INSIDE MACINTOSH

Overview

A
vv
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid SanJuan

Paris Seoul Milan Mexico City Taipei

[Apple Computer, Inc.

© 1992, Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter, MacApp,
Macintosh, MPW, and MultiFinder are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.

Balloon Help, Finder, QuickDraw,
QuickTime, ResEdit, and SourceBug are
trademarks of Apple Computer, Inc.
Adobe lllustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

AGFA is a trademark of Agfa-Gevaert.

FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-63247-0
1234567 89-MU-9695949392
First Printing, December 1992

The paper used in this book meets the
EPA standards for recycled fiber.

Preface

Contents

Figures, Tables, and Listings vii

About This Book «xi

Chapter 1

About Inside Macintosh Xii
The New Inside Macintosh xiii
Conventions Used in This Book xiii
Special Fonts Xiv
Types of Notes Xiv
Development Environment Xiv
For More Information XV

Introduction 1

Chapter 2

Getting Started 3
The Macintosh System Software 6
The Macintosh Toolbox 7
The Macintosh Operating System
Additional System Software Services
Text Handling 12
Interapplication Communication
QuickTime 17
Communications Toolbox 18
System Software Routines 19
The Sample Application 21
Conventions for Sample Code 24

Memory 27

11

12

14

About Memory 29

The System Heap 31

The System Global Variables 31
Application Partitions 32

The Application Stack 33

The Application Heap 34

The Application Global Variables and A5 World 37

Memory Blocks 38
Nonrelocatable Blocks 39
Relocatable Blocks 40

Locking and Unlocking Relocatable Blocks 42

Chapter 3

Purging and Reallocating Relocatable Blocks
Data Types 44

Pointers and Handles 44

Strings 45

Procedure Pointers 46

Type Coercion 47

Resources 49

43

Chapter 4

About Resources 51
Resource Paths 52
Resource Types 55
Resource Structure 56

Using Standard Resources 59

Using Custom Resources 60

Events 69

Chapter 5

About Events 71

Initializing an Application 74

Receiving Events 75

Handling Events Outside the Main Event Loop

Drawing 83

79

Chapter 6

About QuickDraw 85

Points 86

Rectangles 87

Regions 89

Bit Images 91

Ports and Windows 92
Drawing Shapes 94
Drawing Bit Images 99
Drawing Text 101

Windows 107

About Windows 109
Window Parts 110
Window Records 112
Window Types 113

Creating Windows 115

Chapter 7

Handling Window Events 119
Mouse Events 119
Update Events 123
Activate Events 125
Closing Windows 128

Dialog Boxes 131

Chapter 8

About Dialog Boxes 133
Using Modeless Dialog Boxes 137
Creating a Modeless Dialog Box 137
Setting Up Application-Defined Items 139
Handling User Actions in a Modeless Dialog Box
Using Modal Dialog Boxes 144
Displaying a Modal Dialog Box 145
Defining a Modal Dialog Filter Function 146

Menus 149

141

Chapter 9

About Menus 151
Creating Menus 152
Creating a Menu Resource 152
Creating a Menu Bar Resource 154
Setting Up the Menu Bar and Menus 154
Handling Menu Choices 156
Handling Keyboard Equivalents 160
Adjusting Menus 161

Processes 163

Preface

About Processes 165

Specifying Processing Options 168
Handling Suspend and Resume Events 170
Handling Null Events 173

Quitting an Application 175

Handling Errors 176

Checking the Operating Environment 178

Going Further 183

Implementing Further Features 183
Maintaining Compatibility 187
Making Your Application Localizable 188

Using Developer Services 189
Technical Publications 189
Training 190
Technical Support 191

Appendix A Constants, Types, and Variables 195
Appendix B Utility Routines 199

Appendix C Dialog Code 205

Appendix D Resource Code 211

Appendix E User Interface Code 217

Glossary 233

Index 245

Vi

Chapter 1

Chapter 2

Chapter 3

Figures, Tables, and Listings

Introduction 1

Listing 1-1 A simple Macintosh application 3

Figure 1-1 The window created by the simple application 4

Table 1-1 Parameters passed to NewW ndow in Listing 1-1 4

Figure 1-2 Overview of the system software 7

Figure 1-3 Parts of the Macintosh Toolbox 8

Table 1-2 The Macintosh Toolbox 10

Table 1-3 The Macintosh Operating System 11

Figure 1-4 A multiscript line of text drawn by QuickDraw 13

Figure 1-5 Input and conversion of Japanese text using the Text Services
Manager 14

Figure 1-6 Sharing dynamic data with other applications 15

Figure 1-7 Sending and responding to Apple events 16

Figure 1-8 Playing a QuickTime movie 18

Figure 1-9 A typical Venn diagram window 22

Figure 1-10 The parts of a Venn diagram window 22

Figure 1-11 A correctly constructed Venn diagram 23

Figure 1-12 The Venn menu 24

Memory 27

Figure 2-1 Memory organization in the cooperative multitasking
environment 30

Figure 2-2 Organization of an application partition 32

Figure 2-3 The application stack 34

Figure 2-4 A fragmented heap 35

Figure 2-5 A compacted heap 36

Figure 2-6 Organization of an application’s A5 world 37

Figure 2-7 A pointer to a nonrelocatable block 39

Figure 2-8 A handle to a relocatable block 41

Figure 2-9 Purging and reallocating a relocatable block 44

Resources 49

Table 3-1 Typical locations of resources 53

Figure 3-1 Searching for a resource 54

Table 3-2 Some standard resource types 55

Listing 3-1 Rez input for the Preferences dialog box 57

Figure 3-2 The ResEdit version of the Preferences dialog box 58

Figure 3-3 A resource diagram 59

Figure 3-4 The Preferences dialog box 61

Listing 3-2 The structure of a resource containing Venn diagram
preferences 61

Listing 3-3 Reading a user’s preferences 62

vii

Listing 3-4 Creating a preferences file 64

Listing 3-5 Copying a resource from one resource file to another 65
Listing 3-6 Saving current preferences settings 66
Chapter 4 Events 69
Figure 4-1 Sources of events sent to your application 73
Listing 4-1 Initializing your application 74
Listing 4-2 Initializing the main Toolbox Managers 75
Listing 4-3 Handling disk-inserted events 77
Listing 4-4 An event loop 77
Listing 4-5 Tracking mouse events in the close box 79
Listing 4-6 Tracking the cursor in an arbitrary rectangle 80
Chapter 5 Drawing 83
Figure 5-1 Samples of QuickDraw’s abilities 85
Figure 5-2 The coordinate plane 86
Figure 5-3 A rectangle 87
Figure 5-4 Pixels and rectangles 88
Figure 5-5 Two regions 90
Figure 5-6 A bitmap 92
Listing 5-1 Saving and restoring the current graphics port 93
Listing 5-2 The structure of a record describing a document window’s
geometry 94
Listing 5-3 Initializing the geometry record 95
Listing 5-4 Defining circular regions 96
Listing 5-5 Defining noncircular regions 96
Figure 5-7 Calculating the overlap regions of a Venn diagram 98
Figure 5-8 Bit images in a document window 99
Listing 5-6 Reading ' | CON' resources into memory 100
Listing 5-7 Drawing the tools area of a document window 100
Listing 5-8 Drawing a portion of an icon 101
Listing 5-9 Retrieving a status message from a resource 102
Listing 5-10 Informing the user of an argument’s validity or invalidity 103
Listing 5-11 Displaying a status message 103
Chapter 6 Windows 107
Figure 6-1 A Venn diagram window 111
Listing 6-1 The W ndowRecor d data structure 112
Listing 6-2 Determining if a window is a document window 114
Listing 6-3 Determining if a window is a dialog box 114
Listing 6-4 Determining if a window is a desk accessory window 115
Listing 6-5 The structure of a document record for the Venn Diagrammer
application 115
Listing 6-6 Creating a new Venn diagram window 117
Listing 6-7 Handling mouse-down events 120
Listing 6-8 Dragging a window 121

viii

Chapter 7

Chapter 8

Chapter 9

Listing 6-9 Handling clicks in a window’s content region 121

Listing 6-10 Handling a click in a figure icon 123

Listing 6-11 Handling update events 124

Listing 6-12 Handling window activations and deactivations 126

Figure 6-2 An inactive window containing controls 127

Listing 6-13 Handling clicks in the close box 128

Listing 6-14 Closing a window 129

Listing 6-15 Closing a Venn diagram window 129

Dialog Boxes 131

Figure 7-1 An About box 133

Figure 7-2 An alert box 134

Figure 7-3 A Preferences dialog box 134

Listing 7-1 Dialog item numbers 135

Listing 7-2 Creating a modeless dialog box 138

Listing 7-3 Setting up application-defined dialog items 139

Listing 7-4 Drawing application-defined dialog items 140

Listing 7-5 Handling events in a modeless dialog box 141

Listing 7-6 Setting the state of radio buttons and checkboxes 142

Listing 7-7 Displaying a modal dialog box 145

Listing 7-8 Outlining the default button of a modal dialog box 146

Listing 7-9 A modal dialog filter function 147

Menus 149

Figure 8-1 A typical pull-down menu 151

Figure 8-2 Defining a' MENU resource 153

Figure 8-3 Editing a menu command 153

Figure 8-4 An' MBAR' resource in ResEdit 154

Listing 8-1 Setting up the menu bar and menus 155

Listing 8-2 Defining menu numbers and menu item numbers 156

Listing 8-3 Handling menu selections 157

Listing 8-4 Handling Apple menu selections 159

Listing 8-5 Handling Command-key equivalents 160

Table 8-1 Reserved keyboard equivalents 161

Listing 8-6 Adjusting menus 161

Processes 163

Figure 9-1 The desktop with several applications open 166

Listing 9-1 The Rez input for a sample ' SI ZE' resource 169

Listing 9-2 Handling operating-system events 171

Table 9-1 The bits in the message field of an operating-system event
record 172

Listing 9-3 Handling null events 173

Figure 9-2 A Venn diagram before automatic adjusting 174

Figure 9-3 A Venn diagram after automatic adjusting 175

Listing 9-4 Quitting your application 175

Listing 9-5
Listing 9-6
Listing 9-7
Listing 9-8

Handling serious errors 178
Checking that Fi ndFol der is present 179
Determining whether a trap is available 180

Checking for the availability of the Wai t Next Event
function 181

PREFACE

About This Book

This book, Inside Macintosh: Overview, provides a general introduction to
programming for Macintosh computers and to the Inside Macintosh library of
reference books. Unless you are already an experienced developer of software
for Macintosh computers, you should read this book for a general overview of
the Macintosh system software and of the programming techniques that you
should use when developing your application.

This book is written for both professional developers and “hobbyists.” It
assumes only that you understand fundamental programming concepts and
that you have had experience using a high-level programming language such
as Pascal or C. It is helpful, but not necessary, to have some experience
programming for a graphic user interface (like the Macintosh desktop
metaphor). At the very least, you should already have extensive experience
using one or more applications on a Macintosh computer. Before you start
programming, you need to understand what the basic elements of the
Macintosh desktop metaphor are (windows, menus, scroll bars, and so forth)
and how the user expects those elements to operate.

This book leads by example. From the very first page, the fundamental
programming techniques are illustrated by source code that you can compile
into actual, working routines and applications. Gradually, you will learn how
to implement the major features of a Macintosh application, including

= responding to user actions and other events

= creating and managing windows and dialog boxes
= handling menu selections

= storing application data in resources

= Mmanaging your application’s memory efficiently

= sharing processing time and available memory with other open
applications

= checking available system software features
= handling errors or unexpected occurrences safely

This book also provides guidelines on how to maximize your application’s
compatibility with the entire family of Macintosh computers and minimize
the amount of work required to localize your application (that is, to adapt it
for use in other geographic locations). Compatibility and localizability are
features that you should always plan in advance. In general, your best guide
to writing software that follows these guidelines is to use the techniques
illustrated throughout the Inside Macintosh series of books.

Xi

PREFACE

About Inside Macintosh

Xii

The Inside Macintosh library of books is a complete technical reference to the
system software provided for Macintosh computers by Apple Computer, Inc.
You’ll need some or all of the Inside Macintosh books—in addition to the
documentation for your specific software development environment—to
write applications and other software components that run in the Macintosh
Operating System.

Books in the Inside Macintosh series are designed primarily as reference books
and not as step-by-step tutorials. (The main exception to that rule is this book,
Inside Macintosh: Overview, which is a general introduction to programming on
Macintosh computers and to the other Inside Macintosh books.) Nonetheless,
there is sufficient “how-to” material in each book that you should be able to
successfully implement the features of some particular part of the Macintosh
system software by reading the appropriate chapters in Inside Macintosh.
Moreover, some of these books contain special introductory chapters that
explain general concepts and provide implementation details for specific
parts of the system software. For example, the chapter “Introduction to File
Management” in the book Inside Macintosh: Files provides a complete
explanation of how to implement the typical File menu commands.

If you are new to programming for the Macintosh system software, you
should begin by reading this book, Inside Macintosh: Overview. Once you
understand the material presented here, you can then usefully turn to other
Inside Macintosh books. In all likelihood, you’ll next want to look at two books
covering the Macintosh Toolbox:

= Inside Macintosh: Macintosh Toolbox Essentials

» Inside Macintosh: More Macintosh Toolbox

If your application is concerned with either text or graphics, you need to look
at one or both of:

= Inside Macintosh: Imaging
= Inside Macintosh: Text

You’ll also need to learn more about the main parts of the Macintosh
Operating System. You can get most of the information you need from these
three books:

= Inside Macintosh: Memory
= Inside Macintosh: Files

= Inside Macintosh: Processes

See the Afterword, beginning on page 183, for a more detailed description of
the contents of these and other books in the Inside Macintosh series.

P REFACE

The New Inside Macintosh

The original Inside Macintosh library of books appeared in six volumes from
1985 to 1991. Those volumes each focused on a particular version of the
system software, sometimes prompted by the release of new hardware
configurations. Often, the later volumes of the original Inside Macintosh
described only new system software components or changes to existing
system software components.

The new Inside Macintosh books are intended to replace the original Inside
Macintosh books and to provide a more complete and more useful reference to
the Macintosh system software. The most obvious improvement in the new
books is that they are organized principally by topic. For example, the book
Inside Macintosh: Files contains virtually all the available information related to
files, including complete descriptions of the File Manager, the Standard File
Package, the Alias Manager, and the Disk Initialization Manager. Similarly,
the book Inside Macintosh: Text contains all information about handling text.
This topic-oriented organization of books makes it easier for you to find the
information you need. It also makes it easier for Apple to add books to the
Inside Macintosh suite as new technologies emerge in the years ahead.

At the same time that the entire suite of books was reorganized, the chapters
in the new Inside Macintosh books were completely rewritten. Information that
may have been previously scattered across multiple volumes of the original
Inside Macintosh is now combined into easily accessible chapters. Information
that is no longer relevant or useful has been removed. Most importantly, the
new Inside Macintosh provides far more explanatory material and source code
samples than the original. Where appropriate, material from the Macintosh
Technical Notes has been incorporated into the new Inside Macintosh. Finally,
each chapter has been extensively reviewed by Apple engineers, testing
personnel, and Developer Technical Support staff.

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain
information, such as parameter blocks, appears in special formats so that you
can scan it quickly.

Xiii

P REFACE

Special Fonts

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in Courier (this is
Couri er).

Words that appear in boldface are key terms or concepts and are defined in
the Glossary.

Types of Notes

There are several types of notes used in Inside Macintosh.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 8.) O

IMPORTANT
A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 5.) a

WARNING

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (There are no warnings in this
book.) a

Development Environment

Xiv

The system software routines described in this book are available using
Pascal, C, or assembly-language interfaces. How you access these routines
depends on the development environment you are using. This book shows
system software routines in their Pascal interface using the Macintosh
Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal. They show methods of
using various routines and illustrate techniques for accomplishing particular
tasks. All code listings have been compiled and, in most cases, tested.
However, Apple Computer does not intend that you use these code samples
in your application.

This book occasionally uses GreetMe and Venn Diagrammer as the names of
sample applications for illustrative purposes; these are not actual products of
Apple Computer, Inc.

P REFACE

For More Information

APDA is Apple’s worldwide source for over three hundred development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the quarterly APDA Tools Catalog featuring all current versions of Apple
development tools and the most popular third-party development tools.
Ordering is easy; there are no membership fees, and application forms are not
required for most of our products. APDA offers convenient payment and
shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information of registering signatures, file types, Apple events, and other
technical information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-3T
Cupertino, CA 95014-6299

IMPORTANT

See the section “Using Developer Services” beginning on page 189 in the
Afterword for more information about Apple developer programs and
services. a

XV

CHAPTER 1

Introduction

Contents

Getting Started 3
The Macintosh System Software 6
The Macintosh Toolbox 7
The Macintosh Operating System 11
Additional System Software Services 12
Text Handling 12
Interapplication Communication 14
QuickTime 17
Communications Toolbox 18
System Software Routines 19
The Sample Application 21
Conventions for Sample Code 24

Contents

CHAPTER 1

Introduction

Welcome inside. This chapter begins the discussion of programming for Macintosh
computers by describing the general organization of the Macintosh system software, a
collection of routines that you’ll use to simplify your development of Macintosh
applications. The system software provides, among other things, routines that you can
use to create and manage the essential parts of your application’s user interface. This
chapter illustrates the organization and content of the system software by dissecting a
very simple sample application.

Getting Started

Let’s begin by looking at the source code for a simple application. Consider Listing 1-1.

Listing 1-1 A simple Macintosh application

PROGRAM Gr eet Me;

VAR
gW ndow. W ndowPt r; {pointer to a w ndow record}
gString: Str 255; {the string to display}
gRect : Rect ; {the wi ndow s rectangl e}
BEG N
InitGaf(@hePort); {initialize QuickDraw}
I nitFonts; {initialize Font Manager}
I ni t Wndows; {initialize Wndow Manager}
I nitCursor; {initialize the cursor to an arrow

{set the position of the w ndow}
Set Rect (gRect, 100, 100, 400, 200);
gString := "Hello, world!"; {set the greeting to be displayed}

{create a wi ndow}

gW ndow : = NewW ndow(NI L, gRect, '', TRUE, dBoxProc, WndowPtr(-1),
FALSE, 0);

Set Por t (gW ndow) ; {set the current draw ng port}

W TH gW ndow*. port Rect DO {set the position of the pen}

MoveTo(((right - left) DIV 2) - (StringWdth(gString) DV 2),
(bottom - top) DV 2);

Text Font (syst enfont) ; {set the font}
DrawString(gString); {draw t he string}
REPEAT {loop until the nouse button is pressed}
UNTI L Button;
END.

Getting Started

uonanpouu| -

CHAPTER 1

Introduction

The application GreetMe defined by Listing 1-1 simply displays the window shown in
Figure 1-1 and exits as soon as the user presses the mouse button.

Figure 1-1 The window created by the simple application

Hello, world!

This application is remarkably simple, but also quite revealing about some important
aspects of Macintosh programming. Consider the call that creates the window in which
the greeting is drawn:

gW ndow : = NewW ndow(NI L, gRect, '', TRUE, dBoxProc,
W ndowPtr (-1), FALSE, 0);

This call to the NewW ndow function creates a window at the specified location in front
of any existing windows on the screen. The NewW ndow function is a good example of
the kind of routines provided by the system software. These routines greatly simplify the
creation of the standard “look and feel” of Macintosh applications. By using these
routines, you can ensure that your application conforms as closely as possible to the
standard Macintosh user interface and hence that users find your application easy to
learn and use.

Let’s take a closer look at the call to NewwW ndow The NewW ndow function requires eight
parameters, whose meanings are described in Table 1-1.

Table 1-1 Parameters passed to NewW ndowin Listing 1-1

Parameter Meaning

NI L The address of a window record, a data structure that contains
information about the new window. Specifying NI L as the
address of this structure instructs the system software to allocate
that required storage itself.

gRect The window’s bounding rectangle. This is the rectangle that
encloses the new window. The values of the desired rectangle are
specified by the previous call to Set Rect , which defines the
upper-left and lower-right corners of the rectangle.

The window’s title. The new window has no title bar, so this
parameter is specified as the empty string.

Getting Started

CHAPTER 1

Introduction

Table 1-1 Parameters passed to NewW ndowin Listing 1-1 (continued)

Parameter Meaning

TRUE An indication of whether the new window should initially be
visible or not. This parameter is set to TRUE to indicate that the
window is indeed to be made visible.

uonanpouu| -

dBoxPr oc The type of window you want to create. The Macintosh user
interface includes a great variety of window types for different
purposes. For present purposes, the standard modal dialog box
is appropriate. The constant dBoxPr oc identifies that type of
window.

W ndowPt r (- 1) The new window’s initial plane (or layer) relative to any other
existing windows. This parameter is a window pointer to the
window behind which you want the new window to appear. The
system software recognizes two special values here. If you pass
NI L in this parameter, the new window appears behind all other
windows. If you pass -1, the new window appears in front of all
other windows. Because the NewW ndow function expects a
window pointer in this parameter, you need to typecast the
special value -1 as W ndowPt r (1) .

FALSE An indication of whether the window has a close box or not. This
parameter is set to FALSE to indicate that no close box is desired.

0 An application-specific reference number. This number is put
into a particular field of the new window record, and can be
useful to you if the window has specific data associated with it.
Because there is no such data associated with this window, this
parameter is set to 0.

The NewW ndow function returns a window pointer, which is the address in memory of a
window record. The window record contains important information about the window
(such as its current location on the screen and the current font and size of text that is to
be drawn in the window). When you call a system software routine to perform some
operation on a window, you’ll typically pass a window pointer as a parameter to that
routine. For example, in Listing 1-1, the window pointer is passed to the Set Por t
procedure to set the new window as the current drawing window.

IMPORTANT

You need to call Set Port before you do anything at all that affects the
contents of a window, such as drawing graphics or text in the window,
or even just erasing the contents of the window. a

Another notable element of Listing 1-1 is the Dr awSt r i ng procedure, which draws the
specified string in the current font at the current drawing location. By default, the
current drawing location in a new window is the upper-left corner. In this case,
remaining at that location would make the greeting unreadable, because Dr awSt r i ng
uses the vertical coordinate of the current point as the baseline of the text to be printed.
Instead, GreetMe calls the MoveTo procedure to move the current pen location to a point
that centers the greeting in the window:

Getting Started 5

CHAPTER 1

Introduction

W TH gW ndow*. port Rect DO {set the position of the pen}
MoveTo(((right - left) DIV 2) - (StringWdth(gString) DV 2),
(bottom - top) DV 2);

The MoveTo procedure requires 2 parameters, the horizontal and vertical coordinates
within the window of the new drawing position. The origin—point (0,0)—of a window
is at its upper left corner. Horizontal coordinates increase as you move from left to right,
and vertical coordinates increase as you move from top to bottom. The coordinates
passed to MoveTo are calculated from the left, top, bottom, and right coordinates of the
window (obtained from the por t Rect field of the window record).

The Macintosh System Software

The richness of the Macintosh user interface is closely matched by the richness of the
Macintosh system software routines. There are currently several thousand system
software routines that, like NewW ndow are available to application developers for use in
writing applications for the Macintosh operating system. Fortunately, you don’t need to
learn all of those routines before starting to develop applications for the Macintosh. The
sample application defined in Listing 1-1 uses only a dozen or so system software
routines. A typical application might directly call a few hundred of these routines.

The entire collection of system software routines is logically divided into functional
groups—usually known as managers—that handle specific tasks or user interface
elements. For example, the NewW ndow routine belongs to the Window Manager, the
part of the Macintosh system software that allows you to create, move, hide, resize, and
otherwise manipulate windows. Similarly, the parts of the system software that allow
you to create and manipulate menus belong to the Menu Manager.

Your application calls system software routines to create standard user interface
elements and to coordinate its actions with other open applications. The main other
application that your application needs to work with is the Finder, which is responsible
for keeping track of files and managing the user’s desktop. Usually, the user launches
your application by double-clicking its icon (or one of its document’s icons) in a Finder
window. The Finder isn’t really part of the Macintosh system software, but it is such an
important piece of the Macintosh graphic user interface that it’'s sometimes difficult to
tell where the Finder ends and the systems software begins. In fact, the system software
provides a set of routines—known as the Finder Interface—that you can use to interact
with the Finder.

As shown in Figure 1-2, most of the system software routines are part of either the
Macintosh Operating System or the Macintosh Toolbox.

6 The Macintosh System Software

CHAPTER 1

Introduction
Figure 1-2 Overview of the system software
=
3
o
Q.
<
Q
=
=]
”
User Interface w
@ Application

Macintosh Operating <{Z | Macintosh Toolbox {Z3 | Additional System

System « User interface Software

* File management * Resource management * QuickTime

* Memory management * Sound input and output *IAC

» Device management e Text Communications Toolbox

* Process management « Graphics » Worldwide support

* Other utilities

This section describes the division of the Macintosh system software into its logical parts.
Understanding this division of system software into managers and other units is
essential to understanding Macintosh programming, as well as the general organization
of Inside Macintosh.

The Macintosh Toolbox

The system software routines used in Listing 1-1 allow you to manage elements of the
Macintosh user interface. These parts of the system software belong to the Macintosh
Toolbox (sometimes also called the Macintosh User Interface Toolbox). By offering a
common set of routines that every application can call to implement the user interface,
the Toolbox not only ensures familiarity and consistency for the user, but also helps
reduce your application’s code size and development time. At the same time, the
Toolbox offers a great deal of flexibility; your application can, whenever appropriate, use
its own code instead of Toolbox routines, and it can define its own types of windows,
menus, and controls. In general, however, you should use the Toolbox routines to
maximize compatibility with present and future versions of the system software.

The Macintosh System Software 7

CHAPTER 1

Introduction

Figure 1-3 illustrates the main parts of the Macintosh Toolbox.

Figure 1-3 Parts of the Macintosh Toolbox

Window
Manager

QuickDraw

List
Manager

Control

Manager

Sound
Input
Manager

Help
Menu Manager Manager

|
@ ®

& File #4it Uenn

= llenn Diagram 1
| + |§|§€]l \/l Nowe showing the correct solution.

oaks maples oaks maples

Finder
Interface
9
Speaker Alert g
Wolurne m
Indige
Z Quack
5 Simpl
4 Sc:surr
3 R trees
2 .
1 Figure Mood
T 1 nd| | (AR 1]0] Mo trees are oaks.
[A[ENO] Some maples are trees.
Micr aphones [ATEJT Sorme maples are not oaks.
e T"d ggre and qimble 1n the wabe:)
@ A11 mimsy were the borogoves, TextEdit
Builtein &nd the mome raths outgrabe.
Note

For historical reasons, some collections of system software routines are
referred to as packages. One example is the Standard File Package
(which allows you to present the standard file opening and saving
dialog boxes). In general, the distinction between managers and
packages is unimportant. Accordingly, the new Inside Macintosh has,
whenever appropriate, adopted the practice of renaming packages as
managers. For instance, the Disk Initialization Manager (described in the
book Inside Macintosh: Files) was previously known as the Disk
Initialization Package. O

Consider the first few lines of Listing 1-1 on page 3:

InitGaf(@hePort); {initialize QuickDraw}

I nitFonts; {initialize Font Manager}

I ni t Wndows; {initialize Wndow Manager}
I nitCursor; {initialize cursor to arrow}

The Macintosh System Software

CHAPTER 1

Introduction

These lines of code perform standard initialization of some essential Toolbox managers.
You need to initialize these managers in order to set up the drawing environment for
your application and to prepare parts of the Toolbox for further use. The I ni t G- af
procedure initializes QuickDraw, the part of the Macintosh Toolbox that handles
drawing and other graphics operations. Because the Macintosh user interface is largely a
graphic user interface, QuickDraw routines are called by virtually all the other Toolbox
managers. For example, the Window Manager calls QuickDraw to draw the window
frame and any other required parts of a window (for instance, the title bar). For this
reason, you need to initialize QuickDraw before you initialize the other main Toolbox
Managers.

Note

QuickDraw gets its name from the fact that it’s designed to perform
basic graphics operations exceptionally fast. This is important for a user
interface that relies so heavily on graphics. O

Your application will also call QuickDraw directly, usually to draw inside a window or
to set up constructs (like rectangles) that you’ll need when making other Toolbox calls.
QuickDraw provides a rich array of routines that let you

= change, hide, and display the cursor

= manipulate the current drawing port

= set characteristics of the drawing pen

= draw text

= Mmanage colors

» define rectangles, ovals, arcs, and other basic geometric shapes
» define arbitrarily shaped regions

= perform operations on shapes and regions

The essential thing to keep in mind is that if you can see something on the screen, then
QuickDraw is lurking somewhere behind it, either directly (you drew it there) or
indirectly (you called a Toolbox routine that called QuickDraw to draw it there).

The I ni t Font s procedure initializes the Font Manager, which supports the use of
various character fonts when you draw text with QuickDraw. The Text Font routine
sets the current font to that whose font number is passed as a parameter. GreetMe passes
the special constant syst enfont , which requests the font used by the system (for
drawing menu titles and commands in menus, for example).

The | ni t W ndows procedure initializes the Window Manager, and the | ni t Cur sor
procedure (which belongs to QuickDraw) sets the cursor to the standard arrow cursor.
Every application needs to call these routines before creating windows or handling any
user actions.

The Macintosh System Software

uonanpouu| -

10

CHAPTER 1

Introduction

Notice that Figure 1-3 depicts a number of other Toolbox managers that are not used by
GreetMe. You’ll encounter many of these as you progress through this book. For now,
take a look at Table 1-2 for a brief description of the most commonly used Macintosh

Toolbox managers.

Table 1-2 The Macintosh Toolbox
Manager Description
QuickDraw Performs all screen display operations, including all drawing

Window Manager

Dialog Manager

Control Manager

Menu Manager

Event Manager

TextEdit

Resource Manager

Finder Interface

Scrap Manager

Standard File Package

Help Manager

of graphics and text.
Allows you to create and manage windows of various types.

Allows you to create and manage dialog boxes, which are
special kinds of windows. Typically you’ll use dialog boxes to
alert the user to unusual situations or to solicit information
from the user.

Allows you to create and manage controls, such as buttons,
radio buttons, checkboxes, pop-up menus, scroll bars, and
application-defined controls.

Allows you to create and manage your application’s menu bar
and the menus it contains. Also handles the drawing of menus
and user actions within a menu.

Reports to your application events describing user actions and
changes in the processing status of your application. Also
allows you to communicate with other applications.

Provides simple text-formatting and text-editing capabilities,
such as text input, selection, cutting, and pasting. Applications
that are not primarily concerned with text processing can use
TextEdit to handle most text manipulation.

Allows your application to read and write resources. Any
static data (such as menus, cursors, and windows) used by
your application can usefully be stored as a resource. The
system software provides a number of standard resources,
and your application can define its own custom resources.

Allows your application to interact with the Finder, the
application that helps keep track of files and manages the
user’s desktop display.

Allows your application to support cutting and pasting of
information among applications.

Provides the standard dialog boxes that allow the user to
select a file to open or a location and name for a file to be
saved.

Allows your application to provide Balloon Help on-line
assistance, information that describes the actions, behaviors,
and properties of elements of your application.

The Macintosh System Software

CHAPTER 1

Introduction

Table 1-2 The Macintosh Toolbox (continued)

Manager Description
List Manager Allows your application to create lists of items.
Sound Manager Provides sound output capabilities.

uonanpouu| -

Sound Input Manager Provides sound input capabilities for Macintosh computers
equipped with a sound input device such as a microphone.

The Macintosh Operating System

The Macintosh Operating System provides routines that allow you to perform basic
low-level tasks such as file input and output, memory management, and process and
device control. The Macintosh Toolbox is a level above the Operating System and, as
you’ve seen, provides routines that help you implement the standard Macintosh user
interface for your application. The Toolbox calls the Operating System to do low-level
operations, and you’ll also need to call the Operating System directly yourself.

The Macintosh Toolbox allows you to create and manage parts of your application’s user
interface, and in some sense mediates your application and the user. By contrast, the
Macintosh Operating System essentially mediates your application and the Macintosh
hardware. For example, you’ll read and write files not by reading data directly from the
medium on which they are stored, but rather by calling appropriate File Manager
routines. The File Manager locates the desired data within the logical hierarchical
structure of files and directories that it manages; then it calls another part of the
Operating System, the Device Manager, to read or write the data on the actual physical
device. The File Manager and the Device Manager thereby insulate your application
from the low-level details of interacting with the available data-storage hardware.

Similarly, the Memory Manager helps you allocate and dispose of memory within your
application’s logical address space. The Memory Manager takes care of mapping that
logical address space onto the physical address space provided by the available RAM. It
also helps manage your application’s memory by moving allocated blocks of memory
when necessary to create space for new blocks you want to allocate. Table 1-3 briefly
describes the main parts of the Macintosh Operating System.

Table 1-3 The Macintosh Operating System

Manager Description

Process Manager Handles the launching, scheduling, and termination of
applications. Also provides information about open
processes.

Memory Manager Manages the dynamic allocation and releasing of

memory in your application’s memory partition.

continued

The Macintosh System Software 11

12

CHAPTER 1

Introduction

Table 1-3 The Macintosh Operating System (continued)

Manager Description

Virtual Memory Manager Provides virtual memory services (the ability to have a
logical address space that is larger than the total amount
of available RAM).

File Manager Provides access to the file system; allows applications to
create, open, read, write, and close files.

Alias Manager Helps you locate specified files, directories, or volumes.
Disk Initialization Manager Manages the process of initializing disks.

Device Manager Provides input from and output to hardware devices
attached to the computer.

SCSI Manager Controls the exchange of information between a
Macintosh computer and peripheral devices attached
through the Small Computer Standard Interface (SCSI).

Time Manager Allows you to execute a routine periodically or after a
specified time delay.

Vertical Retrace Manager Allows you to synchronize the execution of a routine
with the redrawing of the screen.

Shutdown Manager Allows you to execute a routine while the computer is
shutting down or restarting.

Additional System Software Services

The Macintosh system software includes a number of other parts that don’t historically
belong to either the Macintosh Toolbox or the Macintosh Operating System. The system
software provides an extremely powerful set of services you can use to handle text and
to support the varying text-handling requirements of different languages and writing
systems. Other system software components include the interapplication
communications architecture, QuickTime, and the Communications Toolbox.

Text Handling

Text handling on the Macintosh has two basic aspects that make it so powerful. First, it is
fundamentally graphic; text is drawn as a sequence of graphic elements; therefore the
full power and flexibility of the Macintosh graphic interface is available for drawing text
in sophisticated ways.

Second, text handling is designed to function properly across multiple languages and
writing systems. As you develop applications for worldwide markets, you need to
consider differences in scripts, languages, and regions. The Macintosh system software
presents one of the most flexible architectures for developing applications that can
support more than one script.

The Macintosh System Software

CHAPTER 1

Introduction

A script, such as Roman, Kaniji, or Arabic, is a writing system for a human language such
as English, Japanese, or Arabic. Scripts have different characteristics; for example, they
can differ in the direction in which their characters and lines run and in the number of
characters in their character sets. The way in which you need to input, display, render,
and edit text may change depending on the script in use.

A Macintosh script system is a set of system resources that support text input,
manipulation, and display for a given writing system. The Macintosh script
management system consists of system software managers and the WorldScript
extensions, which together give your application the power to create and work with text
of any script system. These are the essential text-handling managers:

QuickDraw is the graphics manager of Macintosh system software. Your application
makes QuickDraw calls to write text to the screen or to a printer. When QuickDraw
draws text, it draws it according to the settings of the current window’s graphics port
record, which includes the location information and complete font information.
QuickDraw can draw text of any script system. Figure 1-4 shows some of
QuickDraw’s text-drawing capabilities.

Figure 1-4 A multiscript line of text drawn by QuickDraw

3 (Arabic) ¢,

The Font Manager supports QuickDraw by providing the fonts that QuickDraw
needs, in the typefaces, sizes, and styles that QuickDraw requests. The Font Manager
keeps track of all fonts available to an application, and supports fonts for all script
systems.

The Text Utilities are an integrated collection of routines for performing a variety of
operations on text, ranging from sorting strings to formatting dates and times to
finding word breaks. The Text Utilities work in conjunction with the Macintosh script
management system and can take into account the differences in text handling among
script systems. If you use these routines, you can handle text operations in a manner
that is transportable to different parts of the world.

The Script Manager is at the center of the Macintosh script management system. It
initializes script systems, maintains important data structures, supports switching text
input among different script systems, and provides several text-manipulation services.

The Text Services Manager supports text service components such as input methods. If
your application uses the Text Services Manager, it can support the special kinds of
text input needed for 2-byte script systems such as Japanese, Chinese, and Korean.

The Macintosh System Software 13

-

uonanpouu|

CHAPTER 1

Introduction

Figure 1-5 shows how you can use the Text Services Manager to convert Japanese text.

Figure 1-5 Input and conversion of Japanese text using the Text Services Manager

14

E DE EOi—~——=
LoE s 25| o X

1. User enters raw text (gray underline) into 2. User presses Space bar; raw text is
active input area. converted (black underline) but remains
in active input area.

Er=————— fT==———+—
e | |ERe2k)

3. User presses Return; converted text is 4. New active input area opens when user
confirmed (no underline). Active input enters more raw text.
area closes.

You can use the script management system to achieve any level of text-handling
sophistication, from simple display of static text in one language to highly sophisticated
multilanguage word processing and page layout. The simplest way to achieve basic
worldwide flexibility in text handling is to use TextEdit, which provides simple
text-handling capabilities for text of any script system, including multiscript text.
TextEdit automatically handles text with more than one script, style, and direction. For
example, TextEdit supports mixing English text (a left-to-right directional script) with
Arabic text (a right-to-left directional script) in the same line (as you saw in Figure 1-4).

Note

For complete information on text handling, including multiscript text
handling, see Inside Macintosh: Text. For information on individual script
systems and how to localize your software for markets around the
world, see Guide to Macintosh Software Localization. O

Interapplication Communication

The interapplication communications (IAC) architecture provides a standard and
extensible mechanism for communication among Macintosh applications. The IAC
architecture includes these main parts:

= The Edition Manager allows applications to automate copy and paste operations
between applications, so that data can be shared dynamically.

The Macintosh System Software

CHAPTER 1

Introduction

= The Apple Event Manager allows applications to send and respond to Apple events.

= The Event Manager allows applications to send and respond to high-level events
other than Apple events.

= The Program-to-Program Communications (PPC) Toolbox allows applications to
exchange blocks of data with each other by reading and writing low-level message
blocks. It also provides a standard user interface that allows a user working in one
application to select another application with which to exchange data.

The parts of the IAC architecture depend upon each other in fairly straightforward ways.
The Edition Manager uses the services of the Apple Event Manager to support dynamic
data sharing. The Apple Event Manager, in turn, relies on the Event Manager to send
Apple events as high-level events, and the Event Manager uses the services of the PPC
Toolbox.

uonanpouu| -

If you want your application to exchange data with another application, you’ll probably
use either the Edition Manager or the Apple Event Manager. The Edition Manager
allows users to copy data from one application’s document to another application’s
document, updating the information automatically when the data in the original
document changes. Figure 1-6 shows how you can use the Edition Manager to create a
poster whose elements (an illustration, a title, and some text) all originate in documents
created by other applications. If, for example, the user changes the illustration in the
original document, the copy of that illustration in the poster could be updated
automatically.

Figure 1-6 Sharing dynamic data with other applications

lllustration
EXPERIENCE)/)
he Ay EXPERIENCE
el The Aquarium
Title text

The sjdh akjdh ajdh
2 i

Text for poster

Aquarium poster

The Macintosh System Software 15

CHAPTER 1

Introduction

The Apple Event Manager allows you to send and receive Apple events, which are
high-level events that conform to the Apple Event Interprocess Messaging Protocol. The
Apple Event Registry: Standard Suites describes a standard vocabulary of Apple events
that you can use to communicate with other open applications. Typically you use Apple
events to request services and information from other applications, or to provide services
and information in response to such requests.

Communication between two applications that support Apple events is initiated by a
client application, which sends an Apple event to request a service or information. For
example, a client application might request services such as printing specific files,
checking the spelling of a list of words, or performing a numerical calculation; or it
might request information, such as one customer’s address or a list of names and
addresses of all customers living in Ohio. The application providing the service or the
requested information is called a server application. The client and server applications
can reside on the same local computer or on remote computers connected to a network.

Figure 1-7 shows the relationships among a client application, the Apple Event Manager,
and a server application. The client application uses Apple Event Manager routines to
create and send the Apple event, and the server application uses Apple Event Manager
routines to interpret the Apple event and respond appropriately. If the client application
SO requests, the server application sends back a reply Apple event.

Figure 1-7 Sending and responding to Apple events

16

Client Server
application application

Apple
event (if
requested)

Apple
event

&
ﬁ Reply

Apple Event Manager

As you might imagine, there are many predefined kinds of Apple events, corresponding
to the many services one application might request of another. Apple events are grouped
into standard suites or groups of related events. Usually, you implement all the events in
a given suite at the same time. The standard Apple event suites include the following:

The Macintosh System Software

CHAPTER 1

Introduction

= The Required suite consists of four basic Apple events that your application must
support if it supports any Apple events at all. These events are Open Documents,
Open Application, Print Documents, and Quit Application. The Finder uses these
events for launching and terminating applications.

= The Core suite consists of the basic Apple events that nearly all applications use to
communicate, including Get Data, Set Data, Move, Delete, and Save. You should
support all the Apple events in the Core suite that make sense for your application.

uonanpouu| -

= A functional-area suite consists of a group of Apple events that support a related
functional area. One example of a functional area is the Text suite, which includes
events related to text processing.

If an Apple event is one of these standard events, the client application can construct the
event and the server application can interpret it according to the standard definition for
that event. To ensure that your application can respond to Apple events sent by other
applications, you should support the standard Apple events that are appropriate for
your application.

Note

See the book Inside Macintosh: Interapplication Communication for
complete details about the interapplication communications
architecture. O

QuickTime

QuickTime is a collection of managers and other system software components that allow
your application to control time-based data. QuickTime allows you to integrate
time-based data (such as video clips, animation sequences, sound sequences, or
time-indexed scientific data) into your application and to let users manipulate it in the
same easy, intuitive way that they manipulate other elements of the Macintosh user
interface. With QuickTime, your application can allow users to display, edit, copy, and
paste time-based data much as they do text and graphics.

A movie is a collection of one or more streams of data, called tracks. Each track
represents a stream of data of a particular type, such as video, sound, still images, or
animation. Depending on the way the tracks are defined, one or more tracks can be
active at certain times while the movie is playing.

QuickTime consists mainly of these pieces:
= the Movie Toolbox
= the Image Compression Manager

= aset of predefined components

The Macintosh System Software 17

CHAPTER 1

Introduction

Many applications that incorporate QuickTime capabilities are interested only in playing
movies. To do so, they call the Movie Toolbox, which provides routines that allow you to
store, retrieve, and manipulate time-based data stored in QuickTime movies. Figure 1-8
illustrates the relationship between the various QuickTime managers and components.

Figure 1-8 Playing a QuickTime movie

18

Movie
playback
routines

EEEEY)

. Image
Movie Toolbox Compregssion

Manager

Movie ﬁ @

Image
decompressor
component

N

QuickDraw

AEEEEEEEEEEEEEE
Tracks

\DDDDDDDDDDDDDDDDDDDDK

Media ﬁ
o

N

N

Data f]

@)

Note
See the books Inside Macintosh: QuickTime and Inside Macintosh:
QuickTime Components for complete details about QuickTime. O

Communications Toolbox

The Communications Toolbox is a collection of system software managers that you can
use to provide your application with basic networking and communications services.
You're likely to use the Communications Toolbox only if your application is specifically
concerned with communication between computers. Examples of such applications
include telecommunications packages and electronic bulletin board applications. By
using the Communications Toolbox, you can insulate your application from the details of
the actual physical connection between your computer and the remote computer.

The Macintosh System Software

CHAPTER 1

Introduction

The Communications Toolbox consists of four managers:

= The Connection Manager, which you can use to create and maintain a network
connection.

= The Terminal Manager, which you can use to emulate a particular terminal during a
network connection.

uonanpouu| -

= The File Transfer Manager, which you can use to transfer files between your computer
and the remote computer to which you are connected.

= The Communications Resource Manager, which you can use to register and keep track
of communications resources.

Note
For complete information about the Communications Toolbox, see the
book Inside the Macintosh Communications Toolbox. O

System Software Routines

By now, you might be wondering how these various system software routines are made
available to your application. In traditional programming environments, you gain access
to such special routines by linking a subroutine library—which contains the actual
executable code of those routines—to your application. The code of the special routine is
contained in your application, just like the code of any application-defined routine.

One main drawback of such an approach is that it tends to result in very large
applications. As you might imagine, the code comprising the thousands of system
software routines takes up quite a bit of space. It would be impractical to link all that
code, or whatever subset of it an application actually used, to each application.

Another important drawback of the traditional approach is the difficulty of revising
system software routines to provide new capabilities or to fix bugs. You would need to
obtain a new subroutine library and then rebuild your application so that the new code
is included in it.

The original Macintosh system software circumvented these problems by adopting a
fairly novel approach. The software routines that make up the Macintosh Toolbox and
the Macintosh Operating System reside mainly in read-only memory (ROM), provided
by special chips contained in every Macintosh computer. When your application calls a
Toolbox routine like NewW ndow the Operating System intercepts the call and executes
the appropriate code contained in ROM.

This mechanism provides a simple way for the Operating System to substitute the code
that is executed in response to a particular system software routine. Instead of executing
the ROM-based code for some routine, the Operating System might choose to load some
substitute code into the computer’s random-access memory (RAM); then, when your
application calls the routine in question, the Operating System intercepts the call and
executes that RAM-based code.

The Macintosh System Software 19

20

CHAPTER 1

Introduction

RAM-based code that substitutes for ROM-based code is called a patch. Patches are
usually stored in the System file, located in the System Folder. The System file also
contains collections of static data, known as resources, that applications can use to help
present the standard Macintosh user interface.

The System file can also contain system software components that are not in a
computer’s ROM. To make one of these components available to your application, the
Operating System simply loads it into RAM. This is like a patch, except that the new
routines aren’t replacing any existing ROM routines. Originally these sorts of
RAM-based system software components were called packages; they were read into
RAM only when some application called any one of the routines contained in them.
However, because some of these packages have been included in later revisions of the
ROM, the distinction between managers and packages has faded with time.

The current method for adding capabilities to the system software is to include the
executable code of the new routines as a system extension. Extensions are stored in a
special location (namely, in the Extensions folder in the System Folder) and are loaded
into memory at system startup time. QuickTime, for example, is currently distributed as
an extension.

When your application calls a system software routine, it doesn’t matter, in general,
whether the code that is executed in response resides in ROM, is a patch in RAM loaded
from the System file, or is part of a RAM-based extension. It is, however, important that
the appropriate code exist in at least one of these locations, because your application will
crash if you attempt to call a routine that isn’t defined anywhere. So, especially for code
contained in extensions, you’ll need to make sure that the code is present in the current
operating environment before trying to call it. You can use the Gest al t function to
determine whether a particular part of system software is available. For details on calling
Gest al t, see the chapter “Gestalt Manager” in Inside Macintosh: Operating System
Utilities.

There is one further twist in this picture that is worth mentioning. Some routines that are
declared in your development system’s header files are provided by the development
system itself, not by the system software. These routines, known as glue routines (or just
glue), are constructed by modifying available system software routines in some way.
Consider the Memory Manager function NewHand| e, which allocates a new relocatable
block of memory. A call to NewHandI e compiles into an executable instruction word.
When that instruction is executed, the ROM code (or its RAM patch, if one exists) reads
several of the bits in that word to determine exactly what to do. If, for instance, bit 9 of
the instruction word is set, the ROM code allocates a block of the requested size and then
clears all the bytes in that block to 0.

The Macintosh System Software

CHAPTER 1

Introduction

If you're programming in assembly language, you can set the bits of an instruction word
directly. However, if you’re programming in a high-level language like Pascal, you can’t
do that. Instead, you need to call a glue routine, in this case NewHand| ed ear, that
takes care of calling NewHandl e and setting the appropriate bits in the instruction word.
Essentially, NewHand| e ear is nothing but NewHandl| e together with some
assembly-language code to set a bit in the instruction word. This translation is handled
automatically by your development system at the time your application is compiled.

uonanpouu| -

You’ll encounter several other kinds of glue routines. Some glue routines translate
high-level routines into low-level routines. Most of the high-level File Manager routines
are of this variety. There is, for example, no code in ROM or the System file
corresponding to the FSpCr eat e function. Instead, calling FSpCr eat e invokes some
glue code that creates a parameter block, fills out some of the fields appropriately, and
then passes that parameter block to the low-level function PBHCr eat e.

Some other glue routines are pure assembly-language instructions which don’t call any
system software routines. You might use glue like this to move a function result or other
data from a register onto the stack.

You don’t usually need to know whether a particular routine is implemented as glue
code, except when you’re doing low-level assembly-language debugging. For the time
being, you can consider all the routines defined in Inside Macintosh as part of the
Macintosh system software.

The Sample Application

The remainder of this book illustrates how to write a Macintosh application by gradually
dissecting the source code of a very simple sample application, called Venn Diagrammer.
This application allows the user to use Venn diagrams as a method of determining
whether a given syllogism is valid (that is, whether the conclusion must be true if both
premises are true). This section briefly describes the operation of the Venn Diagrammer
application.

IMPORTANT
The account of syllogisms and Venn diagrams given here is inadequate
for a full understanding of these topics. Most programmers, however,
have encountered Venn diagrams at some point in their lives. For a more
complete account, consult a good textbook on introductory logic. a

The Sample Application 21

CHAPTER 1

Introduction

When the user launches the Venn Diagrammer application, it opens a Venn diagram
window, shown in Figure 1-9.

Figure 1-9 A typical Venn diagram window
E(=— lennDiagram | ——~——
o |+ [l]
logicians mathematicians logicians mathematicians
philosophers
Figure Mood
Ez5]4] [A1]0] Nophilosophers are logicians.
(ATEN 0] Sore mathematicians are philosophers.
[A[E] T Some mathematicians are not logicians.

This window contains a number of distinct parts, shown in Figure 1-10.

Figure 1-10 The parts of a Venn diagram window

S[I=—— Uenn Diagram | =————————
[| + |é?|%€-]|\/| The atqurnent is valid, j— Status area

logicians mathematicians logicians mathernaticians

— Conclusion
Premises diagram
diagram

philozophers
Figure Mood

Tools icons

Figure icons — [[l[2[3][4] [AA 1]0] Mo philosophers are 1ogicians. } Premises
[ATE 0] Some mathematicians are philosophers.
[AE[T] Some mathematicians are not logicians. } Conclusion
L | J U | J
Mood icons Syllogism

22 The Sample Application

CHAPTER 1

Introduction

This window is designed to let the user select a syllogism and then assess the validity of
the syllogism by appropriately modifying the Venn diagram (the five overlapping
circles). The user graphs the information contained in the two premises in the three
circles on the left and the information in the conclusion in the two circles on the right.

As you can see, a syllogism is an argument containing two premises and one conclusion.
These three statements must each be of one of four specific forms, known as the
statement’s mood. The four moods are often designated by the letters A, E, I, and O, as
follows:

A All philosophers are logicians.

E No philosophers are logicians.

I Some philosophers are logicians.

0 Some philosophers are not logicians.

Syllogisms are further classified by figure, which determines the order of the terms in the
two premises. A syllogism is completely determined by the three terms involved, the
moods of the three statements, and the figure.

The user can graph the information in a syllogism by clicking in the overlapping regions
in the circles. If a region is white, nothing is known about the region. If the region is
shaded, it’s known that there is nothing in that region (that is, the region is empty).
Finally, if an X appears in the region, it’s known that there is something in that region. A
correctly graphed syllogism is shown in Figure 1-11.

Figure 1-11 A correctly constructed Venn diagram

S[[=—————— Ulenn Diagram 1 =— |
- [+ [l
A E &]

&
Figure Mood

Ez[503] [AE1]0] HocCare A
(A[ERM O] Some B are C.
[ATEJ T Sorre B are not A.

The Sample Application 23

uonanpouu| -

CHAPTER 1

Introduction

At the top of the window, just below the title bar, are a set of tool icons and an empty
status area. The tool icons allow the user to perform various operations on the diagram
without having to move out of the window. For instance, clicking the tool in the middle
(the eraser) clears the Venn diagram. These same operations can also be invoked using
the Venn menu, as shown in Figure 1-12.

Figure 1-12 The Venn menu

| venn I

Check K
Show Solution %06
Clear #B

Get Next Settings
Assess Validity

Preferences... =Y

The Venn Diagrammer application displays information in the window’s status area. For
example, if the user clicks the leftmost tool icon (or chooses the Assess Validity menu
command), the application determines whether the currently displayed syllogism is
valid or invalid. If it’s valid, the application displays the message “The argument is
valid.” in the status area; otherwise, it displays the message “The argument is invalid.”

Conventions for Sample Code

24

The sample code presented throughout this book follows a number of conventions to
help you understand the code and to distinguish application-defined routines from
system software routines. For the most part, the sample code listings presented
throughout the Inside Macintosh suite of books follow these conventions as well.

= Constants defined by the Venn Diagrammer application begin with the letter k. For
example, the number of tools in a Venn diagram window is specified by the constant
kNunirool s. There are, however, several exceptions to this rule:

o Constants specifying resource IDs begin with the letter r. For example, the resource
ID of the menu bar is specified by the constant r MenuBar .

o Constants specifying menu resource IDs begin with the letter m For example, the
resource ID of the File menu is specified by the constant nFi | e.

o Constants specifying menu commands begin with the letter i . For example, the
number of the Quit command in the File menu is specified by the constanti Qui t .

o Constants specifying messages displayed to the user in a window’s status area
begin with the letter e. For example, the message “The argument is valid.” is
specified by the constant eAr gl sVal i d.

Conventions for Sample Code

CHAPTER 1

Introduction

= Application global variables have names beginning with the letter g. For example, the
global variable that indicates whether the user wants to quit the application is called
gDone. There are no exceptions to this rule.

» Application-defined routines have names beginning with either the prefix Do or the
prefix My. For example, the routine that handles window updating is called

DoUpdat e. Similarly, the routine that returns a random number is called MyRandom

There is one exception to this rule:

o Application-defined routines that return Boolean values have names beginning
with the prefix | s. For example, the routine that determines whether a window is a
dialog box is called | sDi al ogW ndow Several system software routines have
similar-sounding names. (For instance, the Dialog Manager provides the
| sDi al ogEvent routine.)

= Application-defined data structures and types have names beginning with the prefix
My. For example, the structure that holds information about a document window is
called MyDocRec. A pointer to a record of type MyDocRec is of type MyDocRecPt r.

= Routine parameters and local variables have names beginning with the prefix rmy. For
example, many of the routines in the Venn Diagrammer application require a window
pointer as one of the parameters; this parameter is usually called nyW ndow This
convention has, however, many exceptions.

IMPORTANT
These naming conventions are adopted in this book (and elsewhere in
Inside Macintosh) solely for reasons of consistency and clarity. They
might not be suitable for your purposes. a

It’s worth mentioning in advance that Venn Diagrammer takes a minimalist approach to
error-handling: it tries to detect any errors that might adversely affect its further
processing and to work around those errors in such a way as to avoid those adverse
effects. In fact, this strategy is far too simple for most applications. Your application
should provide far more extensive error detection and reporting to the user. See
“Handling Errors” beginning on page 176 for some further discussion of error-handling
techniques.

Conventions for Sample Code 25

uonanpouu| -

CHAPTER 2

Memory

Contents

About Memory 29

The System Heap 31

The System Global Variables 31
Application Partitions 32

The Application Stack 33

The Application Heap 34

The Application Global Variables and A5 World 37
Memory Blocks 38

Nonrelocatable Blocks 39

Relocatable Blocks 40

Locking and Unlocking Relocatable Blocks 42

Purging and Reallocating Relocatable Blocks 43
Data Types 44

Pointers and Handles 44

Strings 45

Procedure Pointers 46

Type Coercion 47

Contents

27

CHAPTER 2

Memory

This chapter provides a brief introduction to memory management on Macintosh
computers. It describes the organization of the partition of memory assigned to your
application when it is launched and explains the basic data types used by the Macintosh
Toolbox and Operating System. This chapter also describes how you can allocate
portions of that memory partition for specific purposes and how the Memory Manager
helps to maintain an orderly partition.

This chapter provides only the minimum information about memory that you’ll need to
understand the rest of this book and to begin reading other Inside Macintosh books. For a
more detailed description of basic memory management strategies, see the chapter
“Introduction to Memory Management” in the book Inside Macintosh: Memory.

o -

About Memory

In the cooperative multitasking environment provided by the Macintosh Operating
System, your application can use only part of the total amount of RAM available on a
computer. Some of the available RAM is reserved for use by the Operating System itself,
and the remainder of the available memory is shared among all open applications.

When the Operating System starts up, it divides the available RAM into two broad
sections. It reserves for itself a zone or partition of memory known as the system
partition. The system partition always begins at the lowest addressable byte of memory
(memory address 0) and extends upward. The system partition consists of two main
parts:

= asystem heap

= aset of global variables

In general, the memory in the system partition is for use by the Operating System alone.
Your application probably won’t need to read or write that memory:.

All memory outside the system patrtition is available for allocation to applications or
other software components. In the cooperative multitasking environment, the user can
have multiple applications open at once. When an application is launched, the Operating
System assigns it a section of memory known as its application partition. In general, an
application uses only the memory contained in its own application partition.

Figure 2-1 illustrates the organization of memory when several applications are open at
the same time. The system partition occupies the lowest position in memory. Application
partitions occupy some or all of the remaining space. Note that application partitions are
loaded into the top part of memory first. An application partition consists of three main
parts:

= an application heap
= astack

= an A5 world, which includes the application’s global variables

About Memory 29

CHAPTER 2

Memory
Figure 2-1 Memory organization in the cooperative multitasking environment
High memory
— Buf Pt r
A5 world — Current A5
Stack
Applicaton1 — [| | Appl Linit
partition
Heap
= 4
[A5 world Appl zone
Stack
Application 2 —
partition
Heap
—
-
A5 world
Stack
Application 3 —
partition
Heap
A
System heap
System
partition
System global variables
Low memory
|:| Used Area
D Unused area

About Memory

CHAPTER 2

Memory

The System Heap

The main part of the system partition is an area of memory known as the system heap.
In general, the system heap is reserved for exclusive use by the Operating System and
other system software components, which load into it various items such as system
resources, system code segments, and system data structures. All system buffers and
gueues, for example, are allocated in the system heap.

The system heap is also used for code and other resources that do not belong to specific
applications, such as code resources that add features to the Operating System or that
provide control of special-purpose peripheral equipment. System patches and system
extensions (stored as code resources of type ' | NI T') are loaded into the system heap
during the system startup process. Hardware device drivers (stored as code resources of
type ' DRVR') are loaded into the system heap when the driver is opened.

The System Global Variables

The lowest part of memory is occupied by a collection of global variables called system
global variables (or low-memory system global variables). The Operating System uses
these variables to maintain different kinds of information about the operating
environment. For example, the Ti cks global variable contains the number of ticks
(sixtieths of a second) that have elapsed since the system was most recently started up.
Similar variables contain, for example, the height of the menu bar (MBar Hei ght) and
pointers to the heads of various operating-system queues (DTQueue, FSQHdr ,
VBLQueue, and so forth). Most low-memory global variables are of this variety: they
contain information that is generally useful only to the Operating System or other
system software components.

Other low-memory global variables contain information about the current application.
For example, the Appl Zone global variable contains the address of the first byte of the
active application’s partition. The Appl Li m t global variable contains the address of the
last byte the active application’s heap can expand to include. The Cur r ent A5 global
variable contains the address of the boundary between the active application’s global
variables and its application parameters. Because these global variables contain
information about the active application, the Operating System changes the values of
these variables whenever a context switch occurs (that is, whenever an application takes
control of the CPU from another application).

In general, it is best to avoid reading or writing low-memory system global variables.
Most of these variables are undocumented, and the results of changing their values can
be unpredictable. Usually, when the value of a low-memory global variable is likely to be
useful to applications, the system software provides a routine that you can use to read or
write that value. For example, you can get the current value of the Ti cks global variable
by calling the Ti ckCount function.

About Memory 31

o -

CHAPTER 2

Memory

Application Partitions

When your application is launched, the Operating System allocates for it a partition of
memory called its application partition. That partition contains required segments of the
application’s code as well as other data associated with the application. Figure 2-2
illustrates the general organization of an application partition.

Figure 2-2 Organization of an application partition

32

} High memory }

A5 world

Cur rent A5
Cur St ackBase

Stack

,,,,,,,,,,,,,,,,,, | ApplLinit

Heap

Appl Zone

7

D Used Area
|:| Unused area

Your application partition is divided into three major parts:
= the application stack

= the application heap

= the application global variables and A5 world

The heap is located at the low-memory end of your application partition and always
expands (when necessary) toward high memory. The A5 world is located at the

Application Partitions

CHAPTER 2

Memory

high-memory end of your application partition and is of fixed size. The stack begins at
the high-memory end of the A5 world and expands downward, toward the top of the
heap.

As you can see in Figure 2-2, there is usually an unused area of memory between the
stack and the heap. This unused area provides space for the stack to grow without
encroaching upon the space assigned to the application heap. In some cases, however,
the stack might grow into space reserved for the application heap. If this happens, it is
very likely that data in the heap will become corrupted.

The Appl Li m t global variable marks the upper limit to which your heap can grow. If
you call the MaxAppl Zone procedure at the beginning of your program, the heap
immediately extends all the way up to this limit. If you were to use all of the heap’s free
space, the Memory Manager would not allow you to allocate additional blocks above
Appl Li m t. If you do not call MaxAppl Zone, the heap grows toward Appl Li mi t
whenever the Memory Manager finds that there is not enough memory in the heap to fill
a request. However, once the heap grows up to Appl Li mi t, it can grow no further.
Thus, whether you maximize your application heap or not, you can use only the space
between the bottom of the heap and Appl Li mi t.

o -

Unlike the heap, the stack is not bounded by Appl Li mi t . If your application uses
heavily nested procedures with many local variables or uses extensive recursion, the
stack could grow downward beyond Appl Li mi t . Because you do not use Memory
Manager routines to allocate memory on the stack, the Memory Manager cannot stop
your stack from growing beyond Appl Li mi t and possibly encroaching upon space
reserved for the heap. However, an Operating System task checks approximately 60
times each second to see if the stack has moved into the heap. If it has, the task, known
as the “stack sniffer,” generates a system error.

The Application Stack

The stack is an area of memory in your application partition that can grow or shrink at
one end while the other end remains fixed. This means that space on the stack is always
allocated and released in LIFO (last-in, first-out) order. The last item allocated is always
the first to be released. It also means that the allocated area of the stack is always
contiguous. Space is released only at the top of the stack, never in the middle, so there
can never be any unallocated “holes” in the stack.

By convention, the stack grows from high-memory addresses toward low-memory
addresses. The end of the stack that grows or shrinks is usually referred to as the “top”
of the stack, even though it’s actually at the lower end of memory occupied by the stack.

Because of its LIFO nature, the stack is especially useful for memory allocation
connected with the execution of functions or procedures. When your application calls a
routine, space is automatically allocated on the stack for a stack frame. A stack frame
contains the routine’s parameters, local variables, and return address. Figure 2-3
illustrates how the stack expands and shrinks during a function call. The leftmost
diagram shows the stack just before the function is called. The middle diagram shows
the stack expanded to hold the stack frame. Once the function is executed, the local

Application Partitions 33

CHAPTER 2

Memory

variables and function parameters are popped off the stack. If the function is a Pascal
function, all that remains is the previous stack with the function result on top.

Figure 2-3 The application stack

High memory } } High memory } } High memory }

Top — .F === — === = — —]
of stack : Function result
: A
\j
Low memory { Low memory { Low memory {
D Used Area

|:| Unused area

Note

Dynamic memory allocation on the stack is usually handled
automatically if you are using a high-level development language such
as Pascal. The compiler generates the code that creates and deletes stack
frames for each function or procedure call. O

The Application Heap

An application heap is the area of memory in your application partition in which space
is dynamically allocated and released on demand. The heap begins at the low-memory
end of your application partition and extends upward in memory. The heap contains
virtually all items that are not allocated on the stack. For instance, your application heap
contains the application’s code segments and resources that are currently loaded into
memory. The heap also contains other dynamically allocated items such as window
records, dialog records, document data, and so forth.

34 Application Partitions

CHAPTER 2

Memory

You allocate space within your application’s heap by making calls to the Memory
Manager, either directly (for instance, using the NewHand! e function) or indirectly (for
instance, using a routine such as the Window Manager’s NewW ndow which in turn calls
Memory Manager routines). Space in the heap is allocated in blocks, which can be of any
size needed for a particular object.

The Memory Manager does all the necessary housekeeping to keep track of blocks in the
heap as they are allocated and released. Because these operations can occur in any order,
the heap doesn’t usually grow and shrink in an orderly way, as the stack does. Instead,
after your application has been running for a while, the heap can tend to become
fragmented into a patchwork of allocated and free blocks, as shown in Figure 2-4. This
fragmentation is known as heap fragmentation.

o -

Figure 2-4 A fragmented heap

? High memory }

{ Low memory {

[] Allocated blocks
|:| Free blocks

Application Partitions 35

CHAPTER 2

Memory

One result of heap fragmentation is that the Memory Manager might not be able to
satisfy your application’s request to allocate a block of a particular size. Even though
there is enough free space available, the space is broken up into blocks smaller than the
requested size. When this happens, the Memory Manager tries to create the needed
space by moving allocated blocks together, thus collecting the free space in a single
larger block. This operation is known as heap compaction. Figure 2-5 shows the results
of compacting the fragmented heap shown in Figure 2-4.

Figure 2-5 A compacted heap

36

} High memory }

{ Low memory {

|:| Allocated blocks
|:| Free blocks

Heap fragmentation is generally not a problem as long as the blocks of memory you
allocate are free to move during heap compaction. There are, however, two situations in
which a block is not free to move: when it is a nonrelocatable block, and when it is a
relocatable block that is temporarily locked in place. To minimize heap fragmentation,
you should use nonrelocatable blocks sparingly, and you should lock relocatable blocks
only when absolutely necessary. See “Memory Blocks” starting on page 38 for a
description of relocatable and nonrelocatable blocks.

Application Partitions

CHAPTER 2

Memory

The Application Global Variables and A5 World

Your application’s global variables are stored in an area of memory near the top of your
application partition known as the application A5 world. The A5 world contains four
kinds of data:

application global variables

application QuickDraw global variables

application parameters

the application’s jump table

Each of these items is of fixed size, although the sizes of the global variables and of the
jump table vary from application to application. Figure 2-6 shows the standard
organization of the A5 world.

o -

Figure 2-6 Organization of an application’s A5 world

} High memory }

Jump table

Application parameters

Current A5

Application global
variables

QuickDraw global
variables

Note

An application’s global variables may appear either above or below the
QuickDraw global variables. The relative locations of these two items
are determined by your development system’s linker. In addition, part
of the jump table might appear below the boundary pointed to by
Current A5. O

Application Partitions 37

CHAPTER 2

Memory

The system global variable Cur r ent A5 points to the boundary between the current
application’s global variables and its application parameters. For this reason, the
application’s global variables are found as negative offsets from the value of

Cur r ent A5. This boundary is important because the Operating System uses it to access
the following information from your application: its global variables, its QuickDraw
global variables, the application parameters, and the jump table. This information is
known collectively as the A5 world because the Operating System uses the
microprocessor’s A5 register to point to that boundary.

Your application’s QuickDraw global variables contain information about its drawing
environment. For example, among these variables is a pointer to the current graphics
port.

Your application’s jump table contains an entry for each of your application’s routines
that is called by code in another segment. The Segment Manager uses the jump table to
determine the address of any externally referenced routines called by a code segment.
For more information on jump tables, see the chapter “Segment Manager” in Inside
Macintosh: Processes.

The application parameters are 32 bytes of memory located above the application global
variables; they’re reserved for use by the Operating System. The first long word of those
parameters is a pointer to your application’s QuickDraw global variables.

Memory Blocks

38

You can use the Memory Manager to allocate two different types of blocks in your heap:
nonrelocatable blocks and relocatable blocks. A nonrelocatable block is a block of
memory whose location in the heap is fixed. In contrast, a relocatable block is a block of
memory that can be moved within the heap (perhaps during heap compaction). The
Memory Manager sometimes moves relocatable blocks during memory operations so
that it can use the space in the heap optimally.

The Memory Manager provides data types that reference both relocatable and
nonrelocatable blocks. It also provides routines that allow you to allocate and release
blocks of both types.

Memory Blocks

CHAPTER 2

Memory

Nonrelocatable Blocks

To reference a nonrelocatable block, you can use a pointer variable, defined by the Pt r

data type.

TYPE

Si gnedByt e

Ptr

-128..127;
ASi gnedByt €;

A pointer is simply the address of an arbitrary byte in memory, and a pointer to a
nonrelocatable block of memory is simply the address of the first byte in the block, as
illustrated in Figure 2-7. After you allocate a nonrelocatable block, you can make copies
of the pointer variable. Because a pointer is the address of a block of memory that cannot
be moved, all copies of the pointer correctly reference the block as long as you don’t

dispose of it.

Figure 2-7 A pointer to a nonrelocatable block

{

Heap

/

nyPoi nt er

] Nonrelocatable
[] Free space

Memory Blocks

39

o -

40

CHAPTER 2

Memory

You can allocate a nonrelocatable block of memory by calling the Memory Manager
function NewPt r. The Venn Diagrammer application uses the following line of code to
allocate a new window record each time the user creates a new document window:

nmyPoi nter := NewpPtr (sizeof (WndowRecord));
Here, myPoi nt er is of type Pt r. (To see this line of code in context, look at Listing 6-6

on page 117.)

Relocatable Blocks

To reference relocatable blocks, the Memory Manager uses a scheme known as double
indirection. The Memory Manager keeps track of a relocatable block internally with a
master pointer, which itself is part of a nonrelocatable master pointer block in your
application heap.

Note

The Memory Manager allocates one master pointer block (containing 64
master pointers) for your application at launch time, and you can call
the Mor eMast er s procedure to request that additional master pointer
blocks be allocated. O

When the Memory Manager moves a relocatable block, it updates the master pointer so

that it always contains the address of the relocatable block. You reference the block with
a handle, defined by the Handl e data type.

TYPE
Handl e = "Ptr;

A handle contains the address of a master pointer. The left side of Figure 2-8 shows a
handle to a relocatable block of memory located in the middle of the application heap. If
necessary (perhaps to make room for another block of memory), the Memory Manager
can move that block down in the heap, as shown in the right side of Figure 2-8.

Memory Blocks

CHAPTER 2

Memory

Figure 2-8 A handle to a relocatable block

I e) [wew

nmyHandl e nmyHandl e

Block of
master pointers
(nonrelocatable)

Before relocation After relocation

[l Relocatable block
] Nonrelocatable block
D Free space

Master pointers for relocatable objects in your heap are always allocated in your
application heap. Because the blocks of master pointers are nonrelocatable, it is best to
allocate them as low in your heap as possible. You can do this by calling the

Mor eMast er s procedure when your application starts up.

Memory Blocks

o -

42

CHAPTER 2

Memory

You can allocate a relocatable block of memory by calling the Memory Manager function
NewHandl| e. The Venn Diagrammer application uses the following line of code to
allocate a new document record each time the user creates a new document window:

nyHandl e : = MyDocRecHnd(NewHand| eCl ear (si zeof (MyDocRec))) ;

Here, myHandl e is of type MyDocRecHnd. The NewHand| eCl ear function is a variant
of NewHand| e that clears all bytes in the new block to 0. (To see this line of code in
context, look at Listing 6-6 on page 117.)

Whenever possible, you should allocate memory in relocatable blocks. This gives the
Memory Manager the greatest freedom when rearranging the blocks in your application
heap to create a new block of free memory. In some cases, however, you may be forced to
allocate a nonrelocatable block of memory. When you call the Window Manager function
NewW ndow for example, the Window Manager internally calls the NewPt r function to
allocate a new nonrelocatable block in your application partition. You need to exercise
care when calling Toolbox routines that allocate such blocks, lest your application heap
become overly fragmented.

Using relocatable blocks makes the Memory Manager more efficient at managing
available space, but it does carry some overhead. As you have seen, the Memory
Manager must allocate extra memory to hold master pointers for relocatable blocks. It
groups these master pointers into nonrelocatable blocks. For large relocatable blocks, this
extra space is negligible, but if you allocate many very small relocatable blocks, the cost
can be considerable. For this reason, you should avoid allocating a very large number of
handles to small blocks; instead, allocate a single large block and use it as an array to
hold the data you need.

As you have seen, a heap block can be either relocatable or nonrelocatable. The
designation of a block as relocatable or nonrelocatable is a permanent property of that
block. If relocatable, a block can be either locked or unlocked,; if it’s unlocked, a block can
be either purgeable or unpurgeable. These attributes of relocatable blocks can be set and
changed as necessary. The following sections explain how to lock and unlock blocks, and
how to mark them as purgeable or unpurgeable.

Locking and Unlocking Relocatable Blocks

Occasionally, you might need a relocatable block of memory to stay in one place. To
prevent a block from moving, you can lock it, using the HLock procedure. Once you
have locked a block, it won’t move. Later, you can unlock it, using the HUnl ock
procedure, allowing it to move again.

In general, you need to lock a relocatable block only if there is some danger that it might
be moved during the time that you read or write the data in that block. This might
happen, for instance, if you dereference a handle to obtain a pointer to the data and (for
increased speed) use the pointer within a loop that calls routines that might cause
memory to be moved. If, within the loop, the block whose data you are accessing is in
fact moved, then the pointer no longer points to that data; this pointer is said to dangle.

Memory Blocks

CHAPTER 2

Memory

Using locked relocatable blocks can, however, hinder the Memory Manager as much as
using nonrelocatable blocks. The Memory Manager can’t move locked blocks. In
addition, except when you allocate memory and resize relocatable blocks, it can’t move
relocatable blocks around locked relocatable blocks (just as it can’t move them around
nonrelocatable blocks). Thus, locking a block in the middle of the heap for long periods
can increase heap fragmentation.

Locking and unlocking blocks every time you want to prevent a block from moving can
become troublesome. Fortunately, the Memory Manager moves unlocked, relocatable
blocks only at well-defined, predictable times. In general, each routine description in
Inside Macintosh indicates whether the routine could move or purge memory. If you do
not call any of those routines in a section of code, you can rely on all blocks to remain
stationary while that code executes.

o -

Purging and Reallocating Relocatable Blocks

One advantage of relocatable blocks is that you can use them to store information that
you would like to keep in memory to make your application more efficient, but that you
don’t really need if available memory space becomes low. For example, your application
might, at the beginning of its execution, load user preferences from a preferences file into
a relocatable block. As long as the block remains in memory, your application can access
information from the preferences file without actually reopening the file. However,
reopening the file probably wouldn’t take enough time to justify keeping the block in
memory if memory space were scarce.

By making a relocatable block purgeable, you allow the Memory Manager to free the
space it occupies if necessary. If you later want to prohibit the Memory Manager from
freeing the space occupied by a relocatable block, you can make the block unpurgeable.
You can use the HPur ge and HNoPur ge procedures to change back and forth between
these two states.

IMPORTANT

A block you create by calling NewHandl e is initially unlocked and
unpurgeable. As a result, you don’t have to worry about the block being
purged unless you make the block purgeable. a

Once you make a relocatable block purgeable, you should subsequently check handles to
that block before using them if you call any of the routines that could move or purge
memory. If a handle’s master pointer is set to NI L, then the Operating System has
purged its block. To use the information formerly in the block, you must reallocate space
for it (perhaps by calling the Real | ocat eHandl e procedure) and then reconstruct its
contents (for example, by rereading the preferences file). Figure 2-9 illustrates the
purging and reallocating of a relocatable block. When the block is purged, its master
pointer is set to NI L. When it is reallocated, the handle correctly references a new block,
but that block’s contents are initially undefined.

Memory Blocks 43

CHAPTER 2

Memory

Figure 2-9 Purging and reallocating a relocatable block

[wew 4 [wew [[wewm [

MyHandl e MyHandl e — MyHandl e

Master
pointers
Before purging After purging After reallocating

Il Relocatable block
] Nonrelocatable block
[] Free space

Data Types

This section describes some of the general-purpose data types that the Memory Manager
defines. These data types are used throughout the Macintosh Toolbox and Operating
System.

Pointers and Handles

As you've seen, the Memory Manager uses pointers and handles to reference
nonrelocatable and relocatable blocks, respectively. The data types Pt r and Handl e
define pointers and handles as follows:

TYPE
Si gnedByte = -128..127; {any byte in nenory}
Byt e = 0..255; {an unsi gned byt e}
Ptr = ~Si ghedByt e; {address of a signed byte}
Handl e = "ptr; {address of a naster pointer}

44 Data Types

CHAPTER 2

Memory

The Si gnedByt e data type stands for an arbitrary byte in memory, just to give Pt r and
Handl e something to point to. The Byt e data type is an alternative definition that treats
byte-length data as an unsigned rather than a signed quantity.

The Pascal language defines the special symbol NI L, which can be the value of any
pointer type. You can assign NI L to any pointer (and hence to any handle) to indicate
that the pointer has a defined value but does not point anywhere useful. Some system
software routines return NI L as the value of a pointer or handle if the routine fails to
perform the requested action. For example, the NewHand! e routine returns NI L if the
requested amount of memory is not available in the application heap.

For C, the type declarations look like this:

o -

t ypedef char SignedByte; /*any byte in nmenory*/

t ypedef unsigned char Byte; /*an unsi gned byte*/

typedef char *Ptr; /*address of a signed byte*/
typedef Ptr *Handl e; /*address of a master pointer*/

Unlike Pascal, the C language does not contain a reserved symbol for a nil pointer. Most
development systems, however, include definitions of both ni | and NULL:

#define NULL O
#define nil O

Because of C’s loose type conventions, you can assign the values ni | and NULL to data
types other than pointers and handles. In Pascal, the compiler generates an error if you
try to assign the value NI L to an object whose data type is not defined as a pointer to
some data type.

Strings

The Macintosh system software uses strings in arrays of up to 255 characters, with the
first byte of the array storing the length of the string. Some Toolbox routines allow you to
pass such a string directly; others require that you pass a pointer or a handle to a string.
The Memory Manager provides the following type definitions that define character
strings in terms of the Pascal St r i ng data type:

TYPE

Stri5 = String[15];
Str27 = String[27];
Str31 = String[31];
Str63 = String[63];
St r 255 = String[255];
StringPtr = NStr255;

Stri ngHandl e = AStringPtr;

Data Types 45

46

CHAPTER 2

Memory

The C language treats strings differently than Pascal does. In C, strings are of variable
length, with the end of the string marked by a special delimiter, usually the null
character (ASCII 0). If you are using C, you must make certain to pass Pascal-style
strings to Toolbox routines or to use special versions of the Toolbox routines that accept
C strings. Check the documentation for your development environment for complete
details.

Procedure Pointers

For treating procedures and functions as data objects, the Memory Manager defines the
Pr ocPt r data type:

TYPE
ProcPtr = Ptr; {pointer to a procedure}

For example, after the declarations

VAR
myProcPtr: ProcPtr;

PROCEDURE MyPr oc;
BEG N

END;

you can make nmyPr ocPt r reference the MyPr oc procedure by using Pascal’s @operator,
as follows:

myProcPtr := @WProc;

With the @operator, you can assign procedures and functions to variables of type

Pr ocPt r, embed them in data structures, and pass them as arguments to other routines.
Notice, however, that the data type Pr ocPt r technically points to an arbitrary byte, not
an actual routine. As a result, there’s no way in Pascal to access the underlying routine
via this pointer in order to call it. Only routines written in assembly language can
actually call routines designated by pointers of type ProcPtr.

Note

You can’t use the @operator to reference procedures or functions whose
declarations are nested within other routines. 0O

Data Types

CHAPTER 2

Memory

Type Coercion

Because of Pascal’s strong typing rules, you can’t directly assign a pointer value to a
variable of some other pointer type, or pass a pointer variable to a routine requesting
some other pointer type. Instead, you have to coerce the pointer from one type to another.

For example, you can call the HLock procedure to lock a relocatable block of memory.
The HLock procedure requires a parameter of type Handl e. If the block you want to
lock isn’t referenced by a variable of type Handl e, you must coerce the variable to the
required type. Here’s an example:

HLock(Handl e(nyDat a)) ;

o -

Similarly, the Get Di al ogl t emprocedure returns in a VAR parameter a handle to an
item in a dialog box. If you were to use the procedure to obtain the handle to a button in
the variable i t enHand of type Handl e, you might need to access the button as a
control. For example, you could access the button’s enclosing rectangle with the code:

Cont r ol Handl e(i t enHand) ~*. contrl Rect ;

You can use this same syntax to equate any two variables of the same length. For
example:

VAR
nmyChar : Char ;
my Byt e: Byt e;

nyByte : = Byte(nyChar);

You can also use the functions ORD, ORD4, and POl NTER to coerce variables of different
length from one type to another. For example:

VAR
myl nteger: | nteger;
nyLongl nt: Longlnt;
nyPointer: Ptr;

nyl nteger := ORD(myLonglnt); {two | ow order bytes only}

nyl nteger : = ORD(myPointer); {two | ow order bytes only}
myLongl nt : = ORD(nyl nt eger); {packed into high-order bytes}
nyLongl nt : = ORD4(nyl nteger); {packed into | ow order bytes}
nyLongl nt : = ORD(myPoi nter);

myPoi nter := PO NTER(nyl nt eger);

nyPoi nter := PO NTER(myLonglnt);

Note

Assembly-language and C language programmers don’t need to bother
with type coercion. O

Data Types 47

CHAPTER 3

Resources

Contents

About Resources 51
Resource Paths 52
Resource Types 55
Resource Structure 56

Using Standard Resources 59

Using Custom Resources 60

Contents 49

CHAPTER 3

Resources

This chapter describes how your application can use the Resource Manager to create and
manage resources, collections of data stored in a file’s resource fork that have a defined
structure or type. The Macintosh Operating System and the Macintosh Toolbox define a
large number of resource types. You’ll need to include resources of some of these types
in your application’s resource file to meet various requirements of the system software.
In addition, the system software provides a number of resources (such as fonts, patterns,
and icons) that you can use to help create the standard Macintosh user interface for your
application.

This chapter begins with a general description of resources. Then it shows how to
= Use predefined system resources

= create resources of a standard type

= define your own custom resources and resource types

For a complete description of the capabilities of the Resource Manager and for code
samples illustrating more advanced resource-handling techniques, see the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

S921N0Say -

About Resources

An experienced Macintosh programmer might cringe at several features of the GreetMe
source code shown in Listing 1-1 on page 3. One of the main sins it commits is this line:

gString := "Hello, world!";

The problem with this line is that it includes, as part of the source code of the
application, the message string that is to be displayed in the output window. While such
an intermixing of code and data might be standard in some programming environments,
it’s definitely nonstandard in the Macintosh environment. To change the message, or to
produce a version of the message in a different language, you’d need to change the
source code and recompile the application. It would be better to isolate the changing
data (the message string) from the application’s code.

When you’re programming on the Macintosh, you can do this by creating a resource that
contains the message string. A resource is any collection of data having a defined
structure that is stored in a file designed to hold resources, known as a resource file.
Then you can read the message string from the resource file using a call like this:

GetlndString(gString, kMessages, kGreetingString);

About Resources 51

52

CHAPTER 3

Resources

The Get | ndSt ri ng procedure reads the resource of type ' STR#' that has the resource
ID kMessages in an open resource fork. This type of resource contains a string list,
which is a sequential list of Pascal strings. Then Get | ndSt r i ng selects the string having
the index kGr eet i ngSt ri ng. If there are at least that many strings in the string list, it
puts the appropriate string into the first parameter (in this case, gSt ri ng).

Note

The Get | ndSt ri ng procedure is not part of the Resource Manager, but
it does call the Resource Manager. Many Toolbox and Operating System
routines internally call the Resource Manager to retrieve information
from resources. O

The resources used by an application can be created and changed separately from the
application’s code. This separation is the main advantage to having resource files. A
change in a simple greeting or in the title of a menu, for example, won’t require any
recompilation of code, nor will translation to another language.

IMPORTANT

Properly written Macintosh applications should store all language- or
location-sensitive data as resources, so that localization is largely a
matter of editing the application’s resources. a

Resource Paths

At any given time during your application’s execution, there are usually two or more
open resource files from which you can read information. The system resource file is
opened by the Operating System at startup time. It contains standard resources, called
system resources, shared by all applications. Among these are icons, fonts, sounds, and
other collections of data. The system resource file also contains a number of code
resources that you call indirectly to help create the standard Macintosh user interface.
For example, the standard appearance and behavior of pull-down menus is governed by
a menu-definition procedure, stored as a resource of type ' MDEF' in the system resource
file. The system resource file also contains code resources that help you create standard
windows and controls.

Your application’s resource file is opened when your application is launched. You can
call the Cur ResFi | e function early in your application’s execution to get the reference
number of your application’s resource file.

gAppsResourceFil e : = CurResFil e;

About Resources

CHAPTER 3

Resources

You need to keep track of your application’s resource file because the Resource Manager
always looks for resources in the current resource file, which can change. Each time you
open a resource file, it becomes the current resource file. You’re likely to open a number
of different resource files at various points in your application’s execution. For instance,
many applications store the user’s general preferences in a resource file in the
Preferences folder in the System Folder. In addition, if your application supports
document files, you’ll probably store some of the document’s settings in the document’s
resource file. Table 3-1 summarizes the typical locations of resources used by an
application.

Table 3-1 Typical locations of resources
Resource file Resources contained in file
System resource file Standard elements of the Macintosh user interface

(such as fonts, sounds, and icons) shared by all
applications, and code resources that manage user
interface elements (such as menus, controls, and
windows)

Application resource file Resources containing static data (such as menu titles,
menu items, and text strings) used by the application

S921N0Say -

Application preferences file Resources encoding the user’s global preferences for
the application

Document resource file Resources used only in this document, or resources that
govern the appearance of the document’s window
(such as its location on the screen)

When searching resource files, the Resource Manager generally begins with the most
recently opened one. When you ask it to open a resource of a particular type and ID, it
first looks in the current resource file. If the Resource Manager doesn’t find the specified
resource there, it then looks in the resource file opened just before the current resource
file. As long as the resource remains unfound, the Resource Manager continues until it
reaches the last resource file in the chain, which is probably the system resource file. If
the specified resource isn’t there either, the Resource Manager gives up and notifies your
application that the resource can’t be found.

About Resources 53

CHAPTER 3

Resources

Figure 3-1 illustrates a typical search path followed by the Resource Manager as it looks
for a particular font.

Figure 3-1 Searching for a resource

54

Look for:

1'4
M
Usual search path

j> not found

Document
resource file L

\

- <] foun
Application ound
resource file

path not
taken
System
resource file

Note

Unlike the system resource file and your application’s resource file, a
document’s resource file is not automatically opened when you open the
document’s data fork. If you want to include a document’s resource fork
in the chain of open resource files, you need to open it explicitly (for
instance, using the HOpenResFi | e routine). 0O

In general it’s best not to rely too much on the Resource Manager’s ability to search
through open resource files; instead, you should explicitly set the appropriate resource
file as the current resource file (by calling Set ResFi | e) before you read or write any
resource data. In addition, you can restrict the Resource Manager’s search for a resource
to the current resource file by using special Resource Manager routines. For example,
instead of calling Get Resour ce, you can call Get 1Resour ce. This instructs the
Resource Manager to look only in the first resource file in the chain of open resource files.

About Resources

CHAPTER 3

Resources

Resource Types

As indicated above, resources are grouped logically by function into resource types. You
refer to a resource by passing the Resource Manager a resource specification, which
consists of the resource type and an ID number or a name. Any resource type is valid,
whether one of those recognized by the Toolbox as referring to a standard Macintosh
resource (such as a pattern), or a custom type created for use by your application.

Note

The Resource Manager knows nothing about the formats of the
individual types of resources. Only the routines in the other parts of the
Toolbox and Operating System that call the Resource Manager have this
knowledge. O

A resource type can be any sequence of four alphanumeric characters, including the
space character. You can create resource types for your application, provided that they
consist of all uppercase letters and do not conflict with the standard resource types
already created. A resource type is defined by the ResType data type:

TYPE ResType = PACKED ARRAY[1..4] OF CHAR

IMPORTANT
Uppercase letters are distinguished from their lowercase counterparts in
resource types. In addition, Apple reserves for its own use all resource
types that include any lowercase letters. If you create custom resource
types for use by your application, make sure that the type includes all
uppercase letters. a

Table 3-2 lists the names and uses of some of the standard resource types used by the
Macintosh system software. Uppercase resources are listed first.

Table 3-2 Some standard resource types
Resource type Meaning

" ALRT' Alert box template

' CODE' Application code segment

' CURS' Cursor

"DI TL' Item list in a dialog or alert box
' DLOG Dialog box template

" FONT' Bitmapped font

" | CON Icon

' MBAR Menu bar

" MENU Menu

" PAT ' Pattern (The space in the resource type is required.)

continued

About Resources 55

S921N0Say -

56

CHAPTER 3

Resources

Table 3-2 Some standard resource types (continued)

Resource type Meaning

"PICT QuickDraw picture

' Sl ZE' Size of an application’s partition and other information
"STR ' String (The space in the resource type is required.)
' STR# String list

"W ND Window template

"hdl g' Help for dialog box or alert box items

"sfnt’ Outline font

"snd ' Sound (The space in the resource type is required.)

You pick out a particular resource by specifying its type together with a resource name
or aresource ID number. In general, it’s best to use resource 1Ds because they’re
guaranteed to be unique within any given resource file. By contrast, it’s possible to have
two different resources of the same type with the same name.

Resource Structure

A resource file consists of a number of individual resources together with a resource
map, an indication of where in the resource file the data for a given resource is to be
found. You usually don’t need to know about the structure—or even the existence—of
the resource map. The Resource Manager uses it to keep track of a resource file’s
resources. If you lengthen or shorten a resource, or remove one from the resource file
entirely, the Resource Manager takes care of modifying the resource map accordingly.

Often, you don’t even need to know about the structure of the individual resources you
access in a resource fork. Sometimes you just need to open a resource and pass the
handle you receive from the Resource Manager to some Toolbox routine. Here’s an
example:

FOR count := 1 TO 4 DO
gEmptyPat s[count] := GetPattern(kEnmptyl D + (count - 1));

Fi | | Rgn(myRegi on, gEnpt yPat s[gEnpt yl ndex] ") ;

About Resources

CHAPTER 3

Resources

At application startup time, the Venn Diagrammer application reads the four available
emptiness patterns from the application’s resource file. Later, when it is drawing the
current contents of the Venn diagram, it might fill a specified region with the current
pattern. The application itself knows nothing about the actual structure of a pattern.

Sometimes, however, you do need to know about the structure of the individual
resources you want to use in your application. This is certainly true for any resources
your application defines itself. Occasionally, you also need to know how the data in a
system resource is structured. Inside Macintosh uses two general methods for displaying
the structure of a resource’s data: resource descriptions and resource diagrams.

The first method used in Inside Macintosh to describe the structure of a resource involves
specifying a description in the Rez resource description language. Listing 3-1 shows the
Rez input for a sample dialog box.

Listing 3-1 Rez input for the Preferences dialog box

resource 'DLOG (rVennDPrefsDial, purgeable) { /*di al og resource*/ P

{84, 82, 264, 362}, /*rectangle for dial og box*/ §

noG owbocPr oc, /*wi ndow definition ID for nodel ess dial og*/)

vi si bl e, /*display this dialog box inredi atel y*/ ¢

goAway, /*draw a cl ose box*/

0x0, /*initial refCon value of zero*/

r VennDPr ef sDi al , /*use itemlist with res ID rVennDPrefsDi al */

"Venn Di agram Preferences”,/*w ndow title*/

noAut oCent er /*don't automatically center the w ndow/

}s

Rez is a resource compiler: it takes a resource description like the one shown in
Listing 3-1 and produces a compiled resource. As you can see, the Rez description
includes information about the desired dialog box, including the box’s rectangle,
window definition ID, and initial window title.

Rez is provided as part of the Macintosh Programmer’s Workshop (MPW) and as part of
some third-party development environments. If you prefer, you can create and edit
resources using tools like ResEdit, a graphic resource editor provided by Apple
Computer, Inc. Using ResEdit, you'll create and modify resources in a slightly more
friendly atmosphere, by manipulating windows like the one shown in Figure 3-2.

About Resources 57

CHAPTER 3

Resources

Figure 3-2 The ResEdit version of the Preferences dialog box

58

ECJE DLOG “Venn Diagram Preferences” 10 = 3040 from | =

it

BoundsRect |ERENEN| (32 |[26¢ |[362 |[(Se) [

Vizsible i True O False

GoAway i True O False

RefCan 0 |

[tems 10 3040

Title |Uenn Oiagram Preferences

Auta toooo

FPosition ||
ik
o

ResEdit uses an internal resource compiler to turn this graphic representation of a
resource into a compiled resource.

Note

For most purposes, and especially for programmers new to the
Macintosh environment, ResEdit is a perfectly adequate tool for creating
and editing resources. For information about using ResEdit to create
resources, see ResEdit Reference. For complete information about using
Rez to compile resource descriptions into resources, see Macintosh
Programmer’s Workshop Reference. O

Whether you use Rez or ResEdit’s internal resource compiler to create resources, the
compiled resource will have the same structure. This structure is sometimes depicted in
Inside Macintosh using a resource diagram, as illustrated in Figure 3-3.

About Resources

CHAPTER 3

Resources
Figure 3-3 A resource diagram
'DLOG' resource type Bytes
} Rectangle } 8
Window definition ID 2
Visibility 1
Reserved 1
Close box specification 1
Reserved 1
Reference constant 4
Item list ID 2
/ Window title /110256
Alignment byte Oorl
Dialog box position 2

Using Standard Resources

S921N0Say ‘

In general, you’ll need to create resources describing the standard user interface
elements used by your application, including

= dialog boxes

= dialog box item lists
= menus

= windows

= controls

Using Standard Resources

FOR count

CHAPTER 3

Resources

For standard user interface elements, the Macintosh Toolbox provides special routines
you can use to open the appropriate resources. For instance, you can call the Dialog
Manager function Get NewDi al og to read a dialog box resource (of type ' DLOG) and
the corresponding item list (of type ' DI TL') from your application’s resource fork.

myDi al og : = Get NewDi al og(nmyKi nd, myPointer, WndowPtr(-1));

Similarly, you can call the Window Manager routine Get NewW ndowto open a window
description resource (of type ' W ND'). Internally, these routines call Resource Manager
routines such as Get Resour ce to read the resource data from the resource file.

Some Toolbox routines are simply loosely disguised Resource Manager calls. For
example, the code shown on page 56 which uses Get Pat t er n to open four available
emptiness patterns could be replaced by this functionally equivalent code:

=1 TO 4 DO
gEnpt yPat s[count] := GetRResource(' PAT ', kEnptylD + (count - 1));

Most Resource Manager routines that open resources return a handle to the specified
resource data. You can pass that handle to other Resource Manager routines, or doubly
dereference it to get at the resource data.

Using Custom Resources

60

In addition to using system resources to help create the standard Macintosh user
interface for your application and standard resource types to help isolate its localizable
data, you’'ll probably also want to create custom resources. This section illustrates how to
define a custom resource type and how to create and manage resources of that type. The
source code provided here shows how to handle a preferences file. This file stores the
user’s global preferences, and your application can retrieve them each time it is
launched. When it starts up, the Venn Diagrammer application tries to open a
preferences file, which contains a single resource with the following type and ID:

CONST
kPr ef ResType = 'PRFN ; {type of preferences resource}
kPr ef Resl D = 259; {1 D of preferences resource}

As you’ve seen earlier in this book, the preferences file needs to contain information
about the user’s Venn diagram preferences, as displayed in the Preferences dialog box
shown in Figure 3-4.

Using Custom Resources

CHAPTER 3

Resources
Figure 3-4 The Preferences dialog box
E[1== Uenn Diagram Preferences ===

Emptiness Pattern

o O o
Existence Symbaol

@ x O Coe O+

[JRandomly select next settings
[Automatically adjust diagram
[show Scholastic names of valid forms
[]Give exristential import to subjects

=

[Saue current preferences]

Here, there are six pieces of information that need to be tracked. To maintain this
information, the Venn Diagrammer application defines a data structure of type
My Pr ef sRec (defined in Listing 3-2).

Listing 3-2 The structure of a resource containing Venn diagram preferences
TYPE
MyPr ef sRec = RECORD
aut oDi ag: Bool ean; {do we automatically fix the diagran®}
showNane: Bool ean; {do we show nanes of valid arguments?}
i sl mport: Bool ean; {do subjects have existential inport?}
i sRandom Bool ean; {do we select next setting randonl y?}
enpt yl nd: I nt eger; {index of the desired enptiness pattern}
exi st | nd: I nt eger; {index of the desired existence synbol}
END;

MyPrefspPtr = "MyPref sRec;
MyPref shHnd = "MyPrefsPtr;

When it is first launched, the Venn Diagrammer application calls the application-defined
routine DoReadPr ef s (defined in Listing 3-3) to read the user’s existing preferences
settings. First, DoReadPr ef s determines the name of the preferences file by reading a
resource in the application’s resource file that contains that name. By convention, the
name of the preferences file consists of the name of the application followed by the string
“ Preferences”, for instance, Venn Diagrammer Preferences.

Using Custom Resources 61

S921N0Say -

CHAPTER 3

Resources

Listing 3-3 Reading a user’s preferences

PROCEDURE DoReadPr ef s;

VAR
nyVRef Num | nteger;
myDirl D: Longl nt ;
nyNane: Str 255; {name of this application}
nyPrefs: Handl e; {handl e to actual preferences data}
myResNum I nt eger; {reference nunber of opened resource file}
nyResul t : CSErr;

CONST
kNanmel D = 4000; {resource ID of 'STR# with filenane}

BEG N

{Determ ne the nanme of the preferences file.}
Cet I ndString(myName, kNanelD, 1);

{Figure out where the preferences file is.}
| F 1 sFi ndFol der THEN

nmyResul t : = Fi ndFol der (kOnSyst enDi sk, kPreferencesFol der Type,
kDont Cr eat eFol der, nmyVRef Num nyDirl D)
ELSE
nyResult := -1;

I F nyResult <> noErr THEN

BEG N
nyVRef Num : = 0; {use default vol une}
myDirID := 0; {use default directory}
END;

{Open the preferences resource file.}
nmyResNum : = HOpenResFi | e(nmyVRef Num nyDirI D, myNane, fsCurPerm;

{1f no preferences file successfully opened, create one }
{ by copying default preferences in app's resource file.}
IF nyResNum = -1 THEN
myResNum : = DoCreat ePrefsFil e(nyVRef Num nyDirl D, nyNane);

| F nyResNum <> -1 THEN {if we successfully opened the file...}
BEG N
UseResFi | e(myResNunj ; {make the new resource file current one}

nyPrefs : = Get 1Resource(kPref ResType, kPrefReslID);
IF nyPrefs = NIL THEN

exi t (DoReadPr ef s);
W TH MyPr ef sHnd(nyPref s) " DO

62 Using Custom Resources

END;

CHAPTER 3

Resources

BEA N {read the preferences settings}
gAut oAdj ust : = aut oD ag;
gShowNanes : = showNane;
gG velmport := islnport;
gSt epRandom : = i sRandom
gEnptyl ndex : = enptyl nd;
gExi st ndex := existlnd,

END;

{Make sure sone preferences globals nake sense.}
IF NOT (gExistlndex INJ[1..4]) THEN

gExi st ndex := 1;
| F NOT (gEnptylndex INJ[1..4]) THEN

gEmptyl ndex := 1;

{Reinstate the application's resource file.}
UseResFi | e(gAppsResour ceFi | e);

S921N0Say -

gPreferencesFil e : = nyResNum {remenber its resource |D}

END;

After determining the name of the preferences file, DoReadPr ef s calls the
application-defined utility | sFi ndFol der to see whether the operating environment
supports the Fi ndFol der function. (See Listing 9-6 on page 179 for a definition of

| sFi ndFol der.) If it does, DoReadPr ef s calls Fi ndFol der to find the location of the
Preferences folder. The Fi ndFol der function returns the volume reference number and
the directory ID of that folder, if it can be found. If Fi ndFol der isn’t available or if it
cannot find the Preferences folder, DoReadPr ef s looks in the default directory on the
default volume.

IMPORTANT

Just looking in the default directory when you cannot find the
Preferences folder isn’t really the best thing to do. Your application
would probably want to look in the System Folder to see if your
preferences file is there. a

Once the target folder is successfully located, DoReadPr ef s calls the HOpenResFi | e
function to try to open a file having the required name in that folder. If no such file can
be opened (as indicated by a returned reference number of —-1), DoReadPr ef s calls the
application-defined function DoCr eat ePr ef sFi | e to attempt to create a new
preferences file. (See Listing 3-4 for a definition of DoCr eat ePr ef sFi | e.)

If the existing or newly created preferences file is successfully opened, then
DoReadPr ef s calls UseResFi | e to make that file the current resource file. Then it
reads the resource of type kPr ef ResType and ID kPr ef Res| Dfrom that file. If all goes

Using Custom Resources 63

CHAPTER 3

Resources

well, DoReadPr ef s reads the current settings from that resource and assigns them to
the appropriate global variables:

W TH MyPr ef sHnd(nyPref s) " DO

BEG N {read the preferences settings}
gAut oAdj ust : = autoDi ag;
gShowNanes : = showNane;
gG vel nmport : = islnport;

gSt epRandom : = i sRandom

gEnptyl ndex : = enptyl nd;

gExi st ndex := existlnd;
END;

Finally, DoReadPr ef s ensures that the values of the two index variables are within
acceptable limits and then restores the application’s resource file as the current resource
file by calling UseResFi | e once again. Notice that the preferences resource file is left
open; this way, the Venn Diagrammer application need not reopen the file if the user
wants to change the stored preferences settings.

The DoCr eat ePr ef sFi | e function that is called by DoReadPr ef s is defined in
Listing 3-4. Essentially, DoCr eat ePr ef sFi | e creates a resource file in the appropriate
location and with the appropriate name; then it copies into that new resource file an
existing set of preferences (stored in the application’s resource fork).

Listing 3-4 Creating a preferences file

FUNCTI ON DoCreat ePrefsFile (nyVRef Num Integer; nyDirlD:. Longlnt;

nyNane: Str255): |nteger;

VAR
myResNum | nt eger;
nyResul t : CSErr;
nyl D: I nt eger; {resource I D of resource in app's res fork}
myHandl e: Handl e; {handl e to resource in app's res fork}
nyType: ResType; {ignored; used for GetReslnfo}

BEG N
myResult := noErr;

HCr eat eResFi | e(nyVRef Num nyDirl D, myNane);

I F ResError = noErr THEN

BEG N
nyResNum : = HOpenResFi | e(myVRef Num nyDirl D, nyName, fsCurPern;
I F nyResNum <> -1 THEN

64

BEG N
UseResFi | e(gAppsResourceFil e);
nyHandl e : = Get 1Resour ce(kPref ResType, kPrefReslD);
| F ResError = noErr THEN

Using Custom Resources

CHAPTER 3

Resources

BEG N
Cet Resl nfo(myHandl e, nyl D, nyType, nyNane);
nmyResul t : = DoCopyResour ce(kPref ResType, nyl D,

gAppsResour ceFil e, nmyResNum ;
END
ELSE

BEG N
Cl oseResFi | e(myResNunm ;
nyResult := HDel ete(nyVRef Num nyDirl D, nyNane);
myResNum : = -1,

END;

END;

DoCreatePrefsFile : = myResNum
END;
END;

To copy the existing resource from the application’s resource file to the new preferences
resource file, DoCr eat ePr ef sFi | e calls the application-defined routine
DoCopyResour ce. A version of DoCopyResour ce is shown in Listing 3-5.

S921N0Say -

Listing 3-5 Copying a resource from one resource file to another

FUNCTI ON DoCopyResource (rType: ResType; rlID: Integer; source: Integer;
dest: Integer): OSErr;

VAR
nmyHandl e: Handl e; {handl e to resource to copy}
ny Nane: Str 255; {nane of resource to copy}
nmyAttr: I nt eger; {resource attri butes}
nyType: ResType; {ignored; used for GetReslnfo}
nyl D: I nt eger; {ignored; used for GetReslnfo}
nyResul t : OSErr;
myCurrent: |Integer; {current resource file on entry}
BEG N
nmyCurrent := CurResFile; {renmenmber current resource file}
UseResFi |l e(source); {set the source resource file}

nyHandl e : = Get 1Resource(rType, rID); {open the source resource}
I F myHandl e <> NIL THEN

BEG N
Get Resl nfo(nmyHandl e, nyl D, nyType, nyNane); {get res nane}
nyAttr := GetResAttrs(myHandl e); {get res attributes}
Det achResour ce(nyHandl e) ; {so we can copy the resource}
UseResFi | e(dest); {set destination resource file}

Using Custom Resources 65

CHAPTER 3

Resources

ResError = noErr THEN
AddResour ce(myHandl e, rType, rlD, nyNane);

| F ResError = noErr THEN
Set ResAttrs(nyHandl e, nyAttr);{set res attributes of copy}
| F ResError = noErr THEN
ChangedResour ce(myHandl e) ; {mark resource as changed}
I F ResError = noErr THEN
Wit eResour ce(myHandl e) ; {write resource data}
END;
DoCopyResource : = ResError; {return result code}
Rel easeResour ce(myHandl e) ; {get rid of resource data}
UseResFi |l e(myCurrent); {restore original resource file}
END;

As you can see, DoCopyResour ce opens the resource to be copied. It copies that
resource into the destination resource file by making the destination file the current
resource file and then calling the Resource Manager routine AddResour ce. However,
before calling AddResour ce, you need to disassociate the source resource from its
resource file. Because AddResour ce requires a handle to some data in memory that is
not a handle to an existing resource, you need to call the Det achResour ce procedure to
cut the link between the resource data and its original resource file.

You can determine whether a Resource Manager call succeeded by calling the function
ResEr r or, which returns the result code from the most recently executed Resource
Manager routine. The DoCopyResour ce function calls ResEr r or repeatedly to make
sure that the resource data was successfully added, that the resource attributes were
successfully copied, that the destination resource was successfully marked as changed,
and that the data was successfully written out to disk.

It’s easy to see how to save a set of preferences to the user’s preferences file. In essence,
you simply need to reverse the strategy employed in reading the preferences. Listing 3-6
defines the DoSavePr ef s procedure, which the Venn Diagrammer application calls
whenever the user wants to save the current preferences settings. The DoSavePr ef s
procedure assumes that the application’s preferences file is already open.

Listing 3-6 Saving current preferences settings

PROCEDURE DoSavePr ef s;

66

VAR
nyPr ef Dat a: Handl e; {handl e to new resource data}
myHandl e: Handl e; {handl e to resource to repl ace}
nmy Nare: Str 255; {nane of resource to copy}
nyAttr: I nt eger; {resource attri butes}
myType: ResType; {ignored; used for CetReslnfo}
nyl D: I nt eger; {ignored; used for GetReslnfo}

Using Custom Resources

CHAPTER 3

Resources

BEG N
{Make sure we have an open preferences file.}
| F gPreferencesFile = -1 THEN
exi t (DoSavePrefs);

nmyPref Dat a : = NewHandl eC ear (si zeof (MyPref sRec)) ;
HLock(myPr ef Dat a) ;
W TH MyPr ef sHnd(myPr ef Dat a) ** DO

BEG N
aut oDi ag : = gAut 0oAdj ust;
showNane : = gShowNanes;
i slnport := gG velnport;
i sRandom : = gSt epRandom
enptyl nd : = gEnptyl ndex;
exi stlnd : = gExistlndex;

END;

UseResFi | e(gPreferencesFile); {use preferences file}

nmyHandl e : = Get 1Resour ce(kPref ResType, kPrefReslD);
I F myHandl e <> NIL THEN

BEG N
Get Resl nfo(nmyHandl e, nyl D, nyType, nyNane); {get res nane}
myAttr : = CGetResAttrs(nyHandl e); {get res attributes}

RmveResour ce(nyHandl e) ;
I F ResError = noErr THEN
AddResour ce(myPref Data, kPref ResType, kPrefReslD, nyNane);
I F ResError = noErr THEN
Wit eResource(mnyPrefData);
END;

HUnI ock(myPr ef Dat a) ;

Rel easeResour ce(myPr ef Dat a) ;

UseResFi | e(gAppsResourceFil e); {restore app's resource file}
END;

The DoSavePr ef s procedure creates a new preferences record and fills in the fields as
appropriate. Then it removes the existing preferences resource from the preferences file
and adds a new resource. To make sure that the new resource data is written out to disk,
DoSavePr ef s calls the Wi t eResour ce procedure. Finally, DoSavePr ef s restores the
application’s resource file as the current resource file.

Using Custom Resources 67

S921N0Say -

CHAPTER 4

Events

Contents

About Events 71

Initializing an Application 74

Receiving Events 75

Handling Events Outside the Main Event Loop 79

Contents 69

CHAPTER 4

Events

This chapter describes how you can use the Event Manager to receive information about
user actions and to receive notice of changes in the processing status of your application.
One of the key elements of a well-written Macintosh application is its “user-centered”
design. This means, among other things, that instead of carrying out a sequence of steps
in a predetermined order, the application is driven primarily by user actions (such as
moving the mouse, pressing the mouse button, and typing characters) whose order
cannot in general be predicted. This chapter describes how the Macintosh system
software reports user actions to your application and shows how to structure your
application to facilitate the implementation of user-centered design.

This chapter begins by describing some of the features of a good user-centered design
and some general ways to implement them. Then it shows how to

= initialize the basic Toolbox managers
= receive information from the Event Manager about user actions

= respond to user actions

For a complete description of the capabilities of the Event Manager, see the chapter
“Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials. For the complete story
on the features of a good user interface, see Macintosh Human Interface Guidelines.

About Events

Probably the most distinctive aspect of a well-written Macintosh application is that it
puts users in control of the application, not the other way around. To be in control, the
user should be able to perform, at any particular time, any of a wide array of actions.
These actions might include pulling down one of your application’s menus, choosing a
menu command, typing some characters, moving a window, and so forth. A key concept
here is that users should feel that your application is always ready to do something for
them.

o -

Even when your application is busy performing some lengthy operation (for instance,
saving a document to disk) and you need to prevent the user from doing other things,
you should provide some safe way for the user to cancel the operation and regain
control. Typically you accomplish this by displaying a dialog box indicating that a
lengthy operation is underway; the dialog box should indicate some safe way for the
user to stop the operation.

The essence of this user-centered design is the use of an event-driven programming
model . In other words, the system software breaks up the user’s actions into their
component events, which are passed one by one to your application for handling. For
example, when the user presses a key on the keyboard, the system software sends your
application information about that event. This information includes which key was
pressed, when the key was pressed, whether any modifier keys (for instance, the
Command key) were being held down at the time of the keypress, and so forth. Your
application responds to the event by performing whatever actions are appropriate.

About Events 71

72

CHAPTER 4

Events

Your application can receive many types of events. Events are usually divided into three
categories:

= low-level events
= operating-system events
= high-level events

The Event Manager returns low-level events to your application for occurrences such as
the user pressing the mouse button, releasing the mouse button, pressing a key on the
keyboard, or inserting a disk. The Event Manager also returns low-level events to your
application if your application needs to activate a window (that is, make changes to a
window based on whether it is in front or not) or update a window (that is, redraw the
window’s contents). When your application requests an event and there are no other
events to report, the Event Manager returns a null event.

The Event Manager returns operating-system events to your application when the
processing status of your application is about to change or has changed. For example, if a
user brings your application to the foreground, the Process Manager sends an event
through the Event Manager to your application. Some of the work of reactivating your
application is done automatically, both by the Process Manager and by the Window
Manager; your application must take care of any further processing needed as a result of
your application being reactivated.

The Event Manager returns high-level events to your application as a result of
communication directed to your application from another application or process.

Note

Low-level events, except for update events and null events, are always
directed to the foreground process. Operating-system events are also
always directed to the foreground process. High-level events, update
events, and null events can be directed to the foreground process or
background processes. O

Figure 4-1 illustrates the various sources of events that can be passed to your application.
As you can see, events originate from a number of different sources: the Operating
System Event Manager, Window Manager, Process Manager, and PPC Toolbox.

About Events

CHAPTER 4

Events
Figure 4-1 Sources of events sent to your application
N
1l
Operating System
Event Manager
Event 20
Event 19
Operating System
event queue Z]
| Event 1

Process B
Manager % <Jj PPC Toolbox
Toolbox Event

Manager j
Window

Manager [l
Evenitream

The Event Manager maintains, for each open application, an event stream containing
those events that are available to that application. Your general strategy is to retrieve an
event, process it, retrieve the next event, process it, and so on indefinitely. You stop this

process only when the user elects to quit your application.

About Events

o -

CHAPTER 4

Events

Initializing an Application

When your application first starts up, and even before you begin to receive and process
events describing the user’s actions, you need to do some initial setting up. As you’ve
already seen (page 3), you need to initialize some of the Macintosh Toolbox managers.
You also need to set up your menu bar and menus, and perform some other standard
initialization. Listing 4-1 shows the code executed by the Venn Diagrammer application
when it first starts up.

Listing 4-1 Initializing your application
Dol ni t Manager s; {initialize Tool box manager s}
DoSet upMenus; {initialize menus}
gbDone : = FALSE; {initialize global variabl es}
gNurmDocW ndows : = O; {initialize count of open doc w ndows}
gPrefsDialog := NL; {initialize ptr to Preferences dial og}
gAppsResourceFile := CurResFile; {get refnumof the app's resource file}
gPreferencesFile := -1; {initialize res ID of preferences file}
DoReadPr ef s; {read the user's preference settings}
DoVennl ni t;
DoMai nEvent Loop; {and then loop forever...}

74

The first thing the Venn Diagrammer application does is call the application-defined
routine Dol ni t Manager s to set up its application partition and initialize several
Toolbox managers. Then it calls DoSet upMenus to create its menu bar and menus. (See
Listing 8-1 on page 155 for the definition of DoSet upMenus.)

After its menu bar has been created, Venn Diagrammer initializes several global
variables and reads the user’s current preferences from a preferences file. Then the
application calls another routine, DoVennl ni t , to handle any other initialization. This
includes defining the rectangles and regions in a Venn diagram window and displaying
a window.

Note
The DoVennl ni t procedure is not defined in this book. O

Initializing an Application

CHAPTER 4

Events

Once the application has initialized itself, it starts executing its main event loop by
calling the DoMVai nEvent Loop procedure. In the main event loop, the application calls
the Event Manager to get an event, responds to the event, then loops back to repeat the
process. See Listing 4-4 on page 77 for a sample event loop.

Listing 4-2 defines the Dol ni t Manager s routine. It begins by calling two Memory
Manager routines to expand the heap zone to its limit and to create an additional block
of master pointers.

Listing 4-2 Initializing the main Toolbox Managers

PROCEDURE Dol ni t Manager s;

BEG N
MaxAppl Zone; {extend heap zone to limt}
Mor eMast er s; {get 64 nore master pointers}
InitGaf(@hePort); {initialize QuickDraw}
I nitFonts; {initialize Font Manager}
I ni t Wndows; {initialize Wndow Manager}
I ni t Menus; {initialize Menu Manager}
TElInit; {initialize TextEdit}
I nitDial ogs(NL); {initialize D al og Manager}
m
Fl ushEvent s(everyEvent, 0); {cl ear event queue} §
I nitCursor; {initialize cursor to arrow} 2
END;

Then Dol ni t Manager s calls the standard Toolbox initialization routines. Finally, it
clears the event queue and calls the QuickDraw routine | ni t Cur sor to make sure that
the cursor is the standard arrow cursor.

Receiving Events

You receive events by calling an Event Manager routine, usually WAi t Next Event .
When you ask for an event, the Event Manager returns the next available event
according to its event priority. The Event Manager returns events in this order of
priority:

1. activate events

2. mouse-down, mouse-up, key-down, key-up, and disk-inserted events in FIFO
(first-in, first-out) order

Receiving Events 75

76

CHAPTER 4

Events

3. auto-key events

4. update events (in front-to-back order of windows)

5. operating-system events (suspend, resume, mouse-moved)

6. high-level events

7. null events

To retrieve an event, you pass the Wai t Next Event function an event record, defined by
the Event Recor d data type:

TYPE Event Record =

RECORD
what : I nt eger; {event code}
nessage: Longl nt; {event nessage}
when: Longl nt; {ticks since startup}
wher e: Poi nt ; {nouse | ocati on}
nodi fi ers: I nt eger; {rodi fier flags}
END;

On return from Wai t Next Event , the what field of the event record contains an integer
that specifies the type of event received. The Event Manager uses this set of predefined
constants to indicate the event type:

CONST
nul | Event = 0; {no ot her pending events}
nouseDown = 1; {nouse button pressed}
nmouseUp 2; {nouse button rel eased}
keyDown = 3; {key pressed}
keyUp = 4; {key rel eased}
aut oKey = b5; {key hel d down}
updat eEvt = 6; {a wi ndow needs updati ng}
di skEvt 7; {di sk inserted}
activat eEvt = 8; {activat e/ deactivate w ndow}
osEvt 15; {operating-system event}
kHi ghLevel Event = 23; {hi gh-level event}

The nessage field of the event record contains additional information about the event.
The interpretation of this field depends on the type of event you’ve received. For some
events (such as null events, mouse-up, and mouse-down events), the value in the
nmessage field is undefined. For keyboard events, the nessage field indicates which key
was pressed. For activate and update events, the nessage field contains a window
pointer to the affected window. For disk-inserted events, the message field contains the
drive number in the low-order word and the result code of the File Manager’s attempt to
mount that disk in that drive. Listing 4-3 illustrates how an application reads parts of the
nmessage field while handling disk-inserted events.

Receiving Events

CHAPTER 4

Events

Listing 4-3 Handling disk-inserted events

PROCEDURE DoDi skEvent (myEvent: Event Record);

VAR
nyResul t : I nt eger;
my Poi nt : Poi nt ;
BEG N
| F H Word(nyEvent. nessage) <> noErr THEN
BEG N
Set Pt (myPoi nt, 100, 100);
nyResul t : = DI BadMount (nyPoi nt, myEvent. nessage);
END;
END;

If the disk was not successfully mounted (that is, if the high-order word of the nressage
field does not contain noEr r), then DoDi skEvent calls the system software routine

DI BadMount to inform the user and allow the disk to be ejected or reformatted. (See the
chapter “Disk Initialization Manager” in Inside Macintosh: Files for more information
about handling disk-inserted events.)

The wher e field of the event record contains, for low-level events, the location of the
cursor at the time the event was posted. You can use this information to determine where
on the screen a mouse-down event occurred, for instance.

The nodi fi er s field contains information about the state of the modifier keys and the
mouse button at the time the event was posted. For activate events, this field also
indicates whether the window should be activated or deactivated. (In System 7, it also
indicates whether a mouse-down event caused your application to switch to the
foreground.)

o -

To handle an event, you simply take whatever action is appropriate for the kind of event
it is. Listing 4-4 shows one way to structure an event-handling routine.

Listing 4-4 An event loop

PROCEDURE DoMai nEvent Loop;

VAR
nyEvent : Event Recor d;
got Event : Bool ean; {is returned event for ne?}
BEG N
REPEAT

got Event := Wit Next Event (everyEvent, nyEvent, 15, NL);
I F NOT DoHandl eDi al ogEvent (nyEvent) THEN
| F got Event THEN
BEG N
CASE nyEvent . what OF

Receiving Events 77

78

CHAPTER 4

Events

nmous eDown:

DoMouseDown(myEvent) ; {see page 120}
keyDown, aut oKey:

DoKeyDown(nyEvent) ; {see page 160}
updat eEvt :

DoUpdat e(W ndowPt r (nyEvent . nessage)); {see page 124}
di skEvt:

DoDi skEvent (myEvent); {see page 77}
activat eEvt:

DoAct i vat e(W ndowPt r (nyEvent . nessage) ,

nyEvent . nodi fiers); {see page 126}

osEvt:

DoCSEvent (nyEvent) ; {see page 171}
keyUp, nouseUp:
nul | Event:

Dol dl e(nyEvent) ; {see page 173}
OTHERW SE

END; {CASE}
END

ELSE

Dol dl e(nyEvent) ;

UNTI L gDone; {loop until user quits}
END;

The event loop defined in Listing 4-4 repeatedly calls the WAi t Next Event function to
retrieve the next available event. This function returns a value of FALSE if there are no
events of the desired type (other than null events) pending for your application.
Otherwise, WAi t Next Event returns TRUE.

After the next available event is retrieved, the DoMai nEvent Loop procedure calls the
application-defined function DoHandl eDi al ogEvent (defined in Listing 7-5 on
page 141) to determine whether the event applies to a dialog box. The

DoHandl eDi al ogEvent function returns TRUE if it handled the event and FALSE
otherwise.

Note

Dialog boxes receive special treatment because the system software
automatically handles many user actions in dialog boxes. For example,
the Dialog Manager handles update events for dialog boxes, and it calls
the Control Manager to handle user actions affecting any controls in the
dialog box. O

Receiving Events

CHAPTER 4

Events

If the event retrieved does not apply to a dialog box, and if it isn’t a null event, then
DoMai nEvent Loop branches into a Pascal CASE statement in which the labels are
simply the predefined constants for each event type. As you can see, the event loop calls
an application-defined routine to handle each particular kind of event. These routines
are defined throughout this book.

Handling Events Outside the Main Event Loop

You'll notice that some types of events—for example, keyUp and nmouseUp—are simply
ignored by the main event loop defined in Listing 4-4. Key-up events are ignored
because most applications don’t need to know that a key was released, only that it was
pressed. Similarly, you usually don’t need to know when the mouse button was released,
because you’re more interested in knowing whether (and where) the mouse button was
pressed. In certain cases, however, you will be interested in a mouse-up event. For
example, if the user presses the mouse button while the cursor is in a window’s close box
but then moves the cursor outside the close box before releasing the mouse button, you
don’t want to handle the mouse-down event. (This is another good example of
user-centered design: allowing users to change their minds.)

It might appear that a problem is lurking, because the main event loop defined in

Listing 4-4 ignores mouse-up events. How, then, can your application determine that the
user released the mouse button when the cursor was outside of the close box? The
answer is simple: the system software provides a routine, Tr ack GoAway, that you call in
response to a user click in the close box. The Tr ackGoAway function tracks user actions
involving the close box; it returns the Boolean value TRUE if the cursor is still inside the
close box when the button is released and FALSE otherwise. Listing 4-5 illustrates how to
call Tr ackGoAway.

o -

Listing 4-5 Tracking mouse events in the close box

PROCEDURE DoGoAwayBox (nyW ndow. W ndowPtr; nousel oc: Point);
BEG N
| F TrackGoAway (myW ndow, nousel oc) THEN
DoC oseW ndow(myW ndow) ;
END;

The Tr ackGoAway function exits only when the mouse button is released. Because it
determines internally when that happens, your application doesn’t need to.

Handling Events Outside the Main Event Loop 79

CHAPTER 4

Events

The system software provides routines to handle the three main cases in which you need
to track the mouse and determine if the cursor is in a particular location when the button
is released. Here are the main routines you’ll use:

Mouse-tracking routine Action

Tr ackBox Track the cursor in a window’s zoom box
TrackContr ol Track the cursor within a control
Tr ackGoAwnay Track the cursor in a window’s close box

For various purposes, you might need to perform similar tracking on an arbitrary
rectangle in a window. The function DoTr ackRect defined in Listing 4-6 shows one
way to define such a function.

Note

Venn Diagrammer calls DoTr ackRect to handle mouse-down events in
the tool icons. See Listing 6-9 beginning on page 121. O

Listing 4-6 Tracking the cursor in an arbitrary rectangle

FUNCTI ON DoTrackRect (myW ndow. W ndowPtr; nyRect: Rect): Bool ean;
VAR
myl gnor e: Longl nt ;

nyPoi nt : Poi nt ;
BEG N
I nvert Rect (myRect); {invert the rectangl e}
REPEAT
Del ay(kVi sual Del ay, mnyl gnore)
UNTIL NOT Still Down; {until rnouse is rel eased}

I nvert Rect (nyRect);

Get Mouse(nyPoi nt) ; {get nouse | ocati on}
DoTrackRect := PtlnRect(myPoint, nyRect);
END;

The DoTr ackRect function inverts the specified rectangle and keeps it inverted until
the user releases the mouse button. The Event Manager function St i | | Down looks in
your application’s event queue for a mouse-up event; if none is found, St i | | Down
returns TRUE; otherwise, St i | | Down returns FALSE. Note that DoTr ackRect loops
until Sti | | Down returns FALSE, indicating that the corresponding mouse-up event has
been found. The call to the Del ay procedure within the loop is to ensure that the
rectangle is inverted for some minimum, user-perceptible amount of time.

Handling Events Outside the Main Event Loop

CHAPTER 4

Events

CONST
kVi sual Del ay = 6; {wait 6 ticks (one-tenth second)}

The DoTr ackRect function loops until Sti | | Down detects the appropriate mouse-up
event and then returns the specified rectangle to its original state by inverting it again.
Next, DoTr ackRect calls the Event Manager function Get Mbuse to determine the
current position of the cursor. If, when the mouse button is released, the cursor is still
inside the specified rectangle (as determined by the QuickDraw routine Pt | nRect),
then DoTr ackRect returns TRUE.

As you can see, you sometimes want to call Event Manager routines from outside your
main event loop, most often to monitor mouse movements and button states once the
user has clicked in some particular part of a window.

Handling Events Outside the Main Event Loop 81

o -

CHAPTER 5

Drawing

Contents

About QuickDraw 85

Points 86

Rectangles 87

Regions 89

Bit Images 91

Ports and Windows 92
Drawing Shapes 94
Drawing Bit Images 99
Drawing Text 101

Contents 83

CHAPTER 5

Drawing

This chapter shows how you can draw simple graphics and text inside of windows using
QuickDraw, the part of the Macintosh Toolbox that performs graphics operations on the
user’s screen. All Macintosh applications use QuickDraw indirectly whenever they call
other Toolbox managers to create and manage the basic graphic user interface elements
(such as windows, controls, and menus). Most applications also call QuickDraw directly
to define areas in a window and to draw appropriate graphic elements in those areas.
The Venn Diagrammer application, for instance, calls QuickDraw to draw the
overlapping circles, the tool icons, and the figure and mood selection icons. It also calls
QuickDraw to draw all the text displayed in a window.

This chapter begins with a description of QuickDrawy, its basic drawing model, and some
of the data structures QuickDraw uses. Then it shows how to

= define and draw simple objects such as lines, rectangles, and circles
= define complex graphic objects by combining simple objects

= outline and fill graphic objects

= draw static (that is, noneditable) text in a window

For a complete description of the drawing capabilities of QuickDraw, see the chapter
“QuickDraw Drawing” in Inside Macintosh: Imaging. For a complete description of the
text capabilities of QuickDraw, see the chapter “QuickDraw Text” in Inside Macintosh:
Text. To learn how to handle editable text, see the chapter “TextEdit” in Inside Macintosh:
Text.

About QuickDraw

QuickDraw allows you to draw many types of objects on the Macintosh display screen.
Some of these objects are illustrated in Figure 5-1.

Figure 5-1 Samples of QuickDraw’s abilities
Text RoundRect Rectangle Polygon
Overview
Overview
Line Wedge Oval Region
(] D

About QuickDraw 85

CHAPTER 5

Drawing

As you can see, you can use QuickDraw to draw

text characters and strings in a number of fonts, sizes, and styles
straight lines of any length, width, and pattern

a variety of simple shapes, including rectangles, rounded-corner rectangles, circles,
and ovals

polygons
arcs of ovals, or wedge-shaped sections filled with a pattern
any other arbitrary shape or collection of shapes

bit images, such as icons, cursors, and patterns

This section explains the basic mathematical model employed by QuickDraw and shows
how you can define several of these sorts of objects.

Points

QuickDraw measures location and movement in terms of coordinates on a very large
plane. The plane is a two-dimensional grid, with integer coordinates ranging from
—32767 to 32767, as illustrated in Figure 5-2.

Figure 5-2 The coordinate plane

86

1?-32767

-32767 32767

132767

The intersection of a horizontal and a vertical grid line marks a point on the coordinate
plane. Because all coordinates are limited to simple integers, there are 4,294,836,224
unique points in the QuickDraw plane.

About QuickDraw

CHAPTER 5

Drawing

You can store the coordinates of a point into a Pascal variable of type Poi nt , defined by
QuickDraw as a record of two integers:

TYPE
VHSel ect = (v, h);

Poi nt =
RECORD
CASE | NTEGER OF
0: (v: I nt eger; {vertical coordinate}
h: I nt eger); {hori zontal coordinate}
1: (vh: ARRAY[VHSel ect] OF Integer);
END;

The variant part of this record lets you access the vertical and horizontal coordinates of a
point either individually or as an array. This book will always use the first way of
specifying the coordinates. So, for example, the vertical coordinate of the variable

myPoi nt is accessed as myPoi nt . v.

Rectangles

Any two points can define the upper-left and lower-right corners of a rectangle on the
coordinate plane, as shown in Figure 5-3.

Figure 5-3 A rectangle

Top

Left—

— Right

Bottom

About QuickDraw 87

CHAPTER 5

Drawing

You can describe a rectangle using a data structure of type Rect , which consists of four
integers or two points.

TYPE Rect =
RECORD
CASE | NTEGER OF
0: (top: I nt eger; {top coordi nat e}
left: I nt eger; {left coordinate}
bott om I nt eger; {bot t om coor di nat e}
right: I nt eger); {right coordinate}
1: (topLeft: Poi nt ; {upper-1left point}
bot Ri ght: Point); {l oner-right point}
END;

Once again, the record variant allows you to access a variable of type Rect either as four
boundary coordinates or as two diagonally opposite corner points. This book will
always use the first way of specifying a rectangle. So, for example, the top coordinate of
the variable nyRect is accessed as myRect . t op.

Note

If the bottom coordinate of a rectangle is less than or equal to the top
coordinate, or if the right coordinate is less than or equal to the left
coordinate, the rectangle is treated as an empty rectangle (that is, one
that has no area). O

A pixel is a physical dot on the screen and corresponds to a rectangle in the QuickDraw
coordinate plane that has sides one coordinate long, as shown in Figure 5-4. (This, of
course, is the smallest possible rectangle.)

88

Figure 5-4 Pixels and rectangles
Grid lines—
Point
/
Pixel —

About QuickDraw

CHAPTER 5

Drawing

You can think of a pixel as corresponding to the point at the top left of the rectangle.
There are many more points in the QuickDraw coordinate plane than there are pixels on
the screen. As a result, you’ll associate small parts of the coordinate plane with areas on
the screen. In general, you don’t need to worry about where in that large coordinate
plane you’re working, because QuickDraw always forces you to work with a particular
graphics port, which has its own local coordinate system. (A graphics port is a complete
drawing environment that defines where and how graphics operations will take place;
see page 92 for more information on graphics ports.)

To draw a line, you can simply move to the desired starting point of the line and draw to
the desired end. For example, to draw a line in the current graphics port from point
(100,150) to the point (200,250), you could do this:

MoveTo(100, 150);
Li neTo(200, 250);

To draw a rectangle, you need to proceed in a slightly different manner. You first need to
define the rectangle in the coordinate plane and then perform some graphical operation
on the rectangle. Here’s an example:

Set Rect (nmyRect, 100, 200, 300, 400);
FrameRect (nyRect) ;

These two lines of code define a rectangle and then frame it (that is, draw its outline).
Instead of just drawing the rectangle’s outline, you could also fill the rectangle with the
current pattern (by calling Pai nt Rect) or with some other pattern (by calling

Fi |l Rect).

Note

Coordinates are passed to Set Rect in the order left, top, right, bottom
(which is different from the order in the Rect data type). The word
litterbug is a useful mnemonic; it contains the letters |, t, r, and b in the
correct order. O

e -

QuickDraw does not contain data types that describe circles or ovals. Instead, you draw
an oval by defining a rectangle and then asking QuickDraw to draw the oval that fits
inside of the rectangle. The oval is completely enclosed within the rectangle, and never
includes any pixels lying outside the boundary. If the rectangle is a square, then the oval
is a circle.

Regions

One of QuickDraw’s most powerful capabilities is the ability to work with regions of
arbitrary size, shape, and complexity. You define a region by drawing its boundary with
QuickDraw operations. The boundary can be any set of lines and shapes (even including
other regions) forming one or more closed loops. A region can be concave or convex, can
consist of one connected area or many separate ones, and can even have holes in the

About QuickDraw 89

CHAPTER 5

Drawing

middle. In Figure 5-5, the region on the left has a hole in it, and the region on the right
consists of two disjoint areas.

Figure 5-5 Two regions

90

QuickDraw describes a region using a data structure of type Regi on. This structure
contains two fixed-length fields followed by a variable-length field.

TYPE Regi on =

RECORD
rgnsSi ze: I nt eger; {size in bytes}
r gnBBox: Rect ; {encl osi ng rectangl e}
{nore data if not rectangul ar}

END;

RgnPt r = "Regi on;

RgnHandl e = "RgnPtr;

The r gnSi ze field contains the size, in bytes, of the region variable. The r gnBBox field
contains a rectangle that completely encloses the region. In general, however, you’ll treat
the Regi on data structure like a “black box”; you shouldn’t need to read the two named
fields except in special circumstances.

About QuickDraw

CHAPTER 5

Drawing

The Venn Diagrammer application uses a number of regions to pick out the areas
defined by the overlapping circles. See “Drawing Shapes” beginning on page 94 for
details.

Bit Images

Points, rectangles, and regions are mathematical models—data types that QuickDraw
uses for defining areas on the screen—but they can also be graphic elements that actually
appear on the screen. A rectangle, for example, can mathematically define a particular
visible area, but it can also be an object to be framed, painted, or filled. QuickDraw also
defines a number of other graphic elements, including icons, bitmaps, patterns, and
other bit images, that have only a direct graphic interpretation. An icon, for instance,
defines an image not by mapping an abstract mathematical representation onto the
screen pixels but by directly indicating which pixels in a given area are to be black and
which are to be white.

IMPORTANT
The discussion in this section applies only to black-and-white bit
images, which are the simplest cases. For complete information on color
bit images (such as color icons), see Inside Macintosh: Imaging. a

The Macintosh user interface uses bit images extensively, so QuickDraw contains a
number of additional data types describing such direct entities and routines to draw
them. The Venn Diagrammer application uses two kinds of bit images: bitmaps and
patterns.

A bitmap is a data structure that defines a physical bit image in terms of the coordinate
plane. A bitmap has three parts: a pointer to a rectangular collection of bits, the row
width of that rectangular collection, and a boundary rectangle that gives the bitmap both
its dimensions and a coordinate system.

The structure of a bitmap is defined by the Bi t Map data type:

TYPE BitMap =
RECORD
baseAddr : Ptr; {pointer to bit inage}
r owByt es: I nt eger; {row wi dt h}
bounds: Rect ; {boundary rectangl e}
END;

About QuickDraw 91

CHAPTER 5

Drawing

Figure 5-6 shows how these three pieces of information define a particular bitmap.

Figure 5-6 A bitmap

92

baseAddr —F
| 1111][]
|| | ||
|| |
|| H_En
|| H_En
|| H_En
|| H_En
bounds — || H_En
ENEEEEEE =R
[| HER
[| [1]
ANEEEEER

rowBytes

The baseAddr field is a pointer to the beginning of the bit image in memory. The

r owByt es field is the row width, in bytes. (Both baseAddr and r owByt es must
contain even values.) The bounds field is the bitmap’s bounding rectangle. See
“Drawing Bit Images” beginning on page 99 for a description of how to display a bitmap.

Ports and Windows

All drawing takes place in a controlled drawing environment known as a graphics port.
The graphics port defines a number of drawing parameters, such as the current drawing
location, the current font and size used for drawing characters, and so forth. In general,

you can think of a graphics port as the window within which you’re currently drawing.

A graphics port is defined by the Gr af Por t data structure.

TYPE G af Port =

RECORD
devi ce: I nt eger; {devi ce-specific infornmation}
portBits: Bi t Map; {GrafPort's bit map}
port Rect : Rect ; {Graf Port's rectangl e}

About QuickDraw

CHAPTER 5

Drawing
vi sRgn: RgnHandl e; {visible regi on}
cli pRgn: RgnHandl e; {cli pping region}
bkPat : Pattern; {background pattern}
fill Pat: Pattern; {fill pattern}
pnLoc: Poi nt ; {pen | ocation}
pnSi ze: Poi nt ; {pen size}
pnhbde: I nt eger; {pen's transfer node}
pnPat : Pattern; {pen pattern}
pnVi s: I nt eger; {pen visibility}
t xFont : I nt eger; {font number for text}
t xFace: Styl e; {text's character style}
t xMode: I nt eger; {text's transfer node}
txSi ze: I nt eger; {font size for text}
SpExtra: Fi xed; {extra space}
fgCol or: Longl nt; {foreground col or}
bkCol or: Longl nt; {background col or}
colrBit: I nt eger; {color bit}
pat Stretch: I nt eger; {used internally}
pi cSave: Handl e; {picture being saved}
rgnSave: Handl e; {regi on bei ng saved}
pol ySave: Handl e; {pol ygon bei ng saved}
graf Procs: QProcsPtr; {lowlevel draw ng routines}

END;

GafpPtr = "G afPort;

The fields of a Gr af Port data structure are maintained by QuickDraw, and you should
never write directly into those fields. You can, and often must, read the fields of a

G af Port structure. For example, it’s often useful to read the port Rect field of a
variable of type G- af Por t , because it gives the rectangle around the content area of a
window. (That information was used in Listing 1-1 on page 3 to center a text string.)

QuickDraw always performs drawing operations on the current graphics port. As a
result, you should explicitly set the graphics port before doing any drawing. A safe
strategy is to save and later restore the original graphics port upon entry to any routine
that affects the screen. Listing 5-1 shows an example.

Listing 5-1 Saving and restoring the current graphics port

PRCCEDURE Dr awl nPort (thePort: GrafPtr);
VAR
origPort: GafPtr;
BEG N
Get Port (origPort);

About QuickDraw 93

CHAPTER 5

Drawing

Set Port (thePort);
{Do your drawi ng (erasing, etc.) here.}

Set Port (origPort);
END;

Notice that QuickDraw uses the Gr af Pt r data type to refer to graphics ports. For
historical reasons, the Gr af Port data structure is one of the few objects in the
Macintosh system software that’s referred to by a pointer rather than a handle.

Drawing Shapes

As you’ve seen, you can draw circles by calling Fr ameOval . The Venn Diagrammer
application uses code like this to draw the outlines of the five circles:

FOR count := 1 TO 5 DO
FrameOval (gGeonet ry~™. circl eRects[count]);

The rectangles defining the circles are stored in an array of rectangles that is one of the
fields of an application-defined data structure of type MyGeonet r yRec. Venn
Diagrammer allocates just one of these records when the application first starts up. The
global variable gGeonet r y is a handle to that record.

VAR
gCeonetry: MGeonetryHnd; {handl e to a geonetry record}

Listing 5-2 shows part of the structure of this record.

Listing 5-2 The structure of a record describing a document window’s geometry

TYPE MyGeonetryRec =

94

MyGeonet ryPt r
MyCGeonetryHnd = "MyCeonetryPtr;

circleRects: ARRAY[1. .5] OF Rect; {squares for the 5 circles}
circl eRgns: ARRAY[1..5] OF RgnHandle; {regions for the 5 circles}
prem seRgns: ARRAY[1..8] OF RgnHandle; {regions for prenises}
concRgns: ARRAY[1. .4] OF RgnHandle; {regions for concl usion}

{other fields omtted}

MyGeonet ryRec;

Drawing Shapes

CHAPTER 5

Drawing

This record contains all the information needed to perform graphics operations on the
Venn diagram in a document window. The fields are initialized at application launch
time by the application-defined routine Dol ni t Geonet r y, shown in Listing 5-3.

Listing 5-3 Initializing the geometry record

PROCEDURE Dol ni t Geonetry;

BEG N
{All ocate the nenory needed to hold the diagram s geonetry.}
gCeonetry : = MyGeonet r yHnd(NewHandl eCl ear (si zeof (MyGeonetryRec)));

| F gGeonetry = NIL THEN {make sure we have the nenory}
DoBadEr r or (eNot EnoughMenory) ; {see Listing 9-5 on page 178}

{Set up the rectangles that define the circles.}
FOR count := 1 TO 5 DO
gCeonetry”*. circl eRects[count] := MyGetl ndCircl eRect (count);

{Set up the regions that the circles define.}
DoSet upGi r cl eRegi ons;

{Set up the overlapping regions within the circles.}
DoSet upOver | apRegi ons;
END;

The Dol ni t Geonret r y procedure allocates a geometry record and calls other
application-defined routines to initialize the fields of that record. First, it calls
MyGet | ndCi r cl eRect to determine the rectangle bounding each of the five circles.

Note

The MyGet | ndCi r cl eRect function is not defined in this book. You
could define such a function in many ways. You could determine in
advance where in the window the five rectangles should be and then
hard-code that information in constants. Alternatively, you could
calculate desirable positions dynamically at run time. The Venn
Diagrammer application uses the first method, for speed. O

Then Dol ni t Geonet ry calls two other application-defined routines to set up a number
of regions in the window. The first, DoSet upCi r cl eRegi ons, defined in Listing 5-4,
creates regions corresponding to the area inside each of the five circles. These regions are
used in turn by the DoSet upOver | apRegi ons procedure to calculate the regions of
intersection.

Drawing Shapes 95

CHAPTER 5

Drawing

Listing 5-4 Defining circular regions

PROCEDURE DoSet upCi r cl eRegi ons;
VAR
count: I nt eger;
BEG N
FOR count := 1 TO 5 DO
BEG N
gGeonret ry~™. circl eRgns[count] : = NewRgn;
OpenRgn;
FrameOval (gGeonetry”~~. circl eRects[count]);
Cl oseRgn(gGeonet ry*”. ci rcl eRgns[count]);
END;
END;

You create a new region by calling the NewRgn function, which allocates storage in your
application heap for a structure of type Regi on and returns a handle (of type

RgnHandl e) to that region. The newly created region is empty. To add to the region, you
call the OpenRgn procedure and then draw the outline of the area you want enclosed by
the region. As you can see, DoSet upGi r cl eRegi ons indicates the desired area by
calling the Fr aneOval procedure on a circle’s defining rectangle. When you’re done
drawing that outline, you call the O oseRgn procedure, passing it a handle to the region
to close.

If you simply want to create a region that’s empty, you can call NewRgn, CpenRgn, and
Cl oseRgn without doing any drawing.

nyRegi on : = NewRgn; {create an enpty region}
OpenRgn;
G oseRgn(nyRegi on) ;

The DoSet upOver | apRegi ons procedure, defined in Listing 5-5, uses the circular
regions defined by DoSet upCi r cl eRegi ons to define the regions corresponding to the
areas defined by the overlapping circles.

Listing 5-5 Defining noncircular regions

96

PROCEDURE DoSet upOver | apRegi ons;

VAR
myRegi on: RgnHandl e; {a scratch region}
count: I nt eger;
BEG N
FOR count := 1 TO 8 DO {create new, enpty regions}

BEG N
gCeonet r y*. prem seRgns[count] := NewRgn;

Drawing Shapes

CHAPTER 5

Drawing
OpenRgn;
Cl oseRgn(gGeonet ry*~. prem seRgns[count]);
END;
myRegi on : = NewRgn; {create a scratch region}
OpenRgn;

Cl oseRgn(nmyRegi on) ;

{Cal cul ate the overlap regions in the prem ses diagram}
HLock(Handl e(gGeonetry)); {lock the handl e}
W TH gGeonet ry** DO
BEG N
DiffRgn(circleRgns[1], circleRgns[2], nyRegion);
D ff Rgn(myRegi on, circleRgns[3], prem seRgns[1]);

Sect Rgn(circleRgns[1], circleRgns[2], nyRegion);
D ff Rgn(myRegi on, circleRgns[3], prem seRgns[2]);

DiffRgn(circleRgns[2], circleRgns[1], nyRegion);
D ff Rgn(myRegi on, circleRgns[3], prem seRgns[3]);

Sect Rgn(circleRgns[1], circleRgns[3], nyRegion);
D ff Rgn(myRegi on, circleRgns[2], prem seRgns[4]);

Sect Rgn(circleRgns[1], circleRgns[2], nyRegion);
Sect Rgn(myRegi on, circleRgns[3], prem seRgns[5]);

Sect Rgn(circleRgns[2], circleRgns[3], nyRegion);
D ff Rgn(myRegi on, circleRgns[1l], prem seRgns[6]);

e -

DiffRgn(circleRgns[3], circleRgns[1], nyRegion);
D ff Rgn(myRegi on, circleRgns[2], prem seRgns[7]);

END;
HUNnl ock(Handl e(gGeonetry)); {unl ock the handl e}
Di sposeRgn(myRegi on) ; {di spose scratch region}

END;

The DoSet upOver | apRegi ons procedure is remarkably straightforward. It initializes
the regions in the premises diagram and also creates a temporary scratch region. Then it
calculates the seven regions of overlap in that diagram by calling Sect Rgn and

Di f f Rgn on the circular regions defined in Listing 5-4. The Sect Rgn procedure takes
the intersection of two regions and places it into a third region. The Di f f Rgn procedure
takes the portion of the first region that is outside the second region and places it into the

Drawing Shapes 97

CHAPTER 5

Drawing

third region. Figure 5-7 shows how the overlap regions are defined by taking
intersections and unions of the three circles.

Figure 5-7 Calculating the overlap regions of a Venn diagram
A B
1 2 3
(A-B)-C (A+B)-C (B-A)-C
(A+B)+C
4 5 6
(A-B)+C (B+C)-A
7
(C-A)-B
C
Note

The definition of DoSet upOver | apRegi ons given in Listing 5-5 is

not complete. It omits calculations of the conclusion regions and of the

fields omitted from the MyGeonet r yRec data structure defined in

Listing 5-2. O

Now that the Venn Diagrammer application has defined the various regions in the Venn

diagram, it’s easy to draw in those regions. For instance, to shade the very center of the
diagram, you could call the Fi | | Rgn procedure, as follows:

Fil | Rgn(gGeonetry™". prem seRgns[5], gEnmptyPat s[gEnpt yl ndex] *");

This fills the specified region with the current emptiness pattern.

Drawing Shapes

CHAPTER 5

Drawing

Drawing Bit Images

The Venn Diagrammer application uses bit images to draw several parts of a document
window, including

= the tool symbols at the top of a document window
= the figure and mood symbols at the bottom of a window

= the existence symbol within the Venn diagram itself
Figure 5-8 shows the location of these items.

Tool icons

Figure 5-8 Bit images in a document window
EDE Uenn uiagram] EI
[+ | + |§|ﬁ€§]lw’| The argument is walid. (Ferio)

men Greeks men Greeks

b4 — Existence
symbol

martals

Figure Mood

Ez[5[4] [AA1]0] Mo mortals are men.
(AIEMO]| Some Greeks are mortals.

[RTETTI] Sorme Greeks are not men.

L | J

Figure and Mood icons

The standard way to draw a bit image is to read into memory the appropriate bit data
and then call the CopyBi t s routine to move the data into the desired position in the
destination window. The Venn Diagrammer application stores the bit data in resources of
type ' | CON . Then it calls its own application-defined routine DoPl ot | con to move the
appropriate portion of the icon into a document window. Notice that none of the bit
images in a document window is actually as large as an icon (which is 32 pixels by 32
pixels). Venn Diagrammer uses this strategy because ResEdit provides a simple way to
create and edit' | CON' resources.

Drawing Bit Images 99

CHAPTER 5

Drawing

When Venn Diagrammer starts up, it reads the necessary icon resources into memory
using the code in Listing 5-6.

Listing 5-6 Reading ' | CON' resources into memory

{CGet handles to tool icons.}
FOR count := 1 TO kNunifool s DO
gTool sl cons[count] := GetResource('ICON, kToolslconStart + (count - 1));

{Get handles to avail abl e exi stence-indicating icons.}
FOR count := 1 TO 4 DO
gExi stlcons[count] := GetResource(' | CON, kExistID + (count - 1));

{Get handles to npod icons.}
FOR count := 1 TO 4 DO
gMbodl cons[count] := GetResource('lCON, kModlconStart + (count - 1));

{Get handles to figure icons.}
FOR count := 1 TO 4 DO
gFi gurel cons[count] := CetResource('ICON, kFiglconStart + (count - 1));

As you can see, the icons in each group are given contiguous resource IDs in the resource
file. The handles to each icon are stored in the appropriate array, accessed by global
variables.

IMPORTANT

As always, you should make certain that none of the returned handles
has the value NI L. For brevity, this check is not shown in Listing 5-6. a

To draw the tools area of a window, for example, Venn Diagrammer uses the code shown
in Listing 5-7.

Listing 5-7 Drawing the tools area of a document window

{Redraw the tool area in the w ndow.}
FOR count := 1 TO kNunifool s DO
BEG N
Set Rect (nmyRect, kToolWd * (count - 1), 0, kToolWl * count, kTool Ht);
DoPl ot | con(myRect, gTool sl cons[count], nyW ndow, srcCopy);
END;

100 Drawing Bit Images

CHAPTER 5

Drawing

This code fragment calls the application-defined routine DoPl ot | con to draw the
appropriate portion of the icon in the specified rectangle. The DoPl ot | con procedure is
defined in Listing 5-8.

Listing 5-8 Drawing a portion of an icon

PROCEDURE DoPl otlcon (myRect: Rect; nylcon: Handle; nyW ndow. W ndowPtr;
nyMode: | nteger);

VAR
nyBi t Map: Bi t Map;
BEG N
nyBi t Map. baseAddr := nylcon”®;
nyBi t Map. rowBytes : = 4;

nyBi t Map. bounds : = nyRect;
CopyBi t s(nyBit Map, nmyW ndow*. portBits, myRect, nmyRect, mnmyMode, NI L);
END;

The DoPlI ot | con procedure plots a portion of an icon by defining a bitmap that
includes the desired portion of the icon. (The desired portion of the icon is specified by
the nyRect parameter.) Then DoPl ot | con calls the QuickDraw routine CopyBi t s to
copy the appropriate bits from their location in memory to the desired location in the
specified window.

The CopyBi t s procedure transfers a bit image between two existing bit maps. In this
case, the two bitmaps are the bitmapped portion of the icon and the bits in the
destination window (which are specified by the por t Bi t s field of the window’s
graphics port; see Listing 6-1 on page 112 for details). The nyRect parameter specifies
the rectangle to copy; it’s passed to DoPl ot | con from the calling routine so that

DoPl ot I con can be used to plot different parts of the source icon. Finally, DoPl ot | con
is passed a transfer mode, which indicates how the bits are to be drawn in the existing
bit image of the destination rectangle. The constant sr cCopy is passed in Listing 5-7 to
indicate that the source bitmap is to overwrite the destination bitmap.

Drawing Text

In addition to the many routines it provides for defining and drawing both simple and
complex graphic elements, QuickDraw also provides support for drawing text. You can
use QuickDraw to draw characters, words, or other textual elements at any desired size
and in any available font. It might seem odd that QuickDraw handles these operations,
until you realize that text, like graphics, permeates the Macintosh user interface.
Windows, menus, and some controls (for instance, buttons) have titles, which are
essential to the user’s understanding and manipulation of the application. As a result, it
makes sense to treat text fundamentally as a graphic object and to assign basic

Drawing Text 101

CHAPTER 5

Drawing

text-drawing responsibilities to QuickDraw, which manages all graphics within the
Macintosh system software.

Although QuickDraw is ultimately responsible for drawing text on the screen, you might
need to use other Toolbox managers for other text-handling needs. For example, if you
want the user to be able to input and edit some small amount of text, you can use
TextEdit. TextEdit provides basic text-editing capabilities, such as cutting, copying,
pasting, and entering words and characters. TextEdit calls QuickDraw to display the
editable text. Similarly, if your application allows the user to display text in a variety of
fonts, you might need to use the Font Manager. The Font Manager supports QuickDraw
by providing the character bitmaps it needs to draw text in a specified font, size, and
style. For a complete description of TextEdit and the Font Manager, see Inside Macintosh:
Text.

The Venn Diagrammer application has very minimal text-handling requirements. It does
not support any text entry or editing by the user. Instead, it obtains all the text it needs
from resources stored in its resource fork. As a result, the Venn Diagrammer application
can use basic QuickDraw text-drawing routines to display its text. For example, the Venn
Diagrammer application draws the message in a window’s status area by calling the
application-defined routine DoSt at usMesg, defined in Listing 5-9.

Listing 5-9 Retrieving a status message from a resource

PROCEDURE DosSt at usMesg (myW ndow. W ndowPtr; myMessagel D: | nteger);

102

myText : St r 255;
BEG N
CetIndString(myText, rVennD, nyMessagelD);
DoSt at usText (myW ndow, mnyText);
END;

As you can see, the DoSt at usMesg routine takes two parameters, a window pointer
specifying the window whose status area is to be filled in and an integer specifying the
index into an' STR#' resource. Then DoSt at usMesg retrieves the appropriate message
text and calls the application-defined procedure DoSt at usText to print the message in
the window.

Venn Diagrammer calls DoSt at usMesg whenever it needs to display a message in the
status area. For instance, when the user wants to determine if a syllogism is valid or not,
Venn Diagrammer checks the syllogism’s validity and then executes the code in

Listing 5-10.

Drawing Text

CHAPTER 5

Drawing

Listing 5-10 Informing the user of an argument’s validity or invalidity

IF valid THEN

BEG N
| F gShowNanmes THEN {show nanes of valid syllogisns?}
BEG N
Get I ndString(nmyMesg, rVennD, eArglsVvalid);
DoGet Nane(nyW ndow, nyNane);
myMesg : = concat (nyMesg, ' (', nmyName, ')');
DoSt at usText (nyW ndow, nyMesg);
END
ELSE
DoSt at usMesg(nyW ndow, eArglsValid);
END
ELSE

DoSt at usMesg(nyW ndow, eArgNot Valid);

This code fragment illustrates why the Venn Diagrammer application defines two
different routines, DoSt at usMesg and DoSt at usText . The first, DoSt at usMesg,
retrieves the desired message text from a resource and calls the second, DoSt at usText
to display it on the screen. The application also calls DoSt at usText at other times, for
instance, when it needs to add something to the resource-based message string. In the
example shown in Listing 5-10, the application needs to get the name of the valid
syllogism, if the user has indicated that this should be done.

The DoSt at usText procedure is defined in Listing 5-11. Its job is to display the text
passed as a parameter in the status area of the specified window.

Listing 5-11 Displaying a status message

PROCEDURE DoSt at usText (nmyW ndow. W ndowPtr; nyText: Str255);

e -

VAR
myRect : Rect ;
ori gSi ze: I nt eger;
ori gFont: I nt eger;
nyHandl e: MyDocRecHnd;
CONST
kSl op = 4;
kSi ze = 9;
kFont = appl Font;
BEG N

| F nyWndow <> NI L THEN
BEG N

Set Port (myW ndow) ;
origSi ze : = nyW ndow*. t xSi ze; {renenber original size and font}

Drawing Text 103

END;

104

CHAPTER 5

Drawing
ori gFont := nyW ndow".txFont;
Text Si ze(kSi ze) ; {set desired size and font}

Text Font (kFont) ;

Set Rect (nmyRect, kTool Wi * kNumTool s, O,
nyW ndow. port Rect. right, kTool Ht);
Er aseRect (nyRect) ;
IF length(nmyText) > 0 THEN
BEG N
MoveTo(nyRect.l eft + kSlop, nyRect.bottom - kSl op);
DrawStri ng(nyText);
END;

Text Si ze(ori gSi ze) ; {restore original size and font}
Text Font (ori gFont);

{Renmenber the |ast nmessage printed in this w ndow.}
nmyHandl e : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
nmyHandl e~”. st at usText := nyText;

END;

The DoSt at usText procedure first remembers the graphics port’s existing font and
size, so that it can change and then later restore those values. Then DoSt at usText sets
the desired font and size of the status message by calling the QuickDraw routines

Text Font and Text Si ze. You should always use these routines—instead of changing
the fields of the gr af Port record—whenever you want to change a graphics port’s font
and size.

IMPORTANT

Although you should never change the fields of a graphics port directly,
you sometimes need to read those fields directly. In Listing 5-11, the
original font and size are determined by reading the appropriate fields
(t xFont andt xSi ze) of the graphics port record. This is necessary
because QuickDraw doesn’t provide routines to read that information
from a graphics port record. a

Once it’s set the desired font and size, the DoSt at usText procedure calls Set Rect to
define the rectangle into which the text is to be drawn. Then, DoSt at usText erases that
rectangle by calling Er aseRect . If the string to be displayed consists of at least one
character, DoSt at usText moves to the appropriate spot in the status area and calls the
QuickDraw routine Dr awSt r i ng, which draws the specified string at the current
drawing location in the window.

Drawing Text

CHAPTER 5

Drawing

Finally, DoSt at usText restores the graphics port’s original font and size, and then
copies the string just drawn into the st at usText field of the window’s document
record. The Venn Diagrammer application needs to remember each window’s latest
status message so that it can redraw the message whenever necessary (for example, if the
message is covered up by another window and then later revealed).

Venn Diagrammer uses similar techniques for all other text drawing it requires.
Remember that this application supports only static text (that is, text that cannot be
edited) stored in the application’s resource fork. To allow the user to enter and edit some
text, you need to use more powerful text-handling tools. See Inside Macintosh: Text for
information about using system software services like the Font Manager and TextEdit to
handle editable text. See Inside Macintosh: Files for information on storing text and other
data in files. Finally, see the chapter “Dialog Manager” in Inside Macintosh: Macintosh
Toolbox Essentials for information on handling text entry and editing in a dialog box.

Drawing Text 105

CHAPTER 6

Windows

Contents

About Windows 109
Window Parts 110
Window Records 112
Window Types 113
Creating Windows 115
Handling Window Events 119
Mouse Events 119
Update Events 123
Activate Events 125
Closing Windows 128

Contents

107

CHAPTER 6

Windows

This chapter describes how your application can use the Window Manager to create and
manage windows. Windows delineate the space within which the user enters or views
information, and every Macintosh application that has a user interface should use
windows to communicate with the user. Any piece of information that your application
presents to the user should be displayed in a window. Similarly, any piece of information
that your application solicits from the user should involve the user performing
appropriate actions (such as typing or clicking) in a window.

There are two general kinds of windows: document windows and dialog boxes.
Document windows are used primarily to allow the user to enter and manipulate
information, such as text, graphics, or other data. Often, but not always, the information
in a document window can be stored in a file, from which the user can later retrieve it.
Dialog boxes are used for many other purposes, such as alerting the user of unusual
occurrences, soliciting information from the user, and displaying various application
settings or user preferences.

This chapter focuses on techniques for handling windows in general, with particular
emphasis on document windows. It shows how to

= determine the type of a window
= create and display windows

= handle events in windows

= close and remove windows

For specific information about dialog windows, see the chapter “Dialog Boxes” later in
this book. For a complete description of the capabilities of the Window Manager and for
code samples illustrating more advanced window-handling techniques, see the chapter
“Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

About Windows

Awindow is a user interface element that delimits an area on the screen in which the
user can enter or view information. Here “information” is intended quite broadly; for
example, an application that draws mazes and allows the user to trace a path through
the maze by moving the cursor can reasonably be thought of as displaying information
(the maze) and allowing the user to enter information (the desired path through the
maze). As a result, virtually any interaction with the user that happens outside the menu
bar and menus should occur within a window.

The system software provides a wide array of types of window to accommodate the
many uses they can have. Window types are distinguished by their appearance and
behavior. Some windows have title bars and others do not. Some windows can be moved
around on the screen by the user and others cannot. In your choice of a window type,
you should be guided by the behavior your application supports in that window.

About Windows 109

e n

110

CHAPTER 6

Windows

Note

You can, if necessary, define your own custom types of windows, with
an appearance and behavior unlike the windows provided by the
system software. For compatibility reasons, however, this practice is
generally discouraged. O

As indicated earlier in this chapter, the many types of windows are divided loosely into
document windows and dialog boxes. The distinction between windows and dialog
boxes is to some degree arbitrary, but in general, you use the Dialog Manager to create
and manage dialog boxes and the Window Manager to create and manage document
windows. The Dialog Manager essentially just provides a “front-end” to other Toolbox
managers, including the Window Manager, the Control Manager, the Event Manager,
and TextEdit. The Dialog Manager makes it very easy to create and handle user actions
in windows containing controls, text boxes, and other dialog items. However, because
dialog boxes are also windows, you might need to use some Window Manager routines
as well to manipulate dialog boxes. For example, you can hide a dialog box by calling
the H deW ndowroutine (there is no Hi deDi al og routine).

When you are designing your application, you need to decide whether to use the Dialog
Manager or the Window Manager to create and manage any particular window. For
some types of windows, the decision is obvious. For document windows that can
contain variable amounts of data and therefore probably require scroll bars and a size
box, you’ll want to use the Window Manager. For simple windows that contain a
message and possibly a few buttons, you’ll probably want to use the Dialog Manager. As
a dialog box becomes more and more complex, however, you’ll want to consider using
the Window Manager and other Toolbox managers instead. The Window Manager
provides the greatest control over the appearance and behavior of a window. In
particular, any time you need to do moderately complex drawing in the window, you
should probably use the Window Manager (and QuickDraw) instead of the Dialog
Manager.

Note

For a more detailed list of factors that can effect the decision whether to
use the Dialog Manager or the Window Manager (and other Toolbox
managers) to manage a window, see the chapter “Dialog Manager” in
Inside Macintosh: Macintosh Toolbox Essentials. O

Window Parts

The Window Manager defines and supports a set of standard window elements through
which the user can manipulate windows. It’s important that your application follow the
standard conventions for drawing, moving, resizing, and closing windows. By
presenting the standard interface, you make experienced users instantly familiar with
many aspects of your application, allowing them to focus on learning its unique features.

The Venn Diagrammer application supports two kinds of windows, a single dialog box
for setting general preferences and an unlimited number of document windows for
evaluating categorical syllogisms. A sample document window is shown in Figure 6-1.

About Windows

CHAPTER 6

Windows

Figure 6-1 A Venn diagram window

S[[————— lenn Diagram | ——————|
| + |§|fr@]|\/’| The argument is valid. (Feria)

men Greeks men Greeks

martals

Figure Mood

Ez[503] [AE]0] No mortals are men.
(ATERNO] Sore Greeks are mortals.

[ATEJTD Sorre Greeks are not men.

This window contains only two special elements defined by the Window Manager, a title
bar and a close box. The title bar displays the name of the window and indicates
whether it’s active or not. The Window Manager displays the title of the window in the
center of the title bar, in the system font and system font size. If the system font is in the
Roman script system, the title bar is 20 pixels high.

The close box offers the user a quick way to close a window. If the user clicks the close
box, your application should react exactly as if the user had chosen the Close command
from the File menu.

Note

Venn Diagrammer’s use of standard window elements is purposely
restricted to the title bar and close box. Your application’s windows
should include as many of the standard window elements as are
appropriate. O

The window shown in Figure 6-1 also contains a number of elements that are defined
and managed by the Venn Diagrammer application. Immediately under the title bar is a
row of five tools, which allow the user to manipulate the Venn diagram without leaving
the window. To the right of the tools is a status area, where the \enn Diagrammer
application displays information and other feedback to the user. In Figure 6-1, the status
area contains a message indicating that the syllogism under consideration is valid; the
status area also shows the traditional name of that valid syllogism (Ferio).

Underneath the tools area and the status area, the document window contains two sets
of overlapping circles, which show the Venn diagram for the syllogism’s premises and
conclusion. The user can alter the contents of any region of overlap by clicking in that
area. Shading indicates that the region is known to be empty; an X indicates that the

About Windows 111

e n

CHAPTER 6

Windows

region is known to contain something; the lack of either shading or an X indicates that
the contents of the region are unknown.

The user can alter the syllogism under consideration by changing the figure of the
syllogism and the mood of any of the three statements in the syllogism. Any changes in
the figure or mood are instantly reflected in the syllogism shown in the bottom center of
the window.

Window Records

You’ve already seen, in skeletal form at least, how to create a window by calling
NewW ndow (see Listing 1-1 on page 3). When you call NewW ndow the Window
Manager creates in your application heap a new window record that contains
information about the new window. The Window Manager defines a window record
using the W ndowRecor d data structure, shown in Listing 6-1.

Listing 6-1 The W ndowRecor d data structure

TYPE W ndowRecord =

RECORD
port: Graf Port ; {wi ndow s graphics port}
wi ndowKi nd: I nt eger; {class of the w ndow}
Vi si bl e: Bool ean; {visibility}
hilited: Bool ean; {hi ghli ghting}
goAwayFl ag: Bool ean; {presence of close box}
spar eFl ag: Bool ean; {presence of zoom box}
st rucRgn: RgnHandl e; {handl e to structure region}
cont Rgn: RgnHandl e; {handl e to content region}
updat eRgn: RgnHandl e; {handl e to update region}
wi ndowDef Proc: Handl e; {handl e to wi ndow definition }
{ function}
dat aHandl e: Handl e; {handl e to wi ndow state }

{ data record}
titl eHandl e: StringHandl e; {handle to windowtitle}

titl ewdth: I nt eger; {title width in pixels}
control List: Control Handl e; {handle to control |ist}
next W ndow, W ndowPeek; {pointer to next w ndow }

{ record in window |ist}
Wi ndowPi c: Pi cHandl e; {handl e to optional picture}
r ef Con: Longl nt; {storage available to your }

{ application}
END;

About Windows

CHAPTER 6

Windows

As you can see, a window record consists of numerous fields that contain information
about the window. The first field (por t) contains the window’s graphics port, a drawing
environment with its own coordinate system. The graphics port in turn contains
information about that drawing environment, such as the location of the port on the
screen, the default size and font of any text that is to be drawn in the port, and so forth.

Because many of the operations you’ll perform on windows are in reality operations on
the window’s graphics port, the Window Manager defines the data type W ndowPt r as
a pointer to the window’s graphics port.

TYPE
W ndowPt r = GafPtr;

For example, each time you want to draw in a window, you need to make sure that the
window is the current drawing port. To do so, you can simply pass the window pointer
to the QuickDraw routine Set Port .

Set Port (myW ndow) ;

You can do this because a window pointer is simply a pointer to a graphics port, which
is the first field in a window record. Similarly, you can determine the location of the
window on the screen by inspecting the por t Rect field of the graphics port. Recall that
Listing 1-1 on page 3 centers the text within the window as follows:

W TH gW ndow". port Rect DO {set the position of the pen}
MoveTo(((right - left) DIV 2) - (StringWdth(gString) DV 2),
(bottom- top) DV 2);

Usually you don’t need to access or directly modify fields in a window record. If you do
need to examine the fields of the window record (other than those contained in the
window’s graphics port), you can use the W ndowPeek data type:

TYPE
W ndowPeek = "W ndowRecord;

AW ndowPeek data type is a pointer to a window record.

Note

Don’t get confused here. A window pointer is a pointer to the window’s
graphics port, not a pointer to the window record. The W ndowPeek
data type is so called because it lets you “peek” into the fields of the
window record beyond the graphics port. O

Window Types

The wi ndowKi nd field of a window record indicates the type of window that the
window record describes. Your application can, if necessary, read the value in that field
to determine how to handle a particular window.

About Windows 113

e n

CHAPTER 6

Windows

When the Window Manager creates a new window for a desk accessory, it places a
negative value (in particular, the reference ID of the desk accessory) in the wi ndowKi nd
field of the window. In all other cases, the Window Manager puts one of two constants
into that field:

CONST
di al ogKind = 2; {dialog or alert w ndow}
user Ki nd = 8; {wi ndow created by an application}

You can rely on this behavior to determine what kind of window a given window
pointer picks out. Listing 6-2 defines a function | sAppW ndowthat returns TRUE if the
application created the specified window by calling a Window Manager routine directly.
In the case of the Venn Diagrammer application, this means that the window is a
document window.

Listing 6-2 Determining if a window is a document window

FUNCTI ON | sAppW ndow (myW ndow. W ndowPtr): Bool ean;
BEG N
| F myWndow = NIL THEN
| sSAppW ndow : = FALSE
ELSE
| sSAppW ndow : = W ndowPeek(myW ndow) *. wi ndowKi nd = user Ki nd;
END;

Notice that | sAppW ndow coerces the window pointer myW ndowto the type
W ndowPeek before dereferencing it to examine the wi ndowKi nd field.

You can define similar functions to identify dialog boxes and desk accessory windows.
Listing 6-3 defines a function | sDi al ogW ndowthat returns TRUE if your application
created the specified window by calling a Dialog Manager routine.

Listing 6-3 Determining if a window is a dialog box

FUNCTI ON | sDi al ogW ndow (nyW ndow. W ndowPtr): Bool ean;
BEG N
| F myWndow = NIL THEN
| sDi al ogW ndow : = FALSE
ELSE
| sDi al ogW ndow : = W ndowPeek(nyW ndow) . wi ndowKi nd = di al ogKi nd;
END;

Finally, Listing 6-4 defines a function | sDAccW ndowthat returns TRUE if the specified
window was created by a desk accessory.

114 About Windows

CHAPTER 6

Windows

Listing 6-4 Determining if a window is a desk accessory window

FUNCTI ON | sDAccW ndow (myW ndow. W ndowPtr): Bool ean;

BEG N

| F nyWndow = NIL THEN
| sDAccW ndow : = FALSE

ELSE

| sDAccW ndow : = W ndowPeek(myW ndow) *. wi ndowKi nd < O;

END;

These three functions are used extensively throughout the code samples in the
remainder of this chapter.

Note

The | sDAccW ndowfunction is provided to help maintain compatibility
with previous system software versions. When your application is
running in System 7, it receives events only for its own windows and for
windows belonging to desk accessories that were launched in its
partition. O

Creating Windows

The Venn Diagrammer application allows the user to have multiple document windows
(that is, multiple Venn diagram windows) on the desktop at the same time. Each
different document window probably displays a different syllogism. As a result, the
application needs some way to keep track of each window’s current settings.

A standard way to do this is to make use of the r ef Con field in the window record. The
r ef Con field is reserved specifically for use by applications, which can set the field
(using the Set WRef Con procedure) to any 4-byte value. Often, applications store a
handle to an application-defined data structure that describes the window. This data
structure is often known as a document record. Given the window pointer, you can
retrieve that handle by calling the Get WRef Con function.

The sample code in this book uses a document record of type MyDocRec (shown in
Listing 6-5) to store information about the current contents of a Venn diagram window.

Listing 6-5 The structure of a document record for the Venn Diagrammer application
TYPE MyDocRec = {information for a document w ndow}
RECORD
figure: I nt eger; {the figure of the syllogisn}
nood: ARRAY[1..3] OF Integer; {the npods of the statenents}
terns: ARRAY[1..3] OF Str31; {the three terns}
st at usText: Str 255; {nost recent status nessage}

Creating Windows 115

e n

CHAPTER 6

Windows

user Sol uti on: MyDi agr antt at e; {user's diagram st at e}

real Sol uti on: MyDi agr antt at e; {answer's di agram st at e}

i SAnswer Showi ng: Bool ean; {is the answer show ng?}

i sExi stlnport: Bool ean; {stnmts inply exists subject?}

needsAdj usti ng: Bool ean; {di agr am needs adj usti ng?}
END;
MyDocRecPtr = “MyDocRec;
MyDocRecHnd = “"MyDocRecPtr ;

As you can see, the document record used by the Venn Diagrammer application contains
fields that describe the current settings of the syllogism in the window, including the
figure of the syllogism, the mood of each statement in the syllogism, and the terms used
in those statements. The document record also contains fields that maintain information
about the current appearance of the window, such as the status message most recently
displayed in the window’s status area (st at usText field) and a Boolean value that
indicates whether the answer is visible in the window (i sAnswer Showi ng field). The
Venn Diagrammer application uses that Boolean value to determine how to fill in the
regions in the overlapping circles. If the value of i sAnswer Showi ng is TRUE, the
application displays the correct answer (encoded in the r eal Sol ut i on field);
otherwise, the application displays the user’s current answer (encoded in the

user Sol ut i on field).

Note

The structure of the MyDi agr antSt at e data type is not shown in this
book. O

The MyDocRec data structure also contains two other fields containing Boolean values.
These specify whether the statements that make up the syllogism are to be interpreted as
having existential import or not, and whether the window needs to be checked for
automatic adjustment.

IMPORTANT

If a Venn diagram window contained TextEdit fields or controls (such as
radio buttons or scroll bars), the document record could be expanded to
include handles to those items. Also, if a file were associated with the
window, you’d want the document record to include information about
that file. In a nutshell, the document record can contain all relevant
information about the window that isn’t contained in the window
record. a

The Venn Diagrammer application creates a document record every time it creates a
document window, and it stores a handle to the document record in the r ef Con field of
the window record. Listing 6-6 shows the DoCr eat eW ndow routine, which creates a
new document window. This function is called when the application is first launched
and whenever the user chooses the New command from the File menu.

116 Creating Windows

CHAPTER 6

Windows

Listing 6-6 Creating a new Venn diagram window

FUNCTI ON DoCr eat eW ndow. W ndowPtr ;
VAR
nyPointer: Ptr;
myW ndow: W ndowPt r ;
nmyHandl e: MyDocRecHnd;
BEG N
myPoi nter := NewPtr (sizeof (W ndowRecord));
| F nyPointer = NIL THEN
exi t (DoCr eat eW ndow) ;

nyW ndow : = Get NewW ndow(r VennD, nyPointer, WndowPtr(-1));
| F nyWndow <> NI L THEN
BEG N
Set Por t (myW ndow) ;
nyHandl e : = MyDocRecHnd(NewHand! eCl ear (si zeof (MyDocRec))) ;

| F myHandl e <> NIL THEN
BEG N
HLockHi (Handl e(nyHandl e)) ; {l ock the data high in the heap}
Set WRef Con(myW ndow, Longl nt (myHandl e));
{attach handl e to w ndow record}
DoSet W ndowTi t | e(myW ndow) ; {set the windowtitle}

{Define initial w ndow settings.}
W TH nyHandl e*” DO

BEG N
figure := 1;
mood[1] := 1;
nmood[2] := 1;
nood[3] := 1;

i sAnswer Showi ng : = FALSE;
i SExi stlnport := gG vel nport;
END;
DoGet Randomirer s (my W ndow) ;
DoCal cAnswer (nyW ndow) ;

{Position the wi ndow and display it.}
DoPosi ti onW ndow(myW ndow) ;
ShowW ndow(myW ndow) ;

END {I F nyHandl e <> NI L}
ELSE

Creating Windows 117

e n

118

END;

CHAPTER 6

Windows

BEA N {couldn't get a data record}
C oseW ndow(nyW ndow) ;
Di sposePtr (Ptr (nyW ndow));
nmyW ndow : = NI L; {so pass back N L}

END;

DoCr eat eW ndow : = nyW ndow,
END;

The DoCr eat eW ndow function first attempts to allocate space in the heap for a window
record by calling the Memory Manager’s NewPt r function. If no space is available,

DoCr eat eW ndowexits and returns NI L to indicate that no new window was created.
Otherwise, DoCr eat eW ndow creates the new window, whose size and type are defined
in a window resource of type r VennD.

CONST
r VennD = 131; {resource | D of docunent w ndow}

If the new window is successfully created, DoCr eat eW ndow next tries to allocate space
for a document record. Once again, if the space isn’t available, DoCr eat eW ndowtakes
care to dispose of the new window and return NI L to the calling routine. Otherwise,
DoCr eat eW ndow locks the handle to the document record high in the heap and
attaches the document record to the window record by calling Set WRef Con.

Note

The document record data is locked at the top of the heap to help
prevent heap fragmentation. See the chapter “Introduction to Memory
Management” in Inside Macintosh: Memory for a discussion of when you
need to lock data in the heap. O

The DoCr eat eW ndow function next sets up the window’s title (by calling the
application-defined procedure DoSet W ndowTi t | €) and initializes some of the fields in
the document record. Then DoCr eat eW ndow calls two further application-defined
procedures (DoGet RandomTer nms and DoCal cAnswer) to initialize the t er ns field and
the r eal Sol uti on field of the document record. (As for the user Sol ut i on field, the
NewHandl eCl ear function, which sets all bytes in the block to 0, automatically
initializes it to encode an empty diagram, according to a clever scheme.)

The application-defined procedure DoPosi t i onW ndowsets the original position of the
new window according to the user’s expectations and good human interface design.
Then DoCr eat eW ndow calls the Window Manager procedure ShowW ndowto display
the window. The ShowW ndow procedure generates and update event for the newly
displayed window, thereby causing the Venn Diagrammer application to draw the
content region of the window.

Creating Windows

CHAPTER 6

Windows

Note

The procedure DoPosi t i onW ndowis not defined in this book. For a
discussion of how to determine the position of a new window, see the
chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox
Essentials. O

Handling Window Events

Your application must be prepared to handle two kinds of window-related events:

= mouse and keyboard events in your application’s windows, which are reported by the
Event Manager in direct response to user actions

= activate and update events, which are generated by the Window Manager and the
Event Manager as an indirect result of user actions

Because Venn Diagrammer does not support text entry, the only relevant keyboard
events it needs to handle are keyboard equivalents of menu commands. See the chapter
“Menus” in this book for a description of how to handle those events.

This section shows how to handle mouse events as well as update and activate events.

Mouse Events

When your application is active, it receives notice of all mouse-down events in the menu
bar, in one of its windows, or in any windows belonging to desk accessories that were
launched in its partition. When it receives a mouse-down event, your application should
call Fi ndW ndowto determine where the cursor was when the mouse button was
pressed. The Fi ndW ndowfunction returns a part code that indicates the location of the
cursor. These constants define the available part codes:

CONST i nDesk = 0; {none of the foll ow ng}

i nMenuBar =1; {in nenu bar}

i nSysWndow = 2; {in desk accessory w ndow}

i nCont ent = 3; {anywhere in content regi on except size }
{ box if windowis active, }
{ anywhere including size box if w ndow }
{ is inactive}

i nDr ag = 4; {in drag (title bar) region}

i NG ow = 5; {in size box (active wi ndow only)}

i nGoAway = 6; {in close box}

i nZoom n = 7; {in zoombox (w ndow in standard state)}

i nZoonut = 8; {in zoombox (w ndow in user state)}

Handling Window Events 119

e n

CHAPTER 6

Windows

In addition to returning a part code as its function result, Fi ndW ndowalso returns in its
second parameter a pointer to a window, if the user presses the mouse button while the
cursor is in a window. Listing 6-7 show how the Venn Diagrammer application handles
mouse-down events.

Listing 6-7 Handling mouse-down events

PROCEDURE DoMbuseDown (nyEvent: Event Record);
VAR
nmyPart : I nt eger;
nmyW ndow. W ndowPt r;
BEG N
nyPart := Fi ndW ndow(myEvent.where, nyW ndow);
CASE nyPart OF
i nMenuBar :
BEG N
DoMenuAdj ust ;
DoMenuCommand(MenuSel ect (myEvent . where)) ;
END;
| NnSysW ndow.
SystenC i ck(nyEvent, myW ndow) ;
i nDr ag:
DoDr ag(nyW ndow, nyEvent. where);
i nGoAway':
DoCGoAwayBox(nyW ndow, mnyEvent. where);
i nCont ent :
BEG N
| F myW ndow <> Front Wndow THEN
Sel ect W ndow(myW ndow)
ELSE
DoCont ent i ck(nyW ndow, myEvent);
END;
OTHERW SE
END;
END;

If the user clicks in the menu bar, DoMouseDown adjusts the menus and calls the
application-defined routine DoMenuConmand to handle whatever menu command the
user might choose. See the chapter “Menus” in this book for details on handling menu
choices.

The Fi ndW ndow function returns the part code i nSysW ndowonly when the user
presses the mouse button while the cursor is in a window that belongs to a desk

120 Handling Window Events

CHAPTER 6

Windows

accessory launched in your application’s partition. You can then call the Syst entCl i ck
procedure, passing it the event record and window pointer. The Syst entCl i ck
procedure makes sure that the event is handled by the appropriate desk accessory. For
more information about Syst enCl i ck, see the chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials.

If the user clicks in a window’s drag region (identified by the part code i nDr ag),
DoMouseDown calls the application-defined routine DoDr ag, defined in Listing 6-8. The
DoDr ag procedure calls the Window Manager procedure Dr agW ndow which displays
an outline of the window, moves the outline as long as the user continues to drag the
window, and calls MoveW ndowto draw the window in its new location when the user
releases the mouse button.

Listing 6-8 Dragging a window

PROCEDURE DoDrag (nyW ndow. W ndowPtr; nousel oc: Point);
VAR
dr agBounds: Rect;
BEG N
dragBounds : = Get GrayRgn"~. r gnBBox;
Dr agW ndow(myW ndow, nousel oc, dragBounds);
END;

If the user clicks a window’s close box (identified by the part code i nGoAway), you can
call an application-defined procedure to close that window. See “Closing Windows”
beginning on page 128 for a discussion of how to close windows.

Finally, the DoMbuseDown procedure defined in Listing 6-7 handles all user clicks in a
window’s content region either by selecting the window if it isn’t already the frontmost
window or by calling the routine DoCont ent Cl i ck defined in Listing 6-9.

Listing 6-9 Handling clicks in a window’s content region

PROCEDURE DoContentd ick (nyWndow. W ndowPtr; nyEvent: Event Record);
VAR

nmyRect : Rect ; {tenporary rectangl e}
count: I nt eger;
BEG N
I F NOT | sAppW ndow(nyW ndow) THEN
exi t(DoContentd i ck); {nmake sure it's a docunent w ndow}
Set Port (myW ndow) ; {set port to our w ndow}

d obal ToLocal (nyEvent . where);

{See if the click is in the tools area.}

Handling Window Events 121

e n

CHAPTER 6

Windows

Set Rect (myRect, 0, 0, kTool Wi * kNumTool s, kTool Ht);
I F PtlnRect (myEvent.where, nyRect) THEN
BEG N {if so, determine which tool was clicked}
FOR count := 1 TO kNunifool s DO
BEG N
Set Rect (myRect, (count - 1) * kTool Wi, O,
count * kTool Wi, kTool Ht);
I F PtlnRect (myEvent.where, nyRect) THEN
Leave; {we found the right tool, so stop |ooking}
END;
| F DoTrackRect (nyW ndow, nyRect) THEN
DoMenuConmand(Bi t Shi ft (nVennD, 16) +
((kNunifools + 1) - count)); {handl e tool s sel ections}
exit (DoContentdick);
END;

{See if the click is in the status area.}
Set Rect (myRect, kTool Wl * kNumfool s, O,
nmyW ndow". port Rect . ri ght, kTool Ht);
I F PtlnRect (myEvent.where, nyRect) THEN
BEG N
exi t (DoContentd i ck);
END;

{The click nust be in sonewhere in the rest of the w ndow. }
Dovennd i ck(myW ndow, nyEvent. where);
END;

The general strategy employed in the DoCont ent Cl i ck procedure is to check each part
of the content area that is meaningful to the application and determine whether the
mouse click occurred there. Then DoCont ent Cl i ck reacts appropriately.

After setting the current drawing port to the specified window, DoCont ent C i ck calls
the A obal ToLocal procedure to convert the mouse click location from global
coordinates to local coordinates. Then DoCont ent Cl i ck checks whether the click
occurred in the tools area of the window. If so, DoCont ent C i ck handles the tool
selection by invoking the corresponding menu command and then exiting.

If the mouse click was in the status area of a window, DoCont ent i ck simply exits.
Otherwise, the user must have clicked somewhere in the content area below the tools
and status area. In that case, DoCont ent O i ck calls the application-defined function
DoVennd i ck to handle the event.

122 Handling Window Events

CHAPTER 6

Windows

Note

The DoVennd i ck function is not defined in this book, but it’s quite
simple. It merely checks whether the click occurred in the figure icons,
mood icons, or some part of the overlapping circles and, if so, changes
the window’s document record accordingly and invalidates any affected
part of the screen. A portion of DoVennd i ck is shown in Listing

6-10. O

Update Events

The Event Manager sends your application an update event when part or all of your
window’s content region needs to be redrawn. Specifically, the Event Manager checks
each window’s update region every time your application calls Wai t Next Event and
generates an update event for every window whose update region is not empty.

The Window Manager typically triggers update events when the moving and relayering
of windows on the screen requires that one or more windows be redrawn. If the user
moves a window that covers part of an inactive window, for example, the Window
Manager first redraws the window frame. It then adds the newly exposed area to the
window’s update region, triggering an update event. In response, your application
updates the content region.

Note

Your application can receive update events when it is in either the
foreground or the background. In general, however, it doesn’t matter
whether your update routine is executed in the foreground or the
background. O

Your application can also trigger update events itself by manipulating the update region.
You can add areas to a window’s update region by calling the Window Manager
procedures | nval Rect (to add a rectangle to the update region) and | nval Rgn (to add
an arbitrary region to the update region). For example, when the Venn Diagrammer
application detects a mouse click in a figure icon, it reacts as shown in Listing 6-10.

Listing 6-10 Handling a click in a figure icon

FOR count
BEGA N

=1 TO 4 DO

| F PtlnRect (nyPoint, gFigureRects[count]) THEN

| F nyHandl e, figure <> count THEN {new rect differ from prev?}

BEG N
I nval Rect (gFi gur eRect s[myHandl e*". figure]);
nmyHandl er”. figure := count;
I nval Rect (gFi gur eRect s[nyHandl e**. figure]);

I nval Rect (gText Boxes[1]); {invalidate premn ses}
I nval Rect (gText Boxes[2]);
DoCal cAnswer (nyW ndow) ; {update the current answer}

Handling Window Events 123

e n

CHAPTER 6

Windows

DoSt at usText (nyW ndow, ''); {renove any existing nmessage}
END;
END;

Your general strategy should be to isolate all drawing that occurs in a document window
into your application’s update routine. Then, within any other routines, you redraw
parts of the window, whenever necessary, by invalidating those parts to add them to the
window’s update region. Listing 6-11 shows the update routine for Venn Diagrammer.

Listing 6-11 Handling update events

PROCEDURE DoUpdat e (nyW ndow. W ndowPtr);

VAR
myHandl e: MyDocRecHnd;
nmyRect : Rect ; {tool rectangl e}
origPort: Gafbtr;
ori gPen: PensSt at e;
count: I nt eger;

BEG N
Cet Port (origPort); {remenber original draw ng port}

Set Port (myW ndow) ;

Begi nUpdat e(myW ndow) ; {cl ear update region}
Er aseRect (myW ndow®. port Rect);

I F | sAppW ndow(nyW ndow) THEN

BEG N
{Draw two lines separating tools area fromwork area.}
Cet PenSt at e(ori gPen) ; {remenber original pen state}
PenNor mal ; {reset pen to nornal state}
W TH nyW ndow* DO

BEG N
MoveTo(portRect.left, portRect.top + kTool Ht);
Li ne(portRect.right, 0);
MoveTo(portRect.left, portRect.top + kToolH + 2);
Li ne(port Rect.right, 0);
END;

{Redraw the tools area in the w ndow. }
FOR count := 1 TO kNunifool s DO
BEG N
Set Rect (nmyRect, kTool Wl * (count - 1), 0, kTool Wi * count,
kTool Ht);

124 Handling Window Events

CHAPTER 6

Windows

DoPl ot | con(myRect, gTool sl cons[count], nyW ndow, srcCopy);
END;

{Redraw the status area in the w ndow. }
myHandl e : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
DoSt at usText (myW ndow, nyHandl e*”. st atusText);

{Draw the rest of the content region.}
DoVennDr am nyW ndow) ;

Set PenSt at e(ori gPen) ; {restore previous pen state}
END; {IF |sAppW ndow}

EndUpdat e(myW ndow) ;
Set Port (origPort); {restore original draw ng port}
END;

In response to an update event, your application calls Begi nUpdat e, draws the
window’s contents, and then calls EndUpdat e. The Begi nUpdat e procedure limits the
visible region to the intersection of the visible region and the update region. Your
application can then update either the visible region or the entire content region—
because QuickDraw limits drawing to the visible region, only the parts of the window
that actually need updating are drawn. The Begi nUpdat e procedure also clears the
update region. After you’ve updated the window, you call EndUpdat e to restore the
visible region in the graphics port to the full visible region.

As you can see in Listing 6-11, the Venn Diagrammer application draws the two lines
separating the upper portion of the window’s content region and redraws the tools
icons. Then it redraws the most recently displayed status message (which it has saved in
the window’s document record). Finally, DoUpdat e calls the application-defined routine
DoVennDr awto draw the remainder of the content area (the overlapping circles, the
figure and mood icons, the term labels on the circles, and the syllogism itself).

Note

The DoVennDr awroutine is not shown in this book, but you’ve already
seen portions of it in the chapter “Drawing” earlier in this book. O

Activate Events

The window in which the user is currently working is the active window. It’s always the
frontmost window on the desktop (unless your application supports “floating”
windows) and is easily identified by the “racing stripes” in the title bar.

Your application activates and deactivates windows in response to activate events,
which are generated by the Window Manager to inform your application that a window
is becoming active or inactive. Each activate event specifies the window to be changed
and the direction of the change (that is, whether it is to be activated or deactivated).

Handling Window Events 125

e n

CHAPTER 6

Windows

Your application also triggers activate events itself by calling the Sel ect W ndow
procedure. When it receives a mouse-down event in an inactive window, for example,
your application calls Sel ect W ndow which brings the selected window to the front,
removes the highlighting from the previously active window, and adds highlighting to
the selected window (see Listing 6-7 on page 120). The Sel ect W ndow procedure then
generates two activate events: the first one tells your application to deactivate the
previously active window; the second, to activate the newly active window.

When you receive the event for the previously active window, you need to do whatever
is appropriate to make the window’s contents appear inactive. Depending on the design
of you application, you might need to

= hide the controls and size box

= remove or alter any highlighting of selections in the window
When you receive the event for the newly active window, you

= draw the controls and size box

= restore the content area as necessary, adding the insertion point in its former location
and highlighting any previously highlighted selections

If the newly activated window also needs updating, your application also receives an
update event, as described in the previous section, “Update Events.”

Note

A switch to one of your application’s windows from a different
application is handled through suspend and resume events, not activate
events. See the chapter “Processes” in this book for a description of how
your application can handle suspend and resume events. O

Listing 6-12 illustrates the application-defined procedure DoAct i vat e, which handles
activate events.

Listing 6-12 Handling window activations and deactivations

PROCEDURE DoActivate (myW ndow. W ndowPtr; nyModifiers: Integer);
VAR
ny St at e: I nt eger; {activation state}
myControl: Control Handl e;
BEG N
nyState : = BAnd(myModifiers, activeFl ag);

| F I sDi al ogW ndow(myW ndow) THEN

BEG N
myControl := W ndowPeek(myW ndow)”~. control List;
VWHI LE myControl <> NIL DO
BEG N

HliteControl (myControl, myState + 255 nod 256);

126 Handling Window Events

END;

END;

CHAPTER 6

Windows

nmyControl := nyControl ~". next Control;
END;

The DoAct i vat e procedure is passed a window pointer and the nodi f i er s field from
the event record corresponding to the activate event. The nodi fi er s field contains a bit
(defined by the act i veFl ag constant) that indicates whether the event specifies
window activation or deactivation.

Notice that DoAct i vat e does nothing to Venn Diagrammer’s document windows,
because those windows contain no controls, text, or other items whose visual state might
depend on the activation state. For document windows belonging to Venn Diagrammer,
the Window Manager handles all the necessary activation and deactivation.

Note

If your application’s document windows contain controls (such as scroll
bars), your application does need to activate them appropriately. For
more information, see the chapter “Control Manager” in Inside
Macintosh: Macintosh Toolbox Essentials. 0O

However, the Preferences dialog box supported by the Venn Diagrammer application
does contain controls, so the DoAct i vat e procedure needs to inactivate those controls
when the window is deactivated and then reactivate them when the window is
activated. The DoAct i vat e procedure checks the window’s control list and calls the
Control Manager procedure Hi | i t eCont r ol to perform the necessary activation or
deactivation. (The head of the window’s control list is stored in the cont r ol Li st field
of the window record.) Figure 6-2 shows the Preferences dialog box in its inactive state.

Figure 6-2 An inactive window containing controls

Uenn Diagram Preferences
Emptiness Pattern

o L o
Existence Symbol

wm x O o O e o+

[Bandamiy ertpt nond soibings
B sutarmatio nily axtjust diagram
B Siseness ¢ hininsdl nmmes of palld farms
[&iere axbstentint npord s subledly

[Sssm} BEEEEECEE ;a;‘e%’e;'eim}x]

Handling Window Events 127

e n

CHAPTER 6

Windows

Closing Windows

The user closes a window either by clicking the window’s close box (in the upper-left
corner of the window) or by choosing the Close command from the File menu. To
determine which window to close, you’ll proceed in slightly different ways for these two
cases. When the user clicks a window’s close box, you can get a window pointer for that
window by calling the Fi ndW ndow function in response to the mouse-down event.
When the user chooses a menu command, however, you can’t do that; instead, you can
call the Fr ont W ndow function to retrieve a pointer to the frontmost window on the
screen.

Note

You’ll also want to close any windows that might be on the desktop
when the user quits your application. You can do that by repeatedly
calling Fr ont W ndow until it returns NI L. See Listing 9-4 on page 175. O

When the user presses the mouse button while the cursor is in the close box, your
application should call the Tr ackGoAway function to track mouse movement until the
user releases the button, as illustrated in Listing 6-13.

Listing 6-13 Handling clicks in the close box

128

PROCEDURE DoGoAwayBox (nmyW ndow. W ndowPtr; nopusel oc: Point);
BEG N
| F TrackGoAway(myW ndow, nousel oc) THEN
DoCl oseW ndow(myW ndow) ;
END;

If Tr ackGoAway returns FALSE, the user released the button while the cursor was
outside the close box, and your application should do nothing. If Tr ackGoAway returns
TRUE, your application should invoke its own procedure for closing a window.

Listing 6-14 illustrates an application-defined function that closes a window. Notice that
the effect of this function varies according to which kind of window it’s being asked to
close. If the user wants to close a dialog window, DoCl oseW ndowsimply hides the
window; this strategy leaves the data structures associated with the dialog box in
memory, in expectation that the user might open the dialog box again. If the user wants
to close a desk accessory window, DoCl oseW ndow calls the Desk Manager routine

Cl oseDeskAcc to close that desk accessory.

Closing Windows

CHAPTER 6

Windows

Listing 6-14 Closing a window

PROCEDURE DoCl oseW ndow (myW ndow. W ndowPtr);
BEG N
| F nyWndow <> NI L THEN
I F I sDi al ogW ndow myW ndow) THEN {this is a dial og wi ndow}
H deW ndow(myW ndow)
ELSE | F | sDAccW ndow myW ndow) THEN {this is a DA wi ndow}
Cl oseDeskAcc(W ndowPeek(nyW ndow) *. wi ndowKi nd)
ELSE | F | sAppW ndow nyW ndow) THEN {this is a docunment w ndow}
DoCl oseDocW ndow(myW ndow) ;
END;

If the window to be closed is a document window, DoCl oseW ndow calls the
application-defined procedure DoCl oseDocW ndow defined in Listing 6-15 to deallocate
the document record, close the window, and then deallocate the window record.

Listing 6-15 Closing a Venn diagram window

PROCEDURE DoCl oseDocW ndow (nyW ndow. W ndowPtr);

VAR
nmyHandl e: MyDocRecHnd;
BEG N
| F myWndow = NI L THEN
exi t (DoC oseDocW ndow) {ignore NIL w ndows}
ELSE
BEG N
nmyHandl e : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
Di sposeHandl| e(Handl e(myHandl e)) ;
G oseW ndow(nyW ndow) ; {cl ose the wi ndow}
Di sposePtr (Ptr (nyW ndow)); {and rel ease the storage}
END;
END;

The Dod oseDocW ndow procedure retrieves a handle to the document record from the
window record. Then it calls Di sposeHandl e to free the memory occupied by the
document record. Next DoCl oseDocW ndow closes the window by calling the Window
Manager procedure Cl oseW ndowand deallocates the window record by calling

Di sposePtr.

Closing Windows 129

e n

CHAPTER 6

Windows

Note

When you create a window, if you allow the Window Manager to
allocate memory for the window record (by passing NI L as the second
parameter to Get NewW ndow), then you should call the

Di sposeW ndow procedure to close the window, instead of calling

Cl oseW ndowand Di sposePtr. O

130 Closing Windows

CHAPTER 7

Dialog Boxes

Contents

About Dialog Boxes 133
Using Modeless Dialog Boxes 137
Creating a Modeless Dialog Box 137
Setting Up Application-Defined Items 139
Handling User Actions in a Modeless Dialog Box
Using Modal Dialog Boxes 144
Displaying a Modal Dialog Box 145
Defining a Modal Dialog Filter Function 146

Contents

141

131

CHAPTER 7

Dialog Boxes

This chapter describes how your application can use the Dialog Manager to create and
manage dialog boxes. You can use dialog boxes to alert the user to unusual situations or
to solicit information from the user. The Venn Diagrammer application uses one
modeless dialog box and two modal dialog boxes.

This chapter shows how to

= create resources describing dialog boxes and the items in dialog boxes
= open those resources to display a dialog box

= define application-specific dialog items

= handle events associated with both modeless and modal dialog boxes

Most Macintosh applications support a number of dialog boxes and provide more
complete event handling in those dialog boxes than is illustrated in this chapter. For
example, the dialog boxes supported by the Venn Diagrammer application do not
contain text fields. For a complete description of the capabilities of the Dialog Manager
and for code samples illustrating more advanced dialog handling, see the chapter
“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

About Dialog Boxes

A dialog box is a window that’s used for some special, limited purpose. In the simplest
case, you can use a dialog box just to display information to the user. The information
might be a report of some error, a greeting, or a progress bar showing what percentage of
some operation has completed. Figure 7-1 shows a simple modal dialog box of this ilk;
this is the box Venn Diagrammer displays when the user chooses the About Venn
Diagrammer command from the Apple menu.

Figure 7-1 An About box

o, Uenn Diagrammer

Uenn Diagrammer allows you to use
Uenn diagrams to determine whether
a syllogism is valid or invalid.

©1992 Apple Computer, Inc.

This kind of dialog box is said to be modal: it puts the user in the state or “mode” of
being able to work only inside the dialog box. To dismiss the dialog box, the user must
click one or the other of the two buttons.

About Dialog Boxes 133

saxog bojeig .

CHAPTER 7

Dialog Boxes

The system software distinguishes a special category of modal dialog boxes, called alert
boxes. You’ll use alert boxes to report errors or to give warnings to the user. Figure 7-2
shows an alert box. (Venn Diagrammer displays this alert box if it cannot read the
resources it uses to create menus; see Listing 8-1 on page 155.)

Figure 7-2 An alert box

Cannot find essential application resources.
This copy of the application might be corrupt.
Try replacing it with a backup copy.

Other types of dialog boxes both display information to the user and allow the user to
enter or change information. You might, for instance, use a dialog box of this sort in an
application that allows users to specify a word to be searched for. The Venn Diagrammer
application displays the modeless dialog shown in Figure 7-3 when the user chooses the
Preferences command from the Venn menu.

Figure 7-3 A Preferences dialog box

134

E[1== Uenn Diagram Preferences
Emptiness Pattern

o o o
Existence Symbaol

@ x O Ce O+

[JRandomly select next settings
[] Automatically ad just diagram
(< Show Scholastic names of valid forms
[]Give existential import to subjects

=

[Saue current preferences]

This modeless dialog box contains a button, four checkboxes, and eight radio buttons. It
also contains eight application-defined items—the icons used to show the available
existence symbols and emptiness patterns.

In contrast to the modal dialog boxes shown in Figure 7-1 and Figure 7-2, the dialog box
shown in Figure 7-3 is said to be modeless: the user can switch to another window or
perform other actions without dismissing the dialog box. The user doesn’t have to
change any preferences settings or click any buttons to be able to switch to a document
window or pull down a menu. Moreover, clicking a button in the modeless dialog box

About Dialog Boxes

CHAPTER 7

Dialog Boxes

should not dismiss it; instead, the dialog box should remain on the desktop so that the
user can continue to see the information displayed in it or repeat any actions it permits.

IMPORTANT

To give users maximum control and minimum frustration, you should,
whenever possible, implement your dialog boxes as modeless dialog
boxes. a

The distinctive feature of dialog boxes—as opposed to windows—is that they are very
easy to create and manage. The Dialog Manager looks in dialog resources to find
descriptions of the dialog box and the items in it. Then the Dialog Manager draws the
dialog box and handles user actions in the dialog box accordingly. This can be especially
useful for managing dialog boxes that contain editable text fields. The Dialog Manager
calls TextEdit to handle all the standard text-editing operations such as cutting, pasting,
and copying.

To create a dialog box, you first need to define a dialog resource and a dialog item list.
The dialog resource specifies, among other things, the rectangle on the screen in which
the dialog box is drawn, a window definition ID indicating the type of dialog box to
draw, and a resource ID of the dialog item list. A dialog resource is of type ' DLOG . See
Figure 3-2 on page 58 for the ResEdit form of a dialog resource and Listing 3-1 on

page 57 for the Rez form of the same dialog resource. Both of these correspond to the
dialog box in Figure 7-3.

One of the main pieces of information in a dialog resource is the resource 1D of a dialog
item list (a resource of type ' DI TL'). The item list specifies the items—such as buttons
and static text—to display in an alert box or a dialog box. (Once again, you can specify
an item list graphically using a utility like ResEdit or textually in the Rez resource
description language.) The Dialog Manager uses the item list both to draw the dialog
box and also to handle user actions in dialog boxes. It reports user actions to your
application by specifying the item number of the relevant item. An item’s number is
simply its rank in the item list. In Listing 7-1, the Venn Diagrammer application defines a
number of constants to keep track of the numbers of the items in its Preferences dialog
box.

Listing 7-1 Dialog item numbers

Enpt y1Radi o =
Enpt y2Radi o =
Enpt y3Radi o =
Enpt y4Radi o =
Enptyll con =
Enpt y21 con =
Enpt y31 con =
Enpt y4l con =
Exi st 1Radi o =
Exi st 2Radi o =

=
e

About Dialog Boxes 135

saxog bojeig .

136

CHAPTER 7

Dialog Boxes

i Exi st 3Radi o = 11;
i Exi st4Radi o = 12;
i Exi st 1l con = 13;
i Exi st 2l con = 14;
i Exi st 3l con = 15;
i Exi st4l con = 16;
i Get Next Randoml y = 19;
i Aut oAdj ust = 20;
i ShowSchool Nanes = 21;
i UseExi st | nport = 22;
i SaveVennPrefs = 23;
Note

Notice that several item numbers (namely, 17 and 18) are missing from
this list. They are the item numbers of the two text labels “Emptiness
Pattern” and “Existence Symbol.” Venn Diagrammer ignores those item
numbers because clicking them has no effect. O

Dialog boxes can contain various sorts of items, such controls (buttons, checkboxes, and
radio buttons) and fields for entering and editing text. The Dialog Manager recognizes
these constants for dialog box items:

CONST
ctrliltem = 4; {add this to the next four constants}
btnCtrl = 0; {standard button control}
chkCtrl 1; {standard checkbox control}
radcrl 2; {standard radi o button}
resCrl 3; {control defined in a control resource}
hel pl tem 1; {hel p balloons}
st at Text 8; {static text}
edi t Text 16; {editable text}
iconltem 32; {icon}
picltem 64; {QuickDraw picture}
userltem 0; {application-defined itent

Several Dialog Manager routines return these constants to your application. For instance,
you can get information about a particular dialog item by calling the Get Di al ogl t em
routine:

Get Di al ogl tem nyDi al og,

itemNum nyType, nyHand, nyRect);

Suppose, for example, that i t emNumhas the value specified by the constant

i SaveVennPr ef s. Then on return from the procedure call, ny Type will contain the
valuectrl It emtbt nCt r |, indicating that the specified item is a standard button
control.

About Dialog Boxes

CHAPTER 7

Dialog Boxes

As you can see, a dialog box can contain standard user interface elements like buttons,
checkboxes, icons, and even arbitrary pictures. If you need to include other kinds of
elements in a dialog box, you can create application-defined items. Because the Dialog
Manager uses the constant user | t emto designate these items, they’re often called user
items. The Venn Diagrammer application employs eight user items in the Preferences
dialog box, to draw the four emptiness patterns and the four existence symbols.

When you use any application-defined user items in a dialog box, your application
needs to tell the Dialog Manager how to draw the items and what to do in response to
user selections of those items. See “Setting Up Application-Defined Items” beginning on
page 139 for instructions on implementing user items in a dialog box.

Note

Most dialog boxes don’t need to contain user items. The Venn
Diagrammer application uses them because it needs to draw bit images
(not entire icons) in the dialog box. O

Using Modeless Dialog Boxes

To display a modeless dialog box, you can create the dialog box by calling

Get NewDi al og. Then you can respond to user actions in the dialog box by intercepting
dialog-related events in your main event loop and handling those events. The Dialog
Manager calls the Control Manager to draw any controls you’ve put in the dialog box
and handle user actions in them. If the dialog box contains any application-defined user
items, you need to provide the Dialog Manager with a drawing procedure so that it
knows how to draw the items. You also need to handle user actions for any such
application-defined items yourself.

Creating a Modeless Dialog Box

You can create a modeless dialog box by calling Get NewDi al og and passing it the
resource ID of an appropriate ' DLOG resource. The Venn Diagrammer application
supports only one modeless dialog box, in which the user can set various application
preferences. Venn Diagrammer displays that dialog box after the user chooses the
Preferences command from the Venn menu.

i Get VennPrefs:
DoMbdel essDi al og(r VennDPr ef sDi al , gPrefsDi al og);

As you can see, Venn Diagrammer simply calls the application-defined procedure
DoMbdel essDi al og, passing it a resource ID specifying the dialog box to open and a
global variable in which to return the dialog pointer created by Get NewDi al og.
Listing 7-2 defines the Dovbdel essDi al og procedure.

Using Modeless Dialog Boxes 137

saxog bojeig .

CHAPTER 7

Dialog Boxes

Listing 7-2 Creating a modeless dialog box

PROCEDURE DoMbdel essDi al og (nyKi nd: Integer; VAR nyDial og: DialogPtr);
VAR
nyPointer: Ptr;
BEG N
IF nyDialog = NIL THEN {the dial og box doesn't exist yet}
BEG N
myPoi nter := NewPtr(sizeof (D al ogRecord));
I F nmyPointer = NIL THEN
exi t (DoModel essDi al og) ;

nyDi al og : = Get NewDi al og(nyKi nd, mnyPointer, WndowPtr(-1));
IF nyDialog <> NIL THEN
BEG N
DoSet upUser | tens(nyKi nd, nyDi al og); {set up user itens}
DoSet upCtr| Val ues(nyDi al og) ; {set up initial values}
END;
END
ELSE
BEG N
ShowwW ndow(nyDi al og) ;
Sel ect W ndow(nyDi al og) ;
Set Port (nyDi al og) ;
END;
END;

The DoMbdel essDi al og procedure first determines whether the specified dialog box
has already been created, by checking the value of the global variable passed to it. If the
variable contains any value other than NI L, the dialog box already exists (but is perhaps
hidden or obscured by other windows). If so, DoModel essDi al og simply makes the
dialog box visible (by calling ShowW ndow), makes it the active window (by calling

Sel ect W ndow)), and establishes it as the current graphics port (by calling Set Por t).

If, however, the specified dialog box doesn’t exist yet, then DoMbdel essDi al og
allocates memory for a new dialog record and (if successful) calls Get NewDi al og,
passing it the appropriate resource ID. If Get NewDi al og returns successfully (as
indicated by a returned dialog pointer whose value isn’t NI L), DoModel essDi al og
then calls two application-defined routines, DoSet upUser | t ens and

DoSet upCt r | Val ues, to tell the Dialog Manager how draw the user items in the dialog
box and to set the correct initial values for the dialog box’s radio buttons and checkboxes.

138 Using Modeless Dialog Boxes

CHAPTER 7

Dialog Boxes

Setting Up Application-Defined Items

Whenever a modeless dialog box contains application-defined user items, you need to
tell the Dialog Manager how to draw them. You do this by calling the Dialog Manager
procedure Set Di al ogl t emfor each application-defined item in the dialog box.
Listing 7-3 shows the DoSet upUser | t ens procedure called by DoModel essDi al og
(defined in Listing 7-2).

Listing 7-3 Setting up application-defined dialog items

PROCEDURE DoSet upUserltens (nyKind: Integer; VAR nyDial og: DialogPtr);
VAR

myType: | nt eger;
nyHand: Handl e;
myRect : Rect ;
count : | nt eger;
origPort: Gafbtr;

BEG N
Get Port (origPort);
Set Port (nmyDi al og) ;

CASE nyKi nd OF
rVennDPr ef sDi al :
FOR count := 1 TO kVennPrefsltenCount DO
I F count I N [iExistllcon..iExist4lcon,
i Enpt y1l con. . i Enpty4l con] THEN
BEG N
CGet Di al oglt en{ nyDi al og, count, myType, myHand, nyRect);
Set Di al ogl ten(nyDi al og, count, myType, @oUserltem myRect);
END;
OTHERW SE

END;

Set Port (origPort);
END;

The DoSet upUser | t ens procedure simply selects the relevant application-defined
items, retrieves information about each item (by calling Get Di al ogl t en), and then
calls Set Di al ogl t emto associate a particular application-defined drawing procedure
with each item. As you can see, the drawing procedure (DoUser | t en) is the same for
each user item in the Preferences dialog box. This is possible because the Dialog

Using Modeless Dialog Boxes 139

saxog bojeig .

CHAPTER 7

Dialog Boxes

Manager passes the drawing procedure the dialog pointer and item number when it
wants a particular item to be drawn. Listing 7-4 defines the \Venn Diagrammer procedure
that draws user items.

Listing 7-4 Drawing application-defined dialog items

PROCEDURE DoUserltem (nmyDial og: DialogPtr; nyltem Integer);

VAR
myType: | nt eger;
nyHand: Handl e;
myRect : Rect ;

origPort: Gafbtr;

BEG N

Get Port (origPort);
Set Port (myDi al og) ;

GetDi al oglten{nyDi al og, nyltem nyType, nyHand, nyRect);

| F nyDi al og = gPrefsDi al og THEN
CASE nyltem OF

i Exi st 1l con. .i Exi st 4l con:
BEG N
DoPl ot | con(myRect, Getlcon(kExistID + nyltem- iExist1lcon),
nyDi al og, srcCopy);
END;
i Enpty1l con. . i Enpty4l con:
BEG N
DoPl ot | con(nyRect, Getlcon(kEmptylD + nyltem - i Enptyllcon),
nyDi al og, srcCopy);
FrameRect (nyRect) ;

END;
OTHERW SE
END; { CASE}
Set Port (origPort); {restore original port}

END;
The DoUser | t emprocedure is also fairly simple. It makes sure that the dialog pointer
passed to it picks out the Preferences dialog box. Then it calls the application-defined
procedure DoPl ot | con (defined in Listing 5-8 on page 101) to draw the appropriate
part of an icon in the item rectangle. If the emptiness patterns are being drawn,
DoUser | t emalso draws a box around the pattern (by calling Fr ameRect).

140 Using Modeless Dialog Boxes

CHAPTER 7

Dialog Boxes

Handling User Actions in a Modeless Dialog Box

The Venn Diagrammer application calls its DoHandl eDi al ogEvent function for each
event it retrieves from the Event Manager. Its strategy is to determine if the returned
event applies to a dialog box. If so, DoHandl eDi al ogEvent handles the event and
returns TRUE to indicate that it did so; otherwise, DoHand| eDi al ogEvent just returns
FALSE to indicate that it didn’t handle the event. Listing 7-5 defines

DoHandl eDi al ogEvent . (See Listing 4-4 on page 77 to see when

DoHandl eDi al ogEvent is called.)

Listing 7-5 Handling events in a modeless dialog box

FUNCTI ON DoHandl eDi al ogEvent (myEvent: Event Record): Bool ean;
VAR

event Handl ed: Bool ean; {did we handl e the event ?}
nyDi al og: Di al ogPtr;
myltem | nt eger;

BEG N
event Handl ed : = FALSE;
| F Front Wndow <> NI L THEN
| F I sDi al ogEvent (nyEvent) THEN
| F Di al ogSel ect (nyEvent, nyDi al og, nyltenm) THEN
BEG N

event Handl ed : = TRUE;
Set Port (nmyDi al og) ;

| F nyDi al og = gPrefsDi al og THEN
BEG N
CASE nyltem OF
i Enpt y1Radi o. . i Enpt y4Radi o:
gEmptyl ndex := nyltem
i Enpt y1l con. . i Enpt y4l con:
gEnptyl ndex : = nyltem - 4;
i Exi st 1Radi o. . i EXi st 4Radi o:
gExi stindex := nyltem - iEnpty4lcon;
i Exi st 1l con. .i Exi st4l con:
gExi stindex := nyltem
i Get Next Random y:
gSt epRandom : = NOT gSt epRandom
i Aut oAdj ust :
gAut oAdj ust : = NOT gAut oAdj ust;
i ShowSchool Nanes:
gShowNanes : = NOT gShowNanes;
i UseExi st | nport:

(i Empty4lcon + 4);

Using Modeless Dialog Boxes 141

saxog bojeig .

CHAPTER 7

Dialog Boxes
gG velmport : = NOT gG vel nport;
i SaveVennPr ef s:
DoSavePr ef s;
OTHERW SE
END;
DoSet upCt rl Val ues(nyDi al og) ; {updat e val ues}
END;
END;

DoHandl! eDi al ogEvent : = eventHandl ed;
END;

The DoHandl eDi al ogEvent function calls the Dialog Manager’s | sDi al ogEvent
function to determine whether at the time of the event the frontmost window is a dialog
box. If not, then DoHandl| eDi al ogEvent just exits and returns the value FALSE. If,
however, the event did occur while a dialog box was active, then the event might apply
to that dialog box. To determine whether it does apply, DoHandl eDi al ogEvent calls
the Dialog Manager’s Di al ogSel ect function, which handles most of the events
relating to a dialog box. For example, if the event is an update or activate event for the
dialog box, Di al ogSel ect updates or activates the dialog box and returns FALSE (to
indicate that no further processing is required by the calling application).

If the event involves an enabled item in the dialog box, Di al ogSel ect returns a
function result of TRUE. In the nmy| t emparameter, it returns the item number of the item
selected by the user. In the myDi al og parameter, it returns a pointer to the dialog record
for the dialog box where the event occurred. In all other cases, the Di al ogSel ect
function returns FALSE. When Di al ogSel ect returns TRUE, you should do whatever
is appropriate as a response to the event involving that item in that particular dialog box;
when it returns FALSE, you should do nothing.

The DoHandl eDi al ogEvent function uses a very simple technique for handling user
selections of items in the Preferences dialog box. As you can see, it sets the appropriate
application global variables for clicks of the radio buttons, and it toggles the appropriate
global variables for clicks of the checkboxes. Then DoHandl eDi al ogEvent calls the
application-defined procedure DoSet upCt r | Val ues to change the values of those
controls, turning the radio buttons and checkboxes off or on, as appropriate. Listing 7-6
gives the definition of DoSet upCt r | Val ues.

Listing 7-6 Setting the state of radio buttons and checkboxes

PROCEDURE DoSet upCtrl Val ues (nyDi al og: Dial ogPtr);

142

VAR

count : | nt eger;
nmyType: I nt eger;

Using Modeless Dialog Boxes

CHAPTER 7

Dialog Boxes
nmyHand: Handl e;
nmyRect : Rect ;
origPort: Gafbtr;

BEG N
IF nyDialog = NIL THEN
exit (DoSetupCtrl Val ues);

Cet Port (origPort); {save the current graphics port}
Set Por t (nmyDi al og) ; {al ways do this before draw ng}
ShowwW ndow(nyDi al og) ;

| F nyDi al og = gPrefsDi al og THEN
BEG N
FOR count := 1 TO kVennPrefsltenCount DO
BEG N
CGet Di al ogl ten({nyDi al og, count, myType, nyHand, nyRect);
IF nyType = ctrlltem+ radCrl THEN
CASE count OF
i Exi st 1Radi o. . i Exi st 4Radi o:
Set Ct | Val ue(Cont r ol Handl e(nyHand) ,
ORD(gExi stIndex = count - (iExistlRadio - 1)));
i Enpt y1Radi o. . i Enpt y4Radi o:
Set Ct | Val ue(Cont r ol Handl e(nyHand) ,
ORD(gEnptyl ndex = count - (iEnptylRadio - 1)));
OTHERW SE
END;
I F nyType = ctrlltem+ chkCrl THEN
CASE count OF
i Get Next Random y:
Set Ct | Val ue(Cont r ol Handl e(myHand) ,
ORD(gSt epRandom = TRUE)) ;
i ShowSchool Nanes:
Set Ct | Val ue(Cont r ol Handl e(myHand) ,
ORD(gShowNanmes = TRUE)) ;
i UseExi st nport:
Set Ct | Val ue(Cont r ol Handl e(myHand) ,
ORD(gG vel nport = TRUE)) ;
i Aut oAdj ust:
Set Ct | Val ue(Cont r ol Handl e(myHand) ,
ORD(gAut 0Adj ust = TRUE)) ;
OTHERW SE

Using Modeless Dialog Boxes

143

saxog bojeig .

CHAPTER 7

Dialog Boxes

END;
END;

Set Port (origPort); {restore the previous graphics port}
END;

The DoSet upCt r | Val ues procedure simply calls the Control Manager procedure

Set Ct | Val ue to set the value of each control in the dialog box according to the value of
some global variable. This makes it easy to toggle checkboxes and to group radio buttons
in such a way that exactly one radio button in each group is on.

IMPORTANT

The strategy for handling dialog box events described in this section
might not be the best or most efficient strategy for your application. For
a more complete discussion of handling dialog box events, see the
chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials. a

Using Modal Dialog Boxes

144

Remember that a modal dialog box puts the user into the state or “mode” of being able
to work only inside the dialog box. The user cannot move the dialog box and can dismiss
it only by clicking its buttons (perhaps after supplying some necessary information).

Note

The Dialog Manager also provides movable modal dialog boxes; these
are modal dialog boxes that contain a title bar so that the user can drag
the dialog box. You should use movable modal dialog boxes whenever
the user might need to move a modal dialog box to see what it obscures
or whenever you want allow the user to switch to another application
while the dialog box is displayed. O

In general, it’s easier to create and handle simple modal dialog boxes than it is to create
and handle modeless dialog boxes. The reason is that the Dialog Manager provides
special routines that you can call to display alerts and other simple dialog boxes. The
Dialog Manager also provides the Mbdal Di al og procedure, which you can call to
manage all user actions in modal dialog boxes.

IMPORTANT

Ease of implementation is not a sufficient reason for using modal dialog
boxes instead of modeless ones. You should avoid using modal dialog
boxes except when absolutely necessary. a

Using Modal Dialog Boxes

CHAPTER 7

Dialog Boxes

Displaying a Modal Dialog Box

Listing 7-7 shows a standard way to display a modal dialog box. It defines the procedure
DoAbout Box, which is called after the user chooses the About Venn Diagrammer
command from the Apple menu.

Listing 7-7 Displaying a modal dialog box

PROCEDURE DoAbout Box (nmyW ndow. W ndowPtr);
VAR
nyW ndow: W ndowPt r;
nyDi al og: Di al ogPtr;
myltem | nt eger;
BEG N
nmyW ndow : = Front W ndow;,
| F nyW ndow <> NIL THEN
DoActi vat e(myW ndow, 1 - activeFl ag);

nyDi al og : = Get NewDi al og(rAboutDial, NIL, WndowPtr(-1));
IF nyDialog <> NIL THEN
BEG N
Set Port (nmyDi al og) ;
DoDef aul t Butt on(nmyDi al og) ;

REPEAT
Modal Di al og(@& Modal Filter, nyltem;
UNTIL nmyltem = i OK;

Di sposeDi al og(nmyDi al og) ;
Set Port (myW ndow) ;
END;
END;

When you display a modal dialog box, you should first deactivate any existing front
window. The DoAbout Box procedure retrieves a window pointer to the front window
and passes that pointer to the application-defined activate routine DoAct i vat e. Then
DoAbout Box calls Get NewDi al og to open the dialog box specified by the resource ID
r About Di al :

CONST
r About Di al = 7000; {resource | D of About dial og}

If Get NewDi al og returns a dialog pointer whose value is not NI L, then DoAbout Box
calls Set Por t to establish the new dialog box as the current drawing port. Then it calls
the application-defined procedure DoDef aul t But t on (defined in Listing 7-8) to draw a

Using Modal Dialog Boxes 145

saxog bojeig .

CHAPTER 7

Dialog Boxes

thick border around the default button. This indicates that the user can dismiss the
dialog box by pressing the Return key or the Enter key.

Listing 7-8 Outlining the default button of a modal dialog box

146

PROCEDURE DoDef aul t Button (nyDial og: DialogPtr);

VAR
nmyType: I nt eger;
nyHand: Handl e;
myRect : Rect ;
BEG N

GetDi al ogl tem(nyDi al og, i OK, nyType, nmyHand, nyRect);
DoQut | i neContr ol (myHand) ;
END;

The DoDef aul t But t on procedure simply calls the application-defined procedure
DoQut | i neCont rol to outline the dialog item whose item number is 1 (identified by
the constant i OK). See page 200 for a definition of DoQut | i neCont r ol .

At this point, the modal dialog box is displayed on the screen. The DoAbout Box
procedure loops indefinitely, repeatedly calling Modal Di al og until the user clicks the
OK button. The Mbdal Di al og procedure handles all mouse, keystroke, and update
events that occur inside the dialog box until an event involving an enabled dialog item
occurs. When that happens, Modal Di al og exits and returns the dialog item number in
the second parameter. Your application can then do whatever is appropriate in response
to an event in that item. In DoAbout Box, Modal Di al og is called repeatedly until a click
in the OK button occurs. At that time, the modal dialog is removed from the screen, and
DoAbout Box calls Set Por t to reinstate the original drawing port.

Defining a Modal Dialog Filter Function

The actions of Modal Di al og are guided by the modal dialog filter function whose
address is passed in its first parameter. If you pass NI L as the first parameter to the
Modal Di al og procedure, you'll get the standard event filtering provided by the Dialog
Manager. The standard event filter function returns TRUE and causes Mbdal Di al og to
return item number 1 (the number of the default button) when the user presses the
Return or the Enter key.

For most modal dialog boxes, the standard modal dialog filter function is too simple.
Your application should define a modal dialog filter function that performs the following
tasks:

= return TRUE and the item number for the default button if the user presses the Return
key or the Enter key

= return TRUE and the item number for the Cancel button if the user presses the Escape
key or the Command-period combination

Using Modal Dialog Boxes

CHAPTER 7

Dialog Boxes

= allow background applications to receive update events and return FALSE when they
do

= return FALSE for all other events that your event filter doesn’t handle

Listing 7-9 defines a modal dialog filter function that accomplishes these tasks. In
addition, the filter function MyMbdal Fi | t er handles any disk-inserted events that
occur while the modal dialog box is displayed.

Listing 7-9 A modal dialog filter function

FUNCTI ON MyMbdal Filter (nyDial og: DialogPtr; VAR nmyEvent: EventRecord;
VAR nyltem |nteger): Bool ean;

VAR
nyType: I nt eger;
nmyHand: Handl e;
myRect : Rect ;
nmyKey: Char ;
myl gnor e: Longl nt;

BEG N
MyModal Filter := FALSE; {assume we don't handl e the event}

CASE nyEvent . what OF
updat eEvt :
BEG N
| F WndowPt r (nyEvent . nessage) <> nyDi al og THEN
DoUpdat e(W ndowPt r (myEvent . message)) ;
{update the w ndow behi nd}
END;
keyDown, aut oKey:
BEG N
myKey : = char (BAnd(nyEvent. nessage, char CodeMask));

{if Return or Enter pressed, do default button}
IF (nyKey = kReturn) OR (nyKey = kEnter) THEN
BEG N
CGet Di al oglten{nyDi al og, i OK, nyType, nmyHand, nyRect);
Hi IiteControl (Control Handl e(nyHand), 1);
{make button appear to have been pressed}
Del ay(kVi sual Del ay, nylgnore);
Hi I'iteControl (Control Handl e(nyHand), 0);
MyModal Filter := TRUE;
nyltem: = i
END;

Using Modal Dialog Boxes 147

saxog bojeig .

CHAPTER 7

Dialog Boxes

{if Escape or Cnd-. pressed, do Cancel button}
I F (nyKey = kEscape)
OR ((myKey = kPeri od)
AND (BAnd(nyEvent. nodifiers, CndKey) <> 0)) THEN
BEG N
Get Di al ogl tem(nyDi al og, i Cancel, nyType, nyHand, nyRect);
Hi liteControl (Control Handl e(nyHand), 1);
{make button appear to have been pressed}
Del ay(kVi sual Del ay, nylgnore);
Hi liteControl (Control Handl e(nyHand), 0);
MyModal Fil ter := TRUE;
nyltem : = i Cancel;

END;
END;
di skEvt:
BEG N
DoDi skEvent (myEvent);
MyModal Fil ter := TRUE {show we' ve handl ed the event}
END;
OTHERW SE
END; { CASE}
END;
An interesting part of MyModal Fi | t er is the way it intercepts key-down events and
translates them into button clicks. When, for instance, it detects that the Return key was
pressed, it calls Get Di al ogl t emto retrieve a handle to the first item in the item list (by
convention, the OK button). Then MyModal Fi l ter callsHi | i t eControl toinvertthe
state of the button, waits for a specified number of ticks, and then calls Hi | i t eCont r ol
once again to restore the button to its original state. Finally, it sets the function result and
the variable parameter my| t em thus informing the calling routine that the event was
handled.
148 Using Modal Dialog Boxes

CHAPTER 8

Menus

Contents

About Menus 151
Creating Menus 152
Creating a Menu Resource 152
Creating a Menu Bar Resource 154
Setting Up the Menu Bar and Menus 154
Handling Menu Choices 156
Handling Keyboard Equivalents 160
Adjusting Menus 161

Contents 149

CHAPTER 8

Menus

This chapter describes how your application can use the Menu Manager to create and
manage menus. Menus provide a simple and standard method for the user to view or
choose from a list of commands and settings that your application provides. Every
Macintosh application that has a user interface should support pull-down menus (that is,
menus that the user “pulls down” by pressing the mouse button when the cursor is over
the menu title in the menu bar).

This chapter shows how to

= create menu and menu bar resources

= open those resources to display the menu bar

= handle user clicks in the menu bar

= handle user choices of menu items

= handle keyboard equivalents of menu commands
= enable and disable menu items

Most Macintosh applications provide more menu handling than is illustrated in this
chapter. For example, you might want to use pop-up menus in a window or dialog box.
For a complete description of the capabilities of the Menu Manager and for code samples
illustrating more advanced menu-handling techniques, see the chapter “Menu Manager”
in Inside Macintosh: Macintosh Toolbox Essentials.

About Menus

A menu is a user interface element that your application can create to allow the user to
view or choose an item from a list of commands and options that your application
provides. For example, the sample application Venn Diagrammer provides a menu
(shown in Figure 8-1) that contains a list of commands for manipulating Venn diagrams.

Figure 8-1 A typical pull-down menu

| venn

Check #K
Show Solution #6
Clear #*B
Get Next Settings
Assess Ualidity

Preferences... Y

This kind of menu is known as a pull-down menu, because the user “pulls down” the
menu by clicking the menu title (the word “Venn” in the menu bar). A pull-down menu
always has associated with it one or more menu items, rectangles containing text and
other characteristics that identify a command that the user can choose to perform an

About Menus 151

o n

CHAPTER 8

Menus

action. The menu shown in Figure 8-1 contains six menu items and one divider (the gray
line used to separate the first five items from the last one). In addition, four of the menu
items in that menu have keyboard equivalents associated with them. The user can
invoke the menu command by pressing the appropriate combination of characters on the
keyboard. For example, the user can make the Preferences dialog box appear by pressing
the combination Command-Y.

Note

This chapter shows how to create and handle pull-down menus only.
The word “menu” should therefore be understood to mean “pull-down
menu.” O

The Menu Manager provides routines that allow you to create your application’s menu
bar and menus, and to handle user actions in the menu bar and in individual menus.
You’ll call these routines when you detect that a mouse-down event has occurred in the
menu bar or when you detect that the user has typed a keyboard equivalent of a menu
command. You’ll also call the Menu Manager to perform other operations on menus,
such as changing menu item text or enabling and disabling menu items.

All Macintosh applications should support at least three standard menus: the Apple
menu, the File menu, and the Edit menu. In addition, you’ll want to support other
menus that contain commands and options specific to your application. The Venn
Diagrammer application supports only one application-specific menu along with the
three standard menus.

Creating Menus

152

The easiest way to define menu titles and commands is to use a resource editor like
ResEdit to create resources describing your application’s menu bar and the individual
menus. It’s also possible to define your menu bar and menu items internally in your
application, but you can make your application significantly easier to localize by
isolating that information in resources.

Note

As you learned in the chapter “Resources,” you can also create resources
using the Rez resource-description language and a resource compiler.
This chapter shows how to use ResEdit to create menu-related
resources. O

Creating a Menu Resource

You can define the menu title and characteristics of each individual menu item in a
menu resource (a resource of type' MENU). Figure 8-2 shows the appearance of
ResEdit’s' MENU' resource editor.

Creating Menus

CHAPTER 8

Menus

Figure 8-2 Defining a' MENU' resource

S[1== MENU “Uenn Diagram menu” 10 = 131 from Venn Resources

Entire Menu: [Enabled
Check B |
Show Selution %6 title: @ [T
Clear EB
Get Next Settings (2 % (Apple menu)

Assess Ualidity

Preferences... EY Title: _I

)

=

=

=
o n

<
K4
m
3
=S
=
o
=
b
@
-
o
=
E]
2

As you can see, the menu title is currently selected. ResEdit allows you to change the
menu title text or to designate this menu as the Apple menu. This window also lets you
set the menu as initially enabled or disabled. In most cases, you’ll want to have your
menus initially enabled. The Venn Diagrammer application, however, disables the Edit
menu because it does not support any text editing.

To edit the text of a menu command, you can click it. ResEdit highlights the selected
command and changes the controls in the right side of the window, as shown in
Figure 8-3.

Figure 8-3 Editing a menu command

S[1== MENU “Uenn Diagram menu” 10 = 131 from Uenn Resources

lenn Selected ltem: <] Enabled
Check EK [
Show Solution ®0 Text: @|Preferences... |
Clear ®B
Get Next Settings (3 - (separator line)
Assess Validity

Color

Preferences... ¥ [] has Submenu Text: EI

Cmd-Key: IE EI
Mark:[None |

<

You can use the controls in the right side of the window to change the menu item text,
the keyboard equivalent, the menu’s mark, and several other items. You can also
designate the menu item as initially enabled or disabled. Once again, you’ll probably
want most items to be initially enabled. You can disable and reenable menu items

Creating Menus 153

CHAPTER 8

Menus

dynamically during your application’s execution; see “Handling Menu Choices”
beginning on page 156 for details.

Creating a Menu Bar Resource

You can define the order and resource IDs of the menus in your application in a menu
bar resource (a resource of type ' MBAR). You should define your ' MBAR resource in
such a way that the Apple menu is the first menu in the menu bar. You should define the
next two menus as the File and Edit menus, followed by any other menus that your
application uses. You do not need to define the Keyboard, Help, or Application menus in
your' MBAR' resource; the Menu Manager automatically adds them to your
application’s menu bar if your application calls the Get NewivBar function and your
menu bar includes an Apple menu or if your application inserts the Apple menu into the
current menu list using the I nsert Menu procedure.

You can use ResEdit to create an' MBAR' resource. Figure 8-4 shows the ' MBAR
resource window for the Venn Diagrammer application.

Figure 8-4 An' MBAR' resource in ResEdit

154

E[1= MBAR “Menu Bar” 1D = 128 from UVenn Resources

o>

* of menus 4

IREELEE TS

Nenu res 10

27 kA

Nenu res 10 129

SARELETDY

Nenu res 10 130

47 wEkkE

Nenu res 10 131

5h wkkkk

==

An' MBAR' resource is simply a list of the menu IDs, in the order you want the
corresponding menu titles to appear from left to right in the menu bar.

Setting Up the Menu Bar and Menus

One of the very first things you need to do when your application starts running is set
up your menu bar and menus. You can do this by calling the Menu Manager function
Get NewiVBar , which reads a specified ' MBAR' resource from your application’s resource

Creating Menus

CHAPTER 8

Menus

fork and inserts each menu described there into the menu bar. You can define a constant
that indicates which ' MBAR' resource to open.

CONST
r MenuBar = 128; {menu bar resource |D}

Listing 8-1 shows a standard way to call Get NewiVBar .

Listing 8-1 Setting up the menu bar and menus

PROCEDURE DoSet upMenus;
VAR
menuBar : Handl e;
BEG N
nmenuBar : = Get NewMBar (r MenuBar) ;
| F menuBar = NIL THEN
DoBadEr r or (eCant Fi ndMenus) ;

Set MenuBar (menuBar) ;
Di sposeHandl| e(menuBar) ;
AppendResMenu(Get MenuHandl e(mAppl e), 'DRVR);
Dr awMenuBar ;
END;

The routine DoSet upMenus creates the application’s menu bar by reading in the
definition from the ' MBAR' resource with resource ID r MenuBar . The Get NewivBar
function returns a handle to the menu bar information stored in that resource and in the
" MENU resources whose IDs are contained in the ' MBAR resource. Notice that

DoSet upMenus makes sure that the value of the returned handle isn’t NI L; if it is, you
shouldn’t continue.

Note

Checking that Get NewivBar returns handle with a non-NI L value is
probably overkill. It’s extremely unlikely that the Menu Manager will
have a problem reading your menu-related resources or finding enough
free memory to hold the menu list to which nenuBar is a handle.
Nonetheless, it’s best to make sure, because passing AppendResMenu a
handle whose value is NI L is likely to cause your application to crash.
As a result, DoSet upMenus calls the application-defined routine
DoBadEr r or (defined in Listing 9-5 on page 178) to alert the user of the
problem and terminate the application. If the application can’t even put
up its menu bar, there’s no point in continuing to run. (See Figure 7-2 on
page 134 for the alert box displayed if the menu resources can’t be
found.) O

Creating Menus 155

o n

CHAPTER 8

Menus

If Get NewVBar returns a handle with a non-NI L value, then DoSet upMenus calls the
procedure Set MenuBar to install the individual menus into the menu bar. At that point,
you no longer need the handle and you can dispose of it (by calling the Memory
Manager routine Di sposeHandl e). Next DoSet upMenus calls the AppendResMenu
procedure to add the items in the Apple Menu Items folder to the Apple menu. Finally,
the DoSet upMenus procedure displays the menu bar by calling the Dr awvenuBar
procedure.

Handling Menu Choices

Your application is informed of user menu choices in a slightly roundabout fashion.
First, your application receives a mouse-down event indicating that the user has clicked
in the menu bar. At that time, you should call the Menu Manager function MenuSel ect
to determine which menu and menu item, if any, the user chose. When you call
MenuSel ect , the Menu Manager pulls down the appropriate menu and tracks all
subsequent mouse movement in the menu. When the user releases the mouse button,
MenuSel ect exits and returns to your application a long integer that indicates which
menu and item the user chose. The high-order word of that long integer contains the
menu humber, and the low-order word contains the menu item number.

To coordinate the menu numbers and menu item numbers with the menus and menu
items as defined in your' MBAR and' MENU resources, you’ll probably want to define
a set of constants, as shown in Listing 8-2.

Listing 8-2 Defining menu numbers and menu item numbers

CONST
mAppl e = 128; {resource I D of Apple nenu}
i About = 1; {our About... dialog}
nFile = 129; {resource I D of File menu}
i New =1
i d ose = 2
i QJI t = 4,
neEdi t = 130; {resource ID of Edit nenu}
i Undo =1
i Cut = 3
i Copy 4;
i Paste = 5,
i d ear = 6;
nvenn = 131; {resource I D of Venn menu}

156 Handling Menu Choices

CHAPTER 8

Menus

i CheckVenn =
i DoVenn =
i C ear Venn =
i Next Task
i CheckArg
i Get VennPrefs

1
N ok~ WDN PP

Note
The divider in a menu counts as a menu item, even though the user
can’t choose it. O

In general, you’ll define a routine like DoMenuConmmand shown in Listing 8-3 to handle
all menu choices. Both your mouse-down event handler (Listing 6-9 on page 121) and
your key-down event handler (Listing 8-5 on page 160) call MenuSel ect . It is passed
either the result of MenuSel ect (for menu selections) or MenuKey (for keyboard
equivalents of menu selections).

Listing 8-3 Handling menu selections

PROCEDURE DoMenuConmand (nmenuAndltem Longlnt);
VAR
my MenuNum I nt eger;
myltemNum | nteger;
nyResul t : I nt eger;
nmy DANane: Str 255;
ny W ndow: W ndowPt r;
BEG N
myMenuNum : = H Wor d(nenuAndl tem ;
nyltenNum : = LoWbr d(nenuAndl tem ;
Get Port (myW ndow) ;

CASE nmyMenuNum OF
mAppl e:
CASE nyl t emNum COF
i About :
BEG N
DoAbout Box;
END;
OTHERW SE
BEG N
Get Menul t enifext (Get MenuHandl e(mAppl e), nyltenmNum
my DANane) ;
nmyResul t : = OpenDeskAcc(myDANane) ;
END;

Handling Menu Choices

157

o n

158

CHAPTER 8

Menus
END;
nFile:
BEG N
CASE nylt enmNum OF
i New:
nyW ndow : = DoCr eat eW ndow,
i O ose:
DoCl oseW ndow(Fr ont W ndow) ;
iQuit:
DoQui t;
OTHERW SE
END;
END;
nEdi t:
BEG N
I F NOT SystenEdit(myltenNum - 1) THEN
END;
mvennD:
BEG N
nyW ndow : = Front W ndow;,
CASE nyl t emNum OF
i CheckVenn:
DoVennCheck(myW ndow) ;
i DoVenn:
DoVennAnswer (nyW ndow) ;
i O ear Venn:
DoVennd ear (myW ndow) ;
i Next Task:
DoVennNext (myW ndow) ;
i CheckArg:
DoVennAssess(nyW ndow) ;
i Get VennPr ef s:
DoModel essDi al og(r VennDPr ef sDi al ,
OTHERW SE
END;
END;

OTHERW SE

Handling Menu Choices

gPrefsDi al og) ;

END;

CHAPTER 8

Menus

HliteMenu(0);

END;

The DoMenuConmrand procedure is passed a long integer that encodes the menu number
and item number of the chosen item. As you can see, DoMenuConmand consists mainly
of a CASE statement that branches on the menu number. Each menu number, in turn,
consists mainly of a CASE statement that branches on the menu item number. In this
simple way, you can handle all menus and all menu items.

Most of the innermost branches just call application-defined routines to handle the
appropriate menu item choice. (For example, if the user chooses Quit from the File
menu, then DoMenuConmand calls the application-defined routine DoQui t .) The code
that handles choices in the Apple menu (Listing 8-4) is slightly different, however.

Listing 8-4 Handling Apple menu selections

i About :
BEG N
DoAbout Box;
END;
OTHERW SE
BEG N
Cet Menul t emText (Get MenuHandl e(mAppl e), nyltemNum myDANane) ;
nmyResul t : = OpenDeskAcc(myDANarne) ;
END;

If the user chooses the command About Venn Diagrammer (picked out by the constant

i About), then DoMenuConmand calls the application-defined routine DoAbout Box (see
Listing 7-7 on page 145). Otherwise, the user must have chosen a desk accessory or other
item in the Apple menu. In that case, DoMenuConmmand retrieves the name of the desk
accessory (by calling Get Menul t emText) and passes that name to the OpenDeskAcc
function.

Because Venn Diagrammer doesn’t support any text editing, it simply calls the system
software routine Syst enEdi t to handle user choices in the Edit menu. Syst enEdi t
checks whether the frontmost window belongs to a desk accessory; if so, it passes the
menu choice to the desk accessory and returns TRUE. The parameter to Syst enEdi t is
interpreted so you can pass the item number less 1 of the standard Edit menu commands.

Before exiting, DoMenuCommand calls the Menu Manager procedure Hi | i t eMenu to
undo the menu title highlighting provided automatically by MenuSel ect or MenuKey.

Handling Menu Choices 159

o n

CHAPTER 8

Menus

Handling Keyboard Equivalents

Keyboard equivalents of menu commands allow the user to invoke a menu command
from the keyboard. You can determine if the user chose the keyboard equivalent of a
menu command by examining the event record for a key-down event. If the user pressed
the Command key in combination with another character, you can then determine if this
combination maps to a known Command-key equivalent by calling the Menu Manager
function MenuKey. Listing 8-5 shows the Venn Diagrammer application’s DoKey Down
procedure, which handles key-down events and determines if a keyboard equivalent
was pressed.

Listing 8-5 Handling Command-key equivalents

160

PROCEDURE DoKeyDown (nyEvent: Event Record);
VAR
nmyKey: char;
BEG N
nyKey : = chr(BAnd(nyEvent. nessage, char CodeMask));
| F (BAnd(myEvent. nodi fiers, CndKey) <> 0) THEN
BEG N
DoMenuAdj ust ;
DoMenuConmand(MenuKey(nmyKey)) ;
END;
END;

The DoKeyDown procedure first extracts the pressed key from the message field of the
event record and then examines the nodi f i er s field to determine whether the
Command key was also pressed. If so, the application first adjusts its menus and then
calls the DoMenuConmraind procedure defined in Listing 8-3 on page 157. In turn,
DoKeyDown passes to DoMenuComrand the value returned from the MenuKey function.
If the key combination pressed by the user is not the keyboard equivalent of any
currently enabled menu item, then MenuKey sets the high-order word of its return value
to 0.

Note

The Venn Diagrammer application does not accept any text input from
the user. As a result, the DoKeyDown procedure shown in Listing 8-5
doesn’t need an ELSE clause to handle keypresses in which the
Command key is not held down. O

Several keyboard equivalents (listed in Table 8-1) are reserved for common commands in
the File and Edit menus. If your application supports these commands, you should
assign these equivalents to the specified commands. Otherwise, you should ignore these
keyboard equivalents.

Handling Keyboard Equivalents

CHAPTER 8

Menus

Table 8-1 Reserved keyboard equivalents
Keys Command Menu
3E-A Select All Edit
3-C Copy Edit
3-N New File
3-0 Open... File
3E-P Print... File
#-Q Quit File
3E-S Save File
3E-v Paste Edit
3E-w Close File
38-X Cut Edit
-z Undo Edit
IMPORTANT

You should never assign the keyboard equivalents listed in Table 8-1 to
other menu commands. This helps ensure predictable behavior among
all applications. a

Adjusting Menus

At any given time during the execution of your application, it’s likely that some of the
commands in your menus will not be appropriate. For example, if the front window is a
dialog window, then any menu commands that manipulate only document windows
should be disabled. Similarly, if the desktop shows no windows belonging to your
application, then the Close command in the File menu should be disabled. When a menu
item is disabled, it is drawn in a dimmed text and is not highlighted when the cursor
passes over it. This disabling prevents the user from choosing those commands.

An easy way to achieve this effect is to call an application-defined routine that adjusts
the menus according to the current application context just before you call either
MenuSel ect or MenuKey. Listing 8-6 shows the version of DoMenuAdj ust used by the
Venn Diagrammer application.

Listing 8-6 Adjusting menus

PRCCEDURE DoMenuAdj ust ;

VAR
nmyW ndow. W ndowPt r;
my Menu: MenuHandl e;
count: I nt eger;

Adjusting Menus 161

o n

162

CHAPTER 8

Menus

BEG N
myW ndow : = Front W ndow,

| F nyWndow = NIL THEN

Di sabl eMenul t em(Get MenuHandl e(nFil e), id ose)
ELSE

Enabl eMenul t en(Get MenuHandl e(nFile), id ose);

nyMenu : = CGet MenuHandl e(nVennD) ;
| F 1 sAppW ndow(myW ndow) THEN
FOR count := 1 TO kNunifool s DO
Enabl eMenul t en{ nyMenu, count)
ELSE
FOR count := 1 TO kNunifool s DO
Di sabl eMenul t em(myMenu, count);

I F | sDAccW ndow(myW ndow) THEN
Enabl eMenul t en(Get MenuHandl e(nEdi t), 0)
ELSE
Di sabl eMenul t em(Get MenuHandl e(nEdit), 0);
Dr awiVenuBar ;
END;

The DoMenuAdj ust procedure calls Fr ont W ndowto get a pointer to the frontmost
window belonging to the Venn Diagrammer application. If there is no window
belonging to the Venn Diagrammer application, DoMenuAdj ust disables the Close
menu command in the File menu. Conversely, if there is a window belonging to the
application, DoMenuAdj ust enables the Close command.

If the front window is a document window, then DoMenuAdj ust enables all the
document-specific commands in the Venn menu; otherwise, it disables all those
commands. (DoMenuAdj ust retrieves the menu handle by calling Get MenuHandl e and
passes that handle to Enabl eMenul t emor Di sabl eMenul t em)

You can disable or enable an entire menu by passing Di sabl eMenul t emor

Enabl eMenul t emthe value 0 in place of a menu item number. This is the strategy that
DoMenuAdj ust follows for the Edit menu. Venn Diagrammer does no editing of its
own, so DoMenuAdj ust makes certain to enable the Edit menu only when a desk
accessory window is frontmost. When you call Di sabl eMenul t emor

Enabl eMenul t emin this way, however, you also need to call the Menu Manager
procedure Dr awMenuBar to update the menu bar’s appearance.

Adjusting Menus

CHAPTER 9

Processes

Contents

About Processes 165

Specifying Processing Options 168
Handling Suspend and Resume Events 170
Handling Null Events 173

Quitting an Application 175

Handling Errors 176

Checking the Operating Environment 178

Contents 163

CHAPTER 9

Processes

Your application is usually only one of several applications that a user has open at one
time. Your application must therefore share the available system resources such as the
central processing unit (CPU) and the available random-access memory (RAM). The
Macintosh Operating System uses a very simple and elegant method for your
application to coordinate its actions with those of other open applications. The Process
Manager sends events, through the Event Manager, to your application informing it of
impending changes in your application’s processing status. Your application needs to
respond to those events in the appropriate way to ensure the smooth operation of all
open applications.

This chapter describes what you need to do to ensure that your application operates
smoothly in the Macintosh Operating System. It describes how your application is
launched and how the Operating System controls access to the CPU and other system
resources to create a cooperative multitasking environment in which your application
and any other open applications execute. This environment is managed primarily by the
Process Manager, which is responsible for launching processes, scheduling their use of
the available system resources, and handling their termination. This chapter shows how
to

= indicate the desired size of your application’s memory partition

= suspend your application’s execution when another application needs the CPU

= resume execution when your application regains control of the CPU

= terminate your application when the user quits or when a serious error occurs

= determine what software and hardware features are available on a particular machine

For a complete description of the cooperative multitasking environment, see the chapter
“Process Manager” in Inside Macintosh: Processes. For a complete description of how to
handle suspend and resume events, see the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials.

About Processes

The Macintosh Operating System, the Finder, and several other system software
components work together to provide a multitasking environment in which a user can
have multiple applications open at once and can switch between open applications as
desired. To run in this environment, however, your application must follow certain rules
governing its use of the available system resources. Because the smooth operation of all
applications depends on their cooperation, this environment is known as a cooperative
multitasking environment.

Note

The cooperative multitasking environment is available in system
software versions 7.0 and later, and when the MultiFinder option is
enabled in earlier system software versions. 0O

About Processes 165

S9SS920.d n

CHAPTER 9

Processes

Although a number of documents and applications can be open at the same time, only
one application is the active application. The active application is the application
currently interacting with the user; its icon appears at the right side of the menu bar. The
active application displays its menu bar and is responsible for highlighting the controls
of its frontmost window. In Figure 9-1, Venn Diagrammer is the active application.
Windows of other applications are visible on the desktop behind the frontmost window.

Figure 9-1 The desktop with several applications open

166

& File

£4it enn

=———— lenn Diagram 1
+ |@|¢€]l \/l Nowe showing the correct solution.

oaks maples naks rmaples

Speaker Alart g
Walurne

Cropld
Indigo
Quack
Simpl
Sosur
“wild Ef

trees

Figure Mood

Ad ENZz]3]4] [AEA1]0] Mo trees are oaks.
[ATEMO] Some maples are trees.
Microphanes [ATEJTHN Some maples are not oaks.

U70 gure ang gimple 10 1he waDe:
A1l mimsy were the borogoves,
And the mome raths outgrabe.

Built-in

The Operating System schedules the processing of all applications and desk accessories,
known collectively as processes. When a user opens an application, the Operating
System loads the application code into memory and schedules the application to run at
the next available opportunity, usually when the current process relinquishes the CPU.
In most cases, the application runs immediately (or so it appears to the user).

When your application is first launched, it is the foreground process. Usually the
foreground process has control of the CPU and other system resources, but it can agree
to relinquish control of the CPU if there are no events (other than null events) pending
for it. A process that is open but that isn’t currently the foreground process is said to be a
background process.

About Processes

CHAPTER 9

Processes

A background process can receive processing time when the foreground process makes
an event call (that is, calls Wai t Next Event or Event Avai |) and there are no events
pending for that foreground process. The Process Manager sends a null event to the
background process, thereby informing it that it is now the current process and can
perform whatever background processing it desires. The background process should
make an event call periodically in order to relinquish the CPU and ensure a timely return
to foreground processing when necessary.

The CPU is available only to the current application, whether it is running in the
foreground or the background. The application can be interrupted only by hardware
interrupts, which are transparent to the application. However, to give processing time to
background applications and to allow the user to interact with your application and
others, you must periodically call the Event Manager’s Wi t Next Event or

Event Avai | function to allow your application to relinquish control of the CPU for
short periods. By using these event routines in your application, you allow the user to
interact not only with your application but also with other applications.

The method by which the available processing time is distributed among multiple
processes is known as context switching (or just switching). All switching occurs at a
well-defined time, namely, when an application calls WAi t Next Event . When a context
switch occurs, the Process Manager allocates processing time to a process other than the
one that had been receiving processing time. Two types of context switching may occur:
major and minor.

A major switch is a complete context switch: an application’s windows are moved from
the back to the front, or vice versa. In a major switch, two applications are involved, the
one being switched to the foreground and the one being switched to the background.
The Process Manager switches the A5 worlds of both applications, as well as the relevant
low-memory environments. If those applications can handle suspend and resume
events, they are so notified at the time that a major switch occurs.

A minor switch occurs when the Process Manager gives time to a background process
without bringing the background process to the front. The two processes involved in a
minor switch can be two background processes or a foreground process and a
background process. As in a major switch, the Process Manager switches the A5 worlds
and the low-memory environments of the two processes. However, the order of
windows is not switched, and neither process receives either suspend or resume events.

When the frontmost window is an alert box or modal dialog box, major switching does
not occur, although minor switching can. To determine whether major switching can
occur, the Operating System checks (among other things) whether the window definition
procedure of the frontmost window is dBoxPr oc, because the type dBoxPr oc is
specifically reserved for alert boxes and modal dialog boxes. (If the frontmost window is
a movable modal dialog box, major switching can still occur.)

Note

Your application can also be switched out if it calls a system software
routine that internally makes an event call. For example, when your
application calls Modal Di al og, a minor switch can occur. O

About Processes 167

S9SS920.d n

CHAPTER 9

Processes

Specifying Processing Options

168

To take full advantage of the cooperative multitasking environment provided by the
Macintosh system software, you need to inform the Operating System about the
processing capabilities and requirements of your application. You need to indicate, for
example, the partition size your application needs in order to execute most effectively.
You also need to indicate whether your application can do any processing while it is in
the background. If it cannot do any background processing, there’s no use in having the
Process Manager give your application access to the CPU while it’s in the background.

You specify these and other processing options to the Operating System by including in
your application’s resource fork a resource of type ' SI ZE' , known as its size resource.
The size resource contains several long integers and many flag bits, which together give
the Process Manager the information it needs to launch your application and control its
processing.

IMPORTANT

Every application executing in system software version 7.0 and later, as
well as every application executing in system software version 6.0 with
MultiFinder, should contain a size resource. a

A'Sl ZE' resource consists of a 16-bit flags field, followed by two 32-bit size fields. The
flags field specifies operating characteristics of your application, and the size fields
indicate the minimum and preferred partition sizes for your application. The minimum
partition size is the actual limit below which your application will not run. The

preferred partition size is the memory size at which your application can run most
effectively. The Operating System attempts to secure this preferred amount of memory
when your application is launched. If that amount of memory is unavailable, your
application is placed into the largest contiguous block available, provided that it is larger
than the specified minimum size.

Note

If the amount of available memory is between the minimum and the
preferred sizes, the Finder displays a dialog box asking if the user wants
to run the application using the amount of memory available. If your
application does not have a 'Sl ZE' resource, it is assigned a default
partition size of 512 KB, and the Process Manager uses a default value of
FAL SE for all specifications normally defined by constants in the flags
field. O

When you define a 'Sl ZE' resource, you should give it a resource ID of 1. A user can
modify the preferred size in the Finder’s information window for your application. If the
user does alter the partition size, the Operating System creates a new 'Sl ZE' resource
having a resource ID of 0 in your application’s resource fork. At application launch time,
the Process Manager looks for a 'Sl ZE' resource with ID 0; if this resource is not found,
the Process Manager uses your original 'Sl ZE' resource (with ID -1). This new 'Sl ZE'
resource is also created when the user modifies any of the other settings in the resource.

Specifying Processing Options

CHAPTER 9

Processes

Listing 9-1 shows the Rez input for a sample 'Sl ZE' resource.

Listing 9-1

resource 'SIZE (-1) {

reserved,

accept SuspendResuneEvent s,

reserved,
cannot Backgr ound,
doesActi vat eOnFGSwi t ch,

backgr oundAndFor egr ound,
dont Get Front d i cks,

i gnor eAppDi edEvent s,

i s32Bi t Conpati bl e,

not H ghLevel Event Awar e,
onl yLocal HLEvent s,

not St ati oner yAwar e,
dont UseText Edi t Ser vi ces,
reserved,

reserved,

reserved,

kPref Size * 1024,

kM nSi ze * 1024

The Rez input for a sample ' SI ZE' resource

/*reserved*/

/*accepts suspend and resune events*/
/*reserved*/

/*can't use background null events*/
/*activates own windows in */

/* response to OS events*/
/*application has a user interface*/
/*don't return nouse events */

/* in front wi ndow on resune*/
/*doesn’t want app-di ed events*/
/*works with 24- or 32-bit addr*/
/*can't use high-1level events*/
/*can't use renpte high-level events*/
/*can't use stationery docunents*/
/*can't use inline input services*/
/*reserved*/

[*reserved*/

/*reserved*/

[*preferred nmenory size*/

/*m ni mum nenory size*/

The 'Sl ZE' resource specification in Listing 9-1 indicates, among other things, that the
application accepts suspend and resume events, does no processing in the background,
activates or deactivates any windows as necessary in response to operating-system
events, has a user interface, and doesn’t want to receive any mouse event associated with
a resume event that was caused by the user clicking in the application’s front window. In
this example, the Rez input file must define values for the constants kPr ef Si ze and

kM nSi ze; for example, if kPr ef Si ze is set to 50, the preferred partition size is 50 KB.

Note

See the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for a more complete description of the ' SI ZE' resource. O

The numbers you specify as your application’s preferred and minimum partition sizes
depend on the particular memory requirements of your application. Your application’s
memory requirements depend in turn on the size of your application’s A5 world, heap,

and stack. (See the chapter “Memory” earlier in this book for details about these areas of
your application’s partition.)

Specifying Processing Options 169

S9SS920.d n

CHAPTER 9

Processes

You can usually make a fairly reliable estimate of the size of your application’s A5 world
by determining the size of your application’s global variables and its jump table (whose
size you can determine by looking at the size of your compiled application’s ' CODE'
resource with ID 0). You can also make a good guess about the size of your application’s
static heap objects—objects that are always present during the execution of your
application (for example, code segments, Toolbox data structures for window records,
and so on).

It’s a little bit more work to determine the amount of space you’ll need to reserve for
dynamic heap objects. These include objects created on a per-document basis (which
may vary in size proportionally with the document itself) and objects required for
specific commands or functions. Perhaps the best advice to follow in determining your
application’s minimum and preferred partition sizes is to experiment with reasonable
values and make sure that there is always enough memory to meet reasonable requests
from the user. You can also use tools such as MacsBug’s heap-exploring commands to
help empirically determine your application’s dynamic memory requirements.

Handling Suspend and Resume Events

170

Your application receives suspend and resume events as a result of changes in its
processing status. When your application is in the foreground and the Process Manager
wants to switch it into the background, the Process Manager sends it a suspend event.
This is a signal to your application to prepare to be switched out. Your application isn’t
actually switched out immediately. Instead, the Process Manager gives your application
a chance to handle the suspend event. Your application is switched out at the next event
call it makes. Similarly, the application that is about to be switched into the foreground is
sent a resume event once it’s actually switched. The resume event is a signal to that
application that it can resume normal foreground processing.

Upon receiving a suspend event, your application should deactivate the front window,
remove the highlighting from any selections, and hide any floating windows. Your
application should also convert any private scrap into the global scrap, if necessary. If
your application shows a window that displays the Clipboard contents, you should hide
this window also, because the user might change the contents of the Clipboard before
returning to your application. Your application can also do anything else necessary to get
ready for a major switch. Then your application should call Vi t Next Event to
relinquish the processor and allow the Operating System to schedule other processes for
execution.

Handling Suspend and Resume Events

CHAPTER 9

Processes

Upon receiving a resume event, your application should activate the front window and
restore any windows to the state the user left them in at the time of the previous suspend
event. For example, your application should show scroll bars, restore any selections that
were previously in effect, and show any floating windows. Your application should copy
the contents of the Clipboard and convert the data back to its private scrap, if necessary.
If your application shows a window that displays the Clipboard contents, you can
update the contents of the window after reading in the scrap. Your application can then
resume interacting with the user.

Responding to a suspend or resume event usually involves activating or deactivating
windows. If you set the accept SuspendResuneEvent s flag and the

doesAct i vat eOnFGSwi t ch flag in your application’s 'Sl ZE' resource, your
application is responsible for activating or deactivating its windows when it handles
suspend and resume events.

Listing 9-2 defines the routine called by the Venn Diagrammer application to handle
operating-system events.

Listing 9-2 Handling operating-system events

PROCEDURE DoOSEvent (nyEvent: Event Record);

VAR
ny W ndow. W ndowPt r;
BEG N
CASE BSR(nyEvent. nessage, 24) OF
nouseMovedMessage:
BEG N
Dol dl e(nyEvent) ; {right now, do nothing}
END;
suspendResuneMessage:
BEG N
nyW ndow : = Front W ndow;,
| F (BAnd(myEvent . message, resumeFl ag) <> 0) THEN
DoAct i vat e(myW ndow, acti veFl ag) {activate w ndow}
ELSE
DoActivate(myW ndow, 1 - activeFlag); {deactivate w ndow}
END;
OTHERW SE
END;
END;

Handling Suspend and Resume Events 171

S9SS920.d n

172

CHAPTER 9

Processes

The procedure DoOSEvent is called by the main event loop (Listing 4-4 on page 77)
whenever the what field of an event record contains the constant osEvt . You need to
inspect the message field of that event record to determine what kind of
operating-system event you’ve received. Table 9-1 shows the information contained in
the bits of the nessage field.

Table 9-1 The bits in the nessage field of an operating-system event record
Bit Contents
0 0 if a suspend event

1if a resume event

1 0 if Clipboard conversion is not required
1 if Clipboard conversion is required

2-23 Reserved

24-31 suspendResuneMessage if a suspend or resume event
mouseMovedMessage if a mouse-moved event

As you can see, you heed to inspect bits 24-31 to determine what kind of
operating-system event you’ve received. Those eight bits contain one of two constants:

CONST
suspendResuneMessage = $01; {suspend or resune event}
nouseMovedMessage = $FA; {nouse-noved event}

If the event is a suspend or resume event, you then need to examine bit 0 to determine
whether that event is a suspend or resume event. (Bits 0 and 1 are meaningful only if bits
24-31 indicate that the event is a suspend or resume event.) You can use the

r esumeFl ag constant to determine whether the event is a suspend or resume event. If
the event is a resume event, you can use the convert d i pboar dFl ag constant to
determine whether Clipboard conversion from the Clipboard to your application’s scrap
is required.

CONST
resumreFl ag
convert i pboar dFl ag

1; {resune event}
2; {dipboard conversion required}

The procedure DoOSEvent defined in Listing 9-2 first checks what kind of event it has
received. If the event is a mouse-moved event, DOOSEvent ignores the event, treating it
like a null event. If the event is a suspend or resume event, DOOSEvent then activates or
deactivates the front window, depending on whether the event is a resume or a suspend
event.

Handling Suspend and Resume Events

CHAPTER 9

Processes

Note

Because the Venn Diagrammer application doesn’t support cutting or
pasting, it doesn’t need to worry about converting the Clipboard. O

Handling Null Events

Recall that the Event Manager sends your application a null event when there are no
other events to report. The WAi t Next Event function reports a null event by returning a
function result of FALSE and by setting the what field of the event record to nul | Evt .

When your application receives a null event, it can perform idle processing. Your
application should do only minimal processing in response to a null event, so that other
processes can use the CPU and so that the foreground process (or your application,
when it is in the foreground) can respond promptly to the user. For example, if your
application is in the foreground when it receives a null event, you can make the insertion
point blink in the active window (if your application supports text entry).

If your application receives a null event in the background, it can perform tasks or do
other processing while in the background. However, your application should not
perform any tasks that would slow down the responsiveness of the foreground process.
Your application also should not interact with the user if it is in the background.

Note

Remember that your application receives null events while it is in the
background only if you’ve set the canBackgr ound flag in your
application’s' SI ZE' resource. If you don’t want your application to
receive null events when it is in the background, you should set the
cannot Backgr ound flag. O

The Venn Diagrammer application uses null events in a somewhat interesting way.
Whenever the application receives a null event, it calls the application-defined procedure
Dol dI e, which checks to see whether the user wants it to automatically adjust the Venn
diagram and whether the diagram might need adjusting. If both of these are true, then
Dol dlI e calls the application-defined procedure DoVennl dl e to perform the automatic
adjustment. The Dol dl e procedure is defined in Listing 9-3.

Listing 9-3 Handling null events

PROCEDURE Dol dl e (nmyEvent: Event Record);

VAR

nmyW ndow. W ndowPt r;
myHandl e: MyDocRecHnd;

BEG N

nyW ndow : = Front W ndow;,
I F | sAppW ndow(nyW ndow) THEN
| F gAut oAdj ust THEN

Handling Null Events 173

S9SS920.d n

CHAPTER 9

Processes

BEG N
myHandl e : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
| F nmyHandl e*”. needsAdj usti ng THEN
DoVennl dl e(myW ndow) ;
END;
END;

The document record contains the field needsAdj ust i ng, which is set to TRUE each
time the user clicks anywhere within the Venn diagram circles. If the user’s preference is
for automatic diagram adjustment, then Dol dl e calls the application-defined procedure
DoVennl dl e to adjust the diagram. Figure 9-2 shows the state of a diagram needing
adjustment, and Figure 9-3 shows the same diagram after DoVennl dl e has adjusted
the diagram.

Note

The DoVennl dl e procedure is not defined in this book. In addition to
determining whether and how to adjust the diagram, DoVennl dl e
resets the needsAdj ust i ng field of the document record to FALSE. O

Figure 9-2 A Venn diagram before automatic adjusting
S[I=————"— U'enn Diagram 1 = |
-~ + [2kE]]
properties qualities properties qualities

characteristics
Figure Mood

Ez[3]4] [A1]0] Mo characteristics are properties.
[AIENO] Some qualities are characteristics.
[ATEJ T Sore qualities are not properties.

174 Handling Null Events

CHAPTER 9

Processes
Figure 9-3 A Venn diagram after automatic adjusting
EDE Uenn uiﬂgrﬂm] EI
-+ [PV
properties qualities properties qualities

characteristics

Figure Mood

EN2[574] (A 1]0] ®ocharacteristics are properties.

[ATEMO] Some qualities are characteristics.

[ATEJ T Sorre qualities are not properties.

Quitting an Application

Eventually the user will quit your application, usually by choosing Quit from the File
menu (or by pressing the usual keyboard equivalent, Command-Q). At that time, you
should close all windows, release any memory you still are holding, and exit your main
event loop. Listing 9-4 shows the DoQui t routine called by the \Venn Diagrammer
application when the user chooses Quit from the File menu.

Listing 9-4 Quitting your application

PROCEDURE DoQui t ;
VAR
nyW ndow: W ndowPt r;
BEG N
nyW ndow : = Front W ndow;,
WH LE myW ndow <> NIL DO
BEG N
DoUpdat e(myW ndow) ;
DoC oseW ndow(myW ndow) ;
nyW ndow : = Front W ndow;

Quitting an Application

{close all w ndows}

{force redraw ng w ndow}

175

S9SS920.d n

END;
gbDone
END;

CHAPTER 9

Processes

: = TRUE; {set flag to exit nmain event | oop}

The DoQui t procedure simply closes all windows belonging to the application and then
sets the application global variable gDone to indicate that the user has finished using the
application. Recall that the main event loop (Listing 4-4 on page 77) terminates when
gDone is TRUE.

Note

The Process Manager automatically deallocates your application
partition and closes all windows when your application terminates. As a
result, the Venn Diagrammer application could simply have set gDone
to TRUE in response to the Quit command. However, DoQui t illustrates
how to close all windows because your version of DoCl oseW ndow
might need to prompt the user to save any unsaved data in document
windows currently on the desktop. O

Handling Errors

176

Occasionally, a system software routine might be unable to perform the service you’ve
requested of it. You might, for instance, pass Get Resour ce a resource specification that
doesn’t apply to any resource in any of the open resource files. Or, the user might have
opened so many document windows that there simply isn’t enough space in your
application’s heap to open another one. In these situations, you need to determine that
an error has occurred and react to it in some appropriate manner.

The system software has several ways of informing your application that a requested
service is not possible. Many functions return a result code that indicates whether the
function completed successfully, and if not, what the reason for failure was. These
functions return a result of type CSEr r . Here’s an example:

nmyResul t : = Fi ndFol der (kOnSyst enDi sk, kPreferencesFol der Type,
kDont Cr eat eFol der, nyVRef Num nyDirlD);
I F nyResult = noErr THEN

ELSE

Other routines—mainly procedures and functions that return other types of results—
don’t return a result code directly. To find out whether these kinds of routines were
successful, you need to call an additional system software routine. For example, some
Resource Manager procedures don’t directly indicate if the resource operation was
successful or not. To find that out, you can call the ResEr r or function. The

DoSavePr ef s routine (defined in Listing 3-6 on page 66) uses this strategy to update a
preferences resource:

Handling Errors

CHAPTER 9

Processes

RmveResour ce(nyHandl e) ;
| F ResError = noErr THEN

AddResour ce(nmyPref Dat a, kPref ResType, kPrefReslD, nyNane);
I F ResError = noErr THEN

Wi teResource(myPrefData);

Similarly, the Resource Manager routine Get 1Resour ce returns a handle to the
specified resource data. If for some reason the resource cannot be opened, the function
returns a handle whose value is NI L. You can inspect the returned value to determine
whether it’s safe to proceed.

nyHandl e : = Get 1Resour ce(kPref ResType, kPrefResID);
| F myHandl e <> NIL THEN

You could also call ResEr r or to determine if Get 1Resour ce succeeded. In other
words, the following lines are equivalent to the preceding ones:

myHandl e : = Get 1Resour ce(kPref ResType, kPrefReslD);
| F ResError <> noErr THEN

The Memory Manager provides the MenEr r or function, which works much as
ResEr r or does. For Memory Manager functions that return a value, you can either
inspect the returned value or call MenEr r or to determine if the function completed
successfully.

This book has used a fairly simple strategy for detecting and reacting to the normal
kinds of problems. When calling a function that returns a pointer or handle, Venn
Diagrammer checks that the value of that pointer or handle isn’t NI L. If it is NI L, Venn
Diagrammer usually just skips any code that uses that pointer or handle.

IMPORTANT
Venn Diagrammer’s error-handling strategy is far too simple for most
applications, and it runs afoul of good human interface principles. For
example, if the DoCr eat eW ndowfunction (defined in Listing 6-6 on
page 117) cannot allocate the memory it needs, it exits and returnsa NI L
window pointer to the calling routine. The net result is that no new
window is created, in spite of the user’s desire to create one. At the very
least, DoCr eat eW ndowshould inform the user that a new window
could not be created because sufficient memory was not available. a

Occasionally, an application might run into some more serious problem during its
execution that renders further processing impossible or undesirable. For example, if the
Venn Diagrammer application isn’t able to allocate enough memory for the data
structure it uses to maintain information about a document window’s geometry, there’s
no point in continuing to run, because the application won’t be able to draw anything in
any document windows. In that case, the application should gracefully terminate its
own execution. (See Listing 5-3 on page 95.)

Handling Errors 177

S9SS920.d n

CHAPTER 9

Processes

To do this, the Venn Diagrammer application defines the DoBadEr r or procedure and
calls it whenever there is a problem serious enough to warrant such drastic action. The
DoBadEr r or procedure is defined in Listing 9-5.

Listing 9-5 Handling serious errors

PROCEDURE DoBadError (nyError: Integer);

VAR
myl tem | nt eger;
myMessage: Str255;
BEG N
Set Cur sor (arrow) ; {set arrow cursor}
Get I ndStri ng(nmyMessage, kErrorStrings, nyError);
Par amrext (nyMessage, "', "', "');
nyltem:= Alert(rErrorAlert, NL); {di spl ay nmessage}
Exi t ToShel | ; {term nate execution}
END;

The application passes DoBadEr r or an index into a resource of type ' STR#' that
contains messages indicating the types of serious errors. First DoBadEr r or sets the
cursor to the standard arrow cursor (this step is necessary only if your application ever
changes the cursor). Then DoBadEr r or retrieves the appropriate message from the
application’s resource fork and calls the Dialog Manager routine Par anifext to
substitute the message into the alert box text. After that, DoBadEr r or displays the alert
box by calling the Dialog Manager routine Al er t . (See Figure 7-2 on page 134 for an
example of this alert box.) Finally, DoBadEr r or calls the Process Manager procedure
Exi t ToShel | to terminate the application immediately.

Checking the Operating Environment

178

Calling Exi t ToShel | is the preferred way to terminate your application if for some
reason you don’t want to return to your main event loop. You might also want to call
DoBadEr r or to terminate your application before you even get to the main event loop.
This might happen if your application requires system software routines that aren’t
available in all operating environments. In general, if your application uses any system
software routines that aren’t available in all operating environments, you need to make
sure that they are available in the current environment. Otherwise, your application will
crash.

For example, the Venn Diagrammer application uses the Fi ndFol der function to find
the Preferences folder containing the application’s preferences file (see Listing 3-3 on
page 62). Because Fi ndFol der was introduced in system software version 7.0, Venn
Diagrammer will crash if it calls Fi ndFol der when running in an earlier system
software version.

Checking the Operating Environment

CHAPTER 9

Processes

To avoid crashing in environments that don’t support the Fi ndFol der function, the
Venn Diagrammer application makes sure that the function is available before calling it.
It calls the Gest al t function to see if Fi ndFol der is present, as shown in Listing 9-6.

Listing 9-6 Checking that Fi ndFol der is present

FUNCTI ON | sFi ndFol der: Bool ean;
VAR
nyResul t : OSErr;
myFeature: Longlnt;

BEG N
| sFi ndFol der := FALSE; {assunme it's not avail abl e}
nmyResult := CGestalt(gestaltFindFol derAttr, mnmyFeature);

| F nyResult = noErr THEN
| sFi ndFol der : = BTST(nyFeature, gestaltFindFol derPresent);
END;

The Gest al t function is part of the Gestalt Manager, which you can use to determine
what software and hardware features are available in the current operating environment.
When passed the gest al t Fi ndFol der At t r selector code, the Gest al t function fills
in the long integer passed in its second parameter (nmyFeat ur e) with a bit field that
encodes information about the features of the Fi ndFol der function. Currently only one
bit is defined, specified using the constant gest al t Fi ndFol der Pr esent . If that bit is
set, then Fi ndFol der is present in the operating environment. The Venn Diagrammer
application calls | sFi ndFol der as follows (see Listing 3-3 on page 62):

| F I sFi ndFol der THEN
nmyResul t : = Fi ndFol der (kOnSyst enDi sk, kPreferencesFol der Type,
kDont Cr eat eFol der, nyVRef Num nyDirlD);

Note

For complete details about using the Gest al t function to determine the
features of the current operating environment, see the chapter “Gestalt
Manager” in Inside Macintosh: Operating System Utilities. O

If Fi ndFol der function isn’t available, Venn Diagrammer looks in the default directory
instead of in the Preferences folder for the user’s preferences file. This isn’t the best
strategy possible, but it’s good enough for a simple application like Venn Diagrammer.
More generally, however, you need to decide what the base system software
requirements of your application are and how you want to react if necessary services
aren’t available. In some cases, working around a problem isn’t so easy. In those cases,
informing the user that your software won’t run in the current system configuration and
then exiting is probably the right thing to do.

A second way to determine the availability of a particular system software routine is to
test directly for the existence of the routine by inspecting its trap number (a number that
identifies each system software routine), using the technique illustrated in Listing 9-7.

Checking the Operating Environment 179

S9SS920.d n

CHAPTER 9

Processes

You should use this method to test for the existence of routines not included in managers
about which Gest al t can report.

Listing 9-7 Determining whether a trap is available

FUNCTI ON Nuntool boxTraps: | nteger;
BEG N
I F NGet TrapAddress(_InitGaf, Tool Trap) =
NGet Tr apAddr ess($AAGE, Tool Trap) THEN
NumTool boxTraps : = $200
ELSE
Nunifool boxTr aps : = $400;
END;

FUNCTI ON Get TrapType (theTrap: Integer): TrapType;
CONST
TrapMask = $0800;
BEG N
| F BAND(t heTrap, TrapMask) > 0 THEN
Cet TrapType : = Tool Trap
ELSE
Cet TrapType : = OSTrap;
END;

FUNCTI ON TrapAvai l abl e (theTrap: Integer): Bool ean;
VAR
t Type: TrapType;
BEG N
t Type : = Cet TrapType(theTrap);
|F t Type = Tool Trap THEN
BEG N
theTrap : = BAND(t heTrap, $07FF);
| F theTrap >= NuniTool boxTraps THEN
theTrap : = _Uni npl enent ed,;

END;
TrapAvai | abl e : = NGet Tr apAddr ess(theTrap, tType) <>
NCGet Tr apAddr ess(_Uni npl enent ed, Tool Trap) ;
END;

180 Checking the Operating Environment

CHAPTER 9

Processes

Listing 9-8 shows how to use the Tr apAvai | abl e function defined in Listing 9-7 to
determine whether the WAi t Next Event function is available.

Listing 9-8 Checking for the availability of the Wi t Next Event function

FUNCTI ON WNEAvai | abl e: Bool ean;

CONST

_\Wai t Next Event = $A860; {trap nunmber of Wit NextEvent}
BEG N

VWNEAvai | abl e : = TrapAvail abl e(_Wai t Next Event) ;
END;

The Nunifool boxTr aps function relies on the fact that the | ni t G af trap (trap number
$AB6E) is always implemented. If the trap dispatch table is large enough (that is, has
more than $200 entries), then $AABE always points to either _Uni npl ement ed or
something else, but never to | ni t Gr af . As a result, you can check the size of the trap
dispatch table by checking to see if the address of trap $A86E is the same as $AAGE.

After receiving the information about the size of the dispatch table, the Tr apAvai | abl e
function first checks to see if the trap to be tested has a trap number greater than the total
number of traps available on the machine. If so, it sets the t heTr ap variable to

__Uni npl enment ed before testing it against the _Uni npl enent ed trap. See the
discussion of the trap dispatch table utilities in Inside Macintosh: Operating System Utilities
for complete details on trap numbers and the trap dispatch table.

IMPORTANT
There’s one final twist in this story. Your software development system
might provide glue routines that mimic the operation of some system
software routines, thereby allowing you to call them in earlier system
software versions. (For instance, MPW versions 3.2 and later provide
glue that allows you to call Fi ndFol der in system software versions
prior to 7.0.) However, you cannot in general use Gest al t or the
technique shown in Listing 9-7 to test for the availability of routines
provided as glue. Instead, you’ll need to consult the documentation for
your development system to find out what glue routines it provides. a

Checking the Operating Environment 181

S9SS920.d n

A FTERWORD

Going Further

If you’ve made it this far, you’ve learned quite a bit about putting a
Macintosh application together. You’ve seen how to create and manage
menus, windows, dialog boxes, and preference files. You know how to get
information about the user’s actions, and you know how to respond to many
of those actions. You also know, at least in overview, how your application
shares the available system resources with the Operating System and other
open applications. Congratulations; that’s a lot to learn in less than 200 pages.

No doubt, however, you want to learn more. The Venn Diagrammer
application fails to implement a number of very fundamental elements of a
typical Macintosh application. It provides no text-input or editing capabilities,
no support for user drawing, no support for color, and virtually no support
for the many important features introduced in System 7. The following
section briefly describes some of these capabilities and refers you to the Inside
Macintosh books that give more information about implementing those
capabilities.

This afterword also provides some hints on writing your application so that it
is compatible with all existing Macintosh computers and system software
versions and so that it can be easily localized to different languages. This
afterword ends with a list of additional developer services provided by Apple
Computer, Inc.

Implementing Further Features

Venn Diagrammer succeeds in its basic goal, which is to illustrate how to
implement many of the essential user interface components of a typical
Macintosh application and to introduce the very simplest features of the
Operating System. It shows how to do basic drawing in a window and how to
handle many user actions. Best of all, it’s a real application that does useful,
albeit limited, work.

It’s important to realize that although some parts of the source code presented
throughout this book are purposely simplified, other parts are not. The code
for handling dialog boxes, for instance, is designed to be easily amplified to
handle other modeless dialog boxes. The basic event loop and the
menu-handling code are also quite typical of what you’d find in a commercial
Macintosh application. The Venn Diagrammer source code is not intended as
a shell on which to base your application, but chances are you’ll do at least a
few things in the same way.

183

184

A FTERWORD

Still, the Venn Diagrammer source code fails to illustrate how to implement a
number of important Macintosh features. Here’s a moderately complete list of
what’s missing and where you can look to get the information you need to
add these features to your application:

Windows. The document windows created by the Venn Diagrammer
application are of fixed size, so they don’t need to contain zoom boxes, size
boxes, or scroll bars. In all likelihood, however, your application will allow
the user to enter and edit information (such as text or graphics) that will
usually not fit in a fixed-size window. As a result, you will probably want
to include support for these window elements. To learn how to handle
zoom and size boxes, see the chapter “Window Manager” in Inside
Macintosh: Macintosh Toolbox Essentials. To learn how to implement scroll
bars, see the chapter “Control Manager” in that same book.

Menus. The Macintosh system software provides support for several kinds
of menus in addition to the standard “pull-down” menus used by the Venn
Diagrammer application. A very useful adaptation of the pull-down menu
is the pop-up menu, which you can put in dialog boxes and document
windows. Moreover, both pop-up menus and pull-down menus can
contain hierarchical menus, where an entire menu is attached to a menu
item. For information about these additional kinds of menus, see the
chapter “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials.
That chapter also shows how to modify a menu item’s text and style, how
to add a mark to a menu item, and how to associate an icon with a menu
item. Because pop-up menus are actually very complex controls, you’ll also
need to read the chapter “Control Manager” in Inside Macintosh: Macintosh
Toolbox Essentials to learn how to handle pop-up menus.

Text. Most Macintosh applications support some form of text entry and
editing, even if just to solicit some piece of information from the user in a
dialog box. The system software includes TextEdit, which you can use to
provide basic text-handling capabilities for your application. Although
TextEdit was originally designed to handle edit fields in a dialog box, you
can also use it for other purposes. For example, if you’re writing a
spreadsheet application, you might use TextEdit to handle small amounts
of text. TextEdit is not, however, suitable for large amounts of text (greater
than about 32,000 characters). If you're writing a word-processing
application, you’ll need to write your own custom text-handling routines.
To learn how to handle text entry and editing in dialog boxes, see the
chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials.
To learn how to use TextEdit directly, see the chapter “TextEdit” in Inside
Macintosh: Text. This latter book also describes a number of other
text-related facilities provided by the Macintosh system software, such as
support for multiple fonts and non-Roman character sets.

Files. The Venn Diagrammer application can create, read, and write
resource files only (which contain the user’s preferences). Most
applications allow the user to create and edit information of arbitrary size,
and they store that information in a file’s data fork. The data fork can
contain any kind of information you care to put there. You read and write
data from a file’s data fork using the File Manager, and you present the

A FTERWORD

standard user interface for opening and saving files using the Standard File
Package. The chapter “Introduction to File Management” in Inside
Macintosh: Files shows how to use these and other services to implement
the typical File menu commands (Open, Save, Save As, Revert, and so
forth). Other chapters in that book provide more detailed information
about the structure of the file system used on Macintosh computers and
about the system software managers you can use to manipulate objects in
the file system. For more complete information on reading and writing
resource files, see the chapter “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox.

= lcons. To learn how to define icons for your application and its document
files, see the chapter “Finder Interface” in Inside Macintosh: Macintosh
Toolbox Essentials.

= Help. Every application should include the resources necessary to allow
the Help Manager to display help balloons after the user has chosen the
Show Balloons command from the Help menu. Usually you can add
support for help balloons simply by adding resources to your application’s
resource fork, without having to change or recompile its source code. In
some cases, however, you might also need to modify the source code to
provide help balloons. For complete details on implementing help
balloons, see the chapter “Help Manager” in Inside Macintosh: More
Macintosh Toolbox.

= Printing. One of the easiest features to add to the \Venn Diagrammer
application is the capability to print a Venn diagram window. Printing
essentially involves just drawing the window into a special graphics port
called a printing graphics port. Before doing that, however, you need to
present the standard dialog boxes to set up a page and to send a print job
to a printer. If, as is usually the case, there are multiple pages to be printed,
you’ll want to structure your printing code into a printing loop. A complete
printing loop is provided in the chapter “QuickDraw Printing Manager” in
Inside Macintosh: Imaging. That chapter also shows how to handle a number
of other printing-related tasks.

= Memory. The Venn Diagrammer application is surprisingly naive in its
management of the memory in its own partition. For the most part, it
simply tries to allocate the memory it needs for some particular operation,
and if it fails to get that memory;, it just does the safest thing it can to work
around that failure. You’ll want to implement a much more robust scheme
to manage the memory you're allocated when your application starts up.
You need to make sure that your application’s memory requirements don’t
consume too much of your partition, because many system software
routines (especially many QuickDraw routines) also use memory in your
application partition. For a simple but effective memory-management
strategy, see the chapter “Introduction to Memory Management” in Inside
Macintosh: Memory. For some advice on how to segment your application’s
executable code to minimize its memory footprint, see the chapter
“Segment Manager” in Inside Macintosh: Processes.

185

186

A FTERWORD

= Interapplication Communication. To take full advantage of the

cooperative multitasking environment provided in system software
versions 7.0 and later, your application should be able to communicate
effectively with other open applications. The system software provides
several ways in which you can interact with other applications. You can
support the publish and subscribe capabilities of the Edition Manager
(described earlier in “Interapplication Communication” beginning on
page 14) and you can support high-level events such as Apple events. For
complete details on how to communicate and share data with other
applications, see the book Inside Macintosh: Interapplication Communication.

= Sound. You can enhance the perceived quality of your application by
appropriately including sounds in its user interface. When, for example,
the user asks the Venn Diagrammer application to check the user’s
diagram, the application might play some agreeable sound if the diagram
is correct and some discordant sound otherwise. Sound can provide user
feedback that is not achievable using text and graphics alone. Other
applications are more directly involved with recording or producing
sound. To learn how to add sound capabilities to your application, see the
chapter “Introduction to Sound” in Inside Macintosh: Sound.

= Color. Like sound, color might be either an enhancement to or a
fundamental feature of your application. For example, Venn Diagrammer
might allow the user to fill empty regions with colored patterns. You can
use QuickDraw to draw shapes, regions, and even text in any color
supported by the available video devices. For complete information on
supporting color in your application, see the appropriate chapters in Inside
Macintosh: Imaging.

IMPORTANT
You don’t have to read all of the books mentioned in this list to develop
a Macintosh application. Which of the many Inside Macintosh books
you’ll need depends on the particular requirements of your application.
(The Venn Diagrammer application, for instance, draws mainly on four
books only: Inside Macintosh: Macintosh Toolbox Essentials, Inside
Macintosh: More Macintosh Toolbox, Inside Macintosh: Memory, and Inside
Macintosh: Imaging.) Moreover, you don’t necessarily have to read all of a
chapter to get started using a certain manager. Most chapters in Inside
Macintosh contain advanced material that is likely to be of interest only
to developers with very specialized needs. a

A FTERWORD

Maintaining Compatibility

Compatibility is the ability of an application to execute properly in different
operating environments. Compatibility is important if you want to write
software that runs, with little or no modification, on all members of the
Macintosh family and in all system software versions.

The key to achieving compatibility is not to depend on things that may
change. Inside Macintosh contains numerous warnings about which
information is likely to change. As the Operating System and Toolbox evolve
to accommodate the needs of developers and users, many of their elements
will vary. Whenever possible, Apple Computer strives to add features
without altering existing programming interfaces. In general, you can assume
that Operating System and Toolbox routines are less likely to change than
data structures. Therefore, you should never directly manipulate data
structures that are internal to a manager or system software routine, even if
their structure is documented. Instead, you should manipulate those
structures only indirectly, by calling Operating System and Toolbox routines
that achieve the desired effect. In particular, you should never alter any
portion of a data structure marked as unused or reserved.

Another key to writing compatible code is to code defensively. Do not assume
that users perform actions in a particular order, and do not assume that
function and procedure calls always succeed. You should always test the
return values of routines for errors, as illustrated in most of the code samples
presented in this book.

Here are some more specific guidelines to keep in mind as you write your
application:

= Never address hardware directly; whenever possible, use the routines
provided by the various device drivers and managers to send data to the
available hardware. The addresses of memory-mapped hardware are
always subject to change, as is the hardware itself. More important, direct
access to such hardware is not possible in every operating environment. In
multi-user systems like A/UX, for instance, the operating system
manipulates all hardware; applications simply cannot write directly to
hardware addresses.

= Avoid writing directly to the screen. Use QuickDraw routines whenever
possible to draw on the screen. If you absolutely must write directly to the
screen, do not assume that the screen is a fixed size or that it is in a fixed
location. The location, size, and bit depth of the screen differ in various
machines.

187

A FTERWORD

= Don’t rely on system global variables. Many of these variables are
documented in Inside Macintosh, but many are not. In particular, you must
avoid undocumented system global variables because they are most likely
to change. But you should try to avoid even well-known system global
variables because they may not be available in all environments or in the
future. In general, you can avoid using system global variables by using
available routines that return the same information. (For example, the
Ti ckCount function returns the same value that is contained in the system
global variable Ti cks.)

Making Your Application Localizable

188

Localizationis the process of adapting an application to a specific language,
culture, and region. By planning ahead and making localization relatively
painless, you’ll ensure that your product is ready for international markets in
the future. This section provides a brief overview of what you need to do to
make it easy to localize your application. For the complete account of writing
software that is compatible with Macintosh computers throughout the world,
see Inside Macintosh: Text and Guide to Macintosh Software Localization.

The key to easy localization is to store region-dependent information used by
your application as resources (rather than within the application’s code). Text
seen by the user can then be translated without modifying the code. In
addition, storing such information in resources means that your application
can be adapted for a different area of the world simply by substituting the
appropriate resources. Make sure that at least the following kinds of
information are stored in resources:

= all text, including special characters and delimiters

= menus and keyboard equivalents for menu commands (if available)
= character, word, phrase, and text translation tables

» address formats, including zip codes and telephone numbers

When you create resources for your applications, remember the following key
points:
= text needs room to grow (up, down, and sideways)

o translated text is often 50 percent larger than the U.S. English text

o diacritical marks, widely used outside the United States, may extend up
to the ascent line

o some system fonts contain characters that extend to both the ascent and
descent lines

= text location within a window should be easy to change

A FTERWORD

Using Developer Services

In addition to the Inside Macintosh library of books, Apple Computer provides
a number of other services that you can use to learn more about programming
for Macintosh computers and simplify your software development process.
Apple’s goal in making these services available is to provide you with the
resources you need to create outstanding Macintosh applications. These
services include

= books and other technical publications

= programming languages and tools

= programming classes and self-paced training materials
= conferences and workshops

= technical support

Most of these products and services are available to anyone interested in
programming for Macintosh computers. You can get information about them
by contacting APDA, Apple’s source for developer tools. See the Preface
(page xv) for details on contacting APDA.

Some of the services just listed—in particular, technical support and
invitations to some developer conferences and workshops—are provided only
to members of the Apple Associates and Partners Program. For information
about Apple’s support programs for commercial developers, call the
Developer Hotline at (408) 974-4897. These programs are available to
developers in the United States and Canada only.

Technical Publications

Apple provides a number of technical publications that can assist you in
writing Macintosh applications. Here’s a brief description of three books that
you'll probably need right now:

= Macintosh Human Interface Guidelines. A complete description of the Apple
Desktop Interface and an indispensable set of guidelines governing the
appearance and behavior of Macintosh applications. You will need this
book to ensure that your application conforms to those guidelines.

= Technical Introduction to the Macintosh Family. A general introduction to the
family of Macintosh computers, with emphasis on the features that make it
a desirable platform for application developers. This book also provides
details on Macintosh hardware and on AZ/UX, Apple’s version of the
UNIX® operating system.

189

190

A FTERWORD

= Guide to Macintosh Software Localization. A guide to the process of localizing
application software for Macintosh computers around the world. You'll
want to read this book for essential information about making your
product marketable worldwide.

If you are an Apple Associate or Partner, you’ll automatically receive a
subscription to develop, The Apple Technical Journal. This magazine is intended
to complement other reference materials like Inside Macintosh. It doesn’t try to
replace or reword those books; instead, it’s designed to help you understand
them by illustrating some of the techniques they describe. For subscription
information, contact

develop

Apple Computer, Inc.

P.O. Box 531

Mount Morris, IL 61054-7858

Telephone 800-877-5548 (United States)
815-734-6309 (All other countries)

Fax 815-734-4205
AppleLink DEV.SUBS

Training

Apple Developer University offers a broad range of Macintosh programming
instruction through hands-on classes and self-paced training products.
Classes are offered in Cupertino, at Apple training facilities worldwide, on an
on-site basis, and through selected third-party University and Corporate
trainers.

Developer University provides expert instruction for all levels of Macintosh
programmers. These course teach programmers to produce fast, efficient code
that takes maximum advantage of the Macintosh Toolbox and Operating
System.

Apple Developer University is open to all individuals worldwide who have
an interest in mastering leading-edge technology. To reserve your place in a
class, schedule an on-site training class, or for more information, contact

Apple Developer University Training Registrar
Apple Computer, Inc.

20525 Mariani Avenue

M/S 75-6U

Cupertino, CA 95014

Telephone 408-974-6215 (United States)
Fax 408-974-0544
AppleLink DEVUNIV

A FTERWORD

Technical Support

If you are an Apple Associate or Partner, you’ll have access to various levels
of technical support from Apple. Both Associates and Partners receive
monthly mailings that include a newsletter, Apple Il and Macintosh Technical
Notes, pertinent Developer Programs information, and the latest news
relating to Apple products. Mailings also usually include the latest developer
CD-ROM, which contains system software, programming utilities, code
samples illustrating how to use various parts of the Macintosh system
software, and the latest on-line technical documentation.

In addition, Apple Partners receive discounts on Apple equipment and
technical assistance from the staff of Apple’s Developer Technical Support
department.

191

Appendixes

The following five appendixes provide complete source code listings of the parts of the
Venn Diagrammer application whose operations are explained in this book. For clarity,
the source code is divided into five parts:

Appendix A, “Constants, Types, and Variables”, beginning on page 195, defines the
constants, data types, and global variables used by the Venn Diagrammer application

Appendix B, “Utility Routines”, beginning on page 199, defines a number of utility
procedures and functions used by the remaining code samples

Appendix C, “Dialog Code”, beginning on page 205, defines a handful of procedures
that manage dialog boxes

Appendix D, “Resource Code”, beginning on page 211, shows how to read and write a
simple set of application preferences

Appendix E, “User Interface Code”, beginning on page 217, shows the code that
manages the basic application setup, event handling, and user interface

Code that is specific to handling Venn diagrams (such as the procedures that handle the
first five menu commands in the Venn menu) is not shown in this book.

IMPORTANT

As explained in the preface to this book, this code is provided for
explanatory purposes only. The code listed in these appendixes might
not be appropriate for the particular needs of your application. a

A PPENDIX A

Constants, Types, and Variables

This appendix defines most of the constants, data types, and global variables used by the
Venn Diagrammer application.

UNI T d obal;
| NTERFACE
CONST

{menu constants (resource |Ds and nenu command nunbers)}
r MenuBar = 128; {menu bar resource |D}
mAppl e = 128; {resource | D of Apple nenu}
i About = 1; {our About... dial og}
nFile = 129; {resource ID of File nmenu}
i New =1,
i O ose = 2;
i Quit = 4;
nEdi t = 130; {resource I D of Edit menu}
i Undo =1
i Cut = 3;
i Copy 4,
i Past e = b5;
i d ear = 6;
nvennD = 131; {resource I D of Venn nenu}
i CheckVenn = 1;
i DoVenn = 2;
i C ear Venn = 3;
i Next Task = 4,
i CheckArg = 5;
i Get VennPrefs = 7;
kNunirool s = 5;
r VennD = nVennD, {resource I D of Venn di agram wi ndow}

{di al og boxes and their associated itens}
r About Di al = 7000; {resource I D of About dial og}

195

sa|qelieA pue ‘sadA] ‘siuelsuo) -

196

APPENDIX A

Constants, Types, and Variables

i OK = 1; {OXK button}

i Cancel = 2; {Cancel button}
rVennDPr ef sDi al = 3040; {resource | D of Preferences dial og}
i Enpt y1Radi o = 1 {di al og item nunber s}
i Enpt y2Radi o = 2,

i Enpt y3Radi o = 3;

i Enpt y4Radi o = 4;

i Enpt y1l con = 5;

i Enpty2l con = 6;

i Enpt y3l con =7,

i Enpt y4l con = 8;

i Exi st 1Radi o =9

i Exi st 2Radi o = 10;

i Exi st 3Radi o = 11;

i Exi st4Radi o = 12;

i Exi st 1l con = 13;

i Exi st 2l con = 14;

i Exi st 3l con = 15;

i Exi st 4l con = 16;

i Get Next Randonl y = 19;

i Aut oAdj ust = 20;

i ShowSchool Names = 21;

i UseExi st | mport = 22;

i SaveVennPref s = 23;

kVennPr ef sl t enCount = 23;

kVi sual Del ay {ticks to invert a button to sinmulate press}
kCnt| Acti vate = 0; {enabl ed control's hilite state}

I
®

kCntl Deactivate = $FF; {di sabled control's hilite state}
kTool Ht = 14; {hei ght of a tool icon}
kTool Wi = 21; {width of a tool icon}

kVennTool sl conStart = 768; {base resource ID of tools icons}
kExi st1 D = 2000; {first (of four) icons show ng existence}
kEnpt yl D = 3000; {first (of four) patterns showi ng enpti ness}

{Text strings printed in a Venn di agram w ndow. }
rMscStrings 1004; {resource ID of 'STR# for text itens}

kShowAnswer Text = 1 {in Venn nenu}
kShowUser Text = 2; {in Venn nenu}
KAl | Text = 3

APPENDIX A

Constants, Types, and Variables

kNoText =
kSonmeText =
kAr eText =
kAr eNot Text =
kFi gur eText =
kMbodText =

©oNo g

{Venn Di agram wi ndow st atus messages: 'STR# resource |ID = rVennD}

eDi agr antor r ect = 1;
eDi agranml ncorr ect
eHer el sSol uti on
eHer el sYour Wr k
eCannot Edi t Answer
eCannot Er aseAnswer
eArglsvalid =
eAr gNot Val i d =
eExi st Not Possi bl e =

I
©CON RN

rerrorAlert
KError Strings
eCant Fi ndMenus
eNot EnoughMenory

oo
N R P
MEES
o ©
o -

{insufficient

{res I D of '"ALRT' resource for error nesgs}
{res I D of 'STR# resource for error nesgs}
{can't read menu bar resource}

menory for operation}

{constants defining several keyboard characters}

{the enter character}
{the return character}
{the escape character}
{the period character}

{informati on about a docunent w ndow}

{the figure of the syllogisn}

| nt eger;

{the npods of the statenents}

KEnt er = char (3);
kRet ur n = char (13);
kEscape = char (27);
kPeri od ='.";
TYPE
{record to hold the current settings of a Venn Di agram wi ndow}
MyDocRec =
RECORD

figure: I nt eger;

nood: ARRAY[1.. 3] of

terns: ARRAY[1..3] of Str31;

stat usText :
user Sol uti on:
real Sol uti on:

Str255;
My Di agr anftt at e;
MyDi agr antt at e;

i sAnswer Showi ng: Bool ean;
i sExi stlnport: Bool ean;
needsAdj usti ng: Bool ean;

{the three terns}
{nost recent status nmessage}
{user's diagram st at e}
{answer's di agram st at e}

{is the answer show ng?}
{stnts inmply exists subject?}
{di agram needs adj usti ng?}

197

sa|qelieA pue ‘sadA] ‘siuelsuo) -

APPENDIX A

Constants, Types, and Variables

END;

MyDocRecPtr = “MyDocRec;

MyDocRecHnd = “MyDocRecPtr;
VAR

gNunDocW ndows: I nt eger

gPref sDi al og: Di al ogPtr;

gAppsResour ceFi | e: I nt eger

gPref erencesFi | e: I nt eger

gTool sl cons:
gEmpt yPat s:
gExi st cons:
ghMbodl cons:
gFi gur el cons:
gExi st | ndex:
gEnpt yI ndex:
gSt epRandom
gAut oAdj ust :

gG vel nport:
gShowNanes:

| MPLEMENTATI ON
END. {UNIT Q obal}

198

{the nunber of open docunent w ndows}
{pointer to Preferences dial og w ndow}
{reference nunber of app's res file}

{reference number of app's prefs file}

ARRAY[1. . kNunirool s] of Handl e;

ARRAY] 1. . 4]
ARRAY(1. . 4]
ARRAY[1. . 4]
ARRAY] 1. . 4]

I nt eger;
I nt eger;
Bool ean
Bool ean
Bool ean
Bool ean

{handl es to tools icons}

of Pat Handl e;

{handl es to enptiness patterns}

of Handl e;

{handl es to existence synbol s}

of Handl e;

{handl es to npod i cons}

of Handl e;

{handl es to figure icons}

{rank of icon show ng existence}
{rank of icon showi ng enptiness}
{generate next setup random y?}
{automatical ly adjust the diagranf}
{do subjects have existential inport?}
{do we show nanes of valid forns?}

A PPENDIX B

Utility Routines

This appendix defines a number of utility procedures and functions that are called by
other parts of the Venn Diagrammer application.

UNIT Utilities;

| NTERFACE
USES

d obal ;

PROCEDURE DoPl otlcon (myRect: Rect; nylcon: Handle; nyW ndow. W ndowPtr;

nmyMode: | nteger);

PROCEDURE DoCQut !l i neControl (nyControl: univ Control Handl e);
PROCEDURE DoDef aul t Button (mnmyDi al og: Dial ogPtr);

FUNCTI ON | sDAccW ndow (nyW ndow. W ndowPtr): Bool ean;

FUNCTI ON | sAppW ndow (myW ndow. W ndowPtr): Bool ean;

FUNCTI ON | sDi al ogW ndow (myW ndow. W ndowPtr): Bool ean;

PROCEDURE DoPosi ti onW ndow (nyW ndow. W ndowPtr);

PROCEDURE DoSet W ndowTi tl e (nyW ndow. W ndowPtr);

FUNCTI ON DoTrackRect (nmyW ndow. W ndowPtr; nyRect: Rect): Bool ean;
PROCEDURE DosSt at usText (myW ndow. W ndowPtr; myText: Str255);
PROCEDURE DosSt at usMesg (nmyW ndow. W ndowPtr; myMessage: | nteger);
PROCEDURE DoBadError (myError: Integer);

FUNCTI ON | sFi ndFol der: Bool ean;

FUNCTI ON MyRandom (|l ast: Integer): |nteger;

| MPLEMENTATI ON

{DoPlotlcon: plot a piece of an icon in a specified rectangl e}
PROCEDURE DoPl otlcon (myRect: Rect; nylcon: Handle; nyW ndow. W ndowPtr;

BEG N

nyMode: | nteger);

VAR

nyBi t Map: Bi t Map;
nyBi t Map. baseAddr : = nylcon”;
nyBi t Map. rowBytes : = 4;

nyBi t Map. bounds : = nyRect;
CopyBi t s(nyBit Map, nmyW ndow*. portBits, myRect, mnmyRect, nmyMode, NI L);

END;

199

saunnoy Aunn n

APPENDIX B

Utility Routines

{DoCQutlineControl: draw bold outline around a control}
PROCEDURE DoCut !l ineControl (nyControl: UN YV Control Handl e);
VAR
nmyOval : I nt eger;
myRect : Rect ;
ori gPen: PenSt at e;
origPort: Gafbtr;
BEG N
IF myControl <> NIL THEN
BEG N
Cet Port (origPort);
Set Port (myCont rol A . cont rl Oaner);
CGet PenSt at e(ori gPen) ;
PenNor mal ;

nmyRect := nyControl ~". contrl Rect;
I nset Rect (myRect, -4, -4);
nyOval := ((nyRect.bottom- nyRect.top) DV 2) + 2;

IF (nyControl . contrlHlite = kCntl Activate) THEN
PenPat (bl ack)
ELSE
PenPat (gray);
PenSi ze(3, 3);
FrameRoundRect (nyRect, nyOval, nyOval);
Set PenSt at e(ori gPen) ; {restore previous pen state}
Set Port (origPort);
END;
END;

{ DoDef aul t Button: draw bold outline around default button in a dial og}

{this procedure assumes that the default button is itemnunber 1 (i.e., iK)}
PROCEDURE DoDef aul t Button (nyDial og: DialogPtr);
VAR
myType: I nt eger;
nyHand: Handl e;
myRect : Rect ;
BEG N

GetDi al ogl tem(nyDi al og, i OK, nmyType, nmyHand, nyRect);
DoQut I i neContr ol (myHand) ;
END;

{1 sDAccW ndow. determine if specified wi ndow belongs to a desk accessory}

200

APPENDIX B

Utility Routines

FUNCTI ON | sDAccW ndow (nyW ndow. W ndowPtr): Bool ean;
BEG N
| F myWndow = NIL THEN
| sDAccW ndow : = FALSE
ELSE
| sDAccW ndow : = W ndowPeek(myW ndow) *. wi ndowKi nd < 0;

END;

{1 sAppW ndow. determne if specified wi ndow bel ongs to ny app}
FUNCTI ON | sAppW ndow (myW ndow. W ndowPtr): Bool ean;
BEG N
| F myWndow = NIL THEN
| sSAppW ndow : = FALSE
ELSE
| SAppW ndow : = W ndowPeek(myW ndow) ~. wi ndowKi nd = user Ki nd;
END;

{1sDi al ogW ndow. deternine if specified windowis a dial og}
FUNCTI ON | sDi al ogW ndow (nyW ndow. W ndowPtr): Bool ean;
BEG N
| F myWndow = NIL THEN
| sDi al ogW ndow : = FALSE
ELSE
| sDi al ogW ndow : = W ndowPeek(nyW ndow) . wi ndowKi nd = di al ogKi nd;
END;

{DoPosi ti onW ndow. set the position of a new w ndow}
PROCEDURE DoPosi ti onW ndow (nyW ndow. W ndowPtr);
BEG N
END;

{DoSet WndowTitle: construct a title for a new w ndow}
PROCEDURE DoSet W ndowTi tl e (nyW ndow. W ndowPtr);
VAR
my Nane: St r 255;
nmyRank: St r 255;
BEG N
Cet WIi t | e(myW ndow, nyNane);
gNurmDocW ndows : = gNumDocW ndows + 1;
NumToSt ri ng(gNunDocW ndows, nyRank) ;

myName : = concat (nyNane, ' ', nyRank);
Set WIi t | e(myW ndow, nyNarne) ;
END;

201

saunnoy Aunn n

APPENDIX B

Utility Routines

{DoTrackRect: do "TrackBox" for a random rectangl e}
{this is used to process clicks in a wi ndow tool}
FUNCTI ON DoTrackRect (myW ndow. W ndowPtr; nyRect: Rect): Bool ean;

VAR
nyl gnor e: Longl nt ;
nmyPoi nt : Poi nt ;
BEG N
I nvert Rect (nyRect); {invert the rectangl e}
REPEAT
Del ay(kVi sual Del ay, nyl gnore)
UNTIL NOT Still Down; {keep inversion until nouse is rel eased}

I nvert Rect (nyRect);

Get Mouse(myPoi nt) ; {get nouse location in |ocal coordinates}
DoTrackRect := PtlnRect(myPoint, nyRect);
END;

{DoStatusText: print a nessage in a w ndow s status area}
PROCEDURE DoSt at usText (nmyW ndow, W ndowPtr; nyText: Str255);

VAR
myRect : Rect ;
origSi ze: I nt eger;
ori gFont: I nt eger;
nyHandl e: MyDocRecHnd;
CONST
kSl op = 4;
kSize = 9;
kFont = appl Font;
BEG N
| F nyWndow <> NI L THEN
BEG N

Set Por t (myW ndow) ;

origSi ze : = nyWndow*. t xSi ze; {renenber original size and font}
ori gFont : = nyW ndow". t xFont;

Text Si ze(kSi ze) ; {set desired size and font}

Text Font (kFont) ;

Set Rect (myRect, kTool Wi * kNumfool s, O,
nyW ndow*. port Rect . ri ght, kTool Ht);
Er aseRect (nmyRect) ;
IF length(myText) > 0 THEN
BEG N

202

APPENDIX B

Utility Routines

MoveTo(nyRect.l eft + kSlop, nyRect.bottom- kSl op);
DrawStri ng(nyText);
END;

Text Si ze(ori gSi ze) ; {restore original size and font}
Text Font (ori gFont);

{Renenber the | ast nessage printed in this w ndow. }
nmyHandl e : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
nyHandl e~”. st at usText := nyText;
END;
END;

{DoSt at usMesg: call DoStatusText, getting the text froma resource}
PROCEDURE DoSt at usMesg (myW ndow. W ndowPtr; myMessagel D: | nteger);
VAR
myText : St r 255;
BEG N
Get I ndString(myText, rVennD, myMessagel D);
DoSt at usText (nyW ndow, nyText);
END;

{DoBadError: informthe user of fatal errors, then term nate the app}
PRCCEDURE DoBadError (nyError: Integer);

VAR
myltem I nt eger;
myMessage: Str255;
BEG N
Set Cur sor (arrow) ; {set arrow cursor}
Get I ndStri ng(nmyMessage, kErrorStrings, nyError);
Par amrext (nyMessage, "', '', '');
myltem:= Alert(rErrorAlert, NL); {di spl ay nmessage}
Exi t ToShel | ; {term nate execution}
END;

{IsFindFol der: is the FindFolder function avail abl e?}
FUNCTI ON | sFi ndFol der: Bool ean;
VAR
nyResul t: CSErr;
myFeature: Longlnt;

BEG N
| sFi ndFol der := FALSE; {assunme it's not avail abl e}

nyResult := Gestalt(gestaltFindFolderAttr, mnmyFeature);

203

saunnoy Aunn n

APPENDIX B

Utility Routines

| F nyResult = noErr THEN
| sFi ndFol der := BTST(nyFeature, gestaltFindFol derPresent);
END;

{MWRandom generate a reasonably random nunmber between 0 and | ast}
FUNCTI ON MyRandom (| ast: Integer): Integer;
BEG N
MyRandom : = ABS(Random) MOD SUCC(| ast) ;
END;
END.

204

A PPENDIX C

Dialog Code

This appendix defines several procedures used by the Venn Diagrammer application to
manage dialog boxes.

UNIT D al og; {routines to handl e dial og boxes}
| NTERFACE
USES
G obal, Uilities, Preferences, VennProcs;

PROCEDURE DoSet upUserltemnms (nyKind: Integer; VAR nyDial og: DialogPtr);
PROCEDURE DoSet upCtrl Val ues (nyDi al og: Dial ogPtr);

PROCEDURE DoUserltem (nmyDialog: DialogPtr; nyltem Integer);

PROCEDURE DoMbdel essDi al og (nyKind: Integer; VAR nyDial og: DialogPtr);
FUNCTI ON DoHandl eDi al ogEvent (myEvent: Event Record): Bool ean;

apo) boreig n

| MPLEMENTATI ON

{DoSet upUserltens: set up application-defined ("user") itens in a dial og box}
PROCEDURE DoSet upUserltemnms (nyKind: Integer; VAR nyDial og: DialogPtr);

VAR
nmyType: I nt eger;
nmyHand: Handl e;
myRect : Rect ;
count: I nt eger;
origPort: Gafbtr;
BEA N

Get Port (origPort);
Set Port (myDi al og) ;

CASE nyKi nd OF
rVennDPr ef sDi al :
FOR count := 1 TO kVennPrefsltenCount DO
I F count IN [iExistllcon..iExist4lcon,
i Enpt y1l con. . i Enpty4l con] THEN
BEG N
Get Di al ogl ten{nyDi al og, count, nyType, nyHand, nyRect);
Set Di al oglten{nyDi al og, count, myType, @oUserltem
nmyRect) ;
END;
OTHERW SE

205

APPENDIX C

Dialog Code

END;

Set Port (origPort);

END;
{DoSetupCtrl Values: install initial values in a dialog}
PROCEDURE DoSet upCtr| Val ues (nyDi al og: Di al ogPtr);
VAR
count: I nt eger;
myType: I nt eger;
nyHand: Handl e;
myRect : Rect ;
origPort: GafPtr;
BEG N

| F nyDialog = NIL THEN
exit (DoSetupCtrl Val ues);

Get Port (origPort); {save the current graphics port}
Set Port (nyDi al og) ; {always do this before draw ng}
ShowwW ndow(nyDi al og) ;

I F nyDi al og = gPrefsDi al og THEN

BEG N
FOR count := 1 TO kVennPrefsltenCount DO
BEG N
Get Di al oglten{nyDi al og, count, nyType, myHand,
nyRect) ;

IF nyType = ctrlltem+ radCrl THEN
CASE count OF
i Exi st 1Radi o. . i Exi st 4Radi o:
Set Ct | Val ue(Cont r ol Handl e(myHand) ,
ORD(gExi stl ndex = count - (iExistlRadio - 1)));
i Enpt y1Radi o. . i Enpt y4Radi o:
Set Ct | Val ue(Cont r ol Handl e(myHand) ,
ORD(gEnptyl ndex = count - (iEnptylRadio - 1)));
OTHERW SE
END;
I F nyType = ctrlltem+ chkCrl THEN
CASE count OF
i Get Next Random y:
Set Ct | Val ue(Cont r ol Handl e(myHand) ,

206

APPENDIX C

Dialog Code

ORD(gSt epRandom = TRUE)) ;
i ShowSchool Nanes:
Set &t | Val ue(Cont r ol Handl e(myHand) ,
ORD(gShowNares = TRUE)) ;
i UseExi st | nport:
Set &t | Val ue(Cont r ol Handl e(myHand) ,
ORD(gG vel nport = TRUE));
i Aut oAdj ust:
Set &t | Val ue(Cont r ol Handl e(myHand) ,
ORD(gAut 0Adj ust = TRUE)) ;
OTHERW SE
END;
END;
END;

Set Port (origPort); {restore the previous graphics port}
END;

{DoUserltem handle drawi ng of application-defined itenms in a dialog box}
PROCEDURE DoUserltem (nmyDialog: DialogPtr; nyltem Integer);

VAR
myType: I nt eger;
nyHand: Handl e;
myRect : Rect ;
origPort: GafPtr;
BEG N

Get Port (origPort);
Set Port (nyDi al og) ;

CGet Di al ogl ten({nyDi al og, nmyltem nyType, nyHand, nyRect);

| F nyDi al og = gPrefsDi al og THEN
CASE nyltem OF
i Exi st 1l con. . i Exi st 4l con:
BEG N
DoPl ot | con(myRect
Cetlcon(kExistID + nyltem - i Existllcon),
nmyDi al og, srcCopy);
END;
i Enpt y1l con. . i Enpt y4l con:
BEG N
DoPl ot | con(myRect

207

apo) boreig n

APPENDIX C

Dialog Code

Getl con(kEmptyI D + nyltem - i Enptyllcon),
nyDi al og, srcCopy);
FraneRect (myRect) ;
END;
OTHERW SE

END; { CASE}

Set Port (origPort); {restore original port}
END;

{ DoMbdel essDi al og: put up a nodel ess di al og box}
PROCEDURE DoMbdel essDi al og (nyKind: Integer; VAR nyDial og: DialogPtr);
VAR
nmyPointer: Ptr;
BEG N
IF nyDialog = NIL THEN {the dial og box doesn't exist yet}
BEG N
nmyPoi nter := NewPtr(sizeof (D al ogRecord));
IF nyPointer = NIL THEN
exi t (DoMbdel essDi al og) ;

myDi al og : = Get NewDi al og(nmyKi nd, myPointer, WndowPtr(-1));
IF nmyDi al og <> NIL THEN
BEG N
DoSet upUser |t ens(nyKi nd, nyDi al og); {set up user itens}
DoSet upCt r| Val ues(nyDi al og) ; {set up initial values}
END;
END
ELSE
BEG N
ShowW ndow(nyDi al og) ;
Sel ect W ndow(myDi al og) ;
Set Port (nmyDi al og) ;
END;
END;

{ DoHandl eDi al ogEvent: handl e events in nodel ess di al og boxes}
FUNCTI ON DoHandl eDi al ogEvent (nmyEvent: EventRecord): Bool ean;

VAR
event Handl ed: Bool ean; {did we handl e the event ?}
nyDi al og: Di al ogPtr;
myltem I nt eger;

208

APPENDIX C

Dialog Code

BEG N
event Handl ed : = FALSE;
| F Front Wndow <> NI L THEN
| F 1sDi al ogEvent (myEvent) THEN
I F Di al ogSel ect (myEvent, nyDi al og, nyltem) THEN
BEG N

event Handl ed : = TRUE;
Set Port (nyDi al og) ;

| F nyDi al og = gPrefsDi al og THEN
BEG N
CASE nyltem OF
i Enpt y1Radi o. . i Enpt y4Radi o:
gEmptyl ndex : = nyltem
i Enpt y1l con. . i Enpty4l con:
gEnptyl ndex : = nyltem - 4;
i Exi st 1Radi o. . i Exi st 4Radi o:
gExi stIndex := nyltem - iEnpty4lcon;
i Exi st1lcon..iExist4lcon:
gExi stlndex := nmyltem
i Get Next Random y:
gSt epRandom : = NOT gSt epRandom
i Aut oAdj ust:
gAut oAdj ust : = NOT gAut oAdj ust;
i ShowSchool Nanes:
gShowNanes : = NOT gShowNarnes;
i UseExi st nport:
gG vel mport := NOT gG vel nport;
i SaveVennPr ef s:
DoSavePr ef s;
OTHERW SE

(i Empty4l con + 4);

END;

DoSet upCt r | Val ues(nyDi al og) ; {updat e val ues}

END;
END;

DoHandl! eDi al ogEvent : = eventHandl ed;
END;

END.

209

apo) boreig n

A PPENDIX D

Resource Code

This appendix defines the routines used by the Venn Diagrammer application to create,
read, and write the resources it uses to store the user’s preferences. The application
expects to find those resources in a file named “Venn Diagrammer Preferences” in the
Preferences folder in the currently-active System folder. If no such file is found, the
application creates a new file of the desired name in that location; then it copies into that
file a default set of preferences settings that is contained in the application’s resource file.

UNI T Preferences;
| NTERFACE
USES
Fol ders, dobal, Wilities;

CONST

kPr ef ResType = "PRFN ; {type of preferences resource}

kPref ResI D = 259; {resource | D of preferences resource}
TYPE

{structure of a resource that contains Venn diagram preferences}
MyPr ef sRec = RECORD

aut oDi ag: Bool ean; {do we automatically fix the diagran?}
showNane: Bool ean; {do we show nanes of valid arguments?}
i sl mport: Bool ean; {do subjects have existential inmport?}
i sRandom Bool ean; {do we select next setting random y?}
enpt yl nd: I nt eger; {index of the desired enptiness pattern}
exi st nd: I nt eger; {index of the desired existence synbol}
END;
MyPrefsPtr = "MyPref sRec;

MyPref sHnd = "MyPrefsPtr;

FUNCTI ON DoCopyResource (rType: ResType; rlID: Integer; source: Integer;
dest: Integer): OSErr;

PROCEDURE DoReadPr ef s;

PROCEDURE DoSavePrefs;

| MPLEMENTATI ON
{ DoCopyResour ce}

{copy a resource fromone open resource file [source] to another [dest];}
{make sure not to alter the current resource file }

211

9poD 92IN0SaY n

APPENDIX D

Resource Code

{ and to preserve resource attributes}

FUNCTI ON DoCopyResource (rType: ResType; rlID: Integer; source: Integer;
dest: Integer): OSErr;
VAR
nyHandl e: Handl e; {handl e to resource to copy}
nmy Nare: Str 255; {nane of resource to copy}
nyAttr: I nt eger; {resource attri butes}
nyType: ResType; {ignored; used for GCetReslnfo}
nyl D: I nt eger; {ignored; used for GCetReslnfo}
nyResul t : CSErr;
myCurrent: |nteger; {current resource file on entry}
BEG N
nmyCurrent := CurResFile; {renmenber current resource file}
UseResFi |l e(source); {set the source resource file}
nmyHandl e : = Get 1Resource(rType, rID); {open the source resource}
| F myHandl e <> NIL THEN
BEG N
Get Resl nfo(nyHandl e, nyl D, nyType, nyNane); {get res nane}
nyAttr = GetResAttrs(nmyHandl e); {get res attributes}

Det achResour ce(nyHandl e) ;
UseResFi | e(dest);
I F ResError = noErr THEN
AddResour ce(myHandl e,
I F ResError = noErr THEN
Set ResAt tr s(nyHandl e,
| F ResError = noErr THEN
ChangedResour ce(myHandl e) ;
I F ResError = noErr THEN
Wit eResour ce(myHandl e) ;
END;

r Type,

DoCopyResource : = ResError;
Rel easeResour ce(myHandl e) ;
UseResFi |l e(myCurrent);

END;

{DoCreatePrefsFile:}

nyAttr); {set

{so we can copy the resource}
{set destination resource file}

ri D, nyNane);

res attributes of copy}
{mark resource as changed}
{write resource data}
{return result code}

{get rid of resource data}
{restore original resource file}

{Create a preferences file in the specified |location.}

{The initial
FUNCTI ON DoCreat ePrefsFil e (nmyVRef Num

VAR

myResNum I nt eger;

212

settings are just those in the app's resource file.}
I nt eger;
myName: Str255):

nyDirl D. Longlnt;
| nt eger;

APPENDIX D

Resource Code

nyResul t : CSErr;

nmyl D: I nt eger;
nmyHandl e: Handl e;
nmyType: ResType;
BEG N
nyResult := noErr;

{resource I D of resource in app's res fork}

{handl e to resource in app's res fork}
{ignored; used for GetReslnfo}

HCr eat eResFi | e(nyVRef Num nyDirl D, nmyNane);

| F ResError = noErr THEN
BEG N

nmyResNum : = HOpenResFi | e(myVRef Num nyDirlI D, myNane, fsCurPerm
I F nyResNum <> -1 THEN

BEG N

UseResFi | e(gAppsResourceFil e);

myHandl e : =
| F ResError
BEG N

CGet 1Resour ce(kPref ResType, kPrefReslD);
= noErr THEN

CGet Resl nfo(nyHandl e, nmyl D, nyType, nyName);
nmyResul t : = DoCopyResour ce(kPref ResType, nyl D,

END
ELSE
BEG N

gAppsResour ceFil e, nmyResNum ;

Cl oseResFi | e(myResNunm ;
nyResult := HDel ete(nyVRef Num nyDirl D, nyNane);
myResNum : = -1,

END;
END;

DoCreat ePrefsFil e
END;
END; {DoCreatePrefsFile}

{ DoReadPrefs:}
{Open the application's gl obal
PROCEDURE DoReadPr ef s;

VAR
nyVRef Num | nteger;
myDirl D: Longl nt ;
my Name: St r 255;
nyPrefs: Handl e;
myResNum I nt eger;
nyResul t: CSErr;

CONST

:= nmyResNum

preferences file and read indicated settings.}

{name of this application}
{handl e to actual preferences data}
{reference nunber of opened resource file}

213

9poD 92IN0SaY n

APPENDIX D

Resource Code

kNamel D = 4000; {resource I D of 'STR# with fil enane}
BEG N
{Determ ne the nane of the preferences file.}
Get I ndStri ng(myNane, kNanel D, 1);

{Figure out where the preferences file is.}
| F | sFi ndFol der THEN
nyResul t : = Fi ndFol der (kOnSyst enDi sk, kPreferencesFol der Type,
kDont Cr eat eFol der, nyVRef Num nyDirl D)
ELSE
myResult := -1;

| F nyResult <> noErr THEN

BEG N
nyVRef Num : = O; {use default vol une}
nyDirID := 0; {use default directory}
END;

{Open the preferences resource file.}
nmyResNum : = HOpenResFi | e(nmyVRef Num nyDirI D, nmyNane, fsCurPerm;

{If no preferences file successfully opened, create one }
{ by copying default preferences in app's resource file.}
I F nyResNum = -1 THEN
nmyResNum : = DoCreat ePref sFil e(myVRef Num nyDirl D, nyNane);

| F myResNum <> -1 THEN {if we successfully opened the file...}
BEG N
UseResFi | e(nyResNum ; {make the new resource file current one}

nyPrefs := Cet1Resource(kPref ResType, kPrefResID);
I F nyPrefs = NIL THEN

exi t (DoReadPr ef s);
W TH MyPr ef sHnd(nyPrefs) " DO

BEA N {read the preferences settings}
gAut oAdj ust : = aut oD ag;
gShowNanes : = showNane;
gG velmport := islnport;
gSt epRandom : = i sRandom
gEnptyl ndex : = enptyl nd;
gExi st ndex := existlnd,
END;

{Make sure sonme preferences globals nake sense.}

214

APPENDIX D

Resource Code

I F NOT (gExistlndex IN[1..4]) THEN
gExi stlndex := 1,

I'F NOT (gEmptylndex IN[1..4]) THEN
gEnptyl ndex := 1,

{Reinstate the application's resource file.}
UseResFi | e(gAppsResourceFil e);
END;

gPreferencesFile : = nyResNum {renenmber its resource |D}
END; {DoReadPr ef s}

{DoSavePrefs:}
{Save the current preference settings.}
PROCEDURE DoSavePr ef s;

VAR

nyPr ef Dat a: Handl e; {handl e to new resource data}
nmyHandl e: Handl e; {handl e to resource to repl ace}
ny Nane: Str 255; {nane of resource to copy}
nyAttr: I nt eger; {resource attri butes}
nyType: ResType; {ignored; used for GCetReslnfo}
nyl D: I nt eger; {ignored; used for GetReslnfo}

BEG N

{Make sure we have an open preferences file.}
| F gPreferencesFile = -1 THEN
exit (DoSavePrefs);

nyPref Dat a : = NewHandl eC ear (si zeof (MyPref sRec)) ;
HLock(myPr ef Dat a) ;
W TH MyPr ef sHnd(nyPr ef Dat a) ** DO

BEG N
aut oDi ag : = gAut oAdj ust;
showNane : = gShowNanes;
i sl mport := gG vel nport;
i sSRandom : = gSt epRandom
enptyl nd : = gEnptyl ndex;
exi stlnd : = gExistlndex;

END;

UseResFi | e(gPreferencesFile); {use preferences file}

nyHandl e : = Get 1Resour ce(kPref ResType, kPrefReslD);
| F myHandl e <> NIL THEN
BEG N

215

9poD 92IN0SaY n

APPENDIX D

Resource Code

CGet Resl nfo(nmyHandl e, nyl D, nyType, nyNane); {get res nane}
myAttr : = CGetResAttrs(nyHandl e); {get res attributes}
RmveResour ce(nyHandl e) ;
I F ResError = noErr THEN
AddResour ce(nmyPref Dat a, kPref ResType, kPrefReslD, nyNane);
| F ResError = noErr THEN
Wit eResource(mnmyPrefData);
END;

HUnl ock(myPr ef Dat a) ;
Rel easeResour ce(myPr ef Dat a) ;
UseResFi | e(gAppsResourceFil e); {restore app's resource file}

END; {DoSavePr ef s}

END. {UNI'T Preferences}

216

A PPENDIX E

User Interface Code

This appendix shows the source code that manages the basic setup and user interface for
the Venn Diagrammer application.

PROGRAM VennDi agr anmer ;
USES
G obal, Wilities, Dialog, Preferences, VennProcs;

VAR
gDone: Bool ean;

{Dol ni t Managers: initialize Tool box Manager s}
PROCEDURE Dol ni t Manager s;

BEG N
MaxAppl Zone; {extend heap zone to limt}
Mor eMast er s; {get 64 nore master pointers}
InitGaf(@hePort); {initialize QuickDraw}
I nitFonts; {initialize Font Manager}
I ni t Wndows; {initialize Wndow Manager}
I ni t Menus; {initialize Menu Manager}
TElnit; {initialize TextEdit}
I nitDial ogs(NL); {initialize Dial og Manager}
Fl ushEvent s(everyEvent, 0); {cl ear event queue}
I nitcCursor; {initialize cursor to arrow}
END;

{DoSet upMenus: set up the nmenu bar}
PROCEDURE DoSet upMenus;
VAR
menuBar : Handl e;
BEG N
menuBar : = Get NewMBar (r MenuBar) ;
I F menuBar = NIL THEN
DoBadEr r or (eCant Fi ndMenus) ;

Set MenuBar (mrenuBar) ;

Di sposeHand!| e(nenuBar) ;
AppendResMenu(Get MenuHandl e(mAppl e), 'DRVR);

217

apoD aJepalU| J8SN ﬂ

APPENDIX E

User Interface Code

Dr awMenuBar ;
END;
{DoUpdat e: update a w ndow}
PROCEDURE DoUpdat e (nyW ndow. W ndowPtr);
VAR
nmyHandl e: MyDocRecHnd;
nyRect : Rect ; {tool rectangl e}
origPort: Gafbtr;
ori gPen: PensSt at e;
count: I nt eger;
BEG N
Get Port (origPort); {renenber original draw ng port}

218

Set Port (myW ndow) ;

Begi nUpdat e(nyW ndow) ; {cl ear update region}
Er aseRect (nyW ndow". port Rect) ;

| F 1 sAppW ndow(myW ndow) THEN
BEG N

{Draw two lines separating tools area fromwork area.}
CGet PenSt at e(ori gPen) ; {renenber original pen state}
PenNor mal ; {reset pen to normal state}
W TH nyW ndow®* DO

BEG N

MoveTo(portRect.l eft, portRect.top + kTool H);
Li ne(port Rect.right, 0);
MoveTo(port Rect.l eft, portRect.top + kToolH + 2);
Li ne(portRect.right, 0);
END;

{Redraw the tools area in the w ndow. }
FOR count := 1 TO kNunifool s DO
BEG N
Set Rect (nmyRect, kToolWl * (count - 1), 0, kTool Wl * count,
kTool Ht) ;
DoPl ot | con(myRect, gTool sl cons[count], nyW ndow, srcCopy);
END;

{Redraw the status area in the w ndow. }
myHandl e : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
DoSt at usText (myW ndow, nyHandl e*”. st atusText);

APPENDIX E

User Interface Code

{Draw the rest of the content region.}

DoVennDr aw(myW ndow) ;

Set PenSt at e(ori gPen) ; {restore previous pen state}

END; {IF |sAppW ndow}

EndUpdat e(nyW ndow) ;

Set Port (origPort); {restore original

END;

{DoCr eat eW ndow. create a new w ndow}
FUNCTI ON DoCr eat eW ndow. W ndowPtr ;
VAR
myPoi nter: Ptr;
nmyW ndow: W ndowPt r ;
nyHandl e: MyDocRecHnd;
BEG N
nmyPoi nter := NewPtr (sizeof (WndowRecord));
| F nyPointer = NIL THEN
exi t (DoCreat eW ndow) ;

nyW ndow : = Get NewW ndow(r VennD, nyPoi nter,

| F nyW ndow <> NI L THEN
BEG N
Set Port (myW ndow) ;

draw ng port}

W ndowPtr (-1));

myHandl e : = MyDocRecHnd(NewHandl e ear (si zeof (MyDocRec)));

| F myHandl e <> NIL THEN
BEG N
HLockHi (Handl e(nyHandl e));

{lock the data high in the heap}

Set WRef Con(myW ndow, Longl nt (myHandl e));

{attach data handle to w ndow record}

DoSet W ndowTi t | e(myW ndow) ;

{Define initial w ndow settings.}

W TH nyHandl e*” DO
BEG N

figure := 1;

nood[1]

nood[2]

nood[3]

I
[N

{set the wi ndow title}

219

apoD aJepalU| J8SN ﬂ

APPENDIX E

User Interface Code

i sAnswer Showi ng : = FALSE;
i SExi stlnport := gG vel nport;
END;
DoGet Randonier s (myW ndow) ;
DoCal cAnswer (nyW ndow) ;

{Position the wi ndow and display it.}
DoPosi ti onW ndow(nyW ndow) ;
ShowW ndow(myW ndow) ;

END {I F myHandl e <> NI L}

ELSE
BEA N {couldn't get a data record}
Cl oseW ndow(nyW ndow) ;
Di sposePtr (Ptr (nyW ndow)) ;
nyW ndow : = NI L; {so pass back N L}
END;
END;

DoCr eat eW ndow : = nmyW ndow;,

END;
{ Dod oseDocW ndow. di spose a docunment wi ndow and all its data structures}
PRCCEDURE DoCl oseDocW ndow (nyW ndow. W ndowPtr);
VAR
myHandl e: MyDocRecHnd;
BEG N
| F nyWndow = NIL THEN
exi t (DoCl oseDocW ndow) {ignore NIL wi ndows}
ELSE
BEG N
myHandl e : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
Di sposeHandl e(Handl e(myHandl e)) ;
G oseW ndow(nyW ndow) ; {cl ose the wi ndow}
Di sposePtr (Ptr (nyW ndow)) ; {and rel ease the storage}
END;
END;

{Dod oseW ndow. cl ose a wi ndow}
PROCEDURE DoCl oseW ndow (nyW ndow. W ndowPtr);
BEG N
| F nyW ndow <> NI L THEN
| F 1 sDi al ogW ndow(nyW ndow) THEN {this is a dial og w ndow}

220

APPENDIX E

User Interface Code

H deW ndow(myW ndow)
ELSE | F | sDAccW ndow(nyW ndow) THEN {this is a DA wi ndow}
Cl oseDeskAcc(W ndowPeek(myW ndow) ~. wi ndowKi nd)
ELSE | F | sAppW ndow(nyW ndow) THEN {this is a docunent w ndow}
DoCl oseDocW ndow(nyW ndow) ;
END;

{DoDr ag: handl e wi ndow dr aggi ng}

PRCCEDURE DoDr ag (nmyW ndow. W ndowPtr; nouseloc: Point);

VAR
dragBounds: Rect;

BEG N
dragBounds : = Get GrayRgn™”". r gnBBox;
Dr agW ndow(nyW ndow, nousel oc, dragBounds);

END;

{ DoGoAwayBox: process a click in close box}
PROCEDURE DoGoAwayBox (nyW ndow. W ndowPtr; nousel oc: Point);
BEG N
I F TrackGoAway(nyW ndow, nousel oc) THEN
DoC oseW ndow(myW ndow) ;
END;

{DoQuit: quit the progran
PROCEDURE DoQui t ;
VAR
nmyW ndow: W ndowPt r;
BEG N
nyW ndow : = Front W ndow;, {close all w ndows}
VWHI LE myW ndow <> NIL DO
BEG N
DoUpdat e(myW ndow) ; {force redraw ng w ndow}
Dod oseW ndow(myW ndow) ;
nyW ndow : = Front W ndow;,
END;
gbone : = TRUE; {set flag to exit main event | oop}
END;

{DoActivate: handle activate and deactivate events for the specified w ndow}
PROCEDURE DoActivate (myW ndow. W ndowPtr; mnmyModifiers: |nteger);
VAR
nmySt at e: I nt eger; {activation state}
myControl: Control Handl e;

221

apoD aJepalU| J8SN ﬂ

APPENDIX E

User Interface Code

BEG N
myState : = BAnd(nyModifiers, activeFl ag);

| F 1 sDi al ogW ndow(nyW ndow) THEN

BEG N
nyControl := W ndowPeek(nyW ndow)”~. control Li st;
VWHI LE myControl <> NIL DO
BEG N
HliteControl (myControl, mnmyState + 255 nod 256);
nmyControl := nyControl ~". next Control;
END;
END;

END;

{DoDi skEvent: handl e di sk-inserted events}
PROCEDURE DoDi skEvent (nyEvent: Event Record);

VAR
nyResul t: I nt eger;
nmyPoi nt : Poi nt ;
BEG N
| F H Word(myEvent. message) <> noErr THEN
BEG N
Set Pt (myPoi nt, 100, 100);
nyResul t : = Dl BadMount (nyPoi nt, nyEvent. nessage);
END;
END;

{MyModal Filter: a basic nodal dialog filter function}
FUNCTI ON MyModal Filter (nyDi al og: DialogPtr; VAR nyEvent: EventRecord,;
VAR nyltem |nteger): Bool ean;

VAR
i tenlype: I nt eger;
i t enHand: Handl e;
itenRect: Rect ;
myKey: Char ;
nyl gnor e: Longl nt ;

BEG N
MyModal Fi l ter := FALSE; {assunme we don't handl e the event}

CASE nyEvent . what OF
updat eEvt :
BEG N
| F W ndowPt r (nyEvent . nessage) <> nyDi al og THEN

222

APPENDIX E

User Interface Code

DoUpdat e(W ndowPt r (myEvent . nessage)) ;
{update the w ndow behi nd}
END;
keyDown, aut oKey:
BEG N
nyKey : = char (And(nyEvent. nessage, char CodeMask));

{if Return or Enter pressed, do default button}
IF (nyKey = kReturn) OR (nyKey = kEnter) THEN
BEG N
GetDitenm(nyDi al og, i OK, itenlype, itenmHand, itenRect);
HiliteControl (Control Handl e(i t enHand), 1);
{nmake button appear to have been pressed}
Del ay(kVi sual Del ay, nyl gnore);
HiliteControl (Control Handl e(itentHand), 0);
MyModal Filter := TRUE;
myltem: =i QK
END;

{if Escape or Cnd-. pressed, do Cancel button}
| F (nyKey = kEscape)
OR ((myKey = kPeri od)
AND (BAnd(myEvent. nodifiers, CrdKey) <> 0)) THEN
BEG N
CGet DI ten(nyDi al og, iCancel, itenflype, itenHand,

i tenRect);
HiliteControl (Control Handl e(i t enHand), 1);
{make button appear to have been pressed}
Del ay(kVi sual Del ay, nyl gnore);
HiliteControl (Control Handl e(itentHand), 0);
MyModal Filter := TRUE;
myltem : = i Cancel ;
END;
END;
di skEvt:
BEG N
DoDi skEvent (nyEvent);
MyModal Fi lter := TRUE; {show we' ve handl ed the event}
END;
OTHERW SE
END; { CASE}
END;

223

apoD aJepalU| J8SN ﬂ

APPENDIX E

User Interface Code

{ DoAbout Box: handl e About... sel ections}
PRCCEDURE DoAbout Box (nmyW ndow. W ndowPtr);
VAR

myW ndow: W ndowPt r ;
nyDi al og: Di al ogPtr;
myltem I nt eger;
BEG N
nyW ndow : = Front W ndow;
| F nyWndow <> NI L THEN
DoActi vate(nyWndow, 1 - activeFl ag);

nyDi al og : = Get NewDi al og(rAboutDial, NIL, WndowPtr(-1));
IF nyDi al og <> NIL THEN
BEG N
Set Port (nmyDi al og) ;
DoDef aul t But t on(nmyDi al og) ;

REPEAT
Modal Di al og(@ Modal Filter, nyltem;
UNTIL nmyltem = i OK;

Di sposeDi al og(nmyDi al og) ;
Set Por t (myW ndow) ;
END;
END;

{ DoMenuAdj ust: adjust nenus by enabling and disabling itens}
PROCEDURE DoMenuAdj ust ;

VAR
nyW ndow: W ndowPt r;
my Menu: MenuHandl e;
count: I nt eger;
BEG N

myW ndow : = Front W ndow,

| F nyWndow = NIL THEN

Di sabl eMenul t em(Get MenuHandl e(nFile), id ose)
ELSE

Enabl eMenul t en(Get MenuHandl e(nFile), id ose);

nyMenu : = CGet MenuHandl e(nVennD) ;
| F 1 sAppW ndow(myW ndow) THEN

224

APPENDIX E

User Interface Code

FOR count := 1 TO kNunifool s DO
Enabl eMenul t en{ nyMenu, count)
ELSE
FOR count := 1 TO kNunifool s DO
Di sabl eMenul t em(myMenu, count);

| F | sDAccW ndow(nyW ndow) THEN
Enabl eMenul t en{ Get MenuHandl e(nmEdit), 0)
ELSE
Di sabl eMenul t em(Get MenuHandl e(nmEdit), O0);
Dr awMenuBar ;
END;

{ DoMenuConmand: interpret and act on nenu sel ections}
PRCCEDURE DoMenuConmmand (menuAndltem Longlnt);
VAR

myMenuNum | nteger;

nyltemNum | nteger;

nyResul t : I nt eger;

my DANane: St r 255;

nmyW ndow: W ndowPt r ;

BEG N
myMenuNum : = H Wor d(menuAndl tem ;
nyltemNum : = LoWsr d(nenuAndl tem ;

Get Port (nyW ndow) ;

CASE nmyMenuNum CF

mAppl e:
CASE nyl t emNum OF
i About :
BEG N
DoAbout Box;
END;
OTHERW SE
BEG N
Get Menul t enifext (Get MenuHandl e(mAppl e),
nmy DANane) ;
nyResul t : = OpenDeskAcc(myDANane) ;
END;
END;
nFile:
BEG N

CASE nylt enNum OF

myl t emNum

225

apoD aJepalU| J8SN ﬂ

APPENDIX E

User Interface Code

i New:
myW ndow : = DoCr eat eW ndow;,
i d ose:
DoCl oseW ndow(Fr ont W ndow) ;
i Quit:
DoQui t;
OTHERW SE
END;
END;
nedit:
BEG N
| F NOT Systentdit(nyltemNum - 1) THEN
END;
mvennD:
BEG N
nyW ndow : = Front W ndow;
CASE nylt emNum OF
i CheckVenn:
DoVennCheck(myW ndow) ;
i DoVenn:
DoVennAnswer (nyW ndow) ;
i O ear Venn:
DoVennd ear (nyW ndow) ;
i Next Task:
DoVennNext (myW ndow) ;
i CheckArg:
DoVennAssess(nyW ndow) ;
i Get VennPrefs:
DoMbdel essDi al og(r VennDPr ef sDi al , gPrefsDi al og);
OTHERW SE
END;
END;

OTHERW SE

END;
HiliteMenu(O0);
END; {DoMenuComand}

{DoContentdick: handle a mouse click in the content area of a w ndow}

226

APPENDIX E

User Interface Code

PROCEDURE DoContentd ick (nyWndow. W ndowPtr; nyEvent: Event Record);

VAR
nmyRect : Rect ; {tenporary rectangl e}
count: I nt eger;
BEG N
I F NOT | sAppW ndow(myW ndow) THEN
exi t(DoContentd i ck); {nmake sure it's a docunent w ndow}
Set Por t (myW ndow) ; {set port to our w ndow}

d obal ToLocal (nyEvent . where);

{See if the click is in the tools area.}
Set Rect (myRect, 0, 0, kTool Wi * kNumTool s, kTool Ht);
I F PtlnRect (myEvent.where, nyRect) THEN
BEG N {if so, determine which tool was clicked}
FOR count := 1 TO kNunifool s DO
BEG N
Set Rect (myRect, (count - 1) * kTool Wi, O,
count * kTool Wi, kTool Ht);
I F PtlnRect (myEvent.where, nyRect) THEN
Leave; {we found the right tool, so stop |ooking}
END;
| F DoTrackRect (nyW ndow, nyRect) THEN
DoMenuConmand(Bi t Shi ft (nVennD, 16) +
((kNunTools + 1) - count));{handl e tools sel ections}
exit (DoContentdick);
END;

{See if the click is in the status area.}
Set Rect (myRect, kTool Wl * kNumfool s, O,
nyW ndow*. port Rect . ri ght, kTool Ht);
I F PtlnRect (myEvent.where, nyRect) THEN
BEG N
exi t (DoContentd i ck);
END;

{The click nust be in sonewhere in the rest of the w ndow. }
Dovennd i ck(myW ndow, nyEvent. where);
END;

{ DoMbuseDown: process nouseDown event s}

PROCEDURE DoMbuseDown (nyEvent: Event Record);
VAR

227

apoD aJepalU| J8SN ﬂ

APPENDIX E

User Interface Code

myPart: I nt eger;
myW ndow: W ndowPt r ;
BEG N
nyPart := Fi ndW ndow myEvent. where, nyW ndow);
CASE nyPart OF
i nMenuBar :
BEG N
DoMenuAdj ust ;
DoMenuCommand(MenuSel ect (nmyEvent . where));
END;
| NnSysW ndow:.
SystenC i ck(myEvent, nmyW ndow) ;
i nDr ag:
DoDr ag(nyW ndow, nyEvent. where);
i nGCoAway :
DoGoAwayBox(myW ndow, myEvent. where);
i nCont ent :
BEG N
| F nyW ndow <> Front Wndow THEN
Sel ect W ndow(myW ndow)
ELSE
DoCont ent C i ck(nyW ndow, nyEvent);
END;
OTHERW SE
END;
END;

{ DoKeyDown: respond to keyDown events}
PRCCEDURE DoKeyDown (myEvent: Event Record);
VAR
myKey: char;
BEG N
nyKey := chr(BAnd(nyEvent. nessage, char CodeMask));
I F (BAnd(nyEvent. nodifiers, CndKey) <> 0) THEN
BEG N
DoMenuAdj ust ;
DoMenuComand(MenuKey (nyKey)) ;
END;
END;

{Dol dl e: handl e null events}
{currently we use this for auto-processing in Venn di agram wi ndows}

228

APPENDIX E

User Interface Code

PROCEDURE Dol dl e (nyEvent: Event Record);
VAR
nmyW ndow: W ndowPt r;
nmyHandl e: MyDocRecHnd;
BEG N
nyW ndow : = Front W ndow;
| F | sAppW ndow(myW ndow) THEN
| F gAut oAdj ust THEN
BEG N
nyHandl e : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
I F nmyHandl e*”*. needsAdj usti ng THEN
DoVennl dl e(myW ndow) ;
END;
END; { Dol dl e}

{DoOCSEvent: handl e OS events}
PROCEDURE DoOSEvent (myEvent: Event Record);

VAR
nmyW ndow: W ndowPt r;
BEG N
CASE BSR(nyEvent. nessage, 24) OF
nouseMovedMessage:
BEG N
Dol dl e(nyEvent) ; {right now, do nothing}
END;
suspendResuneMessage:
BEG N
nyW ndow : = Front W ndow;,
| F (BAnd(nmyEvent . nessage, resuneFlag) <> 0) THEN
DoAct i vat e(myW ndow, acti veFl ag) {activate w ndow}
ELSE
DoActivate(myW ndow, 1 - activeFlag); {deactivate w ndow}
END;
OTHERW SE
END;
END;

{ DoMai nEvent Loop: the main event | oop}
PROCEDURE DoMai nEvent Loop;
VAR
nyEvent : Event Recor d;

got Event : Bool ean; {is returned event for

nme?}

229

apoD aJepalU| J8SN ﬂ

APPENDIX E

User Interface Code

BEG N
REPEAT
got Event := Wit Next Event (everyEvent, nyEvent, 15, NL);
| F NOT DoHandl eDi al ogEvent (myEvent) THEN
| F got Event THEN
BEG N
CASE nyEvent . what OF
nmouseDown:
DoMouseDown(nyEvent) ;
keyDown, aut oKey:
DoKeyDown(myEvent) ;
updat eEvt :
DoUpdat e(W ndowPt r (myEvent . nessage)) ;
di skEvt:
DobDi skEvent (nyEvent);
activat eEvt:
DoActi vat e(W ndowPt r (myEvent . nessage),
nyEvent . nodi fiers);
osEvt:
DoOSEvent (myEvent) ;
keyUp, nouseUp:
nul | Event :
Dol dl e(nyEvent) ;
OTHERW SE
END; { CASE}
END
ELSE
Dol dl e(nyEvent) ;
UNTI L gDone; {loop until user quits}
END;
BEG N
Dol ni t Manager s; {initialize Tool box manager s}
DoSet upMenus; {initialize menus}
gbDone : = FALSE; {initialize global variables}
gNunDocW ndows : = O; {initialize count of open doc w ndows}
gPrefsDialog := NL; {initialize ptr to Preferences dial og}
gAppsResourceFile := CurResFile; {get refnumof the app's resource file}
gPreferencesFile := -1; {initialize res ID of preferences file}

230

APPENDIX E

User Interface Code

DoReadPr ef s;

DoVennl ni t;
DoMai nEvent Loop;
END.

{read the user's preference settings}

{and then | oop forever...}

231

apoD aJepalU| J8SN ﬂ

Glossary

A5 world An area of memory in an
application’s partition that contains the
QuickDraw global variables, the application
global variables, the application parameters, and
the jump table—all of which are accessed
through the A5 register.

action procedure A procedure that performs an
action in response to the user holding the mouse
button down while the cursor is in a control.

activate event An event indicating that a
window is becoming active or inactive. Each
activate event specifies the window to be
changed and the direction of the change (that is,
whether it’s becoming active or becoming
inactive).

active application The application currently
interacting with the user. Its icon appears on the
right side of the menu bar. See also current
process, foreground process.

active control A control in which the Control
Manager responds to a user’s mouse actions by
providing visual feedback.

active window The frontmost window on the
desktop, the one in which the user is currently
working. The active window is designated by
racing stripes in the title bar, active controls, and
highlighted selections.

address A number that specifies the location of
a byte in memory.

alert An alert sound, an alert box, or both.
Alerts warn the user of an unusual or potentially
undesirable situation occurring within an
application. See also alert box.

alert box A window that an application
displays on the screen to warn the user or to
report an error to the user. An alert box typically
consists of text describing the situation and
buttons that require the user to acknowledge or
rectify the problem. An alert box may or may not
be accompanied by an alert sound.

alert resource Aresource (of type ' ALRT') that
specifies alert sounds, a display rectangle, and an
item list for an alert box.

alert sound An audible signal from the
Macintosh speaker that warns the user of an
unusual or potentially undesirable situation
occurring within an application. An alert sound
may or may not be accompanied by an alert box.

Alias Manager The part of the Operating
System that helps you to locate specified files,
directories, or volumes at a later time. The Alias
Manager creates and resolves alias records.

alias record A data structure created by the
Alias Manager to identify a file, directory, or
volume.

allocate To assign an area of memory for use.

Apple event A high-level event whose
structure and interpretation are determined by
the Apple Event Interprocess Messaging Protocol.

Apple Event Manager The part of the
Macintosh system software that allows
applications to send and respond to Apple events.

Apple Menu Items folder A directory located
in the System Folder for storing desk accessories,
applications, folders, and aliases that the user
wants to display in and access from the Apple
menu.

application global variables A set of variables
stored in the application’s A5 world that are
global to the application.

application heap An area of memory in the
application heap zone in which memory is
dynamically allocated and released on demand.
The heap contains the application’s ' CODE'
segment 1, data structures, resource map, and
other code segments as needed.

233

GLOSSARY

application parameters Thirty-two bytes of
memory in the application partition that are
reserved for system use. The first long word is
the address of the first QuickDraw global
variable.

application partition A partition of memory
reserved for use by an application. The
application partition consists of free space, the
application heap, the application’s stack, and the
application’s A5 world.

auto-key event An event indicating that a key
is still down after a certain amount of time has
elapsed.

background-only application An application
that does not have a user interface.

background process A process that isn’t
currently interacting with the user. Compare
foreground process.

bitmap A set of bits that represents the
positions and states of a corresponding set of
items, such as pixels.

block See memory block.

button A control that appears on the screen as a
rounded rectangle with a title centered inside.
When the user clicks a button, the application
performs the action described by the button’s
title. Button actions are usually performed
instantaneously. Examples include completing
operations defined by a dialog box and
acknowledging an error message in an alert box.

checkbox A control that appears onscreen as a
small square with an accompanying title. A
checkbox displays one of two settings: on
(indicated by an X inside the box) or off. When
the user clicks a checkbox, the application
reverses its setting. See also radio button.

close box The small white box on the left side
of the title bar of an active window. Clicking it
closes the window.

Command-key equivalent Refers specifically
to a keyboard equivalent that the user invokes by
holding down the Command key and pressing
another key (other than a modifier key) at the
same time.

234

Communications Toolbox A part of the
Macintosh system software that you can use to
provide your application with basic networking
and communications services.

compact See heap compaction.

compatibility The ability of an application to
execute properly in different operating
environments.

content region The part of a window in which
the contents of a document, the size box, and the
window controls (including the scroll bars) are
displayed.

context The information about a process
maintained by the Process Manager. This
information includes the current state of the
process, the address and size of its partition, its
type, its creator, a copy of its low-memory
globals, information about its' SI ZE' resource,
and a process serial number.

context switch A major or minor switch.

control An onscreen object that the user can
manipulate with the mouse. By manipulating a
control, the user can take an immediate action or
change a setting to modify a future action.

control definition function A function that
defines the appearance and behavior of a control.
A control definition function, for example, draws
the control. See also standard control definition
functions.

control definition ID A number passed to
control-creation routines to indicate the type of
control. It consists of the control definition
function’s resource ID and a variation code.

control list A series of entries pointing to the
descriptions of the controls associated with the
window.

Control Manager A collection of routines that
applications use to create and manipulate
controls, especially those in windows.

control record A data structure of type

Cont r ol Recor d, which the Control Manager
uses to store all the information it needs for its
operations on a control.

GLOSSARY

cooperative multitasking environment A
multitasking environment in which applications
explicitly cooperate to share the available system
resources. See also multitasking environment.

current directory The directory whose contents
are listed in the dialog box displayed by the
Standard File Package. See also default directory.

current menu list A data structure that contains
handles to the menu records of all menus in the
current menu bar and the menu records of any
submenus or pop-up menus that an application
inserts into the list.

current process The process that is currently
executing and whose A5 world is valid; this
process can be in the background or the
foreground.

cursor Any 256-bit image, defined by a
16-by-16-bit square. The mouse driver displays
the current cursor and maps the movement of the
mouse to relative locations on the screen as the
user moves the mouse.

dangling pointer A copy of a master pointer
that no longer points to the correct memory
address.

data fork The part of a file that contains data
accessed using the File Manager. The data
usually corresponds to data entered by the user;
the application creating a file can store and
interpret the data in the data fork in whatever
manner is appropriate.

default button In an alert box or a dialog box,
the button whose action is invoked when the
user presses the Return key or the Enter key. The
Dialog Manager automatically draws a bold
outline around the default button in alert boxes;
applications should draw a bold outline around
the default button in dialog boxes. The default
button should invoke the preferred action which,
whenever possible, should be a “safe” action—
that is, one that doesn’t cause loss of data.

default directory The directory used in File
Manager routines whenever you don’t explicitly
specify some directory. See also current directory.

default volume The volume that contains the

default directory.

desk accessory A “mini-application” that is
available from the Apple menu regardless of
which application you're using—for example, the
Calculator, Note Pad, Alarm Clock, Puzzle,
Scrapbook, Key Caps, and Chooser.

desktop The working environment displayed
on the Macintosh computer: the gray background
area on the screen.

Device Manager The part of the Macintosh
Operating System that supports device 1/0.

dialog box A window that’s used for some
special or limited purpose, such as to solicit
information from the user before the application
carries out the user’s command. See also modal
dialog box, modeless dialog box, and movable
modal dialog box.

Dialog Manager The part of the Macintosh
Toolbox that provides routines for creating and
manipulating alerts and dialog boxes.

dialog record A data structure of type
Di al ogRecor d that the Dialog Manager uses to
create dialog boxes and alerts.

dialog resource Aresource (of type' DLOG)
that specifies the window type, display rectangle,
and item list for a dialog box.

directory Asubdivision of a volume, available
in the hierarchical file system. A directory can
contain files and other directories (known as
subdirectories).

disabled item In an alert box or a dialog box,
an item for which the Dialog Manager does not
report user events. An example of a disabled item
is static text, which typically does not respond to
clicks.

disk A physical medium capable of storing
information.

disk initialization The process of making a
disk usable by the Macintosh Operating System.

Disk Initialization Manager The part of the
Macintosh Operating System that manages the
process of initializing disks.

disk-inserted event An event indicating that a
disk has been inserted into a disk drive.

235

GLOSSARY

display rectangle A rectangle that defines the
size and location of an item in an alert box or a
dialog box. The display rectangle is specified in
an item list and uses coordinates local to the alert
box or a dialog box.

disposed handle A handle whose associated
relocatable block has been disposed of.

divider A gray line used in menus to separate
groups of menu items.

document (1) Afile that a user can create and
edit. A document is usually associated with a
single application, which the user expects to be
able to open by double-clicking the document’s
icon in the Finder. (2) Any collection of
information that is displayed in a document
window.

document record An application-defined data
structure that contains information about the
window, any controls in the window (such as
scroll bars), and the file (if any) whose contents
are displayed in the window.

document window A window in which the
user enters text, draws graphics, or otherwise
enters or manipulates data.

double indirection The means by which the
Memory Manager or an application accesses the
data associated with a handle variable.

drag region The area occupied by a window’s
title bar, except for the close box and zoom box.
The user can move a window on the desktop by
dragging the drag region.

edition The data written to an edition container
by a publisher. A publisher writes data to an
edition whenever a user saves a document that
contains a publisher, and subscribers in other
documents may read the data from the edition
whenever it is updated.

Edition Manager The part of the Macintosh
system software that allows applications to
automate copy and paste operations between
applications, so that data can be shared
dynamically.

empty handle A handle whose master pointer
has the value NI L (possibly indicating that the
underlying relocatable block has been purged).

236

enabled item In an alert box or a dialog box,
an item for which the Dialog Manager reports
user events. For example, the Dialog Manager
reports clicks in an enabled OK button.

event The means by which the Event Manager
communicates information about user actions,
changes in the processing status of the
application, and other occurrences that require a
response from the application.

event-driven programming A way of
structuring an application so that it is guided by
events reporting a user’s actions and other
occurrences in the computer.

event filter function An application-defined
routine that supplements the Dialog Manager’s
ability to handle events—for example, an event
filter function can test for disk-inserted events
and can allow background applications to receive
update events.

event loop A section of code that repetitively
retrieves events from the Event Manager and
dispatches to the appropriate event-handler.

Event Manager The collection of routines that
an application can use to receive information
about actions performed by the user, to receive
notice of changes in the processing status of the
application, and to communicate with other
applications.

event priority The order in which an event of a
particular type is returned to an application.

event record A data structure of type

Event Recor d that your application uses when
retrieving information about an event. The Event
Manager returns, in an event record, information
about what type of event occurred (a mouse click
or keypress, for example) and additional
information associated with the event.

extension See system extension.

Extensions folder A directory located in the
System Folder for storing system extension files
such as printer and network drivers and files of
types' INIT' ,"scri',and"' appe'.

file A named, ordered sequence of bytes stored
on a Macintosh volume, divided into a data fork
and a resource fork.

GLOSSARY

file fork One of the two parts of a file. See also
data fork and resource fork.

File Manager The part of the Macintosh
Operating System that manages the organization,
reading, and writing of data located on physical
data storage devices such as disk drives.

file system A method of organizing files and
directories on a volume.

Finder An application that works with the
system software to keep track of files and
manage the user’s desktop display.

Finder Interface A set of routines, data
structures, and resources that you can use to
coordinate your application with the Finder.

folder

Fonts folder A directory located in the System
Folder for storing fonts.

A directory. See directory.

foreground process The process currently
interacting with the user; it appears to the user as
the active application. The foreground process
displays its menu bar, and its windows are in
front of the windows of other applications.
Compare background process.

fork See file fork.
fragmentation See heap fragmentation.

frame The part of a window drawn
automatically by the Window Manager, namely,
the title bar, including the close box and zoom
box, and the window’s outline.

free block A memory block containing space
available for allocation.

global coordinate system The coordinate
system that represents all potential QuickDraw
drawing space. The origin of the global
coordinate system—that is, the point (0,0)—is at
the upper-left corner of the main screen.
Compare local coordinate system.

global variables See application global
variables, system global variables, and
QuickDraw global variables.

glue routine Aroutine, usually written in
assembly-language, that allows a high-level
language to call a low-level routine. Also, any

short special-purpose assembly-language routine.

graphics port A complete, individual drawing
environment with an independent coordinate
system. Each window is drawn in a graphics port.

handle A variable containing the address of a
master pointer, used to access a relocatable block.
See also pointer.

heap An area of memory in which space is
dynamically allocated and released on demand,
using the Memory Manager. See also application
heap.

heap compaction The process of moving
allocated blocks within a heap to collect the free
space into a single block.

heap fragmentation The state of a heap when
the available free space is scattered throughout
the heap in numerous unused blocks.

help balloon A rounded-rectangle window that
contains explanatory information for the user.
With tips pointing at the objects they annotate,
help balloons look like bubbles used for dialog in
comic strips. Help balloons are turned on by the
user from the Help menu; when Balloon Help
assistance is on, a help balloon appears whenever
the user moves the cursor over an area that is
associated with it.

hierarchical menu A menu to which a
submenu is attached.

high-level event An event sent from one
application to another requesting transfer of
information or performance of some action.

high-level event queue A separate queue that
the Event Manager maintains to store high-level
events transmitted to an application. The Event
Manager maintains a high-level event queue for
each open application capable of receiving
high-level events.

icon An image that represents an object, a
concept, or a message.

inactive control A control that has no meaning
or effect in the current context—for example, the
scroll bars in an empty window. The Control
Manager dims inactive controls or otherwise
visually indicates their inactive state.

inactive window A window in which the user
is not working.

237

GLOSSARY

interapplication communications (IAC)
architecture A standard and extensible
mechanism for communicating among
Macintosh applications.

item list A-resource (of type' DI TL') that
specifies the items—such as buttons and static
text—to display in an alert box or a dialog box.

item number An integer that identifies an item
in either a menu or dialog box. Menu items are
assigned item numbers starting with 1 for the
first menu item in the menu, 2 for the second
menu item in the menu, and so on, up to the
number of the last menu item in the menu.
Dialog items are assigned numbers that
correspond to the item’s position in its item list.
For example, the first item listed in a dialog item
list is item number 1.

jump table An area of memory in an
application’s A5 world that contains one entry
for every externally referenced routine in every
code segment of the application. The jump table
is the means by which the loading and unloading
of segments is implemented.

keyboard equivalent A keyboard combination
of one or more modifier keys and another key
that invokes a corresponding menu command
when pressed by the user. See also
Command-key equivalent.

key-down event An event indicating that the
user pressed a key on the keyboard.

key-up event An event indicating that the user
released a key on the keyboard.

local coordinate system The coordinate system
defined by the port rectangle of a graphics port.
When the window manager creates a window, it
places the origin of the local coordinate system at
the upper-left corner of the window’s port
rectangle. Compare global coordinate system.

localization The process of adapting an
application to a specific language, culture, and
region.

lock To temporarily prevent a relocatable block
from being moved during heap compaction.

low-level events The type of event returned by
the Event Manager to report very low level
hardware and software occurrences. Low-level

238

events report actions by the user, changes in
windows on the screen, and that the Event
Manager has no other events to report. Compare
high-level events, operating-system events.

low-memory system global variables See
system global variables.

Macintosh Operating System The part of
Macintosh system software that manages basic
low-level operations such as file reading and
writing, memory allocation and deallocation,
process execution, and interrupt handling.

Macintosh script management system The
Script Manager, script-aware parts of other text
managers, the WorldScript extensions, and one or
more script systems.

Macintosh system software A collection of
routines that you can use to simplify your
development of Macintosh applications. See also
Macintosh Toolbox and Macintosh Operating
System.

Macintosh Toolbox The part of the Macintosh
system software that allows you to implement
the standard Macintosh user interface in your
application.

Macintosh User Interface Toolbox See
Macintosh Toolbox.

major switch A change of the foreground
process. The Process Manager switches the
context of the foreground process with the
context of a background process (including the
A5 worlds and low-memory globals) and brings
the background process to the front, sending the
previous foreground process to the background.
See also context, minor switch.

manager
software.

A part of the Macintosh system

master pointer A pointer to a relocatable block,
maintained by the Memory Manager and
updated whenever the block is moved, purged,
or reallocated. All handles to a relocatable block
refer to it by double indirection through the
master pointer.

GLOSSARY

master pointer block A nonrelocatable block of
memory that contains master pointers. A master
pointer block in your application heap contains
64 master pointers, and a master pointer block in
the system heap contains 32 master pointers.

memory block An area of contiguous memory
within a heap.

Memory Manager The part of the Operating
System that dynamically allocates and releases
memory space in the heap.

menu A user interface element you can use in
your application to allow the user to view or
choose an item from a list of choices and
commands that your application provides. See
also hierarchical menu, pull-down menu,
pop-up menu, and submenu.

menu bar A white rectangle that is tall enough
to display menu titles in the height of the system
font and system font size, and with a black lower
border that is one pixel tall. The menu bar
extends across the top of the startup screen and
contains the title of each available pull-down
menu.

menu bar definition function A function that
draws the menu bar and performs most of the
drawing activities related to the display of menus
when the user moves the cursor between menus.
This function, in conjunction with the menu
definition procedure, defines the general
appearance and behavior of menus.

menu bar resource A resource (of type
' MBAR') that specifies the order and resource ID
of each menu in a menu bar.

menu definition procedure A procedure that
performs all the drawing of menu items within a
specific menu. This procedure, in conjunction
with the menu bar definition function, defines
the general appearance and behavior of menus.

menu ID A number that you assign to a menu
in your application. Each menu in your
application must have a unique menu ID.

menu item In a menu, a rectangle with text and
other characteristics identifying a command that
the user can choose.

menu list A data structure that contains
handles to the menu records of one or more
menus (although a menu list can be empty).
Compare current menu list.

Menu Manager The collection of routines that
an application can use to create, display, and
manage its menus.

menu record A data structure of type
Menul nf o that the Menu Manager uses to
maintain information about a menu.

menu resource A resource (of type ' MENU)
that specifies the menu title and the individual
characteristics of items in a menu.

menu title The word or icon in the menu bar or
in a window that shows the location of a menu.

minimum partition size The actual partition
size limit below which an application cannot run.

minor switch A change in the context of a
process. The Process Manager switches the
context of a process to give time to a background
process without bringing the background process
to the front. See also context, major switch.

modal dialog box A dialog box that puts the
user in the state or “mode” of being able to work
only inside the dialog box. A modal dialog box
resembles an alert box. The user cannot move a
modal dialog box and can dismiss it only by
clicking its buttons. See also modeless dialog box
and movable modal dialog box.

modal dialog filter function An
application-defined function that filters events
passed from the Event Manager to your
application when one of its modal dialog boxes is
being displayed.

modeless dialog box A dialog box that looks
like a document window without a size box or
scroll bars. The user can move a modeless dialog
box, make it inactive and active again, and close
it like any document window. See also modal
dialog box and movable modal dialog box.

modifier keys The Shift, Option, Command,
Control, and Caps Lock keys.

mouse-down event An event indicating that
the user pressed the mouse button.

239

GLOSSARY

mouse location The location of the cursor at the
time an event occurred.

mouse-moved event An event indicating that
the cursor is outside of a specified region.

mouse-up event An event indicating that the
user released the mouse button.

movable modal dialog box A modal dialog box
that has a title bar (with no close box) by which
the user can drag the dialog box. See also dialog
box, modal dialog box, and modeless dialog box.

multitasking environment An environment in
which several independent applications or other
processes can be open at once. See also
cooperative multitasking environment.

nonrelocatable block A block whose location
in the heap is fixed. This block can’t be moved
during heap compaction or other memory
operations.

null event An event indicating that no events
of the requested types exist in the application’s
event stream.

open application
into memory.

An application that is loaded

Operating System See Macintosh Operating
System.

operating-system event An event returned by
the Event Manager to communicate information
about changes in the operating status of
applications (suspend and resume events) and to
report that the user has moved the mouse outside
of an area specified by the application
(mouse-moved events). Compare low-level
events, high-level events.

Operating System Event Manager The
collection of low-level routines that manage the
Operating System event queue.

Operating System event queue A queue that
the Operating System Event Manager creates and
maintains. The Operating System Event Manager
detects and reports low-level hardware-related
events such as mouse clicks, keypresses, and disk
insertions and places these events in the
Operating System event queue.

240

package A collection of system software
routines that’s stored as a resource and brought
into memory only when needed. See also
manager.

part code An integer between 1 and 253 that
stands for a particular part of a control. The

Fi ndCont rol and TrackCont r ol functions
return a part code to indicate the location of the
cursor when the user presses the mouse button.

partition A contiguous block of memory
reserved for use by the Operating System or by
an application. See also application partitionand
system partition.

patch To replace a piece of ROM code with
other RAM-based code (by storing a new entry
into the trap dispatch table). Also, a resource that
contains the new code.

pixel The smallest dot you can draw on the
screen.

point The intersection of a horizontal grid line
and a vertical grid line in the coordinate plane.
Defined by the Poi nt data type.

pointer A variable containing the address of a
byte in memory. See also handle.

pop-up menu A menu that appears elsewhere
than the menu bar. The Control Manager
provides a control definition function for
applications to use when implementing pop-up
menus.

PPC Toolbox See Program-to-Program
Communications (PPC) Toolbox.

preferences file Afile, usually located in the
Preferences folder, that records a user’s
configuration settings for an application.

Preferences folder Adirectory located in the
System Folder for holding files that record users’
configuration settings for applications on a
particular Macintosh computer.

preferred partition size The partition size at
which an application can run most effectively.
The Operating System attempts to secure this
partition size upon launch of the application.

GLOSSARY

process An open application, or, in some cases,
an open desk accessory. (Only desk accessories
that are not opened in the context of another
application are considered processes.)

Process Manager The part of the Macintosh
Operating System that provides a cooperative
multitasking environment by controlling access
to shared resources and managing the
scheduling, execution, and termination of
applications.

process serial number A number assigned by
the Process Manager to identify a particular
instance of an application during a single boot of
the local machine.

Program-to-Program Communications (PPC)
Toolbox The part of the Macintosh system
software that allows applications to exchange
blocks of data with each other by reading and
writing low-level message blocks.

pull-down menu A menu that is identified by a
menu title (a word or an icon) in the menu bar.

purge To remove a relocatable block from the
heap, leaving its master pointer allocated but set
toN L.

purgeable block A relocatable block that can be
purged from the heap.

QuickDraw The part of the Macintosh Toolbox
that performs all graphics operations on the
Macintosh screen.

QuickDraw global variables A set of variables
stored in the application’s A5 world that contain
information used by QuickDraw.

QuickTime A collection of managers and other
system software components that allow your
application to control time-based data.

radio button A control that appears on screen
as a small circle. A radio button displays one of
two settings: on (indicated by a black dot inside
the circle) or off. A radio button is always a part
of a group of related radio buttons in which only
one button can be on at a time. When the user
clicks an unmarked radio button, the application
turns that button on and turns the other buttons
in its group off.

RAM See random-access memory.

RAM disk A portion of the available RAM
reserved for use as a temporary storage device. A
user can configure a RAM disk or disable it
altogether using controls in the Memory control
panel.

random-access memory (RAM) Memory
whose contents can be changed. The RAM in a
Macintosh computer contains exception vectors,
buffers used by hardware devices, the system
and application heaps, the stack, and other
information used by applications.

read-only memory (ROM) Memory whose
contents are permanent. The ROM in a
Macintosh computer contains routines for the
Toolbox and the Operating System, and the
various system traps.

reallocate To allocate new space in the heap for
a purged block and to update the block’s master
pointer to point to its new location.

rectangle The area picked by intersecting the
grid lines of any two points in the coordinate
plane.

release (1) To free an allocated area of memory;,
making it available for reuse. (2) To allow a
previously held range of pages to be movable in
physical memory.

relocatable block A block that can be moved
within the heap during compaction.

resource Any data stored according to a
defined structure in a resource fork of a file; the
data in a resource is interpreted according to its
resource type.

resource file The resource fork of a file.

resource fork The part of a file that contains the
files’ resources. A resource fork consists of a
resource map and resources.

resource ID A number that identifies a specific
resource of a given resource type.

resource map Inaresource file, data that is
read into memory when the file is opened and
that, given a resource specification, leads to the
corresponding resource data.

resource name A string that, together with the
resource type, identifies a resource in a resource
file. A resource may or may not have a name.

241

GLOSSARY

resource specification A resource type and
either a resource ID or a resource name.

resource type A sequence of four characters
that uniquely identifies a specific type of resource.

resume event An event indicating that an
application has been switched back into the
foreground and can resume interacting with the
user. See also suspend event.

return receipt A high-level event that indicates
whether the other application accepted the
high-level event sent to it by your application.

ROM See read-only memory.
script A writing system for a human language.

Script Manager The part of the Macintosh
system software that manages script systems.

script system A collection of software facilities
that provides for the representation of a specific
writing system. It consists of keyboard resources,
a set of international resources, one or more
fonts, and possibly a script system extension.

segment One of several logical divisions of the
code of an application. Not all ssgments need to
be in memory at the same time.

Segment Manager The part of the Macintosh
Operating System that loads and unloads your
application’s code segments into and out of
memory.

signature A resource whose type is defined by
a four-character sequence that uniquely identifies
an application to the Finder. A signature is
located in an application’s resource fork.

size box A box in the lower-right corner of
windows that can be resized. Dragging the size
box resizes the window.

size region The area occupied by a window’s
size box. See size box.

size resource Aresource (of type' Sl ZE') that
specifies the operating characteristics, minimum
partition size, and preferred partition size of an
application.

stack An area of memory in the application
partition that is used to store temporary variables.

242

stack frame The area of the stack used by a
routine for its parameters, return address, local
variables, and temporary storage.

Standard File Package The part of system
software that allows you to present the standard
user interface when afile is to be saved or
opened.

stationery pad A document that a user creates
to serve as a template for other documents. The
Finder tags a document as a stationery pad by
setting the i sSt at i onery bit in the Finder flags
field of the file’s file information record. An
application that is asked to open a stationery pad
should copy the template’s contents into a new
document and open the document in an untitled
window.

submenu A menu that is attached to another

menu.

suspend event An event indicating that the
execution of your application is about to be
suspended as the result of either a major or
minor switch. The application is suspended at
the application’s next call to Wai t Next Event or
Event Avai | . See also resume event.

switch See major switch and minor switch.

system extension Afileof type' INI T' that
contains executable code. System extensions are
loaded into memory at system startup time.

System file Afile, located in the System Folder,
that contains the basic system software plus some
system resources, such as sound and keyboard
resources.The System file behaves like a folder in
this regard: although it looks like a suitcase icon,
double-clicking it opens a window that reveals
movable resource files (such as sounds, keyboard
layouts, and script system resource collections)
stored in the System file.

System Folder A directory containing the
software that Macintosh computers use to start
up. The System Folder includes a set of folders
for storing related files, such as preferences files
that an application might need when starting up.

system global variables A collection of global
variables stored in the system partition.

GLOSSARY

system heap An area of memory in the system
partition reserved for use by the Operating
System.

system partition A partition of memory
reserved for use by the Operating System.

system resource
resource file.

A resource in the system

terminate To end the execution of a process. A
process can terminate by crashing, by quitting, or
by being killed by some other process.

Text Services Manager The part of the system
software that manages the interactions between
applications that request text services and text
service components that provide them.

Time Manager The part of the Macintosh
Operating System that lets you schedule the
execution of a routine after a certain time has
elapsed.

title bar The bar at the top of a window that
displays the window name, contains the close
and zoom boxes, and indicates whether the
window is active.

Toolbox Event Manager See Event Manager.

transfer mode A specification of which Boolean
operation QuickDraw should perform when
drawing or when transferring a bit image from
one bitmap to another.

unlock To allow a relocatable block to be
moved during heap compaction.

unpurgeable block A relocatable block that
can’t be purged from the heap.

update event An event indicating that the
contents of a window need updating.

update region Aregion maintained by the
Window Manager that includes the parts of a
window’s content region that need updating. The
Event Manager generates update events as
necessary, based on the contents of the update
region, telling your application to update a
window.

user items Items in a dialog box that are
managed largely by an application, not by the
Dialog Manager. These items are designated by
the constant user | t em

user state The size and location that the user
has established for a window.

Vertical Retrace Manager The part of the
Operating System that schedules and executes
tasks during a vertical retrace interrupt.

visible region The part of a window’s graphics
port that’s actually visible on the screen—that is,
the part that’s not covered by other windows.

volume A portion of a storage device that is
formatted to contain files.

window An area on the screen that displays
information, including user documents as well as
communications such as alert boxes and dialog
boxes. The user can open or close a window;
move it around on the desktop; and sometimes
change its size, scroll through it, and edit its
contents.

window definition function A function that
defines the general appearance and behavior of a
window. The Window Manager calls the window
definition function to draw the window’s frame,
determine what region of the window the cursor
is in, draw the window’s size box, draw the
window’s zoom box, move and resize the
window, and calculate the window’s structure
and content regions.

window definition ID An integer that specifies
the resource ID of a window definition function
in the upper 12 bits and an optional variation
code in the lower 4 bits. When creating a new
window, your application supplies a window
definition ID either as a field in the ' W ND'
resource or as a parameter to the NewW ndowor
NewCW ndow function.

window list A list maintained by the Window
Manager of all windows on the desktop. The
frontmost windowv is first in the window list, and
the remaining windows appear in the order in
which they are layered on the desktop.

Window Manager The part of the Macintosh
Toolbox that provides routines for creating and
manipulating windows.

243

GLOSSARY

Window Manager port A graphics port that
represents the desktop area on the main
monitor—that is, a rounded-corner rectangle that
occupies all of the main monitor except for the
area occupied by the title bar.

window record A data structure of type

W ndowRecor d (or CW ndowRecor d) in which
the Window Manager stores a window’s
characteristics, including the window’s graphics
port, title, visibility status, and control list.

window type A collection of characteristics—
such as the shape of the window’s frame and the
features of its title bar—that describe a window.

zoom box Abox in the right side of a window’s
title bar that the user can click to alternate
between two different window sizes (the user
state and the standard state).

244

Index

Symbols

@operator 46

A

A5 register 38
A5 world
and context switching 167
defined 37
size of 170
activate events
handling 125-127
active application 166
AddResour ce procedure 66
alert boxes 134
Alias Manager 12
APDA xv, 189
AppendResMenu procedure 156
Apple Event Interprocess Messaging Protocol 16
Apple Event Manager 15, 16-17
Apple events 16-17
Core suite 17
functional-area suites 17
Required suite 17
sent by the Finder 17
Apple menu 159
application global variables 37
application heap 34-36, 169
defined 34
application parameters 38
application partitions 29, 32-38
applications
initializing 74-75
quitting 175-176
Appl Li m t global variable 31, 33
Appl Zone global variable 31

B

bitmaps 91
blocks, memory

defined 35

purging and reallocating 43-44
buttons

drawing an outline around 146
Byt e data type 44

coercing to Char data type 47

C

background process 166
Balloon Help 10

Begi nUpdat e procedure 125
bit images 91-92, 99-101

Bi t Map data type 91

Cancel button

in modal dialog boxes 146
Char data type

coercing to Byt e data type 47
check boxes

handling user clicks on 142-144
circles 89, 94
Clipboard 170
close box 111

handling clicks in 121

handling mouse-down events in 128-129
Close command (File menu) 161, 162
Cl oseRgn procedure 96
Cl oseW ndowprocedure 129
Command key 160
Communications Resource Manager 19
Communications Toolbox 18-19
compaction. See heap compaction
compatibility

and the Toolbox 7

guidelines 187-188

trap availability 178-181
Connection Manager 19
content region

handling mouse-down events in 121-123
context of a process

switching 167
Control Manager 10
controls

drawing an outline around 146

.See also check boxes, radio buttons

setting values of 142-144
cooperative multitasking environment 165-167
coordinate plane 86
CopyBi t s procedure 99, 101
Cur r ent A5 global variable 31, 38

245

INDEX

current process 166 E
Cur ResFi | e function 52
cursors, initializing 9 Edition Manager 14, 15-16

Edit menu 159, 160
Enabl eMenul t emprocedure 162
EndUpdat e procedure 125

D Enter key
in modal dialog boxes 146
dangling pointers 42 Er aseRect procedure 104
data, exchanging with other applications 15 errors
data types, general purpose 39-40, 44-46 and Resource Manager routines 66
dBoxPr oc window type 167 handling 176-178
default button 146 Escape key
Del ay procedure 80 in modal dialog boxes 146
desk accessories 114, 121 Event Avai | function 167
closing 128 event-driven programming 71
desktop 166 event loop 75, 77
Det achResour ce procedure 66 Event Manager 10, 15, 71-81
Device Manager 11, 12 event priority 75
dialog boxes 133-148 event record 76
closing 128 Event Recor d data type 76
defined 133 events 71
event handling in 78 activate 125-127
introduced 109 high-level 15, 72
items in. See item lists key-down 148
Dialog Manager 10, 110, 133-148 key-up 79
dialog resources 57, 135 low-level 72
Di al ogSel ect function 142 mouse-up 79-81
DI BadMbunt function 77 null 72
Di f f Rgn procedure 97 operating-system 72
Di sabl eMenul t emprocedure 162 priority 75
Disk Initialization Manager 12 receiving 75-79
disk-inserted events types of 72,76
handling 76-77 Exi t ToShel | procedure 178
in modal dialog boxes 147 extensions. See system extensions

Di sposeHandl e procedure 129, 156
Di sposePt r procedure 129-130
Di sposeW ndow procedure 130

"DI TL' resource type 135 F
dividers 152, 157
' DLOG resource type 135 figures, syllogistic 23
document records 115-118 File Manager 11, 12
document windows 110, 114 File menu xii, 160
closing 128-129 Close command 128, 161, 162
double indirection 40 New command 116
drag region 121 Quit command 175
Dr agW ndow procedure 121 files
drawing 85-106 specifying in a document record 116
Dr awenuBar procedure 156, 162 File Transfer Manager 19
Dr awSt r i ng procedure 5, 104 Fi | | Rect procedure 89
Fi | | Rgn procedure 98
Finder 6, 10

sending Apple events 17
Finder Interface 6, 10
Fi ndFol der function 63

246

INDEX

checking for availability 178-179
Fi ndW ndow function 119
Font Manager 9, 13, 102
foreground process 166
FraneOval procedure 96
FraneRect procedure 89
free blocks 38
Fr ont W ndowfunction 128, 162
FSpCr eat e function 21

G

Gest al t function 20, 179
Gestalt Manager 179
Cet 1Resour ce function 54

Get Di al ogl t emprocedure 47, 136, 140, 148

Get I ndSt ri ng procedure 52
Get MenuHandl e function 162
Get Menul t eniText procedure 159

Get NewDi al og function 60, 137, 137-138, 145

Cet NewMBar function 154-156
Get NewW ndow function 60, 130
Get Pat t er n function 60
Get Port procedure 94
CGet Resour ce function 54, 60
CGet WRef Con function 115
G obal ToLocal procedure 122
glue routines 20, 181
G af Port data type 92
G af Pt r datatype 93, 113
graphics ports 92-94
and window records 113
setting and restoring 93-94

H

Handl e data type 40, 44

handles 40

heap compaction 36

heap fragmentation 35

heap purging 43-44

heap. See application heap; system heap
help balloons 185

Help Manager 10, 185

H deW ndow procedure 110
high-level events 72
HiliteControl procedure 127,148
Hi | it eMenu procedure 159

HLock procedure 42, 47
HOpenResFi | e function 54, 63

HUnl ock procedure 42

' | CON' resource type 99
icons 91, 99
Image Compression Manager 17
I ni t Cur sor procedure 9, 75
I ni t Font s procedure 9
I ni t Graf procedure 9, 181
I ni t W ndows procedure 9
I nsert Menu procedure 154
Inside Macintosh xii—xiv
code conventions 24-25
format conventions xiii—xiv
integers
coercing to long integers 47
coercing to pointers 47
interapplication communication 14-17
I nval Rect procedure 123
I nval Rgn procedure 123
I sDi al ogEvent function 142
item lists 135
item numbers 135
items in alerts and dialog boxes 136-137

J

jump table 38

K

keyboard equivalents 152, 157
handling 160-161
reserved 160

key-down events 148

key-up events 79

L

lines 89
List Manager 11
localization 52
localization guidelines 188
locking relocatable blocks 42-43
long integers
coercing to integers 47
coercing to pointers 47
low-level events 72

INDEX

M

Macintosh Operating System 11-12
Macintosh script management system 13
Macintosh system software 3
Macintosh Toolbox 7-11
major switches 167
managers 6.See also system software
master pointer blocks 40
master pointers 40
MaxAppl Zone procedure
and Appl Li mi t global variable 33
' MBAR resource type 154
' MDEF' resource type 52
MenEr r or function 177
memory
allocating 35, 38, 40, 42
locking 42-43
organization of 29-38
purging 43-44
Memory Manager 11
and application heap 35-36
data types 39-40
menu bar
creating 74
specifying 154
menu commands
keyboard equivalents 119, 152, 157
menu item numbers 156
menu items 151
disabling 162
enabling 162
MenuKey function 160, 161
Menu Manager 10, 151-162
introduced 6
menu numbers 156
" MENU resource type 152-154
menus 151-162
adjusting 161-162
creating 74, 152-156
defined 151
disabling 162
dividers in 152, 157
enabling 162
handling selections 156-159
required 152
MenuSel ect function 156, 161
menu titles 151
minimum partition size 168
minor switches 167
modal dialog boxes 133-134, 144-148
creating 145-146
modal dialog filter functions 146-148
Modal Di al og procedure 144, 146, 167
modeless dialog boxes 134-135, 137-144

248

creating 137-138

handling events in 141-144
moods, syllogistic 23
Mor eMast er s procedure 41
mouse-down events

in menu bar 156

in the menu bar 120

in windows 119-123
mouse-up events 79-81
movable modal dialog boxes 144
MoveTo procedure 5
MoveW ndow procedure 121
movies 17
Movie Toolbox 17
MPW 57
MultiFinder 165
multitasking environment 165-167

N

NewHand| eCl ear function 21, 118
NewHand| e function 20, 42, 43
NewPt r function 40, 118
NewRgn function 96
NewW ndowfunction 4-5, 42, 112
nonrelocatable blocks

advantages of 42

data type for 40

defined 38
null events 72, 167

handling 173-174

O

OpenDeskAcc function 159
OpenRgn procedure 96
operating environment

checking features of 20, 178-181
operating-system events 72
OSEr r data type 176
ovals 89

P

packages 8, 20

Pai nt Rect procedure 89

part codes 119

partitions 29.See also application partitions; system
partition

INDEX

sizes of 168
patches 20
patterns 91
PBHCr eat e function 21
pixels 88
Poi nt data type 87
pointers 39
coercing to integers 47
coercing to long integers 47
to procedures and functions 46
points 86-87
PPC Toolbox 15
preferences files
creating 64-66
managing 60-67
names of 61
reading 61-64, 74
updating 66-67
Preferences folder 53
preferred partition size 168
processes
background 166
context of 167
current 166
foreground 166
switching between 167
processing options
specifying 168-170
Process Manager 11
Pr ocPtr datatype 46

Program-to-Program Communications Toolbox 15

Pt | nRect function 81
Pt r datatype 39, 44
pull-down menus 151, 152
See also menus
purging relocatable blocks 43-44

Q

QuickDraw 9-??, 9, ??-9, 10, 85-106
capabilities 9, 85
drawing text 101-105
initializing 9
QuickDraw global variables 38
QuickTime 17-18

R

radio buttons
handling user clicks on 142-144
RAM 19

random-access memory. See RAM
read-only memory. See ROM
Real | ocat eHandl| e procedure 43
reallocating relocatable blocks 43-44
rectangles 87-89, 89
Rect datatype 88
Regi on data type 90
regions 89-91

defining 95-98

drawing in 98

empty 96
relocatable blocks

data type for 39

defined 38

disadvantages of 42

locking 42-43

properties of 42-43

purging 43-44

reallocating 43-44

unlocking 42-43
ResEdit resource editor 57-58, 152-154
ResErr or function 66, 176-177
resource files

creating 64-66

current 64

defined 51

determining reference number of 52

managing 60-67

reading 61-64

updating 66-67
Resource Manager 10, 51-68

checking for errors 66
resource maps 56
resource paths 52-54
resources 51-68

compiled 58

defined 51

standard types 55

structure of 56-58

specifying using ResEdit 57-58
specifying using Rez 57

types 55-56

typical locations of 53

using custom 60-67

using standard 59-60

using to facilitate localization 52

using to store static data 51
resource specifications 55
resource types

"DITL" 60, 135

'DLOG 60, 135

"I CON' 99

' MBAR 154

' MDEF' 52

" MENU 152-154

249

INDEX

"SI ZE' 165

' STR#' 52,102

"WND 60
resource types. See resources, types
ResType data type 55
resume events 126

handling 170-173
Return key

in modal dialog boxes 146, 148
Rez resource description language 57, 152
ROM 19

S

Scrap Manager 10
script management system. See Macintosh script
management system
Script Manager 13
script systems 13
SCSI Manager 12
Sect Rgn procedure 97
Sel ect W ndow procedure 126, 138
Set Ct | Val ue procedure 144
Set Di al ogl t emprocedure 139-140
Set MenuBar procedure 156
Set Port procedure 5,94, 113, 138, 146
Set Rect procedure 4, 89, 104
Set ResFi | e procedure 54
Set WRef Con procedure 115, 118
ShowwW ndow procedure 118
Shutdown Manager 12
Si gnedByt e data type 39, 44
size resources 168
' SI ZE' resource type
sample Rez input 169
setting flags of 168
specifying partition size 165
Sound Input Manager 11
Sound Manager 11
stack 33
stack frame 34
stack sniffer 33
Standard File Package 10
Sti | | Down function 80
' STR#' resource type 52,102
St r 15 data type 45
St r 255 data type 45
St r 27 data type 45
St r 31 data type 45
St r 63 data type 45
St ri ngHandl e data type 45
StringPtr datatype 45
strings

250

drawing 5

inC 46

in Pascal 45
suspend events 126

handling 170-173
switching

context 167

major 167

minor 167
Syst enCCl i ck procedure 121
Syst enEdi t function 159
system extensions 20
System file 20
system global variables 31, 188
system heap 31-??, 31, ??-31
system partition 29-31

.See also system heap; system global variables
system resources 52
system software 6-19

T

Terminal Manager 19
text
centering in a window 5, 113
drawing 5, 101-105
setting font of 104
setting size of 104
TextEdit 10, 102
Text Font procedure 104
text service components 14
Text Services Manager 14
Text Si ze procedure 104
Text Utilities 13
Ti ckCount function 188
Ti cks global variable 31, 188
Time Manager 12
title bar 111
Tr ackGoAway function 79, 128
tracking the mouse 79-81
tracks 17
transfer modes 101
trap dispatch table 181
trap numbers 181
type casting 47
type coercion 47

U

unlocking relocatable blocks 42-43
update events

INDEX

and activate events 126

handling 123-125

in modal dialog boxes 147
user-centered design 71, 79
UseResFi | e procedure 64
user items 137

setting up 139-140

\Y

Venn Diagrammer 21-24
Vertical Retrace Manager 12
Virtual Memory Manager 12

W, XY, Z

Wai t Next Event function 75, 78, 123, 167, 173, 181

and multitasking 170
Window Manager 6, 9, 10, 109-130
W ndowPeek data type 113
window pointer 5
W ndowPt r data type 113
window record 5
W ndowRecor d data type 112
window records 112

reference constant in 115, 116
windows 109-130

activating 125-127

active 125

and dialog boxes 109

and graphics ports 113

closing 128-130, 176

creating 4

creating a new window 115-119

deactivating 145

desk accessory 114

dialog boxes 114

document 114

dragging 121

drawing content region 124-125

eventsin 119-127

introduced 109

mouse-down events in 119-123

originin 6

parts of 110-112

positioning 118

setting title 118

types 109, 113-115

updating 118, 123-125
WorldScript 13

251

T HE A P PLE

P UBLI1ISHI

N G SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from text
files on an AGFA ProSet 9800
imagesetter. Line art was created using
Adobe™ Illustrator. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as

program listings, are set in Apple Courier.

The Inside Macintosh: Overview Team:

WRITER
Tim Monroe

DEVELOPMENTAL EDITOR
Antonio Padial

ILLUSTRATOR
Peggy Kunz

PRODUCTION EDITORS
Teresa Lujan, Josephine Manuele

PROJECT LEADER
Patricia Eastman

COVER DESIGNER
Barbara Smyth

The Entire Inside Macintosh Team
(1992 Snapshot):

PROJECT LEADER
Patricia Eastman

LEAD WRITERS
Dave Bice, Paul Black, Rob Dearborn,
Sharon Everson, Tim Monroe

WRITERS

Dave Bice, Paul Black, Patria Brown,
Julie Callahan, Sean Cotter,

Rob Dearborn, Dee Eduardo,

Doug Engfer, Sharon Everson,

Ed Fernandez, Tony Francis,

Gary Hillerson, Marq Laube, Sue Luttner,
Judy Melanson, Tim Monroe,

Diane Patterson, Rich Pettijohn,

Laine Rapin

TECHNICAL CONSULTANT
Ray Chiang

LEAD EDITOR

Laurel Rezeau

DEVELOPMENTAL EDITORS
Sue Factor, Sanborn Hodgkins,
Antonio Padial, Anne Szabla,
George Truett

EDITORIAL CONSULTANT
Lorraine Aochi

ILLUSTRATORS

Ruth Anderson, Deborah Dennis,
Sandee Karr, Peggy Kunz, Bruce Lee,
Barbara Smyth

LEAD PRODUCTION EDITOR
Josephine Manuele

PRODUCTION EDITORS
Gerri Gray, Teresa Lujan, Rex Wolf

COVER DESIGNER
Barbara Smyth

PUBLISHING LIAISON
Martha Steffen

	Overview
	Contents
	Figures, Tables and Listings
	Preface
	About This Book
	About Inside Macintosh
	The New Inside Macintosh
	Conventions Used in This Book
	Special Fonts
	Types of Notes

	Development Environment
	For More Information

	Introduction
	Contents
	Getting Started
	The Macintosh System Software
	The Macintosh Toolbox
	The Macintosh Operating System
	Additional System Software Services
	Text Handling
	Interapplication Communication
	QuickTime
	Communications Toolbox

	System Software Routines

	The Sample Application
	Conventions for Sample Code

	Memory
	Contents
	About Memory
	The System Heap
	The System Global Variables

	Application Partitions
	The Application Stack
	The Application Heap
	The Application Global Variables and A5 World

	Memory Blocks
	Nonrelocatable Blocks
	Relocatable Blocks
	Locking and Unlocking Relocatable Blocks
	Purging and Reallocating Relocatable Blocks

	Data Types
	Pointers and Handles
	Strings
	Procedure Pointers
	Type Coercion

	Resources
	Contents
	About Resources
	Resource Paths
	Resource Types
	Resource Structure

	Using Standard Resources
	Using Custom Resources

	Events
	Contents
	About Events
	Initializing an Application
	Receiving Events
	Handling Events Outside the Main Event Loop

	Drawing
	Contents
	About QuickDraw
	Points
	Rectangles
	Regions
	Bit Images
	Ports and Windows

	Drawing Shapes
	Drawing Bit Images
	Drawing Text

	Windows
	Contents
	About Windows
	Window Parts
	Window Records
	Window Types

	Creating Windows
	Handling Window Events
	Mouse Events
	Update Events
	Activate Events

	Closing Windows

	Dialogs
	Contents
	About Dialog Boxes
	Using Modeless Dialog Boxes
	Creating a Modeless Dialog Box
	Setting Up Application-Defined Items
	Handling User Actions in a Modeless Dialog Box

	Using Modal Dialog Boxes
	Displaying a Modal Dialog Box
	Defining a Modal Dialog Filter Function

	Menus
	Contents
	About Menus
	Creating Menus
	Creating a Menu Resource
	Creating a Menu Bar Resource
	Setting Up the Menu Bar and Menus

	Handling Menu Choices
	Handling Keyboard Equivalents
	Adjusting Menus

	Processes
	Contents
	About Processes
	Specifying Processing Options
	Handling Suspend and Resume Events
	Handling Null Events
	Quitting an Application
	Handling Errors
	Checking the Operating Environment

	Going Further
	Implementing Further Features
	Maintaining Compatibility
	Making Your Application Localizable
	Using Developer Services
	Technical Publications
	Training
	Technical Support

	Appendixes
	Appendix A, Constants, Types, and Variables
	Appendix B, Utility Routines
	Appendix C, Dialog Code
	Appendix D, Resource Code
	Appendix E, User Interface Code
	Glossary
	Index
	Colophon

