it requires about
20% of the processor's time.

The Macintosh XL is equipped only with a square-wave synthesizer; all information in this
chapter about four-tone and free-form sound applies only to the Macintosh 128K and 512K.

Figure 1 depicts the waveform of a typical sound wave, and the terms used to describe it. The
magnitude is the vertical distance between any given point on the wave and the horizontal line
about which the wave oscillates; you can think of the magnitude as the volume level. The
ampli tude is the maximum magnitude of a periodic wave. The wavelength is the horizontal
extent of one complete cycle of the wave. Magnitude and wavelength can be measured in any
unit of distance. The period is the time elapsed during one complete cycle of a wave. The
frequency is the reciprocal of the period, or the number of cycles per second—also called hertz
(Hz). The phase is some fraction of a wave cycle (measured from a fixed point on the wave).

There are many different types of waveforms, three of which are depicted in Figure 2. Sine
waves are generated by objects that oscillate periodically at a single frequency (such as a tuning
fork). Square waves are generated by objects that toggle instantly between two states at a single
frequency (such as an electronic "beep"). Free-form waves are the most common of all, and are
generated by objects that vibrate at rapidly changing frequencies with rapidly changing
magnitudes (such as your vocal cords).

About the Sound Driver 11-223

Inside Macintosh

period T (3ec) frequency / (Hz)
-wavelength 1

one cycle

Figure 1. Waveform

sine wave square wave free-form wave

Figure 2. Types of Waveforms

Figure 3 shows analog and digital representations of a waveform. The Sound Driver represents
waveforms digitally, so all waveforms must be converted from their analog representation to a
digital representation. The rows of numbers at the bottom of the figure are digital representations
of the waveform. The numbers in the upper row are the magnitudes relative to the horizontal
zero-magnitude line. The numbers in the lower row all represent the same relative magnitudes,
but have been normalized to positive numbers; you'll use numbers like these when calling the
Sound Driver.

A digital representation of a waveform is simply a sequence of wave magnitudes measured at
fixed intervals. This sequence of magnitudes is stored in the Sound Driver as a sequence of
bytes, each one of which specifies an instantaneous voltage to be sent to the speaker. The bytes
are stored in a data structure called a waveform description. Since a sequence of bytes can
only represent a group of numbers whose maximum and minimum values differ by less than 256,
the magnitudes of your waveforms must be constrained to these same limits.

11-224 About the Sound Driver

The Sound Driver

time/distance

CL
E <a

f- analog representation

0 3 5 6 7 6 5 3 0 - 3 - 5 - 6 - 7 - 6 - 5 - 3 0
7 101213 14131210 7 4 2 1 0 1 2 4 7

L digital representations

Figure 3. Analog and Digital Representations of a Waveform

SOUND DRIVER SYNTHESIZERS

A description of the sound to be generated by a synthesizer is contained in a data structure called a
synthesizer buffer. A synthesizer buffer contains the duration, pitch, phase, and waveform of
the sound the synthesizer will generate. The exact structure of a synthesizer buffer differs for
each type of synthesizer being used. The first word in every synthesizer buffer is an integer that
identifies the synthesizer, and must be one of the following predefined constants:

CONST swMode = -1; {square-wave synthesizer}
ftMode = 1; {four-tone synthesizer}
ffMode = 0; {free-form synthesizer}

Square-Wave Synthesizer

The square-wave synthesizer is used to make sounds such as beeps. A square-wave synthesizer
buffer has the following structure:

TYPE SWSynthRec = RECORD
mode: INTEGER; {always swMode}
triplets: Tones {sounds}

END;

SWSynthPtr = ASWSynthRec;

Tones = ARRAY[0..5000] OF Tone;
Tone = RECORD

count: INTEGER;
amplitude: INTEGER;
duration: INTEGER

END;

{frequency}
{amplitude, 0-255}
{duration in ticks}

Sound Driver Synthesizers 11-225

Inside Macintosh

Each tone triplet contains the count, amplitude, and duration of a different sound. You can store
as many triplets in a synthesizer buffer as there's room for.

The count integer can range in value from 0 to 65535. The actual frequency the count
corresponds to is given by the relationship:

frequency (Hz) = 783360 / count

A partial list of count values and corresponding frequencies for notes is given in the summary at
the end of this chapter.

The type Tones is declared with 5001 elements to allow you to pass up to 5000 sounds (the last
element must contain 0). To be space-efficient, your application shouldn't declare a variable of
type Tones; instead, you can do something like this:

VAR myPtr: Ptr;
myHandle: Handle;
mySWPtr: SWSynthPtr;

myHandle := NewHandle(buffSize); {allocate space for the buffer}
HLock(myHandle); {lock the buffer}
myPtr := myHandle A; {dereference the handle}
mySWPtr := SWSynthPtr(myPtr); {coerce type to SWSynthPtr}
mySWPtr".mode := swMode; {identify the synthesizer}
mySWPtrA.triplets[0].count := 2; {fill the buffer with values }
. . . { describing the sound}
StartSound(myPtr,buffSize,POINTER(-1)); {produce the sound}
HUnlock(myHandle) {unlock the buffer}

where buffSize contains the number of bytes in the synthesizer buffer. This example
dereferences handles instead of using pointers directly, to minimize the number of nonrelocatable
objects in the heap.

Assembly-language note: The global variable CurPitch contains the current value of
the count field.

The amplitude can range from 0 to 255. The duration specifies the number of ticks that the sound
will be generated.

The list of tones ends with a triplet in which ail fields are set to 0. When the square-wave
synthesizer is used, the sound specified by each triplet is generated once, and then the synthesizer
stops.

Four-Tone Synthesizer

The four-tone synthesizer is used to produce harmonic sounds such as music. It can
simultaneously generate four different sounds, each with its own frequency, phase, and
waveform.

11-226 Sound Driver Synthesizers

The Sound Driver

A four-tone synthesizer buffer has the following structure:

TYPE FTSynthRec = RECORD
mode: INTEGER; {always ftMode}
sndRec: FTSndRecPtr {tones to play}

END;

FTSynthPtr = AFTSynthRec;

The sndRec field points to a four-tone record, which describes the four tones:

TYPE FTSoundRec = RECORD
duration: INTEGER; {duration in ticks}
soundlRate: Fixed; {tone 1 cycle rate}
soundlPhase: LONGINT; {tone 1 byte offset}
sound2Rate: Fixed; {tone 2 cycle rate}
sound2Phase: LONGINT; {tone 2 byte offset}
sound3Rate: Fixed; {tone 3 cycle rate}
sound3Phase: LONGINT; {tone 3 byte offset}
sound4Rate: Fixed; {tone 4 cycle rate}
sound4Phase: LONGINT; {tone 4 byte offset}
soundlWave: WavePtr; {tone 1 waveform}
sound2Wave: WavePtr; {tone 2 waveform}
sound3Wave: WavePtr; {tone 3 waveform}
sound4Wave: WavePtr {tone 4 waveform}

END;

FTSndRecPtr = "FTSoundRec:

Wave = PACKED ARRAY[0..255] OF Byte;
WavePtr = AWave;

Assembly-language note : The address of the four-tone record currendy in use is
stored in the global variable SoundPtr.

The duration integer indicates the number of ticks that the sound will be generated. Each phase
long integer indicates the byte within the waveform description at which the synthesizer should
begin producing sound (the first byte is byte number 0). Each rate value determines the speed at
which the synthesizer cycles through the waveform, from 0 to 255.

The four-tone synthesizer creates sound by starting at the byte in the waveform description
specified by the phase, and skipping ahead the number of bytes specified by the rate field every
44.93 microseconds; when the time specified by the duration has elapsed, the synthesizer stops.
The rate field determines how the waveform will be "sampled", as shown in Figure 4. For
nonperiodic waveforms, this is best illustrated by example: If the rate field is 1, each byte value
in the waveform will be used, each producing sound for 44.93 microseconds. If the rate field is
0.1, each byte will be used 10 times, each therefore producing sound for a total of 449.3
microseconds. If the rate field is 5, only every fifth byte in the waveform will be sampled, each
producing sound for 44.93 microseconds.

Sound Driver Synthesizers 11-227

Inside Macintosh

If the waveform contains one wavelength, the frequency that the rate corresponds to is given by:

frequency (Hz) = 1000000 / (44.93 / (rate/256))

You can use the Toolbox Utility routines FixMul and FixRatio to calculate this, as follows:

frequency := FixMul(rate,FixRatio(22257,256))

The maximum rate of 256 corresponds to approximately 22.3 kilohertz if the waveform contains
one wavelength, and a rate of 0 produces no sound. A partial list of rate values and
corresponding frequencies for notes is given in the summary at the end of this chapter.

Free-Form Synthesizer

The free-form synthesizer is used to synthesize complex music and speech. The sound to be
produced is represented as a waveform whose complexity and length are limited only by available
memory.
A free-form synthesizer buffer has the following structure:

TYPE FFSynthRec = RECORD
mode: INTEGER; {always ffMode}
count: Fixed; {"sampling" factor}
waveBytes: FreeWave {waveform description}

END;

FFSynthPtr = AFFSynthRec;

FreeWave = PACKED ARRAY[0..30000] OF Byte;

The type FreeWave is declared with 30001 elements to allow you to pass a very long waveform.
To be space-efficient, your application shouldn't declare a variable of type FreeWave; instead,
you can do something like this:

VAR myPtr: Ptr;
myHandle: Handle;
myFFPtr: FFSynthPtr;

myHandle := NewHandle(buffSize); {allocate space for the buffer}
HLock(myHandle); {lock the buffer}
myPtr := myHandle A; {dereference the handle}
myFFPtr := FFSynthPtr(myPtr); {coerce type to FFSynthPtr}
myFFPtr A.mode := ffMode; {identify the synthesizer}
myFFPtrA.count := FixRatio(1,1); {fill the buffer with values }
myFFPtrA.waveBytes [0] := 0; { describing the sound}

StartSound(myPtr,buffSize,POINTER(-l)); {produce the sound}
HUnlock(myHandle) {unlock the buffer}

where buffSize contains the number of bytes in the synthesizer buffer. This example
dereferences handles instead of using pointers directly, to minimize the number of nonrelocatable
objects in the heap.

11-228 Sound Driver Synthesizers

The Sound Driver

original wave

XT
rate f ield = .5

Figure 4. Effect of the Rate Field

Sound Driver Synthesizers 11-229

Inside Macintosh

The free-form synthesizer creates sound by starting at the first byte in the waveform and skipping
ahead the number of bytes specified by count every 44.93 microseconds. The count field
determines how the waveform will be "sampled"; it's analogous to the rate field of the four-tone
synthesizer (see Figure 4 above). When the end of the waveform is reached, the synthesizer will
stop.

For periodic waveforms, you can determine the frequency of the wave cycle by using the
following relationship:

frequency (Hz) = 1000000 / (44.93 * (wavelength/count))

You can calculate this with Toolbox Utility routines as follows:

frequency := FixMul(count,FixRatio(22257,wavelength))

The wavelength is given in bytes. For example, the frequency of a wave with a 100-byte
wavelength played at a count value of 2 would be approximately 445 Hz.

USING THE SOUND DRIVER

The Sound Driver is opened automatically when the system starts up. Its driver name is
'.Sound', and its driver reference number is - 4 . To close or open the Sound Driver, you can use
the Device Manager Close and Open functions. Because the driver is in ROM, there's really no
reason to close it.

To use one of the three types of Synthesizers to generate sound, you can do the following: Use
the Memory Manager function NewHandle to allocate heap space for a synthesizer buffer; then
lock the buffer, fill it with values describing the sound, and make a StartSound call to the Sound
Driver. StartSound can be called either synchronously or asynchronously (with an optional
completion routine). When called synchronously, control returns to your application after the
sound is completed. When called asynchronously, control returns to your application
immediately, and your application is free to perform other tasks while the sound is produced.

To produce continuous, unbroken sounds, it's sometimes advantageous to preallocate space for
all the synthesizer buffers you require before you make the first StartSound call. Then, while one
asynchronous StartSound call is being completed, you can calculate the waveform values for the
next call.

To avoid the click that may occur between StartSound calls when using the four-tone synthesizer,
set the duration field to a large value and just change the value of one of the rate fields to start a
new sound. To avoid the clicks that may occur during four-tone and free-form sound generation,
fill the waveform description with multiples of 740 bytes.

Warn ing : The Sound Driver uses interrupts to produce sound. If other device drivers are
in use, they may turn off interrupts, making sound production unreliable. For instance, if
the Disk Driver is accessing a disk during sound generation, a "crackling" sound may be
produced.

To determine when the sound initiated by a StartSound call has been completed, you can poll the
SoundDone function. You can cancel any current StartSound call and any pending asynchronous
StartSound calls by calling StopSound. By calling GetSoundVol and SetSoundVol, you can get
and set the current speaker volume level.

11-230 Sound Driver Synthesizers

The Sound Driver

SOUND DRIVER ROUTINES

PROCEDURE StartSound (synthRec: Ptr; numBytes: LONGINT;
completionRtn: ProcPtr); [NotinROM]

A s s e m b l y - l a n g u a g e note: StartSound is equivalent to a Device Manager Write call with
ioRefNum=-4, ioBuffer=synthRec, and ioReqCount=numBytes.

StartSound begins producing the sound described by the synthesizer buffer pointed to by
synthRec. NumBytes indicates the size of the synthesizer buffer (in bytes), and completionRtn
points to a completion routine to be executed when the sound finishes:

• If completionRtn is POINTER(-l) , the sound will be produced synchronously.

• If completionRtn is NIL, the sound will be produced asynchronously, but no completion
routine will be executed.

• Otherwise, the sound will be produced asynchronously and the routine pointed to by
completionRtn will be executed when the sound finishes.

Warning: You may want the completion routine to start the next sound when one sound
finishes, but beware: Completion routines are executed at the interrupt level and must
preserve all registers other than AO, A l , and D0-D2. They must not make any calls to the
Memory Manager, direcdy or indirecdy, and can't depend on handles to unlocked blocks
being valid; be sure to preallocate all the space you'll need. Or, instead of starting the next
sound itself, the completion routine can post an application-defined event and your
application's main event loop can start the next sound when it gets the event.

Because the type of pointer for each type of synthesizer buffer is different and the type of the
synthRec parameter is Ptr, you'll need to do something like the following example (which applies
to the free-form synthesizer):

VAR myPtr: Ptr;
myHandle: Handle;
myFFPtr: FFSynthPtr;

myHandle := NewHandle(buffSize); {allocate space for the buffer)
HLock(myHandle); {lock the buffer}
myPtr := myHandle A; {dereference the handle}
myFFPtr := FFSynthPtr(myPtr); {coerce type to FFSynthPtr}
myFFPtr A.mode := ffMode; {identify the synthesizer}
. . . {fill the buffer with values }

{ describing the sound}
StartSound(myPtr,buffSize,POINTER(-l)); {produce the sound}
HUnlock(myHandle) {unlock the buffer}

where buffSize is the number of bytes in the synthesizer buffer.

Sound Driver Routines 11-231

Inside Macintosh

The sounds are generated as follows:

• Free-form synthesizer: The magnitudes described by each byte in the waveform description
are generated sequentially until the number of bytes specified by the numBytes parameter
have been written.

• Square-wave synthesizer: The sounds described by each sound triplet are generated
sequentially until either the end of the buffer has been reached (indicated by a count,
amplitude, and duration of 0 in the square-wave buffer), or the number of bytes specified
by the numBytes parameter have been written.

• Four-tone synthesizer: All four sounds are generated for the length of time specified by the
duration integer in the four-tone record.

PROCEDURE StopSound; [NotinROM]

StopSound immediately stops the current StartSound call (if any), executes the current
StartSound call's completion routine (if any), and cancels any pending asynchronous StartSound
calls.

Assembly-language note : To stop sound from assembly language, you can make a
Device Manager KilllO call (and, when using the square-wave synthesizer, set the global
variable CurPitch to 0). Although StopSound executes the completion routine of only the
current StartSound call, KilllO executes the completion routine of every pending
asynchronous call.

FUNCTION SoundDone : BOOLEAN; [NotinROM]

SoundDone returns TRUE if the Sound Driver isn't currently producing sound and there are no
asynchronous StartSound calls pending; otherwise it returns FALSE.

Assembly-language note: Assembly-language programmers can poll the ioResult field
of the most recent Device Manager Write call's parameter block to determine when the
Write call finishes.

PROCEDURE GetSoundVol (VAR level: INTEGER); [Not in ROM]

GetSoundVol returns the current speaker volume, from 0 (silent) to 7 (loudest).

Assembly-language note: Assembly-language programmers can get the speaker
volume level from the low-order three bits of the global variable SdVolume.

11-232 Sound Driver Routines

The Sound Driver

PROCEDURE SetSoundVol (level: INTEGER); [NotinROM]

SetSoundVol immediately sets the speaker volume to the specified level, from 0 (silent) to 7
(loudest); it doesn't, however, change the volume setting that's under user control via the Control
Panel desk accessory. If your application calls SetSoundVol, it should save the current volume
(using GetSoundVol) when it starts up and restore it (with SetSoundVol) upon exit; this resets the
actual speaker volume to match the Control Panel setting.

Assembly-language note : To set the speaker volume level from assembly language,
call this Pascal procedure from your program. As a side effect, it will set the low-order
three bits of the global variable SdVolume to the specified level.

Note: The Control Panel volume setting is stored in parameter RAM; if you're writing a
similar desk accessory and want to change this setting, see the discussion of parameter
RAM in chapter 13.

SOUND DRIVER HARDWARE

The information in this section applies to the Macintosh 128K and 512K, but not the Macintosh
XL.

This section briefly describes how the Sound Driver uses the Macintosh hardware to produce
sound, and how assembly-language programmers can intervene in this process to control the
square-wave synthesizer. You can skip this section if it doesn't interest you, and you'll still be
able to use the Sound Driver as described.

Note: For more information about the hardware used by the Sound Driver, see chapter 2
of Volume HI.

The Sound Driver and disk speed-control circuitry share a special 740-byte buffer in memory, of
which the Sound Driver uses the 370 even-numbered bytes to generate sound. Every horizontal
blanking interval (every 44.93 microseconds—when the beam of the display tube moves from the
right edge of the screen to the left), the MC68000 automatically fetches two bytes from this buffer
and sends the high-order byte to the speaker.

Note: The period of any four-tone or free-form sound generated by the Sound Driver is a
multiple of this 44.93-microsecond interval; the highest frequency is 11128 Hz, which
corresponds to twice this interval.

Every vertical blanking interval (every 16.6 milliseconds—when the beam of the display tube
moves from the bottom of the screen to the top), the Sound Driver fills its half of the 740-byte
buffer with the next set of values. For square-wave sound, the buffer is filled with a constant
value; for more complex sound, it's filled with many values.

From assembly language, you can cause the square-wave synthesizer to start generating sound,
and then change the amplitude of the sound being generated any time you wish:

Sound Driver Hardware 11-233

Inside Macintosh

1. Make an asynchronous Device Manager Write call to the Sound Driver specifying the
count, amplitude, and duration of the sound you want. The amplitude you specify will be
placed in the 740-byte buffer, and the Sound Driver will begin producing sound.

2. Whenever you want to change the sound being generated, make an immediate Control call
to the Sound Driver with the following parameters: ioRefNum must be - 4 , csCode must
be 3, and csParam must provide the new amplitude level. The amplitude you specify will
be placed in the 740-byte buffer, and the sound will change. You can continue to change
the sound until the time specified by the duration has elapsed.

When the immediate Control call is completed, the Device Manager will execute the completion
routine (if any) of the currently executing Write call. For this reason, the Write call shouldn't
have a completion routine.

Note: You can determine the amplitude placed in the 740-byte buffer from the global
variable SoundLevel.

11-234 Sound Driver Hardware

The Sound Driver

SUMMARY OF THE SOUND DRIVER

Constants

CONST { Mode values for synthesizers }

swMode = -1; {square-wave synthesizer}
ftMode = 1; {four-tone synthesizer}
ffMode = 0; {free-form synthesizer}

Data Types

TYPE { Free-form synthesizer }

FFSynthPtr = TFSynthRec;
FFSynthRec = RECORD

mode: INTEGER;
count: Fixed;
waveBytes: FreeWave

END;

{always ffMode}
{"sampling" factor}
{waveform description}

FreeWave = PACKED ARRAY[0..30000] OF Byte;

{ Square-wave synthesizer }

SWSynthPtr = ASWSynthRec;
SWSynthRec = RECORD

mode: INTEGER; {always swMode}
triplets: Tones {sounds}

END;

Tones = ARRAY[0..5000] OF Tone
Tone = RECORD

count: INTEGER;
amplitude: INTEGER;
duration: INTEGER

END;

{frequency}
{amplitude, 0-255}
{duration in ticks}

{ Four-tone synthesizer }

FTSynthPtr = "FTSynthRec;
FTSynthRec = RECORD

mode: INTEGER; {always ftMode}
sndRec: FTSndRecPtr {tones to play}

END;

Summary of the Sound Driver 11-235

Inside Macintosh

FTSndRecPtr = AFTS oundRec;
FTSoundRec = RECORD

duration: INTEGER; {duration in ticks}
soundlRate: Fixed; {tone 1 cycle rate}
soundlPhase: LONGINT; {tone 1 byte offset}
sound2Rate: Fixed; {tone 2 cycle rate}
sound2Phase: LONGINT; {tone 2 byte offset}
sound3Rate: Fixed; {tone 3 cycle rate}
sound3Phase: LONGINT; {tone 3 byte offset}
sound4Rate: Fixed; {tone 4 cycle rate}
sound4Phase: LONGINT; {tone 4 byte offset}
soundlWave: WavePtr; {tone 1 waveform}
sound2Wave: WavePtr; {tone 2 waveform}
sound3Wave: WavePtr; {tone 3 waveform}
sound4Wave: WavePtr {tone 4 waveform}

END;

WavePtr = AWave;
Wave = PACKED ARRAY[0..255] OF Byte;

Routines [NotinROM]

PROCEDURE StartSound (synthRec: Ptr; numBytes: LONGINT; completionRtn:
ProcPtr);

PROCEDURE StopSound;
FUNCTION SoundDone : BOOLEAN;
PROCEDURE GetSoundVol (VAR level: INTEGER);
PROCEDURE SetSoundVol (level: INTEGER);

Assembly-Language Information

Routines

Pascal n a m e Equiva len t for assembly language
StartSound Call Write with ioRefNum=-4, ioBuffer=synthRec, ioReqCount=numBytes

StopSound Call KilllO and (for square-wave) set CurPitch to 0

SoundDone Poll ioResult field of most recent Write call's parameter block

GetSoundVol Get low-order three bits of variable SdVolume

SetSoundVol Call this Pascal procedure from your program

Variables

SdVolume Speaker volume (byte: low-order three bits only)
SoundPtr Pointer to four-tone record
SoundLevel Amplitude in 740-byte buffer (byte)
CurPitch Value of count in square-wave synthesizer buffer (word)

11-236 Summary of the Sound Driver

The Sound Driver

Sound Driver Values for Notes

The following table contains values for the rate field of a four-tone synthesizer and the count field
of a square-wave synthesizer. A just-tempered scale—in the key of C, as an example—is given
in the first four columns; you can use a just-tempered scale for perfect tuning in a particular key.
The last four columns give an equal-tempered scale, for applications that may use any key; this
scale is appropriate for most Macintosh sound applications. Following this table is a list of the
ratios used in calculating these values, and instructions on how to calculate them for a just-
tempered scale in any key.

Just-Tempered Scale Equal-Tempered Scale

Rate for Count for Rate for Count for
Four-Tone Square-Wave Four-Tone Square-Wave

N o t e L o n g F ixed W o r d In teger L o n g F i x e d W o r d In teger

3 octaves below middle C

C 612B 0.37956 5CBA 23738 604C 0.37616 5D92 23954
C# 667C 0.40033 57EB 22507 6606 0.39853 5851 22609
Db 67A6 0.40488 56EF 22255

22609

D 6D51 0.42702 526D 21101 6C17 0.42223 535C 21340
Ebb 6E8F 0.43187 5180 20864

21340

D# 7 IDF 0.44481 4F21 20257 7284 0.44733 4EAF 20143
Eb 749A 0.45547 4D46 19782

20143

E 7976 0.47446 4A2F 18991 7953 0.47392 4A44 19012
F 818F 0.50609 458C 17804 808A 0.50211 4619 17945
F# 88A5 0.53377 41F0 16880 882F 0.53197 422A 16938
Gb 8A32 0.53983 4133 16691

16938

G 91C1 0.56935 3DD1 15825 9048 0.56360 3E73 15987
G# 97D4 0.59308 3B58 15192 98DC 0.59711 3AF2 15090
Ab 9B79 0.60732 39F4 14836

15090

A A1F3 0.63261 37A3 14243 A1F3 0.63261 37 A3 14243
Bbb A3CA 0.63980 3703 14083

14243

A# AAOC 0.66425 34FD 13565 AB94 0.67023 3484 13444
Bb ACBF 0.67479 3429 13353

13444

B B631 0.71169 3174 12660 B5C8 0.71008 3191 12689

2 octaves below middle C

C C257 0.75914 2E5D 11869 C097 0.75230 2EC9 11977
C# CCF8 0.80066 2BF6 11254 CC0B 0.79704 2C29 11305
Db CF4C 0.80975 2B77 11127
D DAA2 0.85403 2936 10550 D82D 0.84444 29AE 10670
Ebb DD1D 0.86372 28C0 10432
D# E3BE 0.88962 2790 10128 E508 0.89465 2757 10071
Eb E935 0.91096 26A3 9891
E F2ED 0.94893 2517 9495 F2A6 0.94785 2522 9506
F 1031E 1.01218 22C6 8902 10114 1.00421 230C 8972
F# 1114A 1.06754 20F8 8440 1105D 1.06392 2115 8469
Gb 11465 1.07967 2099 8345
G 12382 1.13870 1EE9 7913 12090 1.12720 1F3A 7994

Summary of the Sound Driver 11-237

Inside Macintosh

N o t e L o n g F i x e d W o r d In teger L o n g F i x e d W o r d In teger

2 octaves below middle C

G# 12FA8 1.18616 1DAC 7596 131B8 1.19421 1D79 7545
Ab 136F1 1.21461 1CFA 7418
A 143E6 1.26523 1BD1 7121 143E6 1.26523 1BD1 7121
Bbb 14794 1.27960 1B81 7041
A# 15418 1.32849 1A7E 6782 15729 1.34047 1A42 6722
Bb 1597E 1.34958 1A14 6676
B 16C63 1.42339 18BA 6330 16B90 1.42017 18C8 6344

1 octave below middle C

C 184AE 1.51828 172F 5935 1812F 1.50462 1764 5988
C# 199EF 1.60130 15FB 5627 19816 1.59409 1614 5652
Db 19E97 1.61949 15BC 5564
D 1B543 1.70805 149B 5275 1B05A 1.68887 14D7 5335
Ebb 1BA3B 1.72746 1460 5216
D# 1C77B 1.77922 13C8 5064 1CA10 1.78931 13AC 5036
Eb 1D26A 1.82193 1351 4945
E 1E5D9 1.89784 128C 4748 1E54D 1.89571 1291 4753
F 2063D 2.02437 1163 4451 20228 2.00842 1186 4486
F# 22294 2.13507 107C 4220 220BB 2.12785 108A 4234
Gb 228C9 2.15932 104D 4173
G 24704 2.27740 F74 3956 241 IF 2.25438 F9D 3997
G# 25F4F 2.37230 ED6 3798 26370 2.38843 EBC 3772
Ab 26DE3 2.42924 E7D 3709
A 287CC 2.53046 DE9 3561 287CC 2.53046 DE9 3561
Bbb 28F28 2.55920 D O 3521
A# 2A830 2.65698 D3F 3391 2AE51 2.68092 D21 3361
Bb 2B2FC 2.69916 D0A 3338
B 2D8C6 2.84677 C5D 3165 2D721 2.84035 C64 3172

Middle C

C 3095B 3.03654 B97 2967 3025D 3.00923 BB2 2994

c# 333DE 3.20261 AFD 2813 3302C 3.18817 BOA 2826
Db 33D2E 3.23898 ADE 2782
D 36A87 3.41612 A4E 2638 360B5 3.37776 A6C 2668
Ebb 37476 3.45493 A30 2608
D# 38EF7 3.55846 9E4 2532 39420 3.57861 9D6 2518
Eb 3A4D4 3.64386 9A9 2473
E 3CBB2 3.79568 946 2374 3CA99 3.79140 949 2377
F 40C7A 4.04874 8B1 2225 40450 4.01685 8C3 2243
F# 44528 4.27014 83E 2110 44176 4.25571 845 2117
Gb 45193 4.31865 826 2086
G 48E09 4.55482 7BA 1978 4823E 4.50876 7CE 1998
G# 4BE9F 4.74461 76B 1899 4C6E1 4.77687 75E 1886
Ab 4DBC5 4.85847 73F 1855
A 50F98 5.06091 6F4 1780 50F98 5.06091 6F4 1780

11-238 Summary of the Sound Driver

The Sound Driver

N o t e L o n g F i x e d W o r d In teger L o n g F i x e d W o r d In teger

Middle C

Bbb 51E4F 5.11839 6E0 1760
A# 55060 5.31396 6A0 1696 55CA2 5.36185 690 1680
Bb 565F8 5.39832 685 1669
B 5B18B 5.69353 62F 1583 5AE41 5.68068 632 1586

1 octave above middle C

C 612B7 6.07310 5CC 1484 604BB 6.01848 5D9 1497
C# 667BD 6.40523 57F 1407 66059 6.37636 585 1413
Db 67A5C 6.47797 56F 1391
D 6D50D 6.83223 527 1319 6C169 6.75551 536 1334
Ebb 6E8EB 6.90984 518 1304
D# 7 IDEE 7.11691 4F2 1266 7283F 7.15721 4EB 1259
Eb 749A8 7.28772 4D4 1236
E 79764 7.59137 4A3 1187 79533 7.58281 4A4 1188
F 818F3 8.09746 459 1113 808A1 8.03371 462 1122
F# 88A51 8.54030 41F 1055 882EC 8.51141 423 1059
Gb 8A326 8.63730 413 1043
G 91C12 9.10965 3DD 989 9047D 9.01753 3E7 999
G# 97D3D 9.48921 3B6 950 98DC2 9.55374 3AF 943
Ab 9B78B 9.71696 39F 927
A A1F30 10.12183 37A 890 A1F30 10.12183 37A 890
Bbb A3C9F 10.23680 370 880
A# AAOBF 10.62791 350 848 AB945 10.72371 348 840
Bb ACBEF 10.79662 343 835
B B6316 11.38705 317 791 B5C83 11.36137 319 793

2 octaves above middle C

C C256D 12.14619 2E6 742 C0976 12.03696 2ED 749
C# CCF79 12.81044 2BF 703 CC0B1 12.75270 2C3 707
Db CF4B9 12.95595 2B7 695
D DAA1B 13.66447 293 659 D82D2 13.51102 29B 667
Ebb DD1D6 13.81967 28C 652
D# E3BDC 14.23383 279 633 E507E 14.31442 275 629
Eb E9350 14.57544 26A 618
E F2EC8 15.18274 251 593 F2A65 15.16560 252 594
F 1031E7 16.19493 22C 556 101141 16.06740 231 561
F# 1114A1 17.08058 210 528 1105D8 17.02283 211 529
Gb 11464C 17.27460 20A 522
G 123824 18.21930 1EF 495 1208F9 18.03505 1F4 500
G# 12FA7B 18.97844 1DB 475 131B83 19.10747 1D8 472
Ab 136F15 19.43391 1D0 464
A 143E61 20.24367 1BD 445 143E61 20.24367 1BD 445
Bbb 14793D 20.47359 1B8 440
A# 15417F 21.25584 1A8 424 15728A 21.44742 1A4 420
Bb 1597DE 21.59323 1A1 417
B 16C62D 22.77412 18C 396 16B906 22.72275 18D 397

Summary of the Sound Driver 11-239

Inside Macintosh

N o t e L o n g F ixed W o r d In teger L o n g F i x e d W o r d In teger

3 octaves above middle C

c 184ADA 24.29239 173 371 1812EB 24.07390 176 374

c# 199EF2 25.62088 160 352 198163 25.50542 161 353
Db 19E971 25.91188 15C 348
D 1B5436 27.32895 14A 330 1B05A5 27.02205 14D 333
Ebb 1BA3AC 27.63934 146 326
D# 1C77B8 28.46765 13D 317 1CA0FD 28.62886 13B 315
Eb 1D26A0 29.15088 135 309
E 1E5D91 30.36549 129 297 1E54CB 30.33122 129 297
F 2063CE 32.38986 116 278 202283 32.13481 118 280
F# 222943 34.16118 108 264 220BAF 34.04564 109 265
Gb 228C97 34.54918 105 261
G 247047 36.43858 F7 247 2411F2 36.07010 FA 250
G# 25F4F5 37.95686 ED 237 263706 38.21494 EC 236
Ab 26DE2A 38.86783 E8 232
A 287CC1 40.48732 DF 223 287CC1 40.48732 DF 223
Bbb 28F27A 40.94717 DC 220
A# 2A82FE 42.51169 D4 212 2AE513 42.89482 D2 210
Bb 2B2FBD 43.18648 Dl 209
B 2D8C59 45.54823 C6 198 2D720B 45.44548 C6 198

The following table gives the ratios used in calculating the above values. It shows the
relationship between the notes making up the just-tempered scale in the key of C; should you
need to implement a just-tempered scale in some other key, you can do so as follows: First get
the value of the root note in the proper octave in the equal-tempered scale (from the above table).
Then use the following table to determine the values of the intervals for the other notes in the key
by multiplying the ratio by the root note.

C h r o m a t i c J u s t - t e m p e r e d E q u a l - t e m p e r e d
in te rva l No te f requency ra t io f requency ra t io In te rva l type

0 C 1.00000 1.00000 Unison
1 c# 1.05469 1.05946 Minor second as chromatic

semitone
Db 1.06667 Minor second as diatonic

semitone
2 D 1.11111 1.12246 Major second as minor tone

D 1.12500 Major second as major tone
Ebb 1.13778 Diminished third

3 D# 1.17188 1.18921 Augmented second
Eb 1.20000 Minor third

4 E 1.25000 1.25992 Major third
5 F 1.33333 1.33484 Fourth
6 F# 1.40625 1.41421 Tritone as augmented fourth

Gb 1.42222 Tritone as diminished fifth

7 G 1.50000 1.49831 Fifth

11-240 Summary of the Sound Driver

The Sound Driver

Chroma t i c J u s t - t e m p e r e d E q u a l - t e m p e r e d
in te rva l No te f r equency ratio f requency ra t io In te rva l type

8 G# 1.56250 1.58740 Augmented fifth
Ab 1.60000 Minor sixth

9 A 1.66667 1.68179 Major sixth
Bbb 1.68560 Diminished seventh

10 A# 1.75000 1.78180 Augmented sixth
Bb 1.77778 Minor seventh

11 B 1.87500 1.88775 Major seventh
12 C 2.00000 2.00000 Octave

os
©
B
a a
O
<

Summary of the Sound Driver 11-241

Inside Macintosh

11-242

9 THE SERIAL DRIVERS

245 About This Chapter
245 Serial Corrrmunication
246 About the Serial Drivers
247 Using the Serial Drivers
249 Serial Driver Routines
249 Opening and Closing the R A M Serial Driver
250 Changing Serial Driver Information
253 Getting Serial Driver Information
254 Advanced Control Calls
256 Summary of the Serial Drivers

Inside Macintosh

11-244

The Serial Drivers

ABOUT THIS CHAPTER

The Macintosh RAM Serial Driver and ROM Serial Driver are Macintosh device drivers for
handling asynchronous serial communication between a Macintosh application and serial devices.
This chapter describes the Serial Drivers in detail.

You should already be familiar with:

• resources, as discussed in chapter 5 of Volume I

• events, as discussed in chapter 8 of Volume I

• the Memory Manager

• interrupts and the use of devices and device drivers, as described in chapter 6

• asynchronous serial data communication

SERIAL COMMUNICATION

The Serial Drivers support full-duplex asynchronous serial communication. Serial data is
transmitted over a single-path communication line, one bit at a time (as opposed to parallel data,
which is transmitted over a multiple-path communication line, multiple bits at a time). Full-
duplex means that the Macintosh and another serial device connected to it can transmit data
simultaneously (as opposed to half-duplex operation, in which data can be transmitted by only
one device at a time). Asynchronous communication means that the Macintosh and other
serial devices communicating with it don't share a common timer, and no timing data is
transmitted. The time interval between characters transmitted asynchronously can be of any
length. The format of asynchronous serial data communication used by the Serial Drivers is
shown in Figure 1.

mark (> + 3 volts)-

3pace (< - 3 volt3)

idle
start
bit

data
bit 1

data
bit n

stop
bit 1

3t0p
bit 2 idle

\ „
frame

Figure 1. Asynchronous Data Transmission

When a transmitting serial device is idle (not sending data), it maintains the transmission line in a
continuous state ("mark" in Figure 1). The transmitting device may begin sending a character at
any time by sending a start bit. The start bit tells the receiving device to prepare to receive a
character. The transmitting device then transmits 5, 6, 7, or 8 data bits, optionally followed by a
pari ty bit. The value of the parity bit is chosen such that the number of l's among the data and
parity bits is even or odd, depending on whether the parity is even or odd, respectively. Finally,
the transmitting device sends 1, 1.5, or 2 stop bits, indicating the end of the character. The

Serial Communication 11-245

Inside Macintosh

measure of the total number of bits sent over the transmission line per second is called the baud
rate .

If a parity bit is set incorrecdy, the receiving device will note a parity error. The time elapsed
from the start bit to the last stop bit is called a frame. If the receiving device doesn't get a stop
bit after the data and parity bits, it will note a framing error . After the stop bits, the transmitting
device may send another character or maintain the line in the mark state. If the line is held in the
"space" state (Figure 1) for one frame or longer, a break occurs. Breaks are used to interrupt
data transmission.

ABOUT THE SERIAL DRIVERS

There are two Macintosh device drivers for serial communication: the RAM Serial Driver and the
ROM Serial Driver. The two drivers are nearly identical, although the RAM driver has a few
features the ROM driver doesn't. Both allow Macintosh applications to communicate with serial
devices via the two serial ports on the back of the Macintosh.

Note: There are actually two versions of the RAM Serial Driver; one is for the Macintosh
128K and 512K, the other is for the Macintosh XL. If you want your application to run
on all versions of the Macintosh, you should install both drivers in your application
resource file, as resources of type 'SERD'. The resource ID should be 1 for the Macintosh
128K and 512K driver, and 2 for the Macintosh XL driver.

Each Serial Driver actually consists of four drivers: one input driver and one output driver for the
modem port, and one input driver and one output driver for the printer port (Figure 2). Each
input driver receives data via a serial port and transfers it to the application. Each output
driver takes data from the application and sends it out through a serial port. The input and output
drivers for a port are closely related, and share some of the same routines. Each driver does,
however, have a separate device control entry, which allows the Serial Drivers to support full-
duplex communication. An individual port can both transmit and receive data at the same time.
The serial ports are controlled by the Macintosh's Zilog Z8530 Serial Communications Controller
(SCC). Channel A of the SCC controls the modem port, and channel B controls the printer port.

Data received via a serial port passes through a three-character buffer in the SCC and then into a
buffer in the input driver for the port. Characters are removed from the input driver's buffer each
time an application issues a Read call to the driver. Each input driver's buffer can initially hold
up to 64 characters, but your application can specify a larger buffer if necessary. The following
errors may occur:

• If the SCC buffer ever overflows (because the input driver doesn't read it often enough), a
h a r d w a r e over run e r ro r occurs.

• If an input driver's buffer ever overflows (because the application doesn't issue Read calls
to the driver often enough), a software overrun e r ro r occurs.

The printer port should be used for output-only connections to devices such as printers, or at low
baud rates (300 baud or less). The modem port has no such restrictions. It may be used
simultaneously with disk accesses without fear of hardware overrun errors, because whenever the
Disk Driver must turn off interrupts for longer than 100 microseconds, it stores any data received
via the modem port and later passes the data to the modem port's input driver.

11-246 Serial Communication

The Serial Drivers

application

C
C
i

modem port
input driver

modem port
output driver

modem port

*

external serial device

f printer port
^ input driver J

printer port
^ output driver j

printer port
V J

/

\

(\
external serial device

Figure 2. Input and Output Drivers of a Serial Driver

All four drivers default to 9600 baud, eight data bits per character, no parity bit, and two stop
bits. You can change any of these options. The Serial Drivers support Clear To Send (CTS)
hardware handshaks and XOn/XOff software flow control.

Note: The ROM Serial Driver defaults to hardware handshake only; it doesn't support
XOn/XOff input flow control—only output flow control. Use the RAM Serial Driver if
you want XOn/XOff input flow control. The RAM Serial Driver defaults to no hardware
handshake and no software flow control.

Whenever an input driver receives a break, it terminates any pending Read requests, but not Write
requests. You can choose to have the input drivers terminate Read requests whenever a parity,
overrun, or framing error occurs.

Note: The ROM Serial Driver always terminates input requests when an error occurs.
Use the RAM Serial Driver if you don't want input requests to be terminated by errors.

You can request the Serial Drivers to post device driver events whenever a change in the hardware
handshake status or a break occurs, if you want your application to take some specific action
upon these occurrences.

USING THE SERIAL DRIVERS

This section introduces you to the Serial Driver routines described in detail in the next section,
and discusses other calls you can make to communicate with the Serial Drivers.

Drivers are referred to by name and reference number:

Using the Serial Drivers 11-247

Inside Macintosh

Driver Dr iver name
.AIn

Reference n u m b e r
-6 Modem port input

Modem port output

Printer port input

Printer port output

AOut

.BOut

.Bin - 8

- 7

- 9

Before you can receive data through a port, both the input and output drivers for the port must be
opened. Before you can send data through a port, the output driver for the port must be opened.
To open the ROM input and output drivers, call the Device Manager Open function; to open the
RAM input and output drivers, call the Serial Driver function RAMSDOpen. The RAM drivers
occupy less than 2K bytes of memory in the application heap.

When you open an output driver, the Serial Driver initializes local variables for the output driver
and the associated input driver, allocates and locks buffer storage for both drivers, installs
interrupt handlers for both drivers, and initializes the correct SCC channel (ROM Serial Driver
only). When you open an input driver, the Serial Driver only notes the location of its device
control entry.

You shouldn't ever close the ROM Serial Driver with a Device Manager Close call. If you wish
to replace it with a RAM Serial Driver, the RAMSDOpen call will automatically close the ROM
driver for you. You must close the RAM Serial Driver with a call to RAMSDClose before your
application terminates; this will also release the memory occupied by the driver itself. When you
close an output driver, the Serial Driver resets the appropriate SCC channel, releases all local
variable and buffer storage space, and restores any changed interrupt vectors.

To transmit serial data out through a port, make a Device Manager Write call to the output driver
for the port. You must pass the following parameters:

• the driver reference number - 7 or - 9 , depending on whether you're using the modem port
or the printer port

• a buffer that contains the data you want to transmit

• the number of bytes you want to transmit

To receive serial data from a port, make a Device Manager Read call to the input driver for the
port. You must pass the following parameters:

• the driver reference number - 6 or - 8 , depending on whether you're using the modem port
or the printer port

• a buffer to receive the data

• the number of bytes you want to receive

There are six different calls you can make to the Serial Driver's control routine:

• KilllO causes all current I/O requests to be aborted and any bytes remaining in both input
buffers to be discarded. KilllO is a Device Manager call.

• SerReset resets and reinitializes a driver with new data bits, stop bits, parity bit, and baud
rate information.

• SerSetBuf allows you to specify a new input buffer, replacing the driver's 64-character
default buffer.

• SerHShake allows you to specify handshake options.

II-248 Using the Serial Drivers

The Serial Drivers

• SerSetBrk sets break mode.

• SerClrBrk clears break mode.

Advanced programmers can make nine additional calls to the RAM Serial Driver's control routine;
see the "Advanced Control Calls" section.

There are two different calls you can make to the Serial Driver's status routine:
• SerGetBuf returns the number of bytes in the buffer of an input driver.

• SerStatus returns information about errors, I/O requests, and handshake.

Assembly-language note: Control and Status calls to the RAM Serial Driver may be
immediate (use IMMED as the second argument to the routine macro).

SERIAL DRIVER ROUTINES

Most of the Serial Driver routines return an integer result code of type OSErr; each routine
description lists all of the applicable result codes.

Opening and Closing the RAM Serial Driver

FUNCTION RAMSDOpen (whichPort: SPortSel) : OSErr; [Not inROM]

RAMSDOpen closes the ROM Serial Driver and opens the RAM input and output drivers for the
port identified by the whichPort parameter, which must be a member of the SPortSel set:

TYPE SPortSel = (sPortA, {modem port}
sPortB {printer port});

RAMSDOpen determines what type of Macintosh is in use and chooses the RAM Serial Driver
appropriate to that machine.

Assembly-language note: To open the RAM input and output drivers from assembly
language, call this Pascal procedure from your program.

Result codes noErr No error
openErr Can't open driver

Serial Driver Routines 11-249

Inside Macintosh

PROCEDURE RAMSDClose (whichPort: SPortSel) ; [NotinROM]

Assembly-language note: To close the RAM input and output drivers from assembly
language, call this Pascal procedure from your program.

Changing Serial Driver Information

FUNCTION SerReset (refNum: INTEGER; serConfig: INTEGER) : OSErr;
[NotinROM]

Assembly-language note : SerReset is equivalent to a Control call with csCode=8 and
csParam=serConfig.

SerReset resets and reinitializes the input or output driver having the reference number refNum
according to the information in serConfig. Figure 3 shows the format of serConfig.

15 14 13 12 11 10 9 0

baud rate

0, 1 ; 2 ; 3 for 5, 7, 6, 8
data bit3 per character

0, 1, 2, 3 for no, odd,
no, even parity

1, 2, 3 for 1, 1.5, 2
3top bits

Figure 3. Driver Reset Information

You can use the following predefined constants to set the values of various bits of serConfig:

baud.300 = 380; {300 baud}
baud.600 = 189; {600 baud}
baud.1200 = 94; {1200 baud}
baudl800 = 62; {1800 baud}
baud2400 = 46; {2400 baud}

11-250 Serial Driver Routines

RAMSDClose closes the RAM input and output drivers for the port identified by the whichPort
parameter, which must be a member of the SPortSel set (defined in the description of
RAMSDOpen above).

Warning: The RAM Serial Driver must be closed with a call to RAMSDClose before your
application terminates.

The Serial Drivers

baud3600 = 30; {3600 baud}
baud4800 = 22; {4800 baud}
baud7200 = 14; {7200 baud}
baud9600 = 10; {9600 baud}
baudl9200 = 4; {19200 baud}
baud57600 = 0; {57600 baud}
stoplO = 16384; {1 stop bit}
stopl5 = -32768; {1.5 stop bits}
stop20 = -16384; {2 stop bits}
noParity = 0; {no parity}
oddParity = 4096; {odd parity}
evenParity = 12288; {even parity}
data5 = 0; {5 data bits}
data 6 = 2048; {6 data bits}
data7 = 1024; {7 data bits}
data 8 = 3072; {8 data bits}

For example, the default setting of 9600 baud, eight data bits, two stop bits, and no parity bit is
equivalent to passing the following value in serConfig: baud9600 + data8 + stop20 + noParity.

Result codes noErr No error

FUNCTION SerSetBuf (refNum: INTEGER; serBPtr: Ptr; serBLen:
INTEGER) : OSErr; [NotinROM]

Assembly-language note: SerSetBuf is equivalent to a Control call with csCode=9,
csParam=serBPtr, and csParam+4=serBLen.

SerSetBuf specifies a new input buffer for the input driver having the reference number refNum.
SerBPtr points to the buffer, and serBLen specifies the number of bytes in the buffer. To restore
the driver's default buffer, call SerSetBuf with serBLen set to 0.

Warn ing : You must lock a new input buffer while it's in use.

Result codes noErr No error

FUNCTION SerHShake (refNum: INTEGER; flags: SerShk) : OSErr; [Not
in ROM]

Assembly-language note : SerHShake is equivalent to a Control call with csCode=10
and csParam through csParam+6 flags.

Serial Driver Routines 11-251

Inside Macintosh

SerHShake sets handshake options and other control information, as specified by the flags
parameter, for the input or output driver having the reference number refNum. The flags
parameter has the following data structure:

TYPE SerShk = PACKED RECORD
fXOn: Byte; {XOn/XOff output flow control flag}
fCTS: Byte; {CTS hardware handshake flag}
xOn: CHAR; {XOn character}
xOff: CHAR; {XOff character}
errs: Byte; {errors that cause abort}
evts: Byte; {status changes that cause events}
flnX: Byte; {XOn/XOff input flow control flag}
null: Byte {not used}

END;

If fXOn is nonzero, XOn/XOff output flow control is enabled; if flnX is nonzero, XOn/XOff
input flow control is enabled. XOn and xOff specify the XOn character and XOff character used
for XOn/XOff flow control. If fCTS is nonzero, CTS hardware handshake is enabled. The errs
field indicates which errors will cause input requests to be aborted; for each type of error, there's
a predefined constant in which the corresponding bit is set:

CONST parityErr = 16; {set if parity error}
hwOverrunErr = 32; {set if hardware overrun error}
framingErr = 64; {set if framing error}

Note: The ROM Serial Driver doesn't support XOn/XOff input flow control or aborts
caused by error conditions.

The evts field indicates whether changes in the CTS or break status will cause the Serial Driver to
post device driver events. You can use the following predefined constants to set or test the value
of evts:

CONST ctsEvent = 32; {set if CTS change will cause event to be }
{ posted}

breakEvent = 128; {set if break status change will cause event }
{ to be posted}

Warning: Use of this option is discouraged because of the long time that interrupts are
disabled while such an event is posted.

Result codes noErr No error

FUNCTION SerSetBrk (refNum: INTEGER) : OSErr; [NotinROM]

Assembly-language note: SerSetBrk is equivalent to a Control call with csCode=12.

SerSetBrk sets break mode in the input or output driver having the reference number refNum.

11-252 Serial Driver Routines

The Serial Drivers

Result codes noErr No error

FUNCTION SerClrBrk (refNum: INTEGER) : OSErr; [Not in ROM]

Assembly-language note: SerClrBrk is equivalent to a Control call with csCode=ll .

SerClrBrk clears break mode in the input or output driver having the reference number refNum.

Result codes noErr No error

Getting Serial Driver Information

FUNCTION SerGetBuf (refNum: INTEGER; VAR count: LONGINT) : OSErr;
[Not in ROM]

Assembly-language note: SerGetBuf is equivalent to a Status call with csCode=2;
count is returned in csParam as a long word.

SerGetBuf returns, in the count parameter, the number of bytes in the buffer of the input driver
having the reference number refNum.

Result codes noErr No error

FUNCTION SerStatus (refNum: INTEGER; VAR serSta: SerStaRec)
OSErr; [NotinROM]

Assembly-language note: SerStatus is equivalent to a Status call with csCode=8;
serSta is returned in csParam through csParam+5.

SerStatus returns in serSta three words of status information for the input or output driver having
the reference number refNum. SerSta has the following data structure:

TYPE SerStaRec = PACKED RECORD
cumErrs: Byte; {cumulative errors}
xOffSent: Byte; {XOff sent as input flow control}
rdPend: Byte; {read pending flag}
wrPend: Byte; {write pending flag}
ctsHold: Byte; {CTS flow control hold flag}
xOffHold: Byte {XOff flow control hold flag}

END;

Serial Driver Routines 11-253

Inside Macintosh

CumErrs indicates which errors have occurred since the last time SerStatus was called:

CONST swOverrunErr
parityErr
hwOverrunErr
framingErr

1;
16;
32;
64;

{set
{set
{set
{set

if software overrun
if parity error}
if hardware overrun
if framing error}

error}

error}

If the driver has sent an XOff character, xOffSent will be equal to the following predefined
constant:

CONST xOffWasSent = $80; {XOff character was sent}

If the driver has a Read or Write call pending, rdPend or wrPend, respectively, will be nonzero.
If output has been suspended because the hardware handshake was disabled, ctsHold will be
nonzero. If output has been suspended because an XOff character was received, xOffHold will
be nonzero.

Result codes noErr No error

This section describes the calls that advanced programmers can make to the RAM Serial Driver's
control routine via a Device Manager Control call.

csCode = 13 csParam = b a u d R a t e

This call provides an additional way (besides SerReset) to set the baud rate. CsParam specifies
the actual baud rate as an integer (for instance, 9600). The c'osest baud rate that the Serial Driver
will generate is returned in csParam.

csCode = 19 csParam = cha r

After this call is made, all incoming characters with parity errors will be replaced by the character
specified by the ASCII code in csParam. If csParam is 0, no character replacement will be done.

c sCode = 21

This call unconditionally sets XOff for output flow control. It's equivalent to receiving an XOff
character. Data transmission is halted until an XOn is received or a Control call with csCode=24
is made.

csCode = 22

This call unconditionally clears XOff for output flow control. It's equivalent to receiving an XOn
character.

11-254 Serial Driver Routines

ADVANCED CONTROL CALLS

The Serial Drivers

csCode = 23

This call sends an XOn character for input flow control if the last input flow control character sent
was XOff.

csCode = 24

This call unconditionally sends an XOn character for input flow control, regardless of the current
state of input flow control.

c sCode = 25

This call sends an XOff character for input flow control if the last input flow control character
sent was XOn.

csCode = 26

This call unconditionally sends an XOff character for input flow control, regardless of the current
state of input flow control.

c sCode = 27

This call lets you reset the SCC channel belonging to the driver specified by ioRefNum before
calling RAMSDClose or SerReset.

Advanced Control Calls 11-255

Inside Macintosh

SUMMARY OF THE SERIAL DRIVERS

Constants

CONST { Driver reset information }

baud300 = 380; {300 baud}
baud600 = 189; {600 baud}
baudl200 94 {1200 baud}
baudl800 = 62 {1800 baud}
baud2400 = 46 {2400 baud}
baud3600 = 30 {3600 baud}
baud4800 = 22 {4800 baud}
baud7200 = 14 {7200 baud}
baud9600 = 10 {9600 baud}
baudl9200 = 4; {19200 baud}
baud57600 0; {57600 baud}
stoplO 16384; {1 stop bit}
stopl5 - -32768; {1.5 stop bits}
stop20 = -16384; {2 stop bits}
noParity = 0; {no parity}
oddParity = 4096; {odd parity}
evenParity = 12288; {even parity}
data5 = 0; {5 data bits}
data 6 = 2048; {6 data bits}
data7 = 1024; {7 data bits}
data8 = 3072; {8 data bits}

{ Masks for errors }

swOverrunErr = 1; {set if software overrun error}
parityErr = 16; {set if parity error}
hwOverrunErr = 32; {set if hardware overrun error}
framingErr = 64; {set if framing error}

{ Masks for changes that cause events to be posted }

ctsEvent = 32; {set if CTS change will cause event to be }
{ posted}

breakEvent = 128; {set if break status change will cause event }
{ to be posted}

{ Indication that an XOff character was sent }

xOffWasSent = $80;

{ Result codes }

noErr = 0; {no error}

openErr = -23; {attempt to open RAM Serial Driver failed}

11-256 Summary of the Serial Drivers

The Serial Drivers

Data Types

TYPE SPortSel (sPortA,
sPortB

{modem port}
{printer port});

SerShk = PACKED RECORD
fXOn: Byte; {XOn/XOff output flow control flag}
fCTS: Byte; {CTS hardware handshake flag}
xOn: CHAR; {XOn character}
xOff: CHAR; {XOff character}
errs: Byte; {errors that cause abort}
evts: Byte; {status changes that cause events}
flnX: Byte; {XOn/XOff input flow control flag}
null: Byte {not used}

END;

SerStaRec PACKED RECORD
cumErrs:
xOffSent:
rdPend:
wrPend:
ctsHold:
xOffHold:

END;

Byte;
Byte;
Byte;
Byte;
Byte;
Byte

{cumulative errors}
{XOff sent as input flow control}
{read pending flag}
{write pending flag}
{CTS flow control hold flag}
{XOff flow control hold flag}

Routines [NotinROM]

Opening and Closing the RAM Serial Driver

FUNCTION RAMSDOpen (whichPort: SPortSel) : OSErr;
PROCEDURE RAMSDClose (whichPort: SPortSel);

Changing Serial Driver Information

FUNCTION SerReset (refNum: INTEGER; serConfig: INTEGER) : OSErr;
FUNCTION SerSetBuf (refNum: INTEGER; serBPtr: Ptr; serBLen: INTEGER) :

OSErr;
FUNCTION SerHShake (refNum: INTEGER; flags: SerShk) : OSErr;
FUNCTION SerSetBrk (refNum: INTEGER) : OSErr;
FUNCTION SerClrBrk (refNum: INTEGER) : OSErr;

Getting Serial Driver Information

FUNCTION SerGetBuf (refNum: INTEGER; VAR count: LONGINT) : OSErr;
FUNCTION SerStatus (refNum: INTEGER; VAR serSta: SerStaRec) : OSErr;

Summary ofthe Serial Drivers 11-257

Inside Macintosh

13 baudRate Set baud rate (actual rate, as an integer)

19 char Replace parity errors

21 Unconditionally set XOff for output flow control

22 Unconditionally clear XOff for input flow control

23 Send XOn for input flow control if XOff was sent last

24 Unconditionally send XOn for input flow control

25 Send XOff for input flow control if XOn was sent last

26 Unconditionally send XOff for input flow control

27 Reset SCC channel

Driver Names and Reference Numbers

Driver Driver name Reference n u m b e r

Modem port input .AIn - 6

Modem port output AOut - 7

Printer port input .Bin - 8

Printer port output .BOut - 9

Assembly-Language Information

Constants

; Result codes

noErr .EQU 0 ;no error
openErr .EQU -23 /attempt to open RAM Serial Driver failed

Structure of Control Information for SerHShake

shFXOn XOn/XOff output flow control flag (byte)
shFCTS CTS hardware handshake flag (byte)
shXOn XOn character (byte)
shXOff XOff character (byte)
shErrs Errors that cause abort (byte)
shEvts Status changes that cause events (byte)
shFInX XOn/XOff input flow control flag (byte)

11-258 Summary of the Serial Drivers

Advanced Control Calls (RAM Serial Driver)

c s C o d e c s P a r a m Effect

The Serial Drivers

ssXOffSent XOff sent as input flow control (byte)
ssRdPend Read pending flag (byte)
ssWrPend Write pending flag (byte)
ssCTSHold CTS flow control hold flag (byte)
ssXOffHold XOff flow control hold flag (byte)

Equivalent Device Manager Calls

Pascal rou t ine Call
SerReset Control with csCode=8, csParam=serConfig

SerSetBuf Control with csCode=8, csParam=serBPtr, csParam+4=serBLen

SerHShake Control with csCode=10, csParam through csParam+6=flags

SerSetBrk Control with csCode=12

SerClrBrk Control with csCode=l 1

SerGetfiuf Status with csCode=2; count returned in csParam

SerStatus Status with csCode=8; serSta returned in csParam through csParam+5

Summary of the Serial Drivers 11-259

Structure of Status Information for SerStatus

ssCumErrs Cumulative errors (byte)

Inside Macintosh

11-260

10 THE APPLETALK MANAGER

263 About This Chapter
263 AppleTalk Protocols
267 AppleTalk Transaction Protocol
267 Transactions
268 Datagram Loss Recovery
271 About the AppleTalk Manager
273 Calling the AppleTalk Manager from Pascal
275 Opening and Closing AppleTalk
276 AppleTalk Link Access Protocol
276 Data Structures
276 Using ALAP
277 ALAP Routines
279 Example
281 Datagram Delivery Protocol
281 Data Structures
282 Using DDP
282 DDP Routines
284 Example
287 AppleTalk Transaction Protocol
287 Data Structures
289 Using ATP
290 ATP Routines
297 Example
298 Name-Binding Protocol
298 Data Structures
299 Using NBP
299 NBP Routines
302 Example
303 Miscellaneous Routines
304 Calling the AppleTalk Manager from Assembly Language
304 Opening AppleTalk
305 Example
306 AppleTalk Link Access Protocol
306 Data Structures
307 Using ALAP
307 ALAP Routines
308 Datagram Delivery Protocol
308 Data Structures

Inside Macintosh

311 Using DDP
311 DDP Routines
312 AppleTalk Transaction Protocol
312 Data Structures
315 Using ATP
315 ATP Routines
319 Name-Binding Protocol
319 Data Structures
321 Using NBP
322 NBP Routines
324 Protocol Handlers and Socket Listeners
325 Data Reception in the AppleTalk Manager
326 Writing Protocol Handlers
329 Timing Considerations
329 Writing Socket Listeners
331 Surrimary of the AppleTalk Manager

11-262 Contents

The AppleTalk Manager

ABOUT THIS CHAPTER

The AppleTalk Manager is an interface to a pair of RAM device drivers that allow Macintosh
programs to send and receive information via an AppleTalk network. This chapter describes the
AppleTalk Manager in detail.

You should already be familiar with:

• events, as discussed in chapter 8 of Volume I

• interrupts and the use of devices and device drivers, as described in chapter 6, if you want
to write your own assembly-language additions to the AppleTalk Manager

• the Inside AppleTalk manual, if you want to understand AppleTalk protocols in detail

APPLETALK PROTOCOLS

The AppleTalk Manager provides a variety of services that allow Macintosh programs to interact
with programs in devices connected to an AppleTalk network. This interaction, achieved through
the exchange of variable-length blocks of data (known as packets) over AppleTalk, follows well-
defined sets of rules known as protocols.

Although most programmers using AppleTalk needn't understand the details of these protocols,
they should understand the information in this section—what the services provided by the
different protocols are, and how the protocols are interrelated. Detailed information about
AppleTalk protocols is available in Inside AppleTalk.

The AppleTalk system architecture consists of a number of protocols arranged in layers. Each
protocol in a specific layer provides services to higher-level layers (known as the protocol's
clients) by building on the services provided by lower-level layers. A Macintosh program can use
services provided by any of the layers in order to construct more sophisticated or more
specialized services.

The AppleTalk Manager contains the following protocols:

• AppleTalk Link Access Protocol

• Datagram Delivery Protocol

• Routing Table Maintenance Protocol

• Name-Binding Protocol

• AppleTalk Transaction Protocol

Figure 1 illustrates the layered structure of the protocols in the AppleTalk Manager; the heavy
connecting lines indicate paths of interaction. Note that the Routing Table Maintenance Protocol
isn't directly accessible to Macintosh programs.

The AppleTalk Link Access Protocol (ALAP) provides the lowest-level services of the
AppleTalk system. Its main function is to control access to the AppleTalk network among
various competing devices. Each device connected to an AppleTalk network, known as a node,
is assigned an eight-bit node ID number that identifies the node. ALAP ensures that each node

AppleTalk Protocols 11-263

Inside Macintosh

Macintosh program

Name-Binding
Protocol

.MPP
driver

.ATP
driver

AppleTalk Transaction
Protocol

Routing Table
Maintenance Protocol

Datagram Delivery
Protocol

AppleTalk Link Access
Protocol

AppleTalk hardware

Figure 1. AppleTalk Manager Protocols

on an AppleTalk network has a unique node ID, assigned dynamically when the node is started
up.

ALAP provides its clients with node-to-node delivery of data frames on a single AppleTalk
network. An ALAP frame is a variable-length packet of data preceded and followed by control
information referred to as the ALAP frame header and frame trailer, respectively. The ALAP
frame header includes the node IDs of the frame's destination and source nodes. The AppleTalk
hardware uses the destination node ID to deliver the frame. The frame's source node ID allows a
program in the receiving node to determine the identity of the source. A sending node can ask
ALAP to send a frame to all nodes on the AppleTalk network; this broadcast service is
obtained by specifying a destination node ID of 255.

ALAP can have multiple clients in a single node. When a frame arrives at a node, ALAP
determines which client it should be delivered to by reading the frame's ALAP protocol type.
The ALAP protocol type is an eight-bit quantity, contained in the frame's header, that identifies
the ALAP client to whom the frame will be sent. ALAP calls the client's protocol handler ,

11-264 AppleTalk Protocols

The AppleTalk Manager

which is a software process in the node that reads in and then services the frames. The protocol
handlers for a node are listed in a protocol hand le r table .

An ALAP frame trailer contains a 16-bit frame check sequence generated by the AppleTalk
hardware. The receiving node uses the frame check sequence to detect transmission errors, and
discards frames with errors. In effect, a frame with an error is "lost" in the AppleTalk network,
because ALAP doesn't attempt to recover from errors by requesting the sending node to
retransmit such frames. Thus ALAP is said to make a "best effort" to deliver frames, without any
guarantee of delivery.

An ALAP frame can contain up to 600 bytes of client data. The first two bytes must be an integer
equal to the length of the client data (including the length bytes themselves).

Da tagram Delivery Protocol (DDP) provides the next-higher level protocol in the AppleTalk
architecture, managing socket-to-socket delivery of datagrams over AppleTalk internets. DDP is
an ALAP client, and uses the node-to-node delivery service provided by ALAP to send and
receive datagrams. Datagrams are packets of data transmitted by DDP. A DDP datagram can
contain up to 586 bytes of client data. Sockets are logical entities within the nodes of a network;
each socket within a given node has a unique eight-bit socket number .

On a single AppleTalk network, a socket is uniquely identified by its AppleTalk address—its
socket number together with its node ID. To identify a socket in the scope of an AppleTalk
internet, the socket's AppleTalk address and network number are needed. In ternets are
formed by interconnecting AppleTalk networks via intelligent nodes called bridges. A network
number is a 16-bit number that uniquely identifies a network in an internet. A socket's AppleTalk
address together with its network number provide an internet-wide unique socket identifier called
an in te rne t address .

Sockets are owned by socket clients, which typically are software processes in the node.
Socket clients include code called the socket listener, which receives and services datagrams
addressed to that socket. Socket clients must open a socket before datagrams can be sent or
received through it. Each node contains a socket table that lists the listener for each open
socket.

A datagram is sent from its source socket through a series of AppleTalk networks, being passed
on from bridge to bridge, until it reaches its destination network. The ALAP in the destination
network then delivers the datagram to the node containing the destination socket. Within that
node the datagram is received by ALAP calling the DDP protocol handler, and by the DDP
protocol handler in turn calling the destination socket listener, which for most applications will be
a higher-level protocol such as the AppleTalk Transaction Protocol. You can't send a datagram
between two sockets in the same node.

Bridges on AppleTalk internets use the Routing Table Maintenance Protocol (RTMP) to
maintain routing tables for routing datagrams through the internet. In addition, nonbridge
nodes use RTMP to determine the number of the network to which they're connected and the
node ID of one bridge on their network. The RTMP code in nonbridge nodes contains only a
subset of RTMP (the R T M P stub), and is a DDP client owning socket number 1 (the R T M P
socket) .

Socket clients are also known as network-visible entities, because they're the primary
accessible entities on an internet. Network-visible entities can choose to identify themselves by
an enti ty name, an identifier of the form

objectify pe@zone

AppleTalk Protocols 11-265

Inside Macintosh

Each of the three fields of this name is an alphanumeric string of up to 32 characters. The object
and type fields are arbitrary identifiers assigned by a socket client, to provide itself with a name
and type descriptor (for example, abs:Mailbox). The zone field identifies the zone in which the
socket client is located; a zone is an arbitrary subset of AppleTalk networks in an internet. A
socket client can identify itself by as many different names as it chooses. These aliases are all
treated as independent identifiers for the same socket client.

The Name-Binding Protocol (NBP) maintains a names table in each node that contains the
name and internet address of each entity in that node. These name-address pairs are called NBP
tuples. The collection of names tables in an internet is known as the names directory.

NBP allows its clients to add or delete their name-address tuples from the node's names table. It
also allows its clients to obtain the internet addresses of entities from their names. This latter
operation, known as name lookup (in the names directory), requires that NBP install itself as a
DDP client and broadcast special name-lookup packets to the nodes in a specified zone. These
datagrams are sent by NBP to the names information socket—socket number 2 in every node
using NBP.

NBP clients can use special meta-characters in place of one or more of the three fields of the name
of an entity it wishes to look up. The character "=" in the object or type field signifies "all
possible values". The zone field can be replaced by "*", which signifies "this zone"—the zone in
which the NBP client's node is located. For example, an NBP client performing a lookup with
the name

= :Mailbox0*

will obtain in return the entity names and internet addresses of all mailboxes in the client's zone
(excluding the client's own names and addresses). The client can specify whether one or all of
the matching names should be returned.

NBP clients specify how thorough a name lookup should be by providing NBP with the number
of times (retry count) that NBP should broadcast the lookup packets and the time interval (retry
interval) between these retries.

As noted above, ALAP and DDP provide "best effort" delivery services with no recovery
mechanism when packets are lost or discarded because of errors. Although for many situations
such a service suffices, the AppleTalk Transact ion Protocol (ATP) provides a reliable loss-
free transport service. ATP uses transactions, consisting of a t ransact ion reques t and a
transaction response, to deliver data reliably. Each transaction is assigned a 16-bit
t r ansac t i on ID number to distinguish it from other transactions. A transaction request is
retransmitted by ATP until a complete response has been received, thus allowing for recovery
from packet-loss situations. The retry interval and retry count are specified by the ATP client
sending the request.

Although transaction requests must be contained in a single datagram, transaction responses can
consist of as many as eight datagrams. Each datagram in a response is assigned a sequence
number from 0 to 7, to indicate its ordering within the response.

ATP is a DDP client, and uses the services provided by DDP to transmit requests and responses.
ATP supports both at-least-once and exactly-once transactions. Four of the bytes in an ATP
header, called the user bytes, are provided for use by ATP's clients—they're ignored by ATP.

ATP's transaction model and means of recovering from datagram loss are covered in detail
below.

11-266 AppleTalk Protocols

The AppleTalk Manager

APPLETALK TRANSACTION PROTOCOL

This section covers ATP in greater depth, providing more detail about three of its fundamental
concepts: transactions, buffer allocation, and recovery of lost datagrams.

Transactions

A transaction is a interaction between two ATP clients, known as the requester and the responder.
The requester calls the .ATP driver in its node to send a transaction request (TReq) to the
responder, and then awaits a response. The TReq is received by the .ATP driver in the
responder's node and is delivered to the responder. The responder then calls its .ATP driver to
send back a transaction response (TResp), which is received by the requester's .ATP driver and
delivered to the requester. Figure 2 illustrates this process.

requester

ATP Interface

responder

requester's
.ATP

driver

3end TReq

responder.'s
.ATP

driver

TReq

TRe3p

Figure 2. Transaction Process

get TReq

3end TRe3p

AppleTalk Transaction Protocol 11-267

Inside Macintosh

Simple examples of transactions are:

• read a counter, reset it and send back the value read

• read six sectors of a disk and send back the data read

• write the data sent in the TReq to a printer

A basic assumption of the transaction model is that the amount of ATP data sent in the TReq
specifying the operation to be performed is small enough to fit in a single datagram. A TResp, on
the other hand, may span several datagrams, as in the second example. Thus, a TReq is a single
datagram, while a TResp consists of up to eight datagrams, each of which is assigned a sequence
number from 0 to 7 to indicate its position in the response.

The requester must, before calling for a TReq to be sent, set aside enough buffer space to receive
the datagram(s) of the TResp. The number of buffers allocated (in other words, the maximum
number of datagrams that the responder can send) is indicated in the TReq by an eight-bit bit map.
The bits of this bit map are numbered 0 to 7 (the least significant bit being number 0); each bit
corresponds to the response datagram with the respective sequence number.

Datagram Loss Recovery

The way that ATP recovers from datagram loss situations is best explained by an example; see
Figure 3. Assume that the requester wants to read six sectors of 512 bytes each from the
responder's disk. The requester puts aside six 512-byte buffers (which may or may not be
contiguous) for the response datagrams, and calls ATP to send a TReq. In this TReq the bit map
is set to binary 00111111 or decimal 63. The TReq carries a 16-bit transaction ID, generated by
the requester's .ATP driver before sending i t (This example assumes that the requester and
responder have already agreed that each buffer can hold 512 bytes.) The TReq is delivered to the
responder, which reads the six disk sectors and sends them back, through ATP, in TResp
datagrams bearing sequence numbers 0 through 5. Each TResp datagram also carries exacdy the
same transaction ID as the TReq to which they're responding.

There are several ways that datagrams may be lost in this case. The original TReq could be lost
for one of many reasons. The responding node might be too busy to receive the TReq or might
be out of buffers for receiving it, there could be an undetected collision on the network, a bit error
in the transmission line, and so on. To recover from such errors, the requester's .ATP driver
maintains an ATP retry timer for each transaction sent. If this timer expires and the complete
TResp has not been received, the TReq is retransmitted and the retry timer is restarted.

A second error situation occurs when one or more of the TResp datagrams isn't received correctly
by the requester's .ATP driver (datagram 1 in Figure 3). Again, the retry timer will expire and
the complete TResp will not have been received; this will result in a retransmission of the TReq.
However, to avoid unnecessary retransmission of the TResp datagrams already properly
received, the bit map of this retransmitted TReq is modified to reflect only those datagrams not
yet received. Upon receiving this TReq, the responder retransmits only the missing response
datagrams.

Another possible failure is that the responder's .ATP driver goes down or the responder becomes
unreachable through the underlying network system. In this case, retransmission of the TReq
could continue indefinitely. To avoid this situation, the requester provides a maximum retry
count; if this count is exceeded, the requester's .ATP driver returns an appropriate error message
to the requester.

11-268 AppleTalk Transaction Protocol

The AppleTalk Manager

requester's
.ATP

driver

retry
timeout

responder'3
.ATP

driver

TReq
(bit map = 00111111)

TReq
(bit map = 00000010)

T R e 3 p (1)

Figure 3. Datagram Loss Recovery

Note: There may be situations where, due to an anticipated delay, you'll want a request to
be retransmitted more than 255 times; specifying a retry count of 255 indicates "infinite
retries" to ATP and will cause a message to be retransmitted until the request has either
been serviced, or been cancelled through a specific call.

AppleTalk Transaction Protocol 11-269

Inside Macintosh

Finally, in our example, what if the responder is able to provide only four disk sectors (having
reached the end of the disk) instead of the six requested? To handle this situation, there's an end-
of-message (EOM) flag in each TResp datagram. In this case, the TResp datagram numbered 3
would come with this flag set The reception of this datagram informs the requester's .ATP
driver that TResps numbered 4 and 5 will not be sent and should not be expected.

When the transaction completes successfully (all expected TResp datagrams are received or
TResp datagrams numbered 0 to n are received with datagram n's EOM flag set), the requester is
informed and can then use the data received in the TResp.

ATP provides two classes of service: at-least-once (ALO) and exactiy-once (XO). The TReq
datagram contains an XO flag that's set if XO service is required and cleared if ALO service is
adequate. The main difference between the two is in the sequence of events that occurs when the
TReq is received by the responder's .ATP driver.

In the case of ALO service, each time a TReq is received (with the XO flag cleared), it's delivered
to the responder by its .ATP driver; this is true even for retransmitted TReqs of the same
transaction. Each time the TReq is delivered, the responder performs the requested operation and
sends the necessary TResp datagrams. Thus, the requested operation is performed at least once,
and perhaps several times, until the transaction is completed at the requester's end.

The at-least-once service is satisfactory in a variety of situations—for instance, if the requester
wishes to read a clock or a counter being maintained at the responder's end. However, in other
circumstances, repeated execution of the requested operation is unacceptable. This is the case,
for instance, if the requester is sending data to be printed at the responding end; exacdy-once
service is designed for such situations.

The responder's .ATP driver maintains a transactions list of recendy received XO TReqs.
Whenever a TReq is received with its XO flag set, the driver goes through this list to see if this is
a retransmitted TReq. If it's the first TReq of a transaction, it's entered into the list and delivered
to the responder. The responder executes the requested operation and calls its driver to send a
TResp. Before sending it out, the .ATP driver saves the TResp in the list.

When a retransmitted TReq for the same XO transaction is received, the responder's .ATP driver
will find a corresponding entry in the list. The retransmitted TReq is not delivered to the
responder; instead, the driver automatically retransmits the response datagrams that were saved in
the list. In this way, the responder never sees the retransmitted TReqs and the requested
operation is performed only once.

ATP must include a mechanism for eventually removing XO entries from the responding end's
transaction list; two provisions are made for this. When the requester's .ATP driver has received
all the TResp datagrams of a particular transaction, it sends a datagram known as a transaction
release (TRel); this tells the responder's .ATP driver to remove the transaction from the list.
However, the TRel could be lost in the network (or the responding end may die, and so on),
leaving the entry in the list forever. To account for this situation, the responder's .ATP driver
maintains a release timer for each transaction. If this timer expires and no activity has occurred
for the transaction, its entry is removed from the transactions list.

11-270 AppleTalk Transaction Protocol

The AppleTalk Manager

ABOUT THE APPLETALK MANAGER

The AppleTalk Manager is divided into three parts (see Figure 4):
• A lower-level driver called ".MPP" that contains code to implement ALAP, DDP, NBP,

and the RTMP stub; this includes separate code resources loaded in when an NBP name is
registered or looked up.

• A higher-level driver called ".ATP" that implements ATP.

• A Pascal interface to these two drivers, which is a set of Pascal data types and routines to
aid Pascal programmers in calling the AppleTalk Manager.

c \

Pascal programs
j

AppleTalk Manager calls

)

assembly-language programs

Device Manager
Control calls)

.ATP driver

)

(
.MPP driver

Figure 4. Calling the AppleTalk Manager

The two drivers and the interface to them are not in ROM; your application must link to the
appropriate object files.

Pascal programmers make calls to the AppleTalk Manager's Pascal interface, which in rum makes
Device Manager Control calls to the two drivers. Assembly-language programmers make Device
Manager Control calls direcdy to the drivers.

Note: Pascal programmers can, of course, make PBControl calls directly if they wish.

About the AppleTalk Manager 11-271

Inside Macintosh

The AppleTalk Manager provides ALAP routines that allow a program to:

• send a frame to another node

• receive a frame from another node

• add a protocol handler to the protocol handler table

• remove a protocol handler from the protocol handler table

Each node may have up to four protocol handlers in its protocol handler table, two of which are
currendy used by DDP.

By calling DDP, socket clients can:

• send a datagram via a socket

• receive a datagram via a socket

• open a socket and add a socket listener to the socket table

• close a socket and remove a socket listener from the socket table

Each node may have up to 12 open sockets in its socket table.

Programs cannot access RTMP directly via the AppleTalk Manager; RTMP exists solely for the
purpose of providing DDP with routing information.

The NBP code allows a socket client to:

• register the name and socket number of an entity in the node's names table

• determine the address (and confirm the existence) of an entity

• delete the name of an entity from the node's names table

The AppleTalk Manager's .ATP driver allows a socket client to do the following:

• open a responding socket to receive requests

• send a request to another socket and get back a response

• receive a request via a responding socket

• send a response via a responding socket

• close a responding socket

Note: Although the AppleTalk Manager provides four different protocols for your use,
you're not bound to use all of them. In fact, most programmers will use only the NBP and
ATP protocols.

AppleTalk communicates via channel B of the Serial Communications Controller (SCC). When
the Macintosh is started up with a disk containing the AppleTalk code, the status of serial port B
is checked. If port B isn't being used by another device driver, and is available for use by
AppleTalk, the .MPP driver is loaded into the system heap. On a Macintosh 128K, only the
MPP code is loaded at system startup; the .ATP driver and NBP code are read into the application
heap when the appropriate commands are issued. On a Macintosh 512K or XL, all AppleTalk
code is loaded into the system heap at system startup.

After loading the AppleTalk code, the .MPP driver installs its own interrupt handlers, installs a
task into the vertical retrace queue, and prepares the SCC for use. It then chooses a node ID for

11-272 About the AppleTalk Manager

The AppleTalk Manager

the Macintosh and confirms that the node ED isn't already being used by another node on the
network.

Warning: For this reason it's imperative that the Macintosh be connected to the
AppleTalk network through serial port B (the printer port) before being switched on.

The AppleTalk Manager also provides Pascal routines for opening and closing the .MPP and
A T P drivers. The open calls allow a program to load AppleTalk code at times other than system
startup. The close calls allow a program to remove the AppleTalk code from the Macintosh; the
use of close calls is highly discouraged, since other co-resident programs are then "disconnected"
from AppleTalk. Both sets of calls are described in detail under "Calling the AppleTalk Manager
from Pascal".

Warn ing : If, at system startup, serial port B isn't available for use by AppleTalk, the
.MPP driver won't open. However, a driver doesn't return an error message when it fails
to open. Pascal programmers must ensure the proper opening of AppleTalk by calling one
of the two routines for opening the AppleTalk drivers (either MPPOpen or ATPLoad). If
AppleTalk was successfully loaded at system startup, these calls will have no effect;
otherwise they'll check the availability of port B, attempt to load the AppleTalk code, and
return an appropriate result code.

Assembly-language note: Assembly-language programmers can use the Pascal
routines for opening AppleTalk. They can also check the availability of port B themselves
and then decide whether to open MPP or ATP. Detailed information on how to do this is
provided in the section "Calling the AppleTalk Manager from Assembly Language".

CALLING THE APPLETALK MANAGER FROM PASCAL

This section discusses how to use the AppleTalk Manager from Pascal. Equivalent assembly-
language information is given in the next section.

You can execute many AppleTalk Manager routines either synchronously (meaning that the
application can't continue until the routine is completed) or asynchronously (meaning that the
application is free to perform other tasks while the routine is being executed).

When an application calls an AppleTalk Manager routine asynchronously, an I/O request is placed
in the appropriate driver's I/O queue, and control returns to the calling program—possibly even
before the actual I/O is completed. Requests are taken from the queue one at a time, and
processed; meanwhile, the calling program is free to work on other things.

The routines that can be executed asynchronously contain a Boolean parameter called async. If
async is TRUE, the call is executed asynchronously; otherwise the call is executed
synchronously. Every time an asynchronous routine call is completed, the AppleTalk Manager
posts a network event. The message field of the event record will contain a handle to the
parameter block that was used to make that call.

Most AppleTalk Manager routines return an integer result code of type OSErr. Each routine
description lists all of the applicable result codes generated by the AppleTalk Manager, along with
a short description of what the result code means. Lengthier explanations of all the result codes
can be found in the summary at the end of the chapter. Result codes from other parts of the

Calling the AppleTalk Manager from Pascal 11-273

Inside Macintosh

Operating System may also be returned. (See Appendix A in Volume HI for a list of all result
codes.)

Many Pascal calls to the AppleTalk Manager require information passed in a parameter block of
type ABusRecord. The exact content of an ABusRecord depends on the protocol being called:

TYPE ABProtoType = (lapProto,ddpProto,nbpProto, atpProto) ;

ABusRecord = RECORD
abOpcode: ABCallType; {type of call}
abResult: INTEGER; {result code}
abUserReference: LONGINT; {for your use}
CASE ABProtoType OF

lapProto:
. . . {ALAP parameters}

ddpProto:
. . . {DDP parameters}

nbpProto:
. . . {NBP parameters}

atpProto:
. . . {ATP parameters}

END;
END;

ABRecPtr = AABusRecord;
ABRecHandle = ^ABRecPtr;

The value of the abOpcode field is inserted by the AppleTalk Manager when the call is made, and
is always a member of the following set:

TYPE ABCallType = (tLAPRead,tLAPWrite,tDDPRead,tDDPWrite,tNBPLookup,
tNBPConfirm,tNBPRegister,tATPSndRequest,
tATPGetRequest,tATPSdRsp,tATPAddRsp,tATPRequest,
tATPRespond);

The abUserReference field is available for use by the calling program in any way it wants. This
field isn't used by the AppleTalk Manager routines or drivers.

The size of an ABusRecord data structure in bytes is given by one of the following constants:

CONST lapSize = 2 0 ;
ddpSize = 2 6;
nbpSize = 26;
atpSize = 56;

Variables of type ABusRecord must be allocated in the heap with Memory Manager NewHandle
calls. For example:

myABRecord := ABRecHandle(NewHandle(ddpSize))

Warning: These Memory Manager calls can't be made inside interrupts.

11-274 Calling the AppleTalk Manager from Pascal

The AppleTalk Manager

Routines that are executed asynchronously return control to the calling program with the result
code noErr as soon as the call is placed in the driver's I/O queue. This isn't an indication of
successful call completion; it simply indicates that the call was successfully queued to the
appropriate driver. To determine when the call is actually completed, you can either check for a
network event or poll the abResult field of the call's ABusRecord. The abResult field, set to 1
when the call is made, receives the actual result code upon completion of the call.

Warning: A data structure of type ABusRecord is often used by the AppleTalk Manager
during an asynchronous call, and so is locked by the AppleTalk Manager. Don't attempt to
unlock or use such a variable.

Each routine description includes a list of the ABusRecord fields affected by the routine. The
arrow next to each field name indicates whether it's an input, output, or input/output parameter:

A r r o w M e a n i n g
—> Parameter is passed to the routine

<— Parameter is returned by the routine

<-» Parameter is passed to and returned by the routine

Opening and Closing AppleTalk

FUNCTION MPPOpen : OSErr; [NotinROM]

MPPOpen first checks whether the .MPP driver has already been loaded; if it has, MPPOpen
does nothing and returns noErr. If MPP hasn't been loaded, MPPOpen attempts to load it into
the system heap. If it succeeds, it then initializes the driver's variables and goes through the
process of dynamically assigning a node ID to that Macintosh. On a Macintosh 512K or XL, it
also loads the .ATP driver and NBP code into the system heap.

If serial port B isn't configured for AppleTalk, or is already in use, the .MPP driver isn't loaded
and an appropriate result code is returned.

Result codes noErr No error
portlnUse Port B is already in use
portNotCf Port B not configured for AppleTalk

FUNCTION MPPClose : OSErr; [Not in ROM]

MPPClose removes the .MPP driver, and any data structures associated with it, from memory.
If the .ATP driver or NBP code were also installed, they're removed as well. MPPClose also
returns the use of port B to the Serial Driver.

Warning: Since other co-resident programs may be using AppleTalk, it's strongly
recommended that you never use this call. MPPClose will completely disable AppleTalk;
the only way to restore AppleTalk is to call MPPOpen again.

Calling the AppleTalk Manager from Pascal 11-275

Inside Macintosh

AppleTalk Link Access Protocol

Data Structures

ALAP calls use the following ABusRecord fields:

lapProto:
(lapAddress:
lapReqCount:
lapActCount:
lapDataPtr:

LAPAdrBlock; {destination or source node ID}
INTEGER; {length of frame data or buffer size in bytes}
INTEGER; {number of frame data bytes actually received}
Ptr); {pointer to frame data or pointer to buffer}

When an ALAP frame is sent, the lapAddress field indicates the ID of the destination node.
When an ALAP frame is received, lapAddress returns the ID of the source node. The lapAddress
field also indicates the ALAP protocol type of the frame:

TYPE LAPAdrBlock = PACKED RECORD
dstNodelD: Byte; {destination node ID}
srcNodelD: Byte; {source node ID}
lapProtType: ABByte {ALAP protocol type}

END;

When an ALAP frame is sent, lapReqCount indicates the size of the frame data in bytes and
lapDataPtr points to a buffer containing the frame data to be sent. When an ALAP frame is
received, lapDataPtr points to a buffer in which the incoming data can be stored and lapReqCount
indicates the size of the buffer in bytes. The number of bytes actually sent or received is returned
in the lapActCount field.

Each ALAP frame contains an eight-bit ALAP protocol type in the header. ALAP protocol types
128 through 255 are reserved for internal use by ALAP, hence the declaration:

TYPE ABByte = 1..127; {ALAP protocol type}

Warning : Don't use ALAP protocol type values 1 and 2; they're reserved for use by
DDP. Value 3 through 15 are reserved for internal use by Apple and also shouldn't be
used.

Using ALAP

Most programs will never need to call ALAP, because higher-level protocols will automatically
call it as necessary. If you do want to send a frame direcdy via ALAP, call the LAPWrite
function. If you want to read ALAP frames, you have two choices:

• Call LAPOpenProtocol with NIL for protoPtr (see below); this installs the default protocol
handler provided by the AppleTalk Manager. Then call LAPRead to receive frames.

• Write your own protocol handler, and call LAPOpenProtocol to add it to the node's
protocol handler table. The ALAP code will examine every incoming frame and send all
those with the correct ALAP protocol type to your protocol handler. See the section
"Protocol Handlers and Socket Listeners" for information on how to write a protocol
handler.

11-276 Calling the AppleTalk Manager from Pascal

The AppleTalk Manager

When your program no longer wants to receive frames with a particular ALAP protocol type
value, it can call LAPCloseProtocol to remove the corresponding protocol handler from the
protocol handler table.

ALAP Routines

FUNCTION LAPOpenProtocol (theLAPType: ABByte; protoPtr: Ptr) :
OSErr ; [Not in ROM]

LAPOpenProtocol adds the ALAP protocol type specified by theLAPType to the node's protocol
table. If you provide a pointer to a protocol handler in protoPtr, ALAP will send each frame with
an ALAP protocol type of theLAPType to that protocol handler.

If protoPtr is NIL, the default protocol handler will be used for receiving frames with an ALAP
protocol type of theLAPType. In this case, to receive a frame you must call LAPRead to provide
the default protocol handler with a buffer for placing the data. If, however, you've written your
own protocol handler and protoPtr points to it, your protocol handler will have the responsibility
for receiving the frame and it's not necessary to call LAPRead.

Result codes noErr No error
lapProtErr Error attaching protocol type

FUNCTION LAPCloseProtocol (theLAPType: ABByte) : OSErr; [Notin
ROM]

LAPCloseProtocol removes from the node's protocol table the specified ALAP protocol type, as
well as its protocol handler.

Warn ing : Don't close ALAP protocol type values 1 or 2. If you close these protocol
types, DDP will be disabled; once disabled, the only way to restore DDP is to restart the
system, or to close and then reopen AppleTalk.

Result codes noErr No error
lapProtErr Error detaching protocol type

FUNCTION LAPWrite (abRecord: ABRecHandle; async: BOOLEAN)
OSErr ; [Not in ROM]

ABusRecord
<r- abOpcode
<— abResult
—» abUserReference
—> lapAddress.dstNodelD
—> lapAddressdapProtType
—> lapReqCount
- » lapDataPtr

{always tLAPWrite}
{result code}
{for your use}
{destination node ID}
{ALAP protocol type}
{length of frame data}
{pointer to frame data}

LAPWrite sends a frame to another node. LAPReqCount and lapDataPtr specify the length and
location of the data to send. The lapAddress.lapProtType field indicates the ALAP protocol type

Calling the AppleTalk Manager from Pascal 11-277

Inside Macintosh

of the frame and the lapAddress.dstNodelD indicates the node ID of the node to which the frame
should be sent.

FUNCTION LAPRead (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;
[Not in ROM]

ABusRecord
<— abOpcode {always tLAPRead}
<- abResult {result code}
-> abUserReference {for your use}
<— lapAddress.dstNodelD {destination node ID}
<— lapAddress. srcNodelD {source node ID}
-> lapAddress.lapProtType {ALAP protocol type}
-> lapReqCount {buffer size in bytes}
<— lapActCount {number of frame data bytes actually received}
-> lapDataPtr {pointer to buffer}

LAPRead receives a frame from another node. LAPReqCount and lapDataPtr specify the size
and location of the buffer that will receive the frame data. If the buffer isn't large enough to hold
all of the incoming frame data, the extra bytes will be discarded and buf2SmallErr will be
returned. The number of bytes actually received is returned in lapActCount. Only frames with
ALAP protocol type equal to lapAddress.lapProtType will be received. The node IDs of the
frame's source and destination nodes are returned in lapAddress.srcNodelD and
lapAddress.dstNodelD. You can determine whether the packet was broadcast to you by
examining the: value of lapAddress.dstNodelD—if the packet was broadcast it's equal to 255,
otherwise it's equal to your node ID.

Note: You should issue LAPRead calls only for ALAP protocol types that were opened
(via LAPOpenProtocol) to use the default protocol handler.

Warning: If you close a protocol type for which there are still LAPRead calls pending,
the calls will be canceled but the memory occupied by their ABusRecords will not be
released. For this reason, before closing a protocol type, call LAPRdCancel to cancel any
pending LAPRead calls associated with that protocol type.

Result codes noErr No error
buf2SmallErr Frame too large for buffer
readQErr Invalid protocol type or protocol type not found in table

11-278 Calling the AppleTalk Manager from Pascal

Note: The first two bytes of an ALAP frame's data must contain the length in bytes of
that data, including the length bytes themselves.

Result codes noErr No error
excessCollsns Unable to contact destination node; packet not sent
ddpLenErr ALAP data length too big
lapProtErr Invalid ALAP protocol type

The AppleTalk Manager

FUNCTION LAPRdCancel (abRecord: ABRecHandle) : OSErr; [Not in ROM]

Given the handle to the ABusRecord of a previously made LAPRead call, LAPRdCancel
dequeues the LAPRead call, provided that a packet satisfying the LAPRead has not already
arrived. LAPRdCancel returns noErr if the LAPRead call is successfully removed from tiie
queue. If LAPRdCancel returns recNotFnd, check the abResult field to verify that the LAPRead
has been completed and determine its outcome.

Result codes noErr No error

This example sends an ALAP packet synchronously and waits asynchronously for a response.
Assume that both nodes are using a known protocol type (in this case, 73) to receive packets, and
that the destination node has a node ID of 4.

VAR myABRecord: ABRecHandle;
myBuffer: PACKED ARRAY[0..599] OF CHAR; {buffer for both send and }

myLAPType: Byte;
errCode,index,dataLen: INTEGER;
someText: Str255;
async: BOOLEAN;

BEGIN
errCode := MPPOpen;
IF errCode <> noErr

THEN
WRITELN('Error in opening AppleTalk')
{Maybe serial port B isn't available for use by A p p l e T c i l k }

ELSE
BEGIN
{Call Memory Manager to allocate ABusRecord}
myABRecord := ABRecHandle(NewHandle(lapSize));
myLAPType := 73;
{Enter myLAPType into protocol handler table and install default }
{ handler to service frames of that ALAP type. No packets of }
{ that ALAP type will be received until we call LAPRead.}
errCode := LAPOpenProtocol(myLAPType,NIL);
IF errCode <> noErr
THEN
WRITELN('Error while opening the protocol type')
{Have we opened too many protocol types? Remember that DDP }
{ uses two of them.}

ELSE
BEGIN
{Prepare data to be sent}
someText := 'This data will be in the ALAP data area';

readQErr Invalid protocol type or protocol type not found in table
recNotFnd ABRecord not found in queue

Example

{ receive}

Calling the AppleTalk Manager from Pascal 11-279

Inside Macintosh

{The .MPP implementation requires that the first two bytes }
{ of the ALAP data field contain the length of the data, }
{ including the length bytes themselves.}
dataLen := LENGTH(someText)+2;
buffer[0] : = CHR(dataLen DIV 256); {high byte of data length}
buffer[1] := CHR(dataLen MOD 256); {low byte of data length}
FOR index := 1 TO dataLen-2 DO {stuff buffer with packet data}

buffer[index+1] := someText[index];
async := FALSE;
WITH myABRecord A A DO {fill parameters in the ABusRecord}

BEGIN
lapAddress.lapProtType := myLAPType;
lapAddress.dstNodelD := 4;
lapReqCount := dataLen;
lapDataPtr := @buffer;
END;

{Send the frame}
errCode := LAPWrite(myABRecord,async);
{In the case of a sync call, errCode and the abResult field of }
{ the myABRecord will contain the same result code. We can also }
{ reuse myABRecord, since we know whether the call has completed.}
IF errCode <> noErr
THEN
WRITELN(*Error while writing out the packet')
{Maybe the receiving node wasn't on-line}

ELSE
BEGIN
{We have sent out the packet and are now waiting for a }
{ response. We issue an async LAPRead call so that we don't }
{ "hang" waiting for a response that may not come.}
async := TRUE;
WITH myABRecord""" DO

BEGIN
lapAddress.lapProtType := myLAPType; {ALAP type we want }

{ to receive}
lapReqCount := 600; {our buffer is maximum size}
lapDataPtr := @buffer;
END;

errCode := LAPRead(myABRecord,async); {wait for a packet}
IF errCode <> noErr

THEN
WRITELN(1 Error while trying to queue up a LAPRead')
{Was the protocol handler installed correctly?}

ELSE
BEGIN
{We can either sit here in a loop and poll the abResult }
{ field or just exit our code and use the event }
{ mechanism to flag us when the packet arrives.}
CheckForMyEvent; {your procedure for checking for a }

{ network event}
errCode := LAPCloseProtocol(myLAPType);

11-280 Calling the AppleTalk Manager from Pascal

The AppleTalk Manager

IF errCode <> noErr
THEN

END;
END;

END;
END.

Datagram Delivery Protocol

Data Structures

DDP calls use the following ABusRecord fields:

ddpProto:
(ddpType:
ddpSocket:
ddpAddress:
ddpReqCount:

Byte;
Byte;
AddrBlock;
INTEGER;

ddpActCount: INTEGER;
ddpDataPtr: Ptr;
ddpNodelD: Byte);

{DDP protocol type}
{source or listening socket number}
{destination or source socket address}
{length of datagram data or buffer size }
{ in bytes}
{number of bytes actually received}
{pointer to buffer}
{original destination node ID}

When a DDP datagram is sent, ddpReqCount indicates the size of the datagram data in bytes and
ddpDataPtr points to a buffer containing the datagram data. DDPSocket specifies the socket from
which the datagram should be sent. DDP Address is the internet address of the socket to which
the datagram should be sent:

TYPE AddrBlock = PACKED RECORD
aNet: INTEGER;
aNode: Byte;
aSocket: Byte

END;

{network number}
{node ID}
{socket number}

Note: The network number you specify in ddpAddress.aNet tells MPP whether to create
a long header (for an internet) or a short header (for a local network only). A short DDP
header will be sent if ddpAddress.aNet is 0 or equal to the network number of the local
network.

When a DDP datagram is received, ddpDataPtr points to a buffer in which the incoming data can
be stored and ddpReqCount indicates the size of the buffer in bytes. The number of bytes
actually sent or received is returned in the ddpActCount field. DDPAddress is the internet address
of the socket from which the datagram was sent.

DDPType is the DDP protocol type of the datagram, and ddpSocket specifies the socket that will
receive the datagram.

Warn ing : DDP protocol types 1 through 15 and DDP socket numbers 1 through 63 are
reserved by Apple for internal use. Socket numbers 64 through 127 are available for

Calling the AppleTalk Manager from Pascal 11-281

WRITELN('Error while closing the protocol type');
END;

Inside Macintosh

experimental use. Use of these experimental sockets isn't recommended for commercial
products, since there's no mechanism for eliminating conflicting usage by different
developers.

Using DDP

Before it can use a socket, the program must call DDPOpenSocket, which adds a socket and its
socket listener to the socket table. When a program is finished using a socket, call
DDPCloseSocket, which removes the socket's entry from the socket table. To send a datagram
via DDP, call DDPWrite. To receive datagrams, you have two choices:

• Call DDPOpenSocket with NIL for sktListener (see below); this installs the default socket
listener provided by the AppleTalk Manager. Then call DDPRead to receive datagrams.

• Write your own socket listener and call DDPOpenSocket to install it. DDP will call your
socket listener for every incoming datagram for that socket; in this case, you shouldn't call
DDPRead. For information on how to write a socket listener, see the section "Protocol
Handlers and Socket Listeners".

To cancel a previously issued DDPRead call (provided it's still in the queue), call DDPRdCancel.

DDP Routines

FUNCTION DDPOpenSocke t (VAR t h e S o c k e t : B y t e ; s k t L i s t e n e r : P t r) :
O S E r r ; [Not in ROM]

DDPOpenSocket adds a socket and its socket listener to the socket table. If theSocket is nonzero,
it must be in the range 64 to 127, and it specifies the socket's number; if theSocket is 0,
DDPOpenSocket dynamically assigns a socket number in the range 128 to 254, and returns it in
theSocket. SktListener contains a pointer to the socket listener; if it's NIL, the default listener
will be used.

If you're using the default socket listener, you must then call DDPRead to receive a datagram (in
order to specify buffer space for the default socket listener). If, however, you've written your
own socket listener and sktListener points to it, your listener will provide buffers for receiving
datagrams and you shouldn't use DDPRead calls.

DDPOpenSocket will return ddpSktErr if you pass the number of an already opened socket, if
you pass a socket number greater than 127, or if the socket table is full.

Note: The range of static socket numbers 1 through 63 is reserved by Apple for internal
use. Socket numbers 64 through 127 are available for unrestricted experimental use.

Result codes noErr No error
ddpSktErr Socket error

FUNCTION DDPCloseSocket (theSocket: Byte) : OSErr; [NotinROM]

DDPCloseSocket removes the entry of the specified socket from the socket table and cancels all
pending DDPRead calls that have been made for that socket. If you pass a socket number of 0, or
if you attempt to close a socket that isn't open, DDPCloseSocket will return ddpSktErr.

11-282 Calling the AppleTalk Manager from Pascal

The AppleTalk Manager

Result codes noErr No error
ddpSktErr Socket error

FUNCTION DDPWrite (abRecord: ABRecHandle; doChecksum: BOOLEAN;
async: BOOLEAN) : OSErr; [NotinROM]

ABusRecord
<— abOpcode {always tDDPWrite}

abResult {result code}
abUserReference {for your use}

—> ddpType {DDP protocol type}
—» ddpSocket {source socket number}
- » ddpAddress {destination socket address}
-» ddpReqCount {length of datagram data}
-» ddpDataPtr {pointer to buffer}

DDPWrite sends a datagram to another socket DDPReqCount and ddpDataPtr specify the length
and location of the data to send. The ddpType field indicates the DDP protocol type of the frame,
and ddpAddress is the complete internet address of the socket to which the datagram should be
sent. DDPSocket specifies the socket from which the datagram should be sent. Datagrams sent
over the internet to a node on an AppleTalk network different from the sending node's network
have an optional software checksum to detect errors that might occur inside the intermediate
bridges. If doChecksum is TRUE, DDPWrite will compute this checksum; if it's FALSE, this
software checksum feature is ignored.

Note: The destination socket can't be in the same node as the program making the
DDPWrite call.

Result codes noErr No error
ddpLenErr Datagram length too big
ddpSktErr Source socket not open
noBridgeErr No bridge found

FUNCTION DDPRead (abRecord: ABRecHandle; retCksumErrs: BOOLEAN;
async: BOOLEAN) : OSErr; [NotinROM]

ABusRecord
<— abOpcode {always tDDPRead}
<— abResult {result code}
—» abUserReference {for your use}
<— ddpType {DDP protocol type}
-> ddpSocket {listening socket number}
<r- ddpAddress {source socket address}
- » ddpReqCount {buffer size in bytes}
<— ddpActCount {number of bytes actually received}
-> ddpDataPtr {pointer to buffer}
<- ddpNodelD {original destination node ID}

Calling the AppleTalk Manager from Pascal 11-283

Inside Macintosh

DDPRead receives a datagram from another socket. The size and location of the buffer that will
receive the data are specified by ddpReqCount and ddpDataPtr. If the buffer isn't large enough to
hold all of the incoming frame data, the extra bytes will be discarded and bufiSmallErr will be
returned. The number of bytes actually received is returned in ddpActCount. DDPSocket
specifies the socket to receive the datagram (the "listening" socket). The node to which the packet
was sent is returned in ddpNodelD; if the packet was broadcast ddpNodelD will contain 255.
The address of the socket that sent the packet is returned in ddpAddress. If retCksumErrs is
FALSE, DDPRead will discard any packets received with an invalid checksum and inform the
caller of the error. If retCksumErrs is TRUE, DDPRead will deliver all packets, whether or not
the checksum is valid; it will also notify the caller when there's a checksum error.

Note: The sender of the datagram must be in a different node from the receiver. You
should issue DDPRead calls only for receiving datagrams for sockets opened with the
default socket listener; see the description of DDPOpenSocket.

Note: If the buffer provided isn't large enough to hold all of the incoming frame data
(buf2SmallErr), the checksum can't be calculated; in this case, DDPRead will deliver
packets even if retCksumErrs is FALSE.

Result codes noErr No error
buf2SmallErr Datagram too large for buffer
cksumErr Checksum error
ddpLenErr Datagram length too big
ddpSktErr Socket error
readQErr Invalid socket or socket not found in table

FUNCTION DDPRdCancel (abRecord: ABRecHandle) : OSErr; [NotinROM]

Given the handle to the ABusRecord of a previously made DDPRead call, DDPRdCancel
dequeues the DDPRead call, provided that a packet satisfying the DDPRead hasn't already
arrived. DDPRdCancel returns noErr if the DDPRead call is successfully removed from the
queue. If DDPRdCancel returns recNotFnd, check the abResult field of abRecord to verify that
the DDPRead has been completed and determine its outcome.

Result codes noErr No error
readQErr Invalid socket or socket not found in table
recNotFnd ABRecord not found in queue

Example

This example sends a DDP packet synchronously and waits asynchronously for a response.
Assume that both nodes are using a known socket number (in this case, 30) to receive packets.
Normally, you would want to use NBP to look up your destination's socket address.

i
11-284 Calling the AppleTalk Manager from Pascal

The AppleTalk Manager

VAR myABRecord: ABRecHandle;
myBuffer: PACKED ARRAY[0..599] OF CHAR; {buffer for both send and }

mySocket: Byte;
errCode,index,dataLen: INTEGER;
someText: Str255;

async,retCksumErrs,doChecksum: BOOLEAN;

BEGIN
errCode := MPPOpen;
IF errCode <> noErr
THEN

WRITELN('Error in opening AppleTalk')
{Maybe serial port B isn't available for use by AppleTalk}
BEGIN
{Call Memory Manager to allocate ABusRecord}
myABRecord := ABRecHandle(NewHandle(ddpSize));
mySocket := 30;
{Add mySocket to socket table and install default socket listener }
{ to service datagrams addressed to that socket. No packets }
{ addressed to mySocket will be received until we call DDPRead.}
errCode := DDPOpenSocket(mySocket,NIL);

IF errCode <> noErr
THEN

WRITELN('Error while opening the socket')
{Have we opened too many socket listeners? Remember that DDP }
{ uses two of them.}

BEGIN
{Prepare data to be sent}
someText := "This is a sample datagram';
dataLen := LENGTH(someText);
FOR index := 0 TO dataLen-1 DO {stuff buffer with packet data}

myBuffer[index] := someText[index+1];
async := FALSE;
WITH myABRecord A A DO {fill the parameters in the ABusRecord}

BEGIN
ddpType := 5;
ddpAddress.aNet := 0; {send on "our" network}
ddpAddress.aNode := 34;
ddpAddress.aSocket := mySocket;
ddpReqCount := dataLen;
ddpDataPtr := SmyBuffer;
END;

doChecksum := FALSE;
{If packet contains a DDP long header, compute checksum and insert }
{ it into the header.}
errCode := DDPWrite(myABRecord,doChecksum,async); {send packet}
{In the case of a sync call, errCode and the abResult field of }
{ myABRecord will contain the same result code. We can also reuse }
{ myABRecord, since we know whether the call has completed.}

{ receive}

ELSE

ELSE

Calling the AppleTalk Manager from Pascal 11-285

Inside Macintosh

IF errCode <> noErr
THEN

11-286 Calling the AppleTalk Manager from Pascal

WRITELN('Error while writing out the packet')
{Maybe the receiving node wasn't on-line}

ELSE
BEGIN
{We have sent out the packet and are now waiting for a }
{ response. We issue an async DDPRead call so that we }
{ don't "hang" waiting for a response that may not come. }
{ To cancel the async read call, we must close the socket }
{ associated with the call or call DDPRdCancel.}
async := TRUE;
retCksumErrs := TRUE; {return packets even if they have a }

{ checksum error}
WITH myABRecord'"""' DO

BEGIN
ddpSocket := mySocket;
ddpReqCount := 600; {our reception buffer is max size}
ddpDataPtr := QmyBuffer;
END;

{Wait for a packet asynchronously}
errCode := DDPRead(myABRecord,retCksumErrs,async);
IF errCode <> noErr

THEN
WRITELN('Error while trying to queue up a DDPRead')
{Was the socket listener installed correctly?}

ELSE
BEGIN
{We can either sit here in a loop and poll the }
{ abResult field or just exit our code and use the }
{ event mechanism to flag us when the packet arrives.}
CheckForMyEvent; {your procedure for checking for a }

{ network event}
{If there were no errors, a packet is inside the array }
{ mybuffer, the length is in ddpActCount, and the }
{ address of the sending socket is in ddpAddress. }
{ Process the packet received here and report any errors.}
errCode := DDPCloseSocket(mySocket); {we're done with it}
IF errCode <> noErr

THEN
WRITELN('Error while closing the socket');

END;
END;

END;
END;

END.

The AppleTalk Manager

AppleTalk Transaction Protocol

Data Structures

ATP calls use the following ABusRecord fields:

atpProto:
(atpSocket: Byte; {listening or responding socket number}
atpAddress: AddrBlock; {destination or source socket address}
atpReqCount: INTEGER; {request size or buffer size}
atpDataPtr: Ptr; {pointer to buffer}
atpRspBDSPtr: BDSPtr; {pointer to response BDS}
atpBitMap: BitMapType; {transaction bit map}
atpTransID: INTEGER; {transaction ID}
atpActCount: INTEGER; {number of bytes actually received}
atpUserData: LONGING- {user bytes}
atpXO: BOOLEAN; {exactly-once flag}
atpEOM: BOOLEAN; {end-of-message flag}
atpTimeOut: Byte; {retry timeout interval in seconds}
atpRetries: Byte; {maximum number of retries}
atpNumBufs: Byte; {number of elements iri response BDS or }

{ number of response packets sent}
atpNumRsp: Byte; {number of response packets received or }

{ sequence number}
atpBDSSize: Byte; {number of elements in response BDS}
atpRspUData: LONGINT; {user bytes sent or received in transaction }

{ response}
atpRspBuf: Ptr; {pointer to response message buffer}
atpRspSize: INTEGER) ; {size of response message buffer}

The socket receiving the request or sending the response is identified by atpSocket. ATPAddress
is the address of either the destination or the source socket of a transaction, depending on whether
the call is sending or receiving data, respectively. ATPDataPtr and atpReqCount specify the
location and size (in bytes) of a buffer that either contains a request or will receive a request. The
number of bytes actually received in a request is returned in atpActCount. ATPTransID specifies
the transaction ID. The transaction bit map is contained in atpBitMap, in the form:

TYPE BitMapType = PACKED ARRAY[0..7] OF BOOLEAN;

Each bit in the bit map corresponds to one of the eight possible packets in a response. For
example, when a request is made for which five response packets are expected, the bit map sent
is binary 00011111 or decimal 31. If the second packet in the response is lost, the requesting
socket will retransmit the request with a bit map of binary 00000010 or decimal 2.

ATPUserData contains the user bytes of an ATP header. ATPXO is TRUE if the transaction is to
be made with exactly-once service. ATPEOM is TRUE if the response packet is the last packet of
a transaction. If the number of responses is less than the number that were requested, then
ATPEOM must also be TRUE. ATPNumRsp contains either the number of responses received
or the sequence number of a response.

The timeout interval in seconds and the maximum number of times that a request should be made
are indicated by atpTimeOut and atpRetries, respectively.

Calling the AppleTalk Manager from Pascal 11-287

Inside Macintosh

Note: Setting atpRetries to 255 will cause the request to be retransmitted indefinitely, until
a full response is received or the call is canceled.

ATP provides a data structure, known as a response buffer data structure (response BDS), for
allocating buffer space to receive the datagram(s) of the response. A response BDS is an array of
one to eight elements. Each BDS element defines the size and location of a buffer for receiving
one response datagram; they're numbered 0 to 7 to correspond to the sequence numbers of the
response datagrams.

ATP needs a separate buffer for each response datagram expected, since packets may not arrive in
the proper sequence. It does not, however, require you to set up and use the BDS data structure
to describe the response buffers; if you don't, ATP will do it for you. Two sets of calls are
provided for both requests and responses; one set requires you to allocate a response BDS and the
other doesn't.

Assembly-language note : The two calls that don't require you to define a BDS data
structure (ATPRequest and ATPResponse) are available in Pascal only.

The number of BDS elements allocated (in other words, the maximum number of datagrams that
the responder can send) is indicated in the TReq by an eight-bit bit map. The bits of this bit map
are numbered 0 to 7 (the least significant bit being number 0); each bit corresponds to the
response datagram with the respective sequence number.

ATPRspBDSPtr and atpBDSSize indicate the location and number of elements in the response
BDS, which has the following structure:

TYPE BDSElement =
RECORD

buffSize: INTEGER;
buffPtr: Ptr;
dataSize: INTEGER;
userBytes: LONGINT

END;

{buffer size in bytes}
{pointer to buffer}
{number of bytes actually received}
{user bytes}

BDSType = ARRAY[0..7] OF BDSElement; {response BDS}
BDSPtr - "BDSType;

ATPNumBufs indicates the number of elements in the response BDS that contain information. In
most cases, you can allocate space for your variables of BDSType statically with a VAR
declaration. However, you can allocate only the minimum space required by your ATP calls by
doing the following:

VAR myBDSPtr: BDSPtr;

numOfBDS := 3; {number of elements needed}
myBDSPtr := BDSPtr(NewPtr(SIZEOF(BDSElement) * numOfBDS));

11-288 Calling the AppleTalk Manager from Pascal

The AppleTalk Manager

Note: The userBytes field of the BDSElement and the atpUserData field of the
ABusRecord represent the same information in the datagram. Depending on the ATP call
made, one or both of these fields will be used.

Using ATP

Before you can use ATP on a Macintosh 128K, the .ATP driver must be read from the system
resource file via an ATPLoad call. The .ATP driver loads itself into the application heap and
installs a task into the vertical retrace queue.

Warning: When another application starts up, the application heap is reinitialized; on a
Macintosh 128K, this means that the ATP code is lost (and must be reloaded by the next
application).

When you're through using ATP on a Macintosh 128K, call ATPUnload—the system will be
returned to the state it was in before the .ATP driver was opened.

On a Macintosh 512K or XL, the .ATP driver will have been loaded into the system heap either at
system startup or upon execution of MPPOpen or ATPLoad. ATPUnload has no effect on a
Macintosh 512K or XL.

To send a transaction request, call ATPSndRequest or ATPRequest. The .ATP driver will
automatically select and open a socket through which the request datagram will be sent, and
through which the response datagrams will be received. The transaction requester can't specify
the number of this socket. However, the requester must specify the full network address
(network number, node ID, and socket number) of the socket to which the request is to be sent.
This socket is known as the responding socket, and its address must be known in advance by the
requester.

Note: The requesting and responding sockets can't be in the same node.

At the responder's end, before a transaction request can be received, a responding socket must be
opened, and the appropriate calls be made, to receive a request. To do this, the responder first
makes an ATPOpenSocket call which allows the responder to specify the address (or part of it) of
the requesters from whom it's willing to accept transaction requests. Then it issues an
ATPGetRequest call to provide ATP with a buffer for receiving a request; when a request is
received, ATPGetRequest is completed. The responder can queue up several ATPGetRequest
calls, each of which will be completed as requests are received.

Upon receiving a request, the responder performs the requested operation, and then prepares the
information to be returned to the requester. It then calls ATPSndRsp (or ATPResponse) to send
the response. Actually, the responder can issue the ATPSndRsp call with only part (or none) of
the response specified. Additional portions of the response can be sent later by calling
ATPAddRsp.

The ATPSndRsp and ATPAddRsp calls provide flexibility in the design (and range of types) of
transaction responders. For instance, the responder may, for some reason, be forced to send the
responses out of sequence. Also, there might be memory constraints that force sending the
complete transaction response in parts. Even though eight response datagrams might need to be
sent, the responder might have only enough memory to build one datagram at a time. In this
case, it would build the first response datagram and call ATPSndRsp to send it. It would then
build the second response datagram in the same buffer and call ATPAddRsp to send it; and so on,
for the third through eighth response datagrams.

Calling the AppleTalk Manager from Pascal 11-289

Inside Macintosh

A responder can close a responding socket by calling ATPCloseSocket. This call cancels all
pending ATP calls for that socket, such as ATPGetRequest, ATPSndRsp, and ATPResponse.

For exactly-once transactions, the ATPSndRsp and ATPAddRsp calls don't terminate until the
entire transaction has completed (that is, the responding end receives a release packet, or the
release timer has expired).

To cancel a pending, asynchronous ATPSndRequest or ATPRequest call, call ATPReqCancel.
To cancel a pending, asynchronous ATPSndRsp or ATPResponse call, call ATPRspCancel.
Pending asynchronous ATPGetRequest calls can be canceled only by issuing the
ATPCloseSocket call, but that will cancel all outstanding calls for that socket.

Warning: You cannot reuse a variable of type ABusRecord passed to an ATP routine
until the entire transaction has either been completed or canceled.

ATP Routines

FUNCTION ATPLoad : OSErr; [Not in ROM]

ATPLoad first verifies that the .MPP driver is loaded and running. If it isn't, ATPLoad verifies
that port B is configured for AppleTalk and isn't in use, and then loads MPP into the system
heap.

ATPLoad then loads the .ATP driver, unless it's already in memory. On a Macintosh 128K,
ATPLoad reads the .ATP driver from the system resource file into the application heap; on a
Macintosh 512K or XL, ATP is read into the system heap.

Note: On a Macintosh 512K or XL, ATPLoad and MPPOpen perform essentially the
same function.

Result codes noErr No error
portlnUse Port B is already in use
portNotCf Port B not configured for AppleTalk

FUNCTION ATPUnload : OSErr; [NotinROM]

ATPUnload makes the .ATP driver purgeable; the space isn't actually released by the Memory
Manager until necessary.

Note: This call applies only to a Macintosh 128K; on a Macintosh 512K or Macintosh
XL, ATPUnload has no effect.

Result codes noErr No error

FUNCTION ATPOpenSocket (addrRcvd: AddrBlock; VAR atpSocket: Byte)
: OSErr; [Not in ROM]

ATPOpenSocket opens a socket for the purpose of receiving requests. ATPSocket contains the
socket number of the socket to open; if it's 0, a number is dynamically assigned and returned in
atpSocket. AddrRcvd contains a filter of the sockets from which requests will be accepted. A 0
in the network number, node ID, or socket number field of the addrRcvd record acts as a "wild

11-290 Calling the AppleTalk Manager from Pascal

The AppleTalk Manager

card"; for instance, a 0 in the socket number field means that requests will be accepted from all
sockets in the node(s) specified by the network and node fields.

Result codes noErr No error
tooManySkts Socket table full
noDataArea Too many outstanding ATP calls

Note: If you're only going to send requests and receive responses to these requests, you
don't need to open an ATP socket. When you make the ATPSndRequest or ATPRequest
call, ATP automatically opens a dynamically assigned socket for that purpose.

FUNCTION ATPCloseSocket (atpSocket: Byte) : OSErr; [Not in ROM]

ATPCloseSocket closes the responding socket whose number is specified by atpSocket. It
releases the data structures associated with all pending, asynchronous calls involving that socket;
these pending calls are completed immediately and return the result code sktClosed.

Result codes noErr No error
noDataArea Too many outstanding ATP calls

FUNCTION ATPSndRequest (abRecord: ABRecHandle; async: BOOLEAN) :
OSErr ; [Not in ROM]

ABusRecord
<— abOpcode {always tATPSndRequest}
<— abResult {result code}

abUserReference {for your use}
atpAddress {destination socket address}

—> atpReqCount {request size in bytes}
-> atpDataPtr {pointer to buffer}
—» atpRspBDSPtr {pointer to response BDS}
—> atpUserData {user bytes}
—> atpXO {exactly-once flag}

atpEOM {end-of-message flag}
- » atpTimeOut {retry timeout interval in seconds}
- » atpRetries {maximum number of retries}
—> atpNumBufs {number of elements in response BDS}
•e- atpNumRsp {number of response packets actually received}

ATPSndRequest sends a request to another socket. ATP Address is the internet address of the
socket to which the request should be sent. ATPDataPtr and atpReqCount specify the location
and size of a buffer that contains the request information to be sent ATPUserData contains the
user bytes for the ATP header.

ATPSndRequest requires you to allocate a response BDS. ATPRspBDSPtr is a pointer to the
response BDS; atpNumBufs indicates the number of elements in the BDS (this is also the
maximum number of response datagrams that will be accepted). The number of response
datagrams actually received is returned in atpNumRsp; if a nonzero value is returned, you can
examine the response BDS to determine which packets of the transaction were actually received.
If the number returned is less than requested, one of the following is true:

• Some of the packets have been lost and the retry count has been exceeded.

Calling the AppleTalk Manager from Pascal 11-291

Inside Macintosh

• ATPEOM is TRUE; this means that the response consisted of fewer packets than were
expected, but that all packets sent were received (the last packet came with the atpEOM
flag set).

ATPTimeOut indicates the length of time that ATPSndRequest should wait for a response before
retransmitting the request. ATPRetries indicates the maximum number of retries ATPSndRequest
should attempt. ATPXO should be TRUE if you want the request to be part of an exacdy-once
transaction.

ATPSndRequest completes when either the transaction is completed or the retry count is
exceeded.

Result codes noErr No error
reqFailed Retry count exceeded
tooManyReqs Too many concurrent requests
noDataArea Too many outstanding ATP calls

FUNCTION ATPRequest (abRecord: ABRecHandle; async: BOOLEAN) :
OSErr; [NotinROM]

ABusRecord

«- abOpcode {always tATPRequest}
<— abResult {result code}
—> abUserReference {for your use}
—» atpAddress {destination socket address}
—> atpReqCount {request size in bytes}
—> atpDataPtr {pointer to buffer}
<— atpActOount {number of bytes actually received}
—» atpUserData {user bytes}
—» atpXO {exactly-once flag}

atpEOM {end-of-message flag}
—> atpTimeOut {retry timeout interval in seconds}
-» atpRetries {maximum number of retries}
<- atpRspUData {user bytes received in transaction response}
-> atpRspBuf {pointer to response message buffer}
-> atpRspSize {size of response message buffer}

ATPRequest is functionally analogous to ATPSndRequest. It sends a request to another socket,
but doesn't require the caller to set up and use the BDS data structure to describe the response
buffers. ATP Address indicates the socket to which the request should be sent. ATPDataPtr and
atpReqCount specify the location and size of a buffer that contains the request information to be
sent. ATPUserData contains the user bytes to be sent in the request's ATP header. ATPTimeOut
indicates the length of time that ATPRequest should wait for a response before retransmitting the
request. ATPRetries indicates the maximum number of retries ATPRequest should attempt.

To use this call, you must have an area of contiguous buffer space that's large enough to receive
all expected datagrams. The various datagrams will be assembled in this buffer and returned to
you as a complete message upon completion of the transaction. The location and size of this
buffer are passed in atpRspBuf and atpRspSize. Upon completion of the call, the size of the
received response message is returned in atpActCount. The user bytes received in the ATP
header of the first response packet are returned in atpRspUData. ATPXO should be TRUE if you
want the request to be part of an exacdy-once transaction.

11-292 Calling the AppleTalk Manager from Pascal

The AppleTalk Manager

Although you don't provide a BDS, ATPRequest in fact creates one and calls the .ATP driver (as
in an ATPSndRequest call). For this reason, the abRecord fields atpRspBDSPtr and
atpNumBufs are used by ATPRequest; you should not expect these fields to remain unaltered
during or after the function's execution.

For ATPRequest to receive and correctly deliver the response as a single message, the responding
end must, upon receiving the request (with an ATPGetRequest call), generate the complete
response as a message in a single buffer and then call ATPResponse.

Note: The responding end could also use ATPSndRsp and ATPAddRsp provided that
each response packet (except the last one) contains exactly 578 ATP data bytes; the last
packet in the response can contain less than 578 ATP data bytes. Also, if this method is
used, only the ATP user bytes of the first response packet will be delivered to the
requester; any information in the user bytes of the remaining response packets will not be
delivered.

ATPRequest completes when either the transaction is completed or the retry count is exceeded.

Result codes noErr No error
reqFailed Retry count exceeded
tooManyReqs Too many concurrent requests
sktClosed Socket closed by a cancel call
noDataArea Too many outstanding ATP calls

FUNCTION ATPReqCancel (abRecord: ABRecHandle; async: BOOLEAN) :
OSErr; [Not in ROM]

Given the handle to the ABusRecord of a previously made ATPSndRequest or ATPRequest call,
ATPReqCancel dequeues the ATPSndRequest or ATPRequest call, provided that the call hasn't
already completed. ATPReqCancel returns noErr if the ATPSndRequest or ATPRequest call is
successfully removed from the queue. If it returns cbNotFound, check the abResult field of
abRecord to verify that the ATPSndRequest or ATPRequest call has completed and determine its
outcome.

Result codes noErr No error
cbNotFound ATP control block not found

FUNCTION ATPGetRequest (abRecord: ABRecHandle; async: BOOLEAN) :
OSErr; [Not in ROM]

ABusRecord
abOpcode {always tATPGetRequest}

<— abResult {result code}
—> abUserReference {for your use}

atpSocket {listening socket number}
<— atpAddress {source socket address}

atpReqCount {buffer size in bytes}
-» atpDataPtr {pointer to buffer}
<— atpBitMap {transaction bit map}
<r~ atpTransID {transaction ID}

Calling the AppleTalk Manager from Pascal 11-293

Inside Macintosh

<— atpActCount {number of bytes actually received}
<— atpUserData {user bytes}
<— atpXO {exacdy-once flag}

ATPGetRequest sets up the mechanism to receive a request sent by either an ATPSndRequest or
an ATPRequest call. ATPSocket contains the socket number of the socket that should listen for a
request; this socket must already have been opened by calling ATPOpenSocket. The address of
the socket from which the request was sent is returned in atpAddress. ATPDataPtr specifies a
buffer to store the incoming request; atpReqCount indicates the size of the buffer in bytes. The
number of bytes actually received in the request is returned in atpActCount. ATPUserData
contains the user bytes from the ATP header. The transaction bit map is returned in atpBitMap.
The transaction ID is returned in atpTransID. ATPXO will be TRUE if the request is part of an
exacdy-once transaction.

ATPGetRequest completes when a request is received. To cancel an asynchronous
ATPGetRequest call, you must call ATPCloseSocket, but this cancels all pending calls involving
that socket.

Result codes noErr No error
badATPSkt Bad responding socket
sktClosed Socket closed by a cancel call

FUNCTION ATPSndRsp (abRecord: ABRecHandle; async: BOOLEAN) :
OSErr; [NotinROM]

ABusRecord
<— abOpcode {always tATPSdRsp}

abResult {result code}
—> abUserReference {for your use}
—> atpSocket {responding socket number}
—> atpAddress {destination socket address}
—> atpRspBDSPtr {pointer to response BDS}
—> atpTransID {transaction ID}
- 4 atpEOM {end-of-message flag}
-» atpNumBufs {number of response packets being sent}
-* atpBDSSize {number of elements in response BDS}

ATPSndRsp sends a response to another socket. ATPSocket contains the socket number from
which the response should be sent and atpAddress contains the internet address of the socket to
which the response should be sent ATPTransID must contain the transaction ID. ATPEOM is
TRUE if the response BDS contains the final packet in a transaction composed of a group of
packets and the number of packets in the response is less than expected. ATPRspBDSPtr points
to the buffer data structure containing the responses to be sent. ATPBDSSize indicates the
number of elements in the response BDS, and must be in the range 1 to 8. ATPNumBufs
indicates the number of response packets being sent with this call, and must be in the range
0 to 8.

Note: In some situations, you may want to send only part (or possibly none) of your
response message back immediately. For instance, you might be requested to send back
seven disk blocks, but have only enough internal memory to store one block. In this case,

11-294 Calling the AppleTalk Manager from Pascal

The AppleTalk Manager

set atpBDSSize to 7 (total number of response packets), atpNumBufs to 0 (number of
response packets currently being sent), and call ATPSndRsp. Then as you read in one
block at a time, call ATPAddRsp until all seven response datagrams have been sent.

During exactly-once transactions, ATPSndRsp won't complete until the release packet is received
or the release timer expires.

Result codes noErr No error
badATPSkt Bad responding socket
noRelErr No release received
sktClosed Socket closed by a cancel call
noDataArea Too many outstanding ATP calls
badBuffNum Bad sequence number

FUNCTION ATPAddRsp (abRecord: ABRecHandle) : OSErr; [NotinROM]

ABusRecord
<— abOpcode {always tATPAddRsp}
<— abResult {result code}
-» abUserReference {for your use}
-» atpSocket {responding socket number}
-» atpAddress {destination socket address}
—> atpReqCount {buffer size in bytes}
—> atpDataPtr {pointer to buffer}
—> atpTransID {transaction ID}
—» atpUserData {user bytes}
—» atpEOM {end-of-message flag}

atpNumRsp {sequence number}

ATPAddRsp sends one additional response packet to a socket that has already been sent the initial
part of a response via ATPSndRsp. ATPSocket contains the socket number from which the
response should be sent and atpAddress contains the internet address of the socket to which the
response should be sent. ATPTransID must contain the transaction ID. ATPDataPtr and
atpReqCount specify the location and size of a buffer that contains the information to send;
atpNumRsp is the sequence number of the response. ATPEOM is TRUE if this response
datagram is the final packet in a transaction composed of a group of packets. ATPUserData
contains the user bytes to be sent in this response datagram's ATP header.

Note: No BDS is needed with ATPAddRsp because all pertinent information is passed
within the record.

Result codes noErr No error
badATPSkt Bad responding socket
badBuffNum Bad sequence number
noSendResp ATPAddRsp issued before ATPSndRsp
noDataArea Too many outstanding ATP calls

Calling the AppleTalk Manager from Pascal 11-295

Inside Macintosh

FUNCTION ATPResponse (abRecord: ABRecHandle; async: BOOLEAN) :
OSErr; [Not in ROM]

ABusRecord
abOpcode {always tATPResponse}

<r- abResult {result code}
-> abUserReference {for your use}
—> atpSocket {responding socket number}

atpAddress {destination socket address}
-> atpTransID {transaction ID)
—» atpRspUData {user bytes sent in transaction response}
—» atpRspBuf {pointer to response message buffer}
—> atpRspSize {size of response message buffer}

ATPResponse is functionally analogous to ATPSndRsp. It sends a response to another socket,
but doesn't require the caller to provide a BDS. ATPAddress must contain the complete network
address of the socket to which the response should be sent (taken from the data provided by an
ATPGetRequest call). ATPTransID must contain the transaction ID. ATPSocket indicates the
socket from which the response should be sent (the socket on which the corresponding
ATPGetRequest was issued). ATPRspBuf points to the buffer containing the response message;
the size of this buffer must be passed in atpRspSize. The four user bytes to be sent in the ATP
header of the first response packet are passed in atpRspUData. The last packet of the transaction
response is sent with the EOM flag set

Although you don't provide a BDS, ATPResponse in fact creates one and calls the .ATP driver
(as in an ATPSndRsp call). For this reason, the abRecord fields atpRspBDSPtr and atpNumBufs
are used by ATPResponse; you should not expect these fields to remain unaltered during or after
the function's execution.

During exactly-once transactions ATPResponse won't complete until the release packet is
received or the release timer expires.

Warn ing : The maximum permissible size of the response message is 4624 bytes.

Result codes noErr No error
badATPSkt Bad responding socket
noRelErr No release received
atpLenErr Response too big
sktClosed Socket closed by a cancel call
noDataArea Too many outstanding ATP calls

FUNCTION ATPRspCancel (abRecord: ABRecHandle; async: BOOLEAN) :
OSErr; [NotinROM]

Given the handle to the ABusRecord of a previously made ATPSndRsp or ATPResponse call,
ATPRspCancel dequeues the ATPSndRsp or ATPResponse call, provided that the call hasn't
already completed. ATPRspCancel returns noErr if the ATPSndRsp or ATPResponse call is
successfully removed from the queue. If it returns cbNotFound, check the abResult field of

I abRecord to verify that the ATPSndRsp or ATPResponse call has completed and determine its
j outcome.

i
i

11-296 Calling the AppleTalk Manager from Pascal

The AppleTalk Manager

Result codes noErr No error
cbNotFound ATP control block not found

Example

This example shows the requesting side of an ATP transaction that asks for a 512-byte disk block
from the responding end. The block number of the file is a byte and is contained in myBuffer[0].

VAR myABRecord.: ABRecHandle;
myBDSPtr: BDSPtr;
myBuffer: PACKED ARRAY[0..511] OF CHAR;
errCode: INTEGER;
async: BOOLEAN;

BEGIN
errCode := ATPLoad;
IF errCode <> noErr
THEN

WRITELN('Error in opening AppleTalk')
{Maybe serial port B isn't available for use by AppleTalk}

ELSE
BEGIN
{Prepare the BDS; allocate space for a one-element BDS}
myBDSPtr := BDSPtr(NewPtr(SIZEOF(BDSElement)));
WITH myBDSPtrA[0] DO

BEGIN
buffSize := 512; {size of our buffer used in reception}
buffPtr := SmyBuffer; {pointer to the buffer}
END;

{Prepare the ABusRecord}
myBuffer[0] := CHR(l); {requesting disk block number 1}
myABRecord := ABRecHandle(NewHandle(atpSize));
WITH myABRecord"^ DO

BEGIN
atpAddress.aNet := 0;
atpAddress.aNode := 30; {we probably got this from an NBP call}
atpAddress.aSocket := 15; {socket to send request to}
atpReqCount := 1; {size of request data field (disk block #)}
atpDataPtr := GmyBuffer; {ptr to request to be sent}
atpRspBDSPtr := @myBDSPtr;
atpUserData := 0; {for your use}
atpXO := FALSE; {at-least-once service}
atpTimeOut := 5; {5-second timeout}
atpRetries := 3; {3 retries; request will be sent 4 times max}
atpNumBufs := 1; {we're only expecting 1 block to be returned}
END;

async := FALSE;
{Send the request and wait for the response}
errCode := ATPSndRequest(myABRecord,async);

Calling the AppleTalk Manager from Pascal 11-297

Inside Macintosh

IF errCode <> noErr
THEN

Name-Binding Protocol

Data Structures

NBP calls use the following fields:

nbpProto:
(nbpEntityPtr:
nbpBufPtr:
nbpBufSize:
nbpDataField:

nbpAddress:

EntityPtr;
Ptr;
INTEGER;
INTEGER;

AddrBlock;

{pointer to entity name}
{pointer to buffer}
{buffer size in bytes}
{number of addresses or socket
{ number}
{socket address}

nbpRetransmitlnfo: RetransType); {retransmission information}

When data is sent via NBP, nbpBufSize indicates the size of the data in bytes and nbpBufPtr
points to a buffer containing the data. When data is received via NBP, nbpBufPtr points to a
buffer in which the incoming data can be stored and nbpBufSize indicates the size of the buffer in
bytes. NBPAddress is used in some calls to give the internet address of a named entity. The
AddrBlock data type is described above under "Datagram Delivery Protocol".

NBPEntityPtr points to a variable of type Entity Name, which has the following data structure:

TYPE EntityName •• RECORD
objStr:
typeStr:
zoneStr:

END;

Str32;
Str32;
Str32

{object}
{type}
{zone}

EntityPtr = AEntityName;

Str32 = STRING[32];

NBPRetransmiflnfo contains information about the number of times a packet should be
transmitted and the interval between retransmissions:

TYPE RetransType =
PACKED RECORD

retranslnterval: Byte; {retransmit interval in 8-tick units}
retransCount: Byte {total number of attempts}

END;

11-298 Calling the AppleTalk Manager from Pascal

WRITELN('An error occurred in the ATPSndRequest call')
ELSE

BEGIN
{The disk block requested is now in myBuffer. We can verify }
{ that atpNumRsp contains 1, meaning one response received.}

END;
END;

END.

The AppleTalk Manager

RetransCount contains the total number of times a packet should be transmitted, including the first
transmission. If retransCount is 0, the packet will be transmitted a total of 255 times.

Using NBP

On a Macintosh 128K, the AppleTalk Manager's NBP code is read into the application heap when
any one of the NBP (Pascal) routines is called; you can call the NBPLoad function yourself if
you want to load the NBP code explicitly. When you're finished with the NBP code and want to
reclaim the space it occupies, call NBPUnload. On a Macintosh 512K or XL, the NBP code is
read in when the .MPP driver is loaded.

Note: When another application starts up, the application heap is reinitialized; on a
Macintosh 128K, this means that the NBP code is lost (and must be reloaded by the next
application).

When an entity wants to communicate via an AppleTalk network, it should call NBPRegister to
place its name and internet address in the names table. When an entity no longer wants to
communicate on the network, or is being shut down, it should call NBPRemove to remove its
entry from the names table.

To determine the address of an entity you know only by name, call NBPLookup, which returns a
list of all entities with the name you specify. Call NBPExtract to extract entity names from the
list

If you already know the address of an entity, and want only to confirm that it still exists, call
NBPConfirm. NBPConfirm is more efficient than NBPLookup in terms of network traffic.

NBP Routines

FUNCTION NBPRegister (abRecord: ABRecHandle; async: BOOLEAN)
OSErr ; [Not in ROM]

ABusRecord

<— abOpcode
<— abResult
—» abUserReference
- » nbpEntityPtr

nbpBufPtr
—> nbpBufSize
—> nbpAddress.aSocket
—> nbpRetransmitlnfo

{always tNBPRegister}
{result code}
{for your use}
{pointer to entity name}
{pointer to buffer}
{buffer size in bytes}
{socket address}
{retransmission information}

NBPRegister adds the name and address of an entity to the node's names table. NBPEntityPtr
points to a variable of type EntityName containing the entity's name. If the name is already
registered, NBPRegister returns the result code nbpDuplicate. NBP Address indicates the socket
for which the name should be registered. NBPBufPtr and nbpBufSize specify the location and
size of a buffer for NBP to use internally.

While the variable of type EntityName is declared as three 32-byte strings, only the actual
characters of the name are placed in the buffer pointed to by nbpBufPtr. For this reason,

Calling the AppleTalk Manager from Pascal 11-299

Inside Macintosh

nbpBufSize needs only to be equal to the actual length of the name, plus an additional 12 bytes
for use by NBP.

Warning: This buffer must not be altered or released until the name is removed from the
names table via an NBPRemove call. If you allocate the buffer through a NewHandle call,
you must lock it as long as the name is registered.

Warning: The zone field of the entity name must be set to the meta-character "*".

Result codes noErr No error
nbpDuplicate Duplicate name already exists

FUNCTION NBPLookup (abRecord: ABRecHandle; async: BOOLEAN) :
OSErr; [NotinROM]

ABusRecord
<— abOpcode {always tNBPLookup}
<- abResult {result code}
—> abUserReference {for your use}
—> nbpEntityPtr {pointer to entity name}
—> nbpBufPtr {pointer to buffer}
-» ribpBufSize {buffer size in bytes}
<-» nbpDataField {number of addresses received}
-» ribpRetransmitlnfo {retransmission information}

NBPLookup returns the addresses of all entities with a specified name. NBPEntityPtr points to a
variable of type Entity Name containing the name of the entity whose address should be returned.
(Meta-characters are allowed in the entity name.) NBPBufPtr and nbpBufSize contain the
location and size of an area of memory in which the entity names and their corresponding
addresses should be returned. NBPDataField indicates the maximum number of matching names
to find addresses for; the actual number of addresses found is returned in nbpDataField.
NBPRetransmiflnfo contains the retry interval and the retry count.

When specifying nbpBufSize, for each NBP tuple expected, allow space for the actual characters
of the name, the address, and four bytes for use by NBP.

Result codes noErr No error
nbpBuffOvr Buffer overflow

FUNCTION NBPExtract (theBuffer: Ptr; numlnBuf: INTEGER; whichOne:
INTEGER; VAR abEntity: EntityName; VAR address:
AddrBlock) : OSErr; [NotinROM]

NBPExtract returns one address from the list of addresses returned by NBPLookup. TheBuffer
and numlnBuf indicate the location and number of tuples in the buffer. WhichOne specifies
which one of the tuples in the buffer should be returned in the abEntity and address parameters.

Result codes noErr No error
extractErr Can't find tuple in buffer

i
i
| 11-300 Calling the AppleTalk Manager from Pascal

The AppleTalk Manager

FUNCTION NBPConfirm (abRecord: ABRecHandle; async: BOOLEAN) :
OSErr ; [Not in ROM]

abOpcode {always tNBPConfirm}
<— abResult {result code}
—» abUserReference {for your use}
-> nbpEntityPtr {pointer to entity name}
<— nbpDataField {socket number}
-> nbpAddress {socket address}
- » nbpRetransmitlnfo {retransmission information}

NBPConfirm confirms that an entity known by name and address still exists (is still entered in the
names directory). NBPEntityPtr points to a variable of type EntityName that contains the name to
confirm, and nbpAddress specifies the address to be confirmed. (No meta-characters are allowed
in the entity name.) NBPRetransmitlnfo contains the retry interval and the retry count. The
socket number of the entity is returned in nbpDataField. NBPConfirm is more efficient than
NBPLookup in terms of network traffic.

Result codes noErr No error
nbpConfDiff Name confirmed for different socket
nbpNoConfirm Name not confirmed

FUNCTION NBPRemove (abEntity: EntityPtr) : OSErr; [Not in ROM]

NBPRemove removes an entity name from the names table of the given entity's node.

Result codes noErr No error
nbpNotFound Name not found

FUNCTION NBPLoad : OSErr; [NotinROM]

On a Macintosh 128K, NBPLoad reads the NBP code from the system resource file into the
application heap. On a Macintosh 512K or XL, NBPLoad has no effect since the NBP code
should have already been loaded when the .MPP driver was opened. Normally you'll never need
to call NBPLoad, because the AppleTalk Manager calls it when necessary.

Result codes noErr No error

FUNCTION NBPUnload : OSErr; [NotinROM]

On a Macintosh 128K, NBPUnload makes the NBP code purgeable; the space isn't actually
released by the Memory Manager until necessary. On a Macintosh 512K or Macintosh XL,
NBPUnload has no effect.

Result codes noErr No error

Calling the AppleTalk Manager from Pascal 11-301

ABusRecord

Inside Macintosh

Example

This example of NBP registers our node as a print spooler, searches for any print spoolers
registered on the network, and then extracts the information for the first one found.

CONST mySocket = 20;

VAR myABRecord: ABRecHandle;
myEntity: EntityName;
ent ityAddr: AddrBlock;
nbpNamePtr: Ptr;
myBuffer: PACKED ARRAY[0..999] OF CHAR;
errCode: INTEGER;
async: BOOLEAN;

BEGIN
errCode := MPPOpen;
IF errCode <> noErr

THEN
WRITELN('Error in opening AppleTalk')
{Maybe serial port B isn't available for use by AppleTalk}

ELSE
BEGIN
{Call Memory Manager to allocate ABusRecord}
myABRecord := ABRecHandle(NewHandle(nbpSize));
{Set up our entity name to register}
WITH myEntity DO
BEGIN
objStr := 'Gene Station'; {we are called 'Gene Station' }
typeStr := 'PrintSpooler'; { and are of type 'PrintSpooler'}
zoneStr := '*';
{Allocate data space for the entity name (used by NBP)}
nbpNamePtr := NewPtr(LENGTH(objStr)+LENGTH(typeStr)+

LENGTH(zoneStr)+12);
END;

{Set up the ABusRecord for the NBPRegister call}
WITH myABRecord A A DO
BEGIN
nbpEntityPtr := SmyEntity;
nbpBufPtr := nbpNamePtr; {buffer used by NBP internally}
nbpBufSize := nbpNameBufSize;
nbpAddress.aSocket := mySocket; {socket to register us on}
nbpRetransmitlnfo.retransInterval := 8; {retransmit every 64 }
nbpRetransmitlnfo.retransCount := 3; { ticks and try 3 times}
END;

async := FALSE;
errCode := NBPRegister(myABRecord,async);
IF errCode <> noErr
THEN
WRITELN('Error occurred in the NBPRegister call')
{Maybe the name is already registered somewhere else on the }
{ network.}

11-302 Calling the AppleTalk Manager from Pascal

The AppleTalk Manager

ELSE
BEGIN

Miscellaneous Routines

FUNCTION GetNodeAddress (VAR myNode,myNet: INTEGER) : OSErr;
[NotinROM]

GetNodeAddress returns the current node ID and network number of the caller. If the .MPP
driver isn't installed, it returns noMPPErr. If my Net contains 0, this means that a bridge hasn't
yet been found.

{Now that we've registered our name, find others of type }
{ 'PrintSpooler'.}
WITH myEntity DO

BEGIN
objStr := ' = '; {any one of type }
typeStr := 'PrintSpooler*; { "PrintSpooler" }
zoneStr :='*'; {in our zone}
END;

WITH myABRecord'"""' DO
BEGIN
nbpEntityPtr := @myEntity;
nbpBufPtr := @myBuffer; {buffer to place responses in}
nbpBufSize := SIZEOF(myBuffer);
{The field nbpDataField, before the NBPLookup call, }
{ represents an approximate number of responses. After the }
{ call, nbpDataField contains the actual number of responses }
{ received.}
nbpDataField := 100; {we want about 100 responses back}
END;

errCode := NBPLookup(myABRecord,async); {make sync call}
IF errCode <> noErr
THEN
WRITELN('An error occurred in the NBPLookup')
{Did the buffer overflow?}

ELSE
BEGIN
{Get the first reply}
errCode : = NBPExtract (@mybuffer,myABRecord'"'A. nbpDataField, 1,

myEntity,entityAddr);
{The socket address and name of the entity are returned here. }
{ If we want all of them, we'll have to loop for each one in }
{ the buffer.}
IF errCode <> noErr
THEN
WRITELN('Error in NBPExtract');
{Maybe the one we wanted wasn't in the buffer}

END;
END;

END;
END.

Calling the AppleTalk Manager from Pascal 11-303

Inside Macintosh

Result codes noErr No error
noMPPErr MPP driver not installed

FUNCTION IsMPPOpen : BOOLEAN; [Not in ROM]

IsMPPOpen returns TRUE if the .MPP driver is loaded and running.

FUNCTION IsATPOpen : BOOLEAN; [NotinROM]

IsATPOpen returns TRUE if the A T P driver is loaded and running.

CALLING THE APPLETALK MANAGER FROM ASSEMBLY
LANGUAGE

This section discusses how to use the AppleTalk Manager from assembly language. Equivalent
Pascal information is given in the preceding section.

All routines make Device Manager Control calls. The description of each routine includes a list of
the fields needed. Some of these fields are part of the parameter block described in chapter 6;
additional fields are provided for the AppleTalk Manager.

The number next to each field name indicates the byte offset of the field from the start of the
parameter block pointed to by AO. An arrow next to each parameter name indicates whether it's
an input, output, or input/output parameter:

A r r o w Meaning
—> Parameter is passed to the routine

<— Parameter is returned by the routine

<-» Parameter is passed to and returned by the routine

All Device Manager Control calls return an integer result code of type OSErr in the ioResult field.
Each routine description lists all of the applicable result codes generated by the AppleTalk
Manager, along with a short description of what the result code means. Lengthier explanations of
all the result codes can be found in the summary at the end of this chapter. Result codes from
other parts of the Operating System may also be returned. (See Appendix A in Volume III for a
list of all result codes.)

Opening AppleTalk

Two tests are made at system startup to determine whether the .MPP driver should be opened at
that time. If port B is already in use, or isn't configured for AppleTalk, .MPP isn't opened until
explicitly requested by an application; otherwise it's opened at system startup.

It's the application's responsibility to test the availability of port B before opening AppleTalk.
Assembly-language programmers can use the Pascal calls MPPOpen and ATPLoad to open the
.MPP and .ATP drivers.

11-304 Calling the AppleTalk Manager from Pascal

The AppleTalk Manager

The global variable SPConfig is used for configuring the serial ports; it's copied from a byte in
parameter RAM (which is discussed in chapter 13). The low-order four bits of this variable
contain the current configuration of port B. The following use types are provided as global
constants for testing or setting the configuration of port B:

useFree .EQU 0 ;unconfigured
useATalk .EQU 1 ;configured for AppleTalk
useAsync .EQU 2 ;configured for the Serial Driver

The application shouldn't attempt to open AppleTalk unless SPConfig is equal to either useFree
or useATalk.

A second test involves the global variable PortBUse; the low-order four bits of this byte are used
to monitor the current use of port B. If PortBUse is negative, the program is free to open
AppleTalk. If PortBUse is positive, the program should test to see whether port B is already
being used by AppleTalk; if it is, the low-order four bits of PortBUse will be equal to the use type
useATalk.

The .MPP driver sets PortBUse to the correct value (useATalk) when it's opened and resets it to
$FF when it's closed. Bits 4-6 of this byte are used for driver-specific information; ATP uses bit
4 to indicate whether it's currently opened:

atpLoadedBit .EQU 4 ;set if ATP is opened

Example

The following code illustrates the use of the SPConfig and PortBUse variables.

OpenAbus

@10

@20

MOVE

SUB
MOVE.L
CLR.B
MOVE.B
BPL.S
MOVEQ

MOVE.B
AND .B
SUBQ.B

BGT.S
LEA
MOVE.L
_0pen
BNE.S
BRA.S
MOVEQ
AND .B
SUBQ.B
BNE.S
MOVEQ
BTST
BNE.S
LEA

#-<atpUnitNum+l>,atpRefNum(AO)

tioQElSize,SP
SP,A0
ioPermssn(AO)
PortBUse,Dl
610
#portNotCf,D0

SPConfig,Dl
#$0F,D1
#useATalk,Dl

@30
mppName, Al
Al,ioFileName(AO)

@30
@20
#portInUse,D0
#$0F,D1
#useATalk,Dl
@30
#0,D0

;save known ATP refNum
; in case ATP not opened

allocate queue entry
AO -> queue entry
make sure permission's clear
is port B in use?
if so, make sure by AppleTalk
assume port not configured for
AppleTalk
get configuration data
mask it to low 4 bits
unconfigured or configured for
AppleTalk
if not, return error
Al = address of driver name
set in queue entry
open MPP
return error, if it can't load it
otherwise, go check ATP
assume port in use error
clear all but use bits
is AppleTalk using it?
if not, then error
assume no error

#atpLoadedBit,PortBUse ;ATP already open?
@30 ;just return if so
atpName,Al ;A1 = address of driver name

Calling the AppleTalk Manager from Assembly Language 11-305

Inside Macintosh

@30

mppName

atpName

MOVE.L
_Open
ADD
RTS
. BYTE
.ASCII
.BYTE
.ASCII

Al,ioFileName(AO) ;set in queue entry
;open ATP

AppleTalk Link Access Protocol

Data Structures

An ALAP frame is composed of a three-byte header, up to 600 bytes of data, and a two-byte
frame check sequence (Figure 5). You can use the following global constants to access the
contents of an ALAP header:

lapDstAdr .EQU 0
lapSrcAdr .EQU 1
lapType .EQU 2
lapHdSz .EQU 3

destination node ID
source node ID
ALAP protocol type
ALAP header size

destination node ID (byte)

source node ID (byte)

ALAP protocol type (byte)

Z data (0 to 600 byte3)

V frame header

Z
frame check sequence (word)

Figure 5. ALAP Frame

Two of the protocol handlers in every node are used by DDP. These protocol handlers service
frames with ALAP protocol types equal to the following global constants:

shortDDP .EQU 1 /short DDP header
longDDP .EQU 2 /long DDP header

When you call ALAP to send a frame, you pass it information about the frame in a write data
s t ructure , which has the format shown in Figure 6.

i

11-306 Calling the AppleTalk Manager from Assembly Language

#ioQElSize,SP

4
i - M P p i

4
' .ATP'

/deallocate queue entry
;and return
/length of .MPP driver name
/name of .MPP driver
/length of .ATP driver name
/name of .ATP driver

The AppleTalk Manager

length of first entry (word)

pointer to first entry

length of last entry (word)

pointer to Ia3t entry

0 (word)

destination node ID (byte)

used internally (byte)

ALAP protocol type (byte)

data (any length)

data (any length)

Figure 6. Write Data Structure for ALAP

Using ALAP

Most programs will never need to call ALAP, because higher-level protocols will automatically
call ALAP as necessary. If you do want to send a frame direcdy via an ALAP, call the WriteLAP
function. There's no ReadLAP function in assembly language; if you want to read ALAP
frames, you must call AttachPH to add your protocol handler to the node's protocol handler table.
The ALAP module will examine every incoming frame and call your protocol handler for each
frame received with the correct ALAP protocol. When your program no longer wants to receive
frames with a particular ALAP protocol type value, it can call DetachPH to remove the
corresponding protocol handler from the protocol handler table.

See the "Protocol Handlers and Socket Listeners" section for information on how to write a
protocol handler.

ALAP Routines

W r i t e L A P function

Parameter block
—> 26 csCode word ;always writeLAP
—> 30 wdsPointer pointer ;write data structure

WriteLAP sends a frame to another node. The frame data and destination of the frame are
described by the write data structure pointed to by wdsPointer. The first two data bytes of an
ALAP frame sent to another computer using the AppleTalk Manager must indicate the length of
the frame in bytes. The ALAP protocol type byte must be in the range 1 to 127.

Result codes noErr No error
excessCollsns No CTS received after 32 RTS's
ddpLengthErr Packet length exceeds maximum
lapProtErr Invalid ALAP protocol type

Calling the AppleTalk Manager from Assembly Language 11-307

Inside Macintosh

A t t a c h P H function

Parameter block
—» 26 csCode word ;always attachPH
—> 28 protType byte ;ALAP protocol type
—» 30 handler pointer jprotocol handler

AttachPH adds the protocol handler pointed to by handler to the node's protocol table. ProtType
specifies what kind of frame the protocol handler can service. After AttachPH is called, the
protocol handler is called for each incoming frame whose ALAP protocol type equals protType.

Result codes noErr No error
lapProtErr Error attaching protocol type

D e t a c h P H function

Parameter block
—» 26 csCode word ;always detachPH
—» 28 protType byte ;ALAP protocol type

DetachPH removes from the node's protocol table the specified ALAP protocol type and
corresponding protocol handler.

Result codes noErr No error
lapProtErr Error detaching protocol type

Datagram Delivery Protocol

Data Structures

A DDP datagram consists of a header followed by up to 586 bytes of actual data (Figure 7). The
headers can be of two different lengths; they're identified by the following ALAP protocol types:

shortDDP .EQU 1 ;short DDP header
longDDP .EQU 2 ;long DDP header

Long DDP headers (13 bytes) are used for sending datagrams between two or more different
AppleTalk networks. You can use the following global constants to access the contents of a long
DDP header:

ddpHopCnt • EQU 0 ;count of bridges passed (4
ddpLength .EQU 0 /datagram length (10 bits)
ddpChecksum .EQU 2 ;checksum
ddpDstNet .EQU 4 ;destination network number
ddpSrcNet .EQU 6 ;source network number
ddpDstNode .EQU 8 ;destination node ID
ddpSrcNode • EQU 9 ;source node ID

11-308 Calling the AppleTalk Manager from Assembly Language

The AppleTalk Manager

DDP
datagram header -j

ddpDstSkt
ddpSrcSkt
ddpType

• EQU
• EQU
.EQU

byte

datagram length (10 bit3)

checksum (word)

destination network number (word)

source network number (word)

destination node ID (byte)

source node ID (byte)

destination socket number (byte)

source socket number (byte)

DDP protocol type (byte)

data (0 to 586 bytes)

V long header only

Z

Figure 7. DDP Datagram

10 ;destination socket number
11 ;source socket number
12 ;DDP protocol type

The size of a DDP long header is given by the following constant:

ddpHSzLong .EQU ddpType+1

Calling the AppleTalk Manager from Assembly Language 11-309

Inside Macintosh

The short headers (five bytes) are used for datagrams sent to sockets within the same network as
the source socket. You can use the following global constants to access the contents of a short
DDP header:

ddpLength
sDDPDstSkt
sDDPSrcSkt
sDDPType

• EQU
• EQU
• EQU
.EQU

ddpChecksum
sDDPDstSkt+1
sDDPSrcSkt+1

;datagram length
;destination socket number
;source socket number
;DDP protocol type

The size of a DDP short header is given by the following constant:

ddpHSzShort .EQU sDDPType+1

The datagram length is a ten-bit field. You can use the following global constant as a mask for
these bits:

ddpLenMask .EQU $03FF

The following constant indicates the maximum length of a DDP datagram:

ddpMaxData .EQU 58 6

When you call DDP to send a datagram, you pass it information about the datagram in a write
data structure with the format shown in Figure 8.

(odd address)

not used (word)

pointer io first entry

Z z
length of last entry (word)

pointer to Ia3t entry

0 (word)

U3ed internally (7 byte3)

destination network number (word)

used internally (word)

destination node ID (byte)

U3ed internally (byte)

destination socket number (byte)

used internally (byte)

DDP type (byte)

data (any length)

Figure 8. Write Data Structure for DDP

11-310 Calling the AppleTalk Manager from Assembly Language

The AppleTalk Manager

The first seven bytes are used internally for the ALAP header and the DDP datagram length and
checksum. The other bytes used internally store the network number, node ID, and socket
number of the socket client sending the datagram.

Warning: The first entry in a DDP write data structure must begin at an odd address.

If you specify a node ID of 255, the datagram will be broadcast to all nodes within the destination
network. A network number of 0 means the local network to which the node is connected.

Warn ing : DDP always destroys the high-order byte of the destination network number
when it sends a datagram with a short header. Therefore, if you want to reuse the first
entry of a DDP write data structure entry, you must restore the destination network
number.

Using DDP

Before it can use a socket, the program must call OpenSkt, which adds a socket and its socket
listener to the socket table. When a client is finished using a socket, call CloseSkt, which
removes the socket's entry from the socket table. To send a datagram via DDP, call WriteDDP.
If you want to read DDP datagrams, you must write your own socket listener. DDP will send
every incoming datagram for that socket to your socket listener.

See the "Protocol Handlers and Socket Listeners" section for information on how to write a
socket listener.

DDP Routines

O p e n S k t funct ion

Parameter block
- 4 26 csCode word ;always openSkt
<-> 28 socket byte ;socket number
-» 30 listener pointer ;socket listener

OpenSkt adds a socket and its socket listener to the socket table. If the socket parameter is
nonzero, it must be in the range 64 to 127, and it specifies the socket's number; if socket is 0,
OpenSkt opens a socket with a socket number in the range 128 to 254, and returns it in the socket
parameter. Listener contains a pointer to the socket listener.

OpenSkt will return ddpSktErr if you pass the number of an already opened socket, if you pass a
socket number greater than 127, or if the socket table is full (the socket table can hold a maximum
of 12 sockets).

Result codes noErr No error
ddpSktErr Socket error

Calling the AppleTalk Manager from Assembly Language 11-311

Inside Macintosh

CloseSkt funct ion

Parameter block
—> 26 csCode word ;always closeSkt
—» 28 socket byte ;socket number

CloseSkt removes the entry of the specified socket from the socket table. If you pass a socket
number of 0, or if you attempt to close a socket that isn't open, CloseSkt will return ddpSktErr.

Result codes noErr No error
ddpSktErr Socket error

W r i t e D D P function

Parameter block
26
28
29
30

csCode word
socket byte
checksumFlag byte
wdsPointer pointer

;always writeDDP
;socket number
;checksum flag
;write data structure

WriteDDP sends a datagram to another socket WDSPointer points to a write data structure
containing the datagram and the address of the destination socket. If checksumFlag is TRUE,
WriteDDP will compute the checksum for all datagrams requiring long headers.

Result codes noErr
ddpLenErr
ddpSktErr
noBridgeErr

No error
Datagram length too big
Socket error
No bridge found

AppleTalk Transaction Protocol

Data Structures

An ATP packet consists of an ALAP header, DDP header, and ATP header, followed by actual
data (Figure 9). You can use the following global constants to access the contents of an ATP
header

atpControl .EQU 0 /control information
atpBitMap .EQU 1 ;bit map
atpRespNo .EQU 1 /sequence number
atpTransID .EQU 2 /transaction ID
atpUserData .EQU 4 /user bytes

The size of an ATP header is given by the following constant:

atpHdSz .EQU 8

11-312 Calling the AppleTalk Manager from Assembly Language

The AppleTalk Manager

byte

ALAP frame header (3 bytes)

DDP datagram header
(5 or 13 bytes)

function
code XO EOM STS not U3ed

transaction bit map or
sequence number (byte)

transaction ID (word)

r ATP header

user bytes (long)

7 data (0 to 578 byte3) i
Figure 9. ATP Packet

ATP packets are identified by the following DDP protocol type:

atp .EQU 3

The control information contains a function code and various control bits. The function code
identifies either a TReq, TResp, or TRel packet with one of the following global constants:

atpReqCode .EQU $40 ;TReq packet
atpRspCode .EQU $80 ;TResp packet
atpRelCode .EQU $C0 ;TRel packet

The send-transmission-status, end-of-message, and exactly-once bits in the control information
are accessed via the following global constants:

atpSTSBit .EQU 3 ;send-transmission-status bit
atpEOMBit .EQU 4 ;end-of-message bit
atpXOBit .EQU 5 ;exactly-once bit

Calling the AppleTalk Manager from Assembly Language 11-313

Inside Macintosh

Many ATP calls require a field called atpFlags (Figure 10), which contains the above three bits
plus the following two bits:

sendChk .EQU 0 ;send-checksum bit
tidValid .EQU 1 /transaction ID validity bit

XO EOM STS TID CHK

Figure 10. ATPFlags Field

The maximum number of response packets in an ATP transaction is given by the following global
constant:

atpMaxNum .EQU 8

When you call ATP to send responses, you pass the responses in a response BDS, which is a list
of up to eight elements, each of which contains the following:

bdsBuffSz .EQU 0
bdsBuffAddr .EQU 2
bdsUserData .EQU 8

;size of data to send
/pointer to data
;user bytes

When you call ATP to receive responses, you pass it a response BDS with up to eight elements,
each in the following format:

bdsBuffSz .EQU 0
bdsBuffAddr .EQU 2
bdsDataSz .EQU 6
bdsUserData .EQU 8

/buffer size in bytes
/pointer to buffer
/number of bytes actually received
/user bytes

The size of a BDS element is given by the following constant:

bdsEntrySz .EQU 12

ATP clients are identified by internet addresses in the form shown in Figure 11.

network number (word)

node ID (byte)

socket number (byte)

Figure 11. Internet Address

11-314 Calling the AppleTalk Manager from Assembly Language

The AppleTalk Manager

Using ATP

Before you can use ATP on a Macintosh 128K, the .ATP driver must be read from the system
resource file via a Device Manager Open call. The name of the .ATP driver is '.ATP' and its
reference number is - 1 1 . When the .ATP driver is opened, it reads its ATP code into the
application heap and installs a task into the vertical retrace queue.

Warning: When another application starts up, the application heap is reinitialized; on a
Macintosh 128K, this means that the ATP code is lost (and must be reloaded by the next
application).

When you're through using ATP on a Macintosh 128K, call the Device Manager Close
routine—the system will be returned to the state it was in before the .ATP driver was opened.

On a Macintosh 512K or XL, the .ATP driver will have been loaded into the system heap either at
system startup or upon execution of a Device Manager Open call loading MPP. You shouldn't
close the .ATP driver on a Macintosh 512K or XL; AppleTalk expects it to remain open on these
systems.

To send a request to another socket and get a response, call SendRequest. The call terminates
when either an entire response is received or a specified retry timeout interval elapses. To open a
socket for the purpose of responding to requests, call OpenATPSkt. Then call GetRequest to
receive a request; when a request is received, the call is completed. After receiving and servicing
a request, call SendResponse to return response information. If you cannot or do not want to
send the entire response all at once, make a SendResponse call to send some of the response, and
then call AddResponse later to send the remainder of the response. To close a socket opened for
the purpose of sending responses, call CloseATPSkt.

During exacdy-once transactions, SendResponse doesn't terminate until the transaction is
completed via a TRel packet, or the retry count is exceeded.

Warning: Don't modify the parameter block passed to an ATP call until the call is
completed.

ATP Routines

O p e n A T P S k t function

Parameter block
- » 26 csCode

28 atpSocket
- » 30 addrBlock

word ;always openATPSkt
byte ;socket number
long word ;socket request specification

OpenATPSkt opens a socket for the purpose of receiving requests. ATPSocket contains the
socket number of the socket to open. If it's 0, a number is dynamically assigned and returned in
atpSocket. AddrBlock contains a specification of the socket addresses from which requests will
be accepted. A 0 in the network number, node ID, or socket number field of addrBlock means
that requests will be accepted from every network, node, or socket, respectively.

Result codes noErr No error
tooManySkts Too many responding sockets
noDataArea Too many outstanding ATP calls

Calling the AppleTalk Manager from Assembly Language 11-315

Inside Macintosh

CIoseATPSkt function

Parameter block

—> 26 csCode word ;always closeATPSkt
—> 28 atpSocket byte ;socket number

CloseATPSkt closes the socket whose number is specified by atpSocket, for the purpose of
receiving requests.

Result codes noErr No error
noDataArea Too many outstanding ATP calls

SendReques t funct ion

Parameter block
—> 18 userData long word ;user bytes
<— 22 reqTID word ;transaction ID used in request
—> 26 csCode word ;always sendRequest
<— 28 currBitMap byte ;bitmap
<-» 29 atpFlags byte ;control information
-» 30 addrBlock long word ;destination socket address
-» 34 reqLength word ;request size in bytes
—> 36 reqPointer pointer ;pointer to request data
—> 40 bdsPointer pointer ;pointer to response BDS
—» 44 numOfBuffs byte ;number of responses expected
-» 45 timeOutVal byte ;timeout interval
<— 46 numOfResps byte ;number of responses received
<-» 47 retryCount byte ;number of retries

SendRequest sends a request to another socket and waits for a response. UserData contains the four
user bytes. AddrBlock indicates the socket to which the request should be sent. ReqLength and
reqPointer contain the size and location of the request to send. BDSPointer points to a response BDS
where the responses are to be returned; numOfBuffs indicates the number of responses requested.
The number of responses received is returned in numOfResps. If a nonzero value is returned in
numOfResps, you can examine currBitMap to determine which packets of the transaction were
actually received and to detect pieces for higher-level recovery, if desired.

TimeOutVal indicates the number of seconds that SendRequest should wait for a response before
resending the request. RetryCount indicates the maximum number of retries SendRequest should
attempt. The end-of-message flag of atpFlags will be set if the EOM bit is set in the last packet
received in a valid response sequence. The exacdy-once flag should be set if you want the request to
be part of an exactiy-once transaction.

To cancel a SendRequest call, you need the transaction ID; it's returned in reqTID. You can examine
reqTID before the completion of the call, but its contents are valid only after the tidValid bit of
atpFlags has been set.

SendRequest completes when either an entire response is received or the retry count is exceeded.

11-316 Calling the AppleTalk Manager from Assembly Language

The AppleTalk Manager

Note: The value provided in retryCount will be modified during SendRequest if any
retries are made. This field is used to monitor the number of retries; for each retry, it's
decremented by 1.

Result codes noErr No error
reqFailed Retry count exceeded
tooManyReqs Too many concurrent requests
noDataArea • Too many outstanding ATP calls
reqAborted Request canceled by user

G e t R e q u e s t funct ion

Parameter block

<- 18 userData long word ;user bytes
-> 26 csCode word ;always getRequest
—> 28 atpSocket byte ;socket number
<— 29 atpFlags byte ;control information

30 addrBlock long word ;source of request
<-> 34 reqLength word ;request buffer size

36 reqPointer pointer ;pointer to request buffer
<— 44 bitMap byte ;bit map

46 transID word jtransaction ID

GetRequest sets up the mechanism to receive a request sent by a SendRequest call. UserData
returns the four user bytes from the request. ATPSocket contains the socket number of the
socket that should listen for a request. The internet address of the socket from which the request
was sent is returned in addrBlock. ReqLength and reqPointer indicate the size (in bytes) and
location of a buffer to store the incoming request. The actual size of the request is returned in
reqLength. The transaction bit map and transaction ID will be returned in bitMap and transID.
The exactly-once flag in atpFlags will be set if the request is part of an exacdy-once transaction.

GetRequest completes when a request is received.

Result codes noErr No error
badATPSkt Bad responding socket

S e n d R e s p o n s e func t ion

Parameter block
<— 18 userData long word ;user bytes from TRel
—> 26 csCode word ; always sendResponse

28 atpSocket byte ;socket number
—> 29 atpFlags byte ;control information
—> 30 addrBlock long word ;response destination
-» 40 bdsPointer pointer ;pointer to response BDS
-> 44 numOfBuffs byte ;number of response packets being sent
-> 45 bdsSize byte ;BDS size in elements
-» 46 transID word jtransaction ID

Calling the AppleTalk Manager from Assembly Language 11-317

Inside Macintosh

SendResponse sends a response to a socket. If the response was part of an exactly-once
transaction, userData will contain the user bytes from the TRel packet. ATPSocket contains the
socket number from which the response should be sent. The end-of-message flag in atpFlags
should be set if the response contains the final packet in a transaction composed of a group of
packets and the number of responses is less than requested. AddrBlock indicates the address of
the socket to which the response should be sent. BDSPointer points to a response BDS
containing room for the maximum number of responses to be sent; bdsSize contains this
maximum number. NumOfBuffs contains the number of response packets to be sent in this call;
you may wish to make AddResponse calls to complete the response. TransID indicates the
transaction ID of the associated request.

During exacdy-once transactions, SendResponse doesn't complete until either a TRel packet is
received from the socket that made the request, or the retry count is exceeded.

Result codes noErr No error
badATPSkt Bad responding socket
noRelErr No release received
noDataArea Too many outstanding ATP calls
badBuffNum Sequence number out of range

A d d R e s p o n s e func t ion

Parameter block
—> 18 userData long word ;user bytes
—» 26 csCode word ;always addResponse

28 atpSocket byte ;socket number
—» 29 atpFlags byte ;control information
—> 30 addrBlock long word ;response destination
-> 34 reqLength word ;response size
-» 36 reqPointer pointer ;pointer to response
-» 44 rspNum byte ;sequence number
-» 46 transID word jtransaction ID

AddResponse sends an additional response packet to a socket that has already been sent the initial
part of a response via SendResponse. UserData contains the four user bytes. ATPSocket
contains the socket number from which the response should be sent. The end-of-message flag in
atpFlags should be set if this response packet is the final packet in a transaction composed of a
group of packets and the number of responses is less than requested. AddrBlock indicates the
socket to which the response should be sent. ReqLength and reqPointer contain the size (in
bytes) and location of the response to send; rspNum indicates the sequence number of the
response (in the range 0 to 7). TransID must contain the transaction ID.

Warn ing : If the transaction is part of an exactly-once transaction, the buffer used in the
AddResponse call must not be altered or released until the corresponding SendResponse
call has completed.

11-318 Calling the AppleTalk Manager from Assembly Language

The AppleTalk Manager

Result codes noErr No error
badATPSkt Bad responding socket
noSendResp AddResponse issued before SendResponse
badBuffNum Sequence number out of range
noDataArea Too many outstanding ATP calls

R e l T C B function

Parameter block

- 4 26
-> 30
- » 46

csCode word ;always relTCB
addrBlock long word ;destination of request
transID word ;transaction ID of request

RelTCB dequeues the specified SendRequest call and returns the result code reqAborted for the
aborted call. The transaction ID can be obtained from the reqTID field of the SendRequest queue
entry; see the description of SendRequest for details.

Result codes noErr No error
cbNotFound ATP control block not found
noDataArea Too many outstanding ATE* calls

R e l R s p C B function

Parameter block

—> 26 csCode word
- » 28 atpSocket byte
- > 30 addrBlock long word
—> 46 transID word

;always relRspCB
;socket number that request was received on
; source of request
;transaction ID of request

In an exactiy-once transaction, RelRspCB cancels the specified SendResponse, without waiting for
the release timer to expire or a TRel packet to be received. No error is returned for the
SendResponse call. Whan called to cancel a transaction that isn't using exacdy-once service,
RelRspCB returns cbNotFound. The transaction ID can be obtained from the reqTID field of the
SendResponse queue entry; see the description of SendResponse for details.

Result codes noErr No error
cbNotFound ATP control block not found

Name-Binding Protocol

Data Structures

The first two bytes in the NBP header (Figure 12) indicate the type of the packet, the number of
tuples in the packet, and an NBP packet identifier. You can use the following global constants to
access these bytes:

Calling the AppleTalk Manager from Assembly Language 11-319

Inside Macintosh

nbpControl .EQU 0 ;packet type
nbpTCount .EQU 0 ;tuple count
nbpID .EQU 1 ;packet identifier
nbpTuple .EQU 2 /start of first tuple

byte —

ALAP frame header (3 byte3)

DDP datagram header
(5 or 13 byte3)

packet type tuple count

NBP packet identifier (byte)

first tuple (variable)

NBP header

last tuple (variable)
\ lookup reply only

Figure 12. NBP Packet

NBP packets are identified by the following DDP protocol type:

nbp .EQU 2

NBP uses the following global constants in the nbpControl field to identify NBP packets:

brRq .EQU 1 /broadcast request
lkUp .EQU 2 /lookup request
lkUpReply .EQU 3 /lookup reply

NBP entities are identified by internet address in the form shown in Figure 13 below. Entities are
also identified by tuples, which include both an internet address and an entity name. You can use
the following global constants to access information in tuples:

tupleNet .EQU 0 /network number
tupleNode .EQU 2 /node ID
tupleSkt .EQU 3 /socket number
tupleEnum .EQU 4 /used internally
tupleName .EQU 5 /entity name

The meta-characters in an entity name can be identified with the following global constants:

equals
star

.EQU '=' /"wild-card" meta-character

.EQU '*' /"this zone" meta-character

11-320 Calling the AppleTalk Manager from Assembly Language

The AppleTalk Manager

pointer to next entry

network number (word)

node ID (byte)

socket number (byte)

used internally (byte)

length of object (byte)

object (ASCII characters)

length of type (byte)

type (ASCII characters)

length of zone (byte)

zone (ASCII characters)

r- internet address

\- entity name

Figure 13. Names Table Entry

The maximum number of tuples in an NBP packet is given by the following global constant:

tupleMax .EQU 15

Entity names are mapped to sockets via the names table. Each entry in the names table has the
structure shown in Figure 13.

You can use the following global constants to access some of the elements of a names table entry:

ntLink .EQU 0 /pointer to next entry
ntTuple .EQU 4 /tuple
ntSocket .EQU 7 /socket number
ntEntity .EQU 9 /entity name

The socket number of the names information socket is given by the following global constant:

nis .EQU 2

Using NBP

On a Macintosh 128K, before calling any other NBP routines, call the LoadNBP function, which
reads the NBP code from the system resource file into the application heap. (The NBP code is
part of the .MPP driver, which has a driver reference number of -10.) When you're finished
with NBP and want to reclaim the space its code occupies, call UnloadNBP. On a Macintosh
512K or XL, the NBP code is read in when the .MPP driver is loaded.

Calling the AppleTalk Manager from Assembly Language 11-321

Inside Macintosh

Warning: When an application starts up, the application heap is reinitialized; on a
Macintosh 128K, this means that the NBP code is lost (and must be reloaded by the next
application).

When an entity wants to communicate via an AppleTalk network, it should call RegisterName to
place its name and internet address in the names table. When an entity no longer wants to
communicate on the network, or is being shut down, it should call RemoveName to remove its
entry from the names table.

To determine the address of an entity you know only by name, call LookupName, which returns
a list of all entities with the name you specify. If you already know the address of an entity, and
want only to confirm that it still exists, call ConfirmName. ConfirmName is more efficient than
LookupName in terms of network traffic.

NBP Routines

R e g i s t e r N a m e funct ion

Parameter block
—> 26 csCode word ;always registerName
-» 28 interval byte ;retry interval

29 count byte ;retry count
-» 30 ntQElPtr pointer ;names table element pointer
-» 34 verifyFlag byte ;set if verify needed

RegisterName adds the name and address of an entity to the node's names table. NTQElPtr
points to a names table entry containing the entity's name and internet address (in the form shown
in Figure 13 above). Meta-characters aren't allowed in the object and type fields of the entity
name; the zone field, however, must contain the meta-character "*". If verify Flag is TRUE,
RegisterName checks on the network to see if the name is already in use, and returns a result
code of nbpDuplicate if so. Interval and count contain the retry interval in eight-tick units and the
retry count When a retry is made, the count field is modified.

Warning: The names table entry passed to RegisterName remains the property of NBP
until removed from the names table. Don't attempt to remove or modify it. If you've
allocated memory using a NewHandle call, you must lock it as long as the name is
registered.

Warning: VerifyFlag should normally be set before calling RegisterName.

Result codes noErr No error
nbpDuplicate Duplicate name already exists
nbpNISErr Error opening names information socket

11-322 Calling the AppleTalk Manager from Assembly Language

The AppleTalk Manager

L o o k u p N a m e funct ion

Parameter block

-» 26 csCode word jalways lookupName
28 interval byte ;retry interval
29 count byte ;retry count

—» 30 entityPtr pointer ;pointer to entity name
-> 34 retBuffPtr pointer ;pointer to buffer

38 retBuffSize word ;buffer size in bytes
—> 40 maxToGet word jmatches to get
<— 42 numGotten word ;matches found

LookupName returns the addresses of all entities with a specified name. EntityPtr points to the
entity's name (in the form shown in Figure 13 above). Meta-characters are allowed in the entity
name. RetBuffPtr and retBuffSize contain the location and size of an area of memory in which
the tuples describing the entity names and their corresponding addresses should be returned.
MaxToGet indicates the maximum number of matching names to find addresses for; the actual
number of addresses found is returned in numGotten. Interval and count contain the retry
interval and the retry count. LookupName completes when either the number of matches is equal
to or greater than maxToGet, or the retry count has been exceeded. The count field is
decremented for each retransmission.

Note: NumGotten is first set to 0 and then incremented with each match found. You can
test the value in this field, and can start examining the received addresses in the buffer
while the lookup continues.

Result codes noErr No error
nbpBuffOvr Buffer overflow

C o n f i r m N a m e function

Parameter block
—> 26 csCode word ;always confirmName

28 interval byte ;retry interval
29 count byte ;retry count
30 entityPtr pointer ;pointer to entity name

—> 34 confirmAddr pointer ;entity address
38 newSocket byte ;socket number

ConfirmName confirms that an entity known by name and address still exists (is still entered in
the names directory). EntityPtr points to the entity's name (in the form shown in Figure 13
above). ConfirmAddr specifies the address to confirmed. No meta-characters are allowed in the
entity name. Interval and count contain the retry interval and the retry count. The socket number
of the entity is returned in newSocket. ConfirmName is more efficient than LookupName in
terms of network traffic.

Result codes noErr No error
nbpConfDiff Name confirmed for different socket
nbpNoConfirm Name not confirmed

Calling the AppleTalk Manager from Assembly Language 11-323

Inside Macintosh

R e m o v e N a m e funct ion

Parameter block

—> 26 csCode word ;always removeName
—> 30 entityPtr pointer ;pointer to entity name

RemoveName removes an entity name from the names table of the given entity's node.

Result codes noErr No error
nbpNotFound Name not found

L o a d N B P funct ion

Parameter block
—» 26 csCode word ;always loadNBP

On a Macintosh 128K, LoadNBP reads the NBP code from the system resource file into the
application heap; on a Macintosh 512K or XL it has no effect.

Result codes noErr No error

U n l o a d N B P funct ion

Parameter block
—> 26 csCode word ;always unloadNBP

On a Macintosh 128K, UnloadNBP makes the NBP code purgeable; the space isn't actually
released by the Memory Manager until necessary. On a Macintosh 512K or XL, UnloadNBP has
no effect.

Result codes noErr No error

PROTOCOL HANDLERS AND SOCKET LISTENERS

This section describes how to write your own protocol handlers and socket listeners. If you're
only interested in using the default protocol handlers and socket listeners provided by the Pascal
interface, you can skip this section. Protocol handlers and socket listeners must be written in
assembly language because they'll be called by the .MPP driver with parameters in various
registers not direcdy accessible from Pascal.

The .MPP and .ATP drivers have been designed to maximize overall throughput while
minimizing code size. Two principal sources of loss of throughput are unnecessary buffer
copying and inefficient mechanisms for dispatching (routing) packets between the various layers
of the network protocol architecture. The AppleTalk Manager completely eliminates buffer
copying by using simple, efficient dispatching mechanisms at two important points of the data

11-324 Calling the AppleTalk Manager from Assembly Language

The AppleTalk Manager

Protocol Handlers and Socket Listeners 11-325

reception path: protocol handlers and socket listeners. To write your own, you should
understand the flow of control in this path.

Data Reception in the AppleTalk Manager

When the SCC detects an ALAP frame addressed to the particular node (or a broadcast frame), it
interrupts the Macintosh's MC68000. An interrupt handler built into the .MPP driver gets control
and begins servicing the interrupt. Meanwhile, the frame's ALAP header bytes are coming into
the SCC's data reception buffer; this is a three-byte FIFO buffer. The interrupt handler must
remove these bytes from the SCC's buffer to make room for the bytes right behind; for this
purpose, MPP has an internal buffer, known as the Read Header Area (RHA), into which it
places these three bytes.

The third byte of the frame contains the ALAP protocol type field. If the most significant bit of
this field is set (that is, ALAP protocol types 128 to 255), the frame is an ALAP control frame.
Since ALAP control frames are only three bytes long (plus two CRC bytes), for such frames the
interrupt handler simply confirms that the CRC bytes indicate an error-free frame and then
performs the specified action.

If, however, the frame being received is a data frame (that is, ALAP protocol types 1 to 127),
intended for a higher layer of the protocol architecture implemented on that Macintosh, this means
that additional data bytes are coming right behind. The interrupt handler must immediately pass
control to the protocol handler corresponding to the protocol type specified in the third byte of the
ALAP frame for continued reception of the frame. To allow for such a dispatching mechanism,
the ALAP code in MPP maintains a protocol table. This consists of a list of currendy used ALAP
protocol types with the memory addresses of their corresponding protocol handlers. To allow
MPP to transfer control to a protocol handler you've written, you must make an appropriate entry
in the protocol table with a valid ALAP protocol type and the memory address of your code
module.

To enter your protocol handler into the protocol table, issue the LAPOpenProtocol call from
Pascal or an AttachPH call from assembly language. Thereafter, whenever an ALAP header with
your ALAP protocol type is received, MPP will call your protocol handler. When you no longer
wish to receive packets of that ALAP protocol type, call LAPCloseProtocol from Pascal or
DetachPH from assembly language.

Warning: Remember that ALAP protocol types 1 and 2 are reserved by DDP for the
default protocol handler and that types 128 to 255 are used by ALAP for its control frames.

A protocol handler is a piece of assembly-language code that controls the reception of AppleTalk
packets of a given ALAP protocol type. More specifically, a protocol handler must carry out the
reception of the rest of the frame following the ALAP header. The nature of a particular protocol
handler depends on the characteristics of the protocol for which it was written. In the simplest
case, the protocol handler simply reads the entire packet into an internal buffer. A more
sophisticated protocol handler might read in the header of its protocol, and on the basis of
information contained in it, decide where to put the rest of the packet's data. In certain cases, the
protocol handler might, after examining the header corresponding to its own protocol, in turn
transfer control to a similar piece of code at the next-higher level of the protocol architecture (for
example, in the case of DDP, its protocol handler must call the socket listener of the datagram's
destination socket).

Inside Macintosh

In this way, protocol handlers are used to allow "on the fly" decisions regarding the intended
recipient of the packets's data, and thus avoid buffer copying. By using protocol handlers and
their counterparts in higher layers (for instance, socket listeners), data sent over the AppleTalk
network is read direcdy from the network into the destination's buffer.

Writing Protocol Handlers

When the .MPP driver calls your protocol handler, it has already read the first five bytes of the
packet into the RHA. These are the three-byte ALAP header and the next two bytes of the packet.
The two bytes following the header must contain the length in bytes of the data in the packet,
including these two bytes themselves, but excluding the ALAP header.

Note: Since ALAP packets can have at most 600 data bytes, only the lower ten bits of this
length value are significant.

After determining how many bytes to read and where to put them, the protocol handler must call
one or both of two functions that perform all the low-level manipulation of the SCC required to
read bytes from the network. ReadPacket can be called repeatedly to read in the packet piecemeal
or ReadRest can be called to read the rest of the packet. Any number of ReadPacket calls can be
used, as long as a ReadRest call is made to read the final piece of the packet This is necessary
because ReadRest restores state information and verifies that the hardware-generated CRC is
correct. An error will be returned if the protocol handler attempts to use ReadPacket to read more
bytes than remain in the packet.

When MPP passes control to your protocol handler, it passes various parameters and pointers in
the processor's registers:

R e g i s t e r (s) Contents
A0-A1 SCC addresses used by MPP

A2 Pointer to MPP's local variables (discussed below)

A3 Pointer to next free byte in RHA

A4 Pointer to ReadPacket and ReadRest jump table

D l (word) Number of bytes left to read in packet

These registers, with the exception of A3, must be preserved until ReadRest is called. A3 is used
as an input parameter to ReadPacket and ReadRest, so its contents may be changed. DO, D2, and
D3 are free for your use. In addition, register A5 has been saved by MPP and may be used by
the protocol handler until ReadRest is called. When control returns to the protocol handler from
ReadRest, MPP no longer needs the data in these registers. At that point, standard interrupt
routine conventions apply and the protocol handler can freely use A0-A3 and D0-D3 (they're
restored by the interrupt handler).

D l contains the number of bytes left to be read in the packet as derived from the packet's length
field. A transmission error could corrupt the length field or some bytes in the packet might be
lost, but this won't be discovered until the end of the packet is reached and the CRC checked.

When the protocol handler is first called, the first five bytes of the packet (ALAP destination node
ID, source node ID, ALAP protocol type, and length) can be read from the RHA. Since A3 is
pointing to the next free position in the RHA, these bytes can be read using negative offsets from
A3. For instance, the ALAP source node ID is at -4(A3), the packet's data length (given in D l)

11-326 Protocol Handlers and Socket Listeners

The AppleTalk Manager

is also pointed to by -2(A3), and so on. Alternatively, they can be accessed as positive offsets
from the top of the RHA. The effective address of the top of the RHA is toRHA(A2), so the
following code could be used to obtain the ALAP type field:

LEA toRHA(A2),A5
MOVE.B lapType(A5),D2

;A5 points to top of RHA
;load D2 with type field

These methods are valid only as long as SCC interrupts remain locked out (which they are when
the protocol handler is first called). If the protocol handler lowers the interrupt level, another
packet could arrive over the network and invalidate the contents of the RHA.

You can call ReadPacket by jumping through the jump table in the following way:

JSR (A4)

On entry D3: number of bytes to be read (word)
A3: pointer to a buffer to hold the bytes

On exit DO: modified
Dl : number of bytes left to read in packet (word)
D2: preserved
D3: = 0 if requested number of bytes were read

<> 0 if error
A0-A2: preserved
A3: pointer to one byte past the last byte read

ReadPacket reads the number of bytes specified in D3 into the buffer pointed to by A3. The
number of bytes remaining to be read in the packet is returned in D1. A3 points to the byte
following the last byte read.

You can call ReadRest by jumping through the jump table in the following way:

JSR 2(A4)

On entry

On exit

A3: pointer to a buffer to hold the bytes
D3: size of the buffer (word)

D0-D1: modified
D2: preserved
D3: = 0 if packet was exactly the size of the buffer

< 0 if packet was (-D3) bytes too large to fit in buffer and was
truncated

> 0 if D3 bytes weren't read (packet is smaller than buffer)
A0-A2: preserved
A3: pointer to one byte past the last byte read

ReadRest reads the remaining bytes of the packet into the buffer whose size is given in D3 and
whose location is pointed to by A3. The result of the operation is returned in D3.

ReadRest can be called with D3 set to a buffer size greater than the packet size; ReadPacket
cannot (it will return an error).

Warning: Remember to always call ReadRest to read the last part of a packet; otherwise
the system will eventually crash.

Protocol Handlers and Socket Listeners 11-327

Inside Macintosh

If at any point before it has read the last byte of a packet, the protocol handler wants to discard the
remaining data, it should terminate by calling ReadRest as follows:

MOVEQ
JSR
RTS

#0,D3 ;byte count of 0
2(A4) ;call ReadRest

Or, equivalendy:

MOVEQ #0,D3 ;byte count of 0
JMP 2(A4) ;JMP to ReadRest, not JSR

In all other cases, the protocol handler should end with an RTS, even if errors were detected. If
MPP returns an error from a ReadPacket call, the protocol handler must quit via an RTS without
calling ReadRest at all (in this case it has already been called by MPP).

The Z (Zero) condition code is set upon return from these routines to indicate the presence of
errors (CRC, overrun, and so on). Zero bit set means no error was detected; a nonzero condition
code implies an error of some kind.

Up to 24 bytes of temporary storage are available in MPP's RHA. When the protocol handler is
called, 19 of these bytes are free for its use. It may read several bytes (at least four are suggested)
into this area to empty the SCC's buffer and buy some time for further processing.

MPP's globals include some variables that you may find useful. They're allocated as a block of
memory pointed to by the contents of the global variable ABusVars, but a protocol handler can
access them by offsets from A2:

N a m e
sysLAPAddr

toRHA

sysABridge

sysNetNum

vSCCEnable

Contents
This node's node ID (byte)

Top of the Read Header Area (24 bytes)

Node ID of a bridge (byte)

This node's network number (word)
Status Register (SR) value to re-enable SCC interrupts (word)

Warn ing : Under no circumstances should your protocol handler modify these variables.
It can read them to find the node's ID, its network number, and the node ID of a bridge on
the AppleTalk internet.

If, after reading the entire packet from the network and using the data in the RHA, the protocol
handler needs to do extensive post-processing, it can load the value in vSCCEnable into the SR to
enable interrupts. To allow your programs to run transparently on any Macintosh, use the value
in vSCCEnable rather than directly manipulating the interrupt level by changing specific bits in the
SR.

Additional information, such as the driver's version number or reference number and a pointer (or
handle) to the driver itself, may be obtained from MPP's device control entry. This can be found
by dereferencing the handle in the unit table's entry corresponding to unit number 9; for more
information, see the section "The Structure of a Device Driver" in chapter 6.

11-328 Protocol Handlers and Socket Listeners

The AppleTalk Manager

Timing Considerations

Once it's been called by MPP, your protocol handler has complete responsibility for receiving the
rest of the packet. The operation of your protocol handler is time-critical. Since it's called just
after MPP has emptied the SCC's three-byte buffer, the protocol handler has approximately 95
microseconds (best case) before it must call ReadPacket or ReadRest. Failure to do so will result
in an overrun of the SCC's buffer and loss of packet information. If, within that time, the
protocol handler can't determine where to put the entire incoming packet, it should call
ReadPacket to read at least four bytes into some private buffer (possibly the RHA). Doing this
will again empty the SCC's buffer and buy another 95 microseconds. You can do this as often as
necessary, as long as the processing time between successive calls to ReadPacket doesn't exceed
95 microseconds.

Writing Socket Listeners

A socket listener is a piece of assembly-language code that receives datagrams delivered by the
DDP built-in protocol handler and delivers them to the client owning that socket.

When a datagram (a packet with ALAP protocol type 1 or 2) is received by the ALAP, DDP's
built-in protocol handler is called. This handler reads the DDP header into the RHA, examines
the destination socket number, and determines whether this socket is open by searching DDP's
socket table. This table lists the socket number and corresponding socket listener address for
each open socket. If an entry is found matching the destination socket, the protocol handler
immediately transfers control to the appropriate socket listener. (To allow DDP to recognize and
branch to a socket listener you've written, call DDPOpenSocket from Pascal or OpenSkt from
assembly language.)

At this point, the registers are set up as follows:

R e g i s t e r (s) Contents
A0-A1 SCC addresses used by MPP

A2 Pointer to MPP's local variables (discussed above)

A3 Pointer to next free byte in RHA

A4 Pointer to ReadPacket and ReadRest jump table

DO This packet's destination socket number (byte)

D l Number of bytes left to read in packet (word)

The entire ALAP and DDP headers are in the RHA; these are the only bytes of the packet that
have been read in from the SCC's buffer. The socket listener can get the destination socket
number from DO to select a buffer into which the packet can be read. The listener then calls
ReadPacket and ReadRest as described under "Writing Protocol Handlers" above. The timing
considerations discussed in that section apply as well, as do the issues related to accessing the
MPP local variables.

The socket listener may examine the ALAP and DDP headers to extract the various fields relevant
to its particular client's needs. To do so, it must first examine the ALAP protocol type field (three
bytes from the beginning of the RHA) to decide whether a short (ALAP protocol type=l) or long
(ALAP protocol type=2) header has been received.

Protocol Handlers and Socket Listeners 11-329

Inside Macintosh

A long DDP header containing a nonzero checksum field implies that the datagram was
checksummed at the source. In this case, the listener can recalculate the checksum using the
received datagram, and compare it with the checksum value. The following subroutine can be
used for this purpose:

DoChksum

Loop

Dl (word) = number of bytes to checksum
D3 (word) = current checksum
Al points to the bytes to checksum

CLR.W
SUBQ.W
MOVE.B
ADD .W
ROL.W
DBRA
RTS

DO ;clear high byte
#1,D1 /decrement count for DBRA
(A1)+,D0 ;read a byte into DO
D0,D3 /accumulate checksum
#1,D3 /rotate left one bit
Dl,Loop /loop if more bytes

Note: DO is modified by DoChksum.

The checksum must be computed for all bytes starting with the DDP header byte following the
checksum field up to the last data byte (not including the CRC bytes). The socket listener must
start by first computing the checksum for the DDP header fields in the RHA. This is done as
follows:

CLR.W D3 /set checksum to 0
MOVEQ #ddpHSzLong-ddpDstNet,Dl

/length of header part to checksum
LEA toRHA+lapHdS z+ddpDstNet(A2),Al

/point to destination network number
JSR DoChksum
/ D3 = accumulated checksum of DDP header part

The socket listener must now continue to set up Dl and Al for each subsequent portion of the
datagram, and call DoChksum for each. It must not alter the value in D3.

The situation of the calculated checksum being equal to 0 requires special attention. For such
packets, the source sends a value of - 1 to distinguish them from unchecksummed packets. At the
end of its checksum computation, the socket listener must examine the value in D3 to see if it's 0.
If so, it's converted to - 1 and compared with the received checksum to determine whether there
was a checksum error:

TST.W D3 /is calculated value 0?
BNE.S @1 /no — go and use it
SUBQ.W #1,D3 /it is 0/ make it -1

@1 CMP.W toRHA+lapHdSz+ddpChecksum(A2),D3
BNE ChksumError

11-330 Protocol Handlers and Socket Listeners

The AppleTalk Manager

SUMMARY OF THE APPLETALK MANAGER

Constants

CONST lapSize = 20
ddpSize = 2 6
nbpSize = 2 6
atpSize = 5 6

{ABusRecord size for ALAP}
{ABusRecord size for DDP}
{ABusRecord size for NBP}
{ABusRecord size for ATP}

Data Types

TYPE ABProtoType = (lapProto,ddpProto,nbpProto,atpProto);

^ABRecPtr;
NABusRecord;

ABRecHandle =
ABRecPtr =
ABusRecord =

RECORD
abOpcode: ABCallType;
abResult: INTEGER;
abUserReference: LONGINT;
CASE ABProtoType OF
lapProto:
(lapAddress:
lapReqCount

LAPAdrBlock;
INTEGER;

lapActCount INTEGER;

lapDataPtr: Ptr);

{type of call}
{result code}
{for your use}

{destination or source node ID}
{length of frame data or buffer }
{ size in bytes}
{number of frame data bytes }
{ actually received}
{pointer to frame data or pointer }
{ to buffer}

ddpProto:
(ddpType:
ddpSocket:
ddpAddress:
ddpReqCount:

INTEGER;
Ptr;
Byte) ;

ddpActCount
ddpDataPtr:
ddpNodelD:

nbpProto:
(nbpEntityPtr:
nbpBufPtr:
nbpBufSize:
nbpDataField:

nbpAddress:
nbpRetransmitlnfo:

Byte; {DDP protocol type}
Byte; {source or listening socket number}
AddrBlock; {destination or source socket address}
INTEGER; {length of datagram data or buffer }

{ size in bytes}
{number of bytes actually received}
{pointer to buffer}
{original destination node ID}

EntityPtr; {pointer to entity name}
Ptr; {pointer to buffer}
INTEGER; {buffer size in bytes}
INTEGER; {number of addresses or }

{ socket number}
AddrBlock; {socket address}
RetransType); {retransmission information}

Summary of the AppleTalk Manager 11-331

Inside Macintosh

atpProto:
(atpSocket: Byte; {listening or responding socket }

{ number}
atpAddress: AddrBlock; {destination or source socket }

{ address}
atpReqCount: INTEGER; {request size or buffer size}
atpDataPtr Ptr; {pointer to buffer}
atpRspBDSPtr: BDSPtr; {pointer to response BDS}
atpBitMap: BitMapType; {transaction bit map}
atpTransID: INTEGER; {transaction ID}
atpActCount: INTEGER; {number of bytes actually received}
atpUserData: LONGING- {user bytes}
atpXO: BOOLEAN; {exactly-once flag}
atpEOM: BOOLEAN; {end-of-message flag}
atpTimeOut: Byte; {retry timeout interval in seconds}
atpRetries: Byte; {maximum number of retries}
atpNumBufs: Byte; {number of elements in response }

{ BDS or number of response }
{ packets sent}

atpNumRsp: Byte; {number of response packets }
{ received or sequence number}

atpBDSSize: Byte; {number of elements in response BDS
atpRspUData: LONGINT; {user bytes sent or received in }

{ transaction response}
atpRspBuf: Ptr; {pointer to response message buffer
atpRspSize: INTEGER) ; {size of response message buffer}

END;

ABCallType = (tLAPRead,tLAPWrite,tDDPRead,tDDPWrite,tNBPLookup,
tNBPConfirm,tNBPRegister,tATPSndRequest,
tATPGetRequest,tATPSdRsp,tATPAddRsp,tATPRequest,
tATPResponse);

LAPAdrBlock = PACKED RECORD
dstNodelD: Byte; {destination node ID}
srcNodelD: Byte; {source node ID}
lapProtType: ABByte {ALAP protocol type}

END;

ABByte = 1..127; {ALAP protocol type}

AddrBlock = PACKED RECORD
aNet: INTEGER; {network number}
aNode: Byte; {node ID}
aSocket: Byte {socket number}

END;

BDSPtr = ABDSType;
BDSType = ARRAY[0..7] OF BDSElement; {response BDS}

11-332 Summary of the AppleTalk Manager

The AppleTalk Manager

BDSElement = RECORD
buffSize: INTEGER; {buffer size in bytes}
buffPtr: Ptr; {pointer to buffer}
dataSize: INTEGER; {number of bytes actually received}
userBytes: LONGINT {user bytes}

END;

BitMapType = PACKED ARRAY[0..7] OF BOOLEAN;

EntityPtr = AEntityName;
EntityName = RECORD

objStr:
typeStr:
zoneStr:

Str32; {object}
Str32; {type}
Str32 {zone}

END;

Str32 = STRING[32] ;

RetransType =
PACKED RECORD

retranslnterval: Byte; {retransmit interval in 8-tick units}

Routines [Not in ROM]

Opening and Closing AppleTalk

FUNCTION MPPOpen : OSErr;
FUNCTION MPPClose : OSErr;

AppleTalk Link Access Protocol

FUNCTION LAPOpenProtocol (theLAPType: ABByte; protoPtr: Ptr) : OSErr;
FUNCTION LAPCloseProtocol (theLAPType: ABByte) : OSErr;
FUNCTION LAPWrite (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;

4 - abOpcode {always tLAPWrite}
abResult {result code}

-» abUserReference {for your use}
—» lapAddress.dstNodelD {destination node ID}
—> lapAddressiapProtType {ALAP protocol type}
—> lapReqCount {length of frame data}
-> lapDataPtr {pointer to frame data}

retransCount: Byte {total number of attempts}
END;

Summary of the AppleTalk Manager 11-333

Inside Macintosh

FUNCTION LAPRead (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;
<- abOpcode {always fLAPRead}
<— abResult {result code}
—> abUserReference {for your use}

lapAddress.dstNodelD {destination node ID}
<— lapAddress.srcNodelD {source node ID}
—> lapAddressJapProtType {ALAP protocol type}
—> lapReqCount {buffer size in bytes}
<— lapActCount {number of frame data bytes actually received}
—> lapDataPtr {pointer to buffer}

FUNCTION LAPRdCancel (abRecord: ABRecHandle) : OSErr;

Datagram Delivery Protocol

FUNCTION DDPOpenSocket (VAR theSocket: Byte; sktListener: Ptr) : OSErr;
FUNCTION DDPCloseSocket (theSocket: Byte) : OSErr;
FUNCTION DDPWrite (abRecord: ABRecHandle; doChecksum: BOOLEAN; async:

BOOLEAN) : OSErr;
abOpcode {always tDDPWrite}

<— abResult {result code}
—> abUserReference {for your use}
—> ddpType {DDP protocol type}
-» ddpSocket {source socket number}
-» ddpAddress {destination socket address}
-» ddpReqCount {length of datagram data}
-» ddpDataPtr {pointer to buffer}

FUNCTION DDPRead (abRecord: ABRecHandle; retCksumErrs: BOOLEAN; async:
BOOLEAN) : OSErr;

abOpcode {always tDDPRead}
<— abResult {result code}
—> abUserReference {for your use}
<— ddpType {DDP protocol type}
—> ddpSocket {listening socket number}
<— ddpAddress {source socket address}
-» ddpReqCount {buffer size in bytes}
<— ddpActCount {number of bytes actually received}

ddpDataPtr {pointer to buffer}
<— ddpNodelD {original destination node ID}

FUNCTION DDPRdCancel (abRecord: ABRecHandle) : OSErr;

AppleTalk Transaction Protocol

FUNCTION ATPLoad : OSErr;
FUNCTION ATPUnload : OSErr;
FUNCTION ATPOpenSocket (addrRcvd: AddrBlock; VAR atpSocket: Byte) : OSErr
FUNCTION ATPCloseSocket (atpSocket: Byte) : OSErr;

11-334 Summary of the AppleTalk Manager

The AppleTalk Manager

FUNCTION ATPSndRequest (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;
<— abOpcode {always tATPSndRequest}
<— abResult {result code}
-¥ abUserReference {for your use}
—> atpAddress {destination socket address}
—> atpReqCount {request size in bytes}
—> atpDataPtr {pointer to buffer}
—> atpRspBDSPtr {pointer to response BDS}
—» atpUserData {user bytes}
- > atpXO {exactly-once flag}
<- atpEOM {end-of-message flag}
- » atpTimeOut {retry timeout interval in seconds}
- » atpRetries {maximum number of retries}
—» atpNumBufs {number of elements in response BDS}
<— atpNumRsp {number of response packets actually received}

FUNCTION ATPRequest (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;
abOpcode {always tATPRequest}

<— abResult {result code}
—> abUserReference {for your use}
—» atpAddress {destination socket address}
—> atpReqCount {request size in bytes}
-> atpDataPtr {pointer to buffer}
<r- atpActCount {number of bytes actually received}
-> atpUserData {user bytes}
-> atpXO {exactly-once flag}

atpEOM {end-of-message flag}
—» atpTimeOut {retry timeout interval in seconds}
—> atpRetries {maximum number of retries}

atpRspUData {user bytes received in transaction response}
-> atpRspBuf {pointer to response message buffer}

atpRspSize {size of response message buffer}

FUNCTION ATPReqCancel (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;
FUNCTION ATPGetRequest (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;

<- abOpcode {always tATPGetRequest}
<— abResult {result code}
—> abUserReference {for your use}
—> atpSocket {listening socket number}
<— atpAddress {source socket address}
—> atpReqCount {buffer size in bytes}
—> atpDataPtr {pointer to buffer}
<- atpBitMap {transaction bit map}
<— atpTransID {transaction ID}
•f- atpActCount {number of bytes actually received}
<— atpUserData {user bytes}
<— atpXO {exactly-once flag}

Summary of the AppleTalk Manager 11-335

Inside Macintosh

FUNCTION ATPSndRsp (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;
<— abOpcode {always tATPSdRsp}
<— abResult {result code}
—> abUserReference {for your use}
—> atpSocket {responding socket number}
—> atpAddress {destination socket address}
-4 atpRspBDSPtr {pointer to response BDS}
-> atpTransID {transaction ID}
-> atpEOM {end-of-message flag}
—» atpNumBufs {number of response packets being sent}

atpBDSSize {number of elements in response BDS}

JCTION ATPAddRsp (abRecord: ABRecHandle) : OSErr;
<— abOpcode {always tATPAddRsp}
<— abResult {result code}
—» abUserReference {for your use}

atpSocket {responding socket number}
—> atpAddress {destination socket address}

atpReqCount {buffer size in bytes}
—> atpDataPtr {pointer to buffer}
-4 atpTransID {transaction ID}
—> atpUserData {user bytes}
-» atpEOM {end-of-message flag}
—> atpNumRsp {sequence number}

FUNCTION ATPResponse (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;
4- abOpcode {always tAlPResponse}
<— abResult {result code}
-» abUserReference {for your use}
—> atpSocket {responding socket number}
-4 atpAddress {destination socket address}
—» atpTransID {transaction ID)
—> atpRspUData {user bytes sent in transaction response}
-> atpRspBuf {pointer to response message buffer}
—» atpRspSize {size of response message buffer}

FUNCTION ATPRspCancel (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;

Name-Binding Protocol

FUNCTION NBPRegister (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;
<- abOpcode {always tNBPRegister}
<- abResult {result code}
-> abUserReference {for your use}
-» nbpEntityPtr {pointer to entity name}
-4 nbpBufPtr {pointer to buffer}
—> nbpBufSize {buffer size in bytes}

nbpAddress.aSocket {socket address}
-> nbpRetransmitlnfo {retransmission information}

11-336 Summary of the AppleTalk Manager

The AppleTalk Manager

FUNCTION NBPLookup (abRecord.: ABRecHandle; async: BOOLEAN) : OSErr;
<— abOpcode {always tNBPLookup}
<r- abResult {result code}
—> abUserReference {for your use}
—» nbpEntityPtr {pointer to entity name}
—» nbpBufPtr {pointer to buffer}
-» nbpBufSize {buffer size in bytes}
«-> nbpDataField {number of addresses received}
-» nbpRetransmitlnfo {retransmission information}

FUNCTION NBPExtract (theBuffer: Ptr; numlnBuf: INTEGER; whichOne:
INTEGER; VAR abEntity: EntityName; VAR address:
AddrBlock) : OSErr;

FUNCTION NBPConfirm (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;
<— abOpcode {always tNBPConfirm}
<— abResult {result code}
—> abUserReference {for your use}
—» nbpEntityPtr {pointer to entity name}
<— nbpDataField {socket number}
-» nbpAddress {socket address}
-> nbpRetransmitlnfo {retransmission information}

FUNCTION NBPRemove (abEntity: EntityPtr) : OSErr;
FUNCTION NBPLoad : OSErr;
FUNCTION NBPUnload : OSErr;

Miscellaneous Routines

FUNCTION GetNodeAddress (VAR myNode,myNet: INTEGER) : OSErr;
FUNCTION IsMPPOpen : BOOLEAN;
FUNCTION IsATPOpen : BOOLEAN;

Result Codes

N a m e Value M e a n i n g
atpBadRsp -3107 Bad response from ATPRequest

atpLenErr -3106 ATP response message too large

badATPSkt -1099 ATP bad responding socket

badBuffNum -1100 ATP bad sequence number

buf2SmallErr -3101 ALAP frame too large for buffer

DDP datagram too large for buffer

cbNotFound -1102 ATP control block not found

cksumErr -3103 DDP bad checksum

ddpLenErr -92 DDP datagram or ALAP data length too big

Summary of the AppleTalk Manager 11-337

Inside Macintosh

N a m e Value
ddpSktErr - 91

excessCollsns -95

extractErr -3104

lapProtErr - 9 4

nbpBuffOvr -1024

nbpConfDiff -1026

nbpDuplicate -1027

nbpNISErr -1029

nbpNoConfirm -1025

nbpNotFound -1028

noBridgeErr -93

noDataArea -1104

noErr 0

noMPPError -3102

noRelErr -1101

noSendResp -1103

portlnUse -97

portNotCf -98

readQErr -3105

recNotEnd -3108

reqAborted -1105

reqFailed -1096

sktClosedErr -3109

tooManyReqs -1097

tooManySkts -1098

M e a n i n g
DDP socket error: socket already active; not a well-known socket;
socket table full; all dynamic socket numbers in use

ALAP no CTS received after 32 RTS's, or line sensed in use 32
times (not necessarily caused by collisions)

NBP can't find tuple in buffer

ALAP error attaching/detaching ALAP protocol type: attach error
when ALAP protocol type is negative, not in range, already in table,
or when table is full; detach error when ALAP protocol type isn't in
table

NBP buffer overflow

NBP name confirmed for different socket

NBP duplicate name already exists

NBP names information socket error

NBP name not confirmed

NBP name not found

No bridge found

Too many outstanding ATP calls

No error

MPP driver not installed

ATP no release received

ATPAddRsp issued before ATPSndRsp

Driver Open error, port already in use

Driver Open error, port not configured for this connection

Socket or protocol type invalid or not found in table

ABRecord not found

Request aborted

ATPSndRequest failed: retry count exceeded

Asynchronous call aborted because socket was closed before call
was completed

ATP too many concurrent requests

ATP too many responding sockets

11-338 Summary of the AppleTalk Manager

The AppleTalk Manager

Assembly-Language Information

Constants

Serial port use types

useFree
useATalk
useASync

.EQU
• EQU
• EQU

0
1
2

;unconfigured
;configured for AppleTalk
;configured for the Serial Driver

; Bit in PortBUse for .ATP driver status

atpLoadedBit .EQU 4 ;set if .ATP driver is opened

; Unit numbers for AppleTalk drivers

mppUnitNum .EQU 9 ;.MPP driver
atpUnitNum .EQU 10 ;.ATP driver

; csCode values for Control calls (MPP)

writeLAP .EQU 243
detachPH .EQU 244
attachPH .EQU 245
writeDDP .EQU 246
closeSkt .EQU 247
openSkt .EQU 248
loadNBP .EQU 249
confirmName .EQU 250
lookupName .EQU 251
removeName .EQU 252
registerName .EQU 253
killNBP .EQU 254
unloadNBP .EQU 255

; csCode values for Control calls (ATP)

relRspCB .EQU 249
closeATPSkt • EQU 250
addResponse .EQU 251
sendResponse .EQU 252
getRequest .EQU 253
openATPSkt .EQU 254
sendRequest .EQU 255
relTCB • EQU 256

; ALAP header

lapDstAdr .EQU 0
lapSrcAdr .EQU 1
lapType • EQU 2

/destination node ID
;source node ID
;ALAP protocol type

Summary of the AppleTalk Manager 11-339

Inside Macintosh

; ALAP header size

lapHdSz .EQU 3

; ALAP protocol type values

shortDDP .EQU 1 ;short DDP header
longDDP .EQU 2 ;long DDP header

; Long DDP header

ddpHopCnt .EQU 0 ;count of bridges passed (4 bits)
ddpLength .EQU 0 ;datagram length (10 bits)
ddpChecksum .EQU 2 ;checksum
ddpDstNet .EQU 4 /destination network number
ddpSrcNet .EQU 6 /source network number
ddpDstNode .EQU 8 /destination node ID
ddpSrcNode .EQU 9 /source node ID
ddpDstSkt .EQU 10 /destination socket number
ddpSrcSkt .EQU 11 /source socket number
ddpType .EQU 12 /DDP protocol type

/ DDP long header size

ddpHSzLong .EQU ddpType+1

/ Short DDP header

ddpLength
sDDPDstSkt
sDDPSrcSkt
sDDPType

.EQU 0

. EQU ddpChecksum

.EQU sDDPDstSkt+1

.EQU sDDPSrcSkt+1

/datagram length
/destination socket number
/source socket number
/DDP protocol type

DDP short header size

ddpHSzShort .EQU sDDPType+1

/ Mask for datagram length

ddpLenMask .EQU $03FF

/ Maximum size of DDP data

ddpMaxData .EQU 586

/ ATP header

atpControl .EQU 0 /control information
atpBitMap • EQU 1 /bit map
atpRespNo .EQU 1 /sequence number
atpTransID .EQU 2 /transaction ID
atpUserData .EQU 4 /user bytes

11-340 Summary of the AppleTalk Manager

The AppleTalk Manager

; ATP header size

atpReqCode .EQU $40 ;TReq packet
atpRspCode .EQU $80 ;TResp packet
atpRelCode .EQU $C0 ;TRel packet

; ATPFlags control informat ion bits

sendChk .EQU 0 ;send-checksum bit
tidValid .EQU 1 /transaction ID validity bit
atpSTSBit .EQU 3 ;send-transmission-status bit
atpEOMBit .EQU 4 ;end-of-message bit
atpXOBit .EQU 5 ;exactly-once bit

; Maximum number of ATP request packets

atpMaxNum .EQU 8

; ATP buffer data structure

bdsBuffSz .EQU
bdsBuffAddr .EQU
bdsDataSz .EQU
bdsUserData .EQU

; BDS element size

bdsEntrySz .EQU

; NBP packet

;size of data to send or buffer size
/pointer to data or buffer
/number of bytes actually received
;user bytes

nbpControl
nbpTCount
nbpID
nbpTuple

.EQU

.EQU

.EQU
• EQU

12

/packet type
/tuple count
/packet identifier
/start of first tuple

/ DDP protocol type for NBP packets

nbp .EQU 2

Summary of the AppleTalk Manager 11-341

atpHdSz .EQU 8

; DDP protocol type for ATP packets

atp .EQU 3

; ATP function code

Inside Macintosh

; NBP packet types

brRq .EQU 1 ;broadcast reques
lkUp .EQU 2 ;lookup request
IkUpReply .EQU 3 ;lookup reply

; NBP tuple

tupleNet .EQU 0 /network number
tupleNode .EQU 2 ;node ID
tupleSkt .EQU 3 ;socket number
tupleEnum .EQU 4 ;used internally
tupleName .EQU 5 ;entity name

; Maximum number of tuples in NBP packet

tupleMax .EQU 15

NBP meta-characters

equals
star

.EQU

.EQU
;"wild-card" meta-character
;"this zone" meta-character

; NBP names table entry

ntLink
ntTuple
ntSocket
ntEntity

.EQU

.EQU

.EQU

. EQU

;pointer to next entry
;tuple
;socket number
;entity name

NBP names information socket number

ms .EQU

Routines

L i n k Access Pro toco l

WriteLAP function
—> 26 csCode word
—> 30 wdsPointer pointer

AttachPH function
—» 26 csCode word
—> 28 protType byte
—» 30 handler pointer

;always writeLAP
;write data structure

;always attachPH
;ALAP protocol type
;protocol handler

11-342 Summary of the AppleTdlk Manager

The AppleTalk Manager

DetachPH function
—> 26 csCode word
—> 28 protType byte

;always detachPH
;ALAP protocol type

D a t a g r a m Delivery Protocol

OpenSkt function
—> 26 csCode word ;always openSkt
<-> 28 socket byte ;socket number
—> 30 listener pointer ;socket listener

CloseSkt function
-> 26 csCode
—> 28 socket

WriteDDP function
—> 26 csCode
—> 28 socket
-> 29
-> 30

word
byte

word
byte

checksumFlag byte
wdsPointer pointer

;always closeSkt
;socket number

;always writeDDP
;socket number
;checksum flag
;write data structure

AppleTalk Transac t ion Protocol

OpenATPSkt function
—> 26 csCode word
<-> 28 atpSocket byte
—» 30 addrBlock long word

CloseATPSkt function

;always OpenATPSkt
;socket number
;socket request specification

—> 26 csCode word ;always closeATPSkt
-> 28 atpSocket byte ;socket number

idRequest function
-» 18 userData long word ;user bytes
<r- 22 reqTID word ;transaction ID used in request
-> 26 csCode word ;always sendRequest
<r- 28 currBitMap byte ;bit map
<-> 29 atpFlags byte ;control information
-> 30 addrBlock long word ;destination socket address
-> 34 reqLength word •.request size in bytes

36 reqPointer pointer •.pointer to request data
40 bdsPointer pointer ;pointer to response BDS

-» 44 numOfBuffs byte ;number of responses expected
-> 45 timeOutVal byte ;timeout interval
<- 46 numOfResps byte ;number of responses received
<-> 47 retryCount byte ;number of retries

Summary of the AppleTalk Manager 11-343

Inside Macintosh

GetRequest function
<— 18 userData long word ;user bytes
—» 26 csCode word ;always getRequest
—> 28 atpSocket byte ;socket number
4— 29 atpFlags byte ;control information
<— 30 addrBlock long word ;source of request
<-> 34 reqLength word ;request buffer size
—•> 36 reqPointer pointer ;pointer to request buffer
4— 44 bitMap byte ;bit map
4— 46 transID word ;transaction ID

SendResponse function
<— 18 userData long word ;user bytes from TRel
—» 26 csCode word ;always SendResponse
—•> 28 atpSocket byte ;socket number
—» 29 atpFlags byte ;control information
—» 30 addrBlock long word ;response destination
—> 40 bdsPointer pointer ;pointer to response BDS
—> 44 numOfBuffs byte ;number of response packets being sent
—> 45 bdsSize byte ;BDS size in elements
—> 46 transID word ;transaction ID

AddResponse function
—> 18 userData long word ;user bytes
—> 26 csCode word ;always addResponse
—> 28 atpSocket byte ;socket number
—> 29 atpFlags byte ;control information
—> 30 addrBlock long word ;response destination
—> 34 reqLength word ;response size
—» 36 reqPointer pointer ;pointer to response
—> 44 rspNum byte ;sequence number
—> 46 transID word ;transaction ID

RelTCB function
—> 26 csCode word -.always relTCB
—> 30 addrBlock long word ;destination of request
—> 46 transID word ;transaction ID of request

RelRspCB function
—> 26 csCode word ;always relRspCB
—» 28 atpSocket byte ;socket number that request was received
—> 30 addrBlock long word ;source of request
—•» 46 transID word ;transaction ID of request

11-344 Summary of the AppleTalk Manager

The AppleTalk Manager

Name-Binding Protocol

RegisterName function
—» 26 csCode
—> 28 interval
<^ 29 count
- > 30 ntQElPtr
—> 34 verifyFlag

LookupName function

word ;always registerName
byte ;retry interval
byte ;retry count
pointer ;names table element pointer
byte ;set if verify needed

—> 26 csCode word ;always lookupName
—> 28 interval byte ;retry interval

29 count byte ;retry count
-» 30 entityPtr pointer ;pointer to entity name
- > 34 retBuffPtr pointer ipointer to buffer
—> 38 retBuffSize word ;buffer size in bytes
—» 40 maxToGet word ;matches to get
<— 42 numGotten word jmatches found

ConfirmName function
-> 26 csCode word ;always confirmName
-> 28 interval byte ;retry interval
<r-» 29 count byte ;retry count
—> 30 entityPtr pointer jpointer to entity name
—> 34 confirmAddr pointer ;entity address
<— 38 newSocket byte ;socket number

RemoveName function
—» 26 csCode word ;always removeName
—> 30 entityPtr pointer ;pointer to entity name

LoadNBP function
—> 26 csCode word ;always loadNBP

UnloadNBP function
- 4 26 csCode word ;always unloadNBP

Variables

SPConfig

PortBUse

ABusVars

Use types for serial ports (byte)
(bits 0-3: current configuration of serial port B

bits 4-6: current configuration of serial port A)

Current availability of serial port B (byte)
(bit 7: 1 = not in use, 0 = in use
bits 0-3: current use of port bits
bits 4-6: driver-specific)

Pointer to AppleTalk variables

Summary of the AppleTalk Manager 11-345

Inside Macintosh

11-346

11 THE VERTICAL RETRACE MANAGER

349 About This Chapter
349 About the Vertical Retrace Manager
351 Using the Vertical Retrace Manager
351 Vertical Retrace Manager Routines
353 Summary of the Vertical Retrace Manager

Inside Macintosh

11-348

The Vertical Retrace Manager

ABOUT THIS CHAPTER

This chapter describes the Vertical Retrace Manager, the part of the Operating System that
schedules and performs recurrent tasks during vertical retrace interrupts. It describes how your
application can install and remove its own recurrent tasks.

You should already be familiar with:

• events, as discussed in chapter 8 of Volume I

• interrupts, as described in chapter 6

ABOUT THE VERTICAL RETRACE MANAGER

The Macintosh video circuitry generates a vertical retrace interrupt , also known as the
vertical b lanking (or VBL) interrupt, 60 times a second while the beam of the display tube
returns from the bottom of the screen to the top to display the next frame. This interrupt is used
as a convenient time for performing the following sequence of recurrent system tasks:

1. Increment the number of ticks since system startup (every interrupt). You can get this
number by calling the Toolbox Event Manager function TickCount.

2. Check whether the stack has expanded into the heap; if so, it calls the System Error
Handler (every interrupt).

3. Handle cursor movement (every interrupt).

4. Post a mouse event if the state of the mouse button changed from its previous state and then
remained unchanged for four interrupts (every other interrupt).

5. Reset the keyboard if it's been reattached after having been detached (every 32 interrupts).

6. Post a disk-inserted event if the user has inserted a disk or taken any other action that
requires a volume to be mounted (every 30 interrupts).

These tasks must execute at regular intervals based on the "heartbeat" of the Macintosh, and
shouldn't be changed.

Tasks performed during the vertical retrace interrupt are known as VBL tasks. An application
can add any number of its own VBL tasks for the Vertical Retrace Manager to execute. VBL
tasks can be set to execute at any frequency (up to once per vertical retrace interrupt). For
example, an electronic mail application might add a VBL task that checks every tenth of a second
(every six interrupts) to see if it has received any messages. These tasks can perform any desired
action as long as they don't make any calls to the Memory Manager, directly or indirectly, and
don't depend on handles to unlocked blocks being valid. They must preserve all registers other
than A0-A3 and D0-D3. If they use application globals, they must also ensure that register A5
contains the address of the boundary between the application globals and the application
parameters; for details, see SetUpA5 and RestoreA5 in chapter 13.

About the Vertical Retrace Manager 11-349

Inside Macintosh

Warning : When interrupts are disabled (such as during a disk access), or when VBL
tasks take longer than about a sixtieth of a second to perform, one or more vertical retrace
interrupts may be missed, thereby affecting the performance of certain VBL tasks. For
instance, while a disk is being accessed, the updating of the cursor movement may be
irregular.

Note: To perform periodic actions that do allocate and release memory, you can use the
Desk Manager procedure SystemTask. Or, since the first thing the Vertical Retrace
Manager does during a vertical retrace interrupt is increment the tick count, you can call
TickCount repeatedly and perform periodic actions whenever a specific number of ticks
have elapsed.

Information describing each VBL task is contained in the vertical re trace queue. The vertical
retrace queue is a standard Macintosh Operating System queue, as described in chapter 13. Each
entry in the vertical retrace queue has the following structure:

TYPE VBLTask = RECORD

QLink points to the next entry in the queue, and qType indicates the queue type, which must be
ORD(vType).

VBLAddr contains a pointer to the task. VBLCount specifies the number of ticks between
successive calls to the task. This value is decremented each sixtieth of a second until it reaches 0,
at which point the task is called. The task must then reset vblCount, or its entry will be removed
from the queue after it has been executed. VBLPhase contains an integer (smaller than vblCount)
used to modify vblCount when the task is first added to the queue. This ensures that two or more
tasks added to the queue at the same time with the same vblCount value will be out of phase with
each other, and won't be called during the same interrupt Unless there are many tasks to be
added to the queue at the same time, vblPhase can usually be set to 0.

The Vertical Retrace Manager uses bit 6 of the queue flags field in the queue header to indicate
when a task is being executed:

Bit M e a n i n g
6 Set if a task is being executed

Assembly-language note : Assembly-programmers can use the global constant inVBL
to test this bit.

qLink:
qType:

QElemPtr;
INTEGER;
ProcPtr;
INTEGER;
INTEGER

{next queue entry}
{queue type}
{pointer to task}
{task frequency}
{task phase}

vblAddr:
vblCount:
vblPhase:

END;

11-350 About the Vertical Retrace Manager

The Vertical Retrace Manager

USING THE VERTICAL RETRACE MANAGER

The Vertical Retrace Manager is automatically initialized each time the system starts up. To add a
VBL task to the vertical retrace queue, call VInstall. When your application no longer wants a
task to be executed, it can remove the task from the vertical retrace queue by calling VRemove.
A VBL task shouldn't call VRemove to remove its entry from the queue—either the application
should call VRemove, or the task should simply not reset the vblCount field of the queue entry.

Assembly-language note: VBL tasks may use registers A0-A3 and D0-D3, and must
save and restore any additional registers used. They must exit with an RTS instruction.

If you'd like to manipulate the contents of the vertical retrace queue direcdy, you can get a pointer
to the header of the vertical retrace queue by calling GetVBLQHdr.

VERTICAL RETRACE MANAGER ROUTINES

FUNCTION VInstall (vblTaskPtr: QElemPtr) : OSErr;

Trap macro _VInstall

On entry AO: vblTaskPtr (pointer)

On exit DO: result code (word)

VInstall adds the VBL task specified by vblTaskPtr to the vertical retrace queue. Your application
must fill in all fields of the task except qLink. VInstall returns one of the result codes listed
below.

Result codes noErr No error
vTypErr QType field isn't ORD(vType)

FUNCTION VRemove (vblTaskPtr: QElemPtr) : OSErr;

Trap macro _VRemove

On entry AO: vblTaskPtr (pointer)

On exit DO: result code (word)

VRemove removes the VBL task specified by vblTaskPtr from the vertical retrace queue. It
returns one of the result codes listed below.

Vertical Retrace Manager Routines 11-351

Inside Macintosh

Result codes noErr
vTypErr
qErr

No error
QType field isn't ORD(vType)
Task entry isn't in the queue

FUNCTION GetVBLQHdr : QHdrPtr; [NotinROM]

GetVBLQHdr returns a pointer to the header of the vertical retrace queue.

Assembly-language note: The global variable VBLQueue contains the header of the
vertical retrace queue.

11-352 Vertical Retrace Manager Routines

The Vertical Retrace Manager

SUMMARY OF THE VERTICAL RETRACE MANAGER

Constants

CONST { Result codes }

noErr = 0;
qErr = -1;
vTypErr = -2;

{no error}
{task entry isn't in the queue}
{qType field isn't ORD(vType)}

Data Types

TYPE VBLTask = RECORD
qLink: QElemPtr;
qType: INTEGER;
vblAddr: P rocPt r;
vblCount: INTEGER;
vblPhase: INTEGER

END;

{next queue entry}
{queue type}
{pointer to task}
{task frequency}
{task phase}

Routines

FUNCTION VInstall (vblTaskPtr: QElemPtr) : OSErr;
FUNCTION VRemove (vblTaskPtr: QElemPtr) : OSErr;
FUNCTION GetVBLQHdr : QHdrPtr; [Not in ROM]

Assembly-Language Information

Constants

iriVBL .EQU 6 ;set if Vertical Retrace Manager is executing a task

; Result codes

noErr .EQU 0 ;no error
qErr .EQU -1 ;task entry isn't in the queue
vTypErr .EQU -2 ;qType field isn't vType

Structure of Vertical Retrace Queue Entry

qLink Pointer to next queue entry
qType Queue type (word)
vblAddr Address of task
vblCount Task frequency (word)
vblPhase Task phase (word)

Summary of the Vertical Retrace Manager 11-353

Inside Macintosh

Routines

Trap macro
_VInstall

VRemove

On entry
AO: vblTaskPtr (ptr)

AO: vblTaskPtr (ptr)

On exit
DO: result code (word)

DO: result code (word)

Variables

VBLQueue Vertical retrace queue header (10 bytes)

11-354 Summary of the Vertical Retrace Manager

12 THE SYSTEM ERROR HANDLER

357 About This Chapter
357 About the System Error Handler
358 Recovering From System Errors
359 System Error Alert Tables
362 System Error Handler Routine
364 Summary of the System Error Handler

Inside Macintosh

11-356

The System Error Handler

ABOUT THIS CHAPTER

The System Error Handler is the part of the Operating System that assumes control when a fatal
system error occurs. This chapter introduces you to the System Error Handler and describes how
your application can recover from system errors.

You'll already need to be somewhat familiar with most of the User Interface Toolbox and the rest
of the Operating System.

ABOUT THE SYSTEM ERROR HANDLER

The System Error Handler assumes control when a fatal system error occurs. Its main function is
to display an alert box with an error message (called a system er ror alert) and provide a
mechanism for the application to resume execution.

Note: The system error alerts simply identify the type of problem encountered and, in
some cases, the part of the Toolbox or Operating System involved. They don't, however,
tell you where in your application code the failure occurred.

Because a system error usually indicates that a very low-level part of the system has failed, the
System Error Handler performs its duties by using as little of the system as possible. It requires
only the following:

• The trap dispatcher is operative.

• The Font Manager procedure InitFonts has been called (it's called when the system
starts up).

• Register A7 points to a reasonable place in memory (for example, not to the main
screen buffer).

• A few important system data structures aren't too badly damaged.

The System Error Handler doesn't require the Memory Manager to be operative.

The content of the alert box displayed is determined by a system er ror alert table, a resource
stored in the system resource file. There are two different system error alert tables: a system
startup alert table used when the system starts up, and a user alert table for informing the user of
system errors.

The system startup alerts are used to display messages at system startup such as the "Welcome to
Macintosh" message (Figure 1). They're displayed by the System Error Handler instead of the
Dialog Manager because the System Error Handler needs very littie of the system to operate.

The user alerts (Figure 2) notify the user of system errors. The bottom right corner of a user alert
contains a system er ror ID that identifies the error. Usually the message "Sorry, a system error
occurred", a Restart button, and a Resume button are also shown. If the Finder can't be found on
a disk, the message "Can't load the finder" and a Restart button will be shown. The Macintosh
will attempt to restart if the user clicks the Restart button, and the application will attempt to
resume execution if the user clicks the Resume button.

About the System Error Handler 11-357

Inside Macintosh

Welcome to Macintosh.

Figure 1. System Startup Alert

Sorry, a system error occurred.

(Restart) (Resume) ID = 12

Figure 2. User Alert

The "Please insert the disk:" message displayed by the File Manager is also a user alert; however,
unlike the other alerts, it's displayed in a dialog box.

The summary at the end of this chapter lists the system error IDs for the various user alerts, as
well as the system startup alert messages.

RECOVERING FROM SYSTEM ERRORS

An application recovers from a system error by means of a resume procedure. You pass a
pointer to your resume procedure when you call the Dialog Manager procedure InitDialogs.
When the user clicks the Resume button in a system error alert, the System Error Handler
attempts to restore the state of the system and then calls your resume procedure.

Assembly-language note : The System Error Handler actually restores the value of
register A5 to what it was before the system error occurred, sets the stack pointer to the
address stored in the global variable CurStackBase (throwing away the stack), and then
jumps to your resume procedure.

11-358 About the System Error Handler

The System Error Handler

If you don't have a resume procedure, you'll pass NIL to InitDialogs (and the Resume button in
the system error alert will be dimmed).

SYSTEM ERROR ALERT TABLES

This section describes the data structures that define the alert boxes displayed by the System Error
Handler; this information is provided mainly to allow you to edit and translate the messages
displayed in the alerts. Rearranging the alert tables or creating new ones is discouraged because
the Operating System depends on having the alert information stored in a very specific and
constant way.

In the system resource file, the system error alerts have the following resource types and IDs:

Tab le Resource type R e s o u r c e ID
System startup alert table 'DSAT' 0

User alert table TNIT' 2

A s s e m b l y - l a n g u a g e note: The global variable DSAlertTab contains a pointer to the
current system error alert table. DSAlertTab points to the system startup alert table when
the system is starting up; then it's changed to point to the user alert table.

A system error alert table consists of a word indicating the number of entries in the table,
followed by alert, text, icon, button, and procedure definitions, all of which are explained below.
The first definition in a system error alert table is an alert definition that applies to all system errors
that don't have their own alert definition. The rest of the definitions within the alert table needn't
be in any particular order, nor do the definitions of one type need to be grouped together. The
first two words in every definition are used for the same purpose: The first word contains an ID
number identifying the definition, and the second specifies the length of the rest of the definition
in bytes.

An alert definition specifies the IDs of the text, icon, button, and procedure definitions that
together determine the appearance and operation of the alert box that will be drawn (Figure 3).
The ID of an alert definition is the system error ID that the alert pertains to. The System Error
Handler uses the system error ID to locate the alert definition. The alert definition specifies the
IDs of the other definitions needed to create the alert; 0 is specified if the alert doesn't include any
items of that type.

A text definition specifies the text that will be drawn in the system error alert (Figure 4). Each
alert definition refers to two text definitions; the secondary text definition allows a second line of
text to be added to the alert message. (No more than two lines of text may be displayed.) The
pen location at which QuickDraw will begin drawing the text is given as a point in global
coordinates. The actual characters that comprise the text are suffixed by one NUL character
(ASCII code 0).

Warning: The slash character (/) can't be used in the text

System Error Alert Tables 11-359

Inside Macintosh

system error ID (word)

length of re3t of definition (word)

primary text definition ID (word)

secondary text definition ID (word)

icon definition ID (word)

procedure definition ID (word)

button definition ID (word)

Figure 3. Alert Definition

text definition ID (word)

length of rest of definition (word)

location (point)

text (ASCII characters)

NUL character (byte)

Figure 4. Text Definition

An icon definition specifies the icon that will be drawn in the system error alert (Figure 5). The
location of the icon is given as a rectangle in global coordinates. The 128 bytes that comprise the
icon complete the definition.

icon definition ID (word)

length of rest of definition (word)

location (rectangle)

icon data (128 byte3)

Figure 5. Icon Definition

A procedure definition specifies a procedure that will be executed whenever the system error alert
is drawn (Figure 6). Procedure definitions are also used to specify the action to be taken when a
particular button is pressed, as described below. Most of a procedure definition is simply the
code comprising the procedure.

i
i

i

11-360 System Error Alert Tables

The System Error Handler

procedure definition ID (word)

length of re3t of definition (word)

procedure code

Figure 6. Procedure Definition

A button definition specifies the button(s) that will be drawn in the system error alert (Figure 7).
It indicates the number of buttons that will be drawn, followed by that many six-word groups,
each specifying the text, location, and operation of a button.

button definition ID (word)

length of rest of definition (word)

Z

number of buttons (word)

string ID (word)

button location (rectangle)

procedure definition ID (word)

string ID (word)

button location (rectangle)

procedure definition ID (word)

first button

z
last button

Figure 7. Button Definition

The first word of each six-word group contains a string ID (explained below) specifying the text
that will be drawn inside the button. The button's location is given as a rectangle in global
coordinates. The last word contains a procedure definition ID identifying the code to be executed
when the button is clicked.
The text that will be drawn inside each button is specified by the data structure shown in Figure 8.
The first word contains a string ID identifying the string and the second indicates the length of the
string in bytes. The actual characters of the string follow.

Each alert has two button definitions; these definitions have sequential button definition IDs (such
as 60 and 61). The button definition ID of the first definition is placed in the alert definition.
This definition is used if no resume procedure has been specified (with a call to the Dialog
Manager's InitDialogs procedure). If a resume procedure has been specified, the System Error
Handler adds 1 to the button definition ID specified in the alert definition and so uses the second

System Error Alert Tables 11-361

Inside Macintosh

3tring ID (word)

length of string (word)

text (ASCII characters)

Figure 8. Strings Drawn in Buttons

button definition. In this definition, the procedure for the Resume button attempts to restore the
state of the system and calls the resume procedure that was specified with InitDialogs.

SYSTEM ERROR HANDLER ROUTINE

The System Error Handler has only one routine, SysError, described below. Most application
programs won't have any reason to call i t The system itself calls SysError whenever a system
error occurs, and most applications need only be concerned with recovering from the error and
resuming execution.

PROCEDURE SysError (errorCode: INTEGER);

Trap macro SysError

On entry DO: errorCode (word)

On exit All registers changed

SysError generates a system error with the ID specified by the errorCode parameter.

It takes the following precise steps:

1. It saves all registers and the stack pointer.

2. It stores the system error ID in a global variable (named DSErrCode).

3. It checks to see whether there's a system error alert table in memory (by testing whether the
global variable DSAlertTab is 0); if there isn't, it draws the "sad Macintosh" icon.

4. It allocates memory for QuickDraw globals on the stack, initializes QuickDraw, and
initializes a grafPort in which the alert box will be drawn.

5. It checks the system error ED. If the system error ID is negative, the alert box isn't redrawn
(this is used for system startup alerts, which can display a sequence of consecutive
messages in the same box). If the system error ID doesn't correspond to an entry in the
system error alert table, the default alert definition at the start of the table will be used,
displaying the message "Sorry, a system error occurred".

6. It draws an alert box (in the rectangle specified by the global variable DSAlertRect).

11-362 System Error Alert Tables

The System Error Handler

System Error Handler Routine 11-363

7. If the text definition IDs in the alert definition for this alert aren't 0, it draws both strings.

8. If the icon definition ID in the alert definition isn't 0, it draws the icon.

9. If the procedure definition ID in the alert definition isn't 0, it invokes the procedure with the
specified ID.

10. If the button definition ID in the alert definition is 0, it returns control to the procedure that
called it (this is used during the disk-switch alert to return control to the File Manager after
the "Please insert the disk:" message has been displayed).

11. If there's a resume procedure, it increments the button definition ED by 1.

12. It draws the buttons.

13. It hit-tests the buttons and calls the corresponding procedure code when a button is pressed.
If there's no procedure code, it returns to the procedure that called it.

Inside Macintosh

SUMMARY OF THE SYSTEM ERROR HANDLER

Routines

PROCEDURE SysError (errorCode: INTEGER);

User Alerts

ID Exp lana t ion

1 Bus error: Invalid memory reference; happens only on a Macintosh XL

2 Address error: Word or long-word reference made to an odd address

3 Illegal instruction: The MC68000 received an instruction it didn't recognize.

4 Zero divide: Signed Divide (DIVS) or Unsigned Divide (DIVU) instruction with a
divisor of 0 was executed.

5 Check exception: Check Register Against Bounds (CHK) instruction was executed
and failed. Pascal "value out of range" errors are usually reported in this way.

6 TrapV exception: Trap On Overflow (TRAPV) instraction was executed and failed.

7 Privilege violation: Macintosh always runs in supervisor mode; perhaps an erroneous
Return From Execution (RTE) instruction was executed.

8 Trace exception: The trace bit in the status register is set

9 Line 1010 exception: The 1010 trap dispatcher has failed.

10 Line 1111 exception: Unimplemented instruction

11 Miscellaneous exception: All other MC68000 exceptions

12 Unimplemented core routine: An unimplemented trap number was encountered.

13 Spurious interrupt: The interrupt vector table entry for a particular level of interrupt is
NIL; usually occurs with level 4, 5, 6, or 7 interrupts.

14 I/O system error: The File Manager is attempting to dequeue an entry from an I/O
request queue that has a bad queue type field; perhaps the queue entry is unlocked. Or,
the dCtlQHead field was NIL during a Fetch or Stash call. Or, a needed device control
entry has been purged.

15 Segment Loader error: A GetResource call to read a segment into memory failed.

16 Floating point error: The halt bit in the floating-point environment word was set.

17-24 Can't load package: A GetResource call to read a package into memory failed.

25 Can't allocate requested memory block in the heap

26 Segment Loader error: A GetResource call to read 'CODE' resource 0 into memory
failed; usually indicates a nonexecutable file.

11-364 Summary of the System Error Handler

The System Error Handler

27 File map destroyed: A logical block number was found that's greater than the number
of the last logical block on the volume or less than the logical block number of the first
allocation block on the volume.

28 Stack overflow error: The stack has expanded into the heap.

30 "Please insert the disk:" File Manager alert

41 The file named "Finder" can't be found on the disk.

100 Can't mount system startup volume. The system couldn't read the system resource file
into memory.

32767 "Sorry, a system error occurred": Default alert message

System Startup Alerts

"Welcome to Macintosh"
"Disassembler installed"
"MacsBug installed"
"Warning—this startup disk is not usable"

Assembly-Language Information

Constants

; System error IDs

dsBusError .EQU 1 •bus error
dsAddressErr .EQU 2 •address error
dsIHInstErr .EQU 3 •illegal instruction
dsZeroDivErr .EQU 4 • zero divide
dsChkErr .EQU 5 •check exception
dsOvflowErr .EQU 6 •trapV exception
dsPrivErr .EQU 7 •privilege violation
dsTraceErr .EQU 8 trace exception
dsLineAErr .EQU 9 •line 1010 exception
dsLineFErr .EQU 10 line 1111 exception
dsMiscErr • EQU 11 miscellaneous exception
dsCoreErr .EQU 12 unimplemented core routine
dsIrqErr .EQU 13 spurious interrupt
dsIOCoreErr .EQU 14 I/O system error
dsLoadErr .EQU 15 Segment Loader error
dsPPErr • EQU 16 floating point error
dsNoPackErr .EQU 17 can't load package 0
dsNoPkl .EQU 18 can't load package 1
dsNoPk2 .EQU 19 •can't load package 2
dsNoPk3 .EQU 20 •can't load package 3
dsNoPk4 .EQU 21 •can't load package 4
dsNoPk5 .EQU 22 •can't load package 5
dsNoPk6 .EQU 23 •can't load package 6

Summary of the System Error Handler 11-365

Inside Macintosh

dsNoPk7 .EQU 24
dsMemFullErr .EQU 25
dsBadLaunch .EQU 26
dsFSErr .EQU 27
dsStkNHeap .EQU 28
dsReinsert • EQU 30
dsSysErr .EQU 32767

;can't load package 7
;can't allocate requested block
/Segment Loader error
;file map destroyed
/stack overflow error
/"Please insert trie disk:"
/undifferentiated system error

Routines

Trap macro On entry On exit
_SysError DO: errorCode (word) All registers changed

Variables

DSErrCode Current system error ID (word)
DSAlertTab Pointer to system error alert table in use
DSAlertRect Rectangle enclosing system error alert (8 bytes)

11-366 Summary of the System Error Handler

13 THE OPERATING SYSTEM UTILITIES

369 About This Chapter
369 Parameter RAM
372 Operating System Queues
373 General Operating System Data Types
374 Operating System Utility Routines
374 Pointer and Handle Manipulation
376 String Comparison
377 Date and Time Operations
380 Parameter RAM Operations
382 Queue Manipulation
383 Trap Dispatch Table Utilities
384 Miscellaneous Utilities
387 Summary of the Operating System Utilities

Contents 11-367

Inside Macintosh

11-368

The Operating System Utilities

ABOUT THIS CHAPTER

This chapter describes the Operating System Utilities, a set of routines and data types in the
Operating System that perform generally useful operations such as manipulating pointers and
handles, comparing strings, and reading the date and time.

Depending on which Operating System Utilities you're interested in using, you may need to be
familiar with other parts of the Toolbox or Operating System; where that's necessary, you're
referred to the appropriate chapters.

PARAMETER RAM

Various settings, such as those specified by the user by means of the Control Panel desk
accessory, need to be preserved when the Macintosh is off so they will still be present at the next
system startup. This information is kept in parameter RAM, 20 bytes that are stored in the
clock chip together with the current date and time setting. The clock chip is powered by a
battery when the system is off, thereby preserving all the settings stored in it.

You may find it necessary to read the values in parameter RAM or even change them (for
example, if you create a desk accessory like the Control Panel). Since the clock chip itself is
difficult to access, its contents are copied into low memory at system startup. You read and
change parameter RAM through this low-memory copy.

Note: Certain values from parameter RAM are used so frequentiy that special routines
have been designed to return them (for example, the Toolbox Event Manager function
GetDblTime). These routines are discussed in other chapters where appropriate.

Assembly-language note : The low-memory copy of parameter RAM begins at the
address SysParam; the various portions of the copy can be accessed through individual
global variables, listed in the summary at the end of this chapter. Some of these are copied
into other global variables at system startup for even easier access; for example, the auto-
key threshold and rate, which are contained in the variable SPKbd in the copy of parameter
RAM, are copied into the variables KeyThresh and KeyRepThresh. Each such variable is
discussed in the appropriate chapter.

The date and time setting is also copied at system startup from the clock chip into its own low-
memory location. It's stored as a number of seconds since midnight, lanuary 1, 1904, and is
updated every second. The maximum value, $FFFFFFFF, corresponds to 6:28:15 AM,
February 6, 2040; after that, it wraps around to midnight, lanuary 1, 1904.

Assembly-language note : The low-memory location containing the date and time is the
global variable Time.

Parameter RAM 11-369

Inside Macintosh

The structure of parameter RAM is represented by the following data type:

TYPE SysParmType =
RECORD

valid: Byte;
aTalkA: Byte;
aTalkB: Byte;
config: Byte;
port A: INTEGER
portB: INTEGER
alarm: LONGINT
font: INTEGER
kbdPrint: INTEGER
volClik: INTEGER
misc: INTEGER

{validity status}
{AppleTalk node ID hint for modem port}
{AppleTalk node ID hint for printer port}
{use types for serial ports}
{modem port configuration}
{printer port configuration}
{alarm setting}
{application font number minus 1}
{auto-key settings, printer connection}
{speaker volume, double-click, caret blink}
{mouse scaling, startup disk, menu blink}

END;

SysPPtr = ASysParmType;

The valid field contains the validity status of the clock chip: Whenever you successfully write
to the clock chip, $A8 is stored in this byte. The validity status is examined when the clock chip
is read at system startup. It won't be $A8 if a hardware problem prevented the values from being
written; in this case, the low-memory copy of parameter RAM is set to the default values shown
in the table below, and these values are then written to the clock chip itself. (The meanings of the
parameters are explained below in the descriptions of the various fields.)

Parameter
Validity status

Node ID hint for modem port

Node ED hint for printer port

Use types for serial ports

Modem port configuration

Printer port configuration

Alarm setting

Application font number minus 1

Auto-key threshold

Auto-key rate

Printer connection

Speaker volume

Double-click time

Caret-blink time

Mouse scaling

Preferred system startup disk

Menu blink

Default value
$A8

0

0

0 (both ports)

9600 baud, 8 data bits, 2 stop bits, no parity

Same as for modem port

0 (midnight, January 1, 1904)

2 (Geneva)

6 (24 ticks)

3 (6 ticks)

0 (printer port)

3 (medium)

8 (32 ticks)

8 (32 ticks)

l (on)

0 (internal drive)

3

11-370 Parameter RAM

The Operating System Utilities

Warning : Your program must not use bits indicated below as "reserved for future use" in
parameter RAM, since future Macintosh software features will use them.

The aTalkA and aTalkB fields are used by the AppleTalk Manager; they're described in the
manual Inside AppleTalk.

The config field indicates which device or devices may use each of the serial ports; for details, see
the section "Calling the AppleTalk Manager from Assembly Language" in chapter 10.

The portA and portB fields contain the baud rates, data bits, stop bits, and parity for the device
drivers using the modem port ("port A") and printer port ("port B"). An explanation of these
terms and the exact format of the information are given in chapter 9.

The alarm field contains the alarm setting in seconds since midnight, January 1, 1904.

The font field contains 1 less than the number of the application font. See chapter 7 of Volume I
for a list of font numbers.

Bit 0 of the kbdPrint field (Figure 1) designates whether the printer (if any) is connected to the
printer port (0) or the modem port (1). Bits 8-11 of this field contain the auto-key rate , the rate
of the repeat when a character key is held down; this value is stored in two-tick units. Bits 12-15
contain the auto-key threshold, the length of time the key must be held down before it begins
to repeat; it's stored in four-tick units.

15 12 11 8 7 1 0
reserved for future use

auto-key threshold
(in four- t ick uni ts) pr inter connect ion

auto-key rate
(in two- t ick uni ts)

Figure 1. The KbdPrint Field

Bits 0-3 of the volClik field (Figure 2) contain the caret-blink time, and bits 4-7 contain the
double-click time; both values are stored in four-tick units. The caret-blink time is the interval
between blinks of the caret that marks the insertion point in text. The double-click time is the
greatest interval between a mouse-up and mouse-down event that would qualify two mouse clicks
as a double-click. Bits 8-10 of the volClik field contain the speaker volume setting, which ranges
from silent (0) to loud (7).

Note: The Sound Driver procedure SetSoundVol changes the speaker volume without
changing the setting in parameter RAM, so it's possible for the actual volume to be
different from this setting.

Bits 2 and 3 of the misc field (Figure 3) contain a value from 0 to 3 designating how many times
a menu item will blink when it's chosen. Bit 4 of this field indicates whether the preferred disk to
use to start up the system is in the internal (0) or the external (1) drive; if there's any problem
using the disk in the specified drive, the other drive will be used.

Parameter RAM 11-371

Inside Macintosh

15 11 10 8 7 4 3
*

speaker volume caret-b
(in four-

l ink t ime
t ick uni ts)

* reserved for
future U 3 e

double-c l ick t ime
(in four- t ick uni ts)

Figure 2. The VolClik Field

15 7 6 5 4 3 2 1 0
* * *

reserved for future U 3 e

L-menu b l ink

•system startup disk
• mouse sca l ing

Figure 3. The Misc Field

Finally, bit 6 of the misc field designates whether mouse scaling is on (1) or off (0). If mouse
scaling is on, the system looks every sixtieth of a second at whether the mouse has moved; if in
that time the sum of the mouse's horizontal and vertical changes in position is greater than the
mouse-scaling threshold (normally six pixels), then the cursor will move twice as far
horizontally and vertically as it would if mouse scaling were off.

Assembly-language note: The mouse-scaling threshold is contained in the global
variable CrsrThresh.

OPERATING SYSTEM QUEUES

Some of the information used by the Operating System is stored in data structures called queues.
A queue is a list of identically structured entries linked together by pointers. Queues are used to
keep track of VBL tasks, I/O requests, events, mounted volumes, and disk drives (or other block-
formatted devices).

A standard Operating System queue has a header with the following structure:

TYPE QHdr = RECORD
qFlags: INTEGER; {queue flags}
qHead: QElemPtr; {first queue entry}
qTail: QElemPtr {last queue entry}

END;

11-372 Parameter RAM

The Operating System Utilities

QHdrPtr = "QHdr;

TYPE QTypes = (dummyType,
vType, {vertical retrace queue type}
ioQType, {file I/O or driver I/O queue type}
drvQType, {drive queue type}
evType, {event queue type}
fsQType); {volume-control-block queue type}

QElem = RECORD
CASE QTypes OF
vType: (vblQElem:
ioQType: (ioQElem:
drvQType: (drvQElem:
evType: (evQElem:
fsQType: (vcbQElem:

END;

VBLTask);
ParamBlockRec)
DrvQEl);
EvQEl);
VCB)

QElemPtr = AQElem;

All entries in queues, regardless of the queue type, begin with four bytes of flags followed by a
pointer to the next queue entry. The entries are linked through these pointers; each one points to
the pointer field in the next entry. In Pascal, the data type of the pointer is QElemPtr, and the data
type of the entry begins with the pointer field. Consequendy, the flag bytes are inaccessible from
Pascal.
Following the pointer to the next entry, each entry contains an integer designating the queue type
(for example, ORD(evType) for the event queue). The exact structure of the rest of the entry
depends on the type of queue; for more information, see the chapter that discusses that queue in
detail.

GENERAL OPERATING SYSTEM DATA TYPES

This section describes two data types of general interest to users of the Operating System.

There are several places in the Operating System where you specify a four-character sequence for
something, such as for file types and application signatures (described in chapter 1 of Volume
III). The Pascal data type for such sequences is

TYPE OSType = PACKED ARRAY[1..4] OF CHAR;

Another data type that's used frequentiy in the Operating System is

TYPE OSErr = INTEGER;

General Operating System Data Types 11-373

QFlags contains information (usually flags) that's different for each queue type. QHead points
the first entry in the queue, and qTail points to the last entry in the queue. The entries within ea
type of queue are different; the Operating System uses the following variant record to access
them:

Inside Macintosh

This is the data type for a result code, which many Operating System routines (including those
described in this chapter) return in addition to their normal results. A result code is an integer
indicating whether the routine completed its task successfully or was prevented by some error
condition (or other special condition, such as reaching the end of a file). In the normal case that
no error is detected, the result code is

CONST noErr = 0; {no error}

A nonzero result code (usually negative) signals an error. A list of all result codes is provided in
Appendix A (Volume III).

OPERATING SYSTEM UTILITY ROUTINES

Pointer and Handle Manipulation

These functions would be easy to duplicate with Memory Manager calls; they're included in the
Operating System Utilities as a convenience because the operations they perform are so common.

FUNCTION HandToHand (VAR theHndl: Handle) : OSErr;

Trap macro HandToHand

On entry AO: theHndl (handle)

On exit AO: theHndl (handle)
DO: result code (word)

HandToHand copies the information to which theHndl is a handle and returns a new handle to the
copy in theHndl. Since HandToHand replaces the input parameter with a new handle, you
should retain the original value of the input parameter somewhere else, or you won't be able to
access it. For example:

VAR x,y: Handle;
err: OSErr;

y := x;
err := HandToHand(y)

The original handle remains in x while y becomes a different handle to an identical copy of the
data.

Result codes noErr No error
memFullErr Not enough room in heap zone
nilHandleErr NIL master pointer
memWZErr Attempt to operate on a free block

11-374 General Operating System Data Types

The Operating System Utilities

FUNCTION PtrToHand (srcPtr: Ptr; VAR dstHndl: Handle; size:
LONGINT) : OSErr;

Trap macro PtrToHand

On entry AO: srcPtr (pointer)
DO: size (long word)

On exit AO: dstHndl (handle)
DO: result code (word)

PtrToHand returns in dstHndl a newly created handle to a copy of the number of bytes specified
by the size parameter, beginning at the location specified by srcPtr.

Result codes noErr No error
memFullErr Not enough room in heap zone

FUNCTION PtrToXHand (srcPt;r: Ptr; dstHndl: Handle; size: LONGINT)
: OSErr;

Trap macro _PtrToXHand

On entry AO: srcPtr (pointer)
A l : dstHndl (handle)
DO: size (long word)

On exit AO: dstHndl (handle)
DO: result code (word)

PtrToXHand takes the existing handle specified by dstHndl and makes it a handle to a copy of the
number of bytes specified by the size parameter, beginning at the location specified by srcPtr,

Result codes noErr No error
memFullErr Not enough room in heap zone
nilHandleErr NIL master pointer
memWZErr Attempt to operate on a free block

FUNCTION HandAndHand (aHndl,bHndl: Handle) : OSErr;

Trap macro _HandAndHand

On entry AO: aHndl (handle)
A l : bHndl (handle)

On exit AO: bHndl (handle)
DO: result code (word)

Operating System Utility Routines 11-375

Inside Macintosh

HandAndHand concatenates the information to which aHndl is a handle onto the end of the
information to which bHndl is a handle.

Warning: HandAndHand dereferences aHndl, so be sure to call the Memory Manager
procedure HLock to lock the block before calling HandAndHand.

Result codes noErr No error
memFullErr Not enough room in heap zone
nilHandleErr NIL master pointer
memWZErr Attempt to operate on a free block

FUNCTION PtrAndHand (pntr: Ptr; hndl: Handle; size: LONGINT) :
OSErr;

Trap macro PtrAndHand

On entry AO: pntr (pointer)
A l : hndl (handle)
DO: size (long word)

On exit AO: hndl (handle)
DO: result code (word)

PtrAndHand takes the number of bytes specified by the size parameter, beginning at the location
specified by pntr, and concatenates them onto the end of the information to which hndl is a
handle.

Result codes noErr No error
memFullErr Not enough room in heap zone
nilHandleErr NIL master pointer
memWZErr Attempt to operate on a free block

String Comparison

Assembly-language note : The trap macros for these utility routines have optional
arguments corresponding to the Pascal flags passed to the routines. When present, such an
argument sets a certain bit of the routine trap word; this is equivalent to setting the
corresponding Pascal flag to either TRUE or FALSE, depending on the flag. The trap
macros for these routines are listed with all the possible permutations of arguments.
Whichever permutation you use, you must type it exactly as shown. (The syntax shown
applies to the Lisa Workshop Assembler; programmers using another development system
should consult its documentation for the proper syntax.)

11-376 Operating System Utility Routines

The Operating System Utilities

FUNCTION EqualString (aStr,bStr: Str255; caseSens,diacSens:
BOOLEAN) : BOOLEAN;

Trap macro CmpString
_CmpString ,MARKS (sets bit 9, for diacSens=FALSE)
_CmpString ,CASE (sets bit 10, for caseSens=TRUE)
_CmpString .MARKS,CASE (sets bits 9 and 10)

On entry AO: pointer to first character of first string
Al : pointer to first character of second string
DO: high-order word: length of first string

low-order word: length of second string

On exit DO: 0 if strings equal, 1 if strings not equal (long word)

EqualString compares the two given strings for equality on the basis of their ASCII values. If
caseSens is TRUE, uppercase characters are distinguished from the corresponding lowercase
characters. If diacSens is FALSE, diacritical marks are ignored during the comparison. The
function returns TRUE if the strings are equal.

Note: See also the International Utilities Package function IUEqualString.

PROCEDURE UprString (VAR theString: Str255; diacSens: BOOLEAN);

Trap macro _UprString
JJprStr ing ,MARKS (sets bit 9, for diacSens=FALSE)

On entry AO: pointer to first character of string
DO: length of string (word)

On exit AO: pointer to first character of string

UprString converts any lowercase letters in the given string to uppercase, retorning the converted
string in theString. In addition, diacritical marks are stripped from the string if diacSens is
FALSE.

Date and Time Operations

The following utilities are for reading and setting the date and time stored in the clock chip.
Reading the date and time is a fairly common operation; setting it is somewhat rarer, but could be
necessary for implementing a desk accessory like the Control Panel.

The date and time setting is stored as an unsigned number of seconds since midnight, January 1,
1904; you can use a utility routine to convert this to a date/time record. Date/time records are
defined as follows:

Operating System Utility Routines 11-377

Inside Macintosh

TYPE DateTimeRec =
RECORD

year: INTEGER; {1904 to 2040}
month: INTEGER; {1 to 12 for January to December}
day: INTEGER; {1 to 31}
hour: INTEGER; {0 to 23}
minute: INTEGER; {0 to 59}
second: INTEGER; {0 to 59}
dayOfWeek: INTEGER {1 to 7 for Sunday to Saturday}

END;

FUNCTION ReadDateTime (VAR sees: LONGINT) : OSErr;

Trap macro ReadDateTime

On entry AO: pointer to long word sees

On exit AO: pointer to long word sees
DO: result code (word)

ReadDateTime copies the date and time stored in the clock chip to a low-memory location and
returns it in the sees parameter. This routine is called at system startup; you'll probably never
need to call it yourself. Instead you'll call GetDateTime (see below).

Assembly-language note: The low-memory location to which ReadDateTime copies
the date and time is the global variable Time.

Result codes noErr No error
clkRdErr Unable to read clock

PROCEDURE GetDateTime (VAR sees: LONGINT); [Not in ROM]

GetDateTime returns in the sees parameter the contents of the low-memory location in which the
date and time setting is stored; if this setting reflects the actual current date and time, sees will
contain the number of seconds between midnight, lanuary 1, 1904 and the time that the function
was called.

Note: If your application disables interrupts for longer than a second, the number of
seconds returned will not be exact.

Assembly-language note: Assembly-language programmers can just access the global
variable Time.

11-378 Operating System Utility Routines

The Operating System Utilities

If you wish, you can convert the value returned by GetDateTime to a date/time record by calling
the Secs2Date procedure.

Note: Passing the value returned by GetDateTime to the International Utilities Package
procedure IUDateString or IUTimeString will yield a string representing the corresponding
date or time of day, respectively.

FUNCTION SetDateTime (sees: LONGINT) : OSErr;

Trap macro SetDateTime

On entry DO: sees (long word)

On exit DO: result code (word)

SetDateTime takes a number of seconds since midnight, January 1, 1904, as specified by the sees
parameter, and writes it to the clock chip as the current date and time. It then attempts to read the
value just written and verify it by comparing it to the sees parameter.

Assembly-language note: SetDateTime updates the global variable Time to the value of
the sees parameter.

Result codes noErr No error
clkWfErr Time written did not verify
clkRdErr Unable to read clock

PROCEDURE Date2Secs (date: DateTimeRec; VAR sees: LONGINT);

Trap macro _Date2Secs

On entry AO: pointer to date/time record

On exit DO: sees (long word)

Date2Secs takes the given date/time record, converts it to the corresponding number of seconds
elapsed since midnight, lanuary 1, 1904, and returns the result in the sees parameter. The
dayOfWeek field of the date/time record is ignored. The values passed in the year and month
fields should be within their allowable ranges, or unpredictable results will occur. The remaining
four fields of the date/time record may contain any value. For example, September 34 will be
interpreted as October 4, and you could specify the 300th day of the year as January 300.

Operating System Utility Routines 11-379

Inside Macintosh

PROCEDURE Secs2Date (sees: LONGINT; VAR date: DateTimeRec);

Trap macro _Secs2Date

On entry DO: sees (long word)

On exit AO: pointer to date/time record

Secs2Date takes a number of seconds elapsed since midnight, January 1, 1904 as specified by the
sees parameter, converts it to the corresponding date and time, and returns the corresponding
date/time record in the date parameter.

PROCEDURE GetTime (VAR date: DateTimeRec); [Not in ROM]

GetTime takes the number of seconds elapsed since midnight, January 1, 1904 (obtained by
calling GetDateTime), converts that value into a date and time (by calling Secs2Date), and returns
the result in the date parameter.

Assembly-language note: From assembly language, you can pass the value of the
global variable Time to Secs2Date.

PROCEDURE SetTime (date: DateTimeRec); [Not in ROM]

SetTime takes the date and time specified by the date parameter, converts it into the corresponding
number of seconds elapsed since midnight, January 1, 1904 (by calling Date2Secs), and then
writes that value to the clock chip as the current date and time (by calling SetDateTime).

Assembly-language note : From assembly language, you can just call Date2Secs and
SetDateTime direcdy.

Parameter RAM Operations

The following three utilities are used for reading from and writing to parameter RAM. Figure 4
illustrates the function of these three utilities; further details are given below and in the "Parameter
RAM" section.

FUNCTION InitUtil : OSErr;

Trap macro InitUtil

On exit DO: result code (word)

11-380 Operating System Utility Routines

The Operating System Utilities

GetSysPPtr returns a pointer
to here

f A
hx > ml

20-byte

In i tUt i l sect ion of

low memory
Clock ch ip

, Wri teParam
<

Figure 4. Parameter RAM Routines

InitUtil copies the contents of parameter RAM into 20 bytes of low memory and copies the date
and time from the clock chip into its own low-memory location. This routine is called at system
startup; you'll probably never need to call it yourself.

Assembly-language note: InitUtil copies parameter RAM into 20 bytes starting at the
address SysParam and copies the date and time into the global variable Time.

If the validity status in parameter RAM is not $A8 when InitUtil is called, an error is returned as
the result code, and the default values (given in the "Parameter RAM" section) are read into the
low-memory copy of parameter RAM; these values are then written to the clock chip itself.

Result codes noErr No error
prlnitErr Validity status not $A8

FUNCTION GetSysPPtr : SysPPtr; [NotinROM]

GetSysPPtr returns a pointer to the low-memory copy of parameter RAM. You can examine the
values stored in its various fields, or change them before calling WriteParam (below).

Assembly-language note: Assembly-language programmers can simply access the
global variables corresponding to the low-memory copy of parameter RAM. These
variables, which begin at the address SysParam, are listed in the summary.

Operating System Utility Routines 11-381

Inside Macintosh

FUNCTION WriteParam : OSErr;

Trap macro _WriteParam

On entry AO: SysParam (pointer)
DO: MinusOne (long word)

(You have to pass the values of these global variables for historical
reasons.)

On exit DO: result code (word)

WriteParam writes the low-memory copy of parameter RAM to the clock chip. You should
previously have called GetSysPPtr and changed selected values as desired.

WriteParam also attempts to verify the values written by reading them back in and comparing
them to the values in the low-memory copy.

Note: If you've accidentally written incorrect values into parameter RAM, the system may
not be able to start up. If this happens, you can reset parameter RAM by removing the
battery, letting the Macintosh sit turned off for about five minutes, and then putting the
battery back in.

Result codes noErr No error
prWrErr Parameter RAM written did not verify

Queue Manipulation

This section describes utilities that advanced programmers may want to use for adding entries to
or deleting entries from an Operating System queue. Normally you won't need to use these
utilities, since queues are manipulated for you as necessary by routines that need to deal with
them.

PROCEDURE Enqueue (qEntry: QElemPtr; theQueue: QHdrPtr);

Trap macro _Enqueue

On entry AO: qEntry (pointer)
A l : theQueue (pointer)

On exit A l : theQueue (pointer)

Enqueue adds the queue entry pojnted to by qEntry to the end of the queue specified by theQueue.

Note: Interrupts are disabled for a short time while the queue is updated.

11-382 Operating System Utility Routines

The Operating System Utilities

FUNCTION Dequeue (qEntry: QElemPtr; theQueue: QHdrPtr) : OSErr;

Trap macro _Dequeue

On entry AO: qEntry (pointer)
A l : theQueue (pointer)

On exit A l : theQueue (pointer)
DO: result code (word)

Dequeue removes the queue entry pointed to by qEntry from the queue specified by theQueue
(without deallocating the entry) and adjusts other entries in the queue accordingly.

Note: The note under Enqueue above also applies here. In this case, the amount of time
interrupts are disabled depends on the length of the queue and the position of the entry in
the queue.

Note: To remove all entries from a queue, you can just clear all the fields of the queue's
header.

Result codes noErr No error
qErr Entry not in specified queue

Trap Dispatch Table Utilities

The Operating System Utilities include two routines for manipulating the trap dispatch table,
which is described in detail in chapter 4 of Volume I. Using these routines, you can intercept
calls to an Operating System or Toolbox routine and do gome pre- Or post-processing of your
own: Call GetTrapAddress to get the address of the original routine, save mat address for later
use, and call SetTrapAddress to install your own version 6f the routine in the dispatch table.
Before or after its own processing, the new version of the routine can use the saved address to
call the original version.

W a r n i n g : You can replace as well as intercept existing routines; in any case, you should
be absolutely sure you know what you're doing. Remember that some calls that aren't in
ROM do some processing of their own before invoking a trap macro (for example,
FSOpen eventually invokes _Open, and nJCompString invokes the macro for
IUMagString). Also, a number of ROM routines have been patched with corrected
versions in RAM; if you intercept a patched routine, you must not do any processing after
the existing patch, and you must be sure to preserve the registers and the stack (or the
system won't work properly).

Assembly-language note : You can tell whether a routine is patched by comparing its
address to the global variable ROMBase; if the address is less than ROMBase, the routine
is patched.

Operating System Utility Routines 11-383

Inside Macintosh

In addition, you can use GetTrapAddress to save time in critical sections of your program by
calling an Operating System or Toolbox routine direcdy, avoiding the overhead of a normal trap
dispatch.

FUNCTION GetTrapAddress (trapNum: INTEGER) : LONGINT;

Trap macro GetTrapAddress

On entry DO: trapNum (word)

On exit AO: address of routine

GetTrapAddress returns the address of a routine currently installed in the trap dispatch table under
the trap number designated by trapNum. To find out the trap number for a particular routine, see
Appendix C (Volume HI).

Assembly-language note : When you use this technique to bypass the trap dispatcher,
you don't get the extra level of register saving. The routine itself will preserve A2-A6 and
D3-D7, but if you want any other registers preserved across the call you have to save and
restore them yourself.

PROCEDURE SetTrapAddress (trapAddr: LONGINT; trapNum: INTEGER);

Trap macro _SetTrapAddress

On entry AO: trapAddr (address)
DO: trapNum (word)

SetTrapAddress installs in the trap dispatch table a routine whose address is trapAddr; this routine
is installed under the trap number designated by trapNum.

Warning: Since the trap dispatch table can address locations within a range of only 64K
bytes from the beginning of the system heap, the routine you install should be in the
system heap.

Miscellaneous Utilities

PROCEDURE Delay (numTicks: LONGINT; VAR finalTicks: LONGINT);

Trap macro _Delay

On entry AO: numTicks (long word)

On exit DO: finalTicks (long word)

11-384 Operating System Utility Routines

The Operating System Utilities

Delay causes the system to wait for the number of ticks (sixtieths of a second) specified by
numTicks, and returns in finalTicks the total number of ticks from system startup to the end of the
delay.

Warning: Don't rely on the duration of the delay being exact; it will usually be accurate to
within one tick, but may be off by more than that. The Delay procedure enables all
interrupts and checks the tick count that's incremented during the vertical retrace interrupt;
however, it's possible for this interrupt to be disabled by other interrupts, in which case the
duration of the delay will not be exacdy what you requested.

Assembly-language note: On exit from this procedure, register DO contains the value
of the global variable Ticks as measured at the end of the delay.

PROCEDURE SysBeep (duration: INTEGER);

SysBeep causes the system to beep for approximately the number of ticks specified by the
duration parameter. The sound decays from loud to soft; after about five seconds it's inaudible.
The initial volume of the beep depends on the current speaker volume setting, which the user can
adjust with the Control Panel desk accessory. If the speaker volume has been set to 0 (silent),
SysBeep instead causes the menu bar to blink once.

Assembly-language note: Unlike all other Operating System Utilities, this procedure is
stack-based.

PROCEDURE Environs (VAR r o m , machine: INTEGER); [Not in ROM]

In the rom parameter, Environs returns the current ROM version number (for a Macintosh XL,
the version number of the ROM image installed by MacWorks). In the machine parameter, it
returns an indication of which machine is in use, as follows:

CONST macXLMachine = 0; {Macintosh XL}
macMachine = 1 ; {Macintosh 12 8K or 512K}

Assembly-language note: From assembly language, you can get this information from
the word that's at an offset of 8 from the beginning of ROM (which is stored in the global
variable ROMBase). The format of this word is $00xx for the Macintosh 128K or 512K
and $xxFF for the Macintosh XL, where xx is the ROM version number. (The ROM
version number will always be between 1 and $FE.)

PROCEDURE Restart; [Not in ROM]

This procedure restarts the system.

Operating System Utility Routines 11-385

Inside Macintosh

Assembly-language note: From assembly language, you can give the following
instructions to restart the system:

MOVE ROMBase, AO
JMP $0A(A0)

PROCEDURE SetUpA5; [Not in ROM]

SetUpA5 saves the current value of register A5 (for restoring later with RestoreA5, described
below) and then resets A5 to point to the boundary between the application globals and the
application parameters. This procedure is useful only within the interrupt environment, where the
state of A5 is unpredictable; for instance, in a completion routine or a VBL task, calling SetUpA5
will ensure that A5 contains the proper value, allowing the routine or task to access the
application globals.

Assembly-language note: You can get the boundary between the application globals
and the application parameters from the global variable CurrentA5.

PROCEDURE RestoreA5; [Not in ROM]

Call RestoreA5 at the conclusion of a routine or task that required a call to SetUpA5 (above); it
restores register A5 to whatever its value was when SetUpA5 was called.

11-386 Operating System Utility Routines

The Operating System Utilities

SUMMARY OF THE OPERATING SYSTEM UTILITIES

Constants

CONST { Values returned by Environs procedure }

macXLMachine = 0;
macMachine = 1 ;

{ Result codes }

clkRdErr = -85;
clkWrErr = -86;
memFullErr = -108
memWZErr = -111
nilHandleErr = -109
noErr = 0 ;
prlnitErr = -88;
prWrErr = -87;
qErr = -1;

{Macintosh XL}
{Macintosh 128K or 512K}

{unable to read clock}
{time written did not verify}
{not enough room in heap zone}
{attempt to operate on a free block}
{NIL master pointer}
{no error}
{validity status is not $A8}
{parameter RAM written did not verify}
{entry not in specified queue}

Data Types

TYPE OSType = PACKED ARRAY[1..4] OF CHAR;

OSErr = INTEGER;

SysPPtr = ^SysParmType;
SysParmType =

RECORD
valid: Byte; {validity status}
aTalkA: Byte; {AppleTalk node ID hint for modem port}
aTalkB: Byte; {AppleTalk node ID hint for printer port}
config: Byte; {use types for serial ports}
port A: INTEGER, {modem port configuration}
portB: INTEGER • {printer port configuration}
alarm: LONGINT {alarm setting}
font: INTEGER {application font number minus 1}
kbdPrint: INTEGER • {auto-key settings, printer connection}
volClik: INTEGER {speaker volume, double-click, caret blink}
misc: INTEGER {mouse scaling, startup disk, menu blink}

END;

QHdrPtr = AQHdr;
QHdr = RECORD

qFlags: INTEGER; {queue flags}
qHead: QElemPtr; {first queue entry}
qTail: QElemPtr {last queue entry}

END;

Summary of the Operating System Utilities 11-387

Inside Macintosh

QTypes = (dummyType,
vType, {vertical retrace queue type}
ioQType, {file I/O or driver I/O queue type}
drvQType, {drive queue type}
evType, {event queue type}
fsQType); {volume-control-block queue type}

QElemPtr ;

QElem
^QElem;
RECORD
CASE QTypes OF
vType:
ioQType:
drvQType
evType:
fsQType:

END;

(vblQElem: VBLTask);
(ioQElem: ParamBlockRec);
(drvQElem: DrvQEl);
(evQElem: EvQEl);
(vcbQElem: VCB)

DateTimeRec =
RECORD

year: INTEGER • {1904 to 2040}
month: INTEGER • {1 to 12 for January to Decembe
day: INTEGER • {1 to 31}
hour: INTEGER • {0 to 23}
minute: INTEGER • {0 to 59}
second: INTEGER, {0 to 59}
dayOfWeek: INTEGER {1 to 7 for Sunday to Saturday}

END;

Routines

Pointer and Handle Manipulation

FUNCTION HandToHand (VAR theHndl: Handle) : OSErr;
FUNCTION PtrToHand (srcPtr: Ptr; VAR dstHndl: Handle; size: LONGINT)

OSErr;
FUNCTION PtrToXHand (srcPtr: Ptr; dstHndl: Handle; size: LONGINT) :

OSErr;
FUNCTION HandAndHand (aHndl,bHndl: Handle) : OSErr;
FUNCTION PtrAndHand (pntr: Ptr; hndl: Handle; size: LONGINT) : OSErr;

String Comparison

FUNCTION EqualString (aStr,bStr: Str255; caseSens,diacSens: BOOLEAN)
BOOLEAN;

PROCEDURE UprString (VAR theString: Str255; diacSens: BOOLEAN);

11-388 Summary of the Operating System Utilities

The Operating System Utilities

Date and Time Operations

FUNCTION
PROCEDURE
FUNCTION
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

ReadDateTime
GetDateTime
SetDateTime
Date2Secs
Secs2Date
GetTime
SetTime

(VAR sees: LONGINT) : OSErr;
(VAR sees: LONGINT); [NotinROM]
(sees: LONGINT) : OSErr;
(date: DateTimeRec; VAR sees: LONGINT);
(sees: LONGINT; VAR date: DateTimeRec);
(VAR date: DateTimeRec); [NotinROM]
(date: DateTimeRec); [Not in ROM]

Parameter RAM Operations

FUNCTION InitUtil : OSErr;
FUNCTION GetSysPPtr : SysPPtr; [NotinROM]
FUNCTION WriteParam : OSErr;

Queue Manipulation

PROCEDURE Enqueue (qEntry: QElemPtr; theQueue: QHdrPtr);
FUNCTION Dequeue (qEntry: QElemPtr; theQueue: QHdrPtr) : OSErr;

Trap Dispatch Table Utilities

PROCEDURE SetTrapAddress (trapAddr: LONGINT; trapNum: INTEGER);
FUNCTION GetTrapAddress (trapNum: INTEGER) : LONGINT;

Miscellaneous Utilities

PROCEDURE Delay
PROCEDURE SysBeep
PROCEDURE Environs
PROCEDURE Restart;
PROCEDURE SetUpA5;
PROCEDURE RestoreA5;

(numTicks: LONGINT; VAR finalTicks: LONGINT);
(duration: INTEGER);
(VAR rom,machine: INTEGER); [NotinROM]
[Not in ROM]
[Not in ROM]
[NotinROM]

Default Parameter RAM Values

Parame te r

Validity status

Node ID hint for modem port

Node ID hint for printer port

Use types for serial ports

Modem port configuration

Default value

$A8

0

0

0 (both ports)

9600 baud, 8 data bits, 2 stop bits, no parity

Summary of the Operating System Utilities 11-389

Inside Macintosh

Parame te r
Printer port configuration

Alarm setting

Application font number minus 1

Auto-key threshold

Auto-key rate

Printer connection

Speaker volume

Double-click time

Caret-blink time

Mouse scaling

Preferred system startup disk

Menu blink

Default value
Same as for modem port

0 (midnight, January 1, i904)

2 (Geneva)

6 (24 ticks)

3 (6 ticks)

0 (printer port)

3 (medium)

8 (32 ticks)

8 (32 ticks)

l (o n)

0 (internal drive)

3

Assembly-Language Information

Constants

; Result codes

clkRdErr .EQU -85 ;unable to read clock
clkWrErr .EQU -86 ;time written did not verify
memFullErr .EQU -108 /not enough room in heap zone
memWZErr .EQU -111 /attempt to operate on a free block
nilHandleErr .EQU -109 ;NIL master pointer
noErr .EQU 0 ;no error
prlnitErr -EQU -88 ;validity status is not $A8
prWrErr .EQU -87 /parameter RAM written did not verify
qErr .EQU -1 /entry not in specified queue

; Queue types

vType .EQU 1 /vertical retrace queue type
ioQType .EQU 2 /file I/O or driver I/O queue type
drvQType .EQU 3 /drive queue type
evType .EQU 4 /event queue type
fsQType .EQU 5 /volume-control-block queue type

Queue Data Structure
qFlags Queue flags (word)
qHead Pointer to first queue entry
qTail Pointer to last queue entry

11-390 Summary of the Operating System Utilities

The Operating System Utilities

Date/Time Record Data Structure
dtYear 1904 to 2040 (Word)
dtMonth 1 to 12 for January to December (word)
dtDay 1 to 31 (word)
dtHour 0 to 23 (word)
dtMinute 0 to 59 (word)
dtSecond 0 to 59 (word)
dtDayOfWeek 1 to 7 for Sunday to Saturday (word)

Routines
Trap macro

HandToHand

PtrToHand

PtrToXHand

_HandAndHand

PtrAndHand

CmpString

_UprString

On entry
AO: theHndl (handle)

AO: srcPtr (ptr)
DO: size (long)

AO: srcPtr (ptr)
A l : dstHndl (handle)
DO: size (long)

AO: aHndl (handle)
A l : bHndl (handle)

On exit
AO: theHndl (handle)
DO: result code(word)

AO: dstHndl (handle)
DO: result code (word)

AO: dstHndl (handle)
DO: result code (word)

AO: bHndl (handle)
DO: result code (word)

AO: hndl (handle)
DO: result code (word)

AO: pntr(ptr)
A l : hndl (handle)
DO: size (long)

_CmpString .MARKS sets bit 9, for diacSens=FALSE
_CmpString ,CASE sets bit 10, for caseSens=TRUE
_CmpString .MARKS.CASE sets bits 9 and 10
AO: ptr to first string DO: 0 if equal, 1 if
A l : ptr to second string not equal (long)
DO: high word: length of

first string
low word: length of
second string

_UprStxing ,MARKS sets bit 9, for diacSens=FALSE
AO: ptr to string AO: ptr to string
DO: length of string (word)

ReadDateTime AO: ptr to long word sees AO: ptr to long word sees ptr to long word sees
DO: result code (word)

SetDateTime DO: sees (long) DO: result code (word)

_Date2Secs AO: ptr to date/time record DO: sees (long)

_Secs2Date DO: sees (long) AO: ptr to date/time record

JfoitUtil DO: result code (word)

WriteParam AO: SysParam (ptr) DO: result code (word)
DO: MinusOne (long)

Summary of the Operating System Utilities 11-391

Inside Macintosh

Variables

SysParam Low-memory copy of parameter RAM (20 bytes)
SPValid Validity status (byte)
SPATalkA AppleTalk node ID hint for modem port (byte)
SPATalkB AppleTalk node ID hint for printer port (byte)
SPConfig Use types for serial ports (byte)
SPPortA Modem port configuration (word)
SPPortB Printer port configuration (word)
SP Alarm Alarm setting (long)
SPFont Application font number minus 1 (word)
SPKbd Auto-key threshold and rate (byte)
SPPrint Printer connection (byte)
SPVolCd Speaker volume (byte)
SPClikCaret Double-click and caret-blink times (byte)
SPMisc2 Mouse scaling, system startup disk, menu blink (byte)
CrsrThresh Mouse-scaling threshold (word)
Time Seconds since midnight, January 1, 1904 (long)

On entry
AO: qEntry(ptr)
A l : theQueue (ptr)

AO: qEntry(ptr)
A l : theQueue (ptr)

DO: trapNum (word)

AO: trapAddr (address)
DO: trapNum (word)

AO: numTicks (long)

stack: duration (word)

O n exit
A l : theQueue (ptr)

A l : theQueue (ptr)
DO: result code (word)

AO: address of routine

DO: finalTicks (long)

11-392 Summary of the Operating System Utilities

Trap macro
Enqueue

Dequeue

GetTrapAddress

_SetTrapAddress

Delay

SysBeep

14 THE DISK INITIALIZATION PACKAGE

395 About This Chapter
395 Using the Disk Initialization Package
396 Disk Initialization Package Routines
400 Summary of the Disk Lutialization Package

Contents 11-393

Inside Macintosh

n-394

The Disk Initialization Package

ABOUT THIS CHAPTER

This chapter describes the Disk Initialization Package, which provides routines for initializing
disks to be accessed with the File Manager and Disk Driver. A single routine lets you easily
present the standard user interface for initializing and naming a disk; the Standard File Package
calls this routine when the user inserts an uninitialized disk. You can also use the Disk
Initialization Package to perform each of the three steps of initializing a disk separately if desired.

You should already be familiar with:

• the basic concepts and structures behind QuickDraw, particularly points

• the Toolbox Event Manager

• the File Manager

• packages in general, as discussed in chapter 17 of Volume I

USING THE DISK INITIALIZATION PACKAGE

The Disk Initialization Package and the resources it uses are automatically read into memory from
the system resource file when one of the routines in the package is called. Together, the package
and its resources occupy about 2.5K bytes. If the disk containing the system resource file isn't
currently in a Macintosh disk drive, the user will be asked to switch disks and so may have to
remove the one to be initialized. To avoid this, you can use the DELoad procedure, which
explicitly reads the necessary resources into memory and makes them unpurgeable. You would
need to call DDLoad before explicidy ejecting the system disk or before any situations where it
may be switched with another disk (except for situations handled by the Standard File Package,
which calls DILoad itself).

Note: The resources used by the Disk Initialization Package consist of a single dialog and
its associated items, even though the package may present what seem to be a number of
different dialogs. A special technique is used to allow the single dialog to contain all
possible dialog items with only some of them visible at one time.

When you no longer need to have the Disk Initialization Package in memory, call DIUnload. The
Standard File Package calls DIUnload before returning.

When a disk-inserted event occurs, the system attempts to mount the volume (by calling the File
Manager function MountVol) and returns MountVol's result code in the high-order word of the
event message. In response to such an event, your application can examine the result code in the
event message and call DIBadMount if an error occurred (that is, if the volume could not be
mounted). If the error is one that can be corrected by initializing the disk, DIBadMount presents
the standard user interface for initializing and naming the disk, and then mounts the volume itself.
For other errors, it justs ejects the disk; these errors are rare, and may reflect a problem in your
program.

Note: Disk-inserted events during standard file saving and opening are handled by the
Standard File Package. You'll call DIBadMount only in other, less common situations (for

Using the Disk Initialization Package 11-395

Inside Macintosh

example, if your program explicitly ejects disks, or if you want to respond to the user's
inserting an uninitialized disk when not expected).

Disk initialization consists of three steps, each of which can be performed separately by the
functions DIFormat, DIVerify, and DIZero. Normally you won't call these in a standard
application, but they may be useful in special utility programs that have a nonstandard interface.

DISK INITIALIZATION PACKAGE ROUTINES

Assembly-language note : The trap macro for the Disk Initialization Package is
_Pack2. The routine selectors are as follows:

diBadMount .EQU 0
diLoad .EQU 2
diUnload .EQU 4
diFormat .EQU 6
diVerify .EQU 8
diZero .EQU 10

PROCEDURE DILoad;

DILoad reads the Disk Initialization Package, and its associated dialog and dialog items, from the
system resource file into memory and makes them unpurgeable.

Note: DIFormat, DIVerify, and DIZero don't need the dialog, so if you use only these
routines you can call the Resource Manager function GetResource to readjust the package
resource into memory (and the Memory Manager procedure HNoPurge to make it
unpurgeable).

PROCEDURE DIUnload;

DiUnload makes the Disk Initialization Package (and its associated dialog and dialog items)
purgeable.

FUNCTION DiBadMount (where: Point; evtMessage: LONGINT) :
INTEGER;

Call DiBadMount when a disk-inserted event occurs if the result code in the high-order word of
the associated event message indicates an error (that is, the result code is other than noErr).
Given the event message in evtMessage, DiBadMount evaluates the result code and either ejects
the disk or lets the user initialize and name it. The low-order word of the event message contains
the drive number. The where parameter specifies the location (in global coordinates) of the top
left corner of the dialog box displayed by DiBadMount.

If the result code passed is extFSErr, memFullErr, nsDrvErr, paramErr, or volOnLinErr,
DiBadMount simply ejects the disk from the drive and returns the result code. If the result code

11-396 Using the Disk Initialization Package

The Disk Initialization Package

ioErr, badMDBErr, or noMacDskErr is passed, the error can be corrected by initializing the disk;
DIBadMount displays a dialog box that describes the problem and asks whether the user wants to
initialize the disk. For the result code ioErr, the dialog box shown in Figure 1 is displayed.
(This happens if the disk is brand new.) For badMDBErr and noMacDskErr, DIBadMount
displays a similar dialog box in which the description of the problem is "This disk is damaged"
and "This is not a Macintosh disk", respectively.

This disk is unreadable:

Do you want to initialize it?

I Eject [Initialize

Figure 1. Disk Initialization Dialog for IOErr

Note: Before presenting the disk initialization dialog, DIBadMount checks whether the
drive contains an already mounted volume; if so, it ejects the disk and returns 2 as its
result This will happen rarely and may reflect an error in your program (for example, you
forgot to call DELoad and the user had to switch to the disk containing the system resource
file).

If the user responds to the disk initialization dialog by clicking the Eject button, DIBadMount
ejects the disk and returns 1 as its result. If the Initialize button is clicked, a box displaying the
message "Initializing disk..." appears, and DIBadMount attempts to initialize the disk. If
initialization fails, the disk is ejected and the user is informed as shown in Figure 2; after the user
clicks OK, DIBadMount returns a negative result code ranging from firstDskErr to lastDskErr,
indicating that a low-level disk error occurred.

Initialization failed!

I OK 1
Figure 2. Initialization Failure Dialog

If the disk is successfully initialized, the dialog box in Figure 3 appears. After the user names the
disk and clicks OK, DIBadMount mounts the volume by calling the File Manager function
MountVol and returns MountVol's result code (noErr if no error occurs).

Disk Initialization Package Routines 11-397

Inside Macintosh

Please name this disk:

Untitled

Figure 3. Dialog for Naming a Disk

Result codes noErr
extFSErr
memFullErr
nsDrvErr
paramErr
volOnLinErr
firstDskErr
through lastDskErr

Other results 1
2

No error
External file system
Not enough room in heap zone
No such drive
Bad drive number
Volume already on-line
Low-level disk error

User clicked Eject
Mounted volume in drive

FUNCTION DIFormat (drvNum: INTEGER) : OSErr;

DIFormat formats the disk in the drive specified by the given drive number and returns a result
code indicating whether the formatting was completed successfully or failed. Formatting a disk
consists of writing special information onto it so that the Disk Driver can read from and write to
the disk.

Result codes noErr No error
firstDskErr Low-level disk error
through lastDskErr

FUNCTION DIVerify (drvNum: INTEGER) : OSErr;

DrVerify verifies the format of the disk in the drive specified by the given drive number; it reads
each bit from the disk and returns a result code indicating whether all bits were read successfully
or not. DrVerify doesn't affect the contents of the disk itself.

Result codes noErr No error
firstDskErr Low-level disk error
through lastDskErr

11-398 Disk Initialization Package Routines

The Disk Initialization Package

FUNCTION DIZero (drvNum: INTEGER; volName: Str255) : OSErr;

On the unmounted volume in the drive specified by the given drive number, DlZero writes the
volume information, a block map, and a file directory as for a volume with no files; the volName
parameter specifies the volume name to be included in the volume information. This is the last
step in initialization (after formatting and verifying) and makes any files that are already on the
volume permanently inaccessible. If the operation fails, DIZero returns a result code indicating
that a low-level disk error occurred; otherwise, it mounts the volume by calling the File Manager
function MountVol and returns MountVol's result code (noErr if no error occurs).

Result codes noErr
badMDBErr
extFSErr
ioErr
memFullErr
noMacDskErr
nsDrvErr
paramErr
volOnLinErr
firstDskErr
through lastDskErr

No error
Bad master directory block
External file system
I/O error
Not enough room in heap zone
Not a Macintosh disk
No such drive
Bad drive number
Volume already on-line
Low-level disk error

Disk Initialization Package Routines 11-399

Inside Macintosh

SUMMARY OF THE DISK INITIALIZATION PACKAGE

Routines

PROCEDURE DILoad;
PROCEDURE DIUnload;
FUNCTION DiBadMount
FUNCTION DIFormat
FUNCTION DIVerify
FUNCTION DIZero

Result Codes

N a m e Value M e a n i n g
badMDBErr -60 Bad master directory block

extFSErr -58 External file system

firstDskErr -84 First of the range of low-level disk errors

ioErr -36 I/O error

lastDskErr -64 Last of the range of low-level disk errors

memFullErr -108 Not enough room in heap zone

noErr 0 No error

noMacDskErr -57 Not a Macintosh disk

nsDrvErr -56 No such drive

paramErr -50 Bad drive number

volOnLinErr -55 Volume already on-line

Assembly-Language Information

Constants

; Routine selectors

diBadMount -EQU 0
diLoad .EQU 2
diUnload .EQU 4
diFormat .EQU 6
diVerify .EQU 8
diZero .EQU 10

11-400 Summary of the Disk Initialization Package

(where: Point; evtMessage: LONGINT) : INTEGER;
(drvNum: INTEGER) : OSErr;
(drvNum: INTEGER) : OSErr;
(drvNum: INTEGER; volName: Str255) : OSErr;

Trap Macro Name

Pack2

The Disk Initialization Package

Summary of the Disk Initialization Package 11-401

Inside Macintosh

11-402

15 THE FLOATING-POINT ARITHMETIC AND
TRANSCENDENTAL FUNCTIONS PACKAGES

405 About This Chapter
405 About the Packages
405 The Floatirig-Point Arithmetic Package
407 The Transcendental Functions Package

Contents 11-403

Inside Macintosh

11-404

The Floating-Point Arithmetic and Transcendental Functions Packages

ABOUT THIS CHAPTER

This chapter discusses the Floating-Point Arithmetic Package and the Transcendental Functions
Package, which provide facilities for extended-precision floating-point arithmetic and advanced
numerical applications programming. These two packages support the Standard Apple Numeric
Environment (SANE), which is designed in strict accordance with IEEE Standard 754 for Binary
Floating-Point Arithmetic.

You should already be familiar with packages in general, as discussed in chapter 17 of Volume I.

ABOUT THE PACKAGES

Pascal programmers will rarely, if ever, need to call the Floating-Point Arithmetic or
Transcendental Functions packages explicitly. These facilities are built into post-3.0 versions of
Lisa Pascal (as well as most Macintosh high-level languages); that is, the compiler recognizes
SANE data types, and automatically calls the packages to perform the standard arithmetic
operations (+, -, *, /) as well as data type conversion. Mathematical functions that aren't built in
are accessible through a run-time library—see your language manual for details.

If you're using assembly language or a language without built-in support for SANE, you'll need
to be familiar with the Apple Numerics Manual. This is the standard reference guide to SANE,
and describes in detail how to call the Floating-Point Arithmetic and Transcendental Functions
routines from assembly language. Some general information about the packages is given below.

THE FLOATING-POINT ARITHMETIC PACKAGE

The Floating-Point Arithmetic Package contains routines for performing the following operations:

Ar i thmet ic a n d Auxil iary Rout ines
Add
Subtract
Multiply
Divide
Square Root
Round to Integral Value
Truncate to Integral Value
Remainder
Binary Log
Binary Scale
Negate
Absolute Value
Copy Sign
Next-After

The Floating-Point Arithmetic Package 11-405

Inside Macintosh

Conver t ing Between D a t a Types
Binary to Binary
Binary to Decimal Record (see note below)
Decimal Record to Binary

C o m p a r i n g a n d Classifying
Compare
Compare, Signaling Invalid if Unordered
Classify

Contro l l ing the Float ing-Point E n v i r o n m e n t
Get Environment
Set Environment
Test Exception
Set Exception
Procedure Entry Protocol
Procedure Exit Protocol

Ha l t Cont ro l
Set Halt Vector
Get Halt Vector

Note: Don't confuse the floating-point binary-decimal conversions with the integer
routines provided by the Binary-Decimal Conversion Package.

The following data types are provided:

• Single (32-bit floating-point format)

• Double (64-bit floating-point format)

• Comp (64-bit integer format for accounting-type applications)

• Extended (80-bit floating-point format)

The Floating-Point Arithmetic Package is automatically read into memory from the system
resource file when one of its routines is called. It occupies about 4.4K bytes.

Assembly-language note: The macros for calling the Floating-Point routines push a
two-byte opword onto the stack and then invoke _FP68K (same as _Pack4). These
macros are fully documented in the Apple Numerics Manual.

The package uses at most 200 bytes of stack space. It preserves all MC68000 registers
across invocations (except that the remainder operation modifies DO), but modifies the
MC68000 CCR flags.

11-406 The Floating-Point Arithmetic Package

The Floating-Point Arithmetic and Transcendental Functions Packages

THE TRANSCENDENTAL FUNCTIONS PACKAGE

The Transcendental Functions Package contains the following mathematical functions:

L o g a r i t h m i c Func t ions
Base-e logarithm ln(x)
Base-2 logarithm log(x) base 2
Base-e logarithm of 1 plus argument ln(l+x)
Base-2 logarithm of 1 plus argument log(l+x) base 2

Exponen t i a l Func t ions
Base-e exponential e ^
Base-2 exponential 2 A x
Base-e exponential minus 1 (e A x) - l
Base-2 exponential minus 1 (2 A x) - l
Integer exponential x A i
General exponential x^y

Financ ia l Func t ions
Compound Interest (1 +x) A y
Annuity Factor (l - (1+x) A -y)/y

T r i g o n o m e t r i c Func t ions
Sine
Cosine
Tangent
Arctangent

R a n d o m N u m b e r Genera tor

Note: The functions in this package are also called elementary functions.

The Transcendental Functions Package is automatically read into memory when one of its
routines is called. It in rum calls the Floating-Point Arithmetic Package to perform the basic
arithmetic. Together they occupy about 8.5K bytes.

Assembly-language note : The macros for calling the transcendental functions push a
two-byte opword onto the stack and then invoke _Elems68K (same as _Pack5). These
macros are fully documented in the Apple Numerics Manual.

The package uses at most 200 bytes of stack space. It preserves all MC68000 registers
across invocations, but modifies the CCR flags.

Note: Early versions of the Transcendental Functions Package lock themselves when read
into memory and remain locked unless explicidy unlocked. Apple high-level languages
that access the package through a SANE library avoid this problem by preserving the state
of the lock bit across calls to the package. However, pre-3.1 versions of Lisa Pascal

The Transcendental Functions Package 11-407

Inside Macintosh

require that you explicitly unlock the package with the Memory Manager function
HUnlock, as follows:

HUnlock(GetResource('PACK',5))

A s s e m b l y - l a n g u a g e note: In assembly language, you can unlock the package as
follows:

CLR.L
MOVE.L
MOVE.W

-(SP)
#'PACK ,,-(SP)
#5,-(SP)

;slot for handle
;resource type
/resource ID

_GetResource
MOVE.L
HUnlock

(SP)+,A0 /store handle in AO

11-408 The Transcendental Functions Package

INDEX

A

ABByte data type 11-276
ABCallType data type 11-274
ABProtoType data type 11-274
ABRecHandle data type 11-274
ABRecPtr data type 11-274
ABusRecord data type 11-274

ALAP parameters 11-276
ATP parameters 11-287
DDP parameters 11-281
NBP parameters 11-298

ABusVars global variable 11-328
access path 11-83
access path buffer 11-84
ACount global variable 1-423
action procedure 1-316, 324, 328

in control definition function 1-332
activate event 1-244, 279

event message 1-252
active

control 1-313
window 1-46,270,284

AddPt procedure 1-193
AddrBlock data type 11-281
AddResMenu procedure 1-353
AddResource procedure 1-124
AddResponse function II-318
address mark II-211
ALAP See AppleTalk Link Access Protocol
ALAP frame 11-264
ALAP protocol type 11-264
alert 1-401,409

guidelines 1-68
alert box 1-401
Alert function 1-418
alert stages 1-409
alert template 1-403,424

resource format 1-426
alert window 1-402
AlertTempIate data type 1-424
AlertTHndl data type 1-425
AlertTPtr data type 1-425
alias 11-266
Allocate function

high-level 11-94
low-level 11-113

allocated block 11-10
allocation block 11-79

amplitude of a wave 11-223
AngleFromSlope function 1-476
ANumber global variable 1-423
ApFontlD global variable 1-219
AppendMenu procedure 1-352
AppFile data type 11-58
Apple menu 1-54
AppleTalk address 11-265
AppleTalk Link Access Protocol 11-263

assembly language H-306
data reception 11-325
Pascal 11-276

AppleTalk Manager 1-13; 11-261, 271
assembly language 11-304
Pascal H-273

AppleTalk Transaction Protocol 11-266, 267
assembly language 11-312
Pascal 11-287

application font 1-219
application heap 1-74; 1T.-9

limit n-17, 29
application parameters II-20
application space 11-20
application window 1-270
ApplicZone function 11-32
ApplLimit global variable 11-19, 21, 29
ApplScratch global variable 1-85
ApplZone global variable 11-19,21,32
AppParmHandle global variable 11-57
arrow cursor 1-163,167
arrow global variable 1-147, 163
ascent of a font 1-228

in TextEdit 1-378
ASCH codes 1-247
assembly language 1-83
asynchronous communication 11-245
asynchronous execution

AppleTalk Manager 11-273
Device Manager 11-180
File Manager 11-97

at-least-once transaction 11-266
ATP See AppleTalk Transaction Protocol
ATPAddRsp function 11-295
ATPCloseSocket function 11-291
ATPGetRequest function 11-293
ATPLoad function 11-290
ATPOpenSocket function 11-290
ATPReqCancel function 11-293
ATPRequest function 11-292

11-409

Inside Macintosh

ATPResponse function 11-296
ATPRspCancel function 11-296
ATPSndRequest function 11-291
ATPSndRsp function 11-294
ATPUnload function 11-290
AttachPH function 11-308
auto-key event 1-244, 246
auto-key rate 1-246; 11-371
auto-key threshold 1-246; 11-371
auto-pop bit 1-89
automatic scrolling 1-48

in TextEdit 1-380

B

BackColor procedure 1-174
background procedure 11-153
B ackPat procedure I-167
baseline 1-227
baud rate 11-246,251,254
BDSElement data type 11-288
BDSPtr data type 11-288
BDSType data type 11-288
BeginUpdate procedure 1-292
Binary-Decimal Conversion Package 1-12,

487
bit image 1-143
bit manipulation 1-470
bit map

AppleTalk Manager H-268
printing 11-164
QuickDraw 1-144

Bit And function 1-471
BitClr procedure 1-471
BitMap data type I-144
BitMapType data type 11-287
BitNot function 1-471
BitOr function 1-471
Bitsl6 data type 1-146
BitSet procedure 1-471
BitShift function 1-472
BitTst function 1-471
BitXor function 1-471
black global variable 1-162
block (fde) See allocation block
block (memory) 1-73; 11-10
block contents II-10
block device II-175
block header 11-10

structure 11-24
block map 11-122

BlockMove procedure 11-44
boot blocks See system startup information
boundary rectangle 1-144
break H-246
bridge 11-265
BringToFront procedure 1-286
broadcast service 11-264
BufPtr global variable II-19, 21
BufTgDate global variable 11-212
BufTgFBkNum global variable 11-212
BufTgFFlag global variable 11-212
BufTgFNum global variable 11-212
bundle 11-85; III-11

resource format III-12
Button function 1-259
button type of control 1-311, 404
Byte data type 1-78

C

CalcMenuSize procedure 1-361
CalcVBehind procedure 1-297
CalcVis procedure 1-297
CalcVisBehind procedure 1-297
caret 1-376,379
caret-blink time 1-260; 11-371
CaretTime global variable 1-260
CautionAlert function 1-420
Chain procedure 11-59
ChangedResource procedure 1-123
character codes 1-246
character device II-175
character image 1-227
character keys 1-33, 246
character offset 1-228
character origin 1-228
character position 1-375
character rectangle 1-228
character set 1-247
character style 1-151

of menu items 1-348, 360
character width 1-173,228
Chars data type 1-384
CharsHandle data type 1-384
CharsPtr data type 1-384
CharWidth function 1-173
checkbox 1-312,404
check mark in a menu 1-347, 358
Checkltem procedure 1-358
CheckUpdate function 1-296
ClearMenuBar procedure 1-354

11-410

Index

click See mouse-down event
click loop routine 1-380
ClipAbove procedure 1-296
Clipboard 1-58 See also scrap
clipping region of a grafPort I-149
ClipRect procedure 1-167
clipRgn of a grafPort 1-149
clock chip 11-369

hardware 111-36
close box See go-away region
Close command 1-56
Close function, high-level

Device Manager H-178
File Manager 11-94

Close function, low-level
Device Manager 11-184
File Manager 11-114

close routine
of a desk accessory 1-446
of a driver 11-187, 193

CloseATPSkt function 11-316
closed device driver 11-176
closed file 11-83
CloseDeskAcc procedure 1-440
CloseDialog procedure 1-413
CloseDriver function II-17 8
ClosePgon procedure 1-190
ClosePicture procedure 1-189
ClosePoly procedure 1-190
ClosePort procedure 1-164
CloseResFile procedure 1-115
CloseRgn procedure 1-182
CloseSkt function 11-312
CloseWindow procedure 1-283
ClrAppFiles procedure 11-58
CmpString function 11-377
color drawing 1-158, 173
ColorBit procedure 1-174
Command-key equivalent See keyboard

equivalent
Command-period II-154
Command-Shift-number 1-258
commands 1-51, 341
compaction, heap 1-74; 11-12, 39
CompactMem function 11-39
completion routine

Device Manager 11-180,181
File Manager H-97, 99
Sound Driver 11-231

ConfirmName function 11-323
content region of a window 1-271

control 1-65,311
defining your own 1-328
in a dialog/alert 1-404

control definition function 1-314, 328
control definition ID 1-315, 328
Control function

high-level 11-179
low-level U-186

control information 11-176
control list 1-274,317
Control Manager 1-11,309

routines 1-319
control record 1-316
control routine

of a desk accessory 1-446
of a driver H-187, 194

control template 1-315
resource format 1-332

ControlHandle data type 1-317
ControlPtr data type 1-317
ControlRecord data type 1-317
coordinate plane 1-138
CopyBits procedure 1-188
Copy Rgn procedure 1-183
CouldAlert procedure 1-420
CouldDialog procedure 1-415
CountAppFiles procedure H-57
CountMItems function 1-361
CbuntResources function 1-118
CountTypes function 1-117
Create function

high-level 11-90
low-level 11-107

CreateResFile procedure 1-114
creator of a file III-9
CrsrThresh global variable 11-372
CurActivate global variable 1-280
CurApName global variable 11-58
CurApRefNum global variable H-58
CurDeactive global variable 1-280
CurJTOffset global variable 11-62
CurMap global variable 1-117
CurPageOption global variable 11-60
CurPitch global variable 11-226, 232
current heap zone 11-10, 31
current resource file I-105, 116
CurrentA5 global variable 1-95; II-19, 21,

386
CurResFile function 1-116
CursHandle data type 1-474

11-411

Inside Macintosh

cursor 1-146
QuickDraw routines 1-167
standard cursors 1-147, 474
utility routines 1-474

Cursor data type 1-146
cursor level 1-167
CursPtr data type 1-474
CurStackBase global variable H-19, 21, 358
cut and paste 1-59

intelligent 1-63
in TextEdit 1-385

D

DABeeper global variable 1-411
DAStrings global array 1-421
data bits 11-245
data buffer H-83, 176
data fork 1-105; H-81
data mark 11-211
datagram 11-265

loss recovery 11-268
Datagram Delivery Protocol 11-265

assembly language 11-308
Pascal H-281

date operations 11-377
Date2Secs procedure IJ-379
DateForm data type 1-504
date/time record 11-377
DateTimeRec data type 11-378
DCtlEntry data type 11-190
DCtlHandle data type 11-190
DCtlPtr data type 11-190
DDP See Datagram Delivery Protocol
DDPCloseSocket function 11-282
DDPOpenSocket function 11-282
DDPRdCancel function 11-284
DDPRead function 11-283
DDPWrite function 11-283
default button

in an alert 1-69,401,424
in a dialog 1-67,400,407

default volume 11-80
getting See GetVol function
setting See SetVol function

DefitStack global variable 11-17
DefVCBPtr global variable II-126
Delay procedure 11-384
Delete function

high-level 11-97
low-level n-119

DeleteMenu procedure 1-354
DeltaPoint function 1-475
Dequeue function 11-3 83
dereferencing a handle 11-14
descent of a font 1-228
desk accessory 1-437

writing your own 1-443
Desk Manager 1-12,435

routines 1-440
desk scrap 1-453

data types 1-454
format 1-462
routines 1-457

DeskHook global variable 1-282, 288
DeskPattern global variable 1-282
desktop 1-32, 269
Desktop file III-10
destination rectangle 1-374
DetachPH function 11-308
DetachResource procedure 1-120
device 11-175
device control entry 11-189
device driver 1-13; 11-175

for a desk accessory 1-443
structure II-187
writing your own 11-193

device driver event 1-244
Device Manager 1-13; 11-173
Device Manager routines II-177

device control entry access 11-190
high-level 11-178
low-level 11-180
for writing drivers II-194

dial 1-312
dialog box 1-66,399
Dialog Manager 1-12,397

routines 1-411
dialog pointer 1-407
dialog record 1-403,407
dialog template 1-402, 403

resource format 1-425
dialog window 1-401
DialogPeek data type 1-408
DialogPtr data type 1-407
DialogRecord data type 1-408
DialogSelect function 1-417
DialogTemplate data type 1-423
DialogTHndl data type 1-424
DialogTPtr data type 1-424
DiBadMount function H-396
DiffRgn procedure 1-184
DIFormat function 11-398

11-412

Index

DTJLoad procedure 11-396
dimmed

control 1-313
menu item 1-342, 343
menu title 1-342

disabled
dialog/alert item 1-405
menu 1-342,358
menu item 1-349, 358

Disableltem procedure 1-358
discontinuous selection 1-40
Disk Driver 1-13; 11-209

Device Manager calls II-213
routines 11-214

Disk Initialization Package 1-13; II-3 93
routines 1T-396

disk-inserted event 1-244
event message 1-252
responding to 1-257

disk interface 111-33
disk-switch dialog 11-80
DiskEject function 11-214
dispatch table See trap dispatch table
display rectangle 1-406
DisposControl procedure 1-321
DisposDialog procedure 1-415
DisposeControl procedure 1-321
DisposeMenu procedure 1-352
DisposeRgn procedure 1-182
DisposeWindow procedure 1-284
DisposHandle procedure 1-76, 80; 11-33
DisposMenu procedure 1-352
DisposPtr procedure 1-75, 79; 11-36
DisposRgn procedure 1-182
Dispos Window procedure 1-284
DIUnload procedure 11-396
DIVerify function H-398
DIZero function 11-399
dkGray global variable 1-162
DIgCopy procedure 1-418
DlgCut procedure 1-418
DlgDelete procedure 1-418
DlgFont global variable 1-412
DlgHook function

SFGetFile 1-526
SFPutFile 1-522

DlgPaste procedure 1-418
document window 1-269
double-click 1-37,255
double-click time 1-260; 11-371
DoubleTime global variable 1-260
draft printing 11-151,153

drag region of a window 1-271, 289
DragControl procedure 1-325
DragGrayRgn function 1-294
DragHook global variable

Control Manager 1-324, 326
Window Manager 1-288, 289, 290, 295

DragPattern global variable
Control Manager 1-324, 326
Window Manager 1-295

DragTheRgn function 1-295
DragWindow procedure 1-289
DrawChar procedure 1-172
DrawControls procedure 1-322
DrawDialog procedure 1-418
DrawGrowIcon procedure 1-287
drawing 1-155

color 1-158, 173
DrawMenuBar procedure 1-354
DrawNew procedure 1-296
DrawPicture procedure 1-190
DrawString procedure 1-172
DrawText procedure 1-172
drive number H-80
drive queue II-127
driver See device driver
driver I/O queue II-180, 191
driver name 11-176
driver reference number 11-176
DriveStatus function 11-215
DrvQEl data type 11-127
DrvQHdr global variable H-128
DrvSts data type 11-215
DSAlertRect global variable 11-362
DSAlertTab global variable 11-359, 362
DSErrCode global variable 11-362

E

Edit menu 1-58
and desk accessories 1-441, 447

edit record 1-374
Eject function

high-level 11-90
low-level 11-107

Elems68K See Transcendental Functions
Package

empty handle 1-76; 11-14, 40
Empty Handle procedure 11-40
Empty Rect function 1-176
Empty Rgn function 1-186

11-413

Inside Macintosh

enabled
dialog/alert item 1-405
menu 1-358
menu item 1-358

Enableltem procedure 1-358
end-of-file 11-81
end-of-message flag 11-270
EndUpdate procedure 1-293
Enqueue procedure 11-382
entity name 11-265,298
EntityName data type 11-298
Environs procedure 11-385
EntityPtr data type 11-298
equal-tempered scale H-237
EqualPt function 1-193
EqualRect function 1-176
EqualRgn function 1-185
EqualString function 11-377
Erase Arc procedure 1-180
EraseOval procedure 1-178
ErasePoly procedure 1-192
EraseRect procedure 1-177
EraseRgn procedure 1-186
EraseRoundRect procedure 1-179
error number See result code
ErrorSound procedure 1-411
event 1-243

priority 1-245
event code 1-249
Event Manager, Operating System 1-13; 11-65

routines 11-68
Event Manager, Toolbox I-11, 241

routines 1-257
event mask 1-253
event message 1-249
event queue 1-243

structure 11-70
event record 1-249
event types 1-244
EventAvail function 1-259
EventQueue global variable 11-71
EventRecord data type 1-249
EvQEl data type 11-71
exactly-once transaction 11-266
example program 1-13
exception 11-195
exception vector III-17
ExitToShell procedure 11-59
exponential functions 11-407
extended selection 1-39

in TextEdit 1-384
external file system 11-128

external reference 1-95
ExtStsDT global variable II-199

F

FCBSPtr global variable 11-127
Fetch function 11-194
FFSynthPtr data type 11-228
FFSynthRec data type 11-228
file 11-79,81
fde control block H-126
file-control-block buffer II-126
file creator 111-9
fde directory 11-79, 122
file icon 11-85; 111-10
file I/O queue 11-97, 124
File Manager 1-13; 11-77
File Manager routines

high-level 11-88
low-level 11-97
for queue access 11-125, 126, 128

File menu 1-55
filename 11-81
file number 11-122
file reference III-10

resource format III-12
file tags 11-212
file tags buffer 11-212
file type ffl-9
fileFilter function 1-524
Fill Arc procedure 1-181
FillOval procedure 1-178
FillPoly procedure 1-192
FillRect procedure 1-177
FillRgn procedure I-187
FillRoundRect procedure 1-179
filterProc function 1-415
financial functions 11-407
FindControl function 1-323
Finder information 11-55
Finder interface 11-55, 84; III-7
FinderName global variable 11-59
FindWindow function 1-287
FInfo data type 11-84
FInitQueue procedure 11-103
Fixed data type 1-79
fixed-point

arithmetic 1-467
numbers 1-79

fixed-width font 1-228
FixMul function 1-467

11-414

Index

FixRatio function 1-467
FixRound function 1-467
FlashMenuBar procedure 1-361
Floating-Point Arithmetic Package 1-13; 11-403
FlushEvents procedure 11-69
FlushFile function 11-114
FlushVol function

high-level 11-89
low-level 11-105

FMInput data type 1-224
FMOutPtr data type 1-227
FMOutput data type 1-227
FMSwapFont function 1-223
folder n-85
font 1-60, 151, 217

characters 1-220
format 1-227
resource format 1-234
resource ID 1-234

font characterization table 1-225
font height 1-228
Font Manager 1-11,215

communication with QuickDraw 1-224
routines 1-222

Font menu 1-60, 353
font number 1-217,219
font record 1-230
font rectangle 1-228
font scaling 1-220
font size 1-153,217
Fontlnfo data type 1-173
FontRec data type 1-231
FontSize menu 1-61
ForeColor procedure 1-173
fork 1-105; 11-81
four-tone record 11-227
four-tone synthesizer 11-223, 226
FP68K See Floating-Point Arithmetic Pa
frame

ALAP 11-264
picture 1-158
serial communication 11-246
stack 1-96; 11-17
window 1-271

frame check sequence 11-265
frame header 11-264
frame pointer (stack) 1-96
frame trailer 11-264
FrameArc procedure 1-180
FrameOval procedure 1-177
FramePoly procedure 1-192
FrameRect procedure 1-176

Fr ameRgn procedure 1-186
FrameRoundRect procedure 1-178
framing error 11-246
free-form synthesizer 11-223, 228
free memory block II-10
FreeAlert procedure 1-420
FreeDialog procedure 1-415
FreeMem function 11-38
FreeWave data type 11-228
frequency of a wave 11-223
FrontWindow function 1-286
FScaleDisable global variable 1-222
FSClose function 11-94
FSDelete function 11-97
FSOpen function 11-91
FSQHdr global variable 11-125
FSRead function

Device Manager 11-178
File Manager 11-92

FSWrite function
Device Manager 11-179
File Manager 11-92

FTSndRecPtr data type 11-227
FTSoundRec data type TI-227
FrSynthPtr data type 11-227
FTSynthRec data type 11-227
full-duplex communication 11-245

G

GetAlrtStage function 1-422
GetAppFiles procedure 11-58
GetApplLimit function 11-29
GetAppParms procedure 11-58
GetCaretTime function 1-260
GetClip procedure 1-167
GetCRefCon function 1-327
GetCTitle procedure 1-321
GetCtlAction function 1-328
GetCtlMax function 1-327
GetCtlMin function 1-327
GetCdValue function 1-326
GetCursor function 1-474
GetDateTime procedure U-378
GetDblTime function 1-260
GetDCtlEntry function II-190
GetDItem procedure 1-421
GetDrvQHdr function II-128
GetEOF function

high-level 11-93
low-level H-112

11-415

Inside Macintosh

GetEvQHdr function 11-71
GetFilelnfo function

high-level 11-95
low-level 11-115

GetFInfo function 11-95
GetFName procedure 1-223
GetFNum procedure 1-223
GetFontlnfo procedure 1-173
GetFontName procedure 1-223
GetFPos function

high-level 11-92
low-level 11-111

GetFSQHdr function TJ-125
GetHandleSize function 11-33
Getlcon function 1-473
GetlndPattern procedure 1-473
GedndResource function 1-118
GedndString procedure 1-468
GedndType procedure 1-117
Getltem procedure 1-358
Gedtemlcon procedure 1-360
GetltemMark procedure 1-359
GetltemStyle procedure 1-360
GetlText procedure 1-422
Getltmlcon procedure 1-360
GetltmMark procedure 1-359
GetltmStyle procedure 1-360
GetKeys procedure 1-259
GetMaxCd function 1-327
GetMenu function 1-351
GetMenuBar function 1-355
GetMHandle function 1-361
GetMinCd function 1-327
GetMouse procedure 1-259
GetNamedResource function 1-119
GetNewControl function 1-321
GetNewDialog function 1-413
GetNewMBar function 1-354
GetNewWindow function 1-283
GetNextEvent function 1-257
GetNodeAddress function 11-303
GetOSEvent function 11-69
GetPattern function 1-473
GetPen procedure 1-169
GetPenState procedure 1-169
GetPicture function 1-475
GetPixel function 1-195
GetPort procedure 1-165
GetPtrSize function 11-37
GetRequest function 11-317
GetResAttrs function 1-121

GetResFileAttrs function I-127
GetResInfo procedure 1-121
GetResource function 1-119
GetRMenu function 1-351
GetScrap function 1-469
GetSoundVol procedure 11-232
GetString function 1-468
GetSysPPtr function 11-381
GetTime procedure 11-380
GetTrapAddress function 11-384
GetVBLQHdr function 11-352
GetVCBQHdr function 11-126
GetVInfo function H-89
GetVol function

high-level 11-89
low-level 11-104

GetVolInfo function
high-level 11-89
low-level 11-104

GetVRefNum function 11-89
GetWindowPic function 1-293
GetWMgrPort procedure 1-282
GetWRefCon function 1-293
GetWTitle procedure 1-284
GetZone function 11-31
GhostWindow global variable 1-287
global coordinates 1-155
global variables

list m-227
QuickDraw 1-138, 162

GlobalToLocal procedure 1-193
go-away region of a window 1-271, 288
GrafDevice procedure 1-165
grafPort 1-147

routines 1-162
GrafPort data type 1-148
GrafPtr data type 1-148
GrafVerb data type 1-198
gray global variable 1-162
GrayRgn global variable 1-282, 296
grow image of a window 1-289
grow region of a window 1-272, 289
grow zone function 11-14,42
GrowWindow function 1-289
GZRootHnd global variable 11-43
GZSaveHnd function 11-43

H

HandAndHand function 11-375

11-416

Index

handle 1-75, 78; 11-12
dereferencing II-14
empty 11-40
manipulation 11-374

Handle data type 1-78
HandleZone function 11-34
HandToHand function 11-374
hardware III-15
hardware overrun error 11-246
heap 1-12, 23; H-9, 17

compaction 1-74; 11-12, 39
creating on the stack H-45
zone 11-9,22

HeapEnd global variable II-19, 21
HideControl procedure 1-322
HideCursor procedure 1-168
HidePen procedure 1-168
HideWindow procedure 1-283
highlighted 1-31

control 1-313
menu tide 1-357
window 1-270

HiliteControl procedure 1-322
HiliteMenu procedure 1-357
HiliteWindow procedure 1-286
HiWord function 1-472
HLock procedure 11-41
HNoPurge procedure 11-42
HomeResFile function 1-117
horizontal blanking interval III-18
hotSpot of a cursor 1-146
HPurge procedure 11-41
HUnlock procedure 11-41

I

icon 1-32
in a dialog/alert 1-404
for a file 11-85; III-10
in a menu 1-347, 359
utility routines 1-473

icon list III-11
resource format 1-476; III-12

icon number 1-347
image width 1-228
inactive

control 1-313
window 1-46, 270

indicator of a dial 1-312
InfoScrap function 1-457
InitAUPacks procedure 1-484

InitApplZone procedure 11-28
InitCursor procedure 1-167
InitDialogs procedure 1-411
InitFonts procedure 1-222
InitGraf procedure I-162
InitMenus procedure 1-351
InitPack procedure 1-484
InitPort procedure 1-164
InitQueue procedure II-103
InitResources function 1-114
InitUtil function 11-380
InitWindows procedure 1-281
InitZone procedure 11-29
input driver TI-246
insertion point 1-41,375
InsertMenu procedure 1-353
InsertResMenu procedure 1-353
InsetRect procedure 1-175
InsetRgn procedure 1-184
Int64Bit data type 1-472
interface routine 1-95
international resources 1-495
International Utilities Package 1-12, 493

routines 1-504
internet 11-265
internet address 11-265, 314
interrupt 11-195

level-1 (VIA) 11-197; III-3 8
level-2(SCC) 11-198
level-3 H-196
vertical retrace 11-349

interrupt handler II-195
writing your own 11-200

interrupt priority level II-196
interrupt vector 11-196
IntlOHndl data type 1-496
IntlOPtr data type 1-496
IndORec data type 1-497
IntllHndl data type 1-500
IntllPtr data type 1-500
IndlRec data type 1-500
InvalRect procedure 1-291
InvalRgn procedure 1-291
InverRect procedure 1-177
InverRgn procedure 1-186
InverRoundRect procedure 1-179
InvertArc procedure 1-181
InvertOval procedure 1-178
InvertPoly procedure 1-192
InvertRect procedure 1-177
InvertRgn procedure 1-186
InvertRoundRect procedure 1-179

11-417

Inside Macintosh

invisible
control 1-316
dialog/alert item 1-406
file icon 11-85
window 1-274

IODone function 11-195
I/O queue See driver I/O queue or file I/O

queue
I/O request 11-97, 180
IsATPOpen function 11-304
IsDialogEvent function 1-416
IsMPPOpen function 11-304
item

dialog/alert 1-403
menu 1-341

item list 1-403
resource format 1-427

item number
dialog/alert 1-406
menu 1-350

item type 1-404
IUCompString function 1-506
IUDatePString procedure 1-505
IUDateString procedure 1-504
IUEqualString function 1-506
IUGetlntl function 1-505
IUMaglDString function 1-507
IUMagString function 1-506
IUMetric function 1-505
IUSetlntl procedure 1-506
IUTimePString procedure 1-505
IUTimeString procedure 1-505
IWM III-17
IAVM global variable ni-34

J

JFetch global variable II-194
JIODone global variable 11-195
job dialog H-149
job subrecord 11-150
journal code 1-262
JournalFlag global variable 1-261
journaling mechanism 1-261
JournalRef global variable 1-261
JStash global variable II-195
jump table 11-60
jump vector 11-194
just-tempered scale 11-237
justification 1-376

setting 1-387

K

kerning 1-152,228
key codes 1-250
key-down event 1-244

responding to 1-256
key-up event 1-244, 254
keyboard 1-33

hardware HI-29
keyboard configuration 1-248
keyboard equivalent 1-343

meta-character 1-348
responding to 1-356
standard equivalents 1-53

keyboard event 1-244, 246
event message 1-250
responding to 1-256

keyboard touch See auto-key threshold
KeyMap data type 1-260
keypad 1-35

hardware 111-29
KeyRepThresh global variable 1-246
KeyThresh global variable 1-246
KillControls procedure 1-321
KilllO function

high-level 11-179
low-level 11-187

KillPicture procedure 1-190
KillPoly procedure 1-191

L

LAPAdrBlock data type 11-276
LAPCloseProtocol function 11-277
LAPOpenProtocol function 11-277
LAPRdCancel function U-279
LAPRead function 11-278
LAPWrite function 11-277
Launch procedure 11-60
leading 1-228
ligatures 1-501
line height 1-378
Line procedure 1-171
LineTo procedure 1-170
list separator 1-497
Lo3Bytes global variable 1-85; 11-25
LoadNBP function 11-324
LoadResource procedure 1-119
LoadScrap function 1-458
LoadSeg procedure 11-60
local coordinates 1-153

11-418

Index

local ID 111-10
LocalToGlobal procedure 1-193
location table 1-231
lock bit 11-25
locked block 1-76; 11-10
locked file 11-84
locked volume 11-80
locking a block 1-76; 11-41
LodeScrap function 1-458
logarithmic functions 11-407
logical block 11-119
logical end-of-file 11-81
logical operations 1-471
logical size of a block 11-22
LongMul procedure 1-472
LookupName function 11-323
LoWord function 1-472
ltGray global variable 1-162
Lvl 1DT global variable II-197
Lvl2DT global variable 11-198

M

magnitude of a wave 11-223
main event loop 1-16
main segment 11-55
MapPoly procedure 1-197
MapPt procedure I-196
MapRect procedure 1-196
MapRgn procedure 1-196
mark

in a file 11-82
in a menu 1-347, 359

mark state 11-245
master directory block II-120
master pointer 1-75; II-12

allocation 11-22,31
structure 11-25

MaxApplZone procedure 11-30
MaxMem function 11-38
MBarEnable global variable 1-356, 446
MBarHook global variable 1-356
MemError function II-44
memory block 1-73; 11-10
memory management II-7

introduction 1-71
Memory Manager 1-12; TJ-7

routines 11-27
memory organization II-19
MemTop global variable H-19, 21, 44

menu 1-341
defining your own 1-362
guidelines 1-51
resource format 1-364
standard menus 1-54, 342

menu bar 1-341
resource format 1-365

menu definition procedure 1-344, 362
menu ID 1-344
menu item 1-341

blinking 1-361; 11-371
menu item number 1-350
menu list 1-345
Menu Manager 1-12, 339

routines 1-351
menu record 1-344
menu tide 1-341
MenuFlash global variable 1-361
MenuHandle data type 1-345
MenuHook global variable 1-356
Menulnfo data type 1-345
MenuKey function 1-356
MenuList global variable 1-346
MenuPtr data type 1-345
MenuSelect function 1-355
meta-characters

AppleTalk Manager 11-266, 320
Menu Manager 1-346

MinStack global variable II-17
MinusOne global variable 1-85
missing symbol 1-152, 220, 230
modal dialog box 1-67, 400, 415
ModalDialog procedure 1-415
modeless dialog box 1-67, 400, 416
modes 1-28
modifier flags 1-252
modifier keys 1-34, 246

flags in event record 1-252
MoreMasters procedure 11-31
mounted volume 11-79
MountVol function 11-103
mouse 1-36

hardware III-25
mouse-down event 1-244

responding to 1-255
mouse scaling 11-372
mouse-scaling threshold 11-372
mouse-up event 1-244

responding to 1-255
Move procedure 1-170
MoveControl procedure 1-325

11-419

Inside Macintosh

MoveHHi procedure IJ-44
MovePortTo procedure 1-166
MoveTo procedure 1-170
MoveWindow procedure 1-289
MPP n-271
MPPClose function H-275
MPPOpen function 11-275
Munger function 1-468

N

Name-Binding Protocol 11-266
assembly language 11-319
Pascal 11-298

name lookup 11-266
names directory 11-266
names information socket 11-266
names table 11-266, 321
NBP See Name-Binding Protocol
NBP tuple 11-266
NBPConfirm function 11-301
NBPExtract function 11-300
NBPLoad function 11-301
NBPLookup function 11-300
NBPRegister function 11-299
NBPRemove function 11-301
NBPUnload function 11-301
network event 1-244; II-275
network number 11-265
network-visible entity 11-265
New command 1-56
NewControl function 1-319
NewDialog function 1-412
NewHandle function 1-76, 80; 11-32
newline character 11-84
newline mode 11-84
NewMenu function 1-351
NewPtr function 1-75, 79; 11-36
NewRgn function 1-181
NewString function 1-468
NewWindow function 1-282
node 11-263
node ID 11-263
nonbreaking space 1-246
nonrelocatable block 1-75; II-10

allocating 11-36
releasing 11-36

NoteAlert function 1-420
null event 1-245
NumToString procedure 1-489

O

ObscureCursor procedure 1-168
off-line volume 11-80
OffLine function 11-106
OffsetPoly procedure 1-191
OffsetRect procedure 1-174
OffsetRgn procedure 1-183
offset/width table 1-231
OfsetRgn procedure 1-183
OldContent global variable 1-296
OldStracture global variable 1-296
on-line volume 11-80
OneOne global variable 1-85
Open command 1-56
open device driver 11-176
open file 11-83
Open function, high-level

Device Manager 11-178
File Manager 11-91

Open function, low-level
Device Manager 11-184
File Manager 11-108

open permission 11-83
open routine

of a desk accessory 1-445
of a driver 11-187, 193

OpenATPSkt function 11-315
OpenDeskAcc function 1-440
OpenDriver function II-17 8
OpenPicture function 1-189
OpenPoly function 1-190
OpenPort procedure 1-163
OpenResFile function 1-115
OpenRF function

high-level 11-91
low-level 11-109

OpenRgn procedure 1-181
OpenSkt function 11-311
Operating System 1-9

queues 11-372
Operating System Event Manager I-13; 11-65

routines 11-68
Operating System Utilities 1-13; 11-367

routines 11-374
OSErr data type 11-373
OSEventAvail function 11-70
OSType data type 11-373
output driver 11-246
overran error See hardware overrun error or

software overrun error
owned resources 1-109

11-420

Index

P

Pack2 See Disk Initialization Package
Pack3 See Standard File Package
Pack4 See Floating-Point Arithmetic Package
Pack5 See Transcendental Functions Package
Pack6 See International Utilities Package
Pack7 See Binary-Decimal Conversion

Package
Package Manager I-12, 481
packages 1-12, 483
PackBits procedure 1-470
page rectangle II-150
Page Setup command 1-57
PaintArc procedure 1-180
PaintBehind procedure 1-297
PaintOne procedure 1-296
PaintOval procedure 1-178
PaintPoly procedure 1-192
PaintRect procedure 1-177
PaintRgn procedure 1-186
PaintRoundRect procedure 1-179
PaintWhite global variable 1-297
palette 1-32
pane 1-49
panel 1-50
paper rectangle II-150
ParamBlkType data type 11-98, 181
ParamBlockRec data type 11-98,181

driver I/O queue entry II-191
file I/O queue entry 11-124

parameter block 1-93; 11-97, 180
parameter RAM 11-369

default values 11-370
routines H-380

ParamText procedure 1-421
parity bit 11-245
parity error 11-246
ParmBlkPtr data type 11-98,181
part code 1-315, 330
path reference number 11-83
PatHandle data type 1-473
PatPtr data type 1-473
pattern 1-145,473
Pattern data type 1-146
pattern list 1-473

resource format 1-476
pattern transfer mode 1-157
PBAllocate function II-113
PBClose function

Device Manager 11-184
File Manager 11-114

PBControl function 11-186
PBCreate function 11-107
PBDelete function 11-119
PBEject function 11-107
PBFlushFile function 11-114
PBFlushVol function 11-105
PBGetEOF function 11-112
PBGetFInfo function 11-115
PBGetEPos function 11-111
PBGetVInfo function 11-104
PBGetVol function 11-104
PBKilllO function 11-187
PBMountVol function 11-103
PBOffLine function H-106
PBOpen function

Device Manager 11-184
File Manager H-108

PBOpenRF function 11-109
PBRead function

Device Manager II-185
File Manager 11-110

PB Rename function II-118
PB RstFLock function 11-117
PBSetEOF function 11-112
PBSetFInfo function 11-116
PBSetFLock function 11-116
PBSetFPos function 11-111
PBSetFVers function 11-117
PB SetVol function 11-105
PBStatus function 11-186
PBUnmountVol function 11-106
PBWrite function

Device Manager 11-185
File Manager 11-110

pen characteristics 1-150
PenMode procedure 1-169
PenNormal procedure 1-170
PenPat procedure 1-170
PenSize procedure 1-169
PenState data type 1-169
period of a wave 11-223
phase of a wave cycle 11-223
physical end-of-file II-81
physical size of a block 11-23
PicComment procedure 1-189
PicHandle data type 1-159
PicPtr data type 1-159
picture 1-158

QuickDraw routines 1-189
utility routine 1-475

picture comments 1-159
Picture data type 1-159

11-421

Inside Macintosh

picture frame 1-158
PinRect function 1-293
pixel 1-139, 143
Plotlcon procedure 1-473
point (coordinate plane) 1-139

routines 1-193
point (font size) 1-61, 153, 217
Point data type 1-139
pointer (to memory) 1-75, 78; 11-11

manipulation 11-374
type coercion 1-79

pointer (on screen) 1-36, 37 See also cursor
polygon 1-159

routines 1-190
Polygon data type 1-159
PolyHandle data type 1-160
PolyPtr data type 1-160
portBits of a grafPort 1-148
PortBUse global variable 11-305
portRect of a grafPort 1-149
PortSize procedure I-165
post an event 1-243
PostEvent function 11-68
PrClose procedure 11-157
PrCloseDoc procedure II-160
PrClosePage procedure 11-160
PrCtlCall procedure 11-163
PrDrvrClose procedure 11-163
PrDrvrDCE function 11-163
PrDrvrOpen procedure II-163
PrDrvrVers function 11-163
PrError function 11-161
prime routine of a driver II-187, 193
Print command 1-57
print dialogs 11-148
print record 11-148
PrintDefault procedure 11-158
Printer Driver 1-13; 11-147, 162
printer information subrecord 11-150
printer resource file II-147
PrintErr global variable II-161
printing grafPort II-147
Printing Manager I-13; II-145

routines 11-157
printing methods 11-153

low-level 11-164
private scraps 1-461
PrJobDialog function 11-158
PrJobMerge procedure 11-159
processor priority 11-196
ProcPtr data type 1-78

PrOpen procedure 11-157
PrOpenDoc function 11-159
PrOpenPage procedure TI-159
proportional font 1-228
protocol 11-263
protocol handler 11-264

writing your own H-324, 326
protocol handler table 11-264
PrPicFile procedure 11-160
PrSetError procedure II-161
PrStlDialog function 11-158
PrValidate function 11-158
PScrapSruff data type 1-457
Pt2Rect procedure 1-175
PtlnRect function 1-175
PtlnRgn function 1-185
Ptr data type 1-78
PtrAndHand function 11-376
PtrToHand function IT.-375
PtrToXHand function 11-375
PtrZone function 11-38
PtToAngle procedure 1-175
purge bit 11-25
purge warning procedure 11-23
purgeable block 1-76; 11-10, 41
PurgeMem procedure 11-40
purging a block 1-76; 11-14, 40
PutScrap function 1-459

Q

QDProcs data type 1-197
QDProcsPtr data type 1-197
QElem data type H-373
QElemPtr data type 11-373
QHdr data type 11-372
QHdrPtr data type 11-373
QTypes data type 11-373
queue 11-373

drive H-127
driver I/O 11-180,191
file I/O 11-97, 124
manipulation 11-382
vertical retrace 11-350,352
volume-control-block 11-125

QuickDraw 1-11, 135
communication with Font Manager 1-224
routines 1-162

Quit command 1-57

11-422

Index

R

radio button 1-312,404
RAM UI-17
RAM Serial Driver 1-13; 11-246

advanced Control calls 11-254
Device Manager calls 11-248
routines 11-249

RAMBase global variable 1-87
RAMSDClose procedure 11-250
RAMSDOpen function H-249
Random function 1-194
random number generator 1-194; 11-407
randSeed global variable 1-163,194
Read function, high-level

Device Manager 11-178
File Manager 11-92

Read function, low-level
Device Manager 11-185
File Manager 11-110

ReadDateTime function 11-378
ReadPacket function 11-327
ReadRest function 11-327
read/write permission 11-83
RealFont function 1-223
reallocating a block 1-76; 11-14
ReallocHandle procedure 11-35
RecoverHandle function 11-35
Rect data type 1-141
rectangle 1-140

routines 1-174
RectlnRgn function 1-185
RectRgn procedure 1-183
reference number of a resource file I-105
reference value

control 1-316
window 1-274

region 1-141
routines 1-181

Region data type 1-142
register-based routines 1-90, 93
register-saving conventions 1-94
RegisterName function 11-322
relative handle 11-24
release timer 11-270
ReleaseResource procedure 1-120
relocatable block 1-75; 11-10

allocating 11-32
releasing 11-33

RelRspCB function 11-319
RelTCB function 11-319
RemoveName function 11-324

Rename function
high-level 11-96
low-level n-118

ResErr global variable 1-116
ResError function 1-116
ResErrProc global variable 1-116
ResetAlrtStage procedure 1-423
ResLoad global variable 1-118
resource 1-103

within a resource I-127
resource attributes I-111

getting 1-121
setting 1-122

resource data 1-106
resource file 1-105

attributes 1-126
current 1-105, 116
fdmat 1-128

resource fork 1-105; 11-81
resource header 1-128
resource ID 1-108

of fonts 1-234
of owned resources 1-109

Resource Manager 1-9,101
routines 1-113

resource map 1-106
resource name I-110
resource reference I-110

format 1-130
resource specification 1-103, 107
resource type 1-103

list 1-107
response BDS 11-288, 314
ResrvMem procedure 11-39
Restart procedure 11-385
RestoreA5 procedure 11-386
ResType data type 1-107
result code 1-116; 11-27, 374

assembly language 1-94
list III-205

resume procedure 1-411; DI-358
ResumeProc global variable 1-411
RetransType data type 11-298
retry count 11-266
retry interval 11-266
Revert to Saved command 1-57
RgnHandle data type 1-142
RgnPtr data type 1-142
RmveResource procedure 1-124
RndSeed global variable 1-195
ROM III-18

11-423

Inside Macintosh

ROM Serial Driver 1-13; 11-246
Device Manager calls IT-248
routines 11-250

ROMBase global variable 1-87; 11-383; ffl-18
ROMFontO global variable 1-233
routine selector 1-483
routing table 11-265
Routing Table Maintenance Protocol 11-265
row width 1-143
RsrcZonelnit procedure 1-114
RstFilLock function

high-level 11-96
low-level H-117

RstFLock function 11-96
RTMP H-265
RTMP socket 11-265
RTMP stub 11-265

S

sample program 1-13
SANE 11-405
Save As command 1-57
Save command 1-57
SaveOld procedure 1-296
SaveUpdate global variable 1-297
SaveVisRgn global variable 1-293
ScalePt procedure I-195
scaling factors 1-218
SCC 111-22
SCC interrupts 11-198
SCCRd global variable 11-199; 111-25
SCCWr global variable 11-199; III-25
scrap

between applications 1-453
in TextEdit 1-373,388

scrap file 1-453
Scrap Manager I-12, 451

routines 1-457
ScrapCount global variable 1-457
ScrapHandle global variable 1-457
ScrapName global variable 1-457
ScrapSize global variable 1-457
ScrapState global variable 1-457
ScrapStuff data type 1-457
Scratch8 global variable 1-85
Scratch20 global variable 1-85
ScrDmpEnb global variable 1-258
screen buffer HI-18, 19
screenBits global variable 1-145, 163
ScreenRes procedure 1-473

ScrHRes global variable 1-473
ScrnBase global variable 11-19, 21
scrollbar 1-47,312

updating 1-291
ScrollRect procedure 1-187
ScrVRes global variable 1-473
SdVolume global variable 11-232
Secs2Date procedure 11-380
sector 11-211
SectRect function 1-175
SectRgn procedure 1-184
segment 11-55
Segment Loader 1-12; 11-53

routines 11-57
selection range 1-375
SelectWindow procedure 1-284
SellText procedure 1-422
SendBehind procedure 1-286
SendRequest function TJ-316
SendResponse function 11-317
sequence number of a datagram 11-266
SerClrBrk function 11-253
SerGetBuf function 11-253
SerHShake function 11-251
serial communication 11-245.

hardware 111-22
Serial Communications Controller 111-22
serial data 11-245
Serial Drivers 1-13; 11-243

advanced Control calls 11-254
Device Manager calls 11-248
routines 11-249

SerReset function H-250
SerSetBrk function 11-252
SerSetBuf function 11-251
SerShk data type 11-252
SerStaRec data type 11-253
SerStatus function 11-253
SetAppBase procedure 11-28
SetApplBase procedure 11-28
SetApplLimit procedure 11-30
SetClikLoop procedure 1-390
SetClip procedure 1-166
SetCRefCon procedure 1-327
SetCTide procedure 1-321
SetCtlAction procedure 1-328
SetCdMax procedure 1-327
SetCtlMin procedure 1-326
SetCtlValue procedure 1-326
SetCursor procedure I-167
SetDAFont procedure 1-412
SetDateTime function 11-379

11-424

Index

SetDItem procedure 1-421
SetEmptyRgn procedure 1-183
SetEOF function

high-level 17.-93
low-level n-112

SetEventMask procedure 11-70
SetFilelnfo function

high-level 11-95
low-level 11-116

SetFilLock function
high-level H-95
low-level 11-116

SetFilType function 11-117
SetFInfo function 11-95
SetFLock function 11-95
SetFontLock procedure 1-223
SetFPos function

high-level 11-93
low-level n-111

SetGrowZone procedure 11-42
SetHandleSize procedure 11-34
Setltem procedure 1-357
Setltemlcon procedure 1-359
SedtemMark procedure 1-359
SedtemStyle procedure 1-360
SetlText procedure 1-422
Setltmlcon procedure 1-359
SetltmMark procedure 1-359
SetltmStyle procedure 1-360
SetMaxCd procedure 1-327
SetMenuBar procedure 1-355
SetMenuFlash procedure 1-361
SetMFlash procedure 1-361
SetMinCd procedure 1-326
SetOrigin procedure I-166
SetPBits procedure 1-165
SetPenState procedure 1-169
SetPort procedure I-165
SetPortBits procedure 1-165
SetPt procedure 1-193
SetPtrSize procedure 11-37
SetRecRgn procedure 1-183
SetRect procedure 1-174
SetRectRgn procedure 1-183
SetResAttrs procedure 1-122
SetResFileAttrs procedure 1-127
SetResInfo procedure 1-122
SetResLoad procedure 1-118
SetResPurge procedure I-126
SetSoundVol procedure Et-233
SetStdProcs procedure 1-198
SetString procedure 1-468

SetTagBuffer function 11-214
SetTime procedure 11-380
SetTrapAddress procedure 11-384
SetUpA5 procedure 11-386
SetVol function

high-level 11-89
low-level IJ.-105

SetWindowPic procedure 1-293
SetWordBreak procedure 1-390
SetWRefCon procedure 1-293
SetWTide procedure 1-284
SetZone procedure 11-31
SEvtEnb global variable 1-443
SFGetFile procedure 1-523
SFPGetFile procedure 1-526
SFPPutFile procedure 1-523
SFPutFile procedure 1-519
SFReply data type 1-519
SFSaveDisk global variable 1-519
SFTypeList data type 1-523
ShieldCursor procedure 1-474
ShowControl procedure 1-322
ShowCursor procedure 1-168
ShowHide procedure 1-285
ShowPen procedure 1-168
ShowWindow procedure 1-285
signature UI-9
SignedByte data type 1-78
size

of parameters 1-90
of variables 1-85

size box 1-287 See also grow region
size correction 11-24
Size data type 11-18
SizeControl procedure 1-326
SizeResource function 1-121
SizeRsrc function 1-121
SizeWindow procedure 1-290
SlopeFromAngle function 1-475
socket U-265
socket client 11-265
socket listener 11-265

writing your own 11-324, 329
socket number 11-265
socket table 11-265
software overrun error 11-246
sound buffer 11-233; IJ.I-18, 21
Sound Driver 1-13; 11-221

hardware 11-233
routines 11-231

sound generator 11-223; HI-20
sound procedure 1-409, 411, 425

11-425

Inside Macintosh

SoundBase global variable JJ.I-21
SoundDone function 11-232
SoundLevel global variable 11-234
SoundPtr global variable U-227
source transfer mode 1-157
space state 11-246
SpaceExtra procedure 1-172
SPAlarm global variable See parameter RAM
SPATalkA global variable See parameter

RAM
SPATalkB global variable See parameter

RAM
SPClikCaret global variable See parameter

RAM
SPConfig global variable 11-305
speaker volume 11-232, 371
SPFont global variable See parameter RAM
SPKbd global variable See parameter RAM
split bar 1-49
SPMisc2 global variable See parameter RAM
spool printing 11-151,153
SPortSel data type 11-249
SPPortA global variable See parameter RAM
SPPoitB global variable See parameter RAM
SPPrint global variable See parameter RAM
SPValid global variable See parameter RAM
SPVolCtl global variable See parameter RAM
square-wave synthesizer 11-223, 225
stack 1-73; 11-17
stack-based routines 1-90
stack frame 1-96; 11-17
StageList data type 1-424
stages of an alert 1-409
Standard File Package I-12, 515

routines 1-519
start bit 11-245
StartSound procedure 11-231
Stash function II-195
Status function

high-level 11-179
low-level 11-186

status information 11-176
status routine of a driver 11-187,194
StdArc procedure 1-199
StdBits procedure 1-199
StdComment procedure 1-199
StdGetPic procedure 1-200
StdLine procedure 1-198
StdOval procedure 1-199
StdPoly procedure 1-199
StdPutPic procedure 1-200
StdRect procedure 1-198

StdRgn procedure 1-199
StdRRect procedure 1-198
StdText procedure 1-198
StdTxMeas function 1-199
StiUDown function 1-259
stop bit 11-245
StopAlert function 1-419
StopSound procedure 11-232
Str32 data type U-298
Str255 data type 1-78
string comparison 1-501, 506; 11-376
string list 1-468

resource format 1-476
string manipulation 1-468
StringHandle data type 1-78
StringPtr data type 1-78
StringToNum procedure 1-490
StringWidth function 1-173
structure region of a window 1-271
StuffHex procedure I-195
style See character style
Style data type 1-152
style dialog 11-149
Style menu 1-61
Styleltem data type 1-152
SubPt procedure 1-193
SWSynthPtr data type 11-225
SWSynthRec data type 11-225
synchronous execution

AppleTalk Manager 11-273
Device Manager 11-180
File Manager 11-97

synthesizer buffer 11-225
SysBeep procedure 11-385
SysEdit function 1-441
SysError procedure H-362
SysEvtMask global variable 11-70
SysMap global variable 1-114
SysMapHndl global variable 1-114
SysParam global variable 11-369
SysParmType data type 11-370
SysPPtr data type H-370
SysResName global variable 1-114
system error alert 11-357
system error alert table 11-357, 359
System Error Handler 1-13; 11-18, 355

routine 11-362
system error ID 11-357
system event mask 1-254; IT.-70
system font 1-219
system font size 1-219
system heap 1-74; H-9

11-426

Index

system resource 1-103
system resource file 1-103
system startup information II-120
system traps III-215
system window 1-270, 438
SystemClick procedure 1-441
SystemEdit function 1-441
SystemEvent function 1-442
SystemMenu procedure 1-443
SystemTask procedure 1-442, 444; II-189
SystemZone function 11-32
SysZone global variable 11-19, 21, 32

T

tag byte 11-24
TEActivate procedure 1-385
TECalText procedure 1-390
TEClick procedure 1-384
TECopy procedure 1-386
TECut procedure 1-385
TEDeactivate procedure 1-385
TEDelete procedure 1-387
TEDispose procedure 1-383
TEDoText global variable 1-391
TEFromScrap function 1-389
TEGetScrapLen function 1-389
TEGetText function 1-384
TEHandle data type 1-374
TEIdle procedure 1-384
TEInit procedure 1-383
TEInsert procedure 1-387
TEKey procedure 1-385
TENew function 1-383
TEPaste procedure 1-386
TEPtr data type 1-374
TERec data type 1-377
TERecal global variable 1-391
TEScrapHandle function 1-389
TEScroll procedure 1-388
TEScrpHandle global variable 1-389
TEScrpLength global variable 1-389
TESetJust procedure {-387
TESetScrapLen procedure 1-390
TESetSelect procedure 1-385
TESetText procedure 1-383
TestControl function 1-325
TEToScrap function 1-389
TEUpdate procedure 1-387
text characteristics 1-151
text in a dialog/alert 1-404,408

text streaming 11-165
TextBox procedure 1-388
TextEdit 1-12,371

routines 1-383
scrap 1-373,388

TextFace procedure 1-171
TextFont procedure 1-171
TextMode procedure 1-171
TextSize procedure 1-171
TextWidth function 1-173
TheMenu global variable 1-357
thePort global variable 1-162,165
TheZone global variable 11-31
thousands separator 1-497
THPrint data type 11-149
thumb 1-312
THz data type 11-22
tick 1-246
TickCount function 1-260
Ticks global variable 1-260; 11-198
Time global variable 11-198,369,378
time operations 11-377
ToExtFS global variable 11-128
toggled command 1-53, 357
Tone data type 11-225
Tones data type 11-225
Toolbox 1-9
Toolbox Event Manager I-11, 241

routines 1-257
Toolbox Utilities I-12, 465

routines 1-467
ToolScratch global variable 1-85
TopMapHndl global variable 1-115
TopMem function 11-44
TPPrint data type 11-149
TPPrPort data type 11-147
TPrlnfo data type 11-150
TPrint data type 11-149
TPrJob data type 11-151
TPrPort data type 11-147
TPrStatus data type 11-161
TPrStl data type 11-152
TPrXInfo data type 11-152
track on a disk 11-211
TrackControl function 1-323
TrackGoAway function 1-288
transaction 11-266
transaction ID 11-266
transaction release 11-270
transaction request 11-266
transaction response 11-266

11-427

Inside Macintosh

Transcendental Functions Package 1-13;
11-403, 407

transfer mode 1-156
trap dispatch table 1-87

routines 11-383
trap dispatcher 1-89
trap macro 1-88, 90

list III-215
trap number 1-89,384
trap word 1-88
TRel See transaction release
TReq See transaction request
TResp See transaction response
trigonometric functions 11-407
type coercion 1-79
type size See font size

U

Undo command 1-59
unimplemented instruction 1-88
UnionRect procedure 1-175
UnionRgn procedure 1-184
UniquelD function 1-121
unit number 11-191
unit table 11-191
UnloadNBP function 11-324
UnloadScrap function 1-458
UnloadSeg procedure 11-59
unlocked block 1-76; 11-10
unlocking a block 1-76; 11-41
UnlodeScrap function 1-458
unmounted volume 11-79
UnmountVol function

high-level 11-90
low-level 11-106

UnpackBits procedure 1-470
unpurgeable block 1-76; 11-10, 42
update event 1-244, 278

event message 1-252
update region of a window 1-272

maintenance 1-291
UpdateResFile procedure 1-125
UprString procedure 11-377
use type 11-305
user bytes 11-266
user interface guidelines 1-23
User Interface Toolbox 1-9
UseResFile procedure 1-117
userltem in a dialog 1-404, 405

installing 1-421

UTableBase global variable 11-192
Utilities, Operating System 1-13; 11-307

routines 11-374
Utilities, Toolbox 1-12, 465

routines 1-467

V

validity status 11-370
ValidRect procedure 1-292
ValidRgn procedure 1-292
variation code

control 1-328
window 1-298

VBL interrupt See vertical blanking interrupt
VBL task 11-350
VBLQueue global variable IJ.-352
VBLTask data type 11-350
VCB data type 11-125
VCBQHdr global variable U.-126
vector 11-196
vector table 11-196
Versatile Interface Adapter UI-39
version data III-10
version number of a file II-81
vertical blanking interrupt IJ.-349; III-18
vertical blanking interval III-18
vertical retrace interrupt 1-13; 11-349
Vertical Retrace Manager 1-13; 11-347

routines 11-351
vertical retrace queue 11-350, 352
VHSelect data type 1-139
VIA 111-39
VIA global variable 1-198; IH-39
VIA interrupts 11-197; 111-38, 41
video interface III-18
view rectangle 1-374
VInstall function 11-351
visible

control 1-316
window 1-274

visRgn of a grafPort 1-149
volume (on a disk) 11-79
volume (speaker) 11-232,371
volume allocation block map II-122
volume attributes 11-121
volume buffer 11-79
volume control block 11-125
volume-control-block queue II-125
volume index 11-102
volume information 11-121

11-428

Index

volume name 11-79
volume reference number 11-79
VRemove function 11-351

W

WaitMouseUp function 1-259
Wave data type 11-227
waveform U-223
waveform description 11-224
wavelength 11-223
WavePtr data type U-227
white global variable I-162
window 1-44, 269

closing 1-45,283
defining your own 1-297
moving 1-46, 289
opening 1-45, 282
resource format 1-302
sizing 1-47,289
splitting 1-49

window class 1-274, 276
window definition function 1-272, 298
window definition ID 1-273, 298
window frame 1-271
window list 1-274, 277
Window Manager I-11, 267

routines 1-281
Window Manager port 1-271, 282
window pointer 1-275
window record 1-274, 276
window template 1-274

resource format 1-302
WindowList global variable 1-255, 277
WindowPeek data type 1-275
WindowPtr data type 1-275
WindowRecord data type 1-276
WMgrPort global variable 1-282
word 1-42

in TextEdit 1-373
word break routine 1-380
word wraparound 1-373
write data structure 11-306
Write function, high-level

Device Manager 11-179
File Manager 11-92

Write function, low-level
Device Manager 11-185
File Manager II-110

WriteDDP function 11-312
WriteLAP function 11-307

WriteParam function 11-382
WriteResource procedure 1-125

X

XorRgn procedure 1-185

Y

Z

ZeroScrap function 1-458
zone

AppleTalk Manager 11-266
Memory Manager See heap zone

Zone data type 11-22
zone header 11-22
zone pointer 11-22
zone record 11-22
zone trailer 11-22

11-429

	Volume II

	Contents

	Preface

	1 The Memory Manager

	2 The Segment Loader

	3 The Operating System Event Manager

	4 The File Manager

	5 The Printing Manager

	6 The Device Manager

	7 The Disk Driver

	8 The Sound Driver

	9 The Serial Drivers

	10 The AppleTalk Manager

	11 The Vertical Retrace Manager

	12 The System Error Handler

	13 The Operating System Utilities

	14 The Disk Initialization Package

	15 The Floating-Point Arithmetic and Transcendental Functions Packages

	Index

