

ð

WWDC Release

May 1996
© Apple Computer, Inc. 1994 - 1996

ð

I N S I D E M A C I N T O S H

SCSI Family Reference

Draft.



 Apple Computer, Inc. 5/13/96

ð

Apple Computer, Inc.
© 1996 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, FireWire,
and Macintosh are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.
Mac is a trademark of Apple
Computer, Inc.
NuBus is a trademark of Texas
Instruments.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

C H A P T E R 1

Contents

Draft.



 Apple Computer, Inc. 5/13/96

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 SCSI Family Reference
About the SCSI Family 1-7
SCSI Client Constants and Data Types 1-11

SCSI Connection Data Types 1-11
ConnectionType 1-12
ConnectionID 1-13

The SCSI Execution Tag 1-13
SCSIExecIOTag 1-13

The SCSI Data Structure 1-14
SCSIDataObject 1-14

SCSI Data Type 1-14
The SCSI Command Descriptor Block Structure 1-17

SCSICDBObject 1-17
The SCSI Flags Structure 1-17

SCSIFlagsObject 1-17
Autosense Size Value 1-18
The SCSI I/O Result Structure 1-19

SCSIExecIOResult 1-19
Result Flags 1-20
The SCSI Handshake Structure 1-21

SCSIHandshakeObject 1-21
The SCSI I/O Options Structure 1-22

SCSIIOOptionsObject 1-22
The SCSI Bus Information Structure 1-23

SCSIBusInfo 1-23
Device Identification Structure 1-27

DeviceIdent 1-27
The SCSI Device Iterator Structure 1-28
1-3

C H A P T E R 1

SCSIIOIteratorData 1-28
SCSI Device Type 1-29

SCSIDeviceType 1-29
SCSI Client Functions 1-30

Opening and Closing a SCSI Connection 1-30
SCSIOpenConnection 1-30
SCSICloseConnection 1-32

Performing I/O Operations 1-33
SCSIExecIOSyncCmd 1-33
SCSIExecIOAsyncCmd 1-35
SCSIExecIOControlSyncCmd 1-37
SCSIExecIOControlAsyncCmd 1-40

Performing I/O Control Operations 1-43
SCSIAbortIOCmd 1-43
SCSITerminateIOCmd 1-44
SCSIReleaseQCmd 1-46
SCSIClearQueue 1-47
SCSIBusResetSync 1-48
SCSIBusResetAsync 1-50
SCSIDeviceResetSync 1-51
SCSIDeviceResetAsync 1-53

Setting SCSI Options 1-54
SCSISetHandshake 1-54
SCSISetTimeout 1-55
SCSISetIOOptions 1-57

Obtaining Device and Bus Information 1-58
SCSIBusGetDeviceData 1-58
SCSIBusInquiryCmd 1-60

Plug-in Constants and Data Types 1-61
Plug-in Control Block Structure 1-61

PluginControlBlock 1-61
Plug-in-Defined Function Types 1-63

SCSIPluginInitEntry 1-63
SCSIPluginActionEntry 1-63
SCSIPluginHandleBusEventEntry 1-64

Plug-in Dispatch Table 1-64
SCSIPluginDispatchTable 1-64

SCSI Flags 1-66
1-4 Contents

Draft.  Apple Computer, Inc. 5/13/96

C H A P T E R 1

SCSI Function Codes 1-68
Transfer Types 1-70
SCSI I/O Flags 1-70
Feature Flags 1-72
More Feature Flags 1-73
Unusual Features Flags 1-74
Slot Types 1-76
Scan Types 1-76
Data Length Constants 1-77
Command Descriptor Block Structure 1-78

CDB 1-78
Scatter/Gather List Structure 1-79

SGRecord 1-79
SCSI Parameter Block Header 1-80

SCSIHdr 1-80
SCSI Parameter Block 1-82

SCSI_PB 1-82
SCSI I/O Parameter Block 1-82

SCSI_IO 1-82
SCSI Bus Inquiry Parameter Block 1-87

SCSIBusInquiryPB 1-87
SCSI Abort Command Parameter Block 1-92

SCSIAbortCommandPB 1-92
Terminate I/O Parameter Block 1-93

SCSITerminateIOPB 1-93
Reset Bus Parameter Block 1-94

SCSIResetBusPB 1-94
Reset Device Parameter Block 1-94

SCSIResetDevicePB 1-94
Release Queue Parameter Block 1-95

SCSIReleaseQPB 1-95
Plug-in Functions 1-96

Exported by the SCSI Family 1-96
SCSIFamBusEventForSIM 1-96
SCSIFamMakeCallback 1-97

SCSI Plug-in-Defined Functions 1-98
MySCSIPluginInitFunc 1-98
MySCSIPluginActionFunc 1-99
Contents 1-5
Draft.  Apple Computer, Inc. 5/13/96

C H A P T E R 1

MySCSIPluginHandleBusEventFunc 1-100
SCSI Family Result Codes 1-101
Glossary 1-105
1-6 Contents

Draft.  Apple Computer, Inc. 5/13/96

C H A P T E R 1

SCSI Family Reference 1

You need to read this reference if you write device drivers for SCSI devices, if
you write other software that uses SCSI services, or if you are writing a SCSI
interface module (or plug-in) for a specific type of SCSI controller chip.

This chapter assumes that you have an understanding of the Mac OS 8 I/O
architecture, as described in “About the I/O Architecture” to be provided.

If you are writing a device driver for a block-structured storage device such as
a hard disk, you need to read “Block Storage Family Reference”.

This chapter assumes you are familiar with the following SCSI specifications
established by the American National Standards Institute (ANSI):

■ X3.131-1986, Small Computer System Interface

■ X3.131-1994, Small Computer System Interface–2

■ SCSI-2 Common access method transport and SCSI interface module

Draft Release Note
The information in this chapter is preliminary and subject
to change. ◆

About the SCSI Family 1

The SCSI family is a completely new implementation of SCSI services for
Mac OS 8. It provides

■ improved performance over SCSI Manager 4.3

■ a new connection-based interface for clients that doesn’t require knowledge
of complex parameter block structures

■ enhancements to the plug-in interface, such as a simplified process for
acquiring plug-in entry points

■ access control, which allows a client to open a device with a specific status
(either shared or reserved)

The SCSI family is included in Mac OS 8 and can run on any Power Macintosh
or Mac-compatible computer. The SCSI family provides a client programming
interface and a plug-in programming interface, and is responsible for

■ routing requests to the proper plug-in
About the SCSI Family 1-7
Draft.  Apple Computer, Inc. 5/13/96

C H A P T E R 1

SCSI Family Reference
■ notifying the caller when a request is complete

■ maintaining compatibility with the SCSI Manager 4.3 interface

■ isolating plug-ins from comprehensive knowledge of (and access to) other
operating system components

Software written to the SCSI Manager 4.3 interface runs on Mac OS 8 through a
compatibility layer, shown in Figure 1-1. Most SCSI Manager 4.3 functions and
data structures are maintained, but no support is provided for the original SCSI
Manager client API and its emulation in SCSI Manager 4.3 (as described in
Inside Macintosh: Devices).

▲ W A R N I N G

If your application or device driver calls an original SCSI
Manager function or a SCSI Manager 4.3 function that
provides emulation, it will get a “not supported” error. ▲

The SCSI family client interface defines communication between the SCSI
family and its clients, which may include applications, other I/O families, and
plug-ins from other families. For example, the block storage family and its
plug-ins are the primary SCSI family clients.

A client uses the services of the SCSI family and its plug-ins to manage a SCSI
device and to transfer data to and from it. The family provides a client interface
and passes on requests to the appropriate plug-in. A SCSI plug-in (also known
as a SCSI interface module, or SIM) is responsible for managing the host bus
adaptor (HBA) for a bus. “SCSI Client Constants and Data Types,” beginning
on page 1-11 describes the data types and constants available to SCSI family
clients. “SCSI Client Functions,” beginning on page 1-30, describes the
available functions.

Note
This document generally refers to a SCSI interface module
as a plug-in, rather than a SIM. ◆

When a client calls a SCSI family function such as SCSIExecIOSyncCmd
(page 1-33) or SCSIExecIOAsyncCmd (page 1-35), the SCSI family server uses
information passed in the function parameters to build a parameter block
structure for use by the appropriate SCSI family plug-in. A SCSI family client is
shielded from the complexity of the parameter block, and does not access its
fields directly.
1-8 About the SCSI Family

C H A P T E R 1

SCSI Family Reference
The parameter block structures used in the plug-in programming interface are
nearly identical to those supported by SCSI Manager 4.3, although a few fields
have been changed or are no longer supported. (For information on specific
fields, see the reference sections for individual parameter block structures.) The
SCSI family and plug-ins ignore any parameter block fields that are no longer
used.

Figure 1-1 SCSI Manager 4.3 compatibility

Macros such as SCSIPBHdr and SCSI_IO have been replaced by similarly named
structures—for more information, see “SCSI Parameter Block Header”
(page 1-80) and “SCSI I/O Parameter Block” (page 1-82). The structures define
fields identical to those in the original macros.

Syatem 7 application Mac OS 8 application

SCSI Manager 4.3 SCSI family client

Compatibility layer

SCSI family
About the SCSI Family 1-9

C H A P T E R 1

SCSI Family Reference
Figure 1-2 The SCSI family and a SIM plug-in in the I/O architecture

The SCSI family plug-in interface defines communication between the SCSI
family and its plug-ins, which may include Apple and third-party plug-ins.
“Plug-in Constants and Data Types,” beginning on page 1-61, describes the
data types and constants available to SCSI family plug-ins. “Exported by the
SCSI Family,” beginning on page 1-96, describes family functions available to

Application Application

File

system

family

SCSI

family

SCSI bus

Hard diskCD-ROM

drive

HFS

file

system

plug-in

Block storage family

Hardware

Software

CD-ROM

plug-in

HD

plug-in

SIM

plug-in

Host bus adaptor
1-10 About the SCSI Family

C H A P T E R 1

SCSI Family Reference
plug-ins. “SCSI Plug-in-Defined Functions,” beginning on page 1-98, describes
functions a plug-in must make available to the SCSI family.

Along with the SCSI family, Apple provides plug-ins to manage hardware in
Macintosh computers. Apple or third-party developers can add other plug-ins
and HBA hardware at any time. For example, a PCI or NuBus expansion card
can provide an additional SCSI bus that device drivers can access through the
SCSI family in exactly the same way they access the internal bus. Figure 1-2
shows the relationship between applications, device drivers, the SCSI family, a
SCSI plug-in (or SIM), and the SCSI controller hardware.

There are several advantages of using the new SCSI family client interface:

■ It can reduce coding complexity and simplify maintenance requirements.

■ The SCSI Manager 4.3 interface is not guaranteed to work with future
versions of Macintosh system software.

■ Using the SCSI Manager 4.3 interface may lead to reduced performance
because the transitions necessary to maintain compatibility are complex and
time-consuming.

SCSI Client Constants and Data Types 1

SCSI Connection Data Types 1

A SCSI connection is a logical path to a SCSI bus or a SCSI device. The
connection controls access to its bus or device. Access to a device may be
shared or reserved; access to a bus must be shared.

A SCSI connection ID is a value that uniquely identifies a connection. It is
assigned by the Mac OS 8 when a new connection is opened. The ID remains
valid from the time you open the connection until the time you close it.

For more information on connections, see “Connection-Based Services,” to be
provided.
SCSI Client Constants and Data Types 1-11

C H A P T E R 1

SCSI Family Reference
Note
At the present time, the SCSI family does not probe for
logical units (LUNs). As a result, no LUNs exist as entries
in the Name Registry, and you cannot open a direct
connection to a LUN. Probing for logical units will be
added in a later release. In the meantime, you can use the
SCSIExecIOControlSyncCmd (page 1-37) or the
SCSIExecIOControlAsyncCmd (page 1-40) functions to get
access to a LUN. For more information, see the discussions
associated with those functions.

ConnectionType 1

When you call the SCSIOpenConnection function (page 1-30) to open a
connection, you specify a connection type. The SCSI family defines the
ConnectionType data type and provides enumerated values for connection types.

typedef UInt32 ConnectionType;

enum {
kReservedAccess = 0x0100 /* reserved */
kSharedAccess = 0x0200, /* shared */

};

Enumerator descriptions

kReservedAccess A connection that allows only one client to have access to a
device. If granted, other requests to open a connection to
the device will be denied. A bus connection may not be
reserved.

kSharedAccess A connection that allows shared access to a device. If
granted, other requests to open a connection to the device
will be allowed. A bus connection must be shared.
1-12 SCSI Client Constants and Data Types

C H A P T E R 1

SCSI Family Reference
ConnectionID 1

You obtain a connection ID by calling the SCSIOpenConnection function
(page 1-30). You can pass the ID to SCSI client functions that read or write to a
device or bus, use it to get information about a device or a bus and the plug-in
associated with it, or pass it to the SCSICloseConnection function (page 1-32) to
close the connection.

The SCSI family defines the ConnectionID data type for a connection ID.

typedef ObjectID ConnectionID;

When you open a connection to a SCSI bus, you can use the
SCSIExecIOControlSyncCmd (page 1-37) or the SCSIExecIOControlAsyncCmd
(page 1-40) function to get limited access to devices on that bus. This capability
allows you, for example, to perform a bus probe that obtains certain
information about each device on the bus without having to make a connection
to each device.

The SCSI Execution Tag 1

SCSIExecIOTag 1

When you call the SCSIExecIOAsyncCmd function (page 1-35) to make a request of
a SCSI device or the SCSIExecIOControlAsyncCmd function (page 1-40) to make a
request of a SCSI bus, the function returns a value, called a tag, that uniquely
identifies the I/O request. The SCSI family defines the SCSIExecIOTag data type
for an I/O tag.

typedef MessageID SCSIExecIOTag;

You can abort or terminate an I/O request by passing its SCSI execution tag to
the SCSIAbortIOCmd function (page 1-43) or the SCSITerminateIOCmd function
(page 1-44).
SCSI Client Constants and Data Types 1-13

C H A P T E R 1

SCSI Family Reference
The SCSI Data Structure 1

SCSIDataObject 1

When you want to transfer data to or from a SCSI device using the
SCSIExecIOSyncCmd function (page 1-33), the SCSIExecIOAsyncCmd function
(page 1-35), the SCSIExecIOControlSyncCmd function (page 1-37), or the
SCSIExecIOControlAsyncCmd function (page 1-40), you provide a SCSIDataObject
structure.

The SCSI family defines the SCSIDataObject data type and enumerated values
to specify information for a data transfer.

struct SCSIDataObject {
UInt8 *scsiDataPtr;
SInt32 scsiDataLength;
UInt16 scsiDataType;
UInt16 scsiSGListCount;

};

Field descriptions
scsiDataPtr A pointer to a data buffer, a scatter/gather list, or an I/O

table that you provide to supply data to the function or
receive data from it. You use the scsiDataType field to
specify the type the pointer points to.

scsiDataLength The amount of data you want to transfer, in bytes.
scsiDataType The data type pointed to by the scsiDataPtr field. You

specify the type using one of the constants described in
“SCSI Data Type,” beginning on page 1-14.

scsiSGListCount The number of elements in your scatter/gather list.

SCSI Data Type 1

You specify the data type pointed to by the scsiDataPtr field of the
SCSIDataObject structure by setting the scsiDataType field to one of the
following constants.
1-14 SCSI Client Constants and Data Types

C H A P T E R 1

SCSI Family Reference
enum {
scsiDataBuffer = 0, /* single contiguous buffer */
scsiDataTIB = 1, /* not supported */
scsiDataSG = 2, /* scatter/gather list */
scsiDataIOTable = 3, /* I/O table prepared by block

storage */
scsiDataMemList = 4 /* a special memory list */

};

The constant you select provides information about the source or destination
location for the data to be transferred. It also provides information about the
state of the data. For example, any virtual memory used for data must be
locked down to physical addresses so that no page fault occurs during data
transfer, which could lead to a deadlock condition. Locking down of memory
can only be performed by a task running in supervisor mode.

Enumerator descriptions

scsiDataBuffer The scsiDataPtr field contains a pointer to a contiguous
data buffer, and the scsiDataLength field specifies the
length of the buffer, in bytes.

scsiDataTIB Not supported (obsolete).
scsiDataSG The scsiDataPtr field contains a pointer to a scatter/gather

list (page 1-79). Each entry in a scatter/gather list contains
the address and size of one buffer. The scsiDataLength
field specifies the total number of bytes to be transferred
(the sum of all the buffer sizes). The buffers specified by
the scatter/gather list are likely to be in virtual memory, so
the SCSI family must lock down memory to physical
addresses before a transfer can take place. Locking down
memory prevents page faults from occurring during a
transfer.

scsiDataIOTable The scsiDataPtr field contains a pointer to an I/O table
prepared by a client running in supervisor mode (such as
the block storage family). If any virtual memory was used
for the data, that memory has been locked down to
physical addresses. The scsiDataLength field specifies the
total number of bytes to be transferred.

scsiDataMemList The scsiDataPtr field contains a pointer to an I/O table
prepared by a client running in either supervisor mode or
user mode. Each entry in the I/O table describes a range in
SCSI Client Constants and Data Types 1-15

C H A P T E R 1

SCSI Family Reference
memory. The memory doesn’t have to be locked down—a
client running in user mode can prepare the list and pass it
to the SCSI family to lock it down, but a client running in
supervisor mode must lock down the memory before
calling on the family. The scsiDataLength field contains the
total number of bytes to be transferred. For more
information on using a memory list, see to be supplied.

The SCSI family defines an enumerated type a plug-in can use to set the bits in
the scsiDataType field of the SCSIDataObject structure. Bits 0 to 15 are defined
by Apple. Bits 16 to 30 are available for third parties. Bit 31 is reserved. The
addressing is little-endian—that is, the value is read from right to left, with bit
0 on the right and bit 31 on the left.

enum
{

scsiBusDataTIB = (1<<scsiDataTIB), /* not supported (obsolete) */
scsiBusDataBuffer = (1<<scsiDataBuffer), /* single contiguous buffer supplied */
scsiBusDataSG = (1<<scsiDataSG), /* scatter/gather list supplied */
scsiBusDataIOTable = (1<<scsiDataIOTable), /* prepare Memory for IO */
scsiBusDataMemList = (1<<scsiDataMemList), /* memory list */

scsiBusDataReserved = 0x80000000 /* reserved */
};

Enumerator descriptions

scsiBusDataTIB Not supported.
scsiBusDataBuffer Set bit indicating single contiguous buffer.
scsiBusDataSG Set bit indicating scatter/gather list.
scsiBusDataIOTable Set bit indicating memory has been prepared (and locked

down) by the block storage family or other supervisor
mode process.

scsiBusDataMemList
Set bit indicating an I/O table has been prepared (but
memory has not necessarily been locked down).

scsiBusDataReserved
Reserved.
1-16 SCSI Client Constants and Data Types

C H A P T E R 1

SCSI Family Reference
The SCSI Command Descriptor Block Structure 1

SCSICDBObject 1

When you call the SCSIExecIOSyncCmd function (page 1-33), the
SCSIExecIOAsyncCmd function (page 1-35), the SCSIExecIOControlSyncCmd
function (page 1-37), or the SCSIExecIOControlAsyncCmd function (page 1-40),
you provide a SCSICDBObject structure.

The SCSI family defines the SCSICDBObject data type to specify a command
descriptor block (CDB).

struct SCSICDBObject {
UInt16 scsiCDBLength;
CDB scsiCDB;

};

Field descriptions
scsiCDBLength The length of your SCSI command descriptor block, in

bytes.
scsiCDB An actual CDB. For information on the format and length

of a CDB, see “CDB,” beginning on page 1-78 and “Data
Length Constants,” beginning on page 1-77.

The SCSI Flags Structure 1

SCSIFlagsObject 1

When you call the SCSIExecIOSyncCmd function (page 1-33), the
SCSIExecIOAsyncCmd function (page 1-35), the SCSIExecIOControlSyncCmd
function (page 1-37), or the SCSIExecIOControlAsyncCmd function (page 1-40),
you pass a SCSIFlagsObject structure.
SCSI Client Constants and Data Types 1-17

C H A P T E R 1

SCSI Family Reference
The SCSIFlagsObject structure contains flag fields that help specify an I/O
request.

struct SCSIFlagsObject {
UInt32 scsiFlags;
UInt16 scsiIOFlags;
UInt16 scsiTransferType;

};

Field descriptions
scsiFlags Flags that you set to indicate the transfer direction and any

special handling required for this request. See “SCSI
Flags,” beginning on page 1-66, for flag descriptions.

scsiIOFlags Additional I/O flags you use to describe the data transfer.
See “SCSI I/O Flags,” beginning on page 1-70, for flag
descriptions.

scsiTransferType The type of transfer—blind or polled—to use during the
data phase. You specify the type using one of the constants
described in “Transfer Types,” beginning on page 1-70.

Autosense Size Value 1

Autosense is feature of SCSI Manager 4.3 that automatically sends a REQUEST
SENSE command in response to a CHECK CONDITION status, and retrieves
the sense data into the autosense buffer.The SCSI family provides an
enumerated value, kMaxAutoSenseByteCount, for the maximum size of the buffer.

enum {
kMaxAutoSenseByteCount = 255 /* max byte size of sense buffer */
};

The autosense size value is used in the SCSIExecIOResult structure (page 1-19)
1-18 SCSI Client Constants and Data Types

C H A P T E R 1

SCSI Family Reference
The SCSI I/O Result Structure 1

SCSIExecIOResult 1

When you call the SCSIExecIOSyncCmd (page 1-33), SCSIExecIOAsyncCmd
(page 1-35), SCSIExecIOControlSyncCmd (page 1-37), or
SCSIExecIOControlAsyncCmd (page 1-40) functions, you provide a pointer to a
SCSIExecIOResult structure to return the result of the I/O operation.

The SCSI family defines the SCSIExecIOResult data type to return result
information from an I/O operation. The information is filled in by the
appropriate plug-in.

struct SCSIExecIOResult {
OSStatus scsiResult;
UInt16 scsiResultFlags;
UInt16 scsiSenseLength; /* actual sense length returned */
SInt32 scsiDataResidual; /* residual data length */
SCSIExecIOTag ioTag;
UInt8 scsiSense[kMaxAutoSenseByteCount];

/* autosense data buffer */
UInt8 scsiSCSIstatus;

};

Field descriptions
scsiResult The result code returned by the SCSIExecIOSyncCmd,

SCSIExecIOAsyncCmd, SCSIExecIOControlSyncCmd, or
SCSIExecIOControlAsyncCmd function. See “SCSI Family
Result Codes,” beginning on page 1-101, for a list of all
result codes specific to the SCSI family.

scsiResultFlags Flags set by the plug-in when certain conditions apply;
otherwise, the plug-in sets this field to 0. The flags modify
the value in the scsiResult field. Enumerated values for
setting or testing this field are described in “Result Flags,”
beginning on page 1-20.

scsiSenseLength The number of bytes of data the plug-in placed in your
autosense data buffer.
SCSI Client Constants and Data Types 1-19

C H A P T E R 1

SCSI Family Reference
scsiDataResidual The data transfer residual length (that is, the number of
bytes that were expected but not transferred). This number
is negative if extra bytes had to be transferred to force the
target off the bus. The plug-in sets this field.

SCSIExecIOTag A token that uniquely identifies the I/O request this
structure pertains to (page 1-13). The plug-in sets this field.

scsiSense Your autosense data buffer. If autosense is enabled, the
plug-in returns REQUEST SENSE information in this buffer.
Autosense is enabled when you do not set the
scsiDisableAutosense flag in the scsiFlags field of the
SCSIFlagsObject structure (page 1-17).

scsiSCSIstatus The status returned by the SCSI device. See “Data Length
Constants,” beginning on page 1-77, for a list of values that
a SCSI device can return.

Result Flags 1

The SCSI family provides enumerated values for the scsiResultFlags field of
the SCSIExecIOResult structure. The constant stored in the scsiResultFlags field
modifies the value in the scsiResult field.

enum {
scsiSIMQFrozen = 0x0001, /* Plug-in queue is frozen with this err*/
scsiAutosenseValid = 0x0002, /* autosense data valid for target */
scsiBusNotFree = 0x0004 /* at time of callback, SCSI bus is not free */

};

Enumerator descriptions

scsiSIMQFrozen The plug-in queue for this logical unit (LUN) is frozen
because of an error. You must call the SCSIReleaseQCmd
function (page 1-46) to release the queue and resume
processing requests.

scsiAutosenseValid The plug-in performed an automatic REQUEST SENSE after
this I/O because of a CHECK CONDITION status message from
the device. The data contained in the scsiSensePtr buffer is
valid.

scsiBusNotFree The plug-in was unable to clear the bus after an error. You
may need to call the SCSIBusResetSync function (page 1-48)
1-20 SCSI Client Constants and Data Types

C H A P T E R 1

SCSI Family Reference
or the SCSIBusResetAsync function (page 1-50) to restore
operation. The choice of using a synchronous or an
asynchronous call is up to the client.

The SCSI Handshake Structure 1

SCSIHandshakeObject 1

When you call the SCSISetHandshake function (page 1-54), you provide a
SCSIHandshakeObject structure to specify handshaking instructions for blind
transfers between a plug-in and a device. You store the handshaking
instructions in an array of UInt16 (2-byte) values and terminate the array with 0.

The plug-in polls for data ready after transferring the amount of data specified
in each successive scsiHandshake entry. When it encounters a 0 value, the
plug-in starts over at the beginning of the list. Handshaking always starts from
the beginning of the list every time a device transitions to data phase.

Note
You currently set up handshaking instructions for a device
globally by calling the SCSISetHandshake function. In later
releases, you will be able to set up handshaking
instructions for each I/O request. ◆

The SCSI family defines the SCSIHandshakeObject data type to store
hand-shaking data.

struct SCSIHandshakeObject {
UInt16 scsiHandshake [handshakeDataLength];

};

Field descriptions
scsiHandshake The handshaking data.You store the handshaking

instructions in an array of UInt16 (2-byte) values and
terminate the array with 0. The constant
handshakeDataLength is described in “Data Length
Constants,” beginning on page 1-77.
SCSI Client Constants and Data Types 1-21

C H A P T E R 1

SCSI Family Reference
The SCSI I/O Options Structure 1

SCSIIOOptionsObject 1

The SCSIIOOptionsObject structure specifies options for an I/O operation.

Note
When you call the SCSISetIOOptions function (page 1-57),
you provide a SCSIIOOptionsObject structure. The
SCSISetIOOptions function is currently used to set option
flags globally before calling SCSI family client functions
such as SCSIExecIOSyncCmd (page 1-33). In a future software
release, clients will be able to specify I/O options as part of
the function interface for SCSI family functions. Both the
SCSISetIOOptions function and the SCSIIOOptionsObject
data structure will be eliminated.

struct SCSIIOOptionsObject {
UInt32 scsiFlags;
UInt32 scsiIOFlags;

};

Field descriptions
scsiFlags Flags that you set to indicate the transfer direction and any

special handling required for this request. See “SCSI
Flags,” beginning on page 1-66, for flag descriptions.

scsiIOFlags Additional I/O flags you use to describe the data transfer.
See “SCSI I/O Flags,” beginning on page 1-70, for flag
descriptions.
1-22 SCSI Client Constants and Data Types

C H A P T E R 1

SCSI Family Reference
The SCSI Bus Information Structure 1

SCSIBusInfo 1

When you call the SCSIBusInquiryCmd function (page 1-60), you provide a
pointer to a SCSIBusInfo structure. The function fills in the fields of the
structure. The fields of the SCSIBusInfo structure are very similar to the fields of
the SCSIBusInquiryPB structure (page 1-87)

struct SCSIBusInfo
{

UInt16 scsiEngineCount; /* <- Number of engines on HBA */
UInt16 scsiMaxTransferType; /* <- Number of transfer types for this HBA */

UInt32 scsiDataTypes; /* <- which data types this plug-in supports */

UInt32 scsiBIReserved4; /* Reserved. */

UInt32 scsiFeatureFlags; /* <- Supported features flags field */

UInt8 scsiVersionNumber; /* <- Version number for the plug-in/HBA */
UInt8 scsiHBAInquiry; /* <- Mimic of INQ byte 7 for the HBA */
UInt8 scsiTargetModeFlags; /* <- Flags for target mode support */
UInt8 scsiScanFlags; /* <- Scan related feature flags */

UInt32 scsiSIMPrivatesPtr; /* <- Ptr to plug-in private data area */
UInt32 scsiSIMPrivatesSize; /* <- Size of plug-in private data area */
UInt32 scsiAsyncFlags; /* <- Event cap. for Async Callback */

UInt8 scsiHiBusID; /* <- Highest path ID in the subsystem */
UInt8 scsiInitiatorID; /* <- ID of the HBA on the SCSI bus */
UInt16 scsiBIReserved0; /* Reserved. */
UInt32 scsiBIReserved1; /* Reserved. */
UInt32 scsiFlagsSupported; /* <- which scsiFlags are supported */

UInt16 scsiIOFlagsSupported; /* <- which scsiIOFlags are supported */
UInt16 scsiWeirdStuff;
UInt16 scsiMaxTarget; /* <- maximum Target number supported */
SCSI Client Constants and Data Types 1-23

C H A P T E R 1

SCSI Family Reference
UInt16 scsiMaxLUN; /* <- maximum Logical Unit number supported */

char scsiSIMVendor[vendorIDLength];
/* <- Vendor ID of plug-in (or XPT if bus<FF) */

char scsiHBAVendor[vendorIDLength];
/* <- Vendor ID of the HBA */

char scsiControllerFamily[vendorIDLength];
/* <- Family of SCSI Controller */

char scsiControllerType[vendorIDLength];
/* <- Specific Model of SCSI Controller used */

char scsiXPTversion[4]; /* <- version number of XPT */
char scsiSIMversion[4]; /* <- version number of plug-in */
char scsiHBAversion[4]; /* <- version number of HBA */

UInt8 scsiHBAslotType; /* <- type of "slot" that this HBA is in */
UInt8 scsiHBAslotNumber; /* <- slot number of this HBA */
UInt16 scsiSIMsRsrcID; /* <- resource ID of this plug-in */

UInt16 scsiBIReserved3; /* Reserved. */
};

Field descriptions
scsiEngineCount The number of engines on the HBA. This value is 0 for a

built-in SCSI bus. See the SCSI-2 Common access method
transport and SCSI interface module specification for
information about HBA engines.

scsiMaxTransferType
The number of transfer types supported by the plug-in. A
plug-in supports all transfer types that are specified by a
constant value equal to or less than the value it returns
here. For example, if a plug-in returns the value
scsiTransferPolled for its transfer type, the plug-in
supports both the blind and polled transfer types. See
“Transfer Types,” beginning on page 1-70, for a description
of the defined types.

scsiDataTypes A bit mask specifying the data types supported by the
plug-in/HBA. See “SCSI Data Type,” beginning on
page 1-14, for more information.

scsiBIReserved4 Reserved.
1-24 SCSI Client Constants and Data Types

C H A P T E R 1

SCSI Family Reference
scsiFeatureFlags Flags that describe various physical characteristics of the
SCSI bus. See “Feature Flags,” beginning on page 1-72, for
flag definitions.

scsiVersionNumber The version number of the plug-in/HBA.
scsiHBAInquiry Flags describing the capabilities of the bus. See “More

Feature Flags,” beginning on page 1-73, for flag definitions.
scsiTargetModeFlags

Reserved.
scsiScanFlags Information about the scanning-related features supported

by the plug-in/HBA. You can test for specific features
using the bit masks described in “Scan Types,” beginning
on page 1-76.

scsiSIMPrivatesPtr
A pointer to the plug-in’s private storage.

scsiSIMPrivatesSize
The size of the plug-in’s private storage, in bytes.

scsiAsyncFlags Reserved.
scsiHiBusID The highest bus number currently registered in the Name

Registry. The SCSI family provides this value. If no buses
are registered, it sets this field to 0xFF.

scsiInitiatorID The SCSI ID of the HBA. This value is 7 for a built-in SCSI
bus.

scsiFlagsSupported
A bit mask that defines which scsiFlags bits the plug-in
supports. See “SCSI Flags,” beginning on page 1-66, for
flag definitions.

scsiIOFlagsSupported
A bit mask that defines which scsiIOFlags bits the plug-in
supports. See “SCSI I/O Flags,” beginning on page 1-70,
for flag definitions.

scsiWeirdStuff Flags that identify unusual aspects of a plug-in’s
operation. See “Unusual Features Flags,” beginning on
page 1-74, for flag definitions.

scsiMaxTarget The highest SCSI bus ID supported by the HBA. For a
standard SCSI-2 HBA, the value is 7; for an HBA that
supports wide transfer, the value is 15.

scsiMaxLUN The highest logical unit number supported by the HBA.
SCSI Client Constants and Data Types 1-25

C H A P T E R 1

SCSI Family Reference
scsiSIMVendor A null-terminated ASCII text string that identifies the
plug-in vendor. On Macintosh computers, for example, the
function returns 'Apple Computer \0' for a built-in SCSI
bus.

scsiHBAVendor A null-terminated ASCII text string that identifies the HBA
vendor. On Macintosh computers, for example, the
function returns 'Apple Computer \0' for a built-in SCSI
bus.

scsiControllerFamily
An optional null-terminated ASCII text string that
identifies the family of parts to which the SCSI controller
chip belongs. This information is provided at the
discretion of the HBA vendor.

scsiControllerType
An optional null-terminated ASCII text string that
identifies the specific type of SCSI controller chip. This
information is provided at the discretion of the HBA
vendor.

scsiXPTversion Not used (obsolete).
scsiSIMversion An ASCII text string that identifies the version number of

the plug-in. You should use the other fields of this
structure to check for specific features, rather than relying
on this value.

scsiHBAversion An ASCII text string that identifies the version number of
the HBA. You should use the other fields of this structure
to check for specific features, rather than relying on this
value.

scsiHBAslotType The slot type, if any, used by this HBA. Slot types are
defined in “Slot Types,” beginning on page 1-76.

scsiHBAslotNumber Reserved.
scsiSIMsRsrcID Reserved.
scsiAdditionalLength

The additional size of this parameter block, in bytes. If the
parameter block includes extra fields to return additional
information, this field contains the number of additional
bytes.
1-26 SCSI Client Constants and Data Types

C H A P T E R 1

SCSI Family Reference
Device Identification Structure 1

DeviceIdent 1

The device identification structure specifies a target device by its bus number,
SCSI ID, and logical unit number (LUN). The device identification structure is
defined by the DeviceIdent data type. You can use the SCSIBusGetDeviceData
function (page 1-58) to get an array containing a DeviceIdent data structure for
each device on a bus. You can then use information from the array to open a
connection to any of the devices.

For information on how to get limited information about the devices on a bus,
without the overhead of opening a connection to each device, see the
SCSIExecIOSyncCmd function (page 1-33).

struct DeviceIdent
{

UInt8 diReserved;
UInt8 bus;
UInt8 targetID;
UInt8 LUN;

};

Field descriptions
diReserved Reserved.
bus The bus number of the plug-in/HBA for the target device.
targetID The SCSI ID number of the target device.
LUN The target LUN, or 0 if the device does not support logical

units.
SCSI Client Constants and Data Types 1-27

C H A P T E R 1

SCSI Family Reference
The SCSI Device Iterator Structure 1

SCSIIOIteratorData 1

The SCSI family defines the SCSIIOIteratorData data structure to describe a
device or LUN on a SCSI bus. For example, when you call the
SCSIBusGetDeviceData function (page 1-58), you provide a pointer to an array of
one or more SCSIIOIteratorData structures. You allocate memory for the array
and the function fills in a separate element in the array with information for
each device or LUN.

struct SCSIIOIteratorData {
IOCommonInfo deviceInfo;
DeviceIdent deviceID;
DeviceType deviceType;

};

Field descriptions
deviceInfo The iterator information common to all families. The

IOCommonInfo structure (to be provided) specifies a device
number that uniquely identifies a device within a family,
and a version number that identifies the version of the
plug-in’s iterator structure that is in use.

deviceID The device’s identification data. The DeviceIdent structure
(page 1-27) specifies a bus number, a target SCSI ID, and a
LUN number for a device. The default LUN number is 0,
indicating the device is treated as though it has one logical
unit.

deviceType The type of SCSI device. For a CD-ROM drive, for
example, the deviceType field is set to the value 'CD-ROM'. A
SCSI device type is defined as a character array
(page 1-29). The value stored in the SCSI device type field
is returned from the device itself.
1-28 SCSI Client Constants and Data Types

C H A P T E R 1

SCSI Family Reference
SCSI Device Type 1

SCSIDeviceType 1

The SCSI family defines the DeviceType data type to store a character value that
identifies a SCSI device.

typedef char DeviceType[kSCSIDeviceTypeSize];

For a CD-ROM drive, for example, the device type is specified by the value
'CD-ROM'. When you call the SCSIBusGetDeviceData function (page 1-58), it
returns the character device type in the deviceType field of the
SCSIIOIteratorData data structure.

The SCSI family defines an enumerated value, kSCSIDeviceTypeSize, to set the
length of the DeviceType character array. It also defines a value, kSCSIAllBus,
you can pass in the bus parameter to the SCSIBusGetDeviceData function to
specify that data should be returned for all devices on all available buses.

enum{
kSCSIDeviceTypeSize = 9, // number of characters for device type
kSCSIAllBus = 0xFF // search all buses

};

The SCSI-2 reference manual defines hex values for a number of SCSI device
types. When you call SCSIBusGetDeviceData, the SCSI family obtains the hex
value from the device and uses it to determine the character device type, based
on the values shown in the following table:

SCSI-2 hex device type SCSI family character device type

0x00 DASD

0x01 SASD

0x02 PRINTER

0x03 PROCESSOR

0x04 WORM

0x05 CD-ROM
SCSI Client Constants and Data Types 1-29

C H A P T E R 1

SCSI Family Reference
A device that wishes to specify a vendor-specific device type should return the
value 0x1F.

Note
Enhancements to the SCSI family’s device type handling
will be provided in a future software release. ◆

SCSI Client Functions 1

Opening and Closing a SCSI Connection 1

SCSIOpenConnection 1

Opens a connection to a SCSI device or a SCSI bus.

OSStatus SCSIOpenConnection (
RegEntryRef * regID,
ConnectionType type,
ConnectionID * connID);

0x06 SCANNER

0x07 OPTICAL

0x08 JUKEBOX

0x09 COMM

0x0A-0x0B ASC-IT8

0x0C-0x1E RESERVED

0x1F UNKNOWN

SCSI-2 hex device type SCSI family character device type
1-30 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
regID On input, a pointer to the Name Registry reference for the
target device or bus you want to open. When regID refers to a
device node in the Name Registry, the connection is opened as a
device connection. When regID refers to a bus node, it is opened
as a bus connection.

type The type of connection you are requesting, either shared or
reserved. For a bus connection, the connection type can only be
shared. “SCSI Connection Data Types,” beginning on page 1-11,
lists the defined connection constants.

connID A pointer to a connection ID (page 1-12). On output, the
function provides a new connection ID.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

DISCUSSION

You call SCSIOpenConnection to open a connection and obtain a connection ID
for a bus or device. You use the connection to obtain information or to make
I/O requests. You can pass the connection ID as a parameter to most SCSI
client functions.

The SCSIOpenConnection function compares the passed RegEntryRef to the
registry references it knows about to make sure the device is actually in the
family’s device tree.

You can obtain a registry reference by calling the SCSIBusGetDeviceData
function. The reference is returned as a field of the IOCommonInfo parameter.

IMPORTANT

When you open a device connection, you must call
SCSIExecIOSyncCmd (page 1-33) or SCSIExecIOAsyncCmd
(page 1-35) to send a request for that device to the SCSI
family. When you open a bus connection, you must call
SCSIExecIOControlSyncCmd (page 1-37) or
SCSIExecIOControlAsyncCmd (page 1-40) to make a request
for that bus. ▲

When you are finished using a connection, you call the SCSICloseConnection
function (page 1-32) to close the connection and release associated system
resources.
SCSI Client Functions 1-31

C H A P T E R 1

SCSI Family Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SCSICloseConnection 1

Closes a connection to the SCSI family.

OSStatus SCSICloseConnection (ConnectionID connID);

connID The connection ID to a SCSI bus or SCSI device connection you
want to close.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

DISCUSSION

You should always call SCSICloseConnection to close a connection when you
are done using it. Although a connection requires little overhead, leaving a
reserved device connection open effectively ties up the entire device,
preventing other clients from accessing it.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
1-32 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Performing I/O Operations 1

Before calling any SCSI family function to perform an I/O operation, a SCSI
family client can call SCSISetIOOptions (page 1-57) to set any required option
flags. When you call the SCSISetIOOptions function, you provide a
SCSIIOOptionsObject structure. In a future software release, clients will be able
to specify I/O options as part of the function interface for SCSI family
functions. Both the SCSISetIOOptions function and the SCSIIOOptionsObject
data structure will be eliminated.

SCSIExecIOSyncCmd 1

Initiates a synchronous I/O request to a SCSI device.

OSStatus SCSIExecIOSyncCmd (
ConnectionID connID,
SCSIDataObject dataObject,
SCSICDBObject cdbObject,
SCSIFlagsObject flagsObject,
SCSIExecIOResult *resultBuffer,
SCSIExecIOTag *ioTag);

connID The connection ID to a SCSI device. You get a connection ID
from the SCSIOpenConnection function (page 1-30). The
connection cannot be to a SCSI bus—to communicate with a
bus you use the SCSIExecIOControlSyncCmd (page 1-33).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
SCSI Client Functions 1-33

C H A P T E R 1

SCSI Family Reference
dataObject A SCSIDataObject structure (page 1-14) that you provide. It
specifies the type and length of the data you want to transfer,
and the location in memory to read from or write to.

cdbObject A SCSICDBObject structure (page 1-17) that you provide. It
specifies the length and memory location of your SCSI
command descriptor block.

flagsObject A SCSIFlagsObject structure (page 1-17) that you provide. It
specifies a variety of information about the I/O request.

resultBuffer A pointer to a SCSIExecIOResult structure (page 1-19). On
output, the structure contains information about the I/O
operation.

ioTag A pointer to an I/O tag (page 1-13). For an asynchronous
function such as SCSIExecIOAsyncCmd (page 1-35), the tag can be
used to abort or terminate the I/O operation. The tag is not
useful to SCSIExecIOSyncCmd, because by the time the
synchronous routine returns, the request has completed.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

DISCUSSION

When you call the SCSIExecIOSyncCmd function, the SCSI family forwards the
request to the appropriate plug-in, which is determined from the connection
ID. The plug-in performs all the actions necessary to fulfill the request,
including arbitrating for the bus, selecting the device, sending the command
descriptor block, retrieving or sending data, performing disconnect operations,
and so on. The parameters you provide must contain all the information
required by the plug-in to complete the SCSI request, including issuing a
REQUEST SENSE command if necessary.

A client that calls SCSIExecIOSyncCmd is blocked until the I/O operation has
completed. However, only the requesting client is blocked, and other SCSI
family clients can continue to make I/O requests.
1-34 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers. It can only be called with a connection ID for a SCSI device,
not with a connection ID for a SCSI bus.

SCSIExecIOAsyncCmd 1

Initiates an asynchronous I/O request to a SCSI device.

OSStatus SCSIExecIOAsyncCmd (
ConnectionID connID,
KernelNotification *kernelNot,
SCSIDataObject dataObject,
SCSICDBObject cdbObject,
SCSIFlagsObject flagsObject,
SCSIExecIOResult *resultBuffer,
SCSIExecIOTag *ioTag);

connID The connection ID to a SCSI device that you provide. You get a
connection ID by calling the SCSIOpenConnection function
(page 1-30). The connection cannot be to a SCSI bus.

kernelNot A pointer to a microkernel notification structure that specifies
how you want to be notified when this request completes. For
more information on the KernelNotification structure, see
“Microkernel Notification Services” in Inside Macintosh:
Microkernel and Core System Services (to be provided in a later
release of Mac OS 8 documentation).

dataObject A SCSIDataObject structure (page 1-14) that you provide. It
specifies the type and length of the data you want to transfer,
and the location in memory to read from or write to.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
SCSI Client Functions 1-35

C H A P T E R 1

SCSI Family Reference
cdbObject A SCSICDBObject structure (page 1-16) that you provide. It
specifies the length and memory location of your SCSI
command descriptor block.

flagsObject A SCSIFlagsObject structure (page 1-17) that you provide. It
specifies a variety of information about the I/O request.

resultBuffer A pointer to a SCSIExecIOResult structure (page 1-19). On an
error return, such as when the I/O request cannot be
successfully queued, the SCSIExecIOAsyncCmd function sets the
fields of this structure immediately. Otherwise, the fields are set
before you are notified of the I/O completion.

ioTag A pointer to an I/O tag (page 1-13). The SCSIExecIOAsyncCmd
function sets the tag to a value that uniquely identifies this I/O
request. You can use the tag value to abort (page 1-43) or
terminate (page 1-44) the I/O operation.

function result A result code. The value noErr indicates the request was
successfully queued. See “SCSI Family Result Codes”
(page 1-101) for a list of possible result codes.

Note
The constant noErr, which is defined to have the value 0, is
not of type OSStatus, but can be used for comparison with
SCSI family function results. In a future release, a constant
of type OSStatus will be supplied.

DISCUSSION

When you call the SCSIExecIOAsyncCmd function, the SCSI family forwards the
request to the appropriate plug-in, which is determined from the connection
ID. As with the SCSIExecIOSyncCmd function (page 1-33), the plug-in performs
all the actions necessary to fulfill the request, including arbitrating for the bus,
selecting the device, and so on. However, in this case the request is queued,
rather than handled immediately—the client task waits only for the function to
return, not for completion of the I/O request. The parameters you provide
must contain all the information required by the plug-in to complete the SCSI
request, including issuing a REQUEST SENSE command if necessary.

The SCSIExecIOAsyncCmd function returns the noErr result code to indicate that
the request was queued successfully. If the function returns an error, the
1-36 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
request was not queued, the notification mechanism is not invoked, and the
result of the SCSI transaction is returned in the scsiResult field of the result
buffer parameter (pointed to by resultBuffer).

You use the microkernel notification structure parameter (kernelNot) to specify
the mechanism to notify your task that an asynchronous I/O request has
completed:

■ A microkernel queue. A notification is placed in the queue when the request
completes. This is the preferred mechanism.

■ A software interrupt. It is delivered to a task when an I/O operation
completes execution.

■ An event group and flags to be set on completion of an I/O operation.

There is no implied ordering of asynchronous requests made to different
devices. An earlier request may be started later, and a later request may
complete earlier. However, a series of requests to the same device is issued to
that device in the order received, except when the scsiSIMQHead flag is set in the
scsiFlags field of the SCSIFlagsObject structure.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SCSIExecIOControlSyncCmd 1

Initiates a synchronous I/O request to a SCSI bus.

OSStatus SCSIExecIOControlSyncCmd (
ConnectionID connID,
SCSIDataObject dataObject,

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
SCSI Client Functions 1-37

C H A P T E R 1

SCSI Family Reference
DeviceIdent deviceID,
SCSICDBObject cdbObject,
SCSIFlagsObject flagsObject,
SCSIExecIOResult *resultBuffer,
SCSIExecIOTag *ioTag);

connID The connection ID to a SCSI bus. You get a connection ID from
the SCSIOpenConnection function (page 1-30). The connection
cannot be to a SCSI device.

dataObject A SCSIDataObject structure (page 1-14) that you provide. It
specifies the type and length of the data you want to transfer,
and the location in memory to read from or write to.

deviceID A device identification structure that specifies a bus number, a
target SCSI ID, and a LUN number. The addition of this
parameter is the only difference between the parameter lists of
the SCSIExecIOControlSyncCmd function and the
SCSIExecIOSyncCmd function. It is supplied as a temporary
mechanism for specifying a LUN, until logical unit probing is
added to the SCSI family. If you do not need to specify a LUN,
you do not need to use this parameter. For more information,
see the discussion for this function.

cdbObject A SCSICDBObject structure (page 1-16) that you provide. It
specifies the length and memory location of your SCSI
command descriptor block.

flagsObject A SCSIFlagsObject structure (page 1-17) that you provide. It
specifies a variety of information about the I/O request.

resultBuffer A pointer to a SCSIExecIOResult structure (page 1-19). On
output, the structure contains information about the I/O
operation.

ioTag A pointer to an I/O tag (page 1-13). For an asynchronous
function such as SCSIExecIOControlAsyncCmd (page 1-40), the tag
can be used to abort or terminate the I/O operation. The tag is
not useful to SCSIExecIOControlSyncCmd, because by the time the
synchronous routine returns, the request has completed.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.
1-38 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
DISCUSSION

When you call the SCSIExecIOControlSyncCmd function, the SCSI family
forwards the request to the appropriate plug-in. The plug-in performs all the
actions necessary to fulfill the request, including arbitrating for the bus,
selecting the device, sending the command descriptor block, retrieving or
sending data, performing disconnect operations, and so on. The parameters
you provide must contain all the information required by the plug-in to
complete the SCSI request, including issuing a REQUEST SENSE command if
necessary.

A client that calls SCSIExecIOControlSyncCmd is blocked until the I/O operation
has completed. However, only the requesting client is blocked—other SCSI
family clients can continue to make I/O requests.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers. It can only be called with a connection ID for a SCSI bus,
not with a connection ID for a SCSI device.

SPECIAL CONSIDERATIONS

At the present time, the SCSI family does not probe for logical units (LUNs). As
a result, no LUNs exist as targets in the Name Registry, and therefore you
cannot open a direct connection to a LUN by calling the SCSIOpenConnection
function. However, the SCSI family does currently provide access to LUNs
through the SCSIExecIOControlSyncCmd function and the
SCSIExecIOControlAsyncCmd function (page 1-40). (This feature will go away in a
later release when the SCSI family adds the capability to probe the bus for
LUNs.)

Suppose, for example, that a client knows that a multiple-disk CD-ROM player
has four LUNs, one for each available disk. The client can access the LUN by
performing the following steps:

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
SCSI Client Functions 1-39

C H A P T E R 1

SCSI Family Reference

■ Call the SCSIOpenConnection function (page 1-30) to open a connection to the
bus on which the device resides.

■ Call the SCSIExecIOControlSyncCmd function, setting the fields of the deviceID
parameter as follows

n set the diReserved field to 0
n set the bus field to the number of the bus
n set the targetID field to the ID of the CD-ROM player
n set the LUN field to the logical unit number of the desired CD-ROM disk (0

to 3)

Although the SCSIExecIOControlSyncCmd function and the
SCSIExecIOControlAsyncCmd function (page 1-40) currently provide access to
LUNs, that is only a temporary expedient. The intended purpose of these
functions is to help perform diagnostics and maintenance. For example, you
can use the SCSIExecIOControlSyncCmd function to perform a bus probe to
obtain certain information about each device on the bus without having to
make a connection to each device.

SCSIExecIOControlAsyncCmd 1

Initiates an asynchronous I/O request to a SCSI bus.

OSStatus SCSIExecIOControlAsyncCmd (
ConnectionID connID,
KernelNotification *kernelNot,
SCSIDataObject dataObject,
DeviceIdent deviceID,
SCSICDBObject cdbObject,
SCSIFlagsObject flagsObject,
SCSIExecIOResult *resultBuffer,
SCSIExecIOTag *ioTag);

connID The connection ID to a SCSI bus. You get a connection ID from
the SCSIOpenConnection function (page 1-30). The connection
cannot be to a SCSI device.
1-40 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
kernelNot A pointer to a microkernel notification structure that specifies
how you want to be notified when this request completes. For
more information on the KernelNotification structure, see
“Microkernel Notification Services” in Inside Macintosh:
Microkernel and Core System Services (to be provided in a later
release of Mac OS 8 documentation).

dataObject A SCSIDataObject structure (page 1-14) that you provide. It
specifies the type and length of the data you want to transfer,
and the location in memory to read from or write to.

deviceID A device identification structure that specifies a bus number, a
target SCSI ID, and a LUN number. This is the only parameter
used by the SCSIExecIOControlSyncCmd function that isn’t also
used by the SCSIExecIOSyncCmd function. It is supplied as a
temporary mechanism for specifying a LUN, until logical unit
probing is added to the SCSI family. If you do not need to
specify a LUN, you do not need to use this parameter. For more
information, see the function SCSIExecIOControlSyncCmd
(page 1-37).

cdbObject A SCSICDBObject structure (page 1-16) that you provide. It
specifies the length and memory location of your SCSI
command descriptor block.

flagsObject A SCSIFlagsObject structure (page 1-17) that you provide. It
specifies a variety of information about the I/O request.

resultBuffer A pointer to a SCSIExecIOResult structure (page 1-19). On an
error return, such as when the I/O request cannot be
successfully queued, the SCSIExecIOAsyncCmd function sets the
fields of this structure immediately. Otherwise, the fields are set
before you are notified of the I/O completion.

ioTag A pointer to an I/O tag (page 1-13). The
SCSIExecIOControlAsyncCmd function sets the tag to a value that
uniquely identifies this I/O request. A client can use the tag
value to abort (page 1-43) or terminate (page 1-44) the I/O
operation.

function result A result code. The value noErr indicates the request was
successfully queued. See “SCSI Family Result Codes”
(page 1-101) for a list of possible result codes.
SCSI Client Functions 1-41

C H A P T E R 1

SCSI Family Reference
DISCUSSION

When you call the SCSIExecIOControlAsyncCmd function, the SCSI family
forwards the request to the appropriate plug-in, which is determined from the
connection ID. As with the SCSIExecIOControlSyncCmd function (page 1-37), the
plug-in performs all the actions necessary to fulfill the request. However, in this
case the request is queued, rather than handled immediately—the client task
waits only for the function to return, not for completion of the I/O request. As
with SCSIExecIOControlSyncCmd, the parameters you provide must contain all
the information required by the plug-in to complete the SCSI request, including
issuing a REQUEST SENSE command if necessary.

The SCSIExecIOControlAsyncCmd function returns the noErr result code to
indicate that the request was queued successfully. If the function returns an
error, the request was not queued, the notification mechanism is not invoked,
and the result of the SCSI transaction is returned in the scsiResult field of the
result buffer parameter (pointed to by resultBuffer).

You use the microkernel notification structure parameter (kernelNot) to specify
the mechanism to notify your task that an asynchronous I/O request has
completed:

■ A microkernel queue. A notification is placed in the queue when the request
completes. This is the preferred mechanism.

■ A software interrupt. It is delivered to a task when an I/O operation
completes execution.

■ An event group and flags to be set on completion of an I/O operation.

There is no implied ordering of asynchronous requests made to different
devices. An earlier request may be started later, and a later request may
complete earlier. However, a series of requests to the same device is issued to
that device in the order received, except when the scsiSIMQHead flag is set in the
scsiFlags field of the SCSIFlagsObject structure.
1-42 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers. It can only be called with a connection ID for a SCSI bus,
not with a connection ID for a SCSI device.

Performing I/O Control Operations 1

SCSIAbortIOCmd 1

Cancels an existing, asynchronous I/O request.

OSStatus SCSIAbortIOCmd (
ConnectionID connID,
SCSIExecIOTag ioTag);

connID The connection ID to a SCSI bus or device. You get a connection
ID from the SCSIOpenConnection function (page 1-30).

ioTag The I/O tag (page 1-13) that identifies the I/O request to be
cancelled. You get the I/O tag by calling the SCSIExecIOAsyncCmd
function (page 1-35) or the SCSIExecIOControlAsyncCmd function
(page 1-40).

function result A result code. If the I/O request specified by the ioTag field is
successfully cancelled, the function returns the noErr result
code and the I/O request receives the scsiRequestAborted result
code. If the request has already completed, SCSIAbortIOCmd
returns scsiUnableToAbort.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
SCSI Client Functions 1-43

C H A P T E R 1

SCSI Family Reference
DISCUSSION

The SCSIAbortIOCmd function is a synchronous command that cancels the I/O
request identified by the ioTag field. Calling the SCSIAbortIOCmd function may
or may not succeed in cancelling the specified I/O request before it completes.
If the request has not yet been delivered to the device, the plug-in removes the
request from the queue of pending requests; the request’s notification
mechanism is invoked with a result code of scsiRequestAborted. If the request
has already been started, the plug-in attempts to send an ABORT message to the
device, either by asserting the /ATN signal or by reselecting the device. If the
request has already completed, SCSIAbortIOCmd returns scsiUnableToAbort.

IMPORTANT

When the SCSIAbortIOCmd function interrupts a data
transfer, it can cause data to be lost. Data that has already
been transferred may be incomplete or invalid. ▲

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SCSITerminateIOCmd 1

Cancels an existing asynchronous I/O request.

OSStatus SCSITerminateIOCmd (
ConnectionID connID,
SCSIExecIOTag ioTag);

connID The connection ID to a SCSI bus or device. You get a connection
ID from the SCSIOpenConnection function (page 1-30).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
1-44 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
ioTag The I/O tag (page 1-13) that identifies the I/O request to be
cancelled. You get an I/O tag from the SCSIExecIOAsyncCmd
function (page 1-35) or the SCSIExecIOControlAsyncCmd function
(page 1-40).

function result A result code. If the request specified by the ioTag field is
successfully cancelled, the function returns the noErr result
code and the I/O request receives the scsiTerminated result
code. If the request has already completed, SCSITerminateIOCmd
returns scsiUnableToTerminate.

DISCUSSION

The SCSITerminateIOCmd function is a synchronous command that cancels the
I/O request identified by the ioTag field. If the request has not yet been
delivered to the device, the plug-in removes it from the queue of pending
requests; the request’s notification mechanism is invoked with a result code of
scsiTerminated. If the request has already been started, the plug-in attempts to
send a TERMINATE IO PROCESS message to the device, either by asserting the
/ATN signal or by reselecting the device. If the request has already completed,
SCSITerminateIOCmd returns scsiUnableToTerminate.

The SCSITerminateIOCmd function differs from the SCSIAbortIOCmd function
(page 1-43) in the message it sends over the SCSI bus. TERMINATE IO PROCESS is
an optional SCSI-2 message that instructs the device to complete a request
normally although prematurely, while attempting to maintain media integrity.
For an abort command, the current request is halted immediately, if possible.

Calling the SCSITerminateIOCmd function may or may not succeed in
terminating the specified I/O request before it completes.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
SCSI Client Functions 1-45

C H A P T E R 1

SCSI Family Reference
SCSIReleaseQCmd 1

Releases a frozen queue for a device specified by a connection ID.

OSStatus SCSIReleaseQCmd (ConnectionID connID);

connID The connection ID to a SCSI device. You get a connection ID
from the SCSIOpenConnection function (page 1-30). The ID must
be for a device, not a bus, because the device queue is
independent from the bus.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

DISCUSSION

The SCSIReleaseQCmd function releases a frozen I/O queue for the device
associated with the connection ID you provide. If an I/O request returns with
the scsiSIMQFrozen flag set in the scsiResultFlags field of the SCSIExecIOResult
structure (page 1-18), you must call the SCSIReleaseQCmd function to restore
normal operation.

Note
In a future release, the setting of I/O flags will be
incorporated into the SCSIReleaseQCmd function. ◆

Queue freezing provides the opportunity to insert error-handling requests at
the beginning of the queue. When an I/O request returns an error, the plug-in
freezes the I/O queue for the device that caused the error. You can then issue
additional I/O requests with the scsiSIMQHead flag set so that the requests will
be inserted in front of any other requests already in the queue. You can use this
method to perform retries, block remapping, or other error recovery techniques.

After inserting your error handling requests in the queue, you call the
SCSIReleaseQCmd function to allow the request at the head of the queue to
be dispatched. If necessary, multiple requests can be single-stepped by setting
the scsiSIMQFreeze flag as well as the scsiSIMQHead flag on each of the requests
and following each with a call to SCSIReleaseQCmd.

Subsequent errors continue to freeze the queue, allowing you to step through
the queue one request at a time without aborting any other pending requests.
1-46 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
Note
You can disable queue freezing for a single transaction by
setting the scsiSIMQNoFreeze flag. ◆

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The SCSIReleaseQCmd function can not be called by hardware interrupt handlers
or secondary interrupt handlers. It can only be called with a connection ID for a
SCSI device, not with a connection ID for a SCSI bus.

SCSIClearQueue 1

Issues a CLEAR QUEUE command to the specified device.

OSStatus SCSIClearQueue (ConnectionID connID);

connID The connection ID to a SCSI device. You get a connection ID
from the SCSIOpenConnection function (page 1-30). The ID must
be for a device, not a bus, because the device queue is
independent from the bus itself.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

DISCUSSION

The SCSIClearQueue function directs the device to clear its I/O request queue.
Any operations on the queue are terminated. Any pending I/O requests are
terminated with the scsiRequestAborted result code.

For more information on working with I/O request queues, see
“SCSIReleaseQCmd,” beginning on page 1-46.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
SCSI Client Functions 1-47

C H A P T E R 1

SCSI Family Reference
Note
This function is not yet implemented (as of the release date
of this document).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The SCSIClearQueue function can not be called by hardware interrupt handlers
or secondary interrupt handlers. It can only be called with a connection ID for a
SCSI device, not with a connection ID for a SCSI bus.

SCSIBusResetSync 1

Resets a SCSI bus.

OSStatus SCSIBusResetSync (
ConnectionID connID,
OSStatus *resultBuffer);

connID The connection ID to a SCSI bus. You get a connection ID from
the SCSIOpenConnection function (page 1-30).

resultBuffer A pointer to an OSStatus variable. On output, the variable
contains information about the reset operation.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

DISCUSSION

The SCSIBusResetSync function directs the HBA to assert the SCSI bus reset
signal, causing all devices on the bus to clear pending I/O and forcing the bus
into the bus free phase. SCSIBusResetSync differs from the SCSIBusResetAsync

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
1-48 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
function (page 1-48), only in that it is synchronous, so that the calling client is
blocked pending completion.

Before the reset takes place, the SCSI family invokes the notification
mechanism for each request that was already sent to a device at the time
SCSIBusResetSync was called. The appropriate LUN queue is frozen for each
request that is pending at the time of the reset, unless the scsiSIMQNoFreeze flag
is set. (A client can set this flag by calling the SCSISetIOOptions function,
described in “SCSISetIOOptions,” beginning on page 1-57.) A client with a
pending request receives a result code of scsiSCSIBusReset.

Note
A bus reset may be generated by an external source, as
well as by a call to the SCSIDeviceResetSync function. ◆

The SCSIBusResetSync function interrupts SCSI communications and can cause
data loss. You should use this function only as a last resort to restore operation
in the event that a device refuses to release the bus. You can use the
SCSIDeviceResetSync function (page 1-51) or the SCSIDeviceResetAsync function
(page 1-53) to reset a single device when the SCSI bus is operational and the
device is still responding to selection.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The SCSIBusResetSync function can not be called by hardware interrupt
handlers or secondary interrupt handlers. It can only be called with a
connection ID for a SCSI bus, not with a connection ID for a SCSI device.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
SCSI Client Functions 1-49

C H A P T E R 1

SCSI Family Reference
SCSIBusResetAsync 1

Resets a SCSI bus.

OSStatus SCSIBusResetAsync (
ConnectionID connID,
KernelNotification *kernelNot,
OSStatus *resultBuffer);

connID The connection ID to a SCSI bus. You get a connection ID from
the SCSIOpenConnection function (page 1-30).

kernelNot A pointer to a microkernel notification structure that specifies
how you want to be notified when this request completes. For
more information on the KernelNotification structure, see
“Microkernel Notification Services” in Inside Macintosh:
Microkernel and Core System Services (to be provided in a later
release of Mac OS 8 documentation).

resultBuffer A pointer to a OSStatus variable. On an error return, the
SCSIBusResetAsync function sets this variable immediately.
Otherwise, the variable is set before the client’s notification
mechanism is invoked.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

DISCUSSION

The SCSIBusResetAsync function directs the HBA to assert the SCSI bus reset
signal, causing all devices on the bus to clear pending I/O and forcing the bus
into the bus free phase. SCSIBusResetAsync differs from the SCSIBusResetSync
function (page 1-48), only in that it is asynchronous, so that the calling client is
not blocked pending completion.

Before the reset takes place, the SCSI family invokes the notification
mechanism for each request that was already sent to a device at the time
SCSIBusResetAsync was called. The appropriate LUN queue is frozen for each
request that is pending at the time of the reset, unless the scsiSIMQNoFreeze flag
is set. (A client can set this flag by calling the SCSISetIOOptions function,
described in “SCSISetIOOptions,” beginning on page 1-57.) A client with a
pending request receives a result code of scsiSCSIBusReset.
1-50 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
Note
A bus reset may be generated by an external source, as
well as by a call to the SCSIDeviceResetSync function. ◆

The SCSIBusResetAsync function interrupts SCSI communications and can cause
data loss. You should use this function only as a last resort to restore operation
in the event that a device refuses to release the bus. You can use the
SCSIDeviceResetSync function (page 1-51) or the SCSIDeviceResetAsync function
(page 1-53) to reset a single device when the SCSI bus is operational and the
device is still responding to selection.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The SCSIBusResetAsync function can not be called by hardware interrupt
handlers or secondary interrupt handlers. It can only be called with a
connection ID for a SCSI bus, not with a connection ID for a SCSI device.

SCSIDeviceResetSync 1

Resets a device on a SCSI bus.

OSStatus SCSIDeviceResetSync (
ConnectionID connID,
OSStatus *resultBuffer);

connID The connection ID to a SCSI device. You get a connection ID
from the SCSIOpenConnection function (page 1-30).

resultBuffer A pointer to an OSStatus variable. On output, the variable
contains information about the reset operation.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
SCSI Client Functions 1-51

C H A P T E R 1

SCSI Family Reference
DISCUSSION

The SCSIDeviceResetSync function attempts to send a BUS DEVICE RESET
message to the target. If the device is currently on the bus, the plug-in asserts
the /ATN signal and sends the message at the next message-out phase. If the
target is not on the bus, the plug-in selects it and sends an IDENTIFY message
followed by a BUS DEVICE RESET message. Unlike most other SCSI commands,
the BUS DEVICE RESET message is issued even if the device queue is already
frozen.

The SCSIDeviceResetSync function freezes the queue for all LUNs of the target
device, unless the scsiSIMQNoFreeze flag is set. (A client can set this flag by
calling the SCSISetIOOptions function, described in “SCSISetIOOptions,”
beginning on page 1-57.) Any disconnected requests (requests sent but not yet
completed) and any requests in the pending queue are terminated with the
scsiBDRSent result code.

This function may result in data loss and should be used only to restore
operation in the event that a device fails to respond to other messages.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The SCSIDeviceResetSync function can not be called by hardware interrupt
handlers or secondary interrupt handlers. It can only be called with a
connection ID for a SCSI device, not with a connection ID for a SCSI bus.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
1-52 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
SCSIDeviceResetAsync 1

Resets a device on a SCSI bus.

OSStatus SCSIDeviceResetAsync (
ConnectionID connID,
KernelNotification *kernelNot,
OSStatus *resultBuffer);

connID The connection ID to a SCSI device. You get a connection ID
from the SCSIOpenConnection function (page 1-30).

kernelNot A pointer to a microkernel notification structure that specifies
how you want to be notified when this request completes. For
more information on the KernelNotification structure, see
“Microkernel Notification Services” in Inside Macintosh:
Microkernel and Core System Services (to be provided in a later
release of Mac OS 8 documentation).

resultBuffer A pointer to a OSStatus variable. On an error return, the
SCSIDeviceResetAsync function sets this variable immediately.
Otherwise, the variable is set before the client’s notification
mechanism is invoked.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

DISCUSSION

The SCSIDeviceResetAsync function attempts to send a BUS DEVICE RESET
message to the target. If the device is currently on the bus, the plug-in asserts
the /ATN signal and sends the message at the next message-out phase. If the
target is not on the bus, the plug-in selects it and sends an IDENTIFY message
followed by a BUS DEVICE RESET message. Unlike most other SCSI commands,
the BUS DEVICE RESET message is issued even if the device queue is already
frozen.

The SCSIDeviceResetAsync function freezes the queue for all LUNs of the target
device, unless the scsiSIMQNoFreeze flag is set. (A client can set this flag by
calling the SCSISetIOOptions function, described in “SCSISetIOOptions,”
beginning on page 1-57.) Any disconnected requests (requests sent but not yet
SCSI Client Functions 1-53

C H A P T E R 1

SCSI Family Reference
completed) and any requests in the pending queue are terminated with the
scsiBDRSent result code.

This function may result in data loss and should be used only to restore
operation in the event that a device fails to respond to other messages.

SCSIDeviceResetAsync differs from the SCSIDeviceResetSync function
(page 1-51), only in that it is asynchronous, so that the calling client is not
blocked pending completion.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The SCSIDeviceResetAsync function can not be called by hardware interrupt
handlers or secondary interrupt handlers. It can only be called with a
connection ID for a SCSI device, not with a connection ID for a SCSI bus.

Setting SCSI Options 1

SCSISetHandshake 1

Sets up handshaking instructions globally for a device.

OSStatus SCSISetHandshake (
ConnectionID connID,
SCSIHandshakeObject handshake);

connID The connection ID to a SCSI bus or device. You get a connection
ID from the SCSIOpenConnection function (page 1-30).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
1-54 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
handshake An array of UInt16 (2-byte) hand-shaking values (page 1-21),
terminated with the value 0. The array values are set by the
calling client.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

DISCUSSION

When you call the SCSISetHandshake function, you provide a
SCSIHandshakeObject structure to specify handshaking instructions for blind
transfers between a plug-in and a device. You store the handshaking
instructions in an array of UInt16 (2-byte) values and terminate the array with 0.

Note
In a later release, you will be able to set up handshaking
instructions for each I/O request. ◆

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SCSISetTimeout 1

Sets up the time-out parameter for an I/O request.

OSStatus SCSISetTimeout (
ConnectionID connID,
Duration scsiTimeout,
UInt16 scsiSelectTimeout);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
SCSI Client Functions 1-55

C H A P T E R 1

SCSI Family Reference
connID The connection ID to a SCSI bus or device. You get a connection
ID from the SCSIOpenConnection function (page 1-30).

scsiTimeout The length of time the plug-in should allow before reporting a
command timeout of the SCSI bus. You provide the time value
in milliseconds. A value of 0 tells the SCSI family to use the
default timeout value. For more information, see the
description of scsiTimeout in “SCSI I/O Parameter Block,”
beginning on page 1-82.

scsiSelectTimeout
The length of time the plug-in should allow before reporting a
selection timeout of the SCSI bus. You provide the time value in
milliseconds. A value of 0 tells the SCSI family to use the
default timeout value. For more information, see the
description of scsiSelectTimeout in “SCSI I/O Parameter
Block,” beginning on page 1-82.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

DISCUSSION

After opening a connection to a SCSI bus, you call the SCSISetTimeout function
to set command and selection timeout values for operations performed on that
bus. If you do not set timeout values, the SCSI family uses the default values
specified by the SCSI standard.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
1-56 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
SCSISetIOOptions 1

Sets option flags for an I/O request.

Note
When you call the SCSISetIOOptions function, you provide
a SCSIIOOptionsObject structure (page 1-22). The
SCSISetIOOptions function is currently used to set option
flags globally before calling SCSI family client functions
such as SCSIExecIOSyncCmd (page 1-33). In a future software
release, clients will be able to specify I/O options as part of
the function interface for SCSI family functions. Both the
SCSISetIOOptions function and the SCSIIOOptionsObject
data structure will be eliminated.

OSStatus SCSISetIOOptions (
ConnectionID connID,
SCSIIOOptionsObject ioOptions);

connID The connection ID to a SCSI bus or device. You get a connection
ID from the SCSIOpenConnection function (page 1-30).

ioOptions Structure for setting two kinds of SCSI flags (page 1-22). You set
flags in the scsiFlags field to indicate the transfer direction and
any special handling required for this request. (See “SCSI
Flags,” beginning on page 1-66, for flag descriptions.) You set
flags in the scsiIOFlags field to provide additional information
describing the data transfer. (See “SCSI I/O Flags,” beginning
on page 1-70, for flag descriptions.)

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

DISCUSSION

This function is currently used only to set option flags globally before calling
the SCSIReleaseQCmd function (page 1-46).
SCSI Client Functions 1-57

C H A P T E R 1

SCSI Family Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Obtaining Device and Bus Information 1

SCSIBusGetDeviceData 1

Provides information about the devices attached to a specified SCSI bus.

OSStatus SCSIBusGetDeviceData (
UInt8 *bus,
UInt32 reqCount,
UInt32 *actCount,
SCSIIOIteratorData *list);

bus A pointer to an unsigned 8-bit integer that specifies a bus
number (such as 0 or 1). You set this field before calling
SCSIBusGetDeviceData. If you set the value to kSCSIAllBus
(page 1-29), the SCSIBusGetDeviceData function sets the bus field
to the number of SCSI buses and the actCount field to the total
number of devices found on all the buses.

reqCount A 32-bit unsigned integer that specifies the number of items for
which you have allocated memory. Each item is a
SCSIIOIteratorData structure. The first item is pointed to by the
data iterator list parameter.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
1-58 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
actCount A pointer to an unsigned 32-bit integer. The function sets the
actCount field to the number of devices it found attached to the
specified bus. If you set the value of the bus field to kSCSIAllBus,
the SCSIBusGetDeviceData function sets the actCount field to the
total number of devices found on all SCSI buses.

list A pointer to an array of one or more contiguous
SCSIIOIteratorData structures (page 1-28), each of which
describes one device on the specified bus.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

DISCUSSION

The SCSIBusGetDeviceData function returns the actual number of devices
(including the initiator) it found on the specified bus (or on all buses, if you set
the bus field to the value kSCSIAllBus) in the actCount field. Before you call
SCSIBusGetDeviceData, you allocate memory for a list of SCSIIOIteratorData
structures and set the reqCount field to the number of items you have allocated.
If you don’t allocate enough memory for the number of devices on the bus,
SCSIBusGetDeviceData will fill in information just for the number you allocate.

You can take one of several approaches for deciding how much memory to
allocate for the device list:

■ Allocate enough memory for the highest possible number of devices that can
reside on the specified bus. If the actual number of devices returned is
smaller (as it will be in most cases), you can deallocate the unused memory.

This may be practical in the case where at most 8 or 16 devices are present.
However, if the devices include LUNs and if you ask for all devices on all
buses (which could include network devices), the highest possible number
could theoretically be in the thousands, requiring a large initial allocation.

■ Allocate enough memory for a reasonable number of devices (say 8 or 16).
Since the allocation in this case is relatively small, you may choose not to
deallocate unused memory. Always check the actCount field—if the actual
count exceeds the number of structures you allocated memory for, increase
your memory allocation to match the actual number of devices and call the
SCSIBusGetDeviceData function a second time.

■ Allocate no memory. Set the reqCount field to 0 and call
SCSIBusGetDeviceData once to determine the number of devices. Allocate
SCSI Client Functions 1-59

C H A P T E R 1

SCSI Family Reference
enough memory for that number of devices and call SCSIBusGetDeviceData a
second time to get the device data.

You can then use information from the list of SCSIIOIteratorData structures to
open a connection to any of the devices found on the bus.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SCSIBusInquiryCmd 1

Retrieves configuration and capability information about a plug-in and its HBA.

OSStatus SCSIBusInquiryCmd (
ConnectionID connID,
SCSIBusInfo *resultBuffer);

connID The connection ID to a SCSI bus or device. You get a connection
ID from the SCSIOpenConnection function (page 1-30).

resultBuffer A pointer to a SCSIBusInfo structure (page 1-23). The plug-in
that handles the inquiry sets the fields of the structure.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

DISCUSSION

You can use this function to determine precisely what optional features a
particular plug-in supports, such as synchronous mode or wide transfer mode.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
1-60 SCSI Client Functions

C H A P T E R 1

SCSI Family Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Plug-in Constants and Data Types 1

A plug-in can support one or more data types for transferring data. When you
call the SCSIBusInquiryCmd function (page 1-60), the plug-in returns the data
types it supports in the scsiDataTypes field of the SCSIBusInfo parameter
(resultBuffer). For more information, see “SCSI Data Type,” beginning on
page 1-14.

Plug-in Control Block Structure 1

PluginControlBlock 1

After a plug-in is loaded into memory and prepared for execution, the SCSI
family calls its initialization function, MySCSIPluginInitFunc (page 1-98),
passing a pointer to a PluginControlBlock structure to exchange initialization
information with the plug-in. The SCSI family defines the PluginControlBlock
data type as follows:

struct PluginControlBlock {
UInt16 ioPBSize; /* <- size of SCSI_IO_PBs required by plug-in */
UInt16 oldCallCapable; /* Not used */
UInt16 busID; /* <- bus number for the registered bus */
UInt8 simSlotNumber; /* <- reserved */

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Plug-in Constants and Data Types 1-61

C H A P T E R 1

SCSI Family Reference
UInt8 simSRsrcID; /* <- reserved */
Ptr simRegEntry; /* -> The SIM's RegEntryIDPtr */
UInt32 maxTargetID; /* <- max Target ID of this bus */
UInt32 initiatorID; /* <- comes from the NVRAM */
UInt32 scsiTimeout; /* <- bus time out period */
UInt32 scsiFlagsSupported; /* <- scsiFlags supported by this plug-in */
SInt16 scsiSelectTimeout; /* <- selection time out period */
UInt16 scsiIOFlagsSupported; /* <- scsiIOFlags supported by this plug-in */
UInt32 scsiDataTypes; /* <- scsiDataType supported by this plug-in */

};

Field descriptions
ioPBSize The minimum size, in bytes, of the SCSI parameter block

required by this plug-in. The plug-in returns this value.
oldCallCapable Not used.
busID The bus number of the SCSI bus controlled by this plug-in.

The SCSI family generates the ID and sets this field. A bus
number remains valid from system startup until either the
system is shut down or the plug-in is removed. The
plug-in returns this value.

simSlotNumber Reserved.
simSRsrcID Reserved.
simRegEntry A pointer, supplied by the family, to a RegEntryRef data

structure describing the bus. The plug-in needs the data
supplied by this field. For information on how the family
acquires the pointer, see “Driver and Family Matching”.

maxTargetID Maximum Target ID of this bus.
initiatorID The SCSI ID of the HBA managed by this plug-in. A

plug-in obtains the ID from NVRAM and returns it.
scsiTimeout Bus time out period.
scsiFlagsSupported SCSI flags supported by this plug-in (page 1-66).
scsiSelectTimeout Selection time out period.
scsiIOFlagsSupported

SCSI I/O flags (page 1-70) supported by this plug-in.
scsiDataTypes SCSI data types (page 1-14) supported by this plug-in.
1-62 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
Plug-in-Defined Function Types 1

SCSIPluginInitEntry 1

After a plug-in is instantiated, the SCSI family calls the initialization function
provided by the plug-in. The plug-in then prepares itself to handle requests.

A plug-in uses the SCSIPluginDispatchTable structure (page 1-64) to export a
pointer to its initialization function (and other functions). The function pointer
is defined by the SCSI family as follows:

typedef OSStatus (*SCSIPluginInitEntry)(PluginControlBlock *pcb);

For information about creating your own initialization function, see the
description of the MySCSIPluginInitFunc function (page 1-98). For more
information on the PluginControlBlock structure, see “PluginControlBlock,”
beginning on page 1-61.

SCSIPluginActionEntry 1

When a SCSI client makes an I/O request by calling a connection-based
function, the SCSI family passes the request to a plug-in by calling the action
function provided by the plug-in. The plug-in then processes the request.

A plug-in uses the SCSIPluginDispatchTable structure (page 1-64) to export a
pointer to its action function (and other functions). The function pointer is
defined by the SCSI family as follows:

typedef void (*SCSIPluginActionEntry)(SCSI_PB *scsiPB);

For information about creating your own action function, see the description of
the MySCSIPluginActionFunc function (page 1-99). For more information on the
SCSI_PB structure, see “SCSI I/O Parameter Block,” beginning on page 1-82.
Plug-in Constants and Data Types 1-63

C H A P T E R 1

SCSI Family Reference
SCSIPluginHandleBusEventEntry 1

The SCSI family calls a plug-in’s bus event function to notify the plug-in that a
bus event has occurred. The plug-in then processes the request.

A plug-in uses the SCSIPluginDispatchTable structure (page 1-64) to export a
pointer to its bus event function (and other functions). The function pointer is
defined by the SCSI family as follows:

typedef void (*SCSIPluginHandleBusEventEntry)(void *busEvent);

For information about creating your own bus event function, see the
description of the MySCSIPluginHandleBusEventFunc function (page 1-100).

Plug-in Dispatch Table 1

SCSIPluginDispatchTable 1

Each SCSI family plug-in must export a dispatch table to make specific
functions available to the family. The SCSI family dispatch table contains
references to the plug-in’s action function (page 1-99), its handle bus event
function (page 1-100), and its initialization function (page 1-98).

The plug-in also uses the dispatch table to specify version information so that
the family can verify its ability to work with the plug-in.

The SCSI family calls the Driver and Family Matching (DFM) Software to load
each plug-in. Subsequently, the DFM returns a pointer to the dispatch table. For
more information on the DFM, see “Driver and Family Matching” to be
provided.

The SCSI family defines the SCSIPluginDispatchTable data type for plug-in
dispatch tables.

struct SCSIPluginDispatchTable
{

SCSIPluginInfo header;
SCSIPluginActionEntry scsiPluginAction;
1-64 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
SCSIPluginHandleBusEventEntry scsiPluginHandleBusEvent;
SCSIPluginInitEntry scsiPluginInit;

};

Field descriptions
header Version information for the plug-in. A plug-in includes the

SCSI family header file and uses the kSCSIPluginVersion
constant from that file for its version number. The SCSI
family can then check the version number to verify that it
can work with the plug-in.

scsiPluginAction Address of plug-in action routine (page 1-99).
scsiPluginHandleBusEvent

Address of plug-in routine to handle bus events
(page 1-100).

scsiPluginInit Address of plug-in initialization routine (page 1-98).

The SCSI family defines the SCSIPluginInfo structure to supply version
information for a SCSI plug-in.

struct SCSIPluginInfo
{

UInt32 version;
UInt32 reserved1;
UInt32 reserved2;
UInt32 reserved3;

};

Field descriptions
version Version information for the plug-in.
reserved1 Reserved.
reserved2 Reserved.
reserved3 Reserved.
The SCSI family defines the kSCSIPluginVersion enumerated type to specify a
plug-in version number.

enum
{

kSCSIPluginVersion = 0x02019600 /* date and version */
};
Plug-in Constants and Data Types 1-65

C H A P T E R 1

SCSI Family Reference
SCSI Flags 1

The SCSI family defines enumerated values for setting flag bits to provide
information for a data transfer request. The SCSI flags specify a variety of
information about the request. You set the flags in the scsiFlags field of the
SCSIFlagsObject parameter (page 1-17) when calling the SCSIExecIOSyncCmd
function (page 1-33), the SCSIExecIOAsyncCmd function (page 1-35), the
SCSIExecIOControlSyncCmd function (page 1-37), or the
SCSIExecIOControlAsyncCmd function (page 1-40).

You can determine which SCSI flags a plug-in supports by calling the
SCSIBusInquiryCmd function (page 1-60) and checking the bits in the
scsiFlagsSupported field.

enum {
scsiDirectionMask = 0xC0000000, /* data direction mask */
scsiDirectionNone = 0xC0000000, /* no data transfer */
scsiDirectionReserved = 0x00000000, /* reserved */
scsiDirectionOut = 0x80000000, /* data out */
scsiDirectionIn = 0x40000000, /* data in */
scsiDisableAutosense = 0x20000000, /* disable autosense feature */
scsiFlagReservedA = 0x10000000, /* reserved */
scsiFlagReserved0 = 0x08000000, /* reserved */
scsiCDBLinked = 0x04000000, /* not supported */
scsiQEnable = 0x02000000, /* target queue actions are enabled */
scsiCDBIsPointer = 0x01000000, /* CDB field contains a pointer */
scsiFlagReserved1 = 0x00800000, /* reserved */
scsiInitiateSyncData = 0x00400000, /* attempt Sync data xfer and SDTR */
scsiDisableSyncData = 0x00200000, /* disable sync, go to async */
scsiSIMQHead = 0x00100000, /* place PB at the head of SIM Q */
scsiSIMQFreeze = 0x00080000, /* return the SIM Q to frozen state */
scsiSIMQNoFreeze = 0x00040000, /* disallow SIM Q freezing */
scsiDoDisconnect = 0x00020000, /* definitely do disconnect */
scsiDontDisconnect = 0x00010000, /* definitely don't disconnect */
scsiDataReadyForDMA = 0x00008000, /* data buffer(s) are ready for DMA */
scsiFlagReserved3 = 0x00004000, /* reserved */
scsiDataPhysical = 0x00002000, /* SG/buffer data ptrs are physical */
scsiSensePhysical = 0x00001000, /* autosense buffer ptr is physical */
scsiFlagReserved5 = 0x00000800, /* reserved */
scsiFlagReserved6 = 0x00000400, /* reserved */
1-66 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
scsiFlagReserved7 = 0x00000200, /* reserved */
scsiFlagReserved8 = 0x00000100 /* reserved */

};

The descriptions define the meaning of setting specific bits.

Flag descriptions

scsiDirectionMask Data direction mask.
scsiDirectionNone No data transfer associated with this request.
scsiDirectionOut A write request. The data transfer direction is from the

CPU to the device.
scsiDirectionIn A read request. The data transfer direction is from the

device to the CPU.
scsiDisableAutosense

Disable the autosense feature (whereby the plug-in
automatically sends a REQUEST SENSE command in
response to a CHECK CONDITION status from the
device).

scsiCDBLinked Not supported. Do not use this flag.
scsiQEnable Enable target queue actions (command queuing). This

option may not be supported by all plug-ins. For more
information on queueing of I/O requests, see
“SCSIExecIOAsyncCmd,” beginning on page 1-35 and
“SCSIExecIOControlAsyncCmd,” beginning on page 1-40

scsiCDBIsPointer The scsiCDB field of the SCSIExecIOPB parameter block
(page 1-82) contains a pointer to a command descriptor
block. If the bit is not set, the scsiCDB field contains the
actual command descriptor block. In either case, the
scsiCDBLength field contains the number of bytes in the
command descriptor block.
The SCSI family connection-based interface never sets this
bit because the family interface never uses a pointer.

scsiInitiateSyncData
The plug-in should attempt to initiate a synchronous data
transfer by sending the SDTR message. If successful, the
device normally remains in the synchronous transfer mode
until it is reset or until you specify asynchronous mode by
setting the scsiDisableSyncData flag. Because SDTR
negotiation occurs every time this flag is set, you should
Plug-in Constants and Data Types 1-67

C H A P T E R 1

SCSI Family Reference
set it only when negotiation is actually needed. Not all
plug-ins (or buses) support this capability.

scsiDisableSyncData
Disable synchronous data transfer. The plug-in sends an
SDTR message with a REQ/ACK offset of 0 to indicate
asynchronous data transfer mode. You should set this flag
only when negotiation is actually needed. Not all plug-ins
(or buses) support this capability.

scsiSIMQHead Place the parameter block at the head of the plug-in queue.
This can be used to insert error handling at the head of a
frozen queue.

scsiSIMQFreeze Freeze the plug-in queue after completing this transaction.
See “SCSIReleaseQCmd,” beginning on page 1-46 for
information about using this flag.

scsiSIMQNoFreeze Disable plug-in queue freezing for this transaction.
scsiDoDisconnect Explicitly allow the device to disconnect.
scsiDontDisconnect Explicitly prohibit device disconnection. If this flag and the

scsiDoDisconnect flag are both 0, the plug-in determines
whether to allow or prohibit disconnection, based on
performance criteria.

scsiDataReadyForDMA
Data buffer is locked and non-cacheable. This option may
not be supported by all plug-ins.

scsiDataPhysical Data buffer address is physical. This option may not be
supported by all plug-ins.

scsiSensePhysical Autosense data pointer is physical. This option may not be
supported by all plug-ins.

SCSI Function Codes 1

For compatibility with SCSI Manager 4.3, the SCSI family defines enumerated
values for specifying SCSI operations. As indicated below, many of these
values are no longer supported by the SCSI family. For more information on
these values, see “SCSI Manager 4.3” in Inside Macintosh: Devices.

enum {
SCSINop = 0x00, /* do nothing */
SCSIExecIO = 0x01, /* execute the specified IO */
1-68 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
SCSIBusInquiry = 0x03, /* get parameters for entire path of HBAs */
SCSIReleaseQ = 0x04, /* release frozen SIM queue for particular LUN */
SCSIAbortCommand = 0x10, /* abort the selected Control Block */
SCSIResetBus = 0x11, /* reset the SCSI bus */
SCSIResetDevice = 0x12, /* reset the SCSI device */
SCSITerminateIO = 0x13, /* terminate any pending IO */
SCSIGetVirtualIDInfo = 0x80, /* find out which bus old ID is on */
SCSILoadDriver = 0x82, /* not supported */
SCSIOldCall = 0x84, /* not supported */
SCSICreateRefNumXref = 0x85, /* not supported */
SCSILookupRefNumXref = 0x86, /* not supported */
SCSIRemoveRefNumXref = 0x87, /* not supported */
SCSIRegisterWithNewXPT = 0x88, /* not supported */
vendorUnique = 0xC0 /* 0xC0 thru 0xFF */

};

Constant descriptions

SCSINop Null request. Provided for compatibility with the ANSI
Common Access Method specification and as a debugging
aid. For more information, refer to the SCSI-2 Common
access method transport and SCSI interface module
specification.

SCSIExecIO Execute a SCSI I/O transaction.
SCSIBusInquiry Bus inquiry.
SCSIReleaseQ Release a frozen plug-in queue.
SCSIAbortCommand Abort a SCSI command.
SCSIResetBus Reset the SCSI bus.
SCSIResetDevice Reset a SCSI device.
SCSITerminateIO Terminate an I/O transaction.
SCSIGetVirtualIDInfo

Return the device identification structure of a virtual SCSI
ID.

SCSILoadDriver Not supported.
SCSIOldCall Not supported.
SCSICreateRefNumXref

Not supported.
SCSILookupRefNumXref

Not supported.
Plug-in Constants and Data Types 1-69

C H A P T E R 1

SCSI Family Reference
SCSIRemoveRefNumXref
Not supported.

SCSIRegisterWithNewXPT
Not supported.

vendorUnique Requests in this range (0xC0 through 0xFF) are currently
reserved.

Transfer Types 1

When you call the SCSIExecIOSyncCmd function (page 1-33), the
SCSIExecIOAsyncCmd function (page 1-35), the SCSIExecIOControlSyncCmd
function (page 1-37), or the SCSIExecIOControlAsyncCmd function (page 1-40),
you specify a transfer type in the scsiTransferType field of the SCSIFlagsObject
parameter (page 1-17).

Two transfer types are defined. A third-party plug-in can define additional
transfer types.

enum {
scsiTransferBlind = 0,
scsiTransferPolled

};

Enumerator descriptions

scsiTransferBlind Use DMA, if available; otherwise, perform a blind transfer.
For a blind transfer, you must have previously supplied
handshaking information by calling the SCSISetHandshake
function (page 1-54). You specify the handshake data in the
SCSIHandshakeObject (page 1-21) parameter passed to
SCSISetHandshake.

scsiTransferPolled
Use polled transfer mode. The scsiHandshake field is not
required for this mode.

SCSI I/O Flags 1

When you call the SCSIExecIOSyncCmd function (page 1-33), the
SCSIExecIOAsyncCmd function (page 1-35), the SCSIExecIOControlSyncCmd
1-70 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
function (page 1-37), or the SCSIExecIOControlAsyncCmd function (page 1-40),
you can instruct a plug-in to handle the transfer in specific ways by setting bits
in the scsiIOFlags field of the SCSIFlagsObject parameter (page 1-17). SCSI I/O
flags specify hardware-dependent features. The following constants are defined.

enum { /* values for the scsiIOFlags field */
scsiNoParityCheck = 0x0002, /* disable parity checking */
scsiDisableSelectWAtn = 0x0004, /* disable select w/Atn */
scsiSavePtrOnDisconnect = 0x0008, /* SaveDataPointer on disconnect */
scsiNoBucketIn = 0x0010, /* don’t bit-bucket on input */
scsiNoBucketOut = 0x0020, /* don’t bit-bucket on output */
scsiDisableWide = 0x0040, /* disable wide negotiation */
scsiInitiateWide = 0x0080, /* initiate wide negotiation */
scsiRenegotiateSense = 0x0100, /* renegotiate sync/wide */
scsiIOFlagReserved0080 = 0x0080, /* reserved */
scsiIOFlagReserved8000 = 0x8000 /* reserved */

};

Enumerator descriptions

scsiNoParityCheck Disable parity error detection for this transaction.
scsiDisableSelectWAtn

Do not send the IDENTIFY message for LUN selection. The
LUN is still required in the scsiDevice field so that the
request can be placed in the proper queue. The LUN field
in the CDB is untouched. The purpose is to provide
compatibility with older devices that do not support this
aspect of the SCSI-2 specification.

scsiSavePtrOnDisconnect
Perform a SAVE DATA POINTER operation automatically in
response to a DISCONNECT message from the target. The
purpose of this flag is to provide compatibility with
devices that do not properly implement this aspect of the
SCSI-2 specification.

scsiNoBucketIn Prohibit bit-bucketing during the data-in phase of the
transaction. Bit-bucketing is the practice of throwing away
excess data bytes when a target tries to supply more data
than the initiator expects. For example, if the CDB requests
more data than you specified in the scsiDataLength field,
the plug-in normally throws away the excess and the
functions returns the scsiDataRunError result code. If this
Plug-in Constants and Data Types 1-71

C H A P T E R 1

SCSI Family Reference
flag is set, the plug-in refuses any extra data, terminates
the I/O request, and leaves the bus in the data-in phase.
You must reset the bus to restore operation. This flag is
intended only for debugging purposes. It may not be
supported by all plug-ins.

scsiNoBucketOut Prohibit bit-bucketing during the data-out phase of the
transaction. If a target requests more data than you
specified in the scsiDataLength field, the plug-in normally
sends an arbitrary number of meaningless bytes (0xEE)
until the target releases the bus. If this flag is set, the
plug-in terminates the I/O request when the last byte is
sent and leaves the bus in the data-out phase. You must
reset the bus to restore operation. This flag is intended
only for debugging purposes. It may not be supported by
all plug-ins.

scsiDisableWide Disable wide data transfer negotiation for this transaction
if it had been previously enabled. This option may not be
supported by all plug-ins.

scsiInitiateWide Attempt wide data transfer negotiation for this transaction
if it is not already enabled. This option may not be
supported by all plug-ins.

scsiRenegotiateSense
Attempt to renegotiate synchronous or wide transfers
before issuing a REQUEST SENSE. This is necessary when the
error was caused by problems operating in synchronous or
wide transfer mode. It is optional because some devices
flush sense data after performing negotiation.

Feature Flags 1

The SCSIBusInquiryCmd function (page 1-60) returns information about a
plug-in/HBA in the scsiFeatureFlags field of its SCSIBusInfo parameter
(page 1-23). You can test for specific features using the following bit masks.

enum {
scsiBusInternalExternalMask = 0x000000C0, /* bus internal/external mask */
scsiBusInternalExternalUnknown = 0x00000000, /* unknown if bus inside/outside */
scsiBusInternalExternal = 0x000000C0, /* bus goes inside and outside */
scsiBusInternal = 0x00000080, /* bus goes inside the box */
1-72 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
scsiBusExternal = 0x00000040, /* bus goes outside the box */
scsiBusCacheCoherentDMA = 0x00000020, /* DMA is cache coherent */
scsiBusOldCallCapable = 0x00000010, /* not supported */
scsiBusDifferential = 0x00000004, /* single-ended or differential */
scsiBusFastSCSI = 0x00000002, /* HBA supports fast SCSI */
scsiBusDMAavailable = 0x00000001 /* DMA is available */

};

Enumerator descriptions

scsiBusInternalExternalUnknown
The internal/external state of the bus is unknown.

scsiBusInternalExternal
The bus is both internal and external.

scsiBusInternal The bus is at least partly internal to the computer.
scsiBusExternal The bus extends outside of the computer.
scsiBusCacheCoherentDMA

DMA is cache coherent.
scsiBusOldCallCapable

Not supported (obsolete). A plug-in never sets this bit. If a
client attempts to call an original SCSI Manager function,
the function returns an error.

scsiBusDifferential
The bus uses a differential SCSI interface. If the bit is clear,
the bus uses a single-ended SCSI interface.

scsiBusFastSCSI The bus supports SCSI-2 fast data transfers.
scsiBusDMAavailable

DMA is available.

More Feature Flags 1

The SCSIBusInquiryCmd function (page 1-60) returns information about
additional HBA features by setting fields of its SCSIBusInfo parameter
(page 1-23), including bits in the scsiHBAInquiry field. You can test for these
features using the following bit masks.

enum {
scsiBusMDP = 0x80, /* supports Modify Data Pointer message */
scsiBusWide32 = 0x40, /* supports 32 bit wide SCSI */
Plug-in Constants and Data Types 1-73

C H A P T E R 1

SCSI Family Reference
scsiBusWide16 = 0x20, /* supports 16 bit wide SCSI */
scsiBusSDTR = 0x10, /* supports Sync Data Transfer Req message */
scsiBusLinkedCDB = 0x08, /* not supported */
scsiBusTagQ = 0x02, /* supports tag queue message */
scsiBusSoftReset = 0x01 /* supports soft reset */

};

Enumerator descriptions

scsiBusMDP Supports the MODIFY DATA POINTER message.
scsiBusWide32 Supports 32-bit wide transfers.
scsiBusWide16 Supports 16-bit wide transfers.
scsiBusSDTR Supports synchronous transfers.
scsiBusLinkedCDB Not supported (obsolete). A plug-in never sets this bit.
scsiBusTagQ Supports tagged queuing.
scsiBusSoftReset Supports soft reset.

Unusual Features Flags 1

The SCSIBusInquiryCmd function (page 1-60) returns information about unusual
hardware-dependent configuration features of a plug-in and its HBA in the
scsiWeirdStuff field of its SCSIBusInfo parameter. These flags give a plug-in a
way to tell a client that the plug-in cannot handle certain conditions. If so, it is
the obligation of the client not to cause those conditions to occur.

You can test for these features using the following bit masks.

enum {
scsiOddDisconnectUnsafeRead1 = 0x0001,
scsiOddDisconnectUnsafeWrite1 = 0x0002,
scsiBusErrorsUnsafe = 0x0004,
scsiRequiresHandshake = 0x0008,
scsiTargetDrivenSDTRSafe = 0x0010,
scsiOddCountForPhysicalUnsafe = 0x0020
scsiAbortCmdFixed = 0x0040

};
1-74 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
Enumerator descriptions

scsiOddDisconnectUnsafeRead1
Indicates that a disconnect or other phase change on an
odd byte boundary during a read operation results in
inaccurate residual counts or data loss. If your device can
disconnect on odd bytes, use polled transfers instead of
blind. Note that some devices can only handle a transfer
that starts on an address that is a multiple of 8—any other
start address is considered odd.

scsiOddDisconnectUnsafeWrite1
Indicates that a disconnect or other phase change on a odd
byte boundary during a write operation results in
inaccurate residual counts or data loss. If your device can
disconnect on odd bytes, use polled transfers instead of
blind. Note that some devices can only handle a transfer
that starts on an address that is a multiple of 8—any other
start address is considered odd.

scsiBusErrorsUnsafe
Indicates that a delay of more than 16 microseconds or a
phase change during a blind transfer on a non-handshaked
boundary may cause a system crash. If you cannot predict
where delays or disconnects will occur, use polled
transfers.

scsiRequiresHandshake
Indicates that a delay of more than 16 microseconds or a
phase change during a blind transfer on a non-handshaked
boundary may result in inaccurate residual counts or data
loss. If you cannot predict where delays or disconnects will
occur, use polled transfers.

scsiTargetDrivenSDTRSafe
Indicates that the plug-in supports target-initiated
synchronous data transfer negotiation. If your device
supports this feature and this bit is not set, you must set
the scsiDisableSelectWAtn flag in the scsiIOFlags field in
the SCSIExecIOPB parameter block (page 1-82).

scsiOddCountForPhysicalUnsafe
Indicates that if you are using physical addresses, all
counts must be even, and disconnects must occur on even
byte boundaries. Because of the virtual memory system in
Plug-in Constants and Data Types 1-75

C H A P T E R 1

SCSI Family Reference
Mac OS 8, this error car rarely occur, and the use of this
flag may eventually be discontinued.

scsiAbortCmdFixed Set if abort command is fixed to properly make callbacks

Slot Types 1

In the scsiHBAslotType field of its SCSIBusInfo parameter, the
SCSIBusInquiryCmd function (page 1-60) returns the type of physical location for
a plug-in’s HBA. The following constants define types of physical location.

enum {
scsiMotherboardBus = 0x00, /* built-in SCSI bus */
scsiNuBus = 0x01, /* a NuBus card */
scsiPDSBus = 0x03, /* a PDS card */
scsiPCIBus = 0x04, /* a PCI bus card */
scsiPCMCIABus = 0x05, /* a PCMCIA card */
scsiFireWireBridgeBus = 0x06 /* connected through

Firewire bridge */
};

Constant descriptions

scsiMotherboardBus HBA is on a built-in SCSI bus.
scsiNuBus HBA is on an expansion card in a NuBus slot.
scsiPDSBus HBA is on an expansion card in a processor-direct slot.
scsiPCIBus HBA is on an expansion card in a PCI slot.
scsiPCMCIABus HBA is on an expansion card in a PC Card slot.
scsiFireWireBridgeBus

HBA is connected through a Firewire bridge.

Scan Types 1

When you call the SCSIBusInquiryCmd function (page 1-60), you provide a
pointer to a SCSIBusInfo structure (page 1-23). The SCSIBusInfo structure
contains a scsiScanFlags field, as does the SCSIBusInquiryPB structure
(page 1-87).
1-76 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
Note
The fields of the SCSIBusInfo structure are set by whoever
does the scanning. The SCSI family currently performs the
scan, but in a future software release, the plug-in will
perform the scan. ◆

The SCSI family defines the following enumerated constants to test for values
in the scsiScanFlags field.

enum
{

 scsiBusScansDevices = 0x80, /* bus scans for and maintains device list */
 scsiBusScansOnInit = 0x40, /* bus scans performed at power-up/reboot */
 scsiBusLoadsROMDrivers = 0x20 /* may load ROM drivers to support targets */

};

Enumerator descriptions

scsiBusScansDevices
bus scans for and maintains device list

scsiBusScansOnInit
bus scan performed at power-up/reboot

scsiBusLoadsROMDrivers
bus may load ROM drivers to support targets

Data Length Constants 1

The following constants define the length of certain fields in SCSI data
structures.

enum {
handshakeDataLength = 8, /* Handshake data length */
maxCDBLength = 16, /* Space for the CDB bytes/pointer */
vendorIDLength = 16 /* ASCII string len for Vendor ID */

};

Constant descriptions

handshakeDataLength
The number of UInt16 (2-byte) elements in the
scsiHandshake field in the SCSIExecIOPB parameter block
Plug-in Constants and Data Types 1-77

C H A P T E R 1

SCSI Family Reference
(page 1-82) or the scsiHandshake field of the
SCSIHandshakeObject structure.

maxCDBLength The size, in bytes, of the cdbBytes field in the CDB union
structure (page 1-78).

vendorIDLength The size, in bytes, of the scsiSIMVendor, scsiHBAVendor,
scsiControllerFamily, and scsiControllerType fields in the
SCSIBusInquiryPB parameter block (page 1-87) and the
SCSIBusInfo structure (page 1-23).

Command Descriptor Block Structure 1

CDB 1

You use the command descriptor block structure to pass SCSI commands to the
SCSIExecIOSyncCmd function (page 1-33), the SCSIExecIOAsyncCmd function
(page 1-35), the SCSIExecIOControlSyncCmd function (page 1-37), or the
SCSIExecIOControlAsyncCmd function (page 1-40).

The command descriptor block structure is defined by the CDB data type. The
value maxCDBLength is described in “Data Length Constants,” beginning on
page 1-77.

union CDB
{

UInt8 *cdbPtr;
UInt8 cdbBytes[maxCDBLength];

};
typedef CDB *CDBPtr;

Field descriptions
cdbPtr A pointer to a buffer containing a command descriptor

block.

cdbBytes A buffer in which you place one command descriptor
block.
1-78 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
Scatter/Gather List Structure 1

SGRecord 1

You use scatter/gather lists to specify the data buffers to be used for a transfer.
A scatter/gather list consists of one or more elements, each of which describes
the location and size of one buffer.

When you want to transfer data to or from a SCSI device using the
SCSIExecIOSyncCmd function (page 1-33), the SCSIExecIOAsyncCmd function
(page 1-35), the SCSIExecIOControlSyncCmd function (page 1-37), or the
SCSIExecIOControlAsyncCmd function (page 1-40), you provide a pointer to a
SCSIDataObject structure (page 1-14). The scsiDataPtr field in the
SCSIDataObject structure may point to a scatter/gather list.

The scatter/gather list element is defined by the SGRecord data type.

struct SGRecord
{

Ptr SGAddr;
SInt32 SGCount;

};
typedef struct SGRecord SGRecord;

Field descriptions
SGAddr A pointer to a data buffer.

SGCount The size of the data buffer, in bytes.
Plug-in Constants and Data Types 1-79

C H A P T E R 1

SCSI Family Reference
SCSI Parameter Block Header 1

SCSIHdr 1

When a client calls a SCSI family function such as SCSIExecIOSyncCmd
(page 1-33) or SCSIExecIOAsyncCmd (page 1-35), the SCSI family server uses
information passed in the function parameters to build a parameter block
structure for use by the appropriate SCSI family plug-in. A SCSI family client is
shielded from the workings of the parameter block—only developers of
plug-ins need to know about the structure of a parameter block.

The parameter block structures used are nearly identical to those supported by
SCSI Manager 4.3, although a few fields have been changed or are no longer
supported. (For information on specific fields, see the reference sections for
individual parameter block structures.) The SCSI family and plug-ins ignore
any parameter block fields that are no longer used.

Macros such as SCSIPBHdr and SCSI_IO have been replaced by similarly named
structures. The structures define fields identical to those in the original macros.

The parameter block structures used by the SCSI family consist of a common
header (SCSIHdr) followed by function-specific fields, if any. This section
describes the parameter block header common to all SCSI parameter block
structures.

The SCSI parameter block header is defined by the SCSIHdr data type.

struct SCSIHdr
SCSIHdr *qLink;
short scsiReserved1;
UInt16 scsiPBLength;
UInt8 scsiFunctionCode;
UInt8 scsiReserved2;
OSErr scsiResult;
DeviceIdent scsiDevice;
SCSICallbackUPP scsiCompletion;
UInt32 scsiFlags;
BytePtr *scsiDriverStorage;
1-80 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
Ptr scsiXPTprivate;
long scsiReserved3;

};

Field descriptions
qLink A pointer to the next entry in the request queue. This field

is used internally by the plug-in.
scsiReserved1 Reserved for use of plug-in.
scsiPBLength The size of the parameter block, in bytes, including the

parameter block header. The plug-in uses this value to
verify that the parameter block has the correct length.

scsiFunctionCode A function code that specifies the requested service. “SCSI
Function Codes,” beginning on page 1-68, lists these codes.

scsiReserved2 Reserved for use of plug-in
scsiResult Set to the final result when the parameter block is returned

to the SCSI family. “SCSI Family Result Codes,” beginning
on page 1-101, lists all result codes specific to the SCSI
family.

scsiDevice A 4-byte value that uniquely identifies the target device for
a request. The DeviceIdent data type (page 1-27) designates
the bus number, target SCSI ID, and LUN.

scsiCompletion A pointer to a completion routine.
scsiFlags Flags that indicate the transfer direction and any special

handling required for an I/O request. See “SCSI Flags,”
beginning on page 1-66 for flag descriptions.

scsiDriverStorage Reserved for driver or client use. For example, a client may
use this field to store a pointer to its private storage.

scsiXPTprivate Reserved for use by family.
scsiReserved3 Reserved for use by plug-in.
Plug-in Constants and Data Types 1-81

C H A P T E R 1

SCSI Family Reference
SCSI Parameter Block 1

SCSI_PB 1

The SCSI parameter block is defined by the SCSI_PB data type. Its fields are
identical to those of the SCSIHdr data type (page 1-80).

struct SCSIAbortCommandPB {
SCSIHdr * qLink; /* (internal use, must be nil on entry) */
short scsiReserved1; /* -> reserved for input */
UInt16 scsiPBLength; /* -> Length of the entire PB*/
UInt8 scsiFunctionCode; /* -> function selector */
UInt8 scsiReserved2; /* <- reserved for output */
OSErr scsiResult; /* <- Returned result */
DeviceIdent scsiDevice; /* -> Device Identifier (bus+target+lun) */
SCSICallbackUPP scsiCompletion; /* -> Callback on completion function */
UInt32 scsiFlags; /* -> assorted flags */
BytePtr scsiDriverStorage; /* <> Ptr for driver private use */
Ptr scsiXPTprivate; /* private field for use in XPT */
long scsiReserved3; /* reserved */

};

SCSI I/O Parameter Block 1

SCSI_IO 1

The SCSI I/O parameter block is defined by the SCSI_IO data type.

struct SCSI_IO {
struct SCSIHdr *qLink;
short scsiReserved1;
UInt16 scsiPBLength;
UInt8 scsiFunctionCode;
1-82 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
UInt8 scsiReserved2;
OSErr scsiResult;
DeviceIdent scsiDevice;
SCSICallbackUPP scsiCompletion;
UInt32 scsiFlags;
UInt8 *scsiDriverStorage;
Ptr scsiXPTprivate;
long scsiReserved3;

UInt16 scsiResultFlags;
UInt16 scsiReserved3pt5;
UInt8 *scsiDataPtr;
SInt32 scsiDataLength;
UInt8 *scsiSensePtr;
SInt8 scsiSenseLength;
UInt8 scsiCDBLength;
UInt16 scsiSGListCount;
UInt32 scsiReserved4;
UInt8 scsiSCSIstatus;
SInt8 scsiSenseResidual;
UInt16 scsiReserved5;
long scsiDataResidual;
CDB scsiCDB;
long scsiTimeout;
UInt8 *scsiReserved5pt5;
UInt16 scsiReserved5pt6;
UInt16 scsiIOFlags;
UInt8 scsiTagAction;
UInt8 scsiReserved6;
UInt16 scsiReserved7;
UInt16 scsiSelectTimeout;
UInt8 scsiDataType;
UInt8 scsiTransferType;
UInt32 scsiReserved8;
UInt32 scsiReserved9;
UInt16 scsiHandshake[handshakeDataLength];
UInt32 scsiReserved10;
UInt32 scsiReserved11;
struct SCSI_IO *scsiCommandLink;
UInt8 scsiSIMpublics[8];
UInt8 scsiAppleReserved6[8];
Plug-in Constants and Data Types 1-83

C H A P T E R 1

SCSI Family Reference
UInt16 scsiCurrentPhase;
short scsiSelector;
OSErr scsiOldCallResult;
UInt8 scsiSCSImessage;
UInt8 XPTprivateFlags;
UInt8 XPTextras[12];

};

typedef SCSI_IO SCSIExecIOPB;

Field descriptions
qLink A pointer to the next entry in the request queue. This field

is used internally by the plug-in.
scsiReserved1 Reserved for input.
scsiPBLength The size of the parameter block, in bytes, including the

parameter block header. The plug-in uses this value to
verify that the parameter block has the correct length.

scsiFunctionCode A function code that specifies the requested service. “SCSI
Function Codes,” beginning on page 1-68, lists these codes.

scsiReserved2 Reserved for output.
scsiResult Set to the final result when the parameter block is returned

to the SCSI family. “SCSI Family Result Codes,” beginning
on page 1-101, lists all result codes specific to the SCSI
family.

scsiDevice A 4-byte value that uniquely identifies the target device for
a request. The DeviceIdent data type (page 1-27) designates
the bus number, target SCSI ID, and LUN.

scsiCompletion A pointer to a completion routine.
scsiFlags Flags that indicate the transfer direction and any special

handling required for an I/O request. See “SCSI Flags,”
beginning on page 1-66 for flag descriptions.

scsiDriverStorage Reserved for plug-in use. For example, a plug-in may use
this field to store a pointer to its private storage.

scsiXPTprivate Reserved.
scsiReserved3 Reserved.
scsiResultFlags Flags set by the plug-in when certain conditions apply;

otherwise the plug-in sets this field to 0. The flags modify
the value in the scsiResult field. See “SCSI Family Result
1-84 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
Codes,” beginning on page 1-101, for a list of all result
codes specific to the SCSI family.

scsiReserved3pt5 Reserved for use of plug-in.
scsiDataPtr A pointer to a data buffer, scatter/gather list, or I/O table

that you provide. You specify the data type in the
scsiDataType field.

scsiDataLength The amount of data you want to transfer, in bytes.
scsiSensePtr A pointer to the autosense data buffer that you provide. If

autosense is enabled, the plug-in returns REQUEST SENSE
information in this buffer. (Autosense is enabled when you
do not set the scsiDisableAutosense flag in the scsiFlags
field of the parameter block header).

scsiSenseLength The size of your autosense data buffer, in bytes.
scsiCDBLength The length of your SCSI command descriptor block, in

bytes.
scsiSGListCount The number of elements in your scatter/gather list.
scsiReserved4 Reserved for use of plug-in.
scsiSCSIstatus The status returned by the SCSI device. See “Data Length

Constants” (page 1-77) for a list of values that a SCSI
device can return.

scsiSenseResidual The automatic REQUEST SENSE residual length (that is, the
number of bytes that were expected but not transferred).
This number is negative if extra bytes had to be transferred
to force the target off of the bus. The plug-in sets this field.

scsiReserved5 Reserved for use of plug-in.
scsiDataResidual The data transfer residual length (that is, the number of

bytes that were expected but not transferred). This number
is negative if extra bytes had to be transferred to force the
target off the bus. The plug-in sets this field.

scsiCDB An actual CDB or a pointer to a CDB. You provide one or
the other depending on how you set the scsiCDBIsPointer
flag in the scsiFlags field in the parameter block header.

scsiTimeout The length of time the plug-in should allow before
reporting a timeout of the SCSI bus. You provide the time
value in Time Manager format (positive values for
milliseconds, negative values for microseconds). The timer
is started when the I/O request is sent to the target. If the
Plug-in Constants and Data Types 1-85

C H A P T E R 1

SCSI Family Reference
request does not complete within the specified time, the
plug-in attempts to issue an ABORT message, either by
reselecting the device or by asserting the attention (/ATN)
signal. A value of 0 specifies the default timeout for the
plug-in. The default timeout for the Apple-provided
plug-in is infinite (that is, no timeout).

scsiReserved5pt5 Reserved for use of plug-in.
scsiReserved5pt6 Reserved for use of plug-in.
scsiIOFlags Additional I/O flags you use to describe the data transfer.

See “SCSI I/O Flags” (page 1-70) for flag descriptions.
scsiTagAction Must be filled in by family if scsiQEnable flag is set. Used

with tagged queueing.
scsiReserved6 Reserved for use of plug-in.
scsiReserved7 Reserved for use of plug-in.
scsiSelectTimeout An optional SELECT timeout value, in milliseconds, that

you can provide (see “SCSISetTimeout,” beginning on
page 1-55). The default is 250 ms, as specified by SCSI-2.
The accuracy of this period is dependent on the HBA. A
value of 0 specifies the default timeout. Some plug-ins
ignore this parameter and always use a value of 250 ms.

scsiDataType The data type pointed to by the scsiDataPtr field. You
specify the type using one of the constants described in
“SCSI Data Type,” beginning on page 1-14.

scsiTransferType The type of transfer—blind or polled—to use during the
data phase. You specify the type using one of the constants
described in “Transfer Types,” beginning on page 1-70.

scsiReserved8 Reserved for use of plug-in.
scsiReserved9 Reserved for use of plug-in.
scsiHandshake Handshaking instructions for blind transfers. You provide

an array of 2-bytes values, terminated by 0. The plug-in
polls for data ready after transferring the amount of data
specified in each successive scsiHandshake entry. When it
encounters a 0 value, the plug-in starts over at the
beginning of the list. Handshaking always starts from the
beginning of the list every time a device transitions to data
phase. For more information, see “SCSIHandshakeObject,”
beginning on page 1-21, “SCSISetHandshake,” beginning
1-86 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
on page 1-54, and “Data Length Constants,” beginning on
page 1-77.

scsiReserved10 Reserved for use of plug-in.
scsiReserved11 Reserved for use of plug-in.
scsiCommandLink Not supported.
scsiSIMpublics An additional input field available for use by plug-in

developers.
scsiCurrentPhase Reserved for use of plug-in.
scsiSelector Reserved for use of plug-in.
scsiOldCallResult Reserved for use of plug-in.
scsiSCSIMessage Reserved for use of plug-in.
XPTprivateFlags Reserved for use of SCSI family.
XPTextras[12] Reserved for use of SCSI family.

SCSI Bus Inquiry Parameter Block 1

SCSIBusInquiryPB 1

The SCSI bus inquiry parameter block is defined by the SCSIBusInquiryPB data
type.

struct SCSIBusInquiryPB
{

SCSIHdr * qLink; /* (internal use, must be nil on entry) */
short scsiReserved1; /* -> reserved for input */
UInt16 scsiPBLength; /* -> Length of the entire PB*/
UInt8 scsiFunctionCode; /* -> function selector */
UInt8 scsiReserved2; /* <- reserved for output */
OSErr scsiResult; /* <- Returned result */
DeviceIdent scsiDevice; /* -> Device Identifier (bus+target+lun) */
SCSICallbackUPP scsiCompletion; /* -> Callback on completion function */
UInt32 scsiFlags; /* -> assorted flags */
BytePtr scsiDriverStorage; /* <> Ptr for driver private use */
Ptr scsiXPTprivate; /* private field for use in XPT */
Plug-in Constants and Data Types 1-87

C H A P T E R 1

SCSI Family Reference
long scsiReserved3; /* reserved */

UInt16 scsiEngineCount; /* <- Number of engines on HBA */
UInt16 scsiMaxTransferType; /* <- Number of transfer types for this HBA */
UInt32 scsiDataTypes; /* <- which data types this plug-in supports */
UInt16 scsiIOpbSize; /* <- Size of SCSI_IO PB for this SIM/HBA */
UInt16 scsiMaxIOpbSize; /* <- Size of max SCSI_IO PB for all SIM/HBAs */
UInt32 scsiFeatureFlags; /* <- Supported features flags field */
UInt8 scsiVersionNumber; /* <- Version number for the plug-in/HBA */
UInt8 scsiHBAInquiry; /* <- Mimic of INQ byte 7 for the HBA */
UInt8 scsiTargetModeFlags; /* <- Flags for target mode support */
UInt8 scsiScanFlags; /* <- Scan related feature flags */
UInt32 scsiSIMPrivatesPtr; /* <- Ptr to plug-in private data area */
UInt32 scsiSIMPrivatesSize; /* <- Size of plug-in private data area */
UInt32 scsiAsyncFlags; /* <- Event cap. for Async Callback */

UInt8 scsiHiBusID; /* <- Highest path ID in the subsystem */
UInt8 scsiInitiatorID; /* <- ID of the HBA on the SCSI bus */
UInt16 scsiBIReserved0; /* Reserved. */
UInt32 scsiBIReserved1; /* Reserved. */
UInt32 scsiFlagsSupported; /* <- which scsiFlags are supported */
UInt16 scsiIOFlagsSupported; /* <- which scsiIOFlags are supported */
UInt16 scsiWeirdStuff;
UInt16 scsiMaxTarget; /* <- maximum Target number supported */
UInt16 scsiMaxLUN; /* <- maximum Logical Unit number supported */
char scsiSIMVendor[vendorIDLength];

/* <- Vendor ID of plug-in (or XPT if bus<FF) */
char scsiHBAVendor[vendorIDLength];

/* <- Vendor ID of the HBA */
char scsiControllerFamily[vendorIDLength];

/* <- Family of SCSI Controller */
char scsiControllerType[vendorIDLength];

/* <- Specific Model of SCSI Controller used */
char scsiXPTversion[4]; /* <- version number of XPT */
char scsiSIMversion[4]; /* <- version number of plug-in */
char scsiHBAversion[4]; /* <- version number of HBA */

UInt8 scsiHBAslotType; /* <- type of "slot" that this HBA is in */
UInt8 scsiHBAslotNumber; /* <- slot number of this HBA */
UInt16 scsiSIMsRsrcID; /* <- resource ID of this plug-in */
1-88 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
UInt16 scsiBIReserved3; /* Reserved. */
UInt16 scsiAdditionalLength; /* <- additional BusInquiry PB len */

};

Field descriptions
qLink A pointer to the next entry in the request queue. This field

is used internally by the plug-in. The qLink pointer points
to a SCSIHdr structure, a common header structure
included in all SCSI family parameter block structures
(page 1-82).

scsiReserved1 Reserved for input.
scsiPBLength The size of the parameter block, in bytes, including the

parameter block header. The plug-in uses this value to
verify that the parameter block has the correct length. (The
SCSIBusInquiryCmd function (page 1-60) returns the
minimum size in the scsiIOpbSize field of its parameter
block.)

scsiFunctionCode A function code that specifies the requested service. “SCSI
Function Codes,” beginning on page 1-68, lists these codes.

scsiReserved2 Reserved for output.
scsiResult Set to the final result when the parameter block is returned

to the SCSI family. “SCSI Family Result Codes,” beginning
on page 1-101, lists all result codes specific to the SCSI
family.

scsiDevice A 4-byte value that uniquely identifies the target device for
a request. The DeviceIdent data type (page 1-27) designates
the bus number, target SCSI ID, and LUN.

scsiCompletion A pointer to a completion routine.
scsiFlags Flags that indicate the transfer direction and any special

handling required for an I/O request. See “SCSI Flags,”
beginning on page 1-66 for flag descriptions.

scsiDriverStorage Reserved for plug-in use. For example, a plug-in may use
this field to store a pointer to its private storage.

scsiXPTprivate Reserved.
scsiReserved3 Reserved.
scsiEngineCount The number of engines on the HBA. This value is 0 for a

built-in SCSI bus. See the ANSI Common Access Method
specification for information about HBA engines.
Plug-in Constants and Data Types 1-89

C H A P T E R 1

SCSI Family Reference
scsiMaxTransferType
The number of transfer types supported by the plug-in. A
plug-in supports all transfer types that are specified by a
constant value equal to or less than the value it returns
here. For example, if a plug-in returns the
scsiTransferPolled constant here, it means that the plug-in
supports both the blind and polled transfer types.
See“Transfer Types,” beginning on page 1-70 for a
description of the defined types.

scsiDataTypes A bit mask specifying the data types supported by the
plug-in/HBA. See “A plug-in can support one or more data
types for transferring data. When you call the
SCSIBusInquiryCmd function (page 1-60), the plug-in
returns the data types it supports in the scsiDataTypes
field of the SCSIBusInfo parameter (resultBuffer). For more
information, see “SCSI Data Type,” beginning on
page 1-14.,” beginning on page 1-61 for more information.

scsiIOpbSize The minimum size of a SCSI I/O parameter block for this
plug-in.

scsiMaxIOpbSize The maximum size of a SCSI I/O parameter block for all
currently registered plug-ins. In other words, the largest
parameter block size currently registered.

scsiFeatureFlags Flags that describe various physical characteristics of the
SCSI bus. See “Feature Flags” (page 1-72) for flag definitions.

scsiVersionNumber The version number of the plug-in/HBA.
scsiHBAInquiry Flags describing the capabilities of the bus. See “More

Feature Flags” (page 1-73) for flag definitions.
scsiTargetModeFlags

Reserved.
scsiScanFlags On input, scan related feature flags (page 1-72).
scsiSIMPrivatesPtr

A pointer to the plug-in’s private storage.
scsiSIMPrivatesSize

The size of the plug-in’s private storage, in bytes.
scsiAsyncFlags Reserved.
scsiHiBusID The highest bus number currently registered in the Name

Registry. The SCSI family provides this value. If no buses
are registered, it sets this field to 0xFF.
1-90 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
scsiInitiatorID The SCSI ID of the HBA. This value is 7 for a built-in SCSI
bus.

scsiBIReserved0 Reserved.
scsiBIReserved1 Reserved.
scsiFlagsSupported

A bit mask that defines which scsiFlags bits the plug-in
supports.

scsiIOFlagsSupported
A bit mask that defines which scsiIOFlags bits the plug-in
supports.

scsiWeirdStuff Flags that identify unusual aspects of a plug-in’s
operation. See “Unusual Features Flags,” beginning on
page 1-74, for flag definitions.

scsiMaxTarget The highest SCSI bus ID supported by the HBA. For a
standard SCSI-II HBA, the value is 7; for an HBA that
supports wide transfer, the value is 15.

scsiMaxLUN The highest logical unit number supported by the HBA.
scsiSIMVendor A null-terminated ASCII text string that identifies the

plug-in vendor. On Macintosh computers, for example, the
function returns 'Apple Computer \0' for a built-in SCSI
bus.

scsiHBAVendor A null-terminated ASCII text string that identifies the HBA
vendor. On Macintosh computers, for example, the
function returns 'Apple Computer \0' for a built-in SCSI
bus.

scsiControllerFamily
An optional null-terminated ASCII text string that
identifies the family of parts to which the SCSI controller
chip belongs. This information is provided at the
discretion of the HBA vendor.

scsiControllerType
An optional null-terminated ASCII text string that
identifies the specific type of SCSI controller chip. This
information is provided at the discretion of the HBA
vendor.

scsiXPTversion Not used.
scsiSIMversion A 4-byte NumVersion data structure that identifies the

version number of the plug-in. (Formerly an ASCII text
Plug-in Constants and Data Types 1-91

C H A P T E R 1

SCSI Family Reference
string. For data stored in the old style, the first byte will be
a printable ASCII character.)

scsiHBAversion A 4-byte NumVersion data structure that identifies the
version number of the HBA. (Formerly an ASCII text
string. For data stored in the old style, the first byte will be
a printable ASCII character.)

scsiHBAslotType The slot type, if any, used by this HBA. Slot types are
defined in “Slot Types” (page 1-76).

scsiHBAslotNumber Reserved.
scsiSIMsRsrcID Reserved.
scsiBIReserved3 Reserved.
scsiAdditionalLength

The additional size of this parameter block, in bytes. If the
parameter block includes extra fields to return additional
information, this field contains the number of additional
bytes.

SCSI Abort Command Parameter Block 1

SCSIAbortCommandPB 1

The abort command parameter block is defined by the SCSIAbortCommandPB data
type. Except for the scsiIOptr field, its fields are identical to those of the
SCSIHdr data type (page 1-80).

struct SCSIAbortCommandPB {
SCSIHdr * qLink; /* (internal use, must be nil on entry) */
short scsiReserved1; /* -> reserved for input */
UInt16 scsiPBLength; /* -> Length of the entire PB*/
UInt8 scsiFunctionCode; /* -> function selector */
UInt8 scsiReserved2; /* <- reserved for output */
OSErr scsiResult; /* <- Returned result */
DeviceIdent scsiDevice; /* -> Device Identifier (bus+target+lun) */
SCSICallbackUPP scsiCompletion; /* -> Callback on completion function */
UInt32 scsiFlags; /* -> assorted flags */
1-92 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
BytePtr scsiDriverStorage; /* <> Ptr for driver private use */
Ptr scsiXPTprivate; /* private field for use in XPT */
long scsiReserved3; /* reserved */
SCSI_IO scsiIOptr; /* Pointer to PB for request to abort */

};

Field descriptions
scsiIOptr A pointer to a parameter block for the I/O command to be

aborted.

Terminate I/O Parameter Block 1

SCSITerminateIOPB 1

The terminate command parameter block is defined by the SCSITerminateIOPB
data type. Its fields are identical to those of the SCSIAbortCommandPB data type
(page 1-92).

struct SCSITerminateIOPB {
SCSIHdr * qLink; /* (internal use, must be nil on entry) */
short scsiReserved1; /* -> reserved for input */
UInt16 scsiPBLength; /* -> Length of the entire PB*/
UInt8 scsiFunctionCode; /* -> function selector */
UInt8 scsiReserved2; /* <- reserved for output */
OSErr scsiResult; /* <- Returned result */
DeviceIdent scsiDevice; /* -> Device Identifier (bus+target+lun) */
SCSICallbackUPP scsiCompletion; /* -> Callback on completion function */
UInt32 scsiFlags; /* -> assorted flags */
BytePtr scsiDriverStorage; /* <> Ptr for driver private use */
Ptr scsiXPTprivate; /* private field for use in XPT */
long scsiReserved3; /* reserved */
SCSI_IO scsiIOptr; /* Pointer to PB for request to terminate */

};
Plug-in Constants and Data Types 1-93

C H A P T E R 1

SCSI Family Reference
Field descriptions
scsiIOptr A pointer to a parameter block for the I/O command to be

terminated.

Reset Bus Parameter Block 1

SCSIResetBusPB 1

The SCSI reset bus parameter block is defined by the SCSIResetBusPB data type.
Its fields are identical to those of the SCSIHdr data type (page 1-80).

struct SCSIResetBusPB
struct SCSIHdr *qLink;
short scsiReserved1;
UInt16 scsiPBLength;
UInt8 scsiFunctionCode;
UInt8 scsiReserved2;
OSErr scsiResult;
DeviceIdent scsiDevice;
SCSICallbackUPP scsiCompletion;
UInt32 scsiFlags;
UInt8 *scsiDriverStorage;
Ptr scsiXPTprivate;
long scsiReserved3;

};

Reset Device Parameter Block 1

SCSIResetDevicePB 1

The SCSI reset device parameter block is defined by the SCSIResetDevicePB data
type. Its fields are identical to those of the SCSIHdr data type (page 1-80).
1-94 Plug-in Constants and Data Types

C H A P T E R 1

SCSI Family Reference
struct SCSIResetDevicePB
struct SCSIHdr *qLink;
short scsiReserved1;
UInt16 scsiPBLength;
UInt8 scsiFunctionCode;
UInt8 scsiReserved2;
OSErr scsiResult;
DeviceIdent scsiDevice;
SCSICallbackUPP scsiCompletion;
UInt32 scsiFlags;
UInt8 *scsiDriverStorage;
Ptr scsiXPTprivate;
long scsiReserved3;

};

Release Queue Parameter Block 1

SCSIReleaseQPB 1

The SCSI release queue parameter block is defined by the SCSIReleaseQPB data
type. Its fields are identical to those of the SCSI parameter block header
(page 1-80).

struct SCSIReleaseQPB
struct SCSIHdr *qLink;
short scsiReserved1;
UInt16 scsiPBLength;
UInt8 scsiFunctionCode;
UInt8 scsiReserved2;
OSErr scsiResult;
DeviceIdent scsiDevice;
SCSICallbackUPP scsiCompletion;
UInt32 scsiFlags;
UInt8 *scsiDriverStorage;
Plug-in Constants and Data Types 1-95

C H A P T E R 1

SCSI Family Reference
Ptr scsiXPTprivate;
long scsiReserved3;

};

Plug-in Functions 1

The SCSI family server exports the SCSIFamBusEventForSIM (page 1-96) and
SCSIFamMakeCallback (page 1-97) functions for a SCSI plug-in to call. A SCSI
family plug-in in turn uses the plug-in dispatch table (page 1-64) to provide the
SCSI family server with references to its action function (page 1-99), its handle
bus event function (page 1-100), and its initialization function (page 1-98).

Exported by the SCSI Family 1

SCSIFamBusEventForSIM 1

Allows a plug-in’s hardware interrupt handler to notify the plug-in that a bus
event has occurred.

extern OSStatus SCSIFamBusEventForSIM (UInt32 busID, void *busEvent);

busID The bus ID of the bus controlled by the plug-in. The plug-in
originally obtains the ID when the SCSI family calls its
initialization function, SCSIPluginInitEntry (page 1-98). The
plug-in is responsible for making the ID available to its
hardware interrupt handler.

busEvent A pointer to a private structure, defined and allocated by the
plug-in, in which the hardware interrupt handler records
information about the bus event. The SCSI family does not
interpret its contents.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.
1-96 Plug-in Functions

C H A P T E R 1

SCSI Family Reference
DISCUSSION

A plug-in notifies its bus event handler function of bus events by calling the
SCSI family’s SCSIFamBusEventForSIM function. The family responds by calling
the plug-in’s MySCSIPluginHandleBusEventFunc function (page 1-100) at task
level, passing a pointer to the plug-in’s private bus event structure.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The SCSIFamBusEventForSIM function can be called at hardware or secondary
interrupt level. However, a plug-in should only call this function from one or
the other interrupt level—it should not mix calls from both levels because
unprotected data may be corrupted.

SCSIFamMakeCallback 1

Informs the SCSI family that an I/O request is complete.

extern void SCSIFamMakeCallback (SCSI_PB *req);

req A pointer to the SCSI parameter block for the completed
request. The SCSI family passes this parameter block to the
plug-in when it calls the plug-in’s action function,
SCSIPluginActionEntry (page 1-99), to start a request. Before
calling the SCSIFamMakeCallback function, the plug-in provides
an output value for each field in the parameter block that
requires one. See the individual parameter block descriptions
for the output requirements of each type of request.

DISCUSSION

When a plug-in has finished processing an I/O request, it must notify the SCSI
family that the request is complete by calling SCSIFamMakeCallback.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

No Yes Yes
Plug-in Functions 1-97

C H A P T E R 1

SCSI Family Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The SCSIFamMakeCallback function is not reentrant. It can be called only by a
plug-in’s main code (running at task level). It cannot be called from a plug-in’s
hardware interrupt handler.

SCSI Plug-in-Defined Functions 1

MySCSIPluginInitFunc 1

Initializes a plug-in.

OSStatus MySCSIPluginInitFunc (PluginControlBlock *pcb);

pcb A pointer to a plug-in control block structure. On input, the
SCSI family provides values for the structure’s simRegEntry and
busID fields. On output, the plug-in provides values for many
fields in the structure. For more information on the fields of the
PluginControlBlock structure, see “PluginControlBlock,”
beginning on page 1-61.

function result A result code. See “SCSI Family Result Codes” (page 1-101) for
a list of possible result codes.

DISCUSSION

The SCSI family calls this function to initialize a plug-in after the plug-in is
loaded into memory and prepared for execution. The plug-in must respond by
initializing its software structures and the HBA.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

No No No
1-98 Plug-in Functions

C H A P T E R 1

SCSI Family Reference
The SCSIPluginInitEntry type (page 1-63) defines the plug-in’s initialization
function.

SPECIAL CONSIDERATIONS

Only the SCSI family calls MySCSIPluginInitFunc. This function is not reentrant.
It is always called at task level.

MySCSIPluginActionFunc 1

Passes a client request to a plug-in.

void MySCSIPluginActionFunc (SCSI_PB *scsiPB);

scsiPB A pointer to a SCSI parameter block for a client request. The
request types are listed in “SCSI Function Codes,” beginning on
page 1-68. The parameter blocks corresponding to different
request types are described individually. For a given type of
request, see the appropriate parameter block description for
input values a client provides and output values a plug-in
provides.

DISCUSSION

When you call the SCSIExecIOSyncCmd function (page 1-33), the
SCSIExecIOAsyncCmd function (page 1-35), and other SCSI family client
functions, the SCSI family server uses information passed in the function
parameters to build a parameter block structure to pass to the appropriate SCSI
family plug-in. The type of parameter block used depends on the specific
family function called and the parameters passed to that function. The
parameter blocks are nearly identical to those supported by SCSI Manager 4.3,
although some fields have been changed or are no longer supported. (For
information on specific fields, see the reference sections for individual
parameter block structures.) The SCSI family and plug-ins ignore any
parameter block fields that are no longer used.

The SCSI family calls the MySCSIPluginActionFunc function to notify the plug-in
of an I/O request. The action function defined by the plug-in must be of type
Plug-in Functions 1-99

C H A P T E R 1

SCSI Family Reference
SCSIPluginActionEntry (page 1-63). The plug-in exports the function in its
dispatch table (page 1-64).

The MySCSIPluginActionFunc function is responsible for handling the I/O
request. It determines which bus the request is directed to and adds the request
to the HBA's pending queue. When the SCSI bus is free and there's a request in
the pending queue, the request is moved to the active queue and a SCSI
selection is started for the request.

In executing the request, the plug-in must conform to the behavior defined for
each type of service available through the SCSI family.

When request processing is complete, the plug-in stores a result code in the
scsiResult field of the parameter block. The code should be appropriate for the
request being processed. Then the plug-in notifies the SCSI family that
processing is complete by calling the SCSIFamMakeCallback function (page 1-97).

SPECIAL CONSIDERATIONS

Only the SCSI family calls SCSIPluginAction. This function is not reentrant. It is
always called at task level.

MySCSIPluginHandleBusEventFunc 1

Notifies a plug-in that a bus event has occurred.

void MySCSIPluginHandleBusEventFunc (void *busEvent);

busEvent A pointer to a private structure, defined and allocated by the
plug-in, that contains information about the bus event. The
SCSI family obtains the pointer when the plug-in’s hardware
interrupt handler calls the SCSIFamBusEventForSIM function
(page 1-96).

DISCUSSION

The SCSI family calls the MySCSIPluginHandleBusEventFunc function to notify a
plug-in about a bus event. Typically, the bus event is an I/O completion, but it
can also be an error condition on the bus.
1-100 Plug-in Functions

C H A P T E R 1

SCSI Family Reference
When an interrupt occurs, the plug-in hardware interrupt handler calls the
SCSIFamBusEventForSIM function, alerting the SCSI family. The SCSI family
responds by calling SCSIPluginHandleBusEvent. The SCSI family passes the bus
event parameter provided by the handler to the plug-in without interpreting its
content.

If an I/O request completes as a result of the bus event, the plug-in needs to set
all necessary output fields in the request’s parameter block, and call the
SCSIFamMakeCallback function to tell the SCSI family that the request is
complete.

The SCSIPluginHandleBusEventEntry type (page 1-100) defines the plug-in’s bus
event function.

SPECIAL CONSIDERATIONS

Only the SCSI family calls MySCSIPluginHandleBusEventFunc. This function is
not reentrant. It is always called at task level.

SCSI Family Result Codes 1

The result codes specific to the SCSI family are listed below. In addition, SCSI
family client functions may also return result codes from microkernel services.
You can read about those result codes in Inside Macintosh: Microkernel and Core
System Services, to be provided in a later release of Mac OS 8 documentation.

The value of each SCSI family result code is computed by adding a value to the
enumerated constant scsiErrorBase, which is defined as follows:

enum {
scsiErrorBase= –7936
};

For example, the result code scsiRequestAborted is defined as follows:

scsiRequestAborted = scsiErrorBase + 2
/* -7934 = PB request aborted by the host */
SCSI Family Result Codes 1-101

C H A P T E R 1

SCSI Family Reference
noErr 0 No error
scsiRequestInProgress 1 Parameter block request is in

progress
scsiRequestAborted -7934 Parameter block request

aborted by the host
scsiUnableToAbort -7933 Unable to abort parameter

block request
scsiNonZeroStatus -7932 The target returned non-zero

status upon completion of the
request

scsiUnableToTerminate -7927 Unable to terminate I/O
parameter block request

scsiSelectTimeout -7926 Target selection timeout
scsiCommandTimeout -7925 The timeout value for this

parameter block was exceeded
and the parameter block was
aborted

scsiIdentifyMessageRejected -7924 The target issued a REJECT
message in response to the
IDENTIFY message; the LUN
probably does not exist

scsiMessageRejectReceived -7923 REJECT message received
scsiSCSIBusReset -7922 Execution of this parameter

block was halted because of a
SCSI bus reset

scsiParityError -7921 An uncorrectable parity error
occurred

scsiAutosenseFailed -7920 Automatic REQUEST SENSE
command failed

scsiDataRunError -7918 Data overrun/underrun error
scsiUnexpectedBusFree -7917 Unexpected bus free phase
scsiSequenceFailed -7916 Target bus phase sequence

failure
scsiWrongDirection -7915 Data phase was in an

unexpected direction
scsiBDRsent -7913 A SCSI bus device reset (BDR)

message was sent to the target
scsiTerminated -7912 Parameter block request

terminated by the host
scsiNoNexus -7911 Nexus is not established
scsiCDBReceived -7910 The SCSI CDB was received
scsiTooManyBuses -7888 plug-in registration failed

because the XPT registry is full
1-102 SCSI Family Result Codes

C H A P T E R 1

SCSI Family Reference
scsiBusy -7887 SCSI subsystem is busy
scsiProvideFail -7886 Unable to provide the

requested service
scsiDeviceNotThere -7885 SCSI device not installed or

available
scsiNoHBA -7884 No HBA detected
scsiDeviceConflict -7883 Attempt to register more than

one driver to a device
(obsolete)

scsiNoSuchXref -7882 No driver has been
cross-referenced with this
device (obsolete)

scsiQLinkInvalid -7881 The qLink field was not 0
scsiPBLengthError -7872 The parameter block length is

too small for this plug-in
scsiFunctionNotAvailable -7871 The requested function is not

supported by this plug-in
scsiRequestInvalid -7870 The parameter block request is

invalid
scsiBusInvalid -7869 The bus ID is invalid
scsiTIDInvalid -7868 The target ID is invalid
scsiLUNInvalid -7867 The logical unit number is

invalid
scsiIDInvalid -7866 The initiator ID is invalid
scsiDataTypeInvalid -7865 plug-in does not support the

requested scsiDataType
scsiTransferTypeInvalid -7864 The scsiTransferType is not

supported by this plug-in
scsiCDBLengthInvalid -7863 The CDB length supplied is

not supported by this plug-in;
typically this means it was too
big

kSCSITargetProbeInvalidState -7862 Internal bus prober software
error

scsiBadObjectID -7861 Object ID on microkernel
message to family does not
reference a known message
port

scsiBadDataLength -7860 On a read request, the
scsiDataLength field of SCSI
I/O parameter block contains 0

scsiPartialPrepared -7859 Cannot lock down enough
memory for I/O transfer

scsiBadPBSize -7872 Incorrect parameter block size
SCSI Family Result Codes 1-103

C H A P T E R 1

SCSI Family Reference
scsiInvalidMsgType -7858 Invalid message type; internal
error

scsiInvalidRegID -7857 Invalid registry entry ID;
internal error

scsiBadConnID -7856 Bad connection ID; internal
error

scsiBadIOTag -7855 Bad I/O tag; internal error
scsiIOInProgress -7854 Cannot close connection, I/O

in progress; internal error
scsiTargetReserved -7853 Target ID is reserved; cannot

make connection
scsiTargetInUse -7852 Target is in use by another

client
scsiNoReserveOnBus -7851 Cannot make reserved

connection to a bus
scsiBadConnType -7850 Invalid connection type
1-104 SCSI Family Result Codes

C H A P T E R 1

SCSI Family Reference
Glossary 1

access control The ability to open a SCSI connection to a bus or device with a
specified access, either shared (other clients may also open a connection) or
reserved (no other client may open a connection). A bus connection must be
shared; a device connection may be shared or reserved.

autosense A feature of SCSI Manager 4.3 that automatically sends a
REQUEST SENSE command in response to a CHECK CONDITION status, and
retrieves the sense data.

autosense buffer Buffer in which sense data generated by the autosense
feature is stored.

big-endian Used to describe data formatting in which each field is addressed
by referring to its most significant byte. Compare little-endian, mixed-endian.

bit-bucketing The practice of throwing away excess data bytes when a target
tries to supply more data than the initiator expects.

connection When used with the SCSI family, a logical path to a SCSI bus or a
SCSI device. A connection controls access to its bus or device. Access to a
device may be shared or reserved; access to a bus must be shared.

connection ID A value that uniquely identifies a connection. It is assigned by
the Mac OS when a new connection is opened.

FireWire A high-speed peripheral bus using IEEE 1394—a fast serial port
protocol.

little-endian Used to describe data formatting in which each field is
addressed by referring to its least significant byte. Compare big-endian,
mixed-endian.

memory list A table of values in which each entry describes a range in
memory to serve as a source or destination in an I/O operation. When a
memory list is prepared by a client running in user mode, the client must pass
the list to the SCSI family to lock down the specified memory to physical
addresses. Locking the memory prevents a page fault from occurring during an
I/O operation. When a memory list is prepared by a client running in
supervisor mode, the client must lock down the memory before passing the list
to the SCSI family.
Glossary 1-105

C H A P T E R 1

SCSI Family Reference
mixed-endian The ability of a computer system, such as Power Macintosh, to
support both big-endian and little-endian data formats.

scatter/gather list A data type consisting of one or more elements, each of
which describes the location and size of one data buffer.

SCSI execution tag A value, returned by Mac OS 8, that uniquely identifies
an I/O request. The tag can later be used to abort or terminate the I/O request
it identifies. The SCSI family uses the SCSIExecIOTag data type to store an
execution tag.

SCSI interface module (SIM) A software module between the transport
(XPT) and the host bus adapter (HBA) in SCSI Manager 4.3. The SIM processes
and executes SCSI requests, and provides a hardware-independent interface to
the HBA. In the Mac OS 8 SCSI family, a SIM is a SCSI family plug-in.

SCSI Family That part of the I/O system that manages the transfer of data
between a Macintosh computer and peripheral devices connected through the
Small Computer System Interface (SCSI). The SCSI family provides a
connection-based interface for clients and a parameter block-based interface for
plug-ins. The SCSI family is responsible for routing I/O requests to the proper
plug-in, notifying the caller when a request is complete, maintaining
compatibility with the SCSI Manager 4.3 interface, and isolating plug-ins from
comprehensive knowledge of (and access to) other operating system
components.
1-106 Glossary

Index
B

blind transfer 70

C

CDB type 78
command descriptor block (CDB) 78
common access method (CAM) specification 7,

69
ConnectionID type 13
ConnectionType type 12

D

Data Length Constants 77
DeviceIdent type 27
DeviceType type 29

F

Feature Flags 72

H

handshakeDataLength constant 77

K

kMaxAutoSenseByteCount constant 18

kReservedAccess constant 12
kSCSIAllBus constant 29
kSCSIDeviceTypeSize constant 29
kSCSIPluginVersion constant 65
kSharedAccess constant 12

M

maxCDBLength constant 77
More Feature Flags 73
MySCSIPluginActionFunc function 99
MySCSIPluginHandleBusEventFunc function 100
MySCSIPluginInitFunc function 98

P

parameter block
SCSI Manager 80–81

PluginControlBlock type 61

S

Scan Types 76
SCSI

command descriptor block (CDB) 78
SCSI-2 specification 7

SCSIAbortCommandPB type 82
SCSIAbortIOCmd function 43
scsiAutosenseValid constant 20
SCSIBusGetDeviceData function 58
SCSIBusInfo type 23
SCSIBusInquiryCmd function 60
SCSIBusInquiryPB type 87
scsiBusLoadsROMDrivers constant 77
107
Draft.  Apple Computer, Inc. 5/13/96

I N D E X
scsiBusNotFree constant 20
SCSIBusResetAsync function 50
SCSIBusResetSync function 48
scsiBusScansDevices constant 77
scsiBusScansOnInit constant 77
SCSICDBObject type 17
SCSIClearQueue function 47
SCSICloseConnection function 32
scsiDataBuffer constant 15
scsiDataIOTable constant 15
scsiDataMemList constant 15
SCSIDataObject type 14
scsiDataSG constant 15
scsiDataTIB constant 15
SCSIDeviceResetAsync function 53
SCSIDeviceResetSync function 51
scsiErrorBase constant 101
SCSIExecIOAsyncCmd function 35
SCSIExecIOControlAsyncCmd function 40
SCSIExecIOControlSyncCmd function 37
SCSIExecIOResult type 19
SCSIExecIOSyncCmd function 33
SCSIExecIOTag type 13
SCSIFamBusEventForSIM function 96
SCSIFamMakeCallback function 97
scsiFireWireBridgeBus constant 76
SCSI Flags 66
SCSIFlagsObject type 18
SCSI Function Codes 68
SCSIHandshakeObject type 21
SCSIHdr type 80
SCSI I/O Flags 70
SCSIIOIteratorData type 28
SCSIIOOptionsObject type 22
SCSI_IO type 82
scsiMotherboardBus constant 76
scsiNuBus constant 76
SCSIOpenConnection function 30
scsiPCIBus constant 76
scsiPCMCIABus constant 76
scsiPDSBus constant 76
SCSIPluginActionEntry type 63
SCSIPluginDispatchTable type 64
SCSIPluginHandleBusEventEntry type 64
SCSIPluginInfo type 65

SCSIPluginInitEntry type 63
SCSIReleaseQCmd function 46
SCSIReleaseQPB type 95
SCSIResetBusPB type 94
SCSIResetDevicePB type 94
SCSISetHandshake function 54
SCSISetIOOptions function 57
SCSISetTimeout function 55
scsiSIMQFrozen constant 20
SCSITerminateIOCmd function 44
SCSITerminateIOPB type 93
scsiTransferBlind constant 70
scsiTransferPolled constant 70
SGRecord type 79
Slot Types 76

T

Transfer Types 70

U

Unusual Features Flags 74

V

vendorIDLength constant 77
108
Draft.  Apple Computer, Inc. 5/13/96

	SCSI Family Reference
	Contents
	SCSI Family Reference
	About the SCSI Family
	SCSI Client Constants and Data Types
	SCSI Connection Data Types
	The SCSI Execution Tag
	The SCSI Data Structure
	SCSI Data Type
	The SCSI Command Descriptor Block Structure
	The SCSI Flags Structure
	Autosense Size Value
	The SCSI I/O Result Structure
	Result Flags
	The SCSI Handshake Structure
	The SCSI I/O Options Structure
	The SCSI Bus Information Structure
	Device Identification Structure
	The SCSI Device Iterator Structure
	SCSI Device Type

	SCSI Client Functions
	Opening and Closing a SCSI Connection
	Performing I/O Operations
	Performing I/O Control Operations
	Setting SCSI Options
	Obtaining Device and Bus Information

	Plug-in Constants and Data Types
	Plug-in Control Block Structure
	Plug-in-Defined Function Types
	Plug-in Dispatch Table
	SCSI Flags
	SCSI Function Codes
	Transfer Types
	SCSI I/O Flags
	Feature Flags
	More Feature Flags
	Unusual Features Flags
	Slot Types
	Scan Types
	Data Length Constants
	Command Descriptor Block Structure
	Scatter/Gather List Structure
	SCSI Parameter Block Header
	SCSI Parameter Block
	SCSI I/O Parameter Block
	SCSI Bus Inquiry Parameter Block
	SCSI Abort Command Parameter Block
	Terminate I/O Parameter Block
	Reset Bus Parameter Block
	Reset Device Parameter Block
	Release Queue Parameter Block

	Plug-in Functions
	Exported by the SCSI Family
	SCSI Plug-in-Defined Functions

	SCSI Family Result Codes
	Glossary

	Index

