INSIDE MACINTOSH

Processes

A
vv
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid SanJuan

Paris Seoul Milan Mexico City Taipei

[Apple Computer, Inc.

© 1992, Apple Computer, Inc.

All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA, AZUX,
LaserWriter, LocalTalk, Macintosh,
MPW, and MultiFinder are trademarks
of Apple Computer, Inc., registered in
the United States and other countries.
Classic is a registered trademark
licensed to Apple Computer, Inc.
Apple DeskTop Bus, Finder, Macintosh
Quadra, PowerBook, and QuickDraw
are trademarks of Apple Computer, Inc.
Adobe lllustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

AGFA is a trademark of Agfa-Gevaert.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

NuBus is a trademark of Texas
Instruments.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-63241-1
1234567 89-MU-9695949392
First Printing, August 1992

Preface

Contents

Figures and Listings iX

About This Book «xi

Chapter 1

Format of a Typical Chapter Xii
Conventions Used in This Book xiii
Special Fonts xiii
Types of Notes xiii
Assembly-Language Information xiii
Development Environment Xiv

Introduction to Processes and Tasks 1-1

Chapter 2

The Cooperative Multitasking Environment 1-3
About Processes 1-5

Process Creation 1-6

Process Scheduling 1-7
About Tasks 1-9

Task Creation 1-10

Task Scheduling 1-11

Task Guidelines 1-13

Process Manager 21

About the Process Manager 2-3
Using the Process Manager 2-4
Getting Information About Other Processes 2-5
Launching Other Applications 2-7
Launching Desk Accessories 2-11
Terminating an Application 2-11
Process Manager Reference 2-13
Constants 2-13
Gestalt Selector and Response Bits 2-14
Process-ldentification Constants 2-14
Launch Options 2-15
Data Structures 2-16
Process Serial Number 2-16
Process Information Record 2-16
Launch Parameter Block 2-19
Application Parameters Record 2-20

Routines 2-21
Getting Process Information 2-21
Launching Applications and Desk Accessories 2-28
Terminating Processes 2-31
Summary of the Process Manager 2-32
Pascal Summary 2-32
Constants 2-32
Data Types 2-33
Routines 2-34
C Summary 2-35
Constants 2-35
Data Types 2-36
Routines 2-38
Assembly-Language Summary 2-39
Data Structures 2-39
Trap Macros 2-40
Result Codes 2-40

Chapter 3 Time Manager 31

About the Time Manager 3-3
The Original Time Manager 3-4
The Revised Time Manager 3-5
The Extended Time Manager 3-6
Using the Time Manager 3-9
Installing and Activating Tasks 3-10
Using Application Global Variables in Tasks 3-11
Performing Periodic Tasks 3-13
Computing Elapsed Time 3-14
Time Manager Reference 3-17
Data Structures 3-17
Time Manager Routines 3-18
Application-Defined Routine 3-22
Time Manager Tasks 3-22
Summary of the Time Manager 3-23
Pascal Summary 3-23
Constants 3-23
Data Types 3-23
Time Manager Routines 3-24
Application-Defined Routine 3-24
C Summary 3-24
Constants 3-24
Data Types 3-24
Time Manager Routines 3-25
Application-Defined Routine 3-25
Assembly-Language Summary 3-25

Data Structures 3-25
Result Codes 3-26

Chapter 4 Vertical Retrace Manager 41

About the Vertical Retrace Manager 4-4
VBL Tasks Installed by the Operating System 4-5
Types of VBL Tasks 4-5
The VBL Task Record 4-6
Vertical Retrace Queues 4-8
VBL Tasks and Application Execution 4-8
Using the Vertical Retrace Manager 4-10
Installing a VBL Task 4-10
Accessing a Task Record at Interrupt Time 4-12
Accessing Application Global Variables in a VBL Task 4-13
Spinning the Cursor 4-16
Installing a Persistent VBL Task 4-20
Vertical Retrace Manager Reference 4-21
Data Structure 4-21
The VBL Task Record 4-21
Vertical Retrace Manager Routines 4-22
Slot-Based Installation and Removal Routines 4-22
System-Based Installation and Removal Routines 4-24
Utility Routines 4-26
Application-Defined Routine 4-28
VBL Tasks 4-28
Summary of the Vertical Retrace Manager 4-31
Pascal Summary 4-31
Data Type 4-31
Vertical Retrace Manager Routines 4-31
Application-Defined Routine 4-31
C Summary 4-32
Data Types 4-32
Vertical Retrace Manager Routines 4-32
Application-Defined Routine 4-32
Assembly-Language Summary 4-33
Constants 4-33
Data Structures 4-33
Global Variables 4-33
Result Codes 4-33

Chapter 5 Notification Manager 5-1

About the Notification Manager 5-3
Using the Notification Manager 5-6
Creating a Notification Request 5-6
Defining a Response Procedure 5-9
Installing a Notification Request 5-9
Removing a Notification Request 5-10
Notification Manager Reference 5-10
Notification Manager Routines 5-10
Application-Defined Routine 5-12
Notification Response Procedures 5-12
Summary of the Notification Manager 5-14
Pascal Summary 5-14
Constant 5-14
Data Types 5-14
Notification Manager Routines 5-14
Application-Defined Routine 5-14
C Summary 5-15
Constant 5-15
Data Types 5-15
Notification Manager Routines 5-15
Application-Defined Routine 5-15
Result Codes 5-15

Chapter 6 Deferred Task Manager 6-1

About the Deferred Task Manager 6-3
Using the Deferred Task Manager 6-6
Checking for the Deferred Task Manager 6-6
Installing a Deferred Task 6-7
Defining a Deferred Task 6-8
Deferring a Slot-Based VBL Task 6-9
Deferred Task Manager Reference 6-11
Data Structure 6-11
Deferred Task Manager Routine 6-12
Application-Defined Routine 6-13
Deferred Tasks 6-13
Summary of the Deferred Task Manager 6-14
Pascal Summary 6-14
Data Type 6-14
Deferred Task Manager Routine 6-14
Application-Defined Routine 6-14
C Summary 6-14
Data Type 6-14
Deferred Task Manager Routine 6-15

Vi

Chapter 7

Application-Defined Routine 6-15
Assembly-Language Summary 6-15
Global Variables 6-15
Result Codes 6-15

Segment Manager 71

Chapter 8

About the Segment Manager 7-3
Code Segmentation 7-4
The Jump Table 7-5
Using the Segment Manager 7-8
Unloading Code Segments 7-8
Loading Code Segments 7-9
Segment Manager Reference 7-10
Routine 7-10
Summary of the Segment Manager 7-11
Pascal Summary 7-11
Routine 7-11
C Summary 7-11
Routine 7-11
Assembly-Language Summary 7-11
Global Variables 7-11
Advanced Routine 7-11

Shutdown Manager 81

About the Shutdown Manager 8-3
The Shutdown Process 8-4
Closing Open Applications 8-5
Checking for Custom Shutdown Procedures 8-5
Checking for Open Device Drivers 8-5
Saving the Desk Scrap 8-6
Unmounting Volumes 8-6
Turning Off the Computer 8-6
Using the Shutdown Manager 8-7
Sending a Shutdown or Restart Event 8-7
Installing a Custom Shutdown Procedure 8-9
Shutdown Manager Reference 8-11
Shutdown Manager Routines 8-11
Shutting Down or Restarting a Macintosh Computer 8-12
Installing or Removing a Shutdown Procedure 8-13
Application-Defined Routine 8-16
Shutdown Procedures 8-16
Summary of the Shutdown Manager 8-18

Vil

Pascal Summary 8-18
Constants 8-18
Shutdown Manager Routines
Application-Defined Routine

C Summary 8-19
Constants 8-19
Data Types 8-19
Shutdown Manager Routines
Application-Defined Routine

Assembly-Language Summary
Constants 8-20

8-18
8-18

8-19
8-19
8-20

Trap Macros Requiring Routine Selectors

Glossary GL-1

8-20

Index IN-1

viii

Preface

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Figures and Listings

About This Book «xi

Introduction to Processes and Tasks 1-1

Figure 1-1

The desktop with several applications open 1-4

Process Manager 2-1

Listing 2-1
Listing 2-2
Listing 2-3

Time Manager

Searching for a specific process 2-6
Launching an application 2-10
Terminating an application 2-12

3-1

Figure 3-1
Figure 3-2
Listing 3-1
Listing 3-2
Listing 3-3

Listing 3-4
Listing 3-5

Listing 3-6

Original and revised Time Managers (drifting, unpredictable
frequency) 3-7

The extended Time Manager (drift-free, fixed frequency) 3-7
Installing and activating a Time Manager task 3-10

Passing the address of the application’s A5 world to a Time
Manager task 3-12

Defining a Time Manager task that can manipulate global
variables 3-13

Defining a periodic Time Manager task 3-14

Calculating the time required to install and activate a Time
Manager task 3-15

Calculating the time consumed by a 1-tick delay 3-16

Vertical Retrace Manager 4-1

Listing 4-1
Listing 4-2
Listing 4-3
Listing 4-4

Listing 4-5
Listing 4-6

Listing 4-7
Listing 4-8

Listing 4-9
Listing 4-10

Checking whether you can use slot-based VBL routines 4-11
Determining the slot number of the main graphics device 4-11
Initializing and installing a task record 4-12

Finding the address of the task record from within a VBL
task 4-12

Resetting a VBL task so that it executes again 4-13

Storing the value of the A5 register directly after the task record in
memory 4-14

Saving the value of the A5 register when installing a VBL
task 4-14

Setting up the A5 register and modifying a global variable in a VBL
task 4-15

Modifying application global variables in a VBL task 4-15
Setting up and restoring the A5 register in a VBL task 4-16

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Listing 4-11
Listing 4-12
Listing 4-13
Listing 4-14

Listing 4-15

Defining a cursor information record 4-17
Changing the cursor within a VBL task 4-17

Installing the cursor-spinning task into a vertical retrace
gqueue 4-18

Removing the cursor-spinning task from its vertical retrace
queue 4-19

Installing a persistent VBL task 4-20

Notification Manager 5-1

Figure 5-1
Figure 5-2
Listing 5-1

A notification in the Application menu 5-4
A notification alert box 5-5
Setting up a notification record 5-8

Deferred Task Manager 6-1

Listing 6-1
Listing 6-2
Listing 6-3
Listing 6-4
Listing 6-5

Checking for the availability of the Deferred Task Manager
Installing a task into the deferred task queue 6-7
Finding the value of the Al register 6-8

Defining a deferred task 6-8

Deferring cursor updating to noninterrupt time 6-9

Segment Manager 7-1

6-6

Figure 7-1
Figure 7-2
Figure 7-3

Figure 7-4

The location of the jump table 7-5

The structure of segment 0 7-6

Format of an MPW jump table entry when the segment is
unloaded 7-7

Format of an MPW jump table entry when the segment is
loaded 7-8

Shutdown Manager 8-1

Figure 8-1
Listing 8-1
Listing 8-2

A shutdown alert box 8-6
Sending a Shutdown event 8-8
A sample custom shutdown procedure 8-10

P REFATCE

About This Book

This book describes the parts of the Macintosh Operating System that allow
you to manage processes and tasks. It includes introductory material about
managing processes on Macintosh computers as well as a complete technical
reference to the Process Manager, the Time Manager, the Vertical Retrace
Manager, and other process-related services provided by the system software.

If you are new to programming on the Macintosh Operating System, you
should begin with the chapter “Introduction to Processes and Tasks.” This
chapter provides a general introduction to process and task management on
Macintosh computers. It describes how the Operating System controls access
to the CPU and other system resources to create a cooperative multitasking
environment in which your application and any other open applications run.
This environment is managed primarily by the Process Manager, which is
responsible for launching processes, scheduling their use of the available
system resources, and handling their termination.

This chapter also describes how your application can install tasks that are
executed asynchronously from your application, usually in response to
interrupts. You can

= execute a task after a certain amount of time has elapsed

= execute a task repetitively

= notify the user while your application is in the background
= execute a task between screen refreshes

= execute a routine as part of the shutdown or restart process

Once you are familiar with basic process and task management on Macintosh
computers, you might need to look at the chapter “Process Manager.” It
describes how you can get information about open processes and, if
necessary, launch processes and desk accessories. You can also use the Process
Manager to alter the processing status of an application or to terminate your
application.

If you want a task to be executed after some specified amount of time has
elapsed, you can use the Time Manager to schedule that task for later
execution. The task can reschedule itself, so you can use the Time Manager to
execute a routine repetitively. You can also use the Time Manager to calculate
elapsed times and to synchronize events in the Macintosh computer. See the
chapter “Time Manager” for details.

The Vertical Retrace Manager allows you to schedule a task for execution
during vertical retrace interrupts. Like Time Manager tasks, vertical retrace
tasks can reschedule themselves so that they are executed repetitively. In
general, you should use the Vertical Retrace Manager to handle repetitive

Xi

P REFATCE

tasks that need to be synchronized with the redrawing of the screen and the
Time Manager to handle those tasks that don’t. See the chapter “Vertical
Retrace Manager” for details.

You can use the Notification Manager to inform users of significant
occurrences in applications that are running in the background or in software
that is largely invisible to the user. This software includes device drivers,
vertical blanking (VBL) tasks, Time Manager tasks, completion routines, and
desk accessories that operate behind the scenes. See the chapter “Notification
Manager” for complete details.

You should read the chapter “Segment Manager” for information about how
the Operating System manages the loading and unloading of your
application’s code segments into and out of memory. By dividing your
application’s executable code into segments, you allow it to run in a memory
partition that is smaller than the total size of the application itself.

The final chapter in this book, “Shutdown Manager,” shows how you can
install procedures that are executed as part of the final stages of shutting
down or restarting a Macintosh computer.

Format of a Typical Chapter

Xii

Almost all chapters in this book follow a standard structure. For example, the
chapter “Process Manager” contains these sections:

= “About the Process Manager.” This section provides an overview of the
features provided by the Process Manager.

= “Using the Process Manager.” This section describes the tasks you can
accomplish using the Process Manager. It describes how to use the most
common routines, gives related user interface information, provides code
samples, and supplies additional information.

= “Process Manager Reference.” This section provides a complete reference
to the Process Manager by describing the constants, data structures, and
routines that it uses. Each routine description also follows a standard
format, which gives the routine declaration and description of every
parameter of the routine. Some routine descriptions also give additional
descriptive information, such as assembly-language information or result
codes.

= “Summary of the Process Manager.” This section provides the Process
Manager’s Pascal interface, as well as the C interface, for the constants,
data structures, routines, and result codes associated with the Process
Manager. It also includes relevant assembly-language interface information.

Some chapters contain additional main sections that provide more detailed
discussions of certain topics. For example, in the chapter “Shutdown
Manager,” the section “The Shutdown Process” describes the process that the
Shutdown Manager procedures perform to shut down or restart the system.

P REFATCE

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain
information, such as parameter blocks, use special formats so that you can
scan them quickly.

Special Fonts

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in Courier (this is
Couri er).

Words that appear in boldface are key terms or concepts and are defined in
the Glossary.

Types of Notes

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-4.) O

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 2-16.) a

A WARNING
Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on
page 1-12.) a

Assembly-Language Information

Inside Macintosh provides information about the registers for specific routines
like this:

Registers on entry
A0 Contents of register A0 on entry

Registers on exit
DO Contents of register DO on exit

Xiii

P REFATCE

In addition, Inside Macintosh presents information about the fields of a
parameter block in this format:

Parameter block

- i nAndCQut I nt eger Input/output parameter.
- out putl Ptr Output parameter.
- i nput 1 Ptr Input parameter.

The arrow in the far left column indicates whether the field is an input
parameter, output parameter, or both. You must supply values for all input
parameters and input/output parameters. The routine returns values in
output parameters and input/output parameters.

The second column shows the field name as defined in the MPW Pascal
interface files; the third column indicates the Pascal data type of that field.
The fourth column provides a brief description of the use of the field. For a
complete description of each field, see the discussion that follows the
parameter block or the description of the parameter block in the reference
section of the chapter.

Development Environment

The system software routines described in this book are available using
Pascal, C, or assembly-language interfaces. How you access these routines
depends on the development environment you are using. This book shows
system software routines in their Pascal interface using the Macintosh
Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal. They show methods of
using various routines and illustrate techniques for accomplishing particular
tasks. All code listings have been compiled and, in most cases, tested.
However, Apple Computer does not intend that you use these code samples
in your application.

This book occasionally uses SurfWriter as the name of a sample application for
illustrative purposes; this is not an actual product of Apple Computer, Inc.

APDA, Apple’s source for developer tools, offers worldwide access to a broad
range of programming products, resources, and information for anyone
developing on Apple platforms. You’ll find the most current versions of
Apple and third-party development tools, debuggers, compilers, languages,
and technical references for all Apple platforms. To establish an APDA
account, obtain additional ordering information, or find out about site
licensing and developer training programs, contact

Xiv

P REFATCE

APDA

Apple Computer, Inc.

20525 Mariani Avenue, M/S 33-G
Cupertino, CA 95014-6299

Telephone: 800-282-2732 (United States)
800-637-0029 (Canada)
800-562-3910 (elsewhere in the world)

Fax: 408-562-3971
Telex: 171-576

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, file types, Apple events, and other
technical information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-3T
Cupertino, CA 95014-6299

XV

CHAPTER 1

Introduction to Processes

and Tasks

Contents

The Cooperative Multitasking Environment
About Processes 1-5

Process Creation 1-6

Process Scheduling 1-7
About Tasks 1-9

Task Creation 1-10

Task Scheduling 1-11

Task Guidelines 1-13

Contents

1-3

1-1

CHAPTER 1

Introduction to Processes and Tasks

This chapter is a general introduction to process and task management on Macintosh
computers. It describes how the Operating System controls access to the CPU and other
system resources to create a cooperative multitasking environment in which your
application and any other open applications execute. This environment is managed
primarily by the Process Manager, which is responsible for launching processes,
scheduling their use of the available system resources, and handling their termination.

This chapter also describes how you can use the services provided by the Time Manager,
the Vertical Retrace Manager, and other parts of the Macintosh Operating System to
schedule tasks for execution outside the time provided to your application by the
Process Manager. Usually these tasks are executed in response to an interrupt.

You should read this chapter for an overview of how the Process Manager schedules
applications and loads them into memory. You also need to read this chapter if you
install any tasks that execute at interrupt time, which are subject to a number of
important restrictions.

To use this chapter, you need to be familiar with how your application uses memory, as
described in the chapter “Introduction to Memory Management” in Inside Macintosh:
Memory. You should also be familiar with how your application receives events, as
discussed in the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

This chapter begins with a general discussion of processes and tasks. Then it describes in
detail the operation of the Process Manager in launching and scheduling processes. This
chapter ends with a description of installing tasks that execute at interrupt time. For a
more complete discussion of these topics, see the remaining chapters in this book.

The Cooperative Multitasking Environment

The Macintosh Operating System, the Finder, and several other system software
components work together to provide a multitasking environment in which a user can
have multiple applications open at once and can switch between open applications as
desired. To run in this environment, however, your application must follow certain rules
governing its use of the available system resources.

For example, your application should include a' SI ZE' resource that specifies how
large a memory partition it should be allocated at application launch time. If that much
memory is available when your application is launched, the Process Manager allocates it
and sets up your application partition. Similarly, your application should periodically
make an event call to allow the Operating System the opportunity to schedule other
applications for execution. Because the smooth operation of all applications depends on
their cooperation, this environment is known as a cooperative multitasking
environment.

The Cooperative Multitasking Environment 1-3

SYSe] pue Sassadild 01 uononpoau| .
=

CHAPTER 1

Introduction to Processes and Tasks

Note

The cooperative multitasking environment is available in system
software versions 7.0 and later, and when the MultiFinder option is
enabled in earlier system software versions. O

The Operating System schedules the processing of all applications and desk accessories.
When a user opens a document or application, the Operating System loads the
application code into memory and schedules the application to run at the next available
opportunity, usually when the current process or application relinquishes the CPU. In
most cases, the application runs immediately (or so it appears to the user).

The CPU is available only to the current application, whether it is running in the
foreground or the background. The application can be interrupted only by hardware
interrupts, which are transparent to the application. However, to give processing time to
background applications and to allow the user to interact with your application and
others, you must periodically call the Event Manager’s Wai t Next Event or

Event Avai | function to allow your application to relinquish control of the CPU for
short periods. By using these event routines in your application, you allow the user to
interact not only with your application, but also with other applications.

Although a number of documents and applications can be open at the same time, only
one application is the active application. The active application is the application
currently interacting with the user; its icon appears in the right side of the menu bar. The
active application displays its menu bar and is responsible for highlighting the controls
of its frontmost window. In Figure 1-1, SurfWriter is the active application. Windows of
other applications are visible on the desktop behind the frontmost window.

Figure 1-1 The desktop with several applications open

1-4

% File Edit

CURSs from lab.rsrc Hide Finder
Hide Others

6 ® 69 8 Shaw #H

128 129 130 121 | BRSNS L e
Calculator

Finder

ES(=————— untitled

‘Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
A11 mimsy were the borogoves,
And the mome raths outgrabe.

The Cooperative Multitasking Environment

CHAPTER 1

Introduction to Processes and Tasks

Most processing in the cooperative multitasking environment is done by applications or
desk accessories. Occasionally, you might need to install a task to be executed in
response to an interrupt. In general, however, it is best to avoid installing interrupt tasks
if at all possible. Interrupt tasks must be small and fast, and they are subject to a number
of limitations that do not apply to applications. The Operating System itself is heavily
interrupt-driven, and you can severely impair the responsiveness of the computer by
installing too many tasks or tasks that take too long to complete.

About Processes

The Process Manager manages the scheduling of processes. A process is an open
application or, in some cases, an open desk accessory. (Desk accessories that are opened
in the context of an application are not considered processes.) The number of processes is
limited only by available memory.

The Process Manager maintains information about each process—for example, the
current state of the process, the address and size of its partition, its type, its creator, a
copy of all process-specific system global variables, information about its ' SI ZE'
resource, and a process serial number. This process information is referred to as the
context of a process. The Process Manager assigns a process serial number to identify
each process. A process serial number identifies a particular instance of an application;
this number is unique during a single boot of the local machine.

The foreground process is the one currently interacting with the user; it appears to the
user as the active application. The foreground process displays its menu bar, and its
windows are in front of the windows of all other applications.

A background process is a process that isn’t currently interacting with the user. At any
given time a process is either in the foreground or the background; a process can switch
between the two states at well-defined times.

The foreground process has first priority for accessing the CPU. Other processes can
access the CPU only when the foreground process yields time to them. There is only one
foreground process at any one time. However, multiple processes can exist in the
background.

An application that is in the background can get CPU time but can’t interact with the
user while it is in the background. (However, the user can bring the application to the
foreground—for example, by clicking in one of the application’s windows.) Any
application that has the canBackgr ound flag set inits* SI ZE' resource is eligible to
obtain access to the CPU when it is in the background.

Applications can be designed without a user interface; these are called background-only
applications. A background-only application does not call the Window Manager

I ni t Wndows routine and is identified by having the onl yBackgr ound flag set in its

' SI ZE' resource. Background-only applications do not display windows or a menu bar
and are not listed in the Application menu.

About Processes 1-5

SYSe] pue Sassadild 01 uononpoau| .
=

1-6

CHAPTER 1

Introduction to Processes and Tasks

Background-only applications and applications that can run in the background should
be designed to relinquish the CPU often enough so that the foreground process can
perform its work and respond to the user.

Once an application is running, in either the foreground or the background, the CPU is
available only to that application. That application can be interrupted only by hardware
interrupts, which are transparent to the scheduling of the application. However, the
application that is running must periodically relinquish control of the CPU. This yielding
of the CPU allows background applications access to processing time and lets users
interact with the foreground application or switch to another application.

Your application can relinquish control of the CPU each time you call the Event Manager
functions Vi t Next Event or Event Avai | . If, at that time, there are no events pending
for your application, the Process Manager may schedule other processes for execution.
(You can also call the Get Next Event function; however, you should use

Wi t Next Event to provide greater support for cooperative multitasking.)

Process Creation

When a user first opens your application, the Process Manager creates a partition for it.
A partition is a contiguous block of memory that the Process Manager allocates for your
application’s use. The partition is divided into specific areas: application heap, A5 world,
and stack. The application heap contains the application’s' CODE' segment 1, data
structures, resources, and other code segments as needed. The A5 world contains the
application’s QuickDraw global variables, its application global variables, and its jump
table, all of which are accessed through the A5 register. The application jump table
contains one entry for every externally referenced routine in every code segment of your
application. The application stack is used to store temporary variables. (See the chapter
“Introduction to Memory Management” in Inside Macintosh: Memory for more complete
details on these areas of your application’s partition.)

When you create an application, you specify in its' SI ZE' resource how much memory
you want the Process Manager to allocate for your application’s partition. You specify
two values: the preferred amount of memory to allocate and the minimum amount of
memory to allocate. When a user opens your application from the Finder, the Process
Manager first attempts to allocate a partition of the preferred size. If your application
cannot be launched in the preferred amount of memory, the Finder might display a
dialog box giving the user the option of opening the application using less than the
preferred size. The Finder will not launch your application if the minimum amount of
memory specified for your application is not available.

After the Process Manager creates a partition for your application, the Process Manager
loads your code into memory and sets up the stack, heap, and A5 world (including the
jump table) for your application. If the user selects one or more files to open or print, the
Finder sets up information your application can use to determine which files to open or
print.

The Process Manager assigns the application a process serial number, records its context,
and returns control to the launching application (usually the Finder). The Process

About Processes

CHAPTER 1

Introduction to Processes and Tasks

Manager typically transfers control to the new application after the launching
application makes a subsequent call to Wi t Next Event or Event Avai | .

The next section describes how your application can allow other applications to receive
CPU time and how the Process Manager schedules CPU time among processes.

Process Scheduling

Your application can yield control of the CPU to other processes only at very specific
times, namely when you call the Event Manager functions Wi t Next Event or

Event Avai | . Whenever your application calls one of these functions, the Process
Manager checks the status of your process and takes the opportunity to schedule other
processes.

Note

Your application can also yield processing time to other processes as a
result of calling other Toolbox routines containing internal calls to

Wai t Next Event or Event Avai | . For example, your application can
yield the CPU to other processes as a result of calling either of the Apple
Event Manager functions AESend or AEl nt er act Wt hUser . See the
chapter “Apple Event Manager” in Inside Macintosh: Interapplication
Communication for information on using these two functions. O

In general, your application continues to receive processing time as long as any events
are pending for it. When your application is the foreground process, it yields time to
other processes in these situations: when the user wants to switch to another application
or when no events are pending for your application. Your application can also choose to
yield processing time to other processes when it is performing a lengthy operation.

A major switch occurs when the Process Manager switches the context of the foreground
process with the context of a background process (including the A5 worlds and
application-specific system global variables) and brings the background process to the
front, sending the previous foreground process to the background.

When your application is the foreground process and the user elects to work with
another application (by clicking in a window of another application, for example), the
Process Manager sends your application a suspend event if the

accept SuspendResuneEvent s bit is set in your application’s' SI ZE' resource. When
your application receives a suspend event, it should prepare to suspend foreground
processing, allowing the user to switch to the other application. For example, in response
to the suspend event, your application should remove the highlighting from the controls
of its frontmost window and take any other necessary actions. Your application is
actually suspended the next time it calls Wai t Next Event or Event Avai | .

After your application receives the suspend event and calls Vi t Next Event or
Event Avai | , the Process Manager saves the context of your process, restores the
context of the process to which the user is switching, and sends a resume event to that
process (if the accept SuspendResuneEvent s bitissetinits' SI ZE' resource). In
response to a resume event, your application should resume processing and start

About Processes 1-7

SYSe] pue Sassadild 01 uononpoau| .
=

1-8

CHAPTER 1

Introduction to Processes and Tasks

interacting with the user. For example, your application should highlight the controls of
its frontmost window.

A major switch also occurs when the user hides the active application (by choosing the
Hide command in the Application menu). In general, a major switch cannot occur when
a modal dialog box is the frontmost window. However, a major switch can occur when a
movable modal dialog box is the frontmost window.

A minor switch occurs when the Process Manager switches the context of a process to
give time to a background process without bringing the background process to the front.
For example, a minor switch occurs when no events are pending in the event queue of
the foreground process. In this situation, processes running in the background have an
opportunity to execute when the foreground process calls Wai t Next Event or

Event Avai | . (If the foreground process has one or more events pending in the event
gueue, then the next event is returned and the foreground process again has sole access
to the CPU.)

When an application is switched out in this way, the Process Manager saves the context
of the current process, restores the context of the next background process scheduled to
run, and sends the background process an event. At this time, the background process
can receive either update, null, or high-level events.

A background process should not perform any task that significantly limits the ability of
the foreground process to respond quickly to the user. A background process should call
Wi t Next Event often enough to let the foreground process be responsive to the user.
Upon receiving an update event, the background process should update only the content
of its windows. Upon receiving a null event, the background process can use the CPU to
perform tasks that do not require significant amounts of processing time.

The next time the background process calls Wi t Next Event or Event Avai | , the
Process Manager saves the context of the background process and restores the context of
the foreground process (if the foreground process is not waiting for a specified amount
of time to expire before being scheduled again). The foreground process is then
scheduled to execute. If no events are pending for the foreground process and it is
waiting for a specified amount of time to expire, the Process Manager schedules the next
background process to run. The Process Manager continues to manage the scheduling of
processes in this manner.

Drivers and vertical blanking (VBL) tasks installed in the system heap are scheduled
regardless of which application is currently executing. Drivers installed in an
application’s heap are not scheduled to run when the application is not executing. See
the section “Task Scheduling,” beginning on page 1-11, for more information about the
scheduling of interrupt tasks.

Note

See the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for specific information on how your application can handle
suspend and resume events and how your application can take
advantage of the cooperative multitasking environment. O

About Processes

CHAPTER 1

Introduction to Processes and Tasks

Whenever your application calls Wai t Next Event or Event Avai | , the Process
Manager checks the status of your process and takes the opportunity to schedule other
processes. Using the Vi t Next Event function, you can control when your process is
eligible to be switched out.

The sl eep parameter of the i t Next Event function specifies a length of time, in
ticks, during which the application relinquishes the CPU if no events are pending. For
example, if you specify a nonzero value in the sl eep parameter and no events are
pending in your application’s event queue when you call Wai t Next Event , the
Process Manager saves the context of your process and schedules other processes until
an event becomes available or the time expires. Once the specified time expires or an
event becomes available for your application, your process becomes eligible to run. At
this time, the Process Manager schedules your process to run at the next available
chance. (You can also call the Process Manager’s WakeUpPr ocess function to make a
process eligible to run before the time in the sl eep parameter expires.) If the time
specified by sl eep expires and no events are pending for your application, the Process
Manager sends your application a null event.

In general, you should specify a value greater than 0 in the sl eep parameter so that
those applications that need processing time can get it. If your application performs any
periodic task, then the frequency of the task usually determines what value you specify
in the sl eep parameter. The less frequent the task, the higher the value of the sl eep
parameter. A reasonable value for the sl eep parameter is 60.

About Tasks

An interrupt is a form of exception, an error or special condition detected by the
microprocessor in the course of program execution. In particular, an interrupt is an
exception that is signaled to the processor by a device. You cannot predict what your
application will be doing when an interrupt task is executed. Interrupts can occur not
only between different statements that your application executes but also in the middle
of a single call that your application makes. For example, your application might invoke
a Toolbox trap, and the microprocessor could receive an interrupt in the middle of the
execution of the corresponding Toolbox routine.

Interrupts are usually sent by a device to notify the microprocessor of a change in the
condition of the device. Routines that are executed as a result of an interrupt are known
as interrupt tasks. For example, an interrupt might cause execution of an interrupt task
that checks regularly for a change in the position of the mouse and updates the position
of the cursor to reflect any change.

Your application can initiate interrupt tasks of its own. For example, you could write an
interrupt task that repeatedly spins the cursor or increments a global variable. However,
even application-generated interrupt tasks do not occur at predictable points in your

application’s execution. Applications can schedule tasks to be performed at regular time

intervals, such as 100 times per second, or in response to conditions in hardware devices.

Tasks scheduled at regular time intervals are actually executed in response to hardware

About Tasks 1-9

SYSe] pue Sassadild 01 uononpoau| .
=

1-10

CHAPTER 1

Introduction to Processes and Tasks

devices that perceive that requested time intervals have elapsed. The actual execution of
tasks is independent of the flow of application code.

Task Creation

Many interrupt tasks are handled by system software and are transparent to your
application. However, your application can use any of several facilities to install its own
interrupt tasks that are executed not at regular points in the flow of its code but at
intervals determined by hardware devices.

= The Time Manager allows you to schedule periodic tasks and tasks to be executed
after a certain amount of time has elapsed. You can, for example, use the Time
Manager to compute elapsed times with great precision.

= The Vertical Retrace Manager allows you to schedule tasks to be executed between
retraces of a video screen. Tasks that you schedule with the Vertical Retrace Manager
can reset themselves, just like Time Manager tasks. Although the Vertical Retrace
Manager lacks the great precision of the Time Manager, it is available on all Macintosh
models.

= The Notification Manager allows both processes in the background and interrupt
tasks to alert the user. For example, your application might need to inform the user
that some error has occurred, rendering further background processing impossible.
You can pass to the Notification Manager’s installation routine a pointer to a response
procedure to be executed as the final stage of notification.

= The Device Manager allows device drivers for slot cards to install interrupts. If you
are writing slot-interrupt tasks, you might also wish to use the Deferred Task
Manager, which allows you to defer lengthy interrupt tasks that might prevent other
interrupt tasks from executing.

All of these managers need to maintain information about multiple interrupt tasks that
might have been installed. To hold such information, the Operating System uses data
structures known as operating-system queues. For more information on the structure of
such queues, see the chapter “Queue Utilities” in Inside Macintosh: Operating System
Utilities.

When an interrupt causes the microprocessor to suspend normal execution, the
processor uses the stack to save the address of the next instruction and the processor’s
internal status. In this way, when the microprocessor completes execution of interrupt
tasks, it can resume the current process where it left off.

After storing these values on the stack, the microprocessor executes an interrupt handler
to deal with the interrupt. The addresses of all of the interrupt handlers, called interrupt
vectors, are stored in a vector table in low memory. For example, if the interrupt is a
vertical retrace interrupt, the microprocessor examines the value of the Vertical Retrace
Manager’s interrupt vector and executes the interrupt handler whose code starts at the
address referenced by that value. The vertical retrace interrupt handler might then
execute one or more vertical blanking tasks. When an interrupt task is executed, the
interrupt is said to be serviced.

About Tasks

CHAPTER 1

Introduction to Processes and Tasks

Each type of interrupt has an interrupt priority level, which defines how important it is
that an interrupt be serviced. The microprocessor also maintains a processor priority
that limits which interrupts will be serviced. When a device generates an interrupt
whose interrupt priority level is higher than the processor priority level, the processor
priority level is raised to the interrupt priority level, the interrupt is serviced, and the
processor priority level is lowered to its previous level. When a device generates an
interrupt whose interrupt priority level is lower than or equal to the processor priority
level, the interrupt is ignored; interrupts of levels lower than the processor priority are
said to be disabled when higher-level interrupts are executing. This scheme ensures that
relatively important interrupts are not themselves interrupted by less important
interrupts.

If you are writing a typical application, you do not need to worry about interrupts
themselves or the low-level details associated with them. Your application installs
interrupt tasks and ordinarily does not need to worry about the interrupts that cause
them to execute. For more information on interrupts themselves, see the chapter “Device
Manager” in Inside Macintosh: Devices and the chapter “Deferred Task Manager” in this
book.

Task Scheduling

As previously indicated, your interrupt tasks are executed in response to an interrupt.
Because the execution of an interrupt task is not tied to the normal execution of your
application, that task might continue to be executed even when your application is not
itself executing. For example, all Time Manager tasks installed by your application
continue to be executed as scheduled, whether or not your application is still the current
application.

If it doesn’t make sense to continue executing a particular Time Manager task when your
application is no longer receiving processing time, you need to disable the execution of
that task whenever your application is switched out and then reenable the task when
your application regains control of the CPU. To disable a Time Manager task, you can
remove its entry from the Time Manager queue. To reenable it, reinstall its entry in the
queue.

In some cases, the Operating System automatically disables some of your application’s
interrupt tasks when your application is switched out. All VBL tasks installed by the
Vertical Retrace Manager routine VI nst al | (which are known as system-based VBL
tasks) are disabled whenever the installing application loses control of the CPU, if the
address of the task is in the application partition. If you want to continue executing a
system-based VBL task when your application is switched out, you must make sure that
the address of the task is in the system partition. See the chapter “Vertical Retrace
Manager” in this book for details on how to accomplish this.

Note

A VBL task installed by the routine Sl ot VI nst al | (known as a
slot-based VBL task) is always executed as scheduled, regardless of the
task’s address. O

About Tasks 1-11

SYSe] pue Sassadild 01 uononpoau| .
=

1-12

CHAPTER 1

Introduction to Processes and Tasks

When an interrupt task is executed, the Operating System does not always restore the
installing application’s context. As a result, you might not be able to read any
application-specific system global variables from within the task. In addition, the task
will not have access to any application-installed patches (which are part of its context). If
your interrupt task depends on any part of your application’s context, it should call the
Process Manager function Get Cur r ent Pr ocess to make sure that your process is
currently in control of the CPU and hence that its context is valid.

Note

Your interrupt code must also avoid calling traps that access
application-specific system global variables, unless you determine that
your application’s context is valid. In general, however, there is no way
to determine whether a trap accesses system global variables. O

Even if your application’s context is not valid, you can still access some information in
your application’s partition if you suitably set up and restore the A5 register within your
interrupt task. Your application global variables and your application’s jump table are
both accessed via an address in the microprocessor’s A5 register. If you need to read or
write any of your application’s global variables or call routines in another segment, you
must set up the A5 register with your application’s value of the Cur r ent A5 global
variable. Because you cannot in general inspect Cur r ent A5 at interrupt time, you need
to read its value at noninterrupt time and pass the value to your interrupt routine. See
the chapters “Time Manager” and “Vertical Retrace Manager” in this book for
illustrations of a technique you can use for this purpose. For more information on how to
set the A5 register properly, see the chapter “Memory Management Utilities” in Inside
Macintosh: Memory:.

If you do call routines in another code segment at interrupt time, you must make sure
that the segment is already loaded in memory. Otherwise, the Operating System will call
the Segment Manager to load the segment into memory, which could cause memory to
be allocated.

WARNING

Interrupt tasks should never directly or indirectly cause memory to be
allocated, moved, or purged, because the heap might be in an
inconsistent state when the task is executed. a

For this same reason, your interrupt tasks must never depend on the validity of handles
that are not locked. The interrupt task might be called in the middle of a
memory-allocation request, during which time the Memory Manager might be moving
an unlocked block in the heap. If you must access relocatable blocks of heap memory
within an interrupt task, make sure to lock those blocks before installing the task.

If virtual memory is available in the current operating environment, you also need to
make certain that your interrupt tasks do not attempt to read information in a page of
memory that might not be resident in physical RAM. Otherwise, the Operating System
will attempt to read the affected pages of memory into physical RAM, which is likely to
cause the system to crash. To be safe, you should hold all data and code accessed at
interrupt time in physical memory. For details, see the chapter “Virtual Memory
Manager” in Inside Macintosh: Memory.

About Tasks

CHAPTER 1

Introduction to Processes and Tasks

Task Guidelines

This section summarizes the guidelines to follow if your application installs tasks that
are executed at interrupt time.

Make your interrupt task as short as possible. A good strategy is to have the interrupt
task modify a global variable from which your application can determine what
noninterrupt processing to perform. If this strategy is not sufficient, you can use the
Deferred Task Manager to defer lengthy interrupt tasks until all interrupts are
reenabled.

If you modify your application’s global variables from within an interrupt task or call
routines in another code segment, make sure to set up and restore the A5 register. The
chapters “Time Manager” and “Vertical Retrace Manager” in this book contain
examples of this technique.

Don’t call any routines that cause memory to be moved or compacted, either directly
or indirectly.

Don’t use any handles that are not locked.

Make sure that the code segment containing the interrupt task is loaded, locked, and
unpurgeable. Never unload a code segment containing an active interrupt task.

Do not allocate parameter blocks or task records as local variables of routines that
might return before the interrupt task is completed.

Do not make synchronous calls in an interrupt task.

Minimize the amount of stack space your task uses. Remember that some interrupt
tasks execute at times when your application is not the current application; as a result,
you might not be able to predict how much stack space is available to your task.

Preserve all microprocessor registers other than A0-A3 and D0-D3. Most compilers
for high-level languages automatically generate code that does this.

About Tasks 1-13

SYSe] pue Sassadild 01 uononpoau| .
=

CHAPTER 2

Process Manager

Contents

About the Process Manager 2-3
Using the Process Manager 2-4
Getting Information About Other Processes 2-5
Launching Other Applications 2-7
Launching Desk Accessories 2-11
Terminating an Application 2-11
Process Manager Reference 2-13
Constants 2-13
Gestalt Selector and Response Bits 2-14
Process-ldentification Constants 2-14
Launch Options 2-15
Data Structures 2-16
Process Serial Number 2-16
Process Information Record 2-16
Launch Parameter Block 2-19
Application Parameters Record 2-20
Routines 2-21
Getting Process Information 2-21
Launching Applications and Desk Accessories 2-28
Terminating Processes 2-31
Summary of the Process Manager 2-32
Pascal Summary 2-32
Constants 2-32
Data Types 2-33
Routines 2-34
C Summary 2-35
Constants 2-35
Data Types 2-36
Routines 2-38
Assembly-Language Summary 2-39

Contents 2-1

2-2

CHAPTER 2

Data Structures
Trap Macros
Result Codes

Contents

2-39
2-40
2-40

CHAPTER 2

Process Manager

This chapter describes the Process Manager, the part of the Macintosh Operating System
that provides a cooperative multitasking environment. The Process Manager controls
access to shared resources and manages the scheduling and execution of applications.
The Finder uses the Process Manager to launch your application when the user opens
either your application or a document created by your application. This chapter
discusses how your application can control its execution and get information—for
example, the number of free bytes in the application’s heap—about itself or any other
open application.

Although earlier versions of system software provide process management, the Process
Manager is available to your application only in system software version 7.0 and later.
The Process Manager provides a cooperative multitasking environment, similar to the
features provided by the MultiFinder option in earlier versions of system software. You
can use the Gest al t function to find out if the Process Manager routines are available
and to see which features of the Launch function are available.

You should read the chapter “Introduction to Processes and Tasks” in this book for an
overview of how the Process Manager schedules applications and loads them into
memory. If your application needs to launch other applications, you need to read this
chapter for information on the high-level function that lets your application launch other
applications and the routines you can use to get information about open applications.

To use this chapter, you need to be familiar with how your application uses memory, as
described in the chapter “Introduction to Memory Management” in Inside Macintosh:
Memory. You should also be familiar with how your application receives events, as
discussed in the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

This chapter provides a brief description of the Process Manager and then shows how
you can

= control the execution of your application

= get information about your application

= launch other applications or desk accessories

= get information about applications launched by your application

= generate a list of all open applications and information about each one

= terminate the execution of your application

About the Process Manager

The Process Manager schedules the processing of all applications and desk accessories. It
allows multiple applications to share CPU time and other resources. Applications share
the available memory and access to the CPU. Several applications can be open (loaded
into memory) at once, but only one uses the CPU at any one time.

About the Process Manager 2-3

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

Note

For a complete description of how the Process Manager schedules
applications and desk accessories for execution, see the chapter
“Introduction to Processes and Tasks” in this book. O

The Process Manager also provides a number of routines that allow you to control the
execution of processes and to get information about processes, including your own. You
can use the Process Manager routines to

= control the execution of your application
= get information about processes

= launch other applications

= launch desk accessories

The Process Manager assigns a process serial number to each open application (or desk
accessory, if it is not opened in the context of an application). The process serial number
is unique to each process on the local computer and is valid for a single boot of the
computer. You can use the process serial number to specify a particular process for most
Process Manager routines.

When a user opens or prints a file from the Finder, it uses the Process Manager to launch
the application that created the file. The Finder sets up the information from which your
application can determine which files to open or print. The Finder information includes a
list of files to open or print.

In system software version 7.0 and later, applications that support high-level events (that
is, that have the i sHi ghLevel Event Awar e flag set in the ' SI ZE' resource) receive the
Finder information through Apple events. The chapter “Apple Event Manager” in Inside
Macintosh: Interapplication Communication describes how your application processes
Apple events to open or print files.

Applications that do not support high-level events can call the Count AppFi | es,
Cet AppFi | es,and O r AppFi | es routines or the Get AppPar ns routine to get the
Finder information. See the chapter “Introduction to File Management” in Inside
Macintosh: Files for information on these routines.

Using the Process Manager

2-4

This section shows how you can use the Process Manager to
= obtain information about open processes
» launch applications and desk accessories

= terminate your application

Using the Process Manager

CHAPTER 2

Process Manager

Getting Information About Other Processes

You can call the Get Next Pr ocess, Get Front Process, or Get Curr ent Process
functions to get the process serial number of a process. The Get Cur r ent Pr ocess
function returns the process serial number of the process currently executing, called the
current process. This is the process whose A5 world is currently valid; this process can
be in the background or foreground. The Get Fr ont Pr ocess function returns the
process serial number of the foreground process. For example, if your process is running
in the background, you can use Get Fr ont Pr ocess to determine which process is in the
foreground.

The Process Manager maintains a list of all open processes. You can specify the process
serial number of a process currently in the list and call Get Next Pr ocess to get the
process serial number of the next process in the list. The interpretation of the value

of a process serial number and of the order of the list of processes is internal to the
Process Manager.

labeuel\ ssao0id
N

When specifying a particular process, use only a process serial number returned by a
high-level event or a Process Manager routine, or constants defined by the Process
Manager. You can use these constants to specify special processes:

CONST
kNoPr ocess = 0; {process doesn’'t exist}
kSyst enPr ocess =1, {process belongs to COS}
kCurrent Process = 2; {the current process}

In all Process Manager routines, the constant KNoPr ocess refers to a process that
doesn’t exist, the constant kSyst enPr ocess refers to a process belonging to the
Operating System, and the constant kCur r ent Pr ocess refers to the current process.

To begin enumerating a list of processes, call the Get Next Pr ocess function and specify
the constant kNoPr ocess as the parameter. In response, Get Next Pr ocess returns the
process serial number of the first process in the list. You can use the returned process
serial number to get the process serial number of the next process in the list. When the
Get Next Pr ocess function reaches the end of the list, it returns the constant

kNoPr ocess and the result code pr ocNot Found.

You can also use a process serial number to specify a target application when your
application sends a high-level event. See the chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for information on how to use a process serial
number when your application sends a high-level event.

You can call the Get Pr ocessl nf or mat i on function to obtain information about any
process, including your own. For example, for a specified process, you can find

= the application’s name as it appears in the Application menu
the type and signature of the application

= the number of bytes in the application partition
= the number of free bytes in the application heap
the application that launched the application

Using the Process Manager 2-5

CHAPTER 2

Process Manager

The Get Processl nf or mat i on function returns information in a process information
record, which is defined by the Pr ocessl| nf oRec data type.

TYPE Processl nfoRec =

RECORD
processl nf oLengt h:

pr ocessNane:
processNunber :

processType:
processSi gnat ure:
pr ocesshbde:
processLocati on:
processSi ze:
processFreeMem
processLauncher:

processLaunchDat e:
processActi veTi ne:

processAppSpec:

END;

Longl nt; {length of process info record}
StringPtr; {nane of this process}
ProcessSeri al Nunber;

{psn of this process}

Longl nt; {file type of application file}
CSType; {signature of application file}
Longl nt; {'SI ZE' resource flags}

Ptr; {address of partition}

Longl nt ; {partition size}

Longl nt ; {free bytes in heap}

ProcessSeri al Nunber;
{process that |aunched this one}

Longl nt; {time when | aunched}
Longl nt; {accumul ated CPU ti ne}
FSSpecPtr ; {l ocation of the file}

You specify the values for three fields of the process information record:

processl nf oLengt h, pr ocessNane, and pr ocessAppSpec. You must either set the
pr ocessName and pr ocessAppSpec fields to NI L or set these fields to point to
memory that you have allocated for them. The Get Pr ocessl| nf or mat i on function
returns information in all other fields of the process information record. See “Process
Information Record” on page 2-16 for a complete description of the fields of this record.

Listing 2-1 shows how you can use the Get Next Pr ocess function with the
Get Processl nf or mat i on function to search the process list for a specific process.

Listing 2-1 Searching for a specific process

2-6

FUNCTI ON Fi ndAProcess (signature: OSType;

BEG N

Fi ndAPr ocess

VAR process: ProcessSerial Nunmber;
VAR | nf oRec: Processl nfoRec;
myFSSpecPtr: FSSpecPtr ;

nyName: Str31): Bool ean;

. = FALSE; {assunme FALSE}

process. hi ghLongOf PSN : = 0;
process. | owLongOf PSN : = kNoProcess; {start at the begi nning}

I nf oRec. processl nfoLength : = sizeof (Processl nf oRec);

Using the Process Manager

CHAPTER 2

Process Manager

I nf oRec. processNane : = Name;
I nf oRec. processAppSpec : = nyFSSpecPtr;

WHI LE (Get Next Process(process) = noErr) DO
BEG N
| F Get Processl nformati on(process, InfoRec) = noErr THEN
BEG N
I F (1 nfoRec. processType = Longlnt (' APPL')) AND
(I nfoRec. processSi gnature = signature) THEN
BEA N {found the process}
Fi ndAProcess : = TRUE;
Exi t (Fi ndAProcess);
END;
END;
END; {WH LE}
END;

The code in Listing 2-1 searches the process list for the application with the specified
signature. For example, you might want to find a specific process so that you can send a
high-level event to it.

Launching Other Applications

You can launch other applications by calling the high-level LaunchAppl i cati on
function. This function lets your application control various options associated with
launching an application. For example, you can

= allow the application to be launched in a partition smaller than the preferred size but
greater than the minimum size, or allow it to be launched only in a partition of the
preferred size

» launch an application without terminating your own application, bring the launched
application to the front, and get information about the launched application

= request that your application be notified if any application that it has launched
terminates

Earlier versions of system software used a shorter parameter block as a parameter to the
_Launch trap macro. The _Launch trap macro still supports the use of this parameter
block. Applications using the LaunchAppl i cat i on function should use the new
launch parameter block (of type LaunchPar anBl ockRec). Use the Gest al t function
and specify the selector gest al t OSAt t r to determine which launch features are
available.

Most applications don’t need to launch other applications. However, if your application
includes a desk accessory or another application, you might use either the high-level
LaunchAppl i cat i on function to launch an application or the
LaunchDeskAccessory function to launch a desk accessory. For example, if you have
implemented a spelling checker as a separate application, you might use the

Using the Process Manager 2-7

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

LaunchAppl i cat i on function to open the spelling checker when the user chooses

Check Spelling from one of your application’s menus.

You specify a launch parameter block as a parameter to the LaunchAppl i cati on
function. In this launch parameter block, you can specify the filename of the application
to launch, specify whether to allow launching only in a partition of the preferred size or
to allow launching in a smaller partition, and set various other options—for example,
whether your application should continue or terminate after it launches the specified

application.

The LaunchAppl i cat i on function launches the application from the specified file and
returns the process serial number, preferred partition size, and minimum partition size if
the application is successfully launched.

Note that if you launch another application without terminating your application, the
launched application does not actually begin executing until you make a subsequent call
to WAi t Next Event or Event Avai | .

The launch parameter block is defined by the LaunchPar anBl ockRec data type.

TYPE LaunchPar anBl ockRec =

2-8

RECORD

reservedl:
reserved2:

I aunchBl ockl D:

| aunchEPBLengt h:

[aunchFi | eFl ags:

| aunchCont rol Fl ags:
| aunchAppSpec:

| aunchProcessSN

| aunchPr ef erredSi ze:
| aunchM ni munsi ze:

| aunchAvai | abl eSi ze:
| aunchAppPar anet er s:

END;

Longl nt;

I nt eger;

I nt eger;

Longl nt;

| nt eger;

LaunchFl ags;
FSSpecPtr ;
ProcessSeri al Nunber;
Longl nt;

Longl nt;

Longl nt ;

AppPar anet ersbtr;

{reserved}

{reserved}

{ext ended bl ock}
{length of bl ock}
{app’ s Finder flags}
{launch options}
{location of app’s file}
{returned psn}
{returned pref size}
{returned mn size}
{returned avail size}
{hi gh-level event}

In the | aunchBl ockl Dfield, specify the constant ext endedBl ock to identify the
parameter block and to indicate that you are using the fields following it in the launch

parameter block.

CONST
ext endedBl ock

Using the Process Manager

= $4C43;

{ext ended bl ock}

CHAPTER 2

Process Manager

In the | aunchEPBLengt h field, specify the constant ext endedBl ockLen to indicate
the length of the remaining fields in the launch parameter block (that is, the length of the
fields following the | aunchEPBLengt h field). For compatibility, you should always
specify the length value in this field.

CONST
ext endedBl ockLen = si zeof (LaunchPar anBl ockRec) - 12;

The | aunchFi | eFl ags field contains the Finder flags for the application file. (See the
chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for a
description of the Finder flags.) The LaunchAppl i cat i on function sets this field for
you if you set the bit defined by the | aunchNoFi | eFl ags constant in the

I aunchCont r ol Fl ags field. Otherwise, you must get the Finder flags from the
application file and set this field yourself (by using the File Manager routine

FSpCet FI nf o, for example).

In the | aunchCont r ol FI ags field, you specify various options that control how the
specified application is launched. See the section “Launch Options” on page 2-15 for
information on the launch control flags.

You specify the application to launch in the | aunchAppSpec field of the launch
parameter block. In this field, you specify a pointer to a file system specification record
(FSSpec). See the chapter “File Manager” in Inside Macintosh: Files for a complete
description of the file system specification record.

The LaunchAppl i cat i on function sets the initial default directory of the application to
the parent directory of the application file.

If it successfully launches the application, LaunchAppl i cat i on returns, in the
I aunchPr ocessSNfield, a process serial number. You can use this number in Process
Manager routines to refer to this application.

The LaunchAppl i cat i on function returns the | aunchPr ef err edSi ze and

| aunchM ni nunti ze fields of the launch parameter block. The values of these fields
are based on their corresponding values in the ' SI ZE' resource. These values may be
greater than those specified in the application’s' SI ZE' resource because the returned
sizes include any adjustments to the size of the application’s stack. See the chapter
“Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials for information on how
the size of the application stack is adjusted. Values are always returned in these fields
whether or not the launch was successful. These values are 0 if an error occurred—for
example, if the application file could not be found.

The LaunchAppl i cat i on function returns a value in the | aunchAvai | abl eSi ze
field only when the menful | Er r result code is returned. This value indicates the largest
partition size currently available for allocation.

The | aunchAppPar anet er s field specifies the first high-level event sent to an
application. If you set this field to NI L, the LaunchAppl i cat i on function
automatically creates and sends an Open Application event to the launched application.
(See the chapter “Apple Event Manager” in Inside Macintosh: Interapplication
Communication for a description of this event.) To send a particular high-level event to

Using the Process Manager 2-9

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

the launched application, you can specify a pointer to an application parameters record.
The application parameters record is defined by the data type AppPar anet er s.

TYPE AppParaneters =

RECORD
t heMsgEvent : Event Recor d; {event (high-level)}
event Ref Con: Longl nt; {reference constant}
nmessagelengt h: Longl nt ; {length of buffer}
nessageBuf f er: ARRAY [0..0] OF SignedByte;

END;

You specify the high-level event in the fieldst heMsgEvent , event Ref Con,
nessagelengt h, and nessageBuf f er.

Listing 2-2 demonstrates how you can use the LaunchAppl i cat i on function.

Listing 2-2 Launching an application

PROCEDURE LaunchAnApplication (nySFReply: StandardFil eReply);

VAR
myLaunchPar amns: LaunchPar anBl ockRec;
| aunchedPr ocessSN: ProcessSeri al Nunber;
| aunchErr: CSErr;
pref Si ze: Longl nt ;
m nSi ze: Longl nt ;
avail Si ze: Longl nt;
BEG N
W TH nyLaunchPar ans DO
BEG N
| aunchBl ockl D : = ext endedBl ock;
| aunchEPBLengt h : = ext endedBl ockLen;
| aunchFi | eFl ags : = 0;
| aunchControl Fl ags : = launchConti nue + | aunchNoFi | eFl ags;

| aunchAppSpec : = @vySFReply.sfFile;
| aunchAppParaneters := NL;
END;
I aunchErr := LaunchApplication(@ryLaunchPar ans);

prefsize : = nmyLaunchParans. | aunchPref erredSi ze;
m nsi ze : = nyLaunchPar ans. | aunchM ni nunSi ze;
I F launchErr = noErr THEN
| aunchedProcessSN : = nyLaunchPar ans. | aunchProcessSN
ELSE I F | aunchErr = nenful | Err THEN
avai | Si ze : = myLaunchPar ans. | aunchAvai | abl eSi ze

2-10 Using the Process Manager

CHAPTER 2

Process Manager

ELSE
DoError (I aunchErr);
END;

Listing 2-2 indicates which application file to launch by using a file system specification
record (perhaps returned by the St andar dGet Fi | e routine) and specifying, in the

I aunchAppSpec field, a pointer to this record. The | aunchCont r ol Fl ags field
indicates that LaunchAppl i cat i on should extract the Finder flags from the application
file, launch the application in a partition of the preferred size, bring the launched
application to the front, and not terminate the current process.

By default, LaunchAppl i cat i on brings the launched application to the front and
sends the foreground application to the background. If you don’t want to bring an
application to the front when it is first launched, set the | aunchDont Swi t ch flag in the
I aunchCont r ol Fl ags field of the launch parameter block.

In addition, if you want your application to continue to run after it launches another
application, you must set the | aunchCont i nue flag in the | aunchCont r ol Fl ags
field of the launch parameter block. For a complete description of the available launch
control options, see “Launch Options” on page 2-15.

If you want your application to be notified about the termination of an application it has
launched, set the accept AppDi edEvent s flag in your' SI ZE' resource. If you set this
flag and an application launched by your application terminates, your application
receives an Application Died Apple event (' aevt' ' obit'). See “Terminating an
Application” on page 2-11 for more information on the Application Died event.

Launching Desk Accessories

In system software version 7.0 and later, the Process Manager launches a desk accessory
in its own partition when that desk accessory is opened, giving it a process serial
number and an entry in the process list. The Process Manager puts the name of the desk
accessory in the list of open applications in the Application menu and also gives the
active desk accessory its own About menu item in the Apple menu containing the name
of the desk accessory. This makes desk accessories more consistent with the user
interface of small applications.

Although you can use the LaunchDeskAccessor y function to launch desk accessories,
you should use it only when your application needs to launch a desk accessory for some
reason other than the user’s choosing a desk accessory from the Apple menu. Beginning
in system software version 7.0, the Apple menu can contain any Finder object that the
user decides to add to the menu. When the user chooses any such user-added item from
the Apple menu, your application should respond by calling the OpenDeskAcc function
instead.

Terminating an Application

The Process Manager automatically terminates a process when the process either exits its
main routine or encounters a fatal error condition (such as an attempt to divide by 0).

Using the Process Manager 2-11

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

When a process terminates, the Process Manager takes care of any required cleanup
operations; these include removing the process from the list of open processes and
releasing the memory occupied by the application partition (as well as any temporary
memory the process still holds). If necessary, the Process Manager sends an Application
Died event to the process that launched the one about to terminate.

Your application can also terminate itself directly by calling the Exi t ToShel |

procedure. In general, you need to call Exi t ToShel | only if you want to terminate your
application without having it return from its main routine. This might be useful when
your initialization code detects that some essential system capability is not available (for
instance, when the computer running a stereo sound-editing application does not
support stereo sound playback). Listing 2-3 shows one way to exit gracefully in this
situation.

Listing 2-3 Terminating an application

PROCEDURE CheckFor St er eoSound;

VAR
nyErr: OSErr; {result code from CGestalt}
nyFeature: Longlnt; {features bit flags from Gestalt}
nyString: Str 255; {text of alert nessage}
nyltem I nt eger; {itemreturned by StopAlert}
CONST
kAl ert BoxI D = 128; {resource I D of alert tenplate}
kAlertStrings = 128; {resource I D of alert strings}
kNoSt ereocAl ert = 5; {index of No Stereo alert text}

BEG N
nmyErr := Cestalt(gestaltSoundAttr, mnyFeature);
IF nyErr = noErr THEN
| F BTst (nyFeature, gestaltStereoCapability) = FALSE THEN
BEG N
GetlndString(nmyString, kAlertStrings, kNoStereoAlert);
Par anifext (nyString, "', "', '');
nyltem:= StopAl ert (kA ertBoxlD, NL);
Exi t ToShel | ; {exit the application}
END
ELSE
DoError (nyErr);
END;

The procedure CheckFor St er eoSound defined in Listing 2-3 checks whether the
computer supports stereo sound playback. If not, CheckFor St er eoSound notifies the
user by displaying an alert box and terminates the application by calling Exi t ToShel | .

2-12 Using the Process Manager

CHAPTER 2

Process Manager

Note

The Exi t ToShel | procedure is the only means of terminating a
process. It is always called during process termination, whether by your
application itself, the Process Manager, or some other process. O

If your application launches another application that terminates, either normally or as
the result of an error, the Process Manager can notify your application by sending it an
Application Died event. To request this notification, you must set the accept AppDi ed
flag in your application’s ' SI ZE' resource. (For a complete description of the ' SI ZE'
resource, see the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.)

Application Died—inform that an application has terminated
Event ID kAEAppl i cati onDi ed
Required parameters

labeuel\ ssao0id
N

Keyword keyEr r or Nunber
Descriptor type t ypeLongl nt eger
Data A sign-extended OSEr r value. A value of noEr r indicates

normal termination; any other value indicates that the
application terminated because of an error.

Keyword keyProcessSeri al Nunmber

Descriptor type t ypeProcessSeri al Nunber

Data The process serial number of the application that terminated.
Requested action None. This Apple event is sent only to provide information.

The Process Manager gets the value of the keyEr r or Nunber parameter from the
system global variable DSEr r Code. This value can be set either by the application before
it terminates or by the Operating System (when the application terminates as the result
of a hardware exception or other problem).

Process Manager Reference

This section describes the constants, data structures, and routines that are specific to the
Process Manager.

Constants

You can use Process Manager constants to get information about the attributes of the
Process Manager, identify certain special processes, and specify launch options.

Process Manager Reference 2-13

CHAPTER 2

Process Manager

Gestalt Selector and Response Bits

You can determine if the Process Manager is available and find out which features of the
launch routine are available by calling the Gest al t function with the selector
gestal t CSAttr.

CONST
gestal t CSAttr ='os ';{QS attributes}

The Gest al t function returns information by setting or clearing bits in the r esponse
parameter. The following constants define the bits currently used:

CONST
gest al t LaunchCanRet ur n = 1; {can return fromlaunch}
gestal t LaunchFul | Fil eSpec = 2; {LaunchApplication avail abl e}
gestal t LaunchContr ol = 3; {Process Manager is avail abl e}

Constant descriptions

gest al t LaunchCanRet ur n
Set if the _Launch trap macro can return to the caller. The _Launch
trap macro in system software version 7.0 (and in earlier versions
running MultiFinder) gives your application the option to continue
running after it launches another application. In earlier versions of
system software not running MultiFinder, the _Launch trap macro
forces the launching application to quit.

gest al t LaunchFul | Fi | eSpec
Set if the | aunchCont r ol FI ags field supports control flags in
addition to the | aunchCont i nue flag, and if the _Launch trap can
process the | aunchAppSpec, | aunchPr ocessSN,
| aunchPr ef erredSi ze, | aunchM ni munti ze,
| aunchAvai | abl eSi ze, and | aunchAppPar anet er s fields in
the launch parameter block.

gestal t LaunchCont r ol
Set if the Process Manager is available.

Process-ldentification Constants

2-14

The Process Manager provides three constants that can be used instead of a process
serial number to identify a process:

CONST
kNoPr ocess = 0; {process doesn’'t exist}
kSyst enPr ocess = 1; {process belongs to OS}
kCurrent Process = 2; {the current process}

Process Manager Reference

CHAPTER 2

Process Manager

Constant descriptions

kNoPr ocess
kSyst enPr ocess

kCurrent Process

Launch Options

Identifies a process that doesn’t exist.
Identifies a process that belongs to the Operating System.

Identifies the current process.

When you use the LaunchAppl i cat i on function, you specify the launch options in the
I aunchCont r ol Fl ags field of the launch parameter block. These are the constants you
can specify in the | aunchCont r ol Fl ags field:

CONST

[aunchCont i nue

I aunchNoFi | eFl ags

| aunchUseM ni mum

I aunchDont Swi t ch

I aunchl nhi bi t Daenon

$4000;
$0800;
$0400;
$0200;
$0080;

labeuel\ ssao0id
N

Constant descriptions

| aunchConti nue

Set this flag if you want your application to continue after the
specified application is launched. If you do not set this flag,
LaunchAppl i cat i on terminates your application after launching
the specified application, even if the launch fails.

I aunchNoFi | eFl ags

Set this flag if you want the LaunchAppl i cat i on function to
ignore any value specified in the | aunchFi | eFl ags field. If you
set the | aunchNoFi | eFl ags flag, the LaunchAppl i cati on
function extracts the Finder flags from the application file for you. If
you want to supply the file flags, clear the | aunchNoFi | eFl ags
flag and specify the Finder flags in the | aunchFi | eFl ags field of
the launch parameter block.

| aunchUseM ni num

Clear this flag if you want the LaunchAppl i cat i on function to
attempt to launch the application in the preferred size (as specified
in the application’s' SI ZE' resource). If you set the

I aunchUseM ni numflag, the LaunchAppl i cati on function
attempts to launch the application using the largest available size
greater than or equal to the minimum size but less than the
preferred size. If the LaunchAppl i cat i on function returns the
result code nentul | Er r or mentr agEr r, the application cannot be
launched under the current memory conditions.

| aunchDont Swi t ch

Set this flag if you do not want the launched application brought to
the front. If you set this flag, the launched application runs in the
background until the user brings the application to the front—for

Process Manager Reference 2-15

CHAPTER 2

Process Manager

example, by clicking in one of the application’s windows. Note that
most applications expect to be launched in the foreground. If you
clear the | aunchDont Swi t ch flag, the launched application is
brought to the front, and your application is sent to the background.
[aunchl nhi bi t Daenon
Set this flag if you do not want LaunchAppl i cat i on to launch a
background-only application. (A background-only application has
the onl yBackgr ound flag set inits' SI ZE' resource.)

Data Structures

This section describes the data structures that you use to provide information to the
Process Manager or that the Process Manager uses to return information to your
application.

Process Serial Number

The Process Manager uses process serial numbers to identify open processes. A process
serial number is a 64-bit quantity whose structure is defined by the
ProcessSeri al Nunber data type.

IMPORTANT

The meaning of the bits in a process serial number is internal to the
Process Manager. You should not attempt to interpret the value of the
process serial number. If you need to compare two process serial
numbers, call the SamePr ocess function. a

TYPE ProcessSeri al Nunber =

RECORD
hi ghLongOrf PSN: Longl nt; {hi gh-order 32 bits of psn}
| owLongOF PSN: Longl nt; {loworder 32 bits of psn}
END;

Field descriptions
hi ghLongOf PSN The high-order long integer of the process serial number.
| owLongOF PSN The low-order long integer of the process serial number.

Process Information Record

The Get Pr ocessl nf or mat i on function returns information in a process information
record, which is defined by the Pr ocessl nf oRec data type.

TYPE Processl nfoRec =

RECORD
processl nf oLengt h: Longl nt; {length of process info record}
processNane: StringPtr; {name of this process}

2-16 Process Manager Reference

CHAPTER 2

Process Manager

pr ocessNumnber : ProcessSeri al Nunber;

{psn of this process}
processType: Longl nt ; {file type of application file}
processSi ghat ur e: CSType; {signature of application file}
processhbde: Longl nt ; {'SIZE' resource flags}
processLocati on: Ptr; {address of partition}
processSi ze: Longl nt; {partition size}
processFreeMem Longl nt ; {free bytes in heap}
processLauncher: ProcessSeri al Nunber

{process that |aunched this one}
processLaunchDat e: Longl nt ; {time when | aunched}
processActi veTi ne: Longl nt; {accumul ated CPU ti ne}
pr ocessAppSpec: FSSpechktr; {location of the file}

END;

Field descriptions

processl nfolLength
The number of bytes in the process information record. For
compatibility, you should specify the length of the record in this
field.

pr ocessNane The name of the application or desk accessory. For applications, this
field contains the name of the application as designated by the user
at the time the application was opened. For example, for foreground
applications, the pr ocessNan® field contains the name as it
appears in the Application menu. For desk accessories, the
pr ocessNane field contains the name of the' DRVR' resource. You
must specify NI L in the pr ocessNane field if you do not want the
application name or the desk accessory hame returned. Otherwise,
you should allocate at least 32 bytes of storage for the string pointed
to by the pr ocessNane field. Note that the pr ocessNane field
specifies the name of either the application or the ' DRVR' resource,
whereas the pr ocessAppSpec field specifies the location of the file.

processNunmber The process serial number. The process serial number is a 64-bit
number; the meaning of these bits is internal to the Process
Manager. You should not attempt to interpret the value of the
process serial number.

processType The file type of the application, generally ' APPL' for applications
and ' appe' for background-only applications launched at startup.
If the process is a desk accessory, this field specifies the type of the
file containing the ' DRVR' resource.

processSi gnature
The signature of the file containing the application or the ' DRVR
resource (for example, the signature of the TeachText application is
"ttxt').

Process Manager Reference 2-17

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

pr ocesshMbde Process mode flags. These flags indicate whether the process is an
application or desk accessory. For applications, this field also
returns information specified in the application’s' SI ZE' resource.
This information is returned as flags. You can refer to these flags by
using these constants:

CONST
nodeDeskAccessory = $00020000;
modeMul ti Launch = $00010000;
nodeNeedSuspendResurmne = $00004000;
nodeCanBackgr ound = $00001000;
nmodeDoesAct i vat eOnFGSwi t ch = $00000800;
nodeOnl yBackgr ound = $00000400;
nodeGet Front C i cks = $00000200;
nodeGet AppDi edMsg = $00000100;
node32Bi t Conpati bl e = $00000080;
nodeHi ghLevel Event Awnar e = $00000040;
nodelLocal AndRenot eHLEvent s = $00000020;
nodeSt at i oner yAwar e = $00000010;
nodeUseText Edi t Servi ces = $00000008;

processLocati on
The beginning address of the application partition.

processSi ze The number of bytes in the application partition (including the
heap, stack, and A5 world).

processFreeMem
The number of free bytes in the application heap.

pr ocessLauncher
The process serial number of the process that launched the
application or desk accessory. If the original launcher of the process
is no longer open, this field contains the constant kNoPr ocess.

processLaunchDat e
The value of the Ti cks global variable at the time that the process
was launched.

processActi veTi ne
The accumulated time, in ticks, during which the process has used
the CPU, including both foreground and background processing
time.

processAppSpec
The address of a file specification record that stores the location of
the file containing the application or ' DRVR' resource. You should
specify NI L in the pr ocessAppSpec field if you do not want the
FSSpec record of the file returned.

2-18 Process Manager Reference

CHAPTER 2

Process Manager

Launch Parameter Block

You specify a launch parameter block as a parameter to the
LaunchAppl i cat i on function. The launch parameter block is defined
by the LaunchPar anmBl ockRec data type.

TYPE LaunchPar anBl ockRec =

RECORD
reservedl: Longl nt; {reserved}
reserved2: I nt eger; {reserved}
| aunchBl ockl D: I nt eger; {ext ended bl ock} g
| aunchEPBLengt h: Longl nt ; {l ength of bl ock} 5
| aunchFi | eFl ags: I nt eger; {app’ s Finder flags} ;
| aunchControl Fl ags: LaunchFl ags; {launch options} 2
| aunchAppSpec: FSSpecPtr ; {l ocation of app’s file} %
I aunchPr ocessSN: ProcessSeri al Nunber; {returned psn} A
I aunchPr ef erredSi ze: Longl nt; {returned pref size}
| aunchM ni munsi ze: Longl nt ; {returned nmin size}
[aunchAvai | abl eSi ze: Longl nt ; {returned avail size}
| aunchAppPar anet er s: AppPar anet ersPtr; {hi gh-level event}

END;

Field descriptions
reservedl
reserved2
| aunchBl ockl D

Reserved.
Reserved.

A value that indicates whether you are using the fields following it
in the launch parameter block. Specify the constant
ext endedBl ock if you use the fields that follow it.

| aunchEPBLengt h
The length of the fields following this field in the launch parameter
block. Use the constant ext endedBl ockLen to specify this value.

I aunchFi | eFl ags
The Finder flags for the application file. Set the
| aunchNoFi | eFl ags constant in the | aunchCont r ol Fl ags
field if you want the LaunchAppl i cat i on function to extract the
Finder flags from the application file and to set the
I aunchFi | eFl ags field for you.

| aunchCont rol Fl ags
The launch options that determine how the application is launched.
You can specify these constant values to set various options:

CONST
| aunchCont i nue = $4000;
| aunchNoFi | eFl ags = $0800;

Process Manager Reference 2-19

CHAPTER 2

Process Manager

| aunchUseM ni mum = $0400;
| aunchDont Swi t ch = $0200;
| aunchl nhi bi t Daenon = $0080;

See “Launch Options” on page 2-15 for a complete description of
these flags.

| aunchAppSpec A pointer to a file specification record that gives the location of the
application file to launch.

| aunchProcessSN
The process serial number returned to your application if the launch
is successful. You can use this process serial number in other
Process Manager routines to refer to the launched application.

| aunchPreferredSi ze
The preferred partition size for the launched application as
specified in the launched application’s' SI ZE' resource.
LaunchAppl i cat i on sets this field to 0 if an error occurred or if
the application is already open.

[aunchM ni nunti ze
The minimum partition size for the launched application as
specified in the launched application’s' SI ZE' resource.
LaunchAppl i cat i on sets this field to 0 if an error occurred or if
the application is already open.

| aunchAvai | abl eSi ze
The maximum partition size that is available for allocation. This
value is returned to your application only if the mentul | Er r result
code is returned. If the application launch fails because of
insufficient memory, you can use this value to determine if there is
enough memory available to launch in the minimum size.

| aunchAppPar anet er s
The first high-level event to send to the launched application. If you
set this field to NI L, LaunchAppl i cat i on creates and sends the
Open Application Apple event to the launched application.

Application Parameters Record

2-20

You specify an application parameters record in the | aunchAppPar anet er s field of
the launch parameter block whose address is passed to the LaunchAppl i cati on
function. This record specifies the first high-level event to be sent to the newly launched
application. The application parameters record is defined by the AppPar anet er s

data type.

TYPE AppParaneters =

RECORD
t heMsgEvent : Event Recor d; {event (high-1level)}
event Ref Con: Longl nt ; {reference constant}

Process Manager Reference

Routines

CHAPTER 2

Process Manager

nmessagelengt h: Longl nt; {length of buffer}
nmessageBuffer: ARRAY [0..0] OF SignedByte;
END;

Field descriptions

t heMsgEvent The event record specifying the first high-level event to be sent to
the launched application.

event Ref Con A reference constant. Your application can use this field for its own
purposes.

nmessagelLengt h The length of the buffer specified by the nessageBuf f er field.

nmessageBuf f er Abuffer of data. The nature of this data varies according to the
event being sent.

labeuel\ ssao0id
N

This section describes the Process Manager routines you can use to get information
about any currently open applications, to control process execution, to launch other
applications, and to terminate your application.

Getting Process Information

You can use the Process Manager to get the process serial number of a particular process,
to generate a list of all open processes, to get information about processes, or to change
the scheduling status of a process.

GetCurrentProcess

DESCRIPTION

Use the Get Cur r ent Pr ocess function to get information about the current process,
if any.

FUNCTI ON CGet Current Process (VAR PSN: ProcessSeri al Nunber): OSErr;

PSN On output, the process serial number of the current process.

The Get Cur r ent Pr ocess function returns, in the PSN parameter, the process serial
number of the process that is currently running, that is, the one currently accessing the
CPU. This is the application associated with the Cur r ent A5 global variable. This
application can be running in either the foreground or the background.

Applications can use this function to find their own process serial number. Drivers can
use this function to find the process serial number of the current process. You can use the
returned process serial number in other Process Manager routines.

Process Manager Reference 2-21

CHAPTER 2

Process Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Get Cur r ent Pr ocess function are

Trap macro Selector
_OSDi spat ch $0037

RESULT CODE
nokErr 0 No error
GetNextProcess
Use the Get Next Pr ocess function to get information about the next process, if any, in
the Process Manager’s internal list of open processes.
FUNCTI ON CGet Next Process (VAR PSN: ProcessSeri al Nunber): OSErr;
PSN On input, the process serial number of a process. This number should be a
valid process serial number returned from LaunchAppl i cati on,
Get Next Pr ocess, Get Front Pr ocess, or Get Cur r ent Process, or
else the defined constant KNoPr ocess. On output, the process serial
number of the next process, or else KNoPr ocess.
DESCRIPTION

The Process Manager maintains a list of all open processes. You can derive this list by
using repetitive calls to Get Next Pr ocess. Begin generating the list by calling

Get Next Pr ocess and specifying the constant KNoPr ocess in the PSN parameter. You
can then use the returned process serial number to get the process serial number of the
next process. Note that the order of the list of processes is internal to the Process
Manager. When the end of the list is reached, Get Next Pr ocess returns the constant
kNoPr ocess in the PSN parameter and the result code pr ocNot Found.

You can use the returned process serial number in other Process Manager routines. You
can also use this process serial number to specify a target application when your
application sends a high-level event.

ASSEMBLY-LANGUAGE INFORMATION

2-22

The trap macro and routine selector for the Get Next Pr ocess function are

Trap macro Selector
_0OsDhi spat ch $0038

Process Manager Reference

RESULT CODES

CHAPTER 2

Process Manager

nokErr 0 No error
par anerr -50 Process serial number is invalid
pr ocNot Found -600 No process in the process list following the specified process

GetProcessIinformation

DESCRIPTION

Use the Get Pr ocessl| nf or mat i on function to get information about a specific process.

FUNCTI ON Get Processl nformati on (PSN: ProcessSeri al Nunber;
VAR i nfo: ProcesslnfoRec): OSErr;

PSN The process serial number of a process. This number should be a valid
process serial number returned from LaunchAppl i cati on,
Get Next Process, Get Front Process, Get Current Process, orelsea
high-level event. You can use the constant kCur r ent Pr ocess to get
information about the current process.

labeuel\ ssao0id
N

info A record containing information about the specified process.

The Get Pr ocessl nf or mat i on function returns, in a process information record,
information about the specified process. The information returned in the i nf o
parameter includes the application’s name as it appears in the Application menu, the
type and signature of the application, the address of the application partition, the
number of bytes in the application partition, the number of free bytes in the application
heap, the application that launched the application, the time at which the application
was launched, and the location of the application file. See “Getting Information About
Other Processes” on page 2-5 for the structure of the process information record.

The Get Processl nf or mat i on function also returns information about the
application’s' SI ZE' resource and indicates whether the process is an application or a
desk accessory.

You need to specify values for the pr ocessl| nf oLengt h, pr ocessNane, and

pr ocessAppSpec fields of the process information record. Specify the length of the
process information record in the pr ocessl| nf oLengt h field. If you do not want
information returned in the pr ocessNane and pr ocessAppSpec fields, specify NI L
for these fields. Otherwise, allocate at least 32 bytes of storage for the string pointed to
by the pr ocessNane field and, in the pr ocessAppSpec field, specify a pointer to an
FSSpec record.

Process Manager Reference 2-23

CHAPTER 2

Process Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Get Pr ocessl nf or mat i on function are

Trap macro Selector
_OSDi spat ch $003A

SPECIAL CONSIDERATIONS
Do not call Get Pr ocessl nf or mat i on at interrupt time.

RESULT CODES

nokErr 0 No error

par anerr -50 Process serial number is invalid
SameProcess

Use the SanePr ocess function to determine whether two process serial numbers
specify the same process.

FUNCTI ON SameProcess (PSN1, PSN2: ProcessSeri al Nunber;
VAR result: Bool ean): OSErr;

PSN1 A process serial number.
PSN2 A process serial number.
result A Boolean value that indicates whether the process serial numbers passed

in PSN1 and PSN2 refer to the same process.

DESCRIPTION

The SanePr ocess function compares two process serial numbers and determines
whether they refer to the same process. If the process serial numbers specified in the
PSNL1 and PSN2 parameters refer to the same process, the SanmePr ocess function
returns TRUE in the r esul t parameter; otherwise, it returns FALSE in ther esul t
parameter.

Do not attempt to compare two process serial numbers by any means other than the
SanePr ocess function, because the interpretation of the bits in a process serial number
is internal to the Process Manager.

The values of PSN1 and PSN2 must be valid process serial numbers returned from
LaunchAppl i cati on, Get Next Pr ocess, Get Front Process,

Get Cur rent Process, or a high-level event. You can also use the constant

kCur r ent Pr ocess to refer to the current process.

2-24 Process Manager Reference

CHAPTER 2

Process Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SanmePr ocess function are

Trap macro Selector
_OSDi spat ch $003D

RESULT CODES

noErr 0 No error

par anerr -50 Process serial number is invalid
GetFrontProcess

Use the Get Fr ont Pr ocess function to get the process serial number of the front
process.

FUNCTI ON Get Front Process (VAR PSN: ProcessSeri al Nunber): OSErr;

PSN On output, the process serial number of the process running in the
foreground.

DESCRIPTION

The Get Fr ont Pr ocess function returns, in the PSN parameter, the process serial
number of the process running in the foreground. You can use this function to determine
if your process or some other process is in the foreground. You can use the process serial
number returned in the PSN parameter in other Process Manager routines.

If no process is running in the foreground, Get Fr ont Pr ocess returns the result code
pr ocNot Found.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Get Fr ont Pr ocess function are

Trap macro Selector
_(OSDi spat ch $0039

Process Manager Reference 2-25

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

RESULT CODES

noErr 0 No error
par anerr -50 Process serial number is invalid
pr ocNot Found -600 No process in the foreground

SetFrontProcess

Use the Set Fr ont Pr ocess function to set the front process.
FUNCTI ON Set Front Process (PSN: ProcessSeri al Nunber): OSErr;

PSN The process serial number of the process you want to move to the
foreground. This number should be a valid process serial number
returned from LaunchAppl i cat i on, Get Next Pr ocess,

Get Front Process, Get Current Process, or a high-level event. You
can also use the constant kCur r ent Pr ocess to refer to the current
process.

DESCRIPTION

The Set Fr ont Pr ocess function schedules the specified process to move to the
foreground. The specified process moves to the foreground after the current foreground
process makes a subsequent call to WAi t Next Event or Event Avai | .

If the specified process serial number is invalid or if the specified process is a
background-only application, Set Fr ont Pr ocess returns a nonzero result code and
does not change the current foreground process.

If a modal dialog box is the frontmost window, the specified process remains in the
background until the user dismisses the modal dialog box.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Set Fr ont Pr ocess function are

Trap macro Selector
_OSDi spat ch $003B

SPECIAL CONSIDERATIONS
Do not call Set Fr ont Pr ocess interrupt time.

2-26 Process Manager Reference

CHAPTER 2

Process Manager

RESULT CODES
noErr 0 No error
pr ocNot Found -600 Process with specified process serial number doesn’t exist
or process is suspended by high-level debugger
appl sDaenon -606 Specified process runs only in the background
WakeUpProcess

DESCRIPTION

Use the WakeUpPr ocess function to make a process suspended by Wai t Next Event
eligible to receive CPU time.

FUNCTI ON WakeUpProcess (PSN: ProcessSerial Nunber): OSErr;

PSN The process serial number of the process to be made eligible. This number
should be a valid process serial number returned from
LaunchAppl i cati on, Get Next Process, Get Front Process,
CGet Cur rent Process, or a high-level event. You can also use the
constant KCur r ent Pr ocess to refer to the current process.

The WakeUpPr ocess function makes a process suspended by Wi t Next Event eligible
to receive CPU time. A process is suspended when the value of the s| eep parameter in
the Wi t Next Event function is not 0 and no events for that process are pending in the
event queue. This process remains suspended until the time specified in the sl eep
parameter expires or an event becomes available for that process. You can use
WakeUpPr ocess to make the process eligible for execution before the time specified in
the sl eep parameter expires.

The WakeUpPr ocess function does not change the order of the processes scheduled for
execution; it only makes the specified process eligible for execution.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the WAkeUpPr ocess function are

Trap macro Selector
_0OsDhi spat ch $003C

Process Manager Reference 2-27

labeuel\ ssao0id
N

RESULT CODES

CHAPTER 2

Process Manager

noErr 0 No error

pr ocNot Found -600 Suspended process with specified process serial number
doesn’t exist

Launching Applications and Desk Accessories

Your application can use the LaunchAppl i cat i on function to launch other
applications and the LaunchDeskAccessor y function to launch desk accessories.

LaunchApplication

DESCRIPTION

2-28

You can use the LaunchAppl i cat i on function to launch an application.
FUNCTI ON LaunchAppli cation (LaunchParams: LaunchPBPtr): OSErr;
LaunchPar ans

A pointer to a launch parameter block specifying information about the

application to launch.

Parameter block

- launchBl ockl D I nt eger Extended block
- launchEPBLengt h Longl nt Length of following fields
- launchFi | eFl ags I nt eger Finder flags for the application file
- launchControl Fl ags LaunchFl ags Flags for launch options
- launchAppSpec FSSpecPt r Location of application file to launch
- | aunchProcessSN ProcessSeri al Nunber
Process serial number
~ launchPreferredSi ze Longlnt Preferred application partition size
~ launchM ni nuntsi ze Longl nt Minimum application partition size
« launchAvail abl eSi ze Longl nt Maximum available partition size
- | aunchAppParaneters AppPar anet er sPtr
High-level event for launched
application

The LaunchAppl i cat i on function launches the application from the specified file and
returns the process serial number, preferred partition size, and minimum partition size if
the application is successfully launched.

Note that if you launch another application without terminating your application, the
launched application is not actually executed until you make a subsequent call to
Wi t Next Event or Event Avai | .

Process Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

CHAPTER 2

Process Manager

Set the | aunchCont i nue flag in the | aunchCont r ol FlI ags field of the launch
parameter block if you want your application to continue after the specified application
is launched. If you do not set this flag, LaunchAppl i cat i on terminates your
application after launching the specified application, even if the launch fails.

The trap macro and registers on entry and exit for LaunchAppl i cat i on are

Trap macro

_Launch

Registers on entry

A0 Pointer to launch parameter block

Registers on exit

A0 Pointer to launch parameter block

DO Result code

noErr
menful | Err

menfr agEr r

appModeErr
appMentul | Err

appl sDaenon

-108

—601

—602
—605

—606

Process Manager Reference

No error

Not enough memory to allocate the partition size
specified in the' SI ZE' resource

Not enough room to launch application with special
requirements

Memory mode is 32-bit, but application is not 32-bit clean
More memory is required for the partition size than the
amount specified in the ' SI ZE' resource

Application runs only in the background, and launch
flags don’t allow background-only applications

2-29

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

LaunchDeskAccessory

DESCRIPTION

You can use the LaunchDeskAccessor y function to launch desk accessories. Use this
function only when your application needs to launch a desk accessory for some reason
other than the user’s choosing one from the Apple menu. (When the user chooses any
Apple menu item that is not specific to your application, use the OpenDeskAcc
function.)

FUNCTI ON LaunchDeskAccessory (pFil eSpec: FSSpechktr;
pDANane: StringPtr): OSErr;

pFi | eSpec A pointer to a file system specification of the resource fork to search for
the specified desk accessory.

pDANane The name of the ' DRVR' resource to launch.

The LaunchDeskAccessor y function searches the resource fork of the file specified by
the pFi | eSpec parameter for the desk accessory with the ' DRVR' resource name
specified in the pDANane parameter. If the' DRVR' resource name is found,
LaunchDeskAccessory launches the corresponding desk accessory. If the desk
accessory is already open, it is brought to the front.

Use the pFi | eSpec parameter to specify the file to search. Specify NI L as the value of
pFi | eSpec if you want to search the current resource file and the resource files opened
before it. Otherwise, use a pointer to an FSSpec record to specify the file.

In the pDAName parameter, specify the ' DRVR' resource name of the desk accessory to
launch. Specify NI L as the value of pDANan® if you want to launch the first' DRVR
resource found in the file as returned by the Resource Manager. Because the
LaunchDeskAccessory function opens the specified resource file for exclusive access,
you cannot launch more than one desk accessory from the same resource file.

If the' DRVR' resource is in a resource file that is already open by the current process or
if the driver is in the System file and the Option key is pressed, LaunchDeskAccessory
launches the desk accessory in the application’s heap. Otherwise, the desk accessory is
given its own partition and launched in the system heap.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

2-30

The trap macro and routine selector for the LaunchDeskAccessor y function are

Trap macro Selector
_0OsDhi spat ch $0036

noErr 0 No error
r esNot Found -192 Resource not found
Process Manager Reference

CHAPTER 2

Process Manager

Terminating Processes

You can use the Exi t ToShel | procedure to have your application terminate itself
directly. In general, you need to call Exi t ToShel | only if you want your application to
terminate without reaching the end of its main routine.

ExitToShell

Call Exi t ToShel | to terminate your application directly.

PROCEDURE Exi t ToShel | ;

labeuel\ ssao0id
N

DESCRIPTION
The Exi t ToShel | procedure terminates the calling process. The Process Manager
removes your application from the list of open processes and performs any other
necessary cleanup operations. In particular, all memory in your application partition and
any temporary memory still allocated to your application is released. If necessary, the
Application Died Apple event is sent to the process that launched your application.

If your application was the foreground process at the time it called Exi t ToShel |, its
name is removed from the Application menu. The Process Manager selects a new
foreground process, switches it into the foreground, and propagates the scrap to the new
foreground application.

If your application was the last one running and the shell program is not the Finder, the
Process Manager displays a dialog box that gives the user the choice of restarting the
computer or shutting it down.

SPECIAL CONSIDERATIONS

Any trap patches installed by your application are removed immediately by
Exi t ToShel | . They will not affect any trap calls made by Exi t ToShel | itself.

RESULT CODES
When Exi t ToShel | exits, the system global variable DSEr r Code holds its result code.

SEE ALSO

See “Terminating an Application” on page 2-11 for details on the parameters passed to
the Application Died event.

Process Manager Reference 2-31

CHAPTER 2

Process Manager

Summary of the Process Manager

Pascal Summary

Constants
CONST
{Gestalt selector and response bits}
gestal t CSAttr ='os '; {O'S attributes sel ector}
gest al t LaunchCanRet ur n = 1; {can return from |l aunch}
gestal t LaunchFul | Fil eSpec = 2; {LaunchApplication is avail abl e}
gest al t LaunchCont r ol = 3 {Process Manager is avail abl e}

{process identification constants}

kNoPr ocess = 0; {process doesn’'t exist}
kSyst enPr ocess = 1; {process belongs to CS}
kCurrent Process = 2; {the current process}

{launch control flags}

[aunchCont i nue = $4000; {continue after |aunch}

I aunchNoFi | eFl ags = $0800; {ignore | aunchFil eFl ags}

I aunchUseM ni mum = $0400; {use mininmum or greater size}
[aunchDont Swi t ch = $0200; {l'aunch app. in background}

I aunchAl | ow24Bi t = $0100; {reserved}

I aunchl nhi bi t Daenon = $0080; {don't | aunch background app.}

{launch paraneter block length and |D}
ext endedBl ockLen si zeof (LaunchPar anBl ockRec) - 12;

ext endedBl ock = $4C43; {ext ended bl ock}

{flags in processhwbde field}

nodeDeskAccessory = $00020000; {process is desk acc}
nodeMul ti Launch = $00010000; {fromapp file' s flags}
nodeNeedSuspendResune = $00004000; {from'SIZE resource}
nodeCanBackgr ound = $00001000; {from'SIZE resource}
nodeDoesAct i vat eOnFGSwi t ch = $00000800; {from'SIZE resource}
nodeOnl yBackgr ound = $00000400; {from'SIZE resource}
nodeCet Front C i cks = $00000200; {from'SIZE resource}

2-32 Summary of the Process Manager

CHAPTER 2

Process Manager

nodeCet AppDi edMsg = $00000100; {from'SIZE resource}
node32Bi t Conpati bl e = $00000080; {from*'SIZE resource}
nodeHi ghLevel Event Awar e = $00000040; {from'SIZE resource}
nodelLocal AndRenot eHLEvents = $00000020; {from'SIZE resource}
nodeSt at i oner yAwar e = $00000010; {from*'SIZE resource}
nodeUseText Edi t Servi ces = $00000008; {from'SIZE resource}

Data Types

Process Serial Number

TYPE
ProcessSeri al Nunber =
RECORD
hi ghLongOf PSN: Longl nt; {hi gh-order 32 bits of psn}
| owLongOF PSN: Longl nt ; {loworder 32 bits of psn}
END;

Pr ocessSeri al Number Pt r "ProcessSeri al Nunber ;

Process Information Record

Pr ocessl nf oRec =
RECORD

labeuel\ ssao0id
N

Processl nf oRecPt r

= "Processl nf oRec;

Summary of the Process Manager

processl nf oLengt h: Longl nt; {length of record}
pr ocessNarne: StringPtr; {nane of process}
pr ocessNumber : ProcessSeri al Nunber; {psn of the process}
processType: Longl nt; {file type of app file}
processSi gnhat ure: OSType; {signature of app file}
pr ocesshbde: Longl nt; {'SIZE' resource flags}
processLocati on: Ptr; {address of partition}
processSi ze: Longl nt ; {partition size}
processFreeMem Longl nt; {free bytes in heap}
processLauncher: ProcessSeri al Nunber; {proc that |aunched this one}
processLaunchDat e: Longl nt ; {time when | aunched}
processActi veTi ne: Longl nt; {accumul ated CPU ti ne}
pr ocessAppSpec: FSSpechPtr; {location of the file}
END;

2-33

CHAPTER 2

Process Manager

Application Parameters Record

AppPar anet ers =

RECORD
t heMsgEvent : Event Recor d; {event (high-level)}
event Ref Con: Longl nt; {reference constant}
nmessagelengt h: Longl nt ; {length of buffer}
nessageBuf f er: ARRAY [0..0] OF SignedByte;

END;

AppPar anet er skt r NAppPar anet er s;

Launch Parameter Block

LaunchFl ags = I nt eger

LaunchPar anBl ockRec =

RECORD
reservedl: Longl nt ; {reserved}
reserved2: I nt eger; {reserved}
| aunchBl ockl D: I nt eger; {ext ended bl ock}
| aunchEPBLengt h: Longl nt ; {length of bl ock}
| aunchFi | eFl ags: I nt eger; {app’s Finder flags}
| aunchControl Fl ags: LaunchFl ags; {l'aunch options}
| aunchAppSpec: FSSpecPtr; {location of app’s file}
| aunchProcessSN: ProcessSeri al Nunber; {returned psn}
| aunchPreferredSi ze: Longlnt; {returned pref size}
[aunchM ni nunti ze: Longl nt ; {returned min size}
| aunchAvai | abl eSi ze: Longlnt; {returned avail size}
| aunchAppPar anet ers: AppParaneterspktr; {hi gh-level event}

END;

LaunchPBPt r = “LaunchPar anBl ockRec

Routines

Getting Process Information

FUNCTI ON Get Current Process (VAR PSN:. ProcessSeri al Nunber): OSErr;
FUNCTI ON CGet Next Process (VAR PSN: ProcessSerial Number): OSErr;

FUNCTI ON Get Pr ocessl nf ormati on
(PSN: ProcessSeri al Nunmber ;
VAR info: ProcesslnfoRec): OCSErr;

2-34 Summary of the Process Manager

CHAPTER 2

Process Manager

FUNCTI ON SanePr ocess

(PSN1: ProcessSeri al Nunber;

PSN2: ProcessSeri al Nunber ;

VAR resul t:
FUNCTI ON Cet Fr ont Process
FUNCTI ON Set Fr ont Process
FUNCTI ON WakeUpPr ocess

Launching Applications and Desk Accessories
FUNCTI ON LaunchAppl i cation

(LaunchPar ans:

Bool ean): OSErr;

(VAR PSN: ProcessSerial Nunber): OSErr;
(PSN: ProcessSeri al Nunmber): OSErr;
(PSN: ProcessSeri al Nunber): OSErr;

LaunchPBPtr): OSErr;

FUNCTI ON LaunchDeskAccessory (pFi | eSpec: FSSpecPtr; pDANane: StringPtr):

CSEr r;

Terminating a Process
PROCEDURE Exi t ToShel | ;

C Summary

Constants

/*Cestalt selector and response bits*/

#define gestal t OSAttr 'os '
#def i ne gestaltLaunchCanRet urn 1
#define gestaltLaunchFul | Fi | eSpec 2
#def i ne gestaltLaunchControl 3

/*process identification constants*/

enum {
kNoPr ocess 0,
kSyst enPr ocess 1,
kCurrent Process 2
1

/*launch control flags*/
enum {

| aunchCont i nue = 0x4000,
I aunchNoFi | eFl ags = 0x0800,
I aunchUseM ni mum = 0x0400,
| aunchDont Swi t ch = 0x0200,

Summary of the Process Manager

/*Q' S attributes sel ector*/
/*can return from | aunch*/
/*LaunchAppl i cation avail abl e*/
/*Process Manager is avail abl e*/

/*process doesn’t exist*/
/*process belongs to Os*/
/*the current process*/

/*continue after |aunch*/
/*ignore |aunchFil eFl ags*/
/*use m nimum or greater size*/
/*l aunch app. in background*/

2-35

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

| aunchAl | ow24Bi t
| aunchl nhi bi t Daenpn

0x0100, /*reserved*/
0x0080 /*don't | aunch background app. */

i

/*1aunch paraneter block |ength and | D/

#def i ne ext endedBl ockLen (si zeof (LaunchPar anBl ockRec) - 12)
#def i ne extendedBl ock ((unsi gned short)'LC)

/*flags in processhbde field*/

enum {
nodeDeskAccessory = 0x00020000, [/*process is desk acc*/
nodeMul ti Launch = 0x00010000, /*fromapp file's flags*/
nodeNeedSuspendResune = 0x00004000, /*from'SlIZE resource*/
nodeCanBackgr ound = 0x00001000, /*from'SlIZE resource*/
nodeDoesAct i vat eOnFGSwi t ch = 0x00000800, /*from'SIZE resource*/
nodeOnl yBackgr ound = 0x00000400, /*from'SlIZE resource*/
nodeCet Front O i cks = 0x00000200, /*from'SlIZE resource*/
nodeCGet AppDi edMsg = 0x00000100, /*from'SIZE resource*/
node32Bi t Conpati bl e = 0x00000080, /*from'SlIZE resource*/
nodeHi ghLevel Event Awar e = 0x00000040, /*from'SlIZE resource*/
nodeLocal AndRenot eHLEvent s = 0x00000020, /*from'SIZE resource*/
nodeSt at i oner yAwar e = 0x00000010, /*from'SlIZE resource*/
nodeUseText Edi t Ser vi ces = 0x00000008 /*from'SlIZE resource*/

i

Data Types

Process Serial Number

struct ProcessSerial Nunber {
unsi gned | ong hi ghLongOf PSN,; /*hi gh-order 32 bits of psn*/
unsi gned | ong | owLongCOr PSN,; /*l oworder 32 bits of psn*/

b

typedef struct ProcessSeri al Nunmber ProcessSeri al Nunber;
t ypedef ProcessSerial Number *ProcessSeri al NunmberPtr;

Process Information Record

struct ProcesslnfoRec {

unsi gned | ong processl nf oLengt h; /*l ength of record*/
StringPtr pr ocessNane; /*name of process*/
ProcessSeri al Nunber processNunber; /*psn of the process*/

2-36 Summary of the Process Manager

CHAPTER 2

Process Manager

unsi gned | ong
OSType

unsi gned | ong

Ptr

unsi gned | ong

unsi gned | ong
ProcessSeri al Nunber

unsi gned | ong
unsi gned | ong
FSSpecPt r

b

processType,;
processSi gnat ure;
pr ocessMbde;
processLocati on;
processSi ze;
processFreeMem
processLauncher;

processLaunchDat e;
processActi veTi ne;
processAppSpec;

typedef struct ProcesslnfoRec Processl nfoRec;
t ypedef Processl nfoRec *Processl nfoRecPtr

Application Parameters Record

struct AppParaneters {
Event Record
unsi gned | ong
unsi gned | ong

}s

t heMsgEvent ;

event Ref Con;
nessagelengt h;

typedef struct AppParaneters AppParaneters;
t ypedef AppParaneters *AppParanetersPtr

Launch Parameter Block

t ypedef unsi gned short LaunchFl ags;

struct LaunchParanBl ockRec {

unsi gned | ong
unsi gned short
unsi gned short
unsi gned | ong
unsi gned short
LaunchFl ags
FSSpecPt r
ProcessSeri al Nunber
unsi gned | ong
unsi gned | ong
unsi gned | ong
AppPar anet ersPtr

reservedl;
reservedz;

| aunchBl ockl D;

| aunchEPBLengt h;

| aunchFi | eFl ags;

| aunchCont r ol Fl ags;
| aunchAppSpec;

I aunchProcessSN

| aunchPref erredSi ze
| aunchM ni munsi ze;

| aunchAvai | abl eSi ze
| aunchAppPar anet er s;

Summary of the Process Manager

/*file type of app file*/
/*signature of app file*/
/*' Sl ZE' resource flags*/
/*address of partition*/
[*partition size*/

/*free bytes in heap*/
/*proc that launched this */
/* one*/

/*time when | aunched*/
/*accumul ated CPU tine*/
/*l ocation of the file*/

/*event (high-1evel)*/
/*reference constant*/
/*1 ength of buffer*/

/*reserved*/

[*reserved*/

/ *ext ended bl ock*/

/*1 ength of bl ock*/
/*app’s Finder flags*/
/*l aunch options*/
/*location of app’'s file*/
/*returned psn*/
/*returned pref size*/
/*returned nin size*/
/*returned avail size*/
/*hi gh-1evel event*/

2-37

labeuel\ ssao0id
N

}s

CHAPTER 2

Process Manager

typedef struct LaunchParanBl ockRec LaunchPar anBl ockRec;
t ypedef LaunchParanBl ockRec *LaunchPBPtr ;

Routines

Getting Process Information

pascal

pascal

pascal

pascal

pascal

pascal

pascal

OSErr Cet Current Process
(ProcessSeri al Nunber *PSN);

OSErr GCet Next Process (ProcessSerial Nunber *PSN);

OSErr Get Processl| nformati on
(const ProcessSeri al Nunber
Processl nfoRecPtr info);

OSErr SaneProcess (const ProcessSeri al Nunber
const ProcessSeri al Nunber
Bool ean *result);

OSErr Cet Front Process

(ProcessSeri al Nunber *PSN) ;

OSErr Set Front Process
(const ProcessSeri al Nunber

OSErr WakeUpProcess (const ProcessSeri al Nunmber

Launching Applications and Desk Accessories

pascal

pascal

OSErr LaunchApplication
(const LaunchPar anBl ockRec

OSErr LaunchDeskAccessory
(const FSSpec *pFil eSpec,
Const St r 255Par am pDANane) ;

Terminating a Process

pascal

2-38

voi d ExitToShel | (void);

Summary of the Process Manager

*PSN,

*PSN1,
*PSN2,

*PSN) ;
*PSN);

*LaunchPar ans) ;

CHAPTER 2

Process Manager

Assembly-Language Summary

Data Structures

Process Serial Number

0
4

hi ghLongOf PSN
| owLongCOf PSN

Process Information Record

0

4

8
16
20
24
28
32
36
40
48
52
56

Application Parameters Record

0
16
20
24

processl nfolLength
pr ocessNane
processNumber
processType
processSi gnature
pr ocesshMbde
processLocati on
processSi ze
processFreeMem
processLauncher
processLaunchDat e
processActiveTi ne
pr ocessAppSpec

t heMsgEvent
event Ref Con
nessagelLength
nessageBuf f er

Launch Parameter Block

0
4
6
8
12
14
16

20
28
32
36
40

reservedl
reserved?

I aunchBl ockl D

| aunchEPBLengt h

| aunchFi | eFl ags

[aunchCont r ol Fl ags
| aunchAppSpec

| aunchProcessSN

| aunchPreferredSi ze
| aunchM ni nunsi ze

| aunchAvai | abl eSi ze
| aunchAppPar anet er s

long
long

long
long
2 longs
long
long
long
long
long
long
2 longs
long
long
long

16 bytes
long
long
byte

long
word
word
long
word
word
long

2 longs
long
long
long
long

Summary of the Process Manager

high-order 32-bits of process serial number
low-order 32-bits of process serial number

length of this record

name of process

process serial number of the process
type of application file

signature of application file

flags from "' Sl ZE' resource
address of process partition
partition size (in bytes)

amount of free memory in application heap
process that launched this one
value of Ti cks at time of launch
total time spent using the CPU
location of the file

the high-level event record
reference constant

length of buffer

first byte of the message buffer

reserved

reserved

specifies whether block is extended

length (in bytes) of rest of parameter block
the Finder flags for the application file
flags that specify launch options

address of FSSpec that specifies the application file
to launch

process serial number

application’s preferred partition size
application’s minimum partition size
maximum partition size available
high-level event for launched application

2-39

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

Trap Macros

Trap Macro Names

Pascal name Trap macro name
LaunchApplication _Launch
Exi t ToShel | _Exi t ToShel |

Trap Macros Requiring Routine Selectors
_OSDi spat ch

Selector Routine

$0036 LaunchDeskAccessory
$0037 Get Current Process
$0038 Get Next Process

$0039 Get Front Process

$003A Get Processl| nf ormat i on
$003B Set Front Process

$003C WakeUpPr ocess

$003D SanePr ocess

Result Codes

noErr 0 No error
par ankrr -50 Process serial number is invalid
mentul | Err -108 Not enough memory to allocate the partition size specified in the

"SI ZE' resource
r esNot Found -192 Resource not found
pr ocNot Found —-600 No eligible process with specified process serial number
mentragErr -601 Not enough room to launch application with special requirements
appModeErr -602 Addressing mode is 32-bit, but application is not 32-bit clean
appMentul | Err —605 Partition size specified in' SI ZE' resource is not big enough for launch
appl sDaenon —606 Application is background-only

2-40 Summary of the Process Manager

CHAPTER 3

Time Manager

Contents

About the Time Manager 3-3
The Original Time Manager 3-4
The Revised Time Manager 3-5
The Extended Time Manager 3-6
Using the Time Manager 3-9
Installing and Activating Tasks 3-10
Using Application Global Variables in Tasks
Performing Periodic Tasks 3-13
Computing Elapsed Time 3-14
Time Manager Reference 3-17
Data Structures 3-17
Time Manager Routines 3-18
Application-Defined Routine 3-22
Time Manager Tasks 3-22
Summary of the Time Manager 3-23
Pascal Summary 3-23
Constants 3-23
Data Types 3-23
Time Manager Routines 3-24
Application-Defined Routine 3-24
C Summary 3-24
Constants 3-24
Data Types 3-24
Time Manager Routines 3-25
Application-Defined Routine 3-25
Assembly-Language Summary 3-25
Data Structures 3-25
Result Codes 3-26

Contents

3-11

3-1

CHAPTER 3

Time Manager

This chapter describes how you can use the Time Manager to schedule execution of a
routine after a specified amount of time has elapsed. It includes information about the
original Time Manager, as well as information about the revised Time Manager
introduced in system software version 6.0.3 and the extended Time Manager introduced
in system software version 7.0.

Because different versions of the Time Manager are available under different system
software versions, your application may need to determine which version is available in
its current environment. To do so, use the Gest al t function explained in the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Utilities.

To use this chapter, you should be familiar with the Vertical Retrace Manager because it
provides an alternative (and sometimes preferable) method for scheduling routines for
future or periodic execution. For details on the Vertical Retrace Manager, see the chapter
“Vertical Retrace Manager” in this book.

About the Time Manager

The Time Manager allows applications and other software to schedule routines for
execution at a later time. By suitably defining the routine that is to be executed later, you
can use the Time Manager to accomplish a wide range of time-related activities. For
example, because a routine can reschedule itself for later execution, the Time Manager
allows your application to perform periodic or repeated actions. You can use the Time
Manager to

1abeuey awil
!

= schedule routines for execution after a specified delay

= set up tasks that run periodically

= compute the time a routine takes to run

= coordinate and synchronize actions in the Macintosh computer

The Time Manager provides a hardware-independent method of performing these
time-related tasks. In general, you should use the Time Manager instead of timing loops,
which can vary in duration because they depend on clock speed and interrupt-handling
speed.

To use the Time Manager, you must first issue a request by passing the Time Manager
the address of a task record, one of whose fields contains the address of the routine that
is to run. Then you need to activate that request by specifying the delay until the routine
is to run. The Time Manager uses a Time Manager queue to maintain requests that you
issue. The structure of this queue is similar to that of standard operating-system queues.
The Time Manager queue can hold any number of outstanding requests, and each
application can add any number of entries to the queue. If there are several requests
scheduled for execution at exactly the same time, the Time Manager schedules them for
execution as close to the specified time as possible, in the order in which they entered the
Time Manager queue.

About the Time Manager 3-3

3-4

CHAPTER 3

Time Manager

The routine you place in the queue can perform any desired action so long as it does not
call the Memory Manager, either directly or indirectly. (You cannot call the Memory
Manager because Time Manager tasks are executed at interrupt time.)

The Time Manager introduced in system software version 7.0 is the third version
released. The three versions are known as the original Time Manager, the revised Time
Manager, and the extended Time Manager. The three versions are all upwardly
compatible—that is, each succeeding Time Manager version is a functional superset of
the previous one. However, code written for the extended Time Manager may not run
properly with either the original or revised version. For this reason, it is sometimes
important to know which Time Manager version is available on a specific computer.

You can use the Gest al t function to determine which version of the Time Manager is
present. You should pass Gest al t the selector gest al t Ti meMgr Ver si on.

CONST
gest al t Ti meMgr Ver si on ='"tnor',; {Ti me Manager version}

If Gest al t executes successfully, it returns one of three constants:

CONST
gest al t St andar dTi neMyr = 1; {original Tinme Manager}
gest al t Revi sedTi meMyr = 2; {revised Tine Manager}
gest al t Ext endedTi neMyr = 3; {extended Ti me Manager}

If Gest al t returns an error, you should assume that the original Time Manager is
present. The following sections describe the features of each version of the Time Manager.

The Original Time Manager

The Time Manager was first introduced with the Macintosh Plus ROMSs (which are also
used in Macintosh 512K enhanced models) and was intended for use internally by the
Operating System. The original Time Manager allows delays as small as 1 millisecond,
resulting in a maximum range of about 24 days.

To schedule a task for later execution, place an entry into the Time Manager queue and
then activate it. All Time Manager routines manipulate elements of the Time Manager
gueue, which are stored in a Time Manager task record. The task record for the original
Time Manager is defined by the TMIask data type.

TYPE TMrask = {original and revised Time Manager task record}
RECORD
gLi nk: CEl enPtr; {next queue entry}
gType: I nt eger; {queue type}
t mAddr : ProcPtr; {pointer to task}
t nCount : Longl nt ; {reserved}
END;

About the Time Manager

CHAPTER 3

Time Manager

Of the four fields in this record, you need to fill in only the t mAddr field, which contains
a pointer to the routine that is to be executed at some time in the future. The remaining
fields are used internally by the Time Manager or are reserved by Apple Computer, Inc.
However, you should set the t nCount field to 0 when you set up a task record.

The original Time Manager includes three routines:
= Thel nsTi e procedure installs a task record into the Time Manager queue.

= The Pri neTi me procedure schedules a previously queued task record for future
execution.

= The RnvTi e procedure removes a task record from the Time Manager queue.

Note that installing a request into the Time Manager queue (by calling the | nsTi me
procedure) does not by itself schedule the specified routine for future execution. After
you queue a request, you still need to activate (or prime) the request by specifying the
desired delay until execution (by calling the Pri neTi ne procedure). Note also that the
task record is not automatically removed from the Time Manager queue after the routine
is executed. For this reason, you can reactivate the task by subsequent calls to

Pri meTi nme; you do not have to reinstall the task record.

To remove a task record from the queue, you must call the RmvTi ne procedure. The
RmvTi me procedure removes a task record from the Time Manager queue whether or not
that task was ever activated and whether or not its specified time delay has expired.

1abeuey awil
!

The Revised Time Manager

System software version 6.0.3 introduced a revised version of the Time Manager. This
version provides better time resolution and more accurate measurements of elapsed
time. You can represent time delays in the revised Time Manager as microseconds (pisec)
as well as milliseconds (msec), with a finest resolution of 20 microseconds. The external
programming interface did not change from the original to the revised Time Manager,
although the revised version provides a means to distinguish microsecond delays from
millisecond delays.

The revised Time Manager interprets negative time values (which were not formerly
allowed) as negated microseconds. For example, a value of -50 is interpreted as a delay
of 50 microseconds. Positive time values continue to represent milliseconds. When
specified as microseconds, the maximum delay is about 35 minutes. When specified as
milliseconds, the maximum delay is about 1 day. (This differs from the maximum delay
in the original Time Manager because of the finer resolution of the revised Time
Manager.) When passed to Pr i neTi ne, the time value is converted to an internal form.
For this reason, it makes no difference which unit you use if the delay falls within the
ranges of both.

The revised Time Manager provides additional features. The principal change concerns
the t mCount field of the Time Manager task record (previously reserved for use by
Apple Computer, Inc.). When you remove an active task from the revised Time
Manager’s queue, any time remaining until the scheduled execution time is returned in
the t mCount field. This change allows you to use the Time Manager to compute elapsed

About the Time Manager 3-5

3-6

CHAPTER 3

Time Manager

times (as explained in the section “Computing Elapsed Time” on page 3-14). In addition,
the high-order bit of the qType field of the task record is used as a flag to indicate
whether the task timer is active. The | nsTi ne procedure initially clears this bit, and

Pri meTi ne sets it. This bit is cleared when the time expires or when your application
calls RnvTi rre.

Although the revised Time Manager supports the specification of delay times in
microseconds, you should use this feature primarily for the more accurate measurement
of elapsed times. You should avoid specifying very small delay times as a way to execute
a routine repeatedly at frequent intervals because this technique may use a considerable
amount of processor time. The amount of processor time consumed by such timing
services varies, depending largely on the performance of the CPU. With
low-performance CPUSs, little or no time may be left for other processing on the system
(for instance, moving the mouse or running the application).

The Extended Time Manager

The extended Time Manager (available with system software version 7.0 and later)
contains all the features of earlier Time Managers, with several extensions intended
primarily to provide drift-free, fixed-frequency timing services. These services, which
ensure that a routine is executed promptly after a specified delay, are important for
sound and multimedia applications requiring precise timing and real-time
synchronization among different events.

In the original and revised Time Managers, the value passed to Pri neTi ne indicates a
delay that is relative to the current time (that is, the time when you execute Pri neTi ne).
This presents problems if you attempt to implement a fixed-frequency timing service by
having the task call Pri neTi me. The problem is that the time consumed by the Time
Manager and by any interrupt latency (which is not predictable) causes the task to be
called at a slightly slower and unpredictable frequency, which drifts over time. In

Figure 3-1, the desired fixed frequency of 1000 microseconds cannot be achieved because
the Time Manager overhead and interrupt latency cause a small and unpredictable delay
each time the task is reactivated.

About the Time Manager

CHAPTER 3

Time Manager

Figure 3-1 Original and revised Time Managers (drifting, unpredictable frequency)
Elapsed time
0 1000 2100 3300 4350
1000 ms 1000 ms 1000 ms 1000 ms
100 200 50
Time taken to reinstall routine

The extended Time Manager solves this problem by allowing you to reinstall a task with
an execution time that is relative to the time when the task last expired—not relative to
the time when the task is reinstalled. The extended Time Manager compensates for the
delay between the time when the task last expired and the time at which it was
reinstalled, thereby providing a truly drift-free, fixed-frequency timing service.

For example, if your application needs to execute a routine periodically at 1-millisecond
intervals, it can reactivate the existing Time Manager queue element by calling

Pri meTi ne in the task with a specified delay of 1 millisecond. When the Time Manager
receives this new execution request, it determines how long ago the previous

Pri meTi me task expired and then decrements the specified delay by that amount. For
instance, if the previous task expired 100 microseconds ago, then the Time Manager
installs the new task with a delay of 900 microseconds. This technique is illustrated in
Figure 3-2.

Figure 3-2 The extended Time Manager (drift-free, fixed frequency)

Elapsed time
0 1000 2000 3000 4000 5000
1000 us 900 us 800 us 950 ps
100 200 50
Time taken to reinstall routine

About the Time Manager 3-7

1abeuey awil
!

3-8

CHAPTER 3

Time Manager

The extended Time Manager implements these features by recognizing an expanded task
record and providing a new procedure, | nsXTi me. The Time Manager task record for
the extended Time Manager looks like this:

TYPE TMTlask = {extended Ti me Manager task record}

RECORD

gLi nk: QEl enPtr; {next queue entry}

gType: I nt eger; {queue type}

t mAddr : ProcPtr; {pointer to task}

t nCount : Longl nt; {unused ti ne}

t mMMakeUp: Longl nt; {wakeup ti ne}

t nReser ved: Longl nt ; {reserved for future use}
END;

Once again, your application fills in the t mAddr field. You should set t mAakeUp and

t nReser ved to 0 when you first install an extended Time Manager task. The remaining
fields are used internally by the Time Manager. As in the revised Time Manager, the

t mCount field holds the time remaining until the scheduled execution of the task (this
field is set by RmvTi ne).

The t mMAakeUp field contains the time at which the Time Manager task specified by

t mAddr was last executed (or 0 if it has not yet been executed). Its principal intended use
is to provide drift-free, fixed-frequency timing services, which are available only when
you use the extended Time Manager and only when you install Time Manager tasks by
calling the new | nsXTi ne procedure.

When your application installs an extended Time Manager task (by calling the

I nsXTi ne procedure), the behavior of the Pri meTi me procedure changes slightly, as
described earlier in this section. If the value of the t MAakeUp field is zero when

Pri meTi ne is called, the delay parameter to Pri neTi ne is interpreted as relative to the
current time (just as in the original Time Manager), but the Time Manager sets the

t MAakeUp field to a nonzero value that indicates when the delay time should expire.
When your application calls Pri neTi nme with a Time Manager task whose t m\\akeUp
field contains a nonzero value, the Time Manager interprets the specified delay as
relative to the time that the last call to Pri meTi ne on this task was supposed to expire.

Note

Nonzero values in t MAakeUp are in a format that is used internally by
the Time Manager. This format is subject to change. Your application
should never use the value stored in this field and should either set it to
0 or leave it unchanged. When you first create an extended Time
Manager task record, make sure that the value of the t mMkeUp field is
0; otherwise, the Time Manager may interpret it as a prior execution
time. O

The extended Time Manager allows for a previously impossible situation that may lead
to undesirable results. It is possible to call Pri neTi e with an execution time that is in
the past instead of in the future. (In the original and revised Time Managers, only future
execution times are possible.) This situation arises when the value of the t mMAakeUp field

About the Time Manager

CHAPTER 3

Time Manager

specifies a time in the past and you issue a new Pri neTi e request with a delay value
that is not large enough to cause the execution time to be in the future. This may occur
when fixed, high-frequency execution is required and the time needed to process each
execution, including the Time Manager overhead, is greater than the delay time between
requests.

When your application issues a Pri meTi me request with a t mMAdkeUp value that would
result in a negative delay, the actual delay time is set to 0. The Time Manager updates the
t MAakeUp field to indicate the time when the task should have been performed (in the
past). Because the actual delay time is set to 0, the task is executed immediately. If your
application continually issues Pri meTi e requests for times in the past, the Time
Manager and the t mAddr tasks consume all of the processor cycles. As a result, no time
is left for the application to run. Because this situation is a function of processor speed,
you should ensure compatibility by using the slowest processors to test applications that
use extended Time Manager features. Another solution to this problem is to vary the
wakeup frequency according to the processing power of the computer.

Using the Time Manager

1abeuey awil
!

The Time Manager is automatically initialized when the system starts up. At that time,
the queue of Time Manager task records is empty. The Operating System, applications,
and other software components may place records into the queue. Because the delay
time for a given task can be as small as 20 microseconds, you need to install an element
into the Time Manager queue before actually issuing a request to execute it at some
future time. You place elements into the queue by calling the | nsTi ne procedure or (if
you need the fixed-frequency services of the extended Time Manager) the | nsXTi e
procedure. To activate the request, call Pri neTi me. The Time Manager then marks the
specified task record as active by setting the high-order bit in the qType field of that
record.

The t mAddr field of the Time Manager task record contains the address of a task. The
Time Manager calls this task when the time delay specified by a previous call to

Pri meTi me has elapsed. The task can perform any desired actions, as long as it does not
call the Memory Manager (either directly or indirectly) and does not depend on the
validity of handles to unlocked blocks.

Note

If the routine specified in the Time Manager task record is located in
your application’s heap, then your application must still be active when
the specified delay elapses, or the application should call RmvTi ne
before it terminates. Otherwise, the Time Manager does not know that
the address of that routine is not valid when the routine is called. The
Time Manager then attempts to call the task, but with a stale pointer. If
you want to let the application terminate after it has installed and
activated a Time Manager task record, load the routine into the system
heap. O

Using the Time Manager 3-9

CHAPTER 3

Time Manager

There are two ways for an active queue element to become inactive. First, the specified
time delay can elapse, in which case the routine pointed to by the t mAddr field is called.
Second, your application can call the RmvTi ne procedure, in which case the amount of
time remaining before the delay would have elapsed (the unused time) is reported in the
t nCount field of the task record. This feature allows you to use the Time Manager to
compute elapsed times (see the section “Computing Elapsed Time” on page 3-14), which
is useful for obtaining performance measurements. Calling RmvTi ne removes an
element from the queue whether or not that task is active when RmvTi e is called.

To use the Time Manager for periodic execution of a task, simply have the routine
pointed to by t mAddr call Pri neTi ne again. This technique is illustrated in the section
“Performing Periodic Tasks” on page 3-13. Similarly, you can execute a Time Manager
task a specific number of times by keeping a count of the number of times the task has
been called. In cases where the task needs access to your application’s global variables
(such as a count variable), make sure that the A5 register points to your application’s
global variables when the task is executed and that A5 is restored to its original value
when your task exits. A technique for this purpose is illustrated in “Using Application
Global Variables in Tasks” on page 3-11.

Installing and Activating Tasks

Listing 3-1 shows how to install and activate a Time Manager task. It assumes that the
procedure My Task has already been defined; see Listing 3-3 and Listing 3-4 for examples
of simple task definitions.

Listing 3-1 Installing and activating a Time Manager task

3-10

PROCEDURE | nst al | TMrask;

CONST
kDel ay = 2000; {del ay val ue}
BEG N
gTMrask. t mdddr : = @WTask; {get address of task}
gTMrask. t mMMakeUp : = O; {initialize t mMM\akeUp}
gTMrask. t nReserved : = O; {initialize tnReserved}
I nsXTi me(@TMrask) ; {install the task record}
Pri meTi me(@TMrask, kDel ay); {activate the task record}
END;

In this example, | nst al | TMrask installs an extended Time Manager task record into
the Time Manager queue and then activates the task. (The extended Time Manager task
record, gTMrask, is a global variable of type TMrask.) After the specified delay has
elapsed (in this case, 2000 milliseconds, or 2 seconds), the procedure My Task runs.

In cases where no task is to run after the specified delay has elapsed, you should set the
t mAddr field to NI L. To determine if the time has expired, you can check the task-active
bit in the qType field.

Using the Time Manager

CHAPTER 3

Time Manager

Avoid calling Pri meTi me with a Time Manager task record that has not yet expired,
because the results are unpredictable. If you wish to reactivate a prior unexpired request
in the Time Manager queue and specify a different delay, call RmvTi e to cancel the
prior request, then call I nsTi ne to reinstall the timer task, and finally call Pri neTi e
to reschedule the task. Note, however, that it is possible and sometimes desirable to call
Pri meTi me with a Time Manager task that you want to reactivate, because the timer
will have expired before the task is called.

Using Application Global Variables in Tasks

When a Time Manager task executes, the A5 world of the application that installed the
corresponding task record into the Time Manager queue might not be valid (for example,
the task might execute at interrupt time when that application is not the current
application). If so, an attempt to read the application’s global variables returns erroneous
results because the A5 register points to the application global variables of some other
application. When a Time Manager task uses an application’s global variables, you must
ensure that register A5 contains the address of the boundary between the application
global variables and the application parameters of the application that launched it. You
must also restore register A5 to its original value before the task exits.

It is relatively straightforward to read the current value of the A5 register when a Time
Manager task begins to execute (using the Set Cur r ent A5 function) and to restore it
before exiting (using the Set A5 function). It is more complicated, however, to pass to a
Time Manager task the value to which it should set A5 before accessing its application’s
global variables. The problem is that neither the original nor the extended Time Manager
task record contains an unused field in which your application could pass this
information to the task. The situation here is unlike the situation with Notification
Manager tasks or Sound Manager callback routines (both of which provide an easy way
to pass the address of the application’s A5 world to the task), but it is similar to the
situation with vertical retrace tasks.

1abeuey awil
!

Note

For a more detailed discussion of setting and restoring your
application’s A5 world, see the chapter “Memory Management Utilities”
in Inside Macintosh: Memory. O

Using the Time Manager 3-11

CHAPTER 3

Time Manager

One way to gain access to the global variables of the application that launched a Time
Manager task is to pass to | nsTi ne (or | nsXTi ne) and Pri meTi ne the address of a
structure, the first segment of which is simply the corresponding Time Manager task
record and the remaining segment of which contains the address of the application’s A5
world. For example, you can define a new data structure, a Time Manager information
record, as follows:

TYPE TM nfo = {Ti me Manager information record}
RECORD
my TMTask: TMrask; {original and revised TMtask record}
t nRef Con: Longl nt; {space to pass address of A5 worl d}
END;

TM nfoPtr = ~TM nf o;

Note
The TM nf o record defined above is intended for use with the extended
Time Manager. O

Then you can install and activate your Time Manager task as illustrated in Listing 3-2.
The global variable gTM nf o is an information record of type TM nf o.

Listing 3-2 Passing the address of the application’s A5 world to a Time Manager task

3-12

PROCEDURE | nst al | TMrask;

CONST
kDel ay = 2000; {del ay val ue}

BEG N
gTM nf o. nyTMlask. t mAddr : = @W¥Task; {get address of task}
gTM nf 0. myTMTIask. t mM\akeUp : = O; {initialize tmAkeUp}

gTM nf o. nyTMrask. t nrReserved : = O; {initialize tnReserved}
gTM nf o. t nRef Con : = Set Current A5; {store address of A5 }

{ worl d}
I nsTi me(@TM nf o) ; {install the info record}
PrimeTi me(@TM nfo, kDel ay); {activate the info record}

END;

With the revised and extended Time Managers, the task is called with register Al
containing the address passed to | nsTi e (or | nsXTi nme) and Pri nmeTi me. Thus, the
Time Manager task simply needs to retrieve the TM nf o record and extract the
appropriate value of the application’s A5 world. Listing 3-3 illustrates a task definition
for this purpose.

Using the Time Manager

CHAPTER 3

Time Manager

Listing 3-3 Defining a Time Manager task that can manipulate global variables

FUNCTI ON Get TM nfo: TM nf oPtr ;
I NLI NE $2E89; {MOVE. L A1, (SP)}

PROCEDURE MyTask;

VAR
ol dA5: Longl nt; {A5 when task is call ed}
recPtr: TMnfoPtr;

BEG N
rechPtr := GetTM nfo; {first get your record}

ol dA5 : = Set A5(recPtr”. tnRef Con); {set A5 to app’s A5 worl d}
{Do sonething with the application’s gl obals here.}
ol dA5 : = Set A5(ol dAS); {restore original A5 }

{ and ignore result}
END;

1abeuey awil
!

This technique works primarily because the revised and extended Time Managers do not
care if the record whose address is passed to | nsTi ne (or | nsXTi ne) and Pri meTi me
is larger than expected. If you use this technique, however, be sure to retrieve the
address of the task record from register Al as soon as you enter the Time Manager task
(because some compilers generate code that uses registers A0 and Al to dereference
structures).

IMPORTANT
You cannot use the technique illustrated in Listing 3-3 with the original
Time Manager because it does not pass the address of the task record in
register Al. To gain access to your application’s global variables when
using the original Time Manager, you would need to store your
application’s A5 value in one of the application’s code segments (in
particular, in the code segment that contains the Time Manager task).
This technique involves the use of self-modifying code segments and is
not in general recommended. Applications that attempt to modify their
own ' CODE' resources may crash in operating environments (for
example, A/UX) that restrict an application’s access to its own code
segments. a

Performing Periodic Tasks

One way to install a periodic Time Manager task is to have the task reactivate itself.
Because the task record is already inserted into the Time Manager task queue, the task
can simply call Pri meTi ne to reactivate itself. To call Pri meTi me, however, the task
needs to know the address of the corresponding task record. In the revised and extended
Time Managers, the task record’s address is placed into register A1 when the task is

Using the Time Manager 3-13

CHAPTER 3

Time Manager

called. Listing 3-4 illustrates how the task can reactivate itself by retrieving the address
in register Al and passing that address to Pri meTi ne.

Listing 3-4 Defining a periodic Time Manager task

3-14

FUNCTI ON Get TM nfo: TM nf oPtr;

I NLI NE $2E89; {MOVE.L A1, (SP)}
PROCEDURE MyTask; {for revised and extended TMs}
VAR
recPtr: TM nf oPt r;
CONST
kDel ay = 2000; {del ay val ue}
BEG N
rechPtr := GetTM nf o; {first get your own address}

{Do sonething here.}

PrimeTi me(QEl enPtr(recPtr), kDel ay);
END;

IMPORTANT
You cannot use the technique illustrated in Listing 3-4 with the original
Time Manager because it does not pass the address of the task record in
register Al. a

Computing Elapsed Time

In the revised and extended Time Managers, the RnvTi e procedure returns, in the
t nCount field of the task record, a value representing any unused time. This feature
makes the Time Manager extremely useful for computing elapsed times.

To compute the amount of time that a routine takes to run, call Pri meTi me at the
beginning of the interval to be measured and specify a delay greater than the expected
elapsed time. Then call RmvTi ne at the end of the interval and subtract the unused time
returned in t mCount from the original delay passed to Pri neTi ne.

To obtain the most accurate results, you should calculate all times in microseconds (in
which case the t mCount field of the task record has a range of about 35 minutes). To get
an exact measurement, compute the overhead associated with calling the Time Manager
and subtract it from the preliminary result. Listing 3-5 illustrates a technique for
calculating that overhead.

Using the Time Manager

CHAPTER 3

Time Manager

Listing 3-5 Calculating the time required to install and activate a Time Manager task

FUNCTI ON TMOver head: Longl nt;

VAR
nyTask: TMrask; {a Time Manager task record}
myStart: Longl nt ; {initial delay passed to PrinmeTi ne}
nyEl apsed: Longlnt; {el apsed tine}
BEG N
myStart := -(MAXLONG ; {use a |large negative nunber}
W TH nyTask DO {set up the task record}
BEG N
tmAddr := NIL; {no task to execute}
t MakeUp : = O;
t nReserved : = O;
END;
o
3
I nsTi me(@ryTask) ; {install the task} =z
PrimeTi me(@wyTask, nyStart); {prinme the task} %
RmvTi nme(@ry Task) ; {renove the task} ‘r'fq

nyEl apsed : = nyStart - nyTask. t nCount;
TMOver head : = - (nyEl apsed); {the el apsed tine}
END;

The TMOver head function defined in Listing 3-5 sets up a Time Manager task record
with no completion routine. In this case, you can allocate the task record as a local
variable on the stack because the task record is removed before the function exits. Then
the task is activated by calling Pr i neTi ne with a very large negative value. (The
negative value represents microseconds.) Immediately the task is deactivated and
removed. The function determines the elapsed time by subtracting the value returned in
the t nCount field of the task record from the original delay time.

Listing 3-6 illustrates how to measure the elapsed time associated with a request to delay
program execution by 1 tick.

Using the Time Manager 3-15

CHAPTER 3

Time Manager

Listing 3-6 Calculating the time consumed by a 1-tick delay

FUNCTI ON CheckDel ayTi m ng: Longlnt;

VAR
nyTask: TMrask; {a Time Manager task record}
myStart: Longl nt ; {initial delay passed to PrinmeTi ne}
nyEnd: Longl nt; {unused tine}
nyTi cks: Longl nt; {ignored; needed for Delay procedure}
myEl apsed: Longlnt; {el apsed tine}
BEG N
nyStart := -(MAXLONG); {use a |large negative nunber}
W TH nyTask DO {set up the task record}
BEG N
tmAddr := NIL; {no task to execute}
t MakeUp : = O;
t nReserved : = 0;
END;
I nsTi me(@ryTask) ; {install the task}
PrimeTi me(@yTask, nmyStart); {prine the task}
Del ay(1, myTicks); {delay for 1 tick}
RmvTi nme(@ry Task) ; {renove the task}
nyEnd : = nyTask. t nCount ; {get unused part of nyStart}
I F nyEnd < 0 THEN {myEnd is in mcroseconds}
nyEl apsed : = ABS(nyStart - nmyEnd) - TMOver head
ELSE {nyEnd is in mlliseconds}

nmyEl apsed : = ABS(nyStart + (nyEnd * 1000)) - TMOver head;

CheckDel ayTi mi ng : = nyEl apsed; {the el apsed ti ne}
END;

The CheckDel ayTi mi ng function is similar to the TMOver head function except that
the section of code to be timed occurs between the calls to Pri meTi ne and RnmvTi ne.
The CheckDel ayTi m ng function simply times a call to the Del ay procedure with a
1-tick delay time. Once Del ay has completed and the task record has been deactivated,
CheckDel ayTi mi ng determines whether the unused time returned in the t mCount
field represents microseconds or milliseconds. The value returned by

CheckDel ayTi m ng is in microseconds.

3-16 Using the Time Manager

CHAPTER 3

Time Manager

Time Manager Reference

This section describes the data structures and routines that are specific to the Time
Manager. It also describes the application-defined Time Manager task procedure whose
address is specified in the task record.

Data Structures

All Time Manager routines require that you pass the address of a Time Manager task
record, defined by the TMIask data type. If you are using the original or revised Time

Manager, the task record has this structure:
TYPE TMrask = {original and revised Tinme Manager task record}
RECORD -
gLi nk: QEl enPtr; {next queue entry} 3
gType: I nt eger; {queue type} §
t mAddr : ProcPtr; {pointer to task} S
t nCount : Longl nt; {reserved} &
END;

Field descriptions

gLi nk A pointer to the next element in the Time Manager queue. This field
is used internally by the Time Manager.
gType The type of queue. The Time Manager automatically sets this field

to the appropriate value. In the revised Time Manager, the
high-order bit of this field is a flag that indicates whether the task is

active.

t mAddr A pointer to the routine to be executed after the delay specified in a
call to Pri meTi ne.

t nCount Reserved in the original Time Manager. In the revised Time

Manager, the amount of time remaining until the task’s scheduled
execution time; this field is valid only after you call RmvTi me with a
task that has not yet executed.

If you are using the extended Time Manager, the task record has this structure:

TYPE TMrask = {extended Ti me Manager task record}
RECORD
gLi nk: CEl enPtr; {next queue entry}
gType: I nt eger; {queue type}
t mAddr : ProcPtr; {pointer to task}
t nCount : Longl nt ; {unused ti e}

Time Manager Reference 3-17

CHAPTER 3

Time Manager

t MAakeUp: Longl nt; {wakeup tine}
t MReserved: Longl nt ; {reserved for future use}
END;

Field descriptions

gLi nk A pointer to the next element in the Time Manager queue. This field
is used internally by the Time Manager.
gType The type of queue. The Time Manager automatically sets this field

to the appropriate value. The high-order bit of this field is a flag that
indicates whether the task is active.

t mAddr A pointer to the routine that is to be executed after the delay
specified in acall to Pri meTi ne.
t nCount The time remaining until the task’s scheduled execution time. This

field is valid only after you call RmvTi ne with a task that has not
yet executed.

t MAakeUp The time when the task specified in the t mAddr field was last
executed. This field is used internally by the Time Manager. You
should set it to 0 when you first install a task record.

t mReser ved Reserved.

Time Manager Routines

You can insert a task record into the Time Manager’s queue by calling | nsTi ne or

I nsXTi me. Use | nsXTi ne only if you wish to use the drift-free, fixed-frequency timing
services of the extended Time Manager; use | nsTi e in all other cases. After you have
gueued a task record, you can activate it by calling Pri meTi ne. You can remove a task
record from the queue by calling RnvTi ne.

InsTime
You can install a task record into the Time Manager task queue using the | nsTi e
procedure.
PROCEDURE | nsTine (tnTaskPtr: CQElenPtr);
t nTaskPtr A pointer to an original task record to be installed in the queue.
DESCRIPTION

The I nsTi ne procedure adds the Time Manager task record specified by t nTaskPt r to
the Time Manager queue. Your application should fill in the t mAddr field of the task
record and should set the t mCount field to 0. The t mraskPt r parameter must point to
an original Time Manager task record.

3-18 Time Manager Reference

CHAPTER 3

Time Manager

With the revised and extended Time Managers, you can sett mAddr to NI L if you do not
want a task to execute when the delay passed to Pri meTi ne expires. Also, the revised
Time Manager resets the high-order bit of the qType field to 0 when you call I nsTi re.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

INnsXTime

The registers on entry and exit for | nsTi ne are

Registers on entry
A0 Address of the task record

Registers on exit
DO Result code

noErr 0 No error

DESCRIPTION

1abeuey awil
!

Use the | nsXTi nme procedure to install a task if you want to take advantage of the
drift-free, fixed-frequency timing services of the extended Time Manager.

PROCEDURE | nsXTi me (tniraskPtr: QEl enPtr);

t nTaskPtr A pointer to an extended task record to be installed in the queue.

The I nsXTi me procedure adds the Time Manager task record specified by t mraskPt r
to the Time Manager queue. The t nTaskPt r parameter must point to an extended Time
Manager task record. Your application must fill in the t mAddr field of that task. You
should set the t MMakeUp and t mReser ved fields to 0 the first time you call | nsXTi ne.

With the extended Time Manager, you can sett mAddr to NI L if you do not want a task
to execute when the delay passed to Pri meTi ne expires. Also, | nsXTi e resets the
high-order bit of the qType field to 0.

Time Manager Reference 3-19

CHAPTER 3

Time Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

PrimeTime

The registers on entry and exit for | nsXTi ne are

Registers on entry
A0 Address of the task record

Registers on exit
Do Result code

noErr 0 No error

DESCRIPTION

3-20

Use the Pri meTi nme procedure to activate a task in the Time Manager queue.
PROCEDURE PrinmeTime (tmraskPtr: QElenPtr; count: Longlnt);

t nTaskPtr A pointer to a task record already installed in the queue.
count The desired delay before execution of the task.

The Pri meTi me procedure schedules the task specified by the t mAddr field of
t nTaskPt r for execution after the delay specified by the count parameter has elapsed.

If the count parameter is a positive value, it is interpreted as milliseconds. If count isa
negative value, it is interpreted in negated microseconds. (Microsecond delays are
allowable only in the revised and extended Time Managers.)

The task record specified by t nifaskPt r must already be installed in the queue (by a
previous call to | nsTi me or | nsXTi ne) before your application calls Pri neTi ne.

Pri meTi nme returns immediately, and the specified task is executed after the specified
delay has elapsed. If you call Pri meTi nme with a time delay of 0, the task runs as soon as
interrupts are enabled.

In the revised and extended Time Managers, Pri meTi ne sets the high-order bit of the
gType field to 1. In addition, any value of the count parameter that exceeds the
maximum millisecond delay is reduced to the maximum. If you stop an unexpired task
(by calling RmvTi ne) and then reinstall it (by calling | ns XTi ne), you can continue the
previous delay by calling Pri meTi ne with the count parameter set to 0.

Time Manager Reference

CHAPTER 3

Time Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

RmvTime

The registers on entry and exit for Pri neTi ne are

Registers on entry
A0 Address of the task record
DO Specified delay time (long)

Registers on exit
DO Result code

noErr 0 No error

DESCRIPTION

Use the RnvTi e procedure to remove a task from the Time Manager queue.
PROCEDURE RnvTi ne (tnTaskPtr: QEl enPtr);

t nTaskPtr A pointer to a task record to be removed from the queue.

The RmvTi ne procedure removes the Time Manager task record specified by

t nfaskPt r from the Time Manager queue. In both the revised and extended Time
Managers, if the specified task record is active (that is, if it has been activated but the
specified time has not yet elapsed), the t nCount field of the task record returns the
amount of time remaining. To provide the greatest accuracy, the unused time is reported
as negated microseconds if that value is small enough to fit into the t mCount field (even
if the delay was originally specified in milliseconds); otherwise, the unused time is
reported in positive milliseconds. If the time has already expired, t mCount contains 0.

In the revised and extended Time Managers, RmvTi e sets the high-order bit of the
gType field to 0.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for RnvTi e are

Registers on entry
A0 Address of the task record

Registers on exit
Do Result code

Time Manager Reference 3-21

1abeuey awil
!

CHAPTER 3

Time Manager

RESULT CODES
noErr 0 No error

Application-Defined Routine

The Time Manager allows your software to install an application-defined routine that is
executed after a specified delay.

Time Manager Tasks

You pass the address of an application-defined Time Manager task in the t mAddr field of
the Time Manager task record.

MyTimeTask

A Time Manager task has the following syntax:

PROCEDURE MyTi neTask;

DESCRIPTION

The t mAddr field of a Time Manager task record contains the address of a task
procedure that is executed after the delay time passed to Pri meTi ne.

SPECIAL CONSIDERATIONS

Because the task procedure is executed at interrupt time, it should not allocate, move, or
purge memory (either directly or indirectly) and should not depend on the validity of
handles to unlocked blocks.

ASSEMBLY-LANGUAGE INFORMATION
In the revised and extended Time Managers, when the task procedure is called, register
Al contains a pointer to the Time Manager task record associated with that procedure.

A task procedure must preserve all registers other than A0O-A3 and D0-D3.

SEE ALSO

See the section “Using Application Global Variables in Tasks” on page 3-11 for
instructions on how to access your application’s global variables from within a task
procedure. See “Performing Periodic Tasks” on page 3-13 for instructions on how to
define a periodic task procedure.

3-22 Time Manager Reference

CHAPTER 3

Time Manager

Summary of the Time Manager

Pascal Summary

Constants

CONST
{Gestalt selector}
gest al t Ti meMgr Ver si on =

{val ues returned by Gestalt}
gest al t St andar dTi meMyr =
gest al t Revi sedTi meMyr
gest al t Ext endedTi neMyr

Data Types

"tmgr'; {Ti me Manager version}
1; {original Time Manager}
2; {revised Tine Manager}
3; {extended Ti me Manager}

Original and Revised Time Manager Task Record

TYPE TMrask =
RECORD
gLi nk: CEl enPtr
qType: I nt eger;
t mAddr : ProcPtr;
t mCount : Longl nt ;
END;

Extended Time Manager Task Record

TYPE TMrask =

RECORD
gLi nk: CEl enPtr
qType: I nt eger;
t mAddr : ProcPtr;
t nCount : Longl nt ;
t mMMakeUp: Longl nt;
t nReser ved: Longl nt ;

END;

Summary of the Time Manager

{next queue entry}
{queue type}
{pointer to task}
{reserved}

{next queue entry}

{queue type}

{pointer to task}

{unused ti ne}

{wakeup tine}

{reserved for future use}

3-23

1abeuey awil
!

CHAPTER

Time Manager
TMraskPtr = ~TMrlask;

Time Manager Routines

3

PROCEDURE | nsTi ne
PROCEDURE | nsXTi ne
PROCEDURE Pri meTi me
PROCEDURE RmvTi nme

(t mraskPtr:
(tmraskPtr:
(tmraskPtr:
(tmraskPtr:

Application-Defined Routine

CEl enPtr);
CEl enPtr);
CEl enPtr;
CEl enPtr);

count: Longlnt);

PROCCEDURE MyTi meTask;

C Summary

Constants

/*Cestalt selector*/
#def i ne gestalt Ti mreMyr Ver si on

/*val ues returned by Gestalt*/
#def i ne gestalt StandardTi neMyr
#def i ne gestal t Revi sedTi neMyr

#defi ne gestal t Ext endedTi meMgr

Data Types

"t ngr

N

/*Ti me Manager version*/

/*original Tine Manager*/
/*revised Time Manager*/
/ *extended Ti ne Manager*/

t ypedef pascal

void (*TimerProcPtr)(void);

Original and Revised Time Manager Task Record

struct TMrask {

CEl enPtr gLi nk;
short gType;
Ti mer ProcPtr t mAddr ;
| ong t nCount ;
1
3-24 Summary of the Time Manager

/*next queue entry*/
/ *queue type*/
/*pointer to task*/
[*reserved*/

CHAPTER 3

Time Manager

Extended Time Manager Task Record

struct TMrask {

CEl enPtr gLi nk; / *next queue entry*/

short gType; / *queue type*/

Ti mer ProcPtr t mAddr ; /*pointer to task*/

| ong t mCount ; /*unused tinme*/

| ong t MAakeUp; [*wakeup tinme*/

| ong t nReser ved; /*reserved for future use*/

s

typedef struct TMrask TMrask;
t ypedef TMrask *TMraskPtr;

Time Manager Routines

pascal void InsTine (CEl enPtr tnTaskPtr);
pascal void I nsXTine (CEl enPtr tniTaskPtr);
pascal void PrineTinme (CEl enPtr tnTaskPtr, 1ong count);
pascal void RwTine (CEl enPtr tnTaskPtr);

Application-Defined Routine

pascal void MyTi meTask (void);

Assembly-Language Summary

Data Structures

Structure of Original and Revised Time Manager Queue Entry

0 gLi nk long pointer to next queue entry
4 qType word queue type
6 t mAddr long pointer to task
10 t nCount long unused time; returned to caller

Summary of the Time Manager

3-25

1abeuey awil
!

CHAPTER 3

Time Manager

Structure of Extended Time Manager Queue Entry

0 gLi nk long pointer to next queue entry

4 qType word queue type

6 t mAddr long pointer to task
10 t nCount long unused time; returned to caller
14 t mMMakeUp long wakeup time; used internally by the Time Manager
18 t rReserved long reserved for future use

Result Codes

noErr 0 No error

3-26 Summary of the Time Manager

CHAPTER 4

Vertical Retrace Manager

Contents

About the Vertical Retrace Manager 4-4
VBL Tasks Installed by the Operating System 4-5
Types of VBL Tasks 4-5
The VBL Task Record 4-6
Vertical Retrace Queues 4-8
VBL Tasks and Application Execution 4-8
Using the Vertical Retrace Manager 4-10
Installing a VBL Task 4-10
Accessing a Task Record at Interrupt Time 4-12
Accessing Application Global Variables in a VBL Task 4-13
Spinning the Cursor 4-16
Installing a Persistent VBL Task 4-20
Vertical Retrace Manager Reference 4-21
Data Structure 4-21
The VBL Task Record 4-21
Vertical Retrace Manager Routines 4-22
Slot-Based Installation and Removal Routines 4-22
System-Based Installation and Removal Routines 4-24
Utility Routines 4-26
Application-Defined Routine 4-28
VBL Tasks 4-28
Summary of the Vertical Retrace Manager 4-31
Pascal Summary 4-31
Data Type 4-31
Vertical Retrace Manager Routines 4-31
Application-Defined Routine 4-31
C Summary 4-32
Data Types 4-32
Vertical Retrace Manager Routines 4-32
Application-Defined Routine 4-32

Contents 4-1

4-2

CHAPTER 4

Assembly-Language Summary
Constants 4-33
Data Structures 4-33
Global Variables 4-33
Result Codes 4-33

Contents

4-33

CHAPTER 4

Vertical Retrace Manager

This chapter describes the Vertical Retrace Manager, the part of the Operating System
that schedules and executes recurrent tasks during vertical retrace interrupts. You can
use the Vertical Retrace Manager to execute simple, repetitive tasks and avoid having to
execute those tasks repeatedly in your application’s main event loop.

You should read the information in this chapter if you want your application to schedule
tasks for execution during a vertical retrace interrupt. For example, you can use the
Vertical Retrace Manager to cycle among a series of cursors while some lengthy
operation is happening, thus presenting the illusion of a spinning cursor.

In general, you should use the Vertical Retrace Manager only when you need to
synchronize actions with the redrawing of the screen or when the tasks don’t need to be
executed at very precise intervals. As explained later in this chapter, certain conditions
can cause the Operating System to turn off vertical blanking interrupts for a period of
time. When this happens, the tasks in the vertical retrace task queue are not executed as
scheduled. As a result, you should not use the Vertical Retrace Manager to handle tasks
that must be executed consistently or with precise timing. For precise, uninterrupted
task execution, you should use the Time Manager. See the chapter “Time Manager” in
this book for details.

To use this chapter, you need to be familiar with interrupt-time processing and with the
general limitations on such processing. The chapter “Introduction to Processes and
Tasks” in this book describes these issues in detail. As emphasized in that chapter, you
should in general avoid executing tasks at interrupt time. If you must install a VBL task,
the code should be as short as possible. In addition, the code and any data it accesses
should be locked into physical memory if virtual memory is in operation.

To use this chapter, you might also need to be familiar with techniques for accessing
information in your application’s A5 world at interrupt time. The chapter “Introduction
to Memory Management” in Inside Macintosh: Memory describes the A5 world and the
routines you can use to manipulate the A5 register. This chapter provides complete code
samples that illustrate how to access your application’s A5 world in a VBL task. As a
result, you might be able to use the Vertical Retrace Manager to accomplish simple,
repetitive tasks without reading that chapter.

This chapter describes how the Vertical Retrace Manager works and then shows how
you can use the Vertical Retrace Manager to

= install a simple task to be executed during vertical retrace interrupts

= access information about a task record installed in the vertical retrace queue from
within that task

= access your application’s global variables in a vertical retrace task

= spin the cursor to indicate that the user must wait while the computer completes some
lengthy processing

= install a vertical retrace task in the system heap so that it continues to be executed
even when your application is switched out

4-3

laBeuely aocenay [ednIan .
N

CHAPTER 4

Vertical Retrace Manager

About the Vertical Retrace Manager

4-4

The video circuitry in a Macintosh computer, whether built-in or external, refreshes the
screen at regular intervals. For built-in monitors, the screen is refreshed approximately
60 times per second; for external monitors, the screen is refreshed at intervals
determined by the associated video hardware. To refresh the screen, the monitor’s
electron beam draws one pixel at a time, starting at the upper-left corner of the screen
and moving quickly to the lower-right corner. When the electron beam returns from the
lower-right corner of the screen to the upper-left corner, the video circuitry generates a
vertical retrace interrupt or vertical blanking (VBL) interrupt.

The Vertical Retrace Manager is the part of the Operating System that schedules and
executes tasks—known as VBL tasks—during a vertical retrace interrupt. The Operating
System itself uses the Vertical Retrace Manager to perform some important
housekeeping operations, such as moving the cursor in response to mouse movements
and checking whether the current application’s stack has expanded into its heap. Within
the limitations described in this chapter, you can use the Vertical Retrace Manager to
install your own recurrent tasks. For example, you can use the Vertical Retrace Manager
to spin the cursor to indicate that the user must wait while some processing initiated by
your application completes.

In general, the Vertical Retrace Manager is useful for small, repetitive tasks that do not
allocate or release memory and that you do not want to execute in your main event loop.
Whenever possible, it is best to manage periodic tasks within your main event loop. For
example, you can call the TextEdit routine TEI dl e once each time through the loop, thus
causing the insertion point in a block of text to blink. However, if you want some task to
execute repetitively at a time when you do not want to reenter your main event loop
(perhaps because you don’t want your application to be switched out during some
lengthy operation), it might be possible to use the Vertical Retrace Manager to execute
the task.

The principal limitation on VBL tasks (aside from the limitations on any interrupt-time
processing) is that they cannot execute more frequently than once per VBL interrupt. The
exact amount of time between successive VBL interrupts depends on the refresh
frequency of the screen, which varies. On Macintosh computers that have a built-in
screen (such as the Macintosh Plus or Macintosh Classic), the vertical retrace frequency is
approximately 60.15 Hz, resulting in a period of approximately 16.63 milliseconds. If you
need a task to be executed more often than that, you should use the Time Manager,
which has a much finer resolution (up to 250 microseconds for drift-free task execution).

Unlike the Time Manager, the Vertical Retrace Manager is not an absolute timing
mechanism. Its operations are always relative to the VBL interrupt, which may be
disabled (for instance, during disk access). As a result, you should use the Time Manager
in cases where absolute time delays are important. Use the Vertical Retrace Manager,
however, in cases where the scheduled actions need simply to be synchronized with
other VBL tasks, such as moving the cursor or refreshing the screen.

About the Vertical Retrace Manager

CHAPTER 4

Vertical Retrace Manager

VBL Tasks Installed by the Operating System

The Operating System uses the Vertical Retrace Manager to accomplish a number of
repetitive tasks at uniform intervals. These are some of the VBL tasks installed by the
Operating System, grouped by the intervals at which they execute:

= Every interrupt

o Update the value of the global variable Ti cks, which a program may access
through the routine Ti ckCount .

o Call the “stack sniffer” to see if the current application’s stack and heap have
collided. If so, the task calls the System Error Handler.

o Update the position of the cursor.

= Every 30 interrupts

o Check whether the user has inserted a disk or mounted a volume. If so, the task
posts a disk-inserted event.

= Every 32 interrupts

o Check whether a keyboard has been reattached after having been detached. If so,
the task resets the keyboard.

Some VBL routines may execute only on certain computers or only in certain versions of
system software. For example, on early Macintosh computers, a VBL task checks every
other interrupt to determine whether the state of the mouse button has changed from its
previous state and then remained unchanged for at least four interrupts. If so, that task
posts a mouse-down or mouse-up event, as appropriate. In Macintosh computers
equipped with Apple Desktop Bus mouse devices, the Operating System uses a different
mechanism for posting mouse-down and mouse-up events.

Note

VBL tasks installed by the Operating System are not maintained in the
same queue used for application-defined VBL tasks. O

Types of VBL Tasks

There are two general types of VBL tasks. A slot-based VBL task is linked to an external
video monitor. Because different monitors can have different refresh rates and hence
might execute VBL tasks at different times, the Vertical Retrace Manager maintains a
separate task queue for each video device attached to the computer. When a VBL
interrupt occurs for a particular device, the Vertical Retrace Manager executes any tasks
in the queue for the slot holding that monitor’s video card. You can install a slot-based
VBL task by calling the Sl ot VI nst al | function.

For Macintosh computers that have only a built-in monitor (such as a Macintosh Plus or
Macintosh Classic), there is no need to isolate VBL tasks into separate queues. Instead,
the Operating System maintains just one task queue and processes the tasks in that
gueue when it receives a VVBL interrupt. A VBL task that is not linked to an external
video device is known as a system-based VBL task. You can install a system-based VBL
task by calling the VI nst al | function.

About the Vertical Retrace Manager 4-5

laBeuely aocenay [ednIan .
N

4-6

CHAPTER 4

Vertical Retrace Manager

To maintain compatibility on modular Macintosh computers for software that uses the
VI nst al | function, the Operating System generates a special interrupt at a frequency
identical to the retrace rate on compact Macintosh computers. This special interrupt is
generated approximately 60.15 times a second and mimics the vertical retrace interrupt
on compact models. This ensures that application tasks installed using the VI nst al |
function, as well as periodic system tasks such as updating the tick count and checking
whether the stack has expanded into the heap, are performed as usual.

To ensure the synchronization of your VBL task with the retracing of the screen, you
should check whether the Sl ot VI nst al | function is available in the current operating
environment. If it is, you should use the slot-based routines to install and remove your
VBL task. If not, you should use the system-based routines.

However, even if you synchronize your VBL task to the retracing of the screen correctly,
tasks may not always execute as scheduled. Some types of system activity, such as disk
access, may cause VBL interrupts to be disabled temporarily. (This is why cursor
movement sometimes becomes jerky during disk operations.) Also, if a VBL task takes
longer to perform than the time it takes to retrace the screen, other interrupt tasks may
miss one or more vertical retrace interrupts.

Like all interrupt tasks, VBL tasks cannot do everything that ordinary routines can. The
following list summarizes the operations that VBL tasks should not perform. A VBL task
that violates one of these rules may cause a system crash:

= A VBL task must not allocate, move, or purge memory, or call any Toolbox routines
that might do so.

= A VBL task must preserve all registers other than A0O-A3 and D0-D3.

= A VBL task cannot call a routine from another code segment unless it sets up the
application’s A5 world properly. In addition, that segment must already be loaded in
memory.

= A VBL task cannot access your application global variables unless it sets up the
application’s A5 world properly. This technique is explained in “Accessing
Application Global Variables in a VBL Task,” beginning on page 4-13.

= AVBL task’s code and any data accessed during the execution of the task must be
locked into physical memory if virtual memory is in operation.

The VBL Task Record

You install a VBL task by passing the Vertical Retrace Manager the address of a VBL task
record, which holds information about your VBL task. This information includes the
address of the procedure the Vertical Retrace Manager is to execute at interrupt time and
the number of interrupts before it should next execute the task. The VBLTask data type
defines a VBL task record.

About the Vertical Retrace Manager

CHAPTER 4

Vertical Retrace Manager

TYPE VBLTask =

RECORD
gLi nk: QEl enPtr; {next entry in vertical retrace queue}
gType: I nt eger; {queue type}
vbl Addr: ProcPtr; {pointer to task procedure}
vbl Count: | nteger; {interrupts until next execution}
vbl Phase: |nteger; {task phase}
END;

Your application needs to fill in only the qType, vbl Addr, vbl Count, and vbl Phase
fields of the VBL task record. The gLi nk field, which contains a pointer to the next entry
in the VBL task’s vertical retrace queue, is set by the Vertical Retrace Manager when you
install the task by calling VI nst al | or Sl ot VI nst al | . Your application does not need
to set up the gLi nk field.

The Vertical Retrace Manager installs your VBL task record into the appropriate VBL
gueue. A vertical retrace queue is a standard operating-system queue.

Note

For more information about the structure of operating-system queues,
see the chapter “Queue Utilities” in Inside Macintosh: Operating System
Utilities. O

You must set the qType field to ORD(vType) before you install the task. This specifies
that the task’s queue is a vertical retrace queue and not some other type of
operating-system queue.

The vbl Addr field holds a pointer to the procedure that the Vertical Retrace Manager is
to execute.

When installing a VBL task, you specify, in the vbl Count field, the number of interrupts
before the routine first executes. The Vertical Retrace Manager lowers this number by 1
during each interrupt. If decrementing vbl Count produces a value of 0, the Vertical
Retrace Manager executes the procedure specified in the task record’s vbl Addr field. If
you want the procedure to be executed again, that procedure is responsible for resetting
the value of the vbl Count field to the desired value.

laBeuely aocenay [ednIan .
N

If you do not want the Vertical Retrace Manager to execute the task again, your task
should leave the value of vbl Count at 0. Setting the vbl Count field to 0 is one way of
disabling a task. (A more common approach is to remove the task record from its queue
by calling VRenove or Sl ot VRenove, but this should not be done by the VBL task
itself.) Note that if you set vbl Count to 0 when installing a VBL task, the task will never
execute. If you want a task to execute immediately upon installation, set vbl Count to 1.

The vbl Phase field specifies the task’s phase count, indicating which interrupts are to
trigger the execution of the VBL task. You can set two VBL tasks installed at the same
time and scheduled for execution after the same number of interrupts out of phase with
one another—that is, executed during different interrupts—by specifying different phase
counts for each task. Unless you add many tasks to a VBL queue at one time, you can
usually set vbl Phase to 0.

About the Vertical Retrace Manager 4-7

4-8

CHAPTER 4

Vertical Retrace Manager

Vertical Retrace Queues

The Vertical Retrace Manager stores application-defined VBL task records in vertical
retrace queues, which are standard operating-system queues. If multiple tasks in the
same vertical retrace queue are scheduled to be executed during the same interrupt, the
Vertical Retrace Manager will execute the tasks in the order they were installed in the
queue.

Compact Macintosh computers maintain only one vertical retrace queue, because these
computers have only one screen. However, computers with multiple screens require
multiple vertical retrace queues. Because slot-based task installation and removal
routines apply to just one slot, the Vertical Retrace Manager maintains a separate vertical
retrace queue for each slot that contains a video card. In addition, to maintain
compatibility with the system-based VBL task installation and removal routines, the
Vertical Retrace Manager maintains a single, system-based vertical retrace queue for all
applications to share.

Ordinarily, you do not need to inspect or manipulate the contents of vertical retrace
gueues directly. Instead, you can use the Vertical Retrace Manager routines for installing
task records in and removing them from vertical retrace queues.

In one case, however, you might need to inspect the header of a vertical retrace queue. If
you need to know whether some code is being called in response to a VBL interrupt, you
can inspect the qFl ags field of the queue header. The Vertical Retrace Manager sets bit 6
of the gFl ags field in the queue header to indicate that a VBL task in the queue is being
executed.

Assembly-Language Note
You can use the global constant i nVBL to test this bit. O

VBL Tasks and Application Execution

Often, a VBL task performs services that are useful only to the application that installed
it. For instance, consider the VBL task defined in “Spinning the Cursor” beginning on
page 4-16. This task spins the cursor while your application performs some lengthy
operation and should be executed only if your application is in the foreground. If the
user switches your application into the background while it is occupied with that
lengthy operation, you probably want to disable that task for as long as your application
is in the background. Otherwise, the cursor will continue to spin, probably confusing
the user.

In other cases, a VBL task should continue to be executed even when the application that
installed it is no longer in the foreground. For instance, you probably wouldn’t want to
disable a VBL task that periodically checks for the arrival of electronic mail just because
your application is moved to the background.

The Process Manager automatically disables a system-based VBL task when the
application that installed it is swapped out in a major or minor switch, if the address of
the VBL task is anywhere in the application’s partition. Then, when that application
regains control of the processor, the Process Manager reenables that VBL task. If,

About the Vertical Retrace Manager

CHAPTER 4

Vertical Retrace Manager

however, the address of a system-based VBL task is in the system partition, the VBL task
continues to be executed, regardless of the processing status of the application that
launched it.

Note

When your system-based VBL task continues to be executed in this way,
the Process Manager does not restore the context of your application
before executing the VBL task. In particular, any trap patches installed
by your application might not be available to the VBL task. When a VBL
task depends on your application context, your task can call the Process
Manager function Get Cur r ent Pr ocess to check whether your
application is the current process and hence that its context is valid. O

The address of a system-based VBL task, not the address of the VBL task record,
determines whether the Process Manager disables the task. See “Installing a Persistent
VBL Task,” beginning on page 4-20, for a technique you can use to prevent the disabling
of a task when the application that installed it is switched out.

By contrast, the Process Manager never disables a slot-based VBL task, no matter where
the task is located. As a result, if you want to disable a slot-based VBL task when your
application is in the background, you must do so yourself, either by removing the task
record from the VBL queue or by setting the vbl Count field of the task record to 0. You
can do this in response to a suspend event. Then, when your application receives a
resume event, you can reenable the VBL task by reinstalling the task record or by
resetting the vbl Count field of the task record to the appropriate value.

In some cases, you might want to disable a system-based VBL task manually, even
though the Process Manager also disables it when your application is switched out. This
is because the Process Manager reenables system-based VBL tasks when your
application receives processing time as a result of a minor switch, when your application
is still in the background. If the VVBL task should be executed only when your application
is in the foreground, you need to disable it when your application receives a suspend
event and reenable it when your application receives a resume event. The easiest way to
do this is to set and reset the vbl Count field of the task record, as described in the
previous paragraph.

laBeuely aocenay [ednIan .
N

The Process Manager treats VBL tasks slightly differently when your application quits or
crashes than when it is switched out. If either the task record for a VBL task or the code
of the VBL task is located in your application partition, the Process Manager removes
that task record from its VBL queue. (This is true for both slot-based and system-based
VBL tasks.) Conversely, if both a VBL task record and the task itself are located in the
system partition, the Process Manager doesn’t remove the task record from its VBL
queue when the application that installed them quits or crashes.

WARNING

Failure to remove VBL task records installed in the system partition
from their queues can lead to a system crash if the VBL task is located in
the system partition but accesses data in your application partition.
Because the Process Manager deallocates your application partition
when your application quits or crashes, the VBL task may attempt to

About the Vertical Retrace Manager 4-9

CHAPTER 4

Vertical Retrace Manager

access undefined data. The easiest way to avoid this problem is to patch
the Process Manager’s Exi t ToShel | procedure so that it removes all
VBL task records installed by your application. a

Using the Vertical Retrace Manager

4-10

You can use the Vertical Retrace Manager to install VBL task records in and remove VBL
task records from system-based or slot-based vertical retrace queues. To install a task
record, you must first fill in some of its fields and then call either VI nst al | or

Sl ot VI nst al | . See the next section, “Installing a VBL Task,” for information on
installing VBL tasks.

If it is to be executed more than once, a VBL task must access the task record and reset
the value of the task record’s vbl Count field. The section “Accessing a Task Record at
Interrupt Time” on page 4-12 describes this technique. To disable a task temporarily, you
can simply set the vbl Count field of its task record to 0. To remove a VBL task from its
VBL queue, call VRenove if you installed the task by calling VI nst al | or call

Sl ot VRenove if you installed the task by calling Sl ot VI nst al | .

If your VBL task needs to access your application global variables, you can put the
application’s A5 value or the global variables themselves into the second field of a record
whose first field contains the VBL task itself. The sections “Accessing Application Global
Variables in a VBL Task,” beginning on page 4-13, and “Spinning the Cursor,” beginning
on page 4-16, explain these techniques.

Installing a VBL Task

For any particular VBL task, you need to decide whether to install it as a system-based
VBL task or as a slot-based VBL task. You need to install a task as a slot-based VBL task
only if the execution of the task needs to be synchronized with the retrace rate of a
particular external monitor. If the task performs no processing that is likely to affect the
appearance of the screen or that depends on the state of an external monitor, it is
probably safe to install the task as a system-based VBL task.

WARNING

If you do decide that the execution of some VBL task needs to be
synchronized with the retrace rate of a monitor, you should first check
that the Sl ot VI nst al | function is available in the operating
environment. You can do this by calling the Tr apAvai | abl e function
defined in the chapter “Gestalt Manager” in Inside Macintosh: Operating
System Utilities. If you call Sl ot VI nst al | and it is not available, your
application will crash. a

If you are uncertain whether to install a task as a system-based or as a slot-based VBL
task, you should first install it as a system-based task (by calling VI nst al |). Then test
your application on a modular Macintosh computer with an external monitor whose
refresh rate is different from the refresh rate on a compact Macintosh computer

Using the Vertical Retrace Manager

CHAPTER 4

Vertical Retrace Manager

(approximately 60.15 Hz). If any screen updating that occurs as a result of processing
done by your VBL task has an unacceptable appearance, you probably need to install the
task as a slot-based VBL task (by calling Sl ot VI nst al |). Remember, however, to check
whether Sl ot VI nst al | is available before you call it; if it isn’t available, call

VI nst al | . You can determine whether Sl ot VI nst al | is available by calling the

Sl ot Rout i nesAvai | abl e function defined in Listing 4-1.

Listing 4-1 Checking whether you can use slot-based VBL routines

FUNCTI ON Sl ot Rout i nesAvai | abl e: Bool ean;
CONST
_SlotVinstall = $A06F;
BEG N
Sl ot Rout i nesAvai |l abl e : = TrapAvail abl e(_Sl otVinstall);
END;

If the slot-based routines are available and you want to use them, you need to know the
slot number of the video device to whose retrace the VBL task is to be synchronized.
Listing 4-2 illustrates a way to find the slot number of the main graphics device. To
access the device control entry for the main graphics device, you must first find the
device’s reference number. Then you can cast the device control entry into type
AuxDCEHandl e and access the slot number directly. You can use a similar technique to
find the slot number of some other graphics device.

Listing 4-2 Determining the slot number of the main graphics device

FUNCTI ON Mai nSl ot Nunber : | nt eger;
VAR

mai nDevi ceRef Num | nt eger; {nunber of main graphics device}
BEG N

mai nDevi ceRef Num : = Get Mai nDevi ce™”. gdRef Num

Mai nSl ot Nunber : =

AuxDCEHand| e(Get DCt | Ent r y(mai nDevi ceRef Num)) . dCt | Sl ot ;

END;

Note

For the sake of simplicity, the remainder of this chapter illustrates how
to use the Vertical Retrace Manager to handle system-based VBL tasks
only. Virtually all of the techniques shown here, however, can be used in
connection with slot-based VBL tasks as well. O

The I nst al | VBL function defined in Listing 4-3 shows how to fill in a VBL task record
and install it in the system-based VBL queue. It assumes that the task record
gMyVBLTask is a global variable of type VBLTask and that you have already defined
the procedure DoVBL, the actual VBL task. That procedure is subject to all of the usual

Using the Vertical Retrace Manager 4-11

laBeuely aocenay [ednIan .
N

CHAPTER 4

Vertical Retrace Manager

limitations on VBL and other interrupt tasks. Also, if DoVBL is to be executed recurrently,
it must reset the vbl Count field of the task record each time it is executed. The next
section, “Accessing a Task Record at Interrupt Time,” describes how to do this.

Listing 4-3 Initializing and installing a task record

FUNCTI ON I nstal | VBL: OSErr;

CONST
kl nterval = 6; {frequency in interrupts}
BEG N
W TH gMyVBLTask DO {initialize the VBL task}
BEG N
gType := ORD(VvType); {set queue type}
vbl Addr : = @oVBL; {set address of VBL task}
vbl Count := kinterval; {set task frequency}
vbl Phase : = 0; {no phase}
END;

Install VBL : = VInstal | (@MVBLTask);
END;

Accessing a Task Record at Interrupt Time

A repetitive VBL task must access its task record so that it can reset the vbl Count field.
As explained in “The VBL Task Record” on page 4-6, the Vertical Retrace Manager
decrements the vbl Count field during each interrupt and executes the task when that
field reaches 0. The task is removed from its queue if the value of the vbl Count field is
left at 0.

When the Vertical Retrace Manager executes the VBL task, it places the address of the
VBL task record into the A0 register. Listing 4-4 defines an inline function that moves
this value onto the stack.

Note

You should call the inline function in Listing 4-4 only from a VBL task. It
will not work if called from your main program. In addition, the call to
this function should be the first line of your VBL task, because other
processing might change the value in A0. O

Listing 4-4 Finding the address of the task record from within a VBL task

4-12

FUNCTI ON Get VBLRec: Longl nt;
I NLI NE $2E88; {MOVE. L A0, (SP)}

Using the Vertical Retrace Manager

CHAPTER 4

Vertical Retrace Manager

The Get VBLRec function defined in Listing 4-4 returns a long integer specifying the
address of the task record. Now that you can access the task record, you can easily reset
the value of the vbl Count field. Listing 4-5 provides an example of a generic VBL task
that accesses the task record and resets the vbl Count field.

Listing 4-5 Resetting a VBL task so that it executes again

PROCEDURE DoVBL;
CONST

klnterval = 6; {frequency in interrupts}
TYPE

VBLTaskPtr = ~VBLTask; {pointer to a VBLTask record}
VAR

taskPtr: VBLTaskPtr;
BEG N

taskPtr := VBLTaskPtr(GetVBLRec); {get address of task record}

{Put task-specific code here.}

taskPtr”. vbl Count := kinterval; {reset vbl Count}
END;

Accessing Application Global Variables in a VBL Task

The Operating System stores the address of the boundary between the current
application’s global variables and its application parameters in the microprocessor’s A5
register. For this reason, most compilers generate references to application global
variables as offsets from the address contained in the A5 register. Therefore, if the value
in register A5 does not point to the boundary between your application’s global
variables and its application parameters, your attempts to access your application’s
global variables will fail.

Ordinarily, applications do not need to keep track of the value in the A5 register.
Although all applications share the register, the Process Manager keeps track of the
address of your application’s A5 world when a major or minor switch causes your
application to yield the CPU to other processes, and it restores that value when your
application regains access to the CPU. The A5 register is guaranteed to be correct for all
code that your application executes directly (that is, for all code that is not executed in
response to an interrupt or by a Toolbox or Operating System routine).

Because VBL tasks are interrupt routines, they might be executed when the value in the
A5 register does not point to the A5 world of your application. As a result, if you want to
access your application’s global variables in a VBL task, you need to set the A5 register
to its correct value when your VBL task begins executing and restore the previous value
upon exit.

Using the Vertical Retrace Manager 4-13

laBeuely aocenay [ednIan .
N

CHAPTER 4

Vertical Retrace Manager

Note

For a more complete discussion of the A5 register, see the chapter
“Memory Management Utilities” in Inside Macintosh; Memory. O

The solution to this problem is to find a memory location that both the main program
and the VBL task can access. The main program can store the value of register A5
there, and the VBL task can set A5 correctly by reading that value. The functions

Set Cur r ent A5 and Set A5 can be used for this purpose. The application can store the
value of its A5 register by calling Set Cur r ent A5. Then, at interrupt time, the task can
begin by calling Set A5 to set the register to that value and end by calling Set A5 again,
this time to restore the register to its initial value, the one used by the main program.

The only memory location that a VBL task has access to is the address of the task record,
as explained in the previous section, “Accessing a Task Record at Interrupt Time.” So, if
your application stores the value of A5 directly following the task record in memory;, it
can locate the value of A5 by first locating the task record. You can do this by defining a
new data type (called VBLRec in Listing 4-6) whose first field contains the VBL task and
whose second field contains a long integer specifying the value of the A5 register.

Listing 4-6 Storing the value of the A5 register directly after the task record in memory

TYPE VBLRec =

RECORD

nyVBLTask: VBLTask; {the actual VBL task record}

vbl A5: Longl nt ; {saved val ue of application’ s A5}
END;

VBLRecPtr = “VBLRec;
Now you can modify the application-defined procedure that installs a VBL task so that it

stores the value of register A5 in the vbl A5 field of the VBLRec, as illustrated in
Listing 4-7.

Listing 4-7 Saving the value of the A5 register when installing a VBL task

FUNCTION I nstal | VBL: OSErr;

CONST
klnterval = 6; {frequency in interrupts}
BEG N
W TH gMyVBLRec. nyVBLTask DO {initialize the VBL task}
BEG N
gType := ORD(vType); {set queue type}
vbl Addr : = @oVBL; {set address of VBL task}
vbl Count : = kinterval; {set task frequency}
vbl Phase : = 0; {no phase}

4-14 Using the Vertical Retrace Manager

CHAPTER 4

Vertical Retrace Manager

END;
myVBLRec. vbl A5 : = SetCurrent A5; {get our A5}

Install VBL := VIinstal | (@M/VBLRec. nyVBLTask) ;
END;

You must also modify the VBL task so that it sets and restores the value of register A5

correctly. Listing 4-8 illustrates a simple VBL task that increments the global variable
gCount er and then resets itself to run again after the specified number of interrupts.

Listing 4-8 Setting up the A5 register and modifying a global variable in a VBL task

PRCCEDURE DoVBL;

CONST

klnterval = 6; {frequency in interrupts}
VAR

cur A5: Longl nt ; {stored val ue of A5}

rechPtr: VBLRecPtr; {pointer to task record}
BEG N

recPtr := VBLRecPtr(GetVBLRec); {get address of task record}

curA5 : = Set A5(recPtr”.vbl A5); {set our application's A5 }

{ and store old A5 in curA5}
gCounter := gCounter + 1; {nmodify a gl obal vari abl e}

{Reset vbl Count so that this procedure executes again.}
recPtr”. myVBLTask. vbl Count := klnterval;

cur A5 : = Set A5(cur A5); {restore the old A5 val ue}
END;

Because of the optimizations performed by some compilers, the actual work of the VBL
task and the setting and restoring of the A5 register might have to be placed in separate
procedures. If necessary, you can define a routine DoVBL that loads the proper value of
Ab5, calls another routine called RunVBL, and then restores the old value of A5. The
RunVBL routine does the work of the VBL task and resets the task record’s vbl Count
field so that the DoVBL routine executes again. Listing 4-9 illustrates a sample definition
of the RunVBL function that modifies an application global variable.

Listing 4-9 Modifying application global variables in a VBL task

PROCEDURE RunVBL (aRecPtr: VBLRecPtr);
CONST

kl nterval = 6; {frequency in interrupts}
BEG N

Using the Vertical Retrace Manager 4-15

laBeuely aocenay [ednIan .
N

CHAPTER 4

Vertical Retrace Manager

gCounter := gCounter + 1; {nodi fy gl obal variabl e}

{Reset vbl Count so that this procedure executes again.}
aRecPtr”. nyVBLTask. vbl Count := klnterval;
END;

Listing 4-10 shows how to call RunVBL from the VBL task.

Listing 4-10 Setting up and restoring the A5 register in a VBL task

PROCEDURE DoVBL;

VAR
cur A5: Longl nt ; {stored val ue of A5}
rechPtr: VBLRecPtr; {pointer to task record}
BEG N
recPtr := VBLRecPtr(GetVBLRec); {get address of task record}
curA5 := Set A5(recPtr”.vbl A5); {set our application's A5 }
{ and store old A5 in curA5}
RunVBL(recPtr); {run the actual VBL task}
cur A5 : = Set A5(curA5); {restore the old A5 val ue}
END;

If this separation of routines is necessary, you must make sure that the two routines
(DoVBL and RunVBL) are in the same code segment.

Spinning the Cursor

Some VBL tasks need access only to global variables that they do not share with the

main program. For example, you might wish to design a VBL task that animates the
beachball or watch cursor to indicate that the user must wait while the computer finishes
some lengthy processing. The main application might use the application-defined
procedures St ar t Spi nni ng and St opSpi nni ng to install and remove the VBL task,
but the application might not need to know, for example, which beachball or watch
cursor the VBL task is displaying at any given time. The VBL task itself would need to
know this information, because it must know which cursor to display when it is time to
change the cursor.

One way to implement such a VBL task is to use application global variables and set up
the A5 register properly, as described in the previous section, “Accessing Application
Global Variables in a VBL Task.” An alternate method, however, is simply to store the
information that the VBL task needs directly after the task record in memory, just as you
can store information about the program’s A5 value there. Then, because the VBL task
has access to all of the information it needs, it does not need to set up and restore the A5
register.

4-16 Using the Vertical Retrace Manager

CHAPTER 4

Vertical Retrace Manager

The listings that follow use that strategy to implement cursor spinning. This cursor
spinning task implements simple animation of any number of cursor frames stored in
contiguous resources in the program’s resource fork.

Listing 4-11 provides a type definition for a cursor information record. This record holds
the task record and information specific to cursor spinning. Listing 4-11 also defines
several constants and a global variable to hold a cursor information record.

Listing 4-11 Defining a cursor information record

CONST
klnterval = 4; {frequency in interrupts}
kNunber Of Cur sors = 4; {total nunber of franes}
kinitial ResID = 128; {1D of first cursor resource}
TYPE
CursorsLi st = ARRAY[1. . kNunber Of Cursors] OF CursHandl e;
Cursor Task =
RECORD
nyVBLTask: VBLTask; {the actual VBLTask}
nmyCursors: CursorslList; {handl es to the cursors}
nmy Fr ane: I nt eger; {cursor frane to display next}
END;
Cursor TaskPtr = ~Cursor Task;
VAR
gMyCur sTask: Cur sor Task; {gl obal cursor info. record}

Listing 4-12 shows the VBL task itself. The task changes the cursor and resets the task
record’s vbl Count field so that the Vertical Retrace Manager executes the task again.

Listing 4-12 Changing the cursor within a VBL task

PROCEDURE ChangeCur sor ;

TYPE

Bool eanPtr = “Bool ean; {to check a | ow nenory gl obal }
VAR

recPtr: CursorTaskPtr;
BEG N

recPtr := CursorTaskPtr (Get VBLRec); {get cursor information}

{If the cursor is busy, we should not change it.}
| F NOT Bool eanPtr (CrsrBusy)” THEN

WTH recbPtr® DO {update cursor information}
BEG N
Set Cur sor (myCur sor s[nyFr ane] ") ; {di splay the next cursor}
nyFranme : = nmyFrame + 1; {advance to next cursor frane}

Using the Vertical Retrace Manager 4-17

laBeuely aocenay [ednIan .
N

CHAPTER 4

Vertical Retrace Manager

| F nyFrane > kNunber Of Cursors THEN
myFrame : = 1; {wrap around to first frane}
END;
recPtr”. myVBLTask. vbl Count := kinterval; {set task to run again}
END;

The ChangeCur sor procedure retrieves the address of the VBL task record. If the cursor
isn’t already being changed, then ChangeCur sor changes the cursor to the next one in
sequence and resets the index of the next cursor to display. Finally, ChangeCur sor sets
itself to run again after the appropriate number of interrupts have occurred.

Note

It is permissible to call Set Cur sor at interrupt time, provided that the
cursor handle is locked and that some other routine is not currently
modifying the cursor. The system global variable Cr sr Busy has the
value TRUE if the cursor is busy; in that case, you should not call

Set Cur sor. Listing 4-12 illustrates the proper way to change the cursor
at interrupt time. O

Listing 4-13 defines the procedure St ar t Spi nni ng, which you can call before
beginning some lengthy operation. Because VBL tasks cannot depend on the validity of
unlocked handles, the St ar t Spi nni ng procedure must lock the cursor handles in
memory before Set Cur sor is called in the ChangeCur sor procedure.

Listing 4-13 Installing the cursor-spinning task into a vertical retrace queue

PRCCEDURE St art Spi nni ng;

CONST

kinitial Delay = 120; {initial delay before starting to spin}
VAR

nmyErr: OSErr;

count: I nt eger;
BEG N

{Initialize cursor information.}

FOR count := 1 TO kNunber Of Cursors DO

BEG N
{Load cursor into nenory.}
gMyCur sTask. nyCursors[count] := GetCursor(klnitialResID + count - 1);
{Lock cursor so that we can call SetCursor at interrupt tine.}
HLockHi (Handl e(gMyCur sTask. myCur sors[count]));

END;

gMyCur sTask. nyFrane : = 1; {display cursor with klnitial ResID first}

W TH gMyCur sTask. nyVBLTask DO {initialize the VBL task record}
BEG N

4-18 Using the Vertical Retrace Manager

CHAPTER 4

Vertical Retrace Manager

gType := ORD(vType); {set queue type}
vbl Addr : = @hangeCursor; {get address of VBL task}
vbl Count := kinitial Delay; {set task frequency}
vbl Phase : = 0; {no phase}
END;
nyErr := Vinstall (@M CursTask. nyVBLTask) ;

END;

Notice that the initial delay (specified by the kil ni t i al Del ay constant in the

vbl Count field) is much larger than the number of interrupts between subsequent
cursor changes (specified by the kI nt er val constant). This prevents the cursor from
starting to spin until a reasonable time (about 2 seconds) has elapsed.

Listing 4-14 shows how to remove the cursor-spinning task from the vertical retrace
queue.

Listing 4-14 Removing the cursor-spinning task from its vertical retrace queue

PROCEDURE St opSpi nni ng;

VAR
myErr: OSErr;
count : | nt eger;
BEG N

{Renove the task record fromits queue.}
nyErr : = VRemove(@My/Cur sTask. myVBLTask) ;

{Free nenory occupied by the cursors.}
FOR count := 1 TO kNunber O Cur sors DO
Rel easeResour ce(Handl e(gMyCur sTask. myCur sor s[count]));

I nitCursor; {restore the arrow cursor}
END;

Depending on the needs of your application, you might want to load the cursors into

memory at application-launch time and release them when your application quits. If so,
you need to modify the St art Spi nni ng and St opSpi nni ng procedures accordingly.

Using the Vertical Retrace Manager 4-19

laBeuely aocenay [ednIan .
N

CHAPTER 4

Vertical Retrace Manager

Installing a Persistent VBL Task

A persistent VBL task continues to be executed even when the Process Manager
switches out the application that installed it and that application is no longer in control
of the CPU. If you want to install a persistent system-based VBL task, you need to load
its VBL task record into the system partition. (Slot-based VBL tasks are always persistent,
no matter where you put the task record.) Listing 4-15 illustrates a simple way to load a
VBL task record into the system heap.

Listing 4-15 Installing a persistent VBL task

FUNCTI ON | nstal | Persi stentVBL (VAR theVBLRec: VBLTask): OSErr;
TYPE

CONST

VAR

BEG N

ProcPtrPtr = ~ProcPtr; {a pointer to a ProcPtr}
kJMPI nstr = $4EF9; {this is an absolute JMP}
kJMPSi ze = 6; {size of an absolute JM°}
nmyErr: OSErr;
SysHeapPtr: Ptr;
tempPtr: Ptr;
SysHeapPtr := NewPtrSys(kJMPSi ze); {get a block in system heap}
nmyErr = MenError,
I F nyErr <> noErr THEN {make sure we have the bl ock}
BEG N
Install PersistentVBL := nyErr;
Exit(Install PersistentVBL);
END;
I ntegerPtr(SysHeapPtr)” := kJMPInstr; {nove in the JWP instruction}

tenmpPtr : = Ptr(ORD(SysHeapPtr) +Si zeOf (I nteger));

ProcPtrPtr(tempPtr)” := theVBLRec. vbl Addr; {nove in the JVWP address}

t heVBLRec. vbl Addr := ProcPtr(SysHeapPtr); {point record at sys heap}
Install PersistentVBL := Vinstall (@heVBLRec);{install the VBL task record}

END;

The I nst al | Per si st ent VBL function defined in Listing 4-15 allocates enough bytes
in the system heap to hold an integer that encodes an assembly-language JMP instruction
together with the absolute address to which to jump. It loads into that space the
assembly-language instruction and the address of the original VBL task, which is
extracted from the VBL task record passed to it as a parameter. Then

I nst al | Per si st ent VBL replaces the address of the original VBL task in that record
with the address of the block in the system heap. The net result is that the vbl Addr field
of the VBL task record now contains an address in the system partition, making the VBL
task persistent.

4-20 Using the Vertical Retrace Manager

CHAPTER 4

Vertical Retrace Manager

\ertical Retrace Manager Reference

This section describes the data structure and routines provided by the Vertical Retrace
Manager. The section “Data Structure” shows the Pascal data structure for the VBL task
record. The section “Vertical Retrace Manager Routines” describes the routines you can
use to install and remove slot-based and system-based VBL tasks; it also describes
several utility routines for advanced programmers. The section “Application-Defined
Routine” describes VBL tasks.

Data Structure

This section describes the VBL task record, the data structure you use to install VBL tasks
in and remove them from vertical retrace queues.

The VBL Task Record

A VBL task record describes a vertical retrace task. It indicates which task record (if any)
comes next in the vertical retrace queue, what procedure to use for the task, how many
interrupts to wait before the task is executed, and in what phase to execute the task. The
VBLTask data type defines a VBL task record.

TYPE VBLTask =

RECORD
gLi nk: QEl enPtr; {next entry in vertical retrace queue}
gType: I nt eger; {queue type}
vbl Addr: ProcPtr; {pointer to task procedure}
vbl Count : I nt eger; {interrupts until next execution}
vbl Phase: I nt eger; {task phase}
END;

Field descriptions

gLi nk A pointer to the next entry in the task’s vertical retrace queue.
gType The queue type. This field must be set to ORD(vType) .

vbl Addr A pointer to the VBL task.

vbl Count The number of interrupts between successive calls to the VBL task

specified in the vbl Addr field. If the value of vbl Count is 0, the
task will never be executed. The Vertical Retrace Manager
decrements the value of this field after each interrupt. If
decrementing vbl Count produces a value of 0, the Vertical Retrace
Manager executes the task. The task must then reset vbl Count , or
its entry will be removed from the queue after it has been executed.

Vertical Retrace Manager Reference 4-21

laBeuely aocenay [ednIan .
N

CHAPTER 4

Vertical Retrace Manager

vbl Phase The phase count of the VBL task. In most cases, you can set this
field to 0. However, if you install multiple tasks with the same
vbl Count at the same time, you can assign them different
vbl Phase values so that the tasks are not executed during the
same interrupt. The value of the vbl Phase field must be less than
the value of the vbl Count field.

For more information about using the vbl Count and vbl Phase fields, see “The VBL
Task Record” on page 4-6.

Vertical Retrace Manager Routines

This section describes routines that allow you to install slot-based and system-based task
records in vertical retrace queues and to remove task records. This section also describes
utility routines that are of interest only to advanced programmers.

Slot-Based Installation and Removal Routines

SlotVInstall

You can use the functions Sl ot VI nst al | and S| ot VRenopve to install task records in
and remove them from slot-based vertical retrace queues.

DESCRIPTION

4-22

You can use the Sl ot VI nst al | function to install a task record in a slot-based vertical
retrace queue.

FUNCTI ON Sl ot VInstall (vbl TaskPtr: QElenPtr; theSlot: |nteger):
CSErr;

vbl TaskPtr
A pointer to the task record to add to a queue.

t heSl ot The slot number of the video device to whose vertical retrace queue the
task record is added.

The Sl ot VI nst al | function installs the task record specified by the vbl TaskPt r
parameter in the vertical retrace queue associated with the video device specified by the
t heSl ot parameter. The Vertical Retrace Manager executes the task at intervals
determined by the task record’s vbl Count and vbl Phase fields. The task must reset
the value of the task record’s vbl Count field if you want the task to be executed again.

The Vertical Retrace Manager continues to execute tasks installed using the
Sl ot VI nst al | function even when the application that installed them is switched out.

Vertical Retrace Manager Reference

CHAPTER 4

Vertical Retrace Manager

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Sl ot VI nst al | are
Registers on entry
A0 Pointer to the task record
DO Slot number of the device associated with the vertical retrace queue

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
VTypErr -2 Invalid qType value (must be ORD(vType))
sl ot Nuner r -360 Invalid slot number

SlotVRemove

You can use the Sl ot VRenove function to remove a task record from a slot-based
vertical retrace queue.

FUNCTI ON Sl ot VRenove (vbl TaskPtr: CQElenPtr; theSlot: |nteger):

OSErr;
vbl TaskPtr
A pointer to the task record to remove from its queue.
t heSl ot The slot number of the video device from whose vertical retrace queue

the task record is removed.

DESCRIPTION

The Sl ot VRenove function removes the task record specified by the vbl TaskPt r
parameter from the vertical retrace queue associated with the video device specified by
thet heSl ot parameter.

To disable a slot-based VBL task temporarily, you can set the vbl Count field of the task
record to 0.

Vertical Retrace Manager Reference 4-23

laBeuely aocenay [ednIan .
N

CHAPTER 4

Vertical Retrace Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The registers on entry and exit for Sl ot VRenove are

Registers on entry

A0 Pointer to the task record

DO Slot number of the device associated with the vertical retrace queue

Registers on exit
DO Result code

noErr 0 No error

gErr -1 Task record isn’t in the queue

VvTypErr -2 Invalid gType value (must be ORD(vType))
sl ot Nuntrr -360 Invalid slot number

System-Based Installation and Removal Routines

VInstall

You can use the functions VI nst al | and VRenove to install task records in and remove
them from the system-based vertical retrace queue. These routines exist to provide
compatibility with Macintosh computers that have built-in monitors. You can also use
these routines when you don’t need to synchronize the execution of your VBL task to
any monitor.

DESCRIPTION

4-24

You can use the VI nst al | function to install a task record into the system-based vertical
retrace queue.

FUNCTION Vinstall (vbl TaskPtr: QElenPtr): OSErr;

vbl TaskPtr
A pointer to the task record to add to the queue.

The VI nst al | function installs the VBL task record specified by the vbl TaskPt r
parameter in the system-based vertical retrace queue. The Vertical Retrace Manager
executes the task at intervals determined by the task record’s vbl Count and vbl Phase
fields. The task must reset the value of the task record’s vbl Count field if you want the
task to be executed again.

In current versions of system software, the Vertical Retrace Manager does not continue to
execute tasks installed using the VI nst al | function when the application that installed

Vertical Retrace Manager Reference

CHAPTER 4

Vertical Retrace Manager

them is switched out, unless the address in the vbl Addr field of the task record points in
the system partition.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The registers on entry and exit for VI nst al | are

Registers on entry
A0 Pointer to the task record

Registers on exit
DO Result code

nokErr 0 No error
VTypErr -2 Invalid gType value (must be ORD(vType))

VRemove
You can use the VRenove function to remove a task record from the system-based
vertical retrace queue.
FUNCTI ON VRenmove (vbl TaskPtr: QElenPtr): OSErr;
vbl TaskPtr
A pointer to the task record to remove from the queue.
DESCRIPTION

The VRenpve function removes the task record specified by the vbl TaskPt r parameter
from the system-based vertical retrace queue.

To disable a system-based VBL task temporarily, you can set the vbl Count field of the
task record to 0.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for VRenove are

Registers on entry
A0 Pointer to the task record

Registers on exit
DO Result code

Vertical Retrace Manager Reference 4-25

laBeuely aocenay [ednIan .
N

RESULT CODES

CHAPTER 4

Vertical Retrace Manager

noErr 0 No error

gErr -1 Task record isn’t in the queue
VTypErr -2 Invalid qType value (must be ORD(vType))

Utility Routines

AttachVVBL

The Vertical Retrace Manager provides several utility routines that allow you to change
the slot number of the primary video monitor, execute all tasks in a slot-based vertical
retrace queue, and access the head of the system-based vertical retrace queue.

Note

Most applications do not need to use the routines described in this
section. O

DESCRIPTION

The At t achVBL function changes the slot number of the primary video monitor.
FUNCTI ON AttachVBL (theSlot: Integer): OSErr;

t heSl ot The new slot number for the primary video monitor.

The At t achVBL function changes the slot number of the primary monitor to the number
specified by the t heSl ot parameter. System software uses this routine to ensure correct
cursor updating.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

4-26

The registers on entry and exit for At t achVBL are

Registers on entry
Do Slot number

Registers on exit
DO Result code

noErr 0 No error
sl ot Nunerr -360 Invalid slot number
Vertical Retrace Manager Reference

CHAPTER 4

Vertical Retrace Manager

DoVBLTask

Slot interrupt handlers for video cards should call the DoVBLTask function to handle the
execution of VBL tasks.

FUNCTI ON DoVBLTask (theSlot: Integer): OSErr;

t heSl ot Slot number corresponding to the vertical retrace queue whose tasks are
to be executed.

DESCRIPTION

The DoVBLTask function decrements the vbl Count field of each task in the vertical
retrace queue corresponding to the t heS| ot parameter (except for tasks whose

vbl Count field already contains the value 0). The function executes a task if
decrementing the vbl Count field for a task record results in a value of 0.

If t heSl ot designates the slot of the primary video device, the position of the cursor is
also updated.

Slot interrupt handlers for video cards need to call this function to execute any tasks in
the queue for that slot. You can also call this function if you need to simulate vertical
retrace interrupts.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for DoVBLTask are
Registers on entry
Do Slot number

Registers on exit
DO Result code

To reduce overhead at interrupt time, instead of executing the _DoVBLTask trap, you
can load the jump vector j DoVBLTask into an address register and execute a JSR
instruction using that register.

RESULT CODES

noErr 0 No error
sl ot Nunerr -360 Invalid slot number

Vertical Retrace Manager Reference 4-27

laBeuely aocenay [ednIan .
N

CHAPTER 4

Vertical Retrace Manager

GetVBLQHdr

DESCRIPTION

You can obtain the header of the system-based vertical retrace queue by calling the
Cet VBLQHdr function.

FUNCTI ON Get VBLQHdr: QHdr Ptr;

The Get VBLQHdr function returns a pointer to the header of the system-based vertical
retrace queue. In general, you need to call this function only if you want to manipulate
the contents of the system-based vertical retrace queue directly or if you want to read the
information stored in the queue header.

ASSEMBLY-LANGUAGE INFORMATION

The global variable VBLQueue contains the header of the system-based vertical retrace
queue.

The global variable Scr nVBLPt r contains a pointer to the header of the vertical retrace
gueue associated with the slot for the primary monitor.

Application-Defined Routine

VBL Tasks

The Vertical Retrace Manager allows your software to install an application-defined
routine that is executed during vertical retrace interrupts.

You pass the address of an application-defined VBL task in the vbl Addr field of the VBL
task record.

MyVBLTask

DESCRIPTION

4-28

A VBL task has the following syntax:

PROCCEDURE MyVBLTask;

The vbl Addr field of a VBL task record contains the address of a VBL task that is
executed after the number of interrupts specified in the vbl Count field of the task
record. The task can be set to execute at any frequency (up to once per vertical retrace
interrupt). If the task uses application global variables or calls routines in another code

Vertical Retrace Manager Reference

CHAPTER 4

Vertical Retrace Manager

segment, it must ensure that register A5 contains the address of the boundary between
the application global variables and the application parameters. In addition, if your task
calls routines in another code segment, that segment must already be loaded in memory.

Because of the optimizations performed by some compilers, the actual work of the VBL
task and the setting and restoring of the A5 register might have to be placed in separate
procedures. See Listing 4-9 and Listing 4-10 for an example of how you can do this.

Your VBL tasks shouldn’t call VRenove or Sl ot VRenove to remove its entry from the
gueue. Instead, either your application should call one of those functions at noninterrupt
time or your task should simply not reset the vbl Count of the task record.

SPECIAL CONSIDERATIONS
Because a VBL task is executed at interrupt time, it should not allocate, move, or purge

memory (either directly or indirectly) and should not depend on the validity of handles
to unlocked blocks.

The code of the VBL task and any data accessed during its execution must be locked into
physical memory if virtual memory is in operation.

Unless directed to do otherwise, some compilers insert code into your compiled
application to facilitate debugging operations. This additional code can, however, cause
trouble for VBL tasks and other interrupt processing. You might need to disable the
generation of debugging code by enclosing the interrupt code between the appropriate
compiler directives. Here’s an example:

{ $PUSH}

{$D-}

{Don’t generate debuggi ng code for this procedure.}
PROCEDURE DoVBL;

BEG N

END;
{ $POP}

Consult the documentation for your development system to see whether this is
necessary and, if it is, how to do it.

ASSEMBLY-LANGUAGE INFORMATION

When the VBL task is called, register A0 contains a pointer to the VBL task record
associated with that procedure.

A VBL task must preserve all registers other than A0O-A3 and D0-D3. It must exit with an
RTS instruction.

Vertical Retrace Manager Reference 4-29

laBeuely aocenay [ednIan .
N

CHAPTER 4

Vertical Retrace Manager

SEE ALSO

See the section “Accessing Application Global Variables in a VBL Task” beginning on
page 4-13 for instructions on how to access your application’s global variables in a VBL
task.

4-30 Vertical Retrace Manager Reference

CHAPTER 4

Vertical Retrace Manager

Summary of the \Vertical Retrace Manager

Pascal Summary

Data Type

TYPE VBLTask

{VBL queue el enent}

RECORD
gLi nk: QEl enPtr; {next entry in vertical retrace queue}
gType: I nt eger; {queue type}
vbl Addr: ProcPtr; {pointer to task procedure}
vbl Count : I nt eger; {interrupts until next execution}
vbl Phase: I nt eger; {task phase}
END;

Vertical Retrace Manager Routines

Slot-Based Installation and Removal Routines

FUNCTI ON Sl ot VI nst al | (vbl TaskPtr: QElenPtr; theSlot:
FUNCTI ON Sl ot VRenove (vbl TaskPtr: QEl enPtr; theSlot:

System-Based Installation and Removal Routines

FUNCTI ON VI nst al | (vbl TaskPtr: QElenPtr): OSErr;
FUNCTI ON VRenove (vbl TaskPtr: CQElenPtr): OSErr;

Utility Routines

FUNCTI ON At t achVBL (theSlot: Integer): OSErr;
FUNCTI ON DoVBLTask (theSlot: Integer): CSErr;
FUNCTI ON Get VBLQHdr : QHdrPtr;

Application-Defined Routine

Integer): OSErr;
I nteger): OSErr;

PROCEDURE MyVBLTask;

Summary of the Vertical Retrace Manager

4-31

laBeuely aocenay [ednIan .
N

CHAPTER 4

Vertical Retrace Manager

C Summary

Data Types

t ypedef pascal void (*VBLProcPtr) (void);

typedef struct { /*VBL queue el enent*/
CEl enPtr gLi nk; /*next entry in vertical retrace queue*/
short gType; / *queue type*/
VBLProcPtr vbl Addr; /*pointer to task procedure*/
short vbl Count ; /*interrupts until next execution*/
short vbl Phase; /*task phase*/

} VBLTask;

Vertical Retrace Manager Routines

Slot-Based Installation and Removal Routines

pascal OSErr SlotVinstall (CEl enPtr vbl TaskPtr, short theSlot);
pascal OSErr Sl ot VRenmove (CEl enPtr vbl TaskPtr, short theSlot);

System-Based Installation and Removal Routines

pascal OSErr VInstall (CEl enPtr vbl TaskPtr);
pascal OSErr VRenove (CEl enPtr vbl TaskPtr);

Utility Routines

pascal OSErr AttachVBL (short theSlot);
pascal OSErr DoVBLTask (short theSlot);
#def i ne Get VBLQHdr () ((QHdrPtr) 0x0160)

Application-Defined Routine

pascal void MyVBLTask (voi d);

4-32 Summary of the Vertical Retrace Manager

CHAPTER 4

Vertical Retrace Manager

Assembly-Language Summary

Constants
vType EQU 1 ; VBL queue el enent type
i nVBL EQU 6 ;bit index for VBL active flag

Data Structures

VBL Queue Element

0 vbl i nk long next entry in vertical retrace queue
4 vbl Type word queue type
6 vbl Addr long address of task procedure

10 vbl Count word interrupts until next execution

12 vbl Phase word phase count

Global Variables

Cr sr Busy byte Set to TRUE if the cursor is being changed.

j DoVBLTask long Jump vector for DoVBLTask routine.

ScrnVBLPt r long Pointer to the primary monitor’s vertical retrace queue’s header.
VBLQueue 10 bytes Header of the vertical retrace queue.

Result Codes

noErr 0 No error

gErr -1 Task entry isn’t in the queue

VvTypErr -2 Invalid gType value (must be ORD(vType))
sl ot NunErr -360 Invalid slot number

Summary of the Vertical Retrace Manager

laBeuely aocenay [ednIan .
N

CHAPTER 5

Notification Manager

Contents

About the Notification Manager 5-3
Using the Notification Manager 5-6
Creating a Notification Request 5-6
Defining a Response Procedure 5-9
Installing a Notification Request 5-9
Removing a Notification Request 5-10
Notification Manager Reference 5-10
Notification Manager Routines 5-10
Application-Defined Routine 5-12
Notification Response Procedures 5-12
Summary of the Notification Manager 5-14
Pascal Summary 5-14
Constant 5-14
Data Types 5-14
Notification Manager Routines 5-14
Application-Defined Routine 5-14
C Summary 5-15
Constant 5-15
Data Types 5-15
Notification Manager Routines 5-15
Application-Defined Routine 5-15
Result Codes 5-15

Contents 5-1

CHAPTER 5

Notification Manager

This chapter describes how you can use the Notification Manager to inform users of
significant occurrences in applications that are running in the background or in software
that is largely invisible to the user. This software includes device drivers, vertical
blanking (VBL) tasks, Time Manager tasks, completion routines, and desk accessories
that operate behind the scenes. It also includes code that executes during the system
startup sequence, such as code contained in' I NI T' resources.

The Notification Manager is available in system software versions 6.0 and later. You can
use the Gest al t function to determine whether the Notification Manager is present. See
the chapter “Gestalt Manager” in Inside Macintosh: Operating System Ultilities for complete
details on using Gest al t .

You need to read this chapter if your application, desk accessory, or device driver might
need to notify the user of some occurrence while it is running in the background or is
otherwise invisible to the user. You also need to read this chapter if you want to write
"INl T" resources that might need to inform the user of important occurrences during
their execution at system startup time.

About the Notification Manager

The Notification Manager provides a notification service. It allows software running in
the background (or otherwise unseen by the user) to communicate information to the
user. For example, applications that manage lengthy background tasks (such as printing
many documents or transferring large amounts of data to other machines) might need to
inform the user that the operation is complete. These applications cannot use the
standard methods of communicating with the user, such as alert or dialog boxes, because
such windows might easily be obscured by the windows of other applications.
Moreover, even if those windows are visible, the background application cannot be
certain that the user is aware of the change. A more reliable method is needed to manage
the communication between a background application and the user, who might be
awaiting the completion of the background task while running some other application in
the foreground.

In the same way, relatively invisible operations such as Time Manager tasks, VBL tasks,
or device drivers might need to inform the user that some previously started routine is
complete or perhaps that some error has rendered further execution undesirable or
impossible.

In all these cases, the communication generally needs to occur in one direction only, from
the background application (or task, or driver) to the user. The Notification Manager,
included in system software versions 6.0 and later, allows you to alert the user by
posting a notification, which is an audible or visible indication that your application (or
other piece of software) requires the user’s attention. You post a notification by issuing a
notification request to the Notification Manager, which places your request in a queue.
When your request reaches the top of the queue, the Notification Manager posts a
notification to the user.

About the Notification Manager 5-3

J1abeuep uoneoynoN .
ol

CHAPTER 5

Notification Manager

You can request three types of notification:

= Polite notification. A small icon blinks, by periodically alternating with the Apple
menu icon (the Apple logo) or the Application menu icon in the menu bar.

= Audible notification. The Sound Manager plays the system alert sound or a sound
contained inan' snd ' resource.

= Alert notification. An alert box containing a short message appears on the screen. The
user must dismiss the alert box (by clicking the OK button) before foreground
processing can continue.

These types of notification are not mutually exclusive; for example, an application can
request both audible and alert notifications. Moreover, if the requesting software is listed
in the Application menu (and hence represents a process that is loaded into memory),
you can instruct the Notification Manager to place a diamond-shaped mark next to the
name of the requesting process. The mark is usually intended to prompt the user to
switch the marked application into the foreground. Finally, you can request that the
Notification Manager execute a notification response procedure, which is executed as
the final step in a notification.

In short, a notification consists of one or more of five possible actions. If you request
more than one action, they occur in the following order:

1. Adiamond-shaped mark appears next to the name of your application in the
Application menu, as illustrated in Figure 5-1. Note that the diamond is present only
when your application is in the background (because the diamond is replaced by a
checkmark if your application is the active application). In Figure 5-1, the Traffic Light
application is the active application.

Figure 5-1 A natification in the Application menu

5-4

Hide Traffic Light
Hide Others
“irires B

Finder
+ iy sample
<& Traffic Light

2. Asmall icon blinks, alternating with either the Apple menu icon or the Application
menu icon in the menu bar. Typically, the small icon is your application’s small icon.
Because several applications can post notifications, there might be a series of small
icons blinking in the menu bar. The location of each blinking icon varies according to
the posting application’s mark (if any). If your application is marked with a diamond
(or a checkmark) in the Application menu, the icon blinks above the Application
menu; otherwise, the icon blinks above the Apple menu.

About the Notification Manager

CHAPTER 5

Notification Manager

3. The Sound Manager plays a sound. Your application can supply its own sound (by
passing the Notification Manager a handletoan' snd ' resource loaded into
memory) or request that the Sound Manager use the user’s system alert sound.

4. An alert box like the one in Figure 5-2 appears, and the user dismisses it. Your
application specifies the text in the alert box.

Figure 5-2 A natification alert box

Sample alert box!

5. Aresponse procedure is executed. You can use the response procedure to remove the
notification request from the queue or perform other processing.

The mark in the Application menu and the blinking small icon remain until the
requesting application removes the notification request from the queue. However, the
sound and the alert box are presented only once, if at all.

Any applications, desk accessories, tasks, routines, or drivers can use the Notification
Manager, whether they are running in the background or not. It is especially useful for
background applications, such as the PrintMonitor application. (The system alarm,
which is called by the Alarm Clock desk accessory, also uses the Notification Manager.)
Foreground applications can, however, use the Notification Manager to achieve effects
(such as the blinking small icon) that are otherwise more difficult to create. For the same
reasons, the Notification Manager can be useful even to applications that might be
executing in a Finder-only environment under system software version 6.0.

The Notification Manager provides applications with a standard user interface for
notifying the user of significant events. The following three-level notification strategy for
communicating with the user is recommended:

1. Display a diamond next to the name of the application in the Application menu.

2. Insert a small icon into the list of icons displayed alternately with the Apple menu
icon or the Application menu icon in the menu bar, and display a diamond next to the
name of your application in the Application menu.

3. Display a diamond, insert a small icon, and display an alert box to notify the user that
something needs to be done.

Ideally, the user should be allowed to set the desired level of notification. The suggested
default level of notification is level 2. In levels 2 and 3, you might also play a sound, but
the user should have the ability to turn the sound off. In addition, a user should have the

About the Notification Manager 5-5

J1abeuep uoneoynoN .
ol

CHAPTER 5

Notification Manager

ability to turn off background notification altogether, except when damage might occur
or data might be lost.

Note

This suggested notification strategy may not be appropriate for your
application. Notifications posted by system software might not follow
these guidelines. O

Each application, desk accessory, and device driver can issue any number of notification
requests. Each requested notification is presented separately to the user. For this reason,
avoid posting multiple notification requests for the same occurrence. Depending on the
method of notification you specify, multiple requests might result in an annoying
number of notification sounds or many alert boxes that the user must dismiss before
continuing.

Note that the Notification Manager provides a one-way communications path from an
application to the user. There is no provision for carrying information back from the user
to the requesting application, although it is possible for the requesting application to
determine if the notification was received. If you require this secondary communications
link, do not use the Notification Manager. Instead, you should wait until the user
switches your application into the foreground and then use standard means (for
example, a dialog box) to obtain the required information.

Using the Notification Manager

5-6

To issue a notification to the user, you need to create a notification request and install it
in the notification queue. The Notification Manager interprets the request and presents
the natification to the user at the earliest possible time. After you have notified the user
in the desired manner (that is, placed a diamond mark in the Application menu, added a
small blinking icon to the menu bar, played a sound, or displayed an alert box), you
might want the Notification Manager to call a response procedure. The response
procedure is useful for determining that the user has indeed seen the notification or for
reacting to the successful posting of the notification. Eventually, you need to remove the
notification request from the notification queue; you can do this in the response
procedure or when your application returns to the foreground.

The Notification Manager is automatically initialized at system startup time. It includes
two functions, one that allows you to install a request into the notification queue and one
that allows you to remove a request from that queue.

Creating a Notification Request

Information describing each notification request is contained in the notification queue,
which is a standard operating-system queue (as described in the chapter “Queue
Utilities” in Inside Macintosh: Operating System Utilities). Each entry in the notification
gueue is a notification record—a static and nonrelocatable record of type NMRec. When

Using the Notification Manager

CHAPTER 5

Notification Manager

installing a request in the notification queue, your application must supply a pointer to a
notification record that indicates the type of notification you desire. Here is the NMRec

data structure:
TYPE NVRec =
RECORD
gLi nk: QEl enPtr; {next queue entry}
gType: I nt eger; {queue type}
nnFl ags: I nt eger; {reserved}
nmPrivate: Longlnt; {reserved}
nnmReserved: |nteger; {reserved}
nmvar k: I nt eger; {itemto mark in nenu}
nm con: Handl e; {handl e to icon}
nnSound: Handl e; {handl e to sound resource}
nnit r: StringPtr; {string to appear in alert box}
nmResp: ProcPtr; {pointer to response procedure}
nnRef Con: Longl nt; {for application's use}
END;

To set up a notification request, you need to fill in the fields qType, nmvar k, ni con,
nnSound, nnSt r, nnResp, and nnRef Con. The remaining fields of this record are used
internally by the Notification Manager or are reserved for use by Apple Computer, Inc.

Field descriptions

gLi nk

qType

nnFl ags
nnPrivat e
nnmReser ved
nmvar k

nm con

nnSound

Using the Notification Manager

Points to the next element in the queue. This field is used internally
by the Notification Manager.

Indicates the type of queue. You should set this field to the value
ORD(nmType) , which is 8.

Reserved for use by Apple Computer, Inc.
Reserved for use by Apple Computer, Inc.
Reserved for use by Apple Computer, Inc.

Indicates whether to place a diamond-shaped mark next to the
name of the application in the Application menu. If the value of
nmvar k is 0, no such mark appears. If the value of nmvar Kk is 1, the
mark appears next to the name of the calling application. If the
value of nmvar k is neither 0 nor 1, it is interpreted as the reference
number of a desk accessory. An application should pass 1, a desk
accessory should pass its own reference number, and a driver or a
detached background task (such as a VBL task or Time Manager
task) should pass 0.

Contains a handle to a small icon that is to blink periodically in the
menu bar. If the value of nnl con is NI L, no icon appears in the
menu bar. This handle must be valid at the time that the notification
occurs; it does not need to be locked, but it must be nonpurgeable.

Contains a handle to a sound resource to be played with SndPl ay.
If the value of nnSound is NI L, no sound is produced. If the value

5-7

J1abeuep uoneoynoN .
ol

CHAPTER 5

Notification Manager

of nnSound is -1, then the system alert sound plays. This handle
does not need to be locked, but it must be nonpurgeable.

nmst r Points to a string that appears in the alert box. If the value of nnSt r
is NI L, no alert box appears. Because the Notification Manager does
not make a copy of this string, your application should not release
this memory until it removes the notification request.

nmResp Points to a response procedure. If the value of nnResp is Nl L, no
response procedure is executed when the notification is posted. If
the value of nnRResp is -1, then a predefined procedure removes the
notification request immediately after it has completed.

nmRef Con Along integer available for your application’s own use.
Listing 5-1 illustrates how to set up a notification record. In this listing,

gMyNot i fi cati on isaglobal variable of type NMRec and gText is a global variable of
type St r 255.

5-8

Listing 5-1 Setting up a notification record
VAR
nmyResNum I nt eger; {resource I D of small icon}
nmyResHand: Handl e; {handl e to small icon resource}
BEG N
nmyResNum : = 1234; {resource IDin resource fork}

nmyResHand : = Get Resource('SICN , nyResNum;
{get icon fromresource fork}

gText := 'Sanple Alert Box'; {set nessage for alert box}

W TH gMyNoti fication DO

BEG N
gType : = nmrype) ; {set queue type}
nmvark := 1; {put mark in Application nmenu}
nm con : = nyResHand; {blinking icon}
nnmSound : = Handl e(-1); {play system al ert sound}
nnstr = @Text; {di splay alert box}
nmResp := NL; {no response procedure}
nnmRef Con : = O; {not needed here}

END;

END;

This notification record requests all three types of notification—polite (blinking small
icon), audible (system alert sound), and alert (alert box). In addition, the diamond
appears in front of the application’s name in the Application menu. In this case, the small
icon has resource ID 1234 of type ' SI CN in the application’s resource fork.

Using the Notification Manager

CHAPTER 5

Notification Manager

Defining a Response Procedure

The nnResp field of the notification record contains the address of a response procedure
executed as the final stage of a notification. If no processing is necessary in response to
the notification, then you can supply the value NI L in that field. If you supply the
address of your own response procedure in the nmResp field, the Notification Manager
passes it one parameter, a pointer to your notification record. For example, this is how
you would declare a response procedure having the name MyResponse:

PROCEDURE MyResponse (nnReqgPtr: NWVRecPtr);

When the Notification Manager calls this response procedure, it does not set up the A5
register or application-specific system global variables for you. If you need to access
your application’s global variables, you should save its A5 value in the nnRef Con field.
See the chapter “Memory Management Utilities” in the book Inside Macintosh: Memory
for more information on saving and restoring the A5 world.

Response procedures should never cause anything to be drawn on the screen or
otherwise affect the human interface. Rather, you should use them simply to remove
notification requests from the notification queue and free any memory. If you specify the
special nnResp value of -1, the Notification Manager removes the queue element from
the queue automatically, and you don’t have to do it yourself. You have to pass your
own response routine, however, if you need to do anything else in the response
procedure, such as free the memory block containing the queue element or set an
application global variable indicating that the notification was received.

If you use audible or alert notifications, you should probably set nnResp to -1 to remove
the natification record from the queue as soon as the sound ends or the user dismisses
the alert box. However, if either nmiVar k or ni con has a nonzero value, you should not
set nmResp to -1 (because the Notification Manager would remove the diamond mark or
the small icon before the user could see it). Note that when the value of nnResp is -1, the
Notification Manager does not free the memory block containing the queue element; it
merely removes that element from the notification queue.

Because the execution of the response procedure is the last step in the notification
process, your application can determine whether the notification was posted by
examining a global variable that you set in the response procedure. In addition, to
determine that the user has actually received the notification, you need to request an
alert notification. This is necessary because the response procedure is executed only after
the user clicks the OK button in the alert box.

Installing a Notification Request

To add a natification request to the notification queue, call the NM nst al | function. For
example, you can install the notification request defined in Listing 5-1 with the following
line of code:

nyErr := NMnstall (@MNotification); {install request}

Using the Notification Manager 5-9

J1abeuep uoneoynoN .
ol

CHAPTER 5

Notification Manager

If the call to NM nst al | returns an error, then you cannot install the notification request
in the notification queue. In that case, your application should wait for the user to switch
it to the foreground before doing further processing. While waiting for a resume event,
your application should take care of other events, such as updates. Note, however, that
NM nst al | fails only if it is passed invalid information, namely, the wrong value for
qType.

You can install notification requests at any time, even when the system is executing

"INl T' resources as part of the system startup sequence. If you need to notify the user
of some important occurrence during the execution of your' I NI T' resource, use the
Notification Manager to install a request in the notification queue. The system notifies
the user after the startup process completes, that is, when the normal event mechanism
begins. This saves you from having to interrupt the system startup sequence with dialog
or alert boxes and results in a cleaner and more uniform startup appearance.

Removing a Notification Request

To remove a notification request from the notification queue, call the NVRenove
function. For example, you can remove a notification request with this code:

nyErr : = NVRenove(@M/Noti fication); {renove request}

You can remove requests at any time, either before or after the notification actually
occurs. Note that requests already issued by the Notification Manager are not
automatically removed from the queue.

Notification Manager Reference

This section describes the routines that are specific to the Notification Manager. It also
describes the application-defined notification response procedure.

Notification Manager Routines

The Notification Manager includes two functions, one to install a notification request
and one to remove it.

NMinstall
To install a notification request, use the NM nst al | function.
FUNCTI ON NM nstall (nmRegPtr: NVRecPtr): OSErr;
nmReqPt r A pointer to a notification record.

5-10 Notification Manager Reference

CHAPTER 5

Notification Manager

DESCRIPTION

The NM nst al | function adds the notification request specified by the nnReqPt r
parameter to the notification queue and returns a result code.

SPECIAL CONSIDERATIONS

Because NM nst al | does not move or purge memory, you can call it from completion
routines or interrupt handlers as well as from the main body of an application and from
the response procedure of a notification request.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for NM nst al | are

Registers on entry
A0 Address of NVRec record

Registers on exit

DO Result code

RESULT CODES

noEr r 0 No error
nmrypEr r -299 Invalid qType value (must be ORD(nmType))

NMRemove

To remove a notification request, use the NMRenove function.
FUNCTI ON NVRenove (nnReqPtr: NWVRecPtr): OSErr;

nmReqPt r A pointer to a notification record.

DESCRIPTION

The NMRernove function removes the notification request identified by the nnReqPt r
parameter from the notification queue and returns a result code.

SPECIAL CONSIDERATIONS

Because NVRenpve does not move or purge memory, you can call it from completion
routines or interrupt handlers as well as from the main body of an application and from
the response procedure of a notification request.

Notification Manager Reference 5-11

J1abeuep uoneoynoN .
ol

CHAPTER 5

Notification Manager

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for NMRenove are

Registers on entry
A0 Address of NMRec record

Registers on exit
Do Result code

RESULT CODES

nokErr 0 No error
gErr -1 Not in queue
nmrypEr r -299 Invalid gType (must be ORD(nniType))

Application-Defined Routine

The Notification Manager allows you to define a notification response procedure.

Notification Response Procedures

You pass the address of an application-defined notification response procedure in the
nnmResp field of a notification record.

MyResponse

If desired, you can specify the address of a completion or response procedure that is
executed as the last stage in a notification. The response procedure should have this
syntax:

PROCEDURE MyResponse (nnReqgPtr: NWVRecPtr);

nmReqPt r A pointer to a notification record.

DESCRIPTION

The nnResp field of the notification record contains the address of a response procedure
executed as the final stage of a notification. If no processing is necessary in response to
the notification, then you can supply the value NI L in that field. If you supply the
address of your own response procedure in the nmResp field, the Notification Manager
passes it one parameter, a pointer to your notification record.

5-12 Notification Manager Reference

SEE ALSO

CHAPTER 5

Notification Manager

For more details on a response procedure, see “Defining a Response Procedure” on
page 5-9.

Notification Manager Reference

5-13

J1abeuep uoneoynoN .
ol

CHAPTER 5

Notification Manager

Summary of the Notification Manager

Pascal Summary

Constant
CONST
nmlype = 8; {queue type of notification queue}
Data Types
TYPE NVRec =
RECORD
gLi nk: QEl enPtr; {next queue entry}
gType: I nt eger; {queue type}
nnFl ags: I nt eger; {reserved}
nnPri vat e: Longl nt; {reserved}
nnReser ved: I nt eger; {reserved}
nmvar k: I nt eger; {itemto mark in nenu}
nm con: Handl e; {handl e to icon}
nnmSound: Handl e; {handl e to sound resource}
nnst r: StringPtr; {string to appear in alert box}
nmResp: ProcPtr; {pointer to response procedure}
nnRef Con: Longl nt; {for application's use}
END;

NVRecPtr = “"NMRec;

Notification Manager Routines

FUNCTI ON NM nst al |
FUNCTI ON NVRenpve

(nnReqgPtr: NWMRecPtr): OSErr;
(nnReqgPtr: NWMRecPtr): OSErr;

Application-Defined Routine

PROCEDURE MyResponse (nmRegPtr: NWVRecPtr);

5-14 Summary of the Notification Manager

CHAPTER 5

Notification Manager

C Summary

Constant

enum { nnTType = 8}; /*queue type of notification queue*/

Data Types

typedef pascal void (*NMProcPtr)(struct NMRec *);

struct NWRec {

CEl enPtr gLi nk; /*next queue entry*/

short gType; / *queue type*/

short nnFl ags; /*reserved*/

| ong nnPri vat e; /*reserved*/

short nnmReser ved; /*reserved*/

short nmvar k; /[*itemto mark in nenu*/

Handl e nml con; /*handl e to icon*/

Handl e nmSound; /*handl e to sound resource*/
StringPtr nnstr; /*string to appear in alert box*/
NMPr ocPt r nmResp; /*pointer to response procedure*/
| ong nnmRef Con; /*for application's use*/

b

t ypedef struct NVRec NMRec;
typedef NVRec *NWRecPtr;

Notification Manager Routines

pascal OSErr NM nstal | (NVRecPtr nnReqPtr);
pascal OSErr NVRenpve (NVRecPtr nnReqPtr);

Application-Defined Routine

pascal void MyResponse (NVRecPtr nnReqPtr);

Result Codes

nokErr 0 No error
gErr -1 Not in queue
nmrypErr -299 Invalid qType value (must be ORD(nmType))

Summary of the Notification Manager 5-15

J1abeuep uoneoynoN .
ol

CHAPTER 6

Deferred Task Manager

Contents

About the Deferred Task Manager 6-3
Using the Deferred Task Manager 6-6
Checking for the Deferred Task Manager 6-6
Installing a Deferred Task 6-7
Defining a Deferred Task 6-8
Deferring a Slot-Based VBL Task 6-9
Deferred Task Manager Reference 6-11
Data Structure 6-11
Deferred Task Manager Routine 6-12
Application-Defined Routine 6-13
Deferred Tasks 6-13
Summary of the Deferred Task Manager 6-14
Pascal Summary 6-14
Data Type 6-14
Deferred Task Manager Routine 6-14
Application-Defined Routine 6-14
C Summary 6-14
Data Type 6-14
Deferred Task Manager Routine 6-15
Application-Defined Routine 6-15
Assembly-Language Summary 6-15
Global Variables 6-15
Result Codes 6-15

Contents 6-1

CHAPTER 6

Deferred Task Manager

This chapter describes how your application or device driver can use the Deferred Task
Manager to defer the execution of lengthy tasks until interrupts are reenabled.
Time-consuming tasks, if executed at interrupt time, can prevent the execution of
interrupt tasks having the same or lower priority. The Deferred Task Manager allows
you to improve interrupt handling by deferring a task until all other interrupts have
been serviced.

Lengthy tasks are often initiated by slot cards. As a result, you probably need to read the
information in this chapter only if your application or driver deals with slot-card
interrupts. However, you can use the services provided by the Deferred Task Manager
whenever you need to install a lengthy interrupt task capable of running with all
interrupts enabled. You can, for example, defer the execution of completion routines,
Time Manager routines, and VBL tasks.

To use this chapter, you should be familiar with interrupts and interrupt tasks in general.
See the chapter “Introduction to Processes and Tasks” in this book for an overview of
both interrupt and noninterrupt processing. Because the Deferred Task Manager
maintains all deferred tasks in a queue until their execution, you should also be familiar
with operating-system queues, as described in the chapter “Queue Utilities” in Inside
Macintosh: Operating System Ultilities.

This chapter begins with a description of interrupt priority levels and explains when you
might need to use the Deferred Task Manager. Then it shows how you can use the
Deferred Task Manager to defer a task. The chapter concludes with a description of the
Deferred Task Manager’s data structure and routine.

About the Deferred Task Manager

Every type of interrupt has an interrupt priority level, a number that identifies the
importance of the interrupt. The microprocessor also maintains several bits in the status
register of the CPU that indicate which interrupts are currently to be processed and
which are to be ignored. This processor priority is always set to the interrupt priority
level of the highest-priority interrupt currently executing. For example, if no interrupts
are being serviced, the processor priority is 0. If the current application is then
interrupted by a vertical retrace interrupt, the interrupt priority is set to 1 during the
servicing of the interrupt and restored to 0 upon completion. If, during the servicing of
the vertical retrace interrupt, a level-2 interrupt occurs, the processor priority is set to 2
during the servicing of the interrupt and restored to 1 upon completion of any level-2
interrupt tasks.

The microprocessor ordinarily services an interrupt only if its interrupt priority level is
higher than the processor priority. Accordingly, when no interrupt routines are
executing, the microprocessor can service any new interrupt. If, however, a slot interrupt
is executing, the microprocessor ignores other slot interrupts and interrupts of lower
priority. As a result, a lower-priority interrupt (for example, a vertical retrace interrupt)
might not execute on schedule.

About the Deferred Task Manager 6-3

1abeuep ysel paliajeg H

6-4

CHAPTER 6

Deferred Task Manager

When the microprocessor is servicing one interrupt, it is said to disable other interrupts
whose priority level is lower than or the same as that of the interrupt being serviced.
This feature prevents the interruption of tasks by interrupts of lesser or equal priority.
You might, however, initiate an interrupt task that does not need this extra protection. If
an interrupt task takes so much time to execute that the disabling of other interrupts
during execution becomes significant, you might prefer it to have your interrupt task
executed at a time when all other interrupt tasks have been serviced and interrupts are
reenabled. The Deferred Task Manager provides a mechanism for this purpose.

Instead of immediately performing the main work of a task, such as a slot-interrupt task,
you can defer the task, or schedule it for execution when all interrupts have been
reenabled. You do this by placing information about the task to be deferred in a deferred
task record, which you then insert in the deferred task queue. The task is then known as
a deferred task. All system interrupt handlers check the deferred task queue just before
returning. If there are tasks in the queue and the microprocessor’s status register is about
to be reset to 0, the system interrupt handlers reenable interrupts and pass control to the
Deferred Task Manager to execute all the deferred tasks.

The Deferred Task Manager checks whether a VBL task is active. If so, the Deferred Task
Manager exits, and the deferred tasks remain deferred until the VBL task completes.
(The VBL task is interrupt code, and so the Deferred Task Manager is called again when
the Vertical Retrace Manager returns control to the primary interrupt handler.) If a VBL
task is not active, the Deferred Task Manager checks whether a deferred task is already
active. If so, the Deferred Task Manager exits. Otherwise, a deferred task is removed
from the queue and executed. When all deferred tasks have been removed from the
gueue and executed, the Deferred Task Manager returns control to the primary interrupt
handler.

Each interrupt task is removed from the deferred task queue before it is executed. For
this reason, your interrupt code must reinstall the task record into the queue each time
the task is to be deferred. If your task is simple enough that reinstalling the task record
into the deferred task queue takes about as much time as doing the real work of the task,
then the Deferred Task Manager is not useful for your application. Note that interrupts
are disabled during the reinstallation of a task record into the deferred task queue, even
though they are reenabled before the reinstalled task is executed.

Although you can use the Deferred Task Manager for all types of interrupt tasks, it is
especially convenient for slot-interrupt tasks. Interrupts from NuBus'" slot devices are
received and decoded by special hardware on the main logic board. This hardware
generates level-2 interrupts. Because of the way the hardware works, the microprocessor
must disable lower-priority interrupts until it services the level-2 interrupts (otherwise, a
system error occurs). During the execution of slot-interrupt tasks, the microprocessor
disables other level-2 interrupts, such as those for sound, as well as all level-1 interrupts.
By using the Deferred Task Manager, you can defer the processing of slot interrupts until
all of the slots are scanned. Just before returning, the slot-interrupt handler executes any
tasks having records in the deferred task queue.

It is important to remember that deferred tasks are executed at the end of a hardware
interrupt cycle, before the secondary interrupt handler returns. In addition, the tasks in
the deferred task queue are executed only if the status register is being restored to 0 (that

About the Deferred Task Manager

CHAPTER 6

Deferred Task Manager

is, all interrupts reenabled). If the status register is not being restored to 0, but only to
some higher level, deferred tasks are not executed during that hardware interrupt cycle.

This behavior, if not properly understood, can lead to some puzzling situations. For
example, applications can mask the CPU’s status register to disable certain interrupts.
Suppose that your application installs and activates a Time Manager task, which is
triggered by level-2 interrupts. If you don’t want the task to be executed during a specific
period of time, you can set the status register to 2, thus disabling all level-1 and level-2
interrupts. (In this case, the status register is set to 2, but not in response to a level-2
interrupt.)

Now suppose that a level-4 interrupt occurs, perhaps triggered by the arrival of some
LocalTalk data at a serial port. The LocalTalk interrupt handler is executed with the
status register set to 4. That handler might install a deferred task and then return.
Because the interrupt cycle is nearly complete, the system interrupt handler checks
whether the status register is about to be restored to 0. In the situation described, the
status register is about to be restored to 2, not to 0. As a result, any pending deferred
tasks, including the newly installed LocalTalk deferred task, are ignored. Moreover, if the
status register remains masked at 2, any additional deferred tasks installed by the
LocalTalk interrupt handler remains queued and are not executed.

Eventually, the application that masked the status register (to disable its Time Manager
task) will restore the status register to 0. At the end of the next hardware interrupt cycle,
all the pending deferred tasks are finally executed.

As you can see, it’s possible for an interrupt routine—in this example, the LocalTalk
interrupt handler—to install a deferred task that is not executed until after some future
hardware interrupt cycle. Indeed, that future hardware interrupt might well be another
LocalTalk interrupt. In other words, it’s possible for an interrupt routine to install a
deferred task and to be called again, before the deferred task has been executed. It’s even
possible for the interrupt routine to interrupt the deferred task that it installed during
some previous interrupt cycle. You need to make sure, for instance, that your interrupt
code doesn’t modify a data buffer that a deferred task is processing.

Keep these points in mind when you use the Deferred Task Manager to defer tasks:

= The purpose of the Deferred Task Manager is to allow lengthy interrupt tasks to be
deferred until all interrupts can be reenabled.

» Deferred tasks are executed with all interrupts enabled (that is, with the status register
set to 0).

» Deferred tasks are not executed if some other interrupt code is executing. For
example, a deferred task will not interrupt a VBL task.

= Adeferred task is not executed if some other deferred task is being executed. A
deferred task cannot interrupt another deferred task.

» Deferred tasks can be interrupted.

» Deferred tasks are executed within the hardware interrupt cycle, even though the
status register is set to 0 before the tasks are executed. As a result, deferred tasks are
subject to all the normal limitations on interrupt-level code. In particular, deferred
tasks cannot call any routine that directly or indirectly allocates or moves memory,

About the Deferred Task Manager 6-5

1abeuep ysel paliajeg H

CHAPTER 6

Deferred Task Manager

and cannot depend on the validity of unlocked handles. See the chapter “Introduction
to Processes and Tasks” in this book for a complete description of these limitations.

» Deferred tasks are not prioritized. They are executed in the order they were added to
the deferred task queue, no matter what interrupt level the code that installed them
was running at.

Using the Deferred Task Manager

You can use the Deferred Task Manager to defer the execution of some code that is to be
executed as a result of an interrupt. This section shows how to install a deferred task and
how to use a high-level language to access the optional parameter passed to your task in
register Al. Because the Deferred Task Manager is not available in all operating
environments, you need to check that it is available before using it. The following section
shows how to do this.

Checking for the Deferred Task Manager

The Deferred Task Manager was introduced primarily to allow slot handlers to defer
lengthy processing initiated by a slot interrupt and, until system software version 7.0,
was not available on all computers running the Macintosh Operating System. For
example, the Deferred Task Manager is not available on Macintosh Plus or Macintosh SE
computers running system software version 6.0. In addition, there is no support for the
Deferred Task Manager in versions of A/UX earlier than version 3.0.

As a result, you should always make sure that the Deferred Task Manager is available in
the current operating environment before attempting to use it. You can use the function
Def erredTasksAvai | abl e, defined in Listing 6-1, to do this.

Listing 6-1 Checking for the availability of the Deferred Task Manager

6-6

FUNCTI ON Def erredTasksAvai | abl e: Bool ean;
CONST
_DTInstall = $A082;
BEG N
Def erredTasksAvai |l abl e : = TrapAvail abl e(_DTInstall);
END;

The Def er r edTasksAvai | abl e function simply calls the function Tr apAvai | abl e to
determine whether the trap _DTI nst al | is implemented. See the chapter “Gestalt
Manager” in Inside Macintosh: Operating System Ultilities for a definition of the

TrapAvai | abl e function.

System software versions 7.0 and later support the Deferred Task Manager on all
Macintosh computers, including the Macintosh Plus and Macintosh SE. However, the

Using the Deferred Task Manager

CHAPTER 6

Deferred Task Manager

system global variables DTQueue (containing the address of the deferred task queue
header) and j DTl nst al | (containing the jump vector for the DTl nst al | function) are
not supported on the Macintosh Plus. You should not use DTQueue or j DTl nstal | on
the Macintosh Plus.

Installing a Deferred Task

The Deferred Task Manager provides a single routine, DTI nst al | , that you can use to
install elements into the deferred task queue. The deferred task queue is a standard
operating-system queue whose elements are defined by the Def er r edTask data type.

TYPE DeferredTask =

RECORD
gLi nk: QEl enPtr; {next queue entry}
gType: I nt eger; {queue type}
dt Fl ags: I nt eger; {reserved}
dt Addr : ProcPtr; {pointer to task}
dt Par m Longl nt; {optional paraneter passed in Al}
dt Reserved: Longlnt; {reserved; should be 0}
END;

Your application or driver needs to fill in only the qType, dt Addr, and dt Reser ved
fields. The dt Addr field specifies the address of the routine whose execution you want
to defer. You can also specify a value for the dt Par mfield, which contains an optional
parameter that is loaded into register Al just before the routine specified by the dt Addr
field is executed. The dt FI ags and dt Reser ved fields of the deferred task record are
reserved. You should set the dt Reser ved field to 0.

Listing 6-2 defines a routine, | nst al | Def er r edTask, for installing a task element in
the deferred task queue. This element corresponds to the routine MyDef er r edTask,
which does the real work of your interrupt task. The | nst al | Def er r edTask routine
sets up a deferred task record and then installs it in the deferred task queue by calling
the DTI nst al | function. Note that you should call DTI nst al | only at interrupt time.

Listing 6-2 Installing a task into the deferred task queue

PROCEDURE | nst al | Def erredTask (theTask: DeferredTask);
VAR
nmyErr: OSErr;

BEG N
W TH t heTask DO
BEG N
gType : = ORD(dtQlype); {set the queue type}
dt Addr := @4DeferredTask; {set address of deferred task}
dt Parm : = O; {no paraneter needed here}

Using the Deferred Task Manager 6-7

1abeuep ysel paliajeg H

CHAPTER 6

Deferred Task Manager

dt Reserved : = O; {clear reserved field}
END;
nyErr := DTInstall (@ heTask);
END;

Defining a Deferred Task

You define a deferred task as a procedure taking no parameters and put the address of
that procedure in the deferred task element whose address you pass to the DTl nst al |
function. When your task is executed, register Al contains the optional parameter that
you put in the dt Par mfield of the task record.

If you write your deferred task in a high-level language, such as Pascal, you might need
to retrieve the value loaded into register Al. The function Get Al defined in Listing 6-3
returns the value of the Al register.

Listing 6-3 Finding the value of the Al register

FUNCTI ON Get Al: Longl nt;
I NLI NE
$2E89; {MOVE.L A1, (SP)}

You can call Get Al in your deferred task, as illustrated in Listing 6-4.

Listing 6-4 Defining a deferred task

6-8

PROCEDURE DoDef erredTask (dtParm Longlnt);
BEG N

{Your deferred task code goes here.}
END;

PROCEDURE MyDef err edTask;

VAR
myPar m Longl nt;

BEG N
nyParm : = Get Al; {retrieve paraneter put in register Al}
DoDef erredTask(nyParnm); {run the deferred task}

END;

Note that MyDef er r edTask calls Get Al to retrieve the parameter passed in the register
Al. Then MyDef er r edTask calls the application-defined procedure DoDef er r edTask,
passing it that parameter. The DoDef er r edTask procedure does the real work of the
deferred task. (This division into two routines is necessary to prevent problems caused
by some optimizing compilers.)

Using the Deferred Task Manager

CHAPTER 6

Deferred Task Manager

Deferring a Slot-Based VBL Task

As indicated earlier in this chapter, you are most likely to use the Deferred Task Manager
when dealing with slot interrupts. All slot interrupts, including slot-based VBL
interrupts, disable all other slot interrupts. For this reason, as a slot-interrupt routine
(installed using SI nt | nst al |) or a slot-based VBL interrupt routine (installed using

Sl ot VI nst al I) runs to completion, interrupts at that level and below are disabled. You
can help improve interrupt handling by using the Deferred Task Manager to defer your
slot-interrupt processing until interrupts have been reenabled.

Listing 6-5 provides another example of how to use the Deferred Task Manager. The
program defined there defers the cursor updating that would normally occur as a
slot-based VBL task. The time required to update the cursor can range from about 700 to
900 microseconds for monitors having a screen depth of 1 to 8 bits. Because the cursor
updating is done at slot-based VBL time, all other slot interrupts are put off

until updating is finished. This might adversely affect interrupt processing by your
application. Accordingly, it is useful to defer the cursor updating to noninterrupt time by
installing the updating as a deferred task.

The program defined in Listing 6-5 replaces the cursor-updating routine pointed at by
the system global variable j Cr sr Task with a different routine. This new routine installs
the original routine as a deferred task.

Listing 6-5 Deferring cursor updating to noninterrupt time

*** MyDef Task

TaskBegi n
MyDef Task
DC. L
DC. W
DC. W
DC. L
DC. L
DC. L
SysCrsrTask
DC. L
Def CrsrFl ag
DC. W
Pendi ngFl ag
DC. W

* k% M/J Crsr

Myj Cr sr Task
MOVEM L
LEA
TST. W

0 ; qLi nk (handl ed by OS)

0 ; qType (queue type: dtQType)

0 ; dt Fl ags (reserved)

0 ;dt Addr (pointer to routine to be executed)

0 ;dtParm (optional paraneter; not used here)

0 ; dt Reserved (shoul d be zero)

0 ; pointer to system j CrsrTask

0 ;1 if using a deferred task, O otherw se

0 ;1 if a jCrsrTask is pending, O otherw se
Task

A0/ Al/ DO, - (SP)

Pendi ngFl ag, AO ;see if a deferred jCrsrTask task is pending

(A0)

Using the Deferred Task Manager 6-9

1abeuep ysel paliajeg H

CHAPTER 6

Deferred Task Manager

BNE. S bai | Qut ;i f yes, exit
MOVE. W #1, (AO) ;i f no, set the pending flag
LEA My Def Task, AO ;point to our deferred task el ement
LEA Def j Crsr Task, Al ;get address of deferred task routine
MOVE. L Al, dt Addr (AO) ;Set up pointer to routine
MOVE. W #dt QType, dt Type(A0) ; set queue type
_DTlnstall ;install the task
MOVEM L (SP) +, A0/ A1/ DO
RTS

bai | Qut
MOVEM L (SP) +, A0/ A1/ DO
RTS

Def j Crsr Task
MOVEM L A0, - (SP)
LEA SysCrsrTask, AO ;get system cursor task address
MOVEA. L (A0), AO
JSR (A0) ;and call it
LEA Pendi ngFl ag, A0 ;clear pending call flag
CLR W (A0)
MOVEM L (SP) +, A0
RTS

TaskEnd

*** Entry

TaskSi ze EQU TaskEnd- TaskBegi n

Entry
MOVE. L #TaskSi ze, DO ; put TaskSize into DO
_NewPt r SYS, CLEAR ;make a block in the system heap
BNE. S Qui t ;N0 roomin system heap, so quit
MOVE. L 0, A2 ;got a good pointer; keep a copy
MOVE. L A0, Al ;set up registers for Bl ockMove
LEA My Def Task, AO
MOVE. W #TaskSi ze, DO
_Bl ockMove ;copy the task etc. into system heap
LEA dt QEl Si ze(A2), AO ;nove original task pointer into our
MOVE. L j CrsrTask, (AO) ; poi nter hol der
LEA dt CEl Si ze+4(A2), AO; repl ace jCrsrTask pointer with a pointer
MOVE. L A0, j Crsr Task ; to our jCrsrTask

Qui t
RTS ;exit the program

END

6-10 Using the Deferred Task Manager

CHAPTER 6

Deferred Task Manager

This code allocates a block of memory in the system heap. The allocated block is large
enough to hold a deferred task element, a pointer to the original cursor-updating
routine, and the replacement routine. The replacement routine simply retrieves the
relevant information (namely, the deferred task element and the saved address of the
original cursor-updating routine) stored in that block of memory and calls _DTI nst al |
to install a deferred task. The address of the replacement routine is placed into the
low-memory global variable j Cr sr Task, whose original contents are stored in the
system heap.

Once the program defined in Listing 6-5 is run, the cursor-updating routine is
subsequently performed with interrupts enabled, thereby allowing other interrupts.
Because the cursor-updating routine is run with interrupts enabled, you may see a slight
flickering of the cursor when using this technique.

Deferred Task Manager Reference

This section summarizes the structure of the deferred task record and describes the
DTl nst al | function, which you can use to install a deferred task record into the
deferred task queue. It also describes the application-defined deferred task.

Data Structure

The deferred task queue is a standard operating-system queue. The Def er r edTask data
type defines an element in the deferred task queue.

TYPE Def erredTask =

RECORD
gLi nk: CEl enPtr; {next queue entry}
gType: I nt eger; {queue type}
dt Fl ags: I nt eger; {reserved}
dt Addr : ProcPtr; {pointer to task}
dt Parm Longl nt; {optional paraneter passed in Al}
dt Reserved: Longlnt; {reserved; should be 0}
END;

Field descriptions

gLi nk A pointer to the next entry in the deferred task queue, or NI L if
there are no more entries in the queue. You do not need to set this
field; the Deferred Task Manager does it for you.

gType The queue type. You must set this field to ORD(dt QType) .

dt Fl ags Reserved.

dt Addr A pointer to the task to be executed. Set this field to the address of
the routine that you want to execute after interrupts have been
enabled.

Deferred Task Manager Reference 6-11

1abeuep ysel paliajeg H

CHAPTER 6

Deferred Task Manager

dt Par m An optional parameter that is loaded into register Al just before the
routine specified by the dt Addr field is executed.
dt Reser ved Reserved. You should set this field to 0.

Deferred Task Manager Routine

The Deferred Task Manager provides a single routine for installing task records into the
deferred task queue, the DTl nst al | function.

DTInstall
After defining the fields of a deferred task record, you can call the DTl nst al | function
to install the record into the deferred task queue.
FUNCTI ON DTl nstall (dt TaskPtr: QElenPtr): OSErr;
dt TaskPtr A pointer to a queue element to add to the deferred task queue.
DESCRIPTION

The DTI nst al | function adds the specified task record to the deferred task queue. Your
application should fill in all fields of the task record except qLi nk and gFl ags.

Ordinarily, you call DTI nst al | only at interrupt time. The DTI nst al | function does
not actually execute the routine specified in the dt Addr field of the task record. Each
system interrupt handler executes routines stored in the deferred task queue after
reenabling interrupts. After a routine in the queue is executed, it is removed from the
deferred task queue.

If the qType field of the task record is not set to ORD(dt QType), DTl nst al | returns
vTypEr r and does not add the record to the queue. Otherwise, DTl nst al | returns
noErr.

ASSEMBLY-LANGUAGE INFORMATION

6-12

The registers on entry and exit for DTl nst al | are
Registers on entry
A0 Pointer to new queue entry

Registers on exit
DO Result code

To reduce overhead at interrupt time, instead of executing the DTI nst al | trap, you can
load the jump vector j DTI nst al | into an address register other than A0 and execute a
JSRinstruction using that register.

Deferred Task Manager Reference

CHAPTER 6

Deferred Task Manager

RESULT CODES

nokErr 0 No error
VvTypErr -2 Invalid qType value (must be ORD(dt QType))

Application-Defined Routine

The Deferred Task Manager allows your interrupt routines to install an
application-defined routine whose execution is deferred until after all interrupts are
reenabled.

Deferred Tasks

You pass the address of an application-defined deferred task in the dt Addr field of a
deferred task record.

MyDeferredTask

A deferred task has the following syntax:

PROCEDURE MyDef erredTask;

DESCRIPTION

The dt Addr field of a deferred task record contains the address of a procedure that is
executed at the end of a hardware interrupt cycle when all interrupts are reenabled.

SPECIAL CONSIDERATIONS

Because the deferred task is executed during a hardware interrupt cycle, it should not
allocate, move, or purge memory (either directly or indirectly) and should not depend
on the validity of handles to unlocked blocks.

If a deferred task uses application global variables, it must ensure that register A5
contains the address of the boundary between the application global variables and
application parameters. For details, see the discussion of setting up and restoring the A5
register in the chapter “Memory Management Ultilities” in Inside Macintosh: Memory.

A deferred task should avoid accessing system global variables or calling a trap that
would access one.

ASSEMBLY-LANGUAGE INFORMATION

When the deferred task is called, register Al contains the value of the dt Par mfield in
the deferred task record passed to DTl nst al | .

A deferred task must preserve all registers other than A0-A3 and D0-D3.

Deferred Task Manager Reference 6-13

1abeuep ysel paliajeg H

CHAPTER 6

Deferred Task Manager

Summary of the Deferred Task Manager

Pascal Summary

Data Type

TYPE DeferredTask =

RECORD
gLi nk: CEl enPtr;
qType: I nt eger;
dt Fl ags: I nt eger;
dt Addr : ProcPtr;
dt Par m Longl nt;

dt Reserved: Longlnt;
END;

Deferred Task Manager Routine

{next queue entry}
{queue type}

{reserved}
{pointer t
{optiona

{reserved,

o task}

par amet er passed in Al}

shoul d be

0}

FUNCTI ON DTl nst al |

Application-Defined Routine

(dt TaskPtr: QElenPtr): OSErr;

PROCEDURE MyDef err edTask;

C Summary

Data Type

struct DeferredTask {
QEl enPtr gLi nk;

short qType;
short dt Fl ags;
ProcPtr dt Addr ;

| ong dt Parm

| ong dt Reser ved

/*next queue entry*/
/ *queue type*/
/*reserved*/
/*pointer to task*/

/*optional

/*reserved

6-14 Summary of the Deferred Task Manager

par amet er

passed in Al*/

shoul d be 0*/

CHAPTER 6

Deferred Task Manager

Deferred Task Manager Routine

pascal OSErr DTInstall (QEl enPtr dt TaskPtr);

Application-Defined Routine

pascal void MyDeferredTask (void);

Assembly-Language Summary

Deferred Task Manager Queue Element

0 gLi nk long pointer to next queue entry

4 gType word queue type

6 dt Fl ags word reserved

8 dt Addr long pointer to task
12 dt Parm long optional parameter to be passed in Al
16 dt Reser ved long reserved; should be 0

Global Variables

DTQueue 10 bytes Deferred task queue header.

j DTl nstall long Jump vector for DTI nst al | function.

Result Codes

noErr 0 No error

VvTypErr -2 Invalid qType value (must be ORD(dt QType))

Summary of the Deferred Task Manager

6-15

1abeuep ysel paliajeg H

CHAPTER 7

Segment Manager

Contents

About the Segment Manager 7-3
Code Segmentation 7-4
The Jump Table 7-5
Using the Segment Manager 7-8
Unloading Code Segments 7-8
Loading Code Segments 7-9
Segment Manager Reference 7-10
Routine 7-10
Summary of the Segment Manager 7-11
Pascal Summary 7-11
Routine 7-11
C Summary 7-11
Routine 7-11
Assembly-Language Summary 7-11
Global Variables 7-11
Advanced Routine 7-11

Contents 7-1

CHAPTER 7

Segment Manager

This chapter describes the Segment Manager, the part of the Macintosh Operating
System that loads and unloads your application’s code segments into and out of
memory. By dividing your application’s executable code into segments, you allow it to
run in a memory partition that is smaller than the total size of the application itself and
the data it is using.

To use this chapter, you should already be familiar with the basic concepts of the
Resource Manager and the Memory Manager. You need to know about the basic
operation of the Resource Manager because segments are stored as resources. You need
to know about the basic operation of the Memory Manager to understand when and
why segments might be purged from memory. See the chapter “Introduction to Memory
Management” in Inside Macintosh: Memory.

You should read this chapter if your application contains multiple code segments that do
not all need to be in memory at one time.

About the Segment Manager

Your application’s executable code is stored in its resource fork as one or more resources
of type ' CODE' . These code resources are known as segments because the division of
routines into code resources is controlled by segmentation directives you provide to your
development system.

The Process Manager loads some code segments into memory when your application is
launched. The Segment Manager loads other segments whenever you call any externally
referenced routine contained in those segments. Both of these operations occur
completely automatically and rely on information stored in your application’s jump
table and in the individual code segments themselves.

The Segment Manager loads segments into relocatable, purgeable blocks in your
application heap. A segment is locked when it is first read into memory and at any time
thereafter when routines in the segment are executing. This locking prevents the block
from being moved during heap compaction and from being purged during heap purging.

Although needed code segments are loaded into memory automatically, it is your
application’s responsibility to unload any segments that are not currently being used.
The Segment Manager provides a single procedure, Unl oadSeg, that you can call to
unload a segment. To unload a segment is simply to unlock it. By unlocking unneeded
segments, you allow them to be relocated or purged if necessary to accommodate a later
memory-allocation request. Thus, using the Segment Manager to unload unneeded
segments is one important aspect of an efficient memory-management policy.

The following sections describe in detail the reasons for segmenting an application and
the structure of the jump table.

About the Segment Manager 7-3

Jabeue Juswbas
-

7-4

CHAPTER 7

Segment Manager

Code Segmentation

Your development system’s linker divides your application’s executable code into
segments according to directives that you provide. The main segment contains the main
program. This segment is loaded into memory when your application starts to run and is
never purged or unlocked as long as the application is running. The main event loop and
other frequently needed small routines are generally stored in the main segment.

Most applications, however, consist of multiple code segments. There are two principal
reasons for dividing code into different segments:

= Compiler limitations. Most development systems generate PC-relative instructions
for intrasegment references (references to other routines within the same code
segment). Because PC-relative instructions on an MC68000 use a 16-bit offset, the
offset to the last routine in the segment cannot be larger than 32K bytes. Some
development systems therefore restrict the size of any one code segment to 32K bytes.

= Memory limitations. Many applications are so large that the entire executable code,
together with static data (such as your application’s global data and resources) and
data created dynamically during the execution of the application (such as windows
and the items they contain), simply cannot fit into a memory partition of reasonable
size.

By dividing your executable code into segments, you can circumvent both these
limitations. The size of your application can increase as required to provide the desired
capabilities without necessitating an increased run-time memory partition. For example,
code that isn’t executed very often (such as code for printing a document) can be put into
a separate segment; it’s loaded when needed and can be unloaded to free the memory
for other uses when it’s no longer needed.

Note

Some development systems allow you to create segments that are larger
than 32K bytes. Consult your development system’s documentation to
determine how and when to increase segment size. O

The key fact to keep in mind when deciding how to group routines into segments is that
an entire segment is loaded into memory whenever you call one of the routines in the
segment. It makes sense, therefore, to group related routines in the same segment. You
should segment routines according to your run-time call chain rather than on a simple
file-by-file basis.

There are also some less obvious guidelines to follow when grouping routines into
segments.

= Put your main event loop into the main segment.

= Put any routines that handle low-memory conditions into a locked segment
(commonly the main segment). For example, if your application provides a grow-zone
function, put that function into a locked segment.

= Put any routines that execute at interrupt time, including VBL tasks and Time
Manager tasks, into a locked segment (commonly the main segment).

About the Segment Manager

CHAPTER 7

Segment Manager

= Put into a separate segment any initialization routines that are executed exactly once
at application startup time. Then unload that segment after those routines are
executed. There is, however, at least one important exception to this rule. Routines
that allocate nonrelocatable objects in your application heap should be called in the
main segment, before you load any code segments that will later be unloaded. If you
put such allocation routines into a code segment that is later unloaded and purged,
you increase heap fragmentation. Routines such as Mor eMast er s and
I ni t Wndows, which are typically called at the beginning of an application, allocate
nonrelocatable objects and should therefore be in the main segment.

The Jump Table

Note

This section describes how the Segment Manager works internally and
is included for informational purposes only. You don’t need this
information to use the Segment Manager routine. Moreover, the
information presented here might not be accurate for your development
system. See the note on page 7-7. O

The loading and unloading of segments are implemented through your application’s
jump table, an area of memory in your application’s partition that contains one entry for
every externally referenced routine in every code segment of your application. The
location of the jump table is illustrated in Figure 7-1.

Figure 7-1 The location of the jump table

? High memory }

Jump table

Application parameters

pointer to QuickDraw global variables

Current A5

Application global
variables

QuickDraw global
variables

About the Segment Manager 7-5

Jabeue Juswbas
-

CHAPTER 7

Segment Manager

The jump table is accessed through the A5 register and is therefore part of your
application’s A5 world.

The jump table is created by your development system’s linker and is stored in segment
0 of your application (which is the ' CODE' resource with an ID of 0). Segment O is a
special segment created by the linker for every application; it contains information about
the A5 world and the jump table. Figure 7-2 illustrates the structure of segment 0.

Figure 7-2 The structure of segment 0
Bytes ' CCDE' resource 0
4 Size above A5
4 Size of globals
4 Length of jump table
4 A5 offset of jump table
—
8 Entry 1
8 Entry 2
— Jump
table
8 Entry n
_/

Segment 0 consists of these elements;

= Size above A5. The size (in bytes) from the location pointed to by register A5 to the
upper end of the application space.

= Size of globals. The size (in bytes) of the application global variables plus the
QuickDraw global variables.

= Length of jump table. The size (in bytes) of the jump table.

About the Segment Manager

CHAPTER 7

Segment Manager

= Ab5 offset of jump table. The offset (in bytes) to the jump table from the location
pointed to by register A5. This offset is stored in the global variable Cur JTOf f set .

= Jump table. A contiguous list of jJump table entries.

When the MPW linker encounters a call to a routine in another code segment, it creates a
jump table entry for that routine. (All entries for a particular segment are stored
contiguously in the jump table.) The structure of a jump table entry varies according to
whether the segment it references is loaded or unloaded. If the segment is not yet loaded
into memory, the jump table entry has the structure illustrated in Figure 7-3.

Figure 7-3 Format of an MPW jump table entry when the segment is unloaded
Bytes "Unloaded" state
2 Offset of this routine
from beginning of segment
Instruction that moves
4 the segment number onto
the stack for
_LoadSeg
2 _LoadSeg trap number

Note

Some development systems use a different format for jump table entries
of unloaded routines to circumvent the 32K-byte limitation on the size of
segments, global data, or the jump table itself. Consult the
documentation for your development system to see whether it uses the
jump table entry formats described in this section and whether you can
safely call the Unl oadSeg procedure (which changes jump table
entries). O

The jump table refers to segments by segment numbers assigned by the linker. If the
segment isn’t loaded, the entry contains code that loads the segment. When a segment is
unloaded, all its jump table entries are in the “unloaded” state. When a call to a routine
in an unloaded segment is made, the code in the last 6 bytes of its jump table entry is
executed. This code calls the _LoadSeg trap, which loads the segment into memory,
transforms all of its jump table entries to a “loaded” state, and invokes the routine by
executing the instruction in the last 6 bytes of its jump table entry. Figure 7-4 illustrates
the format of a jump table entry in the “loaded” state.

About the Segment Manager 7-7

Jabeue Juswbas
-

CHAPTER 7

Segment Manager

Figure 7-4 Format of an MPW jump table entry when the segment is loaded
Bytes "Loaded" state
2 Offset of this routine

from beginning of segment

Instruction that jumps to
6 the address of this routine

Subsequent calls to the routine also execute this instruction. When you call Unl oadSeg,
it restores the jump table entries to their “unloaded” state. Notice that the last 6 bytes of
the jump table entry are always executed; the effect depends on the state of the entry at
the time.

To set all the jump table entries for a segment to a particular state, the Segment Manager
needs to know exactly where in the jump table all the entries are located. It gets this
information from the segment header, 4 bytes at the beginning of the segment that
contain the offset of the first routine’s entry from the beginning of the jump table

(2 bytes) and the number of entries for the segment (2 bytes).

Using the Segment Manager

7-8

The Segment Manager provides one routine for use by applications, the Unl oadSeg
procedure. You use this routine to unload code segments. The Operating System also
provides two low-memory global variables that you can use to override the default
segment-loading behavior and to monitor the system’s automatic loading of code
segments.

Unloading Code Segments

You can use the Unl oadSeg procedure to unload segments. To unload a particular
segment, pass Unl oadSeg the address of any externally referenced routine contained in
that segment. For example, to unload the segment that contains the procedure

DoPri nt Fi | e, execute this line of code:

Unl oadSeg(@oPrintFile);

You can call Unl oadSeg at any time except when you are executing code contained in
the segment to be unloaded. A typical strategy is to unload all code segments except

Using the Segment Manager

CHAPTER 7

Segment Manager

segment 1 and any other essential code segments each time through your application’s
main event loop.

WARNING
Before you unload a segment, make sure that your application no longer
needs it. Never unload a segment that contains a completion routine or
other interrupt task (such as a Time Manager task or VBL task) that
might be executed after the segment is unloaded. Never unload a
segment that contains routines in the current call chain. a

The Unl oadSeg procedure does not actually remove the segment from memory. Instead,
it unlocks the segment, thereby making the segment relocatable and purgeable. This
permits the Memory Manager to relocate or purge the segment if necessary to gain some
space in the application heap.

Loading Code Segments

The Segment Manager loads a code segment into memory automatically when you call
any externally referenced routine in that segment. In most cases, the Segment Manager
moves the block occupied by the code segment as high in the application heap as
possible (by calling the Memory Manager procedure MoveHHi) and locks the block (by
calling HLock) so that it cannot be moved or purged. You can disable or enable the call
to MoveHH and monitor the loading of segments into memory by manipulating two
low-memory global variables.

If a code segment to be loaded is unlocked (that is, if it’s not in memory and its

r esLocked attribute is clear, or if it is in memory and is unlocked), then the _LoadSeg
trap calls the Memory Manager procedure MoveHH to move the segment toward the
top of the current heap. To prevent heap fragmentation, you should call the Memory
Manager procedure MaxAppl Zone early in your application’s execution. Otherwise, the
heap will grow incrementally, and these automatic calls to MoveHH may leave your
code segments scattered throughout the heap. You can, however, disable the call to
MoveHH by setting the low-memory global variable SegHi Enabl e to 0. If this variable
contains the value 0, _LoadSeg does not call MoveHHi to move the segment toward the
top of the heap.

Occasionally, especially during application development, it is useful to monitor the
otherwise largely invisible process of loading segments. You can do this by manipulating
the system global variable LoadTr ap. Before any routine in a newly loaded code
segment is executed, the _LoadSeg trap inspects the LoadTr ap global variable. If
LoadTr ap has a nonzero value, then _LoadSeg calls the _Debugger trap. This
provides a useful way for you to monitor the loading of segments by the Segment
Manager.

Using the Segment Manager 7-9

Jabeue Juswbas
-

CHAPTER 7

Segment Manager

Segment Manager Reference

This section describes the routine provided by the Segment Manager.

Routine

The Segment Manager provides only one routine, the Unl oadSeg procedure.

UnloadSeg

You can unload a segment by calling the Unl oadSeg procedure.
PROCEDURE Unl oadSeg (routineAddr: Ptr);

rout i neAddr
The address of any externally referenced routine in the segment to unload.

DESCRIPTION

The Unl oadSeg procedure unloads a segment, making its storage relocatable and
purgeable. You specify which segment to unload by passing the address of any
externally referenced routine in that segment. The segment won’t actually be purged
until the memory it occupies is needed. If the segment is purged, the Segment Manager
reloads it the next time one of the routines in it is called.

Note

The Unl oadSeg procedure works only if called from outside the
segment to be unloaded. O

7-10 Segment Manager Reference

CHAPTER 7

Segment Manager

Summary of the Segment Manager

Pascal Summary

Routine

PROCEDURE Unl oadSeg (routineAddr: Ptr);
C Summary

Routine

pascal void Unl oadSeg (void *routineAddr);

Assembly-Language Summary

Global Variables

CurJTO f set word Offset to jump table from location pointed to by Ab5.

LoadTr ap byte If nonzero, call _Debugger before executing routine in a newly loaded
segment.
SegHi Enabl e byte If nonzero, don’t call MoveHHI when loading segments.

Advanced Routine

Trap macro On entry
_LoadSeg stack: segment number (word)

Summary of the Segment Manager

7-11

Jabeue Juswbas
-

CHAPTER 8

Shutdown Manager

Contents

About the Shutdown Manager 8-3
The Shutdown Process 8-4
Closing Open Applications 8-5
Checking for Custom Shutdown Procedures 8-5
Checking for Open Device Drivers 8-5
Saving the Desk Scrap 8-6
Unmounting Volumes 8-6
Turning Off the Computer 8-6
Using the Shutdown Manager 8-7
Sending a Shutdown or Restart Event 8-7
Installing a Custom Shutdown Procedure 8-9
Shutdown Manager Reference 8-11
Shutdown Manager Routines 8-11
Shutting Down or Restarting a Macintosh Computer 8-12
Installing or Removing a Shutdown Procedure 8-13
Application-Defined Routine 8-16
Shutdown Procedures 8-16
Summary of the Shutdown Manager 8-18
Pascal Summary 8-18
Constants 8-18
Shutdown Manager Routines 8-18
Application-Defined Routine 8-18
C Summary 8-19
Constants 8-19
Data Types 8-19
Shutdown Manager Routines 8-19
Application-Defined Routine 8-19
Assembly-Language Summary 8-20
Constants 8-20
Trap Macros Requiring Routine Selectors 8-20

Contents 8-1

CHAPTER 8

Shutdown Manager

This chapter describes the Shutdown Manager, the part of the Operating System that
manages the final stages of shutting down or restarting a Macintosh computer. The
Shutdown Manager allows you to install a custom procedure that is executed during the
process of shutting down or restarting. You can also use the Shutdown Manager to
restart or shut down the computer directly, although this practice is strongly
discouraged.

WARNING

For reasons described later, you should avoid shutting down or
restarting the computer directly except in an emergency (for instance,
when data on the disk might be destroyed). If you need to restart or shut
down the system, send a Shutdown or Restart event to the Finder, as
described in “Sending a Shutdown or Restart Event” on page 8-7. a

Read the information in this chapter if your application or other software component
needs to intervene in the standard process of shutting down or restarting the computer.
In general, applications do not need to intervene in this process. You are likely to use the
Shutdown Manager only if you are designing a device driver or system extension
requiring notification that the computer is about to be shut down or restarted.

If you want to install a custom shutdown procedure, you should know how to install a
code segment into the system heap, as described in the chapter “Memory Manager” in
Inside Macintosh: Memory. If you want to shut down or restart the computer and need to
familiarize yourself with the process of sending Apple events, see the chapter “Apple
Event Manager” in Inside Macintosh: Interapplication Communication.

This chapter begins with a description of the Shutdown Manager and of the typical
shutdown or restart process. Then it describes how you can

= use Apple events to request that the system be shut down or restarted

= install a custom shutdown procedure to be executed during the shutdown or
restart process

= remove a shutdown procedure that you have previously installed

About the Shutdown Manager

The Shutdown Manager gives applications and other software a chance to perform any
necessary shutdown processing before the computer is turned off or restarted. It also
shuts down or restarts Macintosh computers, providing a consistent human interface for
shutting down and restarting different models. Before restarting a computer or turning
off the power, the Shutdown Manager checks for open device drivers and desk
accessories and allows them to perform any necessary housekeeping.

The Shutdown Manager does not notify open applications that they are about to be shut
down. This notification is handled by the Process Manager, as explained in “Using the
Shutdown Manager” beginning on page 8-7. The Shutdown Manager provides two
procedures that allow you to shut down or restart a Macintosh computer. However,
these procedures do not perform the preliminary tasks that the Finder initiates when a

About the Shutdown Manager 8-3

Jabeuep umopinys n

CHAPTER 8

Shutdown Manager

user chooses Shut Down or Restart from the Finder’s Special menu. Accordingly, your
application should not call these procedures directly because all open applications will
terminate abruptly without the opportunity to save their current states and exit
gracefully. Instead, your application should send a Shutdown or Restart event to the
Finder, as described in “Sending a Shutdown or Restart Event” on page 8-7.

The main function of the Shutdown Manager is to execute a custom shutdown
procedure that lets your application perform some additional tasks before the computer
shuts down. The types of software most likely to install shutdown procedures are device
drivers and system extensions. For example, drivers of early hard disk drives that use
stepper motors usually need to park the drive heads in a safe zone before the power is
turned off. A shutdown procedure could notify a driver to park the head. In another
case, a user could install a system extension that displays an alert box asking whether to
back up the hard disk before the computer shuts down.

The Shutdown Process

8-4

When a user chooses Shut Down or Restart from the Finder’s Special menu, the tasks
performed to shut down or restart a Macintosh computer differ in one important respect
from those performed when you call the Shutdown Manager directly. In the former case,
the Finder receives notification of a Shutdown or Restart event and calls the Process
Manager to notify any open applications to quit. Only after the applications return does
the Finder call the appropriate Shutdown Manager procedures to shut down or restart
the system. To have your driver or application initiate this process, you can send a
Shutdown or Restart event to the Finder, as described in “Sending a Shutdown or Restart
Event” on page 8-7.

The Shutdown Manager procedures for shutting down or restarting the system (either
Shut DamnPower or Shut DSt ar t) perform an identical five-step process:

1. Checking for and executing custom shutdown procedures installed by calls to
Shut Danl nst al | . (This step occurs three times during the shutdown process.)

2. Checking the Device Manager’s unit table to determine whether any drivers or desk
accessories are open and, if so, notifying them of the impending shutdown or restart.

3. Saving the desk scrap, if any.
4. Unmounting mounted volumes.
5. Turning off the computer.

This section describes the shutdown process in detail, beginning with the preliminary
step, mediated by the Finder, of closing applications.

The Shutdown Process

CHAPTER 8

Shutdown Manager

Closing Open Applications

When a user or application notifies the Finder to shut down or restart the computer, the
Finder calls the Process Manager. The Process Manager performs the important task of
notifying all open applications to quit. It checks its list of open applications and sends a
Quit Application event to those applications that can process Apple events. For
applications that cannot process Apple events, the Process Manager sends a
mouse-down event indicating that Quit was chosen from the File menu. This technique
works for applications that display Quit in the File menu. Applications that display Quit
in a different menu or that display a different form of Quit (such as Quit Document or
Quit...) must specify a resource of type ' nstr' or' nmst#' with a resource ID of 100 or
101, respectively. The Process Manager reads these resources to locate the menu
containing the Quit item or to find the exact Quit string to send to the application.

Once notified, open applications have the opportunity to save data and execute other
exit procedures before they quit. Note that Shut DwnPower and Shut DwnSt art do not
notify open applications to quit. For this reason, you should not call these routines
directly.

Checking for Custom Shutdown Procedures

After all open applications have quit, the Finder calls either Shut DanPower or

Shut DwnSt ar t , respectively, depending on whether the user chose Shut Down or
Restart from the Finder’s Special menu. Because these two procedures perform the same
set of tasks, the ensuing explanation applies to both routines.

The Shut DwnPower routine first checks for custom shutdown procedures installed by
calls to Shut Dwnl nst al | . The Shutdown Manager maintains a queue that contains the
address of each custom procedure and a constant indicating when during the shutdown
process to execute each procedure. The Shut DwnPower routine reads this queue three
times during the shutdown process: before notifying drivers to shut down, before
unmounting volumes, and before turning off the power. (See the description of

Shut Dwnl nst al | on page 8-13 for an explanation of the shutdown constants.) At this
point, Shut DawmnPower executes any custom procedures that specify the sdOnDri ver s
constant. Then it begins the next step of the shutdown process: checking for open device
drivers.

Checking for Open Device Drivers

After locating any custom shutdown procedures, Shut DwnPower checks the Device
Manager’s unit table to determine whether any device drivers or desk accessories are
open. It also inspects the dNeedGoodBye bit in the dr vr FI ags word for each driver.
This bit, if set, indicates that the driver requests notification when the application heap is
reinitialized or the system shuts down. Accordingly, Shut DwnPower calls the driver’s
Cont r ol function with the csCode field set to -1 (the goodBye global constant). This
notification of impending termination is called a good-bye message.

The Shutdown Process 8-5

Jabeuep umopinys n

CHAPTER 8

Shutdown Manager

A driver in an application heap also receives a good-bye message every time an
application quits. For this reason, the driver cannot always determine whether a
good-bye message means that the system is about to shut down. If making this
distinction is important, you can call Shut Danl nst al | to install a simple procedure
that informs your driver when the computer is about to shut down. For more
information about the dr vr Fl ags word and the Cont r ol function, see the chapter
“Device Manager” in Inside Macintosh: Devices.

The Shut DwnPower procedure does not actually close the drivers. They stay open until
the power is switched off.

Saving the Desk Scrap

Having sent a good-bye message to any open driver that requested one, Shut DanPower
next calls the Scrap Manager function Unl oadScr ap to write the desk scrap, if any, from
the Clipboard to the disk. Later, when the user restarts the computer, your application
can retrieve the desk scrap by calling the LoadScr ap function, as described in the
chapter “Scrap Manager” of Inside Macintosh: More Macintosh Toolbox.

Unmounting Volumes

After saving the desk scrap, the Shut DwnPower procedure reads the Shutdown
Manager’s queue and executes any shutdown procedures that specify the sdOnUnnount
constant. Next, Shut DmPower searches the volume control block queue for mounted
volumes. It unmounts each one by calling the File Manager functions Ej ect and
Unnount Vol . The Shut DwnnPower procedure then reads the Shutdown Manager’s
queue and executes any shutdown procedures that specify the sdOnRest art constant,
the sdOnPower O f constant, or both.

Turning Off the Computer

Currently, there are two methods of turning off the various Macintosh models: one is
software-controlled; the other, manual. With the software-controlled method, the
Shutdown Manager actually turns off the power. With the manual method, by contrast,
the Shutdown Manager darkens the screen and displays an alert box (Figure 8-1) stating
that it is safe to turn off the computer.

Figure 8-1 A shutdown alert box

8-6

It is now safe to switch off your Macintosh.

The Shutdown Process

CHAPTER 8

Shutdown Manager

Currently, the product lines that employ the software-controlled method are the
Macintosh 1l models, the Macintosh Quadra models, the Macintosh Portable computers,
and the PowerBook computers. Those that employ the manual method are the
Macintosh LC computers, the Macintosh SE computers, the Macintosh Classic
computers, the Macintosh Plus models, and all earlier models.

All Macintosh models restart the same way when a user chooses Restart from the Special
menu or when the Finder or other software calls the Shut DawnSt art procedure.
Remember not to call Shut DwnPower and Shut DwnSt art directly because these
procedures abruptly terminate other applications that are currently running, possibly
resulting in a loss of data.

Using the Shutdown Manager

The Shutdown Manager provides four procedures. The procedures Shut DannPower and
Shut DwnSt art perform the same set of shutdown tasks, except that Shut DwnPower
turns off a Macintosh computer, whereas Shut DwnSt art restarts it. The

Shut Dawnl nst al | routine installs a custom shutdown procedure to perform a certain
task before the computer shuts down or restarts. The Shut DwnPower or

Shut DwnRest art routine calls your shutdown procedure at a predetermined point
during the shutdown or restart process. The last procedure, Shut DwnRenove, removes
custom shutdown procedures installed by Shut Dwnl nst al | .

WARNING
Usually, only the Finder or other system software should call

Shut DwmnPower and Shut Dawnl nst al | . An application calling these
procedures will cause other open applications to terminate abruptly,
potentially destroying their data. a

Sending a Shutdown or Restart Event

Applications that support high-level events can send a Shutdown or Restart event to the
Finder to request the system to shut down or restart. Once notified, the Finder calls the
Process Manager, which gives open applications the opportunity to exit gracefully before
the computer shuts down or restarts. The Process Manager checks its list of open
applications and sends a Quit Application event to applications that can process Apple
events. For applications that can’t, the Process Manager sends a mouse-down event
indicating that Quit was chosen from the File menu. Applications that display the Quit
item in a different menu or that use a different wording must specify a resource of type
"metr' or' mst#' with aresource ID of 100 or 101, respectively. Once notified, the open
applications then have time to perform cleanup operations (such as displaying a Save
Changes alert box) before quitting.

Using the Shutdown Manager 8-7

Jabeuep umopinys n

CHAPTER 8

Shutdown Manager

The Shutdown and Restart events have the event class defined by the
kAEFi nder Event s constant.

CONST
kAEFi nder Events = ' FNDR ; {event class for Finder}

The Restart event has the event ID defined by the KAERest ar t constant, and the
Shutdown event has the event ID defined by the kAEShut Down constant:

CONST
kAERestart = 'rest’'; {event ID for Restart event}
kAEShut Down = 'shut'; {event ID for Shutdown event}

Listing 8-1 defines a function that sends a Shutdown event to the Finder.

Listing 8-1 Sending a Shutdown event

8-8

FUNCTI ON Shut DownSaf el y: OSErr;

CONST
kFi nderSig = ' FNDR';
VAR
nmyEerr: CSErr;
finder Addr: AEDesc;
nmy Shut Down: Appl eEvent ;
ni | Reply: Appl eEvent ;
BEG N

nyErr : = AECreateDesc(typeAppl Si gnature, kFinderSig,
Si zeOF (OSType), finderAddr);
IF nyErr = noErr THEN
nyErr : = AECreat eAppl eEvent (KAEFi nder Event s, kAEShut Down,
fi nder Addr, kAutoGener at eRet urnl D,
kAnyTransacti onl D, myShut Down) ;
| F nyErr = noErr THEN
nyErr : = AESend(myShut Down, nil Reply, KAENoReply +
kAECanSwi t chLayer + KAEAl waysl nteract,
kAENor mal Priority, kAEDefaultTineout, NIL, NL);
Shut DownSafely : = nyErr;
END;

To send a Shutdown or Restart event, you must call three Apple Event Manager
functions. First, use the AECr eat eDesc function to create an address descriptor record
that specifies the address of the Finder. You can specify the address of the Finder by its
signature, ' FNDR' . Next, call AECr eat eAppl eEvent to create the Apple event you
want to send. Finally, call the AESend function. Use the Apple event returned in the

Using the Shutdown Manager

CHAPTER 8

Shutdown Manager

nmy Shut Down variable of the AECr eat eAppl eEvent function as the Apple event to
send in AESend.

After sending the event, remember to dispose of the descriptor record and Apple event
at some point, by calling the AEDi sposeDesc function. For complete details about this
function and the ones used in Listing 8-1, see the chapter “Apple Event Manager” in
Inside Macintosh: Interapplication Communication.

Note

Applications running under system software version 6.0.x cannot send
Apple events to MultiFinder because it cannot process them. As a result,
your application cannot request that open applications be notified to
quit before it calls Shut DamnPower and Shut DamnSt ar t . Therefore, you
should avoid calling these procedures unless absolutely necessary. O

Installing a Custom Shutdown Procedure

If you write a shutdown procedure, you can install a pointer to it in the Shutdown
Manager’s queue by calling the Shut Dwnl nst al | procedure. You’re most likely to need
to use a custom shutdown procedure if you are writing a device driver or a system
extension. For example, drivers for early hard disk drives that use stepper motors
usually need to park the drive heads in a safe zone before the power is turned off.
Similarly, drivers for floppy disks and CD-ROM discs use a shutdown procedure that
ejects the disks so that they don’t remain in the drives when the computer shuts down.

If you are developing an application, you can also make use of shutdown procedures.
For example, a remote backup application might install a shutdown procedure that
reminds a user about scheduled backups. If the user attempts to shut down the
computer before the application has backed up the disk, the shutdown procedure could
display an alert box asking whether the user wants to back up the disk before the
computer shuts down.

Remember that the Process Manager frees all application heaps before the Finder calls
Shut DwnPower . For this reason, you can’t rely on your heap being intact. You should
load your shutdown procedure into the system heap and specify the constants
sdOnDri ver s or sdOnUnnount to ensure that the procedure is executed while the
system heap and any necessary system software components are still available.

The Shut Dwnl nst al | procedure accepts a number of constants that specify when
during the shutdown process Shut DwnPower or Shut DwnSt art should execute your
custom procedure. You can specify more than one constant to have your procedure
executed at different phases of the process. The points indicated by these constants are;
before the drivers receive good-bye messages, before volumes are unmounted, or before
the computer is restarted or the power supply is switched off. However, Apple
Computer, Inc., cannot guarantee the state of the computer after volumes are
unmounted. Accordingly, if you plan to use the system heap or call Toolbox or Operating
System routines to open a file, display a dialog box, play a sound, and so forth, be sure to
specify the sdOnDr i ver s or sdOnUnnount constants. For more information about
these constants, see the description of the Shut Dwnl nst al | routine on page 8-13.

Using the Shutdown Manager 8-9

Jabeuep umopinys n

CHAPTER 8

Shutdown Manager

Listing 8-2 illustrates a sample custom shutdown procedure that ejects a CD-ROM disc
just before the Macintosh computer shuts down or restarts.

Listing 8-2 A sample custom shutdown procedure

8-10

PROCEDURE My Shut DownPr oc;

CONST
kMaxScsi I D = 7;
VAR
MyDCEHandl e: DCt | Handl e;
CDRef Num I nt eger; {driver reference nunber}
nyl D: I nt eger; {SCsl 1D}

MyDevSt at Handl e: DevSt at Handl e; {handle to driver’s array}
BEG N
{Read driver reference nunber fromthe unit table.}
CDRef Num : = Get MyRef Num
| F CDRef Num = 0 THEN
Exi t (MyShut DownPr oc) ;

{Get handle to driver’s device control entry.}
MyDCEHandl e : = Get DCt | Ent r y(CDRef Num ;

{If handle is NIL, couldn’t get device control entry.}
| F MyDCEHandl e = NIL THEN
Exi t (MyShut DownPr oc) ;

{Eject all mounted CD-ROM di scs.}
MyDevSt at Handl e : = DevSt at Handl e(MyDCEHandl e*~. dCt | St or age) ;
FOR nmylD := 0 to kMaxScsi | D DO
| F (MyDevSt at Handl e* [yl D] . i sSMyCDDri ve = TRUE) AND
(MyDevSt at Handl e[yl D] . mounted = TRUE) THEN
MyEj ect CDProc(nyl D) ; {your routine to eject CDs}
END;

In Listing 8-2, Get MyRef Numreturns the reference number for a CD device driver from
the Device Manager’s unit table. A value of 0 indicates that Get MyRef Numdid not find a
CD device driver. Next, My Shut DownPr oc calls Get DCt | Ent r y to retrieve the handle
to the CD driver’s device control entry record. Both the handle (of type DCt | Handl e)
and the device control entry record (of type DCE) are described in the chapter “Device
Manager” in Inside Macintosh: Devices. If the value returned is NI L, then Get DCt | Ent ry
did not find the device control entry, and My Shut DownPr oc returns. The

My Shut DownPr oc procedure next loops through the driver’s device status array
looking for and ejecting mounted compact discs. The MyDev St at Handl e handle points

Using the Shutdown Manager

CHAPTER 8

Shutdown Manager

to the driver’s array. After checking all elements in the array, My Shut DownPr oc returns
control to the Shutdown Manager.

Note

Listing 8-2 does not define the device driver’s array or the

Get MyRef Numand MYEj ect CDPr oc routines. These items are internal
to the CD-ROM driver. O

Once you have finished writing your shutdown procedure, you can install it by calling
Shut Danl nst al | . Your call to Shut Dwnl nst al | should specify a pointer to
My Shut DownPr oc, as follows.

Shut Dwnl nst al | (@4 Shut DwinPr oc, sdOnDrivers);

Assembly-Language Note

When the Shutdown Manager calls a shutdown procedure, it sets a bit in
the DO register indicating the current phase of the shutdown process.
The values 0, 1, 2, and 3 represent the constants sdOnPower OF f ,
sdOnRest art, sdOnUnnount , and sdOnDr i ver s, respectively. You
can have your shutdown procedure read DO if it needs to keep track of
the shutdown process. O

The Shutdown Manager follows the standard conventions for saving registers specified
in Inside Macintosh: Overview.

You can remove your shutdown procedure at any time by calling Shut DimRenove.

Shutdown Manager Reference

This section describes the routines and constants that are specific to the Shutdown
Manager. For a description of the constants provided by the Shutdown Manager, see the
description of the Shut Dwnl nst al | procedure on page 8-13. The section “Summary of
the Shutdown Manager” lists these routines and constants for your reference.

Shutdown Manager Routines

This section first describes the routines for shutting down or restarting a Macintosh
computer. It then describes the routines for installing or removing a custom shutdown
procedure.

Shutdown Manager Reference 8-11

Jabeuep umopinys n

CHAPTER 8

Shutdown Manager

Shutting Down or Restarting a Macintosh Computer

The Shutdown Manager provides the routines Shut DwnPower and Shut DwnSt art to
shut down or restart the computer.

A WARNING
The Shut DwnPower and Shut DwnSt art procedures are used by the
Finder and other system software. You usually do not need to call these
two routines. a
ShutDwnPower
The system software calls the Shut DwnPower procedure to shut down a Macintosh
computer.
PROCEDURE Shut DwnPower ;
DESCRIPTION

The Shut DwnPower procedure initiates the final stage of the system shutdown process.
It performs system housekeeping, executes any custom shutdown procedures installed
by calls to Shut Dwnl nst al | , and, if possible, turns the computer off. (The Shutdown
Manager displays the Shutdown alert box if the user has to turn the computer off
manually.) The system housekeeping functions consist of a five-step process, described
in full in “The Shutdown Process” on page 8-4.

You should always call Shut DainPower indirectly, through the Finder, to give any other
applications running at the time a chance to exit gracefully. “Sending a Shutdown or
Restart Event” on page 8-7 describes the correct way to shut down a Macintosh
computer.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Shut DamnPower procedure are

Trap macro Selector
_Shut down $0001

ShutDwnStart

8-12

The system software calls the Shut DwnSt art procedure to restart a Macintosh
computer.

PROCEDURE Shut DwnnSt art ;

Shutdown Manager Reference

DESCRIPTION

ASSEMBLY-LANGUAGE INFORMATION

CHAPTER 8

Shutdown Manager

The Shut DSt art procedure initiates the final stage of restarting the system. It
performs system housekeeping, executes any custom shutdown procedures installed
with Shut Dwnl nst al | , and restarts the computer. The system housekeeping functions
consist of a five-step process, described in full in “The Shutdown Process” on page 8-4.

You should always call Shut DSt ar t indirectly, through the Finder, to give any other
applications running at the time a chance to exit gracefully. “Sending a Shutdown or
Restart Event” on page 8-7 describes the correct way to restart a Macintosh computer.

The trap macro and routine selector for the Shut DwnSt art procedure are

Trap macro Selector
_Shut down $0002

Jabeuep umopinys n

Installing or Removing a Shutdown Procedure

The Shutdown Manager provides the routines Shut Dwnl nst al | and Shut DamnRenove
to install and remove custom shutdown procedures.

ShutDwnlnstall

DESCRIPTION

You can use the Shut Dwnl nst al | procedure to install a custom shutdown procedure
that performs a certain task before the computer shuts down or restarts.

PROCEDURE Shut Dwnl nstal | (shut DownProc: ProcPtr; flags: |nteger);

shut DownPr oc
A pointer to your shutdown procedure.

flags An integer that indicates when during the shutdown process to execute
your shutdown procedure.

The Shut Dwnl nst al | procedure installs the custom shutdown procedure pointed to by
the shut DownPr oc parameter. You can install more than one custom procedure; simply
call Shut Dawnl nst al | for each one. For complete information on using a shutdown
procedure, see “Installing a Custom Shutdown Procedure” on page 8-9.

The f | ags parameter indicates when during the shutdown process Shut DwnPower or
Shut DSt ar t executes your shutdown procedure. The following constants serve as
masks for setting the bits in the f | ags parameter. Set the appropriate bits to have your
procedure executed at different points during shutdown.

Shutdown Manager Reference 8-13

8-14

CHAPTER 8

Shutdown Manager

CONST
sdOnPower O f
sdOnRest art

sdRest art Or Power

sdOnUnnount

sdOnDri vers

= 1; {call procedure before power off}

= 2; {call procedure before restart}

= 3; {call procedure before power off }
{ or restart}

= 4; {call procedure before unmounting }

{ vol unes}
= 8; {call procedure before checking for }
{ open drivers}

The following list indicates when Shut DamnPower or Shut DmnSt art executes your
procedure and summarizes the known state of the computer at the point specified by

each constant:

Constant
sdOnDri vers

sdOnUnnount

sdOnRest art

sdOnPower O f

Description

The Shutdown Manager executes your procedure before checking
the Device Manager’s unit table for open drivers. All Toolbox and
Operating System managers are available. The system heap is
available. It is safe to open files, display dialog boxes, play sounds,
or perform similar tasks.

The Shutdown Manager executes your procedure before
unmounting volumes. All Toolbox and Operating System managers
are available. The system heap is available. It is safe to open files,
display dialog boxes, play sounds, or perform similar tasks.

The Shutdown Manager executes your procedure before restarting
the computer. The system heap is still available. However, in other
respects, the state of the computer is indeterminate.

The Shutdown Manager executes your procedure before switching
off the power supply or displaying the shutdown alert box. The
system heap is still available. However, in other respects, the state
of the computer is indeterminate.

sdRest art O Power

The Shutdown Manager executes your procedure before restarting
the computer or before switching off the power supply or
displaying the shutdown alert box. The system heap is still
available. However, in other respects, the state of the computer is
indeterminate.

Shutdown Manager Reference

CHAPTER 8

Shutdown Manager

You can also combine these constants in the following ways:

Expression Description

sdOnPower OF f + sdOnDri vers
When the computer is shutting down, Shut DamnPower calls your
shutdown procedure before checking for open drivers.
sdOnPower OF f + sdOnUnnount
When the computer is shutting down, Shut DwnPower calls your
shutdown procedure before unmounting volumes.
sdOnRestart + sdOnDrivers
When the computer is to be restarted, Shut DmnSt ar t calls your
shutdown procedure before checking for open drivers.

sdOnRestart + sdOnUnnount
When the computer is to be restarted, Shut DwnSt art calls your
shutdown procedure before unmounting volumes.

Note
These combinations of constants are recognized by the Shutdown
Manager only in system software versions 7.0 and later. O

The Shutdown Manager executes a custom shutdown procedure just once. As soon as a
custom procedure returns, the Shutdown Manager removes the address and flag entries
for that procedure from its shutdown queue. As a result, the combination

sdOnDri vers + sdOnUnmount does not work.

If your driver or system extension remains resident in memory after the boot process, be
sure to load your shutdown procedure into the system heap because the Process
Manager frees all application and other temporary heaps before calling the Shutdown
Manager.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Shut Dwnl nst al | procedure are

Trap macro Selector
_Shut down $0003

ShutDwnRemove

The Shut DwnRenove procedure removes a shutdown procedure that you have
previously installed by calling Shut Dwnl nst al | .

PROCEDURE Shut DwnRenove (shut DownProc: ProcPtr);

shut DownPr oc
A pointer to your shutdown procedure.

Shutdown Manager Reference 8-15

Jabeuep umopinys n

CHAPTER 8

Shutdown Manager

DESCRIPTION

The Shut DwnRenove procedure removes the shutdown procedure pointed to by the
shut DownPr oc parameter. The Shut DanRenove procedure is useful for removing a
shutdown procedure when the device controlled by the driver that installed the
shutdown procedure is not operating.

If you have specified that your procedure should be executed at several points during
the shutdown process (for instance, before unmounting at restart and before
unmounting at power off), Shut DwnRenove removes it at all points.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Shut DnmnRenove procedure are

Trap macro Selector
_Shut down $0004

Application-Defined Routine

While the computer is restarting or shutting down, you can provide a custom shutdown
procedure to perform any housekeeping tasks that your device driver or system
extension requires. For example, your device driver might have to park the drive head or
your system extension might have to write some statistics to a log. However, under
normal circumstances, applications don’t need to use a custom shutdown procedure.

Shutdown Procedures

A shutdown procedure performs any last-minute tasks required to put a device driver
(or, in rare cases, an application) in a stable state before the computer restarts or
shuts down.

Note

Applications can usually perform housekeeping tasks before they quit.
If your application requires that some action be taken after it quits, such
as having the system display a dialog box, you should use a system
extension whenever possible. O

MyShutDownProc

A typical shutdown procedure has the following form:

PROCEDURE My Shut DownPr oc;

8-16 Shutdown Manager Reference

DESCRIPTION

CHAPTER 8

Shutdown Manager

You can install the address of your shutdown procedure in the Shutdown Manager’s
gueue by calling the Shut Dwnl nst al | procedure. When the computer restarts or shuts
down, the Shutdown Manager searches its queue, reads the addresses it finds there, and
executes the procedures at the points specified by the shutdown flag or flags that you
passed with Shut Danl nst al | . See the description of Shut Damnl nst al | on page 8-13
for details.

To remove your shutdown procedure, call the Shut DwnRenove routine, passing it a
pointer to your procedure.

Be sure to install your shutdown procedure in the system heap. Because the Process
Manager deallocates memory for all application heaps before the Finder calls

Shut DannPower, you can’t rely on the application heap being intact. In addition, if you
need to use Toolbox managers, specify the constants sdOnDr i ver s or sdOnUnnount to
ensure that your procedure is executed while these managers are still available.

ASSEMBLY-LANGUAGE INFORMATION

The Shutdown Manager conforms with the standard assembly-language conventions for
saving registers. The Shutdown Manager does not preserve the contents of these
registers. Therefore, be sure to save and restore the data and address registers before
issuing a jump instruction to your shutdown procedure.

Shutdown Manager Reference 8-17

Jabeuep umopinys n

CHAPTER 8

Shutdown Manager

Summary of the Shutdown Manager

Pascal Summary

Constants

CONST
{masks for ShutDwnlnstall flags}

sdOnPower O f = 1; {call procedure before power off}

sdOnRest art =
sdRest art O Power
sdOnUnnount

sdOnDri vers =

I
R W

Shutdown Manager Routines

; {call procedure before restart}

{call procedure before power off or restart}
{call procedure before unnounting vol unes}

{call procedure before checking for open drivers}

Shutting Down or Restarting the Computer

PROCEDURE Shut DwnPower ;
PROCEDURE Shut DwnSt art ;

Installing or Removing a Shutdown Procedure

PRCCEDURE Shut Dwnl nst al | ('shut DownPr oc:
PROCEDURE Shut DwnRenpve (shut DownPr oc:

Application-Defined Routine

ProcPtr; flags: Integer);
ProcPkPtr);

Shutdown Procedures
PROCEDURE My Shut DownPr oc;

8-18 Summary of the Shutdown Manager

CHAPTER 8

Shutdown Manager

C Summary

Constants

/*masks for ShutDwnlnstall flags*/

enum {
sdOnPower O f =1, /*call procedure before power off*/
sdOnRest art =2, [*call procedure before restart*/
sdRestartOrPower = 3, [/*call procedure before power off or restart*/
sdOnUnnount = 4, [*call procedure before unmounting vol umes*/
sdOnDri vers =8 /*call procedure before checking for open */
}; /[* drivers*/
Data Types

t ypedef pascal void (*Shut DwnProcPtr) (void)

Shutdown Manager Routines

Shutting Down or Restarting the Computer

pascal void Shut DanPower (void);
pascal void Shut DwnStart (voi d);

Installing or Removing a Shutdown Procedure

pascal void Shut Dwmnl nstal | (Shut DawnProcPtr shut DownProc, short flags);
pascal void Shut DwmmRenove (Shut DwnProcPtr shut DownProc) ;

Application-Defined Routine

Shutdown Procedures
pascal void MyShut DownProc (void);

Summary of the Shutdown Manager

8-19

Jabeuep umopinys n

CHAPTER 8

Shutdown Manager

Assembly-Language Summary

Constants

sdPower Of f EQU 1 ; sel ector for Shut DwnPower
sdRest art EQU 2 ;selector for Shut DwnStart
sdl nstal | EQU 3 ;sel ector for ShutDwnlnstall
sdRenove EQU 4 ;sel ector for Shut DwnRenobve

Trap Macros Requiring Routine Selectors

_Shut down

Selector Routine

$0001 Shut DwnPower
$0002 Shut DSt ar t
$0003 Shut Dawnl nst al |
$0004 Shut DamnRenove

8-20 Summary of the Shutdown Manager

Glossary

A5 world An area of memory in an
application’s partition that contains the
QuickDraw global variables, the application
global variables, the application parameters, and
the jump table—all of which are accessed
through the A5 register.

active application The application currently
interacting with the user. Its icon appears on the
right side of the menu bar. See also current
process, foreground process.

alert notification A notification in which an
alert box containing a short message appears on
the screen.

Apple events High-level events whose
structure and interpretation are determined by

the Apple Event Interprocess Messaging Protocol.

application heap An area of memory in the
application heap zone in which memory is
dynamically allocated and released on demand.
The heap contains the application’s ' CODE'
segment 1, data structures, resources, and other
code segments as needed.

application partition A partition of memory
reserved for use by an application. The
application partition consists of free space, the
application heap, the application’s stack, and the
application’s A5 world.

asynchronous execution A mode of invoking a
routine. During the asynchronous execution of a
routine, an application is free to perform other
tasks. See also completion routine.

audible notification A notification in which the
Sound Manager plays the system alert sound or a
sound contained inan' snd ' resource.

background-only application An application
that does not have a user interface.

background process A process that isn’t
currently interacting with the user. See also
foreground process.

completion routine A routine that is executed
when an asynchronous call to some other routine
is completed.

context Information the Process Manager
maintains about a process. This information
includes the current state of the process, the
address and size of its partition, its type, its
creator, a copy of its low-memory global
variables, information about its' SI ZE' resource,
and its process serial number.

context switch A major or minor switch.

cooperative multitasking environment A
multitasking environment in which applications
explicitly cooperate to share the available system
resources. See also multitasking environment.

current process The process that is currently
executing and whose A5 world is valid. This
process can be in the background or foreground.

defer To postpone the execution of an interrupt
task until all interrupts have been reenabled.

deferred task An interrupt task whose
execution has been postponed until interrupts
have been reenabled.

Deferred Task Manager The part of the
Macintosh Operating System that allows you to
defer the execution of lengthy interrupt tasks
until interrupts have been reenabled.

deferred task queue An operating-system
gueue that contains deferred task records.

deferred task record A record that contains
information about a deferred task. Defined by the
Def er r edTask data type.

desk accessory A “mini-application” that is
available from the Apple menu regardless of
which application you’re using—for example, the
Calculator, Note Pad, Alarm Clock, Puzzle,
Scrapbook, Key Caps, and Chooser.

GL-1

GLOSSARY

desktop The working environment on the
computer—the menu bar and the gray area on
the screen. The user can have a number of
documents on the desktop at the same time. At
the Finder level, the desktop displays the Trash
icon and the icons (and windows) of volumes
that have been mounted.

device A part of a computer, or a piece of
external equipment, that can transfer data into or
out of the computer.

device driver A program that controls the
exchange of information between an application
and a device.

Device Manager The part of the Macintosh
Operating System that supports device 1/0.

disabled interrupt An interrupt whose priority
level is lower than or the same as that of an
interrupt that is currently being serviced.

drift To deviate or vary from scheduled
execution.

drift-free Executed precisely as scheduled,
without drifting.

event The means by which the Event Manager
communicates information about user actions,
changes in the processing status of the
application, and other occurrences that require a
response from the application.

Event Manager The collection of routines that
an application can use to receive information
about actions performed by the user, to receive
notice of changes in the processing status of the
application, and to communicate with other
applications.

exception An error or other special condition
detected by the microprocessor in the course of
program execution.

external reference A reference to a routine or
variable defined in another code segment.

fixed-frequency Of constant frequency.

foreground process The process that is
currently interacting with the user; it appears to
the user as the active application. The foreground
process displays its menu bar, and its windows
are in front of the windows of all other
applications. See also background process.

GL-2

frequency The number of times per second that
an action (such as the issuance of an interrupt)
occurs. An action’s frequency is measured in
cycles per second, or hertz. See also period.

good-bye message A message sent by the
Operating System to notify device drivers when
an application quits or the system shuts down. To
receive a good-bye message, drivers must set the
dNeedGoodBye bit in the dr vr Fl ags word.

hertz (Hz) A unit of frequency, equal to one
cycle per second.

interrupt An exception signaled by a device to
the processor, notifying it of a change in the
condition of the device, such as the completion of
an 1/0 request.

interrupt handle A routine that services
interrupts.

interrupt priority level A number that
identifies the importance of an interrupt. It
indicates which device is interrupting, and which
interrupt handler should be executed in response
to the interrupt.

interrupt table Alist (stored in low memory) of
interrupt vectors.

interrupt task A routine executed as the result
of an interrupt.

interrupt vector The address of an interrupt
handler.

jump table An area of memory in an
application’s A5 world that contains one entry
for every externally referenced routine in every
code segment of the application. The jump table
is the means by which segments are loaded and
unloaded.

jump table entry Asingle entry in a jump table.
kill To cause a process or task to stop executing.
load To move a segment into RAM.

Macintosh Operating System The part of
Macintosh system software that manages basic
low-level operations such as file reading and
writing, memory allocation and deallocation,
process execution, and interrupt handling.

main segment The segment that contains the
main program.

GLOSSARY

major switch The process of switching

the context of the foreground process with the
context of a background process (including the
A5 worlds and application-specific system global
variables) and bringing the background process
to the front, sending the previous foreground
process to the background. See also context,
minor switch.

microsecond A unit of time equal to one
millionth of a second. Abbreviated psec.

millisecond A unit of time equal to one
thousandth of a second. Abbreviated msec.

minor switch The process of switching the
context of a process to give time to a background
process without bringing the background process
to the front. See also context, major switch.

multitasking environment An environment in
which several independent applications or other
processes can be open at once. See also
cooperative multitasking environment.

notification An audible or visible indication
that your application (or other piece of software)
requires the user’s attention. See also alert
notification, audible notification, and polite
notification.

Notification Manager The part of the
Macintosh Operating System that allows you to
inform users of significant occurrences in
applications that are running in the background
or in software that is largely invisible to the user.

notification queue The Notification Manager’s
list of pending notification requests.

notification record The internal representation
of a notification request, through which you
specify how a notification is to occur. Defined by
the NMRec data type.

notification request A request to the
Notification Manager to create a notification.

notification response procedure A procedure
that the Notification Manager can execute as the
final step in a notification.

null event An event signaling that there are no
more events to report.

open application An application that is loaded
into memory.

Operating System See Macintosh Operating
System.

operating-system event An event returned by
the Event Manager to communicate changes in
the operating status of applications (suspend and
resume events) and movement of the mouse
outside of an area defined by the application
(mouse-moved events).

operating-system queue See queue.

partition A contiguous block of memory
reserved for use by the Operating System or by
an application. See also application partition and
system partition.

period The time elapsed during one complete
cycle. See also frequency.

persistent VBL task A VBL task that is
executed as scheduled, even when the
application that installed it is switched out and is
no longer in control of the CPU.

polite notification A notification in which a
small icon blinks in the menu bar at the location
of the Apple menu icon (the Apple logo) or the
Application menu icon.

prime To activate a Time Manager task that is
already installed in the Time Manager queue.

process An open application or, in some cases,
an open desk accessory. (Only desk accessories
that are not opened in the context of another
application are considered processes.)

Process Manager The part of the Macintosh
Operating System that provides a cooperative
multitasking environment by controlling access
to shared resources and managing the
scheduling, execution, and termination of
applications.

processor priority Bits in the status register of
the CPU that indicate which interrupts are to be
processed and which are to be ignored.

process serial number A number assigned by
the Process Manager that identifies a particular
instance of an application; this number is unique
during a single boot of the local machine.
Defined by the Pr ocessSeri al Nunber data
type.

queue Alist of identically structured entries
linked together by pointers.

GL-3

GLOSSARY

resume event An operating-system event that
indicates that the execution of your application is
about to be resumed. See also suspend event.

segment One of several logical divisions of the
code of an application. Not all segments need to
be in memory at the same time.

segment header A 4-byte area at the beginning
of a segment that contains the offset of the first
routine’s entry from the beginning of the jump
table (2 bytes) and the number of entries for the
segment (2 bytes).

Segment Manager The part of the Macintosh
Operating System that loads and unloads your
application’s code segments into and out of
memory.

service To handle an interrupt by executing its
interrupt handler.

Shutdown Manager The part of the Macintosh
Operating System that manages the final stages
of shutting down or restarting a Macintosh
computer.

shutdown procedure An custom procedure
installed by calling the Shut Dwnl nst al |
procedure and executed by the Shutdown
Manager before the computer restarts or shuts
down.

slot-based VBL task A VBL task that is linked
to an external video monitor.

slot-card interrupt An interrupt sent by a slot
device.

stack An area of memory in the application

partition that is used to store temporary variables.

suspend event An operating-system event that
indicates that the execution of your application is
about to be suspended. See also resume event.

switch See major switch and minor switch.

synchronous execution A mode of invoking a
routine. After calling a routine synchronously, an
application cannot perform other tasks until the
routine is completed.

system-based VBL task A VBL task that is not
linked to an external video monitor.

system partition A partition of memory
reserved for use by the Operating System.

GL-4

terminate To end the execution of a process. A
process can terminate by crashing, by quitting, or
by being killed by some other process.

Time Manager The part of the Macintosh
Operating System that lets you schedule the
execution of a routine after a certain time has
elapsed.

Time Manager queue Alist of all installed
Time Manager tasks.

Time Manager task record A data structure
that contains information about a Time Manager
task. Defined by the TMrask data type.

unload To unlock a segment. By unlocking
unneeded segments, you allow them to be
relocated or purged if necessary to accommodate
a later memory-allocation request.

VBL See vertical retrace interrupt.

VBL task A task executed during a vertical
retrace interrupt. See also slot-based VBL task
and system-based VBL task.

VBL task record A data structure that contains
information about a VBL task. Defined by the
VBLTask data type.

vertical blanking interrupt (VBL) See vertical
retrace interrupt.

vertical retrace interrupt An interrupt
generated by the video circuitry each time the
electron beam of a monitor’s display tube returns
from the lower-right corner of the screen to the
upper-left corner.

Vertical Retrace Manager The part of the
Operating System that schedules and executes
tasks during a vertical retrace interrupt.

vertical retrace queue A list of the tasks to be
executed during a vertical retrace interrupt.

virtual memory Addressable memory beyond
the limits of the available physical RAM. The
Operating System extends the logical address
space by allowing unused applications and data
to be stored on a secondary storage device
instead of in physical RAM.

wake up To make a previously suspended
process eligible to receive CPU time.

Index

A

A0 register
and the Vertical Retrace Manager 4-12
Al register
and the Time Manager 3-12 to 3-13, 3-22
and the Deferred Task Manager 6-7
obtaining value of 6-8
A5 register
setting in interrupt tasks 1-12
setting in Notification Manager response
procedures 5-9
setting in Time Manager tasks 1-12, 3-12, 3-13
setting in VBL tasks 4-13 to 4-16
A5 world
and context switches 1-7
and the Notification Manager 5-9
and the Time Manager 3-11 to 3-13
and the Vertical Retrace Manager 4-13 to 4-16, 4-29
how the Process Manager creates 1-6
accept AppDi ed constant 2-13
active application 1-4, 1-5
AECr eat eAppl eEvent function, creating a
Shutdown or Restart event with 8-9
AECr eat eDesc function, specifying address of the
Finder 8-9
AEDi sposeDesc function, disposing of Finder
address 8-9
AESend function, sending a Shutdown or Restart
event with 8-9
alert boxes, displayed by Notification Manager 5-4
alert notifications 5-4, 5-8, 5-9
allocating or moving memory;, in interrupt tasks 1-12
Apple events
Application Died 2-11, 2-13
disposing of sent event 8-9
MultiFinder cannot send 8-9
procedure for sending 8-9
Quit Application 8-5
Restart 8-4, 8-9
Shutdown 8-4, 8-9
Apple menu, blinking icon and 5-4, 5-7
Application Died Apple event 2-11, 2-13
application heap 1-6
Application menu
blinking icon in 5-4, 5-7
diamond-shaped mark in 5-4, 5-7
application parameters record 2-20 to 2-21
application partitions. See partitions

applications
closing before shutdown 8-5
launching 2-7 to 2-11, 2-28 to 2-29
terminating 2-11 to 2-13, 2-31

application stack 1-6

AppPar anet er s data type 2-20 to 2-21

At t achVBL function 4-26

audible notifications 5-4, 5-8, 5-9

A/UX, modifying code segments under 3-13

B

background applications, making notification
requests 5-3, 5-5, 5-7

background-only application 1-5

background processes 1-5

background tasks, making notification requests 5-3,
5-5, 5-7

blinking icon in menu bar 5-4, 5-7

C

canBackgr ound flag 1-5
code, self-modifying 3-13
' CODE' resource type 3-13, 7-3
code segments. See segments
context of a process
and interrupt tasks 1-12
defined 1-5
switching 1-7
Cont r ol function, called by Shut DamnPower 8-5, 8-6
cooperative multitasking environment 1-3 to 1-5
Cr sr Busy global variable 4-18
Cur JTOF f set global variable 7-7
Cur r ent A5 global variable 1-12
current process 1-4, 2-5
cursors
animation with VBL tasks 4-16 to 4-19
changing at interrupt time 4-18
jerky movement 4-6
updating of position 4-5
custom shutdown procedures. See shutdown
procedures

IN-1

INDEX

D

_Debugger trap 7-9
default directory, set by LaunchAppl i cati on 2-9
Def er r edTask data type 6-7, 6-11
Deferred Task Manager 6-3 to 6-15
and the Al register 6-7
application-defined routines in 6-13
data structures in 6-11 to 6-12
defining a deferred task 6-8
defining a task that defers another task 6-8
routines in 6-12 to 6-13
types of tasks useful for 6-4
deferred task queues 6-4
deferred task record 6-4, 6-7, 6-11
deferred tasks 6-4, 6-13
delayed execution 3-3, 3-22
desk accessories
checking for open accessories before shutdown 8-5
launching 2-11
desk scrap, saving before shutdown 8-6
desktop 1-4
device drivers, making notification requests 5-3
Device Manager
Cont r ol function called by Shut DamnPower 8-5, 8-6
unit table checked by Shut DwnPower 8-5
dialog boxes, movable modal 1-8
diamond-shaped mark in Application menu 5-7
disabled interrupts 1-11
disk access, delaying VBL tasks 4-6
disk-inserted events, posting of 4-5
DoVBLTask function 4-27
drift-free, fixed-frequency timing services 3-6, 3-19
drivers
checking for open drivers before shutdown 8-5
reasons for using shutdown procedures 8-9
sending good-bye message to 8-5
when closed during shutdown process 8-6
DTl nst al | function 6-6, 6-12 to 6-13
DTQueue global variable 6-7, 6-15

E

Ej ect function, called by Shut DwnPower 8-6
elapsed times, computing 3-3, 3-14 to 3-16
Event Avai | function 1-6, 1-9, 2-26
events

resume 1-8, 4-9

.See also Apple events

suspend 1-7, 4-9
exceptions 1-9
Exi t ToShel | procedure

patching to remove VBL tasks 4-10

IN-2

using to terminate applications 2-12, 2-31
external reference 7-3

F

File Manager, unmounting volumes with during
shutdown 8-6
Finder
event class 8-8
sending Shutdown or Restart event to 8-4, 8-7
fixed-frequency timing services
drift-free 3-6, 3-19
drifting 3-6
' FNDR' signature, use with AECr eat eDesc
function 8-8
foreground process
calling Notification Manager 5-5
defined 1-5
future execution, scheduling routines for 3-3, 3-22

G

Gest al t function
testing for Notification Manager availability 5-3
testing for Process Manager availability 2-14
testing for Time Manager version 3-4
Cet Current Process function 1-12, 2-5, 2-21 to 2-22,
4-9
Cet Fr ont Pr ocess function 2-5, 2-25 to 2-26
Get Next Event function 1-6
Cet Next Pr ocess function 2-5, 2-6, 2-22 to 2-23
Get Processl nf or mat i on function 2-6 to 2-7, 2-23
to 2-24
Get VBLQHdr function 4-28
global variables
accessing from VBL tasks 4-13 to 4-16
embedding in VBL task records 4-16
in deferred tasks 6-13
in Time Manager tasks 3-11 to 3-13
good-bye message
defined 8-5
requested by driver 8-5
sent to indicate shutdown 8-6
sent when application quits 8-6
grow-zone functions, in a locked segment 7-4

initialization routines, in an unloadable segment 7-5

INDEX

"I NI T" resource type, making notification
requests 5-10
I nsTi me procedure 3-5, 3-6, 3-9, 3-18 to 3-19
I nsXTi nme procedure 3-8, 3-9, 3-19 to 3-20
interrupt handlers 1-10
interrupt latency 3-6
interrupt priority levels 1-11, 6-3
interrupts 1-9
interrupts, VBL. See vertical retrace interrupts
interrupt tables 1-10
interrupt tasks
accessing global variables 1-12
allocating or moving memory 1-12
and application context 1-12
and the A5 world 1-12, 1-13
and virtual memory 1-12
calling routines in other segments 1-12
executing when interrupts are enabled 6-3 to 6-15
guidelines for using 1-13
in a locked segment 7-4
preserving registers 1-13
scheduling of 1-11to 1-12
side effects of lengthy tasks 6-3
unloading code segments 1-13
using locked handles 1-12
interrupt vectors 1-10
i nVBL global constant 4-8
i sH ghLevel Event Awar e flag 2-4

J

j DoVBLTask global variable 4-27
j DTl nstal | global variable 6-7, 6-12
jump table entries
defined 7-7
for loaded segments 7-7
for unloaded segments 7-7
jump tables 1-6, 7-5to 7-8

K

keyboards, resetting of 4-5

L

LaunchAppl i cati on function 2-7 to 2-11, 2-28 to
2-29

LaunchDeskAccessory function 2-11, 2-30

launching

applications 2-7 to 2-11, 2-28 to 2-29
desk accessories 2-11, 2-30
options 2-15
LaunchPar anBl ockRec data type 2-8, 2-19 to 2-20
launch parameter block 2-8, 2-19 to 2-20
_Launch trap macro 2-7, 2-14
loading segments 7-9
_LoadSeg trap 7-7,7-9
LoadTr ap global variable 7-9
locked handles, using in interrupt tasks 1-12

M

main event loop, in the main segment 7-4

main segment 7-4

major switches 1-7

menu bar, blinking icon in 5-4, 5-7

minor switches 1-8

mouse-down events, posting of 4-5

mouse-up events, posting of 4-5

"mst #' resource type, use with Quit command 8-5,
8-7

"metr' resource type, use with Quit command 8-5,
8-7

MultiFinder 1-4, 8-9

multitasking environment 1-3 to 1-5

N

NM nst al | function 5-9, 5-10 to 5-11
NVRec data type 5-7 to 5-8
NMRenove function 5-10, 5-11 to 5-12
Notification Manager 5-3 to 5-15
application-defined routines in 5-12 to 5-13
multiple requests 5-6
response procedures 5-4, 5-8, 5-9, 5-12
routines in 5-10 to 5-12
suggested notification strategy 5-6
testing for availability 5-3
types of notifications 5-4 to 5-5
use by foreground applications 5-5
notification queue
defined 5-7
installing entries in 5-9 to 5-10, 5-10 to 5-11
removing entries from 5-10, 5-11 to 5-12
notification records
defined 5-7
setting up 5-8
notification requests
creating 5-6 to 5-8
installing 5-9 to 5-10, 5-10 to 5-11

IN-3

INDEX

removing 5-10, 5-11 to 5-12
notification response procedures 5-4, 5-8, 5-9, 5-12 to
5-13
notifications
defined 5-3
types of 5-4 to 5-5
null events 1-8, 1-9

O

onl yBackgr ound flag 1-5, 2-16
open applications
avoiding abrupt termination of 8-4, 8-7
procedure for closing 8-5, 8-7
OpenDeskAcc function 2-11, 2-30
opening. See launching
Operating System, installing VBL tasks 4-5
operating-system queues 1-10

P

Process Manager 2-3 to 2-40

closing open applications with during
shutdown 8-5, 8-7

constants in 2-14 to 2-16

context switches 1-7

creating processes 1-6

data structures in 2-16 to 2-21

defined 2-3

getting information about processes 2-5 to 2-7, 2-21
to 2-28

launching applications 2-7 to 2-11, 2-15, 2-28 to 2-29

launching desk accessories 2-11, 2-30

routines in 2-21 to 2-31

scheduling processes 1-7 to 1-9, 2-27

terminating processes 2-11 to 2-13, 2-31

testing for availability 2-14

processor priority 1-11, 6-3

ProcessSeri al Nunber data type 2-16

process serial numbers 1-5, 2-4, 2-16

Q

partitions
created by Process Manager 1-6
defined 1-6
finding the available free memory in 2-18

periodic execution, scheduling routines for 3-3, 3-13 to

3-14, 4-12 to 4-13
persistent VBL tasks 4-20
polite notifications 5-4, 5-8
primary video device
changing 4-26
determining slot number 4-11
prime 3-5
Pri meTi ne procedure 3-5, 3-20 to 3-21
introduced 3-5
with extended Time Manager 3-7 to 3-8
with global variables 3-11 to 3-13
with periodic tasks 3-13 to 3-14
with revised Time Manager 3-6
processes
background 1-5
constants used to identify 2-14 to 2-15
context of 1-5, 1-7
creating 1-6
current 1-4,2-5
foreground 1-5
getting information about 2-5 to 2-6, 2-21 to 2-28
scheduling 1-7 to 1-9, 2-27
terminating 2-11 to 2-13, 2-31
Pr ocessl nf oRec data type 2-6, 2-16 to 2-18
process information record 2-6, 2-16 to 2-18

IN-4

queues

notification. See notification queue
Time Manager 3-5, 3-21

Quit Application event 8-5

Quit command (File menu) 8-5

R

registers, preserving in interrupt tasks 1-13
resource types
' CODE' 3-13,7-3
"INIT" 5-10
"nmet#' 8-5,8-7
"metr' 8-5,8-7
"SI ZE' 1-3,1-5,1-6, 2-13
"snd ' 54
response procedures, of Notification Manager 5-4, 5-8,
5-9, 5-12
Restart command (Special menu) 8-4, 8-5, 8-7
Restart event 8-4, 8-7 to 8-9
Restart event ID 8-8
restart steps. See shutdown steps
resume events 1-8, 4-9
RmvTi me procedure 3-21 to 3-22
introduced 3-5
using to compute elapsed times 3-14 to 3-16

INDEX

S

SanePr ocess function 2-16, 2-24 to 2-25
scheduling
of processes by the Process Manager 1-7
routines for future execution 3-3
setting options 1-9
switching contexts 1-7
Scrap Manager, saving the desk scrap with during
shutdown 8-6
ScrnVBLPt r global variable 4-28
SegHi Enabl e global variable 7-9
segment headers 7-8
Segment Loader. See Segment Manager
Segment Manager 7-3to 7-11
routine in 7-10
using to load segments 7-9
using to unload segments 7-8
segments
defined 7-3
guidelines for creating 7-4
loading 7-9
self-modifying 3-13
unloading 7-8
self-modifying code 3-13
servicing interrupts 1-10
Set A5 function 3-11, 4-14
Set Cur r ent A5 function 3-11, 4-14

Set Cur sor procedure, calling at interrupt time 4-18

Set Fr ont Pr ocess function 2-26 to 2-27

Shut Down command (Special menu) 8-4, 8-5

Shutdown event 8-4, 8-7 to 8-9

Shutdown event ID 8-8

Shutdown Manager 8-3 to 8-20
application-defined routines in 8-16 to 8-17
constants for 8-14
installing a shutdown procedure 8-9 to 8-11
methods for turning off computer 8-6
removing a shutdown procedure 8-15 to 8-16
routines in 8-11 to 8-16
sending Apple events to Finder 8-4, 8-8
shutdown steps 8-4 to 8-7

shutdown procedures 8-16 to 8-17

flags for specifying execution times 8-9, 8-13 to 8-15

installing 8-9 to 8-11, 8-13 to 8-15
installing in system heap 8-9, 8-15
introduced 8-4
problems with applications using 8-15
removing 8-11, 8-15 to 8-16
when removed from shutdown queue 8-15
shutdown queue 8-5, 8-15
shutdown steps 8-4
checking for custom procedures 8-5
checking for open drivers 8-5
closing open applications before 8-5

saving the desk scrap 8-6
unmounting volumes 8-6
Shut Dwnl nst al | procedure 8-9, 8-11, 8-13 to 8-15
Shut DwnPower procedure 8-12
called by Finder 8-4, 8-5
calls Device Manager Cont r ol function 8-5, 8-6
problems with direct calls to 8-5, 8-7
Shut DwnRenove procedure 8-11, 8-15 to 8-16
Shut DwnSt art procedure 8-12 to 8-13
called by Finder 8-4, 8-5
problems with direct calls to 8-5, 8-7
' S| ZE' resource type
specifying partition size 1-3, 1-6
setting termination flags 2-13
slot-based VBL tasks. See VBL tasks, slot-based
slot number of primary video device
changing 4-26
finding 4-11
Sl ot VI nst al | function 4-5, 4-22 to 4-23
persistent 1-11
testing for availability 4-11
Sl ot VRenove function 4-7, 4-23 to 4-24
"snd ' resource type 5-4
sounds, as notification 5-4, 5-8
spinning cursors 4-16 to 4-19
stack 1-6
stack sniffer 4-5
suspend events 1-7, 4-9
switching process contexts 1-7
synchronizing actions 3-3
system alarm, making notification requests 5-5
system alert sounds 5-4
system-based VBL tasks. See VBL tasks, system-based
system extensions, using shutdown procedures 8-9

T

tasks. See interrupt tasks
terminating applications 2-11 to 2-13, 2-31
Ti cks global variable, updating of 4-5
time delays
microseconds 3-5 to 3-6
milliseconds 3-4
Time Manager 3-3to 3-26
application-defined routines in 3-22
data structures in 3-17 to 3-18
delays 3-4, 3-5
extended 3-6 to 3-9
original 3-4to 3-5
queues. See Time Manager queues
revised 3-5to 3-6
routines in 3-18 to 3-22
task records. See Time Manager task records

IN-5

INDEX

tasks. See Time Manager tasks
testing for version 3-3, 3-4
Time Manager queues 3-5, 3-21
Time Manager task records 3-3
extended 3-5, 3-18
original and revised 3-4, 3-17
Time Manager tasks
activating 3-5, 3-10, 3-20 to 3-21
installing 3-5, 3-8, 3-10 to 3-11, 3-18 to 3-20
making notification requests 5-3
periodic 3-13to 3-14
reactivating 3-5
removing 3-5, 3-21
structure of records 3-4, 3-8, 3-17 to 3-18
using global variables in 3-11 to 3-13
TMrask data type 3-4, 3-8, 3-17, 3-18
turning off the computer, methods for 8-6 to 8-7

U

unloading code segments 7-8

Unl oadScr ap function 8-6

Unl oadSeg procedure 7-8, 7-10

unmounting volumes, during shutdown process 8-6
Unrmount Vol function, called by Shut DamnPower 8-6

\%

VBLQueue global variable 4-28
VBLTask data type 4-6 to 4-7, 4-21 to 4-22
VBL task records
A0 register 4-12
accessing at interrupt time 4-12 to 4-13
defined 4-6 to 4-7, 4-21 to 4-22
embedding in other records 4-14
VBL tasks
accessing global variables 4-13 to 4-16
and application execution 4-8 to 4-10
and process termination 4-9
and virtual memory 4-6
causing system crashes 4-6
defined 4-4
disabled by the Process Manager 4-9
disabling during a suspend event 4-9
enabling during a resume event 4-9
executing immediately 4-7
execution order 4-8
installing 4-5, 4-10 to 4-12, 4-22 to 4-23, 4-24 to 4-25
limitations on 4-6, 4-29
making notification requests 5-3, 5-7
missing vertical retrace interrupts 4-6

IN-6

persistent
defined 4-20
installing 4-20
reenabled by the Process Manager 4-9
reexecuting 4-13
scheduling 1-8
slot-based
defined 4-5
installing 4-22 to 4-23
removing 4-23 to 4-24
stopping 4-7
synchronizing with screen 4-6
system-based
defined 4-5
installing 4-24 to 4-25
removing 4-25 to 4-26
timing of 4-5to 4-6
turning off debugging code for 4-29
types of 4-5to 4-6
vector tables 1-10
vertical blanking interrupts 4-4
vertical retrace interrupts 4-4
Vertical Retrace Manager 4-3 to 4-33
application-defined routines in 4-28 to 4-30
data structures in 4-21 to 4-22
determining availability of slot-based routines 4-11
installing VBL tasks 4-5, 4-10 to 4-12, 4-22 to 4-23,
4-24 10 4-25
routines in 4-22 to 4-28
vertical retrace queues
defined 4-8
getting headers of 4-28
number of 4-8
VI nst al | function 4-5 to 4-6, 4-10 to 4-11, 4-24 to 4-25
introduced 1-11
using instead of Sl ot VI nstal | 4-11
virtual memory, and interrupt tasks 1-12
volumes, unmounting during shutdown process 8-6
VRenove function 4-7, 4-25 to 4-26

W, X,Y, Z

Wi t Next Event function 1-6 to 1-9, 2-26, 2-27 to 2-28
WakeUpPr ocess function 1-9, 2-27 to 2-28

T HE A P PLE PUBLISHI

N G

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from text
files on an AGFA ProSet 9800
imagesetter. Line art was created using
Adobe™ Illustrator. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as

program listings, are set in Apple Courier.

WRITER
Tim Monroe

DEVELOPMENTAL EDITORS
Sean Cotter, Antonio Padial

ILLUSTRATOR
Peggy Kunz

PRODUCTION EDITOR
Josephine Manuele

PROJECT MANAGER
Patricia Eastman

COVER DESIGNER
Barbara Smyth

Special thanks to David Harrison and
Mike Puckett.

Acknowledgments to

Michael Abramowicz, Scott Boyd,
Sharon Everson, Sanborn Hodgkins,

Jim Luther, Jim Reekes, Keith Rollin, and
the entire Inside Macintosh team.

	Inside Macintosh: Processes
	Copyright
	Table of Contents
	Figures and Listings
	About This Book
	Format of a Typical Chapter
	Conventions Used in This Book
	Special Fonts
	Types of Notes
	Assembly-Language Information

	Development Environment

	Introduction to Processes and Tasks
	Contents
	The Cooperative Multitasking Environment
	About Processes
	Process Creation
	Process Scheduling

	About Tasks
	Task Creation
	Task Scheduling
	Task Guidelines

	Process Manager
	Contents
	About the Process Manager
	Using the Process Manager
	Getting Information About Other Processes
	Launching Other Applications
	Launching Desk Accessories
	Terminating an Application

	Process Manager Reference
	Constants
	Gestalt Selector and Response Bits
	Process-Identification Constants
	Launch Options

	Data Structures
	Process Serial Number
	Process Information Record
	Launch Parameter Block
	Application Parameters Record

	Routines
	Getting Process Information
	Launching Applications and Desk Accessories
	Terminating Processes

	Summary of the Process Manager
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	Time Manager
	Contents
	About the Time Manager
	The Original Time Manager
	The Revised Time Manager
	The Extended Time Manager

	Using the Time Manager
	Installing and Activating Tasks
	Using Application Global Variables in Tasks
	Performing Periodic Tasks
	Computing Elapsed Time

	Time Manager Reference
	Data Structures
	Time Manager Routines
	Application-Defined Routine
	Time Manager Tasks

	Summary of the Time Manager
	Pascal Summary
	Constants
	Data Types
	Time Manager Routines
	Application-Defined Routine

	C Summary
	Constants
	Data Types
	Time Manager Routines
	Application-Defined Routine

	Assembly-Language Summary
	Data Structures

	Result Codes

	Vertical Retrace Manager
	Contents
	About the Vertical Retrace Manager
	VBL Tasks Installed by the Operating System
	Types of VBL Tasks
	The VBL Task Record
	Vertical Retrace Queues
	VBL Tasks and Application Execution

	Using the Vertical Retrace Manager
	Installing a VBL Task
	Accessing a Task Record at Interrupt Time
	Accessing Application Global Variables in a VBL Ta...
	Spinning the Cursor
	Installing a Persistent VBL Task

	Vertical Retrace Manager Reference
	Data Structure
	The VBL Task Record

	Vertical Retrace Manager Routines
	Slot-Based Installation and Removal Routines
	System-Based Installation and Removal Routines
	Utility Routines

	Application-Defined Routine
	VBL Tasks

	Summary of the Vertical Retrace Manager
	Pascal Summary
	Data Type
	Vertical Retrace Manager Routines
	Application-Defined Routine

	C Summary
	Data Types
	Vertical Retrace Manager Routines
	Application-Defined Routine

	Assembly-Language Summary
	Constants
	Data Structures
	Global Variables

	Result Codes

	Notification Manager
	Contents
	About the Notification Manager
	Using the Notification Manager
	Creating a Notification Request
	Defining a Response Procedure
	Installing a Notification Request
	Removing a Notification Request

	Notification Manager Reference
	Notification Manager Routines
	Application-Defined Routine
	Notification Response Procedures

	Summary of the Notification Manager
	Pascal Summary
	Constant
	Data Types
	Notification Manager Routines
	Application-Defined Routine

	C Summary
	Constant
	Data Types
	Notification Manager Routines
	Application-Defined Routine

	Result Codes

	Deferred Task Manager
	Contents
	About the Deferred Task Manager
	Using the Deferred Task Manager
	Checking for the Deferred Task Manager
	Installing a Deferred Task
	Defining a Deferred Task
	Deferring a Slot-Based VBL Task

	Deferred Task Manager Reference
	Data Structure
	Deferred Task Manager Routine
	Application-Defined Routine
	Deferred Tasks

	Summary of the Deferred Task Manager
	Pascal Summary
	Data Type
	Deferred Task Manager Routine
	Application-Defined Routine

	C Summary
	Data Type
	Deferred Task Manager Routine
	Application-Defined Routine

	Assembly-Language Summary
	Global Variables

	Result Codes

	Segment Manager
	Contents
	About the Segment Manager
	Code Segmentation
	The Jump Table

	Using the Segment Manager
	Unloading Code Segments
	Loading Code Segments

	Segment Manager Reference
	Routine

	Summary of the Segment Manager
	Pascal Summary
	Routine

	C Summary
	Routine

	Assembly-Language Summary
	Global Variables
	Advanced Routine

	Shutdown Manager
	Contents
	About the Shutdown Manager
	The Shutdown Process
	Closing Open Applications
	Checking for Custom Shutdown Procedures
	Checking for Open Device Drivers
	Saving the Desk Scrap
	Unmounting Volumes
	Turning Off the Computer

	Using the Shutdown Manager
	Sending a Shutdown or Restart Event
	Installing a Custom Shutdown Procedure

	Shutdown Manager Reference
	Shutdown Manager Routines
	Shutting Down or Restarting a Macintosh Computer
	Installing or Removing a Shutdown Procedure

	Application-Defined Routine
	Shutdown Procedures

	Summary of the Shutdown Manager
	Pascal Summary
	Constants
	Shutdown Manager Routines
	Application-Defined Routine

	C Summary
	Constants
	Data Types
	Shutdown Manager Routines
	Application-Defined Routine

	Assembly-Language Summary
	Constants
	Trap Macros Requiring Routine Selectors

	Glossary
	Index
	Colophon

