INSIDE MACINTOSH

Operating System Utilities

A
vy
Addison-Wesley Publishing Company
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid SanJuan
Paris Seoul Milan Mexico City Taipei

Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, AppleTalk, the Apple logo,
APDA, A/UX, LaserWriter, MPW,
MultiFinder, Macintosh, Powerbook,
and SANE are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

Apple Desktop Bus, Balloon Help,
Finder, Macintosh Quadra,

Powerbook Duo, QuickDraw, ResEdit,
System 7, and TrueType are trademarks
of Apple Computer, Inc.

NuBus is a trademark of Texas
Instruments.

Adobe lllustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

CompusServe is a registered service
mark of CompusServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Optrotech is a trademark of Orbotech
Corporation.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.
Simultaneously published in the United

States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

ISBN 0-201-62270-X
1234567 89-CRW-9897969594
First Printing, July 1994

&
The paper used in this book meets the
EPA standards for recycled fiber.

Library of Congress Cataloging-in-Publication Data

Inside Macintosh. Operating System Ultilities / [Apple Computer, Inc.]
p. cm.

Includes index.

ISBN 0-201-62270-X

1. Macintosh (Computer) 2. Operating systems (Computers)
3. Utilities (Computer programs) |. Apple Computer, Inc.
QA76.8.M315617 1994
005.4'469—dc20 94-18100
CIP

Contents

Figures, Tables, and Listings xi

Preface About This Book xv

Format of a Typical Chapter XVi
Conventions Used in This Book Xvi
Special Fonts XVi
Types of Notes Xvii
Assembly-Language Information Xvii
The Development Environment Xviii

Chapter 1 Gestalt Manager 11

About the Gestalt Manager 1-3
Using the Gestalt Manager 1-5
Determining Whether the Gestalt Manager Is Available 1-5
Getting Information About the Operating Environment 1-6
Interpreting Gestalt Responses 1-9
Adding a New Selector Code 1-10
Modifying a Selector Function 1-13
Getting Environmental Information Without the Gestalt Manager 1-14
Gestalt Manager Reference 1-14
Constants 1-14
Data Structures 1-28
The System Environment Record 1-28
Gestalt Manager Routines 1-30
Getting Information About the Operating Environment 1-30
Adding a Selector Code 1-33
Modifying a Selector Function 1-35
Application-Defined Routines 1-36
The Selector Function 1-36
Summary of the Gestalt Manager 1-38
Pascal Summary 1-38
Constants 1-38
Data Types 1-50
Gestalt Manager Routines 1-50
Application-Defined Routines 1-51
C Summary 1-51
Constants 1-51
Data Types 1-66
Gestalt Manager Routines 1-67

Application-Defined Routines 1-67
Assembly-Language Summary 1-68
Data Structures 1-68
Result Codes 1-68

Chapter 2 System Error Handler 2-1

About the System Error Handler 2-3
System Errors 2-6
Resume Procedures 2-11
System Error Handler Reference 2-13
System Error Handler Routines 2-13
Application-Defined Routines 2-15
Resources 2-15
The System Error Alert Table Resource 2-16
Summary of the System Error Handler 2-22
Pascal Summary 2-22
System Error Handler Routines 2-22
Application-Defined Routines 2-22
C Summary 2-22
System Error Handler Routines 2-22
Application-Defined Routines 2-22
Assembly-Language Summary 2-22
Global Variables 2-22

Chapter 3 Mathematical and Logical Utilities 31

About the Mathematical and Logical Utilities 3-3
Bits, Bytes, Words, and Long Words 3-4
Bit Manipulation and Logical Operations 3-7
Reversed Bit-Numbering 3-7
Data Compression 3-8
Pseudorandom Number Generation 3-9
Fixed-Point Data Types 3-11
Angle-Slope Conversion 3-12
Using the Mathematical and Logical Utilities 3-14
Performing Low-Level Manipulation of Memory 3-14
Testing and Manipulating Bits 3-14
Performing Logical Operations on Long Words 3-16
Extracting a Word From a Long Word 3-18
Hardcoding Byte Values 3-19
Compressing Data 3-20
Obtaining Pseudorandom Numbers 3-22
Using Fixed-Point Data Types 3-24

Chapter 4

Mathematical and Logical Utilities Reference 3-27

Data Structures 3-27
64-Bit Integer Record 3-27

Routines 3-27
Testing and Setting Bits 3-28
Performing Logical Operations 3-30
Getting and Setting Memory Values 3-32
Compressing and Decompressing Data 3-34
Obtaining a Pseudorandom Number 3-36
Converting Between Angle and Slope Values 3-37
Multiplying and Dividing Fixed-Point Numbers 3-38
Performing Calculations on Fixed-Point Numbers 3-41
Converting Among 32-Bit Numeric Types 3-43
Converting Between Fixed-Point and Floating-Point Values
Converting Between Fixed-Point and Integral Values 3-46
Multiplying 32-bit values 3-47

Summary of the Mathematical and Logical Utilities 3-48

Pascal Summary 3-48
Data Types 3-48
Routines 3-48

C Summary 3-50
Data Types 3-50
Routines 3-50

Global Variables 3-52

Date, Time, and Measurement Utilities 4-1

About the Date, Time, and Measurement Utilities 4-3
Date and Time 4-4
Geographic Location and Time Zone 4-7
System of Measurement 4-8
Time Measurement 4-9
Using the Date, Time, and Measurement Utilities 4-9
Getting the Current Date and Time 4-9
Setting the Current Date and Time 4-10
Converting Date-Time Formats 4-12
Calculating Dates 4-14
Working With Different Calendar Systems 4-16
Handling Geographic Location and Time-Zone Data 4-18
Determining the Measurement System 4-21
Determining the Number of Elapsed Microseconds 4-22
Date, Time, and Measurement Utilities Reference 4-23
Data Structures 4-23
The Date-Time Record 4-23
Long Date-Time Value and Long Date-Time Conversion Record
The Long Date-Time Record 4-26

4-25

The Geographic Location Record 4-29
The Toggle Parameter Block 4-30
The Unsigned Wide Record 4-32

Routines 4-32
Getting the Current Date and Time 4-33
Setting the Current Date and Time 4-36
Converting Between Date-Time Formats 4-38
Converting Between Long Date-Time Format 4-40
Modifying and Verifying Long Date-Time Records 4-42
Reading and Writing Location Data 4-46
Determining the Measurement System 4-48
Measuring Time 4-49

Summary of the Date, Time, and Measurement Utilities 4-50

Pascal Summary 4-50
Constants 4-50
Data Types 4-51
Routines 4-53

C Summary 4-54
Constants 4-54
Data Types 4-55
Routines 4-57

Assembly-Language Summary 4-59
Data Structures 4-59
Global Variables 4-60

Result Codes 4-61

Chapter 5 Control Panel Extensions 5-1

About Control Panel Extensions 5-3
Writing a Control Panel Extension 5-6
Creating a Component Resource for a Control Panel Extension

Dispatching to Control Panel Extension-Defined Routines 5-9

Installing and Removing Panel Items 5-13
Handling Panel Items 5-16
Handling Events in a Panel 5-17
Handling Title Requests 5-19
Managing Control Panel Settings 5-19
Control Panel Extensions Reference 5-20
Control Panel Extension-Defined Routines 5-20
Managing Panel Components 5-20
Handling Panel Events 5-25
Managing Panel Settings 5-28
Summary of Control Panel Extensions 5-31
Pascal Summary 5-31
Constants 5-31
Control Panel Extension-Defined Routines 5-31

Vi

C Summary 5-32
Constants 5-32
Control Panel Extension-Defined Routines 5-33

Chapter 6 Queue Utilities 61

About Queues 6-3
The Queue Header 6-5
The Queue Element 6-6
Using the Queue Utilities 6-8
Searching for an Element in an Operating-System Queue 6-9
Adding Elements to an Operating-System Queue 6-10
Removing Elements From an Operating-System Queue 6-11
Queue Utilities Reference 6-13
Data Structures 6-13
Queue Headers 6-13
Queue Elements 6-13
Routines 6-15
Summary of the Queue Utilities 6-18
Pascal Summary 6-18
Constants 6-18
Data Types 6-18
Routines 6-19
C Summary 6-19
Constants 6-19
Data Types 6-20
Routines 6-20
Assembly-Language Summary 6-21
Result Codes 6-21

Chapter 7 Parameter RAM Utilities 71

About Parameter RAM 7-3
Using the Parameter RAM Utilities 7-7
Parameter RAM Utilities Reference 7-8
Data Structures 7-9
The System Parameters Record 7-9
Routines 7-10
Summary of the Parameter RAM Ultilities 7-14
Pascal Summary 7-14
Data Types 7-14
Routines 7-14
C Summary 7-15
Data Types 7-15

Vil

Routines 7-15
Assembly-Language Summary 7-16
Data Structures 7-16
Global Variables 7-16
Result Codes 7-16

Chapter 8 Trap Manager &1

About the Trap Manager 8-3
Trap Dispatch Tables 8-5
Process for Accessing System Software Routines 8-5
Patches and System Software Routines 8-6
Daisy Chain of Patches 8-8
Head Patch (Normal Patch) 8-8
Tail Patch 8-8
Come-From Patch (Used Only by Apple) 8-8
Patch for One Application 8-9
Patch for All Applications 8-9
A-Line Instructions 8-10
A-Line Instructions for Operating System Routines 8-11
Calling Conventions for Register-Based Routines 8-12
Parameter-Passing Conventions for Operating System Routines
Function Results 8-13
Flag Bits 8-14
A-Line Instructions for Toolbox Routines 8-14
Calling Conventions for Stack-Based Routines 8-16
Parameter-Passing Conventions for Toolbox Routines 8-18
Function Results 8-19
The Auto-Pop Bit 8-20
About Trap Macros 8-20
About Routine Selectors 8-21
Using the Trap Manager 8-21
Determining If a System Software Routine is Available 8-21
Patching a System Software Routine 8-23
Trap Manager Reference 8-25
Routines 8-25
Accessing Addresses From the Trap Dispatch Tables 8-25
Installing Patch Addresses Into the Trap Dispatch Tables 8-28
Detecting Unimplemented System Software Routines 8-32
Manipulating One Trap Dispatch Table (Obsolete Routines) 8-32
Summary of the Trap Manager 8-34
Pascal Summary 8-34
Constants 8-34
Data Types 8-34
Routines 8-34
C Summary 8-35

viii

8-13

Constants 8-35

Data Types 8-35

Routines 8-36
Assembly-Language Summary 8-36

Constants 8-36

Trap Macros 8-37

Chapter 9 Start Manager 91

System Initialization and Startup 9-3
System Initialization 9-3
System Startup 9-4
Boot Blocks 9-6
Global Timing Variables 9-9
About the Start Manager 9-9
Using the Start Manager 9-9
Writing a System Extension 9-10
Profile of a System Extension 9-10
Defining the User Interface for a System Extension 9-14
Creating a System Extension’s Resources 9-15
Creating Icons for a System Extension 9-16
Creating a System Heap Zone Resource for a System Extension
Building a System Extension 9-17
Start Manager Reference 9-18
Data Structures 9-18
The Default Startup Device Parameter Block 9-18
The Default Video Device Parameter Block 9-19
The Default Operating System Parameter Block 9-19
Routines 9-20
Identifying and Setting the Default Startup Device 9-20
Identifying and Setting the Default Video Device 9-23
Identifying and Setting the Default Operating System 9-25
Getting and Setting the Timeout Interval 9-27
Summary of the Start Manager 9-29
Pascal Summary 9-29
Data Types 9-29
Routines 9-30
C Summary 9-30
Data Types 9-30
Routines 9-31
Assembly-Language Summary 9-32
Data Structures 9-32
Trap Macros 9-33
Global Variables 9-33

9-16

Chapter 10 Package Manager 101

About the Package Manager 10-3
Using the Package Manager 10-6
Package Manager Reference 10-6
Routines 10-6
Initialization of Packages 10-7
Summary of the Package Manager 10-8
Pascal Summary 10-8
Constants 10-8
Routines 10-8
C Summary 10-9
Constants 10-9
Routines 10-9
Assembly-Language Summary 10-10
Trap Macros 10-10

Glossary GL-1

Index IN-1

Chapter 1

Chapter 2

Chapter 3

Figures, Tables, and Listings

Gestalt Manager 1-1

Listing 1-1
Listing 1-2
Listing 1-3
Table 1-1

Listing 1-4
Listing 1-5

Determining whether Gest al t is available 1-5
Calling Gest al t and checking its result code 1-6
Interpreting a Gest al t attributes response 1-10
Cest al t selector suffixes and their meanings 1-10
Defining a simple Gest al t selector function 1-11
Installing a new Gest al t selector 1-12

System Error Handler — 2-1

Figure 2-1
Figure 2-2

Figure 2-3
Table 2-1
Figure 2-4
Listing 2-1
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11

The system startup alert box 2-4

The system startup alert box when extensions have been
disabled 2-4

The system error alert box 2-5

System error IDs 2-7

Handling of a nonfatal system error in System 7 2-12
A simple resume procedure 2-12

The structure of a system error alert table 2-16
The structure of an alert definition 2-17

The structure of a text definition 2-18

The structure of an icon definition 2-18

The structure of a procedure definition 2-19
The structure of a button definition 2-20

The structure of a button-title definition 2-21

Mathematical and Logical Utilities 3-1

Figure 3-1
Table 3-1

Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7

Listing 3-1
Figure 3-8
Listing 3-2

Figure 3-9

Figure 3-10
Listing 3-3
Listing 3-4

A byte set to 109 ($6D) 3-4

Converting hexadecimal digits to binary values 3-5
A word set to $3AD4 3-6

A long word set to $C24DAF2F 3-6

Bit-numbering schemes 3-8

The Fi xed data type 3-11

The Fr act data type 3-12

Some slope and line equivalencies using the conventions of the
angle-slope conversion routines 3-13

Testing bits 3-14
A sample word (in MC680x0 notation) 3-15

Determining whether a handle is purgeable using the Bi t Tst
function 3-15

The Bi t And, Bi t Or, and Bi t Xor functions 3-16
The Bi t Not and Bi t Shi ft functions 3-17
Packing data to a resource 3-20

Decompressing data from a packed resource 3-21

Xi

Chapter 4

Chapter 5

Xii

Listing 3-5
Listing 3-6

Listing 3-7

Listing 3-8
Table 3-2

Seeding the pseudo-random number generator 3-22

A simple way of obtaining a large random integer from a range
of pseudo-random numbers 3-23

Obtaining a pseudo random integer from a small range of
numbers 3-23

Obtaining a pseudo-random long integer 3-24
Routines for fixed-point data types 3-26

Date, Time, and Measurement Utilities 4-1

Figure 4-1
Figure 4-2
Figure 4-3
Listing 4-1

Listing 4-2
Listing 4-3
Listing 4-4

Listing 4-5
Listing 4-6
Listing 4-7
Table 4-1

Table 4-2

Table 4-3

Listing 4-8
Listing 4-9
Listing 4-10
Listing 4-11
Listing 4-12
Table 4-4

The Date & Time control panel 4-7
The Map control panel 4-7
The numeric-format resource (resource type 'i t 10" 4-8

Getting the current date and time with the Get Dat eTi ne
procedure 4-10

Getting the current date and time with the Get Ti ne
procedure 4-10

Changing the current date and time with the Set Dat eTi ne
function 4-11

Changing the current date and time with the Set Ti e
function 4-11

Manipulating date-time information 4-13
Calculating the 300th day of the year 4-15
Computing the day of the week 4-16

Equivalent dates in the Gregorian, Arabic CLC, and Jewish
calendars 4-17

Values for the day Of Year and weekOF Year fields for the date
1 Muharram 1414 and equivalent values in the Gregorian
calendar 4-17

Comparison of settings in fields of the long date-time record for
Arabic CLC, Gregorian, and Jewish calendars 4-18

Converting latitude and longitude to Fr act values 4-19
Getting gnt Del t a 4- 20

Setting gnt Del t a 4-21

Getting the current units of measurement 4-21

Timing an event using the M cr oseconds procedure 4-22
Renamed and relocated routines 4-33

Control Panel Extensions 5-1

Figure 5-1
Figure 5-2
Listing 5-1
Listing 5-2
Listing 5-3
Listing 5-4
Listing 5-5
Listing 5-6

A control panel with a panel 5-4

Panel-selection pop-up menu in a control panel 5-5

A component resource for a control panel extension 5-9
Handling Component Manager request codes 5-10
Responding to the get-item list request 5-14
Responding to the install request 5-15

Responding to an item-select request 5-16

Responding to an event-select request 5-18

Chapter 6 Queue Utilities 6-1

Figure 6-1 An operating-system queue 6-4

Figure 6-2 The format of a queue header 6-5

Figure 6-3 The format of a queue element 6-6

Table 6-1 Operating-system queue types 6-7

Figure 6-4 Formats of a vertical retrace queue element and a notification
gueue element 6-8

Listing 6-1 Searching for drives in the drive queue 6-9

Table 6-2 Installation routines for operating-system queue elements 6-10

Listing 6-2 Using the Enqueue procedure to add a bank customer to a teller
gueue 6-11

Listing 6-3 Using Dequeue to remove the first customer in the bank-teller
queue 6-12

Table 6-3 Removal routines for operating-system elements 6-12

Chapter 7 Parameter RAM Utilities 7-1

Figure 7-1 Interaction between parameter RAM and low memory 7-4

Figure 7-2 The format of the system parameter record 7-5

Table 7-1 Default values for parameter RAM (for U.S. system

software) 7-7

Chapter 8 Trap Manager 8-1
Figure 8-1 How the CPU processes A-line instructions 8-4
Figure 8-2 Trap dispatch tables 8-5
Figure 8-3 Accessing the Fi | | Rect procedure 8-6
Figure 8-4 Augmenting the Fi | | Rect procedure with a single patch 8-7
Figure 8-5 A-line instruction format 8-10
Figure 8-6 Exception stack frame (on Macintosh computers with a MC68020
microprocessor or greater) 8-10
Figure 8-7 An A-line instruction for an Operating System routine 8-11
Figure 8-8 The stack on entry to an Operating System routine 8-12
Figure 8-9 An A-line instruction for a Toolbox routine 8-15
Figure 8-10 Stack when entering a Toolbox routine 8-15
Figure 8-11 Pascal calling convention 8-17
Figure 8-12 C calling convention 8-17
Table 8-1 Toolbox parameter-passing conventions 8-18
Table 8-2 Conventions for returning results from Toolbox functions 8-19
Listing 8-1 Determining if a system software routine is available 8-22
Listing 8-2 Determining whether Vi t Next Event and Gest al t are
available 8-23
Listing 8-3 Patching the SysBeep Operating System procedure 8-23
Listing 8-4 Jumping to the next routine in the daisy chain 8-24
Listing 8-5 Installing a patch 8-24
Chapter 9 Start Manager 9-1
Listing 9-1 The MySanpl el NI T system extension 9-11

Xiii

Figure 9-1 The default system extension icon 9-14

Figure 9-2 Typical resources for a system extension 9-16
Chapter 10 Package Manager 10-1
Table 10-1 The standard Macintosh packages 10-3

Xiv

PREFACE

About This Book

This book, Inside Macintosh: Operating System Utilities describes the parts of the
Macintosh Operating System that allow you to manage various low-level
aspects of the system software. The chapters in this book and the information
they contain are summarized here.

“Gestalt Manager” describes how the Gestalt Manager works. This chapter
also describes how you can make information about your own hardware or
software available to other applications.

= “System Error Handler” explains what the Macintosh Operating System
does when a system error is encountered. This chapter also describes
how you can provide code that can help your application recover from
a system error.

= “Mathematical and Logical Utilities” discusses how you can perform
low-level logical manipulation of bits and bytes, save disk space by using
simple compression and decompression routines, obtain a pseudorandom
number, perform mathematical operations with two fixed-point data types
supported directly by the Macintosh Operating System, and convert
numeric variables of different types.

s “Date, Time, and Measurement Utilities” describes a set of utility routines
that you can use to operate on dates and times. You can use these routines
to get and change information about the current date, time, geographic
location, time zone, and units of measurement.

= “Control Panel Extensions” describes how you can create a control panel
extension to add a panel to an existing control panel.

= “Queue Utilities” describes how your application can directly add
elements to and remove them from operating-system queues managed by
the Macintosh Operating System. This chapter also describes how you can
use the Queue Utilities to operate on queues that you create.

= “Parameter RAM” describes how your application can access and modify
the information used by the system software at system startup time.

= “Trap Manager” describes how the Trap Manager works and then shows
how you can use the Trap Manger to check for the availability of a system
software routine. This chapter also describes how you can alter the
behavior of a system software routine.

= “Start Manager” describes the system initialization and system startup
process performed by the Macintosh computer. This chapter also describes
how you can create a system extension.

= “Package Manager” lists all the standard Macintosh packages and it
describes the routines that loads the packages into memory.

XV

P REFACE

Additional information about the Macintosh Operating System can be found
in other Inside Macintosh books. For information about processes and tasks,
see Inside Macintosh: Processes. For information on how to allocate, release,

or otherwise manipulate memory, see Inside Macintosh: Memory. For
information about managing files and other objects in the file system,

see Inside Macintosh: Files.

If you are new to programming the Macintosh computer, you should also
read Inside Macintosh: Overview for an introduction to general concepts of
Macintosh programming.

Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the
chapter “Queue Utilities” contains these sections:

= “About Queue Utilities.” This section provides an overview of the features
provided by the Queue Utilities.

= “Using Queue Utilities.” This section describes the tasks you can
accomplish using Queue Utilities. It describes how to use the most
common routines, provides code samples, and supplies additional
information.

= “Queue Utilities Reference.” This section provides a complete reference for
the Queue Utilities by describing the data structures, and routines it uses.
Each routine description also follows a standard format, which presents the
routine declaration followed by a description of every parameter of the
routine. Some routine descriptions also give additional descriptive
information, such as assembly-language information or result codes.

s “Summary of Queue Utilities.” This section provides the Pascal and
C interfaces for the constants, data structures, routines, and result
codes associated with Queue Utilities. It also includes relevant
assembly-language interface information.

Conventions Used in This Book

XVi

Inside Macintosh uses special conventions to present certain types of
information.

Special Fonts

All code listings, reserved words, and names of actual data structures,
fields, constants, parameters, and routines are shown in Courier
(this is Courier).

PREFACE

Words that appear in boldface are key terms or concepts and are defined in
the glossary.

Types of Notes

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but not essential
to an understanding of the main text. (An example appears on

page 1-5.) O

IMPORTANT
A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 4-6.) a

WARNING

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on

page 1-12.) a

Assembly-Language Information

Inside Macintosh provides information about the registers for specific routines
in this format:

Registers on entry
A0 Contents of register A0 on entry

Registers on exit
DO Contents of register D0 on exit

In the “Assembly-Language Summary” section at the end of each chapter,
Inside Macintosh presents information about the fields of data structures in
this format:

0 what word event code
2 nessage long event message
6 when long ticks since startup

The left column indicates the byte offset of the field from the beginning of the
data structure. The second column shows the field name as defined in the
MPW Pascal interface files; the third column indicates the size of that field.
The fourth column provides a brief description of the use of the field. For a
complete description of each field, see the discussion of the data structure in
the reference section of the chapter.

Xvii

P REFACE

In addition, Inside Macintosh presents information about the fields of a
parameter block in this format:

Parameter block

- i nAndQut I nt eger Input/output parameter.
- out putl Ptr Output parameter.
- i nput 1 Ptr Input parameter.

The arrow in the far left column indicates whether the field is an input
parameter, output parameter, or both. You must supply values for all input
parameters and input/output parameters. The routine returns values in
output parameters and input/output parameters.

The second column shows the field name as defined in the MPW Pascal
interface files; the third column indicates the Pascal data type of that field.
The fourth column provides a brief description of the use of the field. For
a complete description of each field, see the discussion that follows the
parameter block or the description of the parameter block in the reference
section of the chapter.

The Development Environment

The system software routines described in this book are available using
Pascal, C, or assembly-language interfaces. How you access these routines
depends on the development environment you are using. When showing
system software routines, this book uses the Pascal interface available with
the Macintosh Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal or assembly language.

They show methods of using various routines and illustrate techniques for
accomplishing particular tasks. All code listings have been compiled and in
many cases tested. However, Apple Computer, Inc., does not intend for you to
use these code samples in your application.

APDA is Apple’s worldwide source for over three hundred development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the quarterly APDA Tools Catalog featuring all current versions of Apple and
the most popular third-party development tools. Ordering is easy; there

are no membership fees, and application forms are not required for most
products. APDA offers convenient payment and shipping options including
site licensing.

xviii

PREFACE

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone: 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (elsewhere in the world)

Fax: 716-871-6511

AppleLink: APDA

America Online: APDAorder

CompuServe: 76666,2405

Internet: APDA@applelink.apple.com

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, file types, and other technical
information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.

1 Infinite Loop, M/S 303-2T

Cupertino, CA 95014-6299

XixX

CHAPTER 1

Gestalt Manager

Contents

About the Gestalt Manager 1-3
Using the Gestalt Manager 1-5
Determining Whether the Gestalt Manager Is Available 1-5
Getting Information About the Operating Environment 1-6
Interpreting Gestalt Responses 1-9
Adding a New Selector Code 1-10
Modifying a Selector Function 1-13
Getting Environmental Information Without the Gestalt Manager 1-14
Gestalt Manager Reference 1-14
Constants 1-14
Data Structures 1-28
The System Environment Record 1-28
Gestalt Manager Routines 1-30
Getting Information About the Operating Environment 1-30
Adding a Selector Code 1-33
Modifying a Selector Function 1-35
Application-Defined Routines 1-36
The Selector Function 1-36
Summary of the Gestalt Manager 1-38

Contents 1-1

CHAPTER 1

Gestalt Manager

This chapter describes how you can use the Gestalt Manager and other system software
facilities to investigate the operating environment. You need to know about the
operating environment if your application takes advantage of hardware (such as a
floating-point unit) or software (such as Color QuickDraw) that is not available on all
Macintosh computers. You can also use the Gestalt Manager to inform the Operating
System that your software is present and to find out about other software registered
with the Gestalt Manager.

The Gestalt Manager is available in system software versions 6.0.4 and later. The MPW
software development system and some other development environments supply code
that allows you to use the Gestalt Manager on earlier system software versions; check
the documentation provided with your development system.

In system software versions earlier than 6.0.4, you can retrieve a limited description
of the operating environment with the SysEnvi r ons function, also described in
this chapter.

You need to read this chapter if you take advantage of specific hardware or software
features that may not be present on all versions of the Macintosh, or if you wish to
inform other software that your software is present in the operating environment.

This chapter describes how the Gestalt Manager works and then explains how you can
= determine whether the Gestalt Manager is available
= call the Gest al t function to investigate the operating environment

= make information about your own hardware or software available to other
applications

= retrieve a limited description of the operating environment even if the Gestalt
Manager is not available

About the Gestalt Manager

The Macintosh family of computers includes models that use a number of different
processors, some accompanied by a floating-point unit (FPU) or memory management
unit (MMU). Also, a single hardware configuration can have various versions of system
software, drivers, and QuickDraw routines.

In general, applications should communicate with the system software and hardware
through the available managers and device drivers. However, if your application takes
advantage of hardware or software components that may not be present on all
Macintosh computers, then you need some mechanism to determine whether those
components are available.

The Gest al t function provides a simple, efficient way to determine the hardware and
software configurations so your application can exploit as fully as possible whatever
environment it is running in. When your application calls the Gest al t function, your
application passes a selector code (or selector) as a parameter to specify the information
it needs. Your application can call the Gest al t function to determine

About the Gestalt Manager 1-3

-

Jabeuel 1e1s99

1-4

CHAPTER 1

Gestalt Manager

the version and features of QuickDraw

= the versions and features of various other managers and drivers
= the type of floating-point unit (FPU), if any

= the type of memory management unit (MMU), if any

= the amount of available RAM

= the amount of available virtual memory

= the version of the A/UX operating system, if it’s running

= the type of keyboard

= the model of computer

= the version number of the System file

= the type of central processing unit (CPU)

Your application can use the information returned by Gest al t in various ways. It
might branch to alternate code, for example, depending on the version of QuickDraw,
or cancel an operation and present an alert box if a critical but optional hardware
component is unavailable.

Associated with the Gest al t function are two other functions—one that allows an
application to register new features with the Gestalt Manager and another that allows
an application to change the function used by CGest al t to retrieve a particular piece of
information. These two functions make it easy for your software to announce its
presence to other applications. A debugger, for example, can register itself with the
Gestalt Manager during system initialization; afterward, debugging code in an
application under development can call Gest al t to verify that the special routines
provided by the debugger are available on the local machine. In this way, the Gestalt
Manager can act as a central clearinghouse for information on the available software
and hardware features of the operating environment and enhance cooperation and
awareness among third-party products.

Although the Gest al t function can provide much of the information your application
needs, you might still need to call some special-purpose routines supplied by various
parts of the system software. To determine the resolution of the main Macintosh screen,
for example, you call the Scr eenRes procedure, described in the book Inside Macintosh:
Imaging with QuickDraw.

The Gest al t function has replaced both the SysEnvi r ons function and the Envi r ons
procedure. The Gest al t function is simpler to use and provides more information than
either of those routines. Applications that use SysEnvi r ons execute correctly in system
software versions 7.0 and later, in which SysEnvi rons calls Gest al t .

The SysEnvi r ons function, introduced with the Macintosh SE and Macintosh 11
computers, fills in and returns a pointer to a system environment record , a data
structure that describes some features of the operating environment. The SysEnvi r ons
function cannot provide the detailed information supplied by Gest al t .

Like the SysEnvi r ons function, Gest al t can provide objective configuration
information such as ROM version and size, but you should not infer the presence or

About the Gestalt Manager

CHAPTER 1

Gestalt Manager

absence of particular hardware or software features from that information. When you
need to know whether a feature is present, you should request information about it
directly by using the appropriate selector code. (“Getting Information About the
Operating Environment” beginning on page 1-6, lists the Apple-defined selector codes
for Gestal t.)

Using the Gestalt Manager

The Gestalt Manager includes three functions—Gest al t , NewGest al t , and

Repl aceGest al t . You can use the Gest al t function to get information about
hardware or software components available on the current machine. You can use
NewGest al t to register new software modules (such as drivers and patches) with the
Gestalt Manager. You can use Repl aceCest al t to replace the function associated with
a particular selector code.

Note
Most applications do not need to use either NewGest al t or
Repl aceGestalt. O

If the Gestalt Manager is not present, you can get a brief description of the operating
environment by calling the SysEnvi r ons function.

Determining Whether the Gestalt Manager Is Available

Versions 3.2 and later of MPW provide glue routines that allow you to call the Gestalt
Manager functions even if they’re not in ROM or in the System file (that is, if your
application is running under a system software version earlier than 6.0.4). In assembly
language, however, and possibly in other development environments, you must verify
that the Gestalt Manager is available before you use it.

You can verify that the Gest al t function is available by calling the function

NGet Tr apAddr ess, specifying the trap number of Gest al t , and comparing the result
with the address of the code that is executed when you invoke an unimplemented
instruction. If Gest al t is available, you can safely assume that NewGest al t and

Repl aceCest al t are also available. For efficiency, you might want to define a global
Boolean variable that you can set at the beginning of your program. Listing 1-1 illustrates
a test that sets the variable gHasGest al t .

Listing 1-1 Determining whether Gest al t is available

gHasGestalt := MySWRouti neAvail abl e(_CGestal t);

For a sample definition of the application-defined function My SWWRout i neAvai | abl e,
see the chapter “Trap Manager” later in this book.

Using the Gestalt Manager 1-5

Jabeuel 1e1s99 -

CHAPTER 1

Gestalt Manager

Getting Information About the Operating Environment

When your application needs information about a software or hardware feature, it calls
the Gest al t function, which has this interface:

FUNCTI ON Gestalt (selector: OSType; VAR response: Longlnt): OSErr;

The first parameter is a selector code, which specifies the kind of information your
application needs. You can use any of the Apple-defined selector codes listed later in this
section and described in more detail in the section “Constants” beginning on page 1-14.
You can also define and register your own selector codes using the NewGest al t
function (as described in “Adding a New Selector Code” beginning on page 1-10),

and you can use selector codes defined and registered by other applications.

If Gest al t can determine the requested information, it returns that information in

the r esponse parameter and returns a result code of noEr r. If Gestalt cannot obtain the
information, it returns a result code indicating the cause of the error; in that case,

the value of the r esponse parameter is undefined. You should always check the result
code returned by Gest al t to make sure that the r esponse parameter contains
meaningful information.

Listing 1-2 illustrates an application-defined function that retrieves the sound attributes
of the current operating environment. The application-defined My Get SoundAt tr
function checks the function result returned by Gest al t and passes any calls with a
nonzero result code to an error-handling routine.

Listing 1-2 Calling Gest al t and checking its result code

1-6

FUNCTI ON MyGet SoundAttr: Longlnt;
VAR

myErr: OSErr;

myAttr: Longlnt;

BEG N
| F gHasGestalt THEN
BEG N
nyErr := Gestalt(gestaltSoundAttr, nmyAttr);
| F nyErr <> noErr THEN {Gestalt failed}
DoError (myErr)
END
ELSE
myAttr := 0; {Gestalt not avail abl e}
MyGet SoundAttr := nyAttr;
END;

You get different kinds of information from Gest al t by passing selectors from two
kinds of Apple-defined selector codes:

Using the Gestalt Manager

CHAPTER 1

Gestalt Manager

= environmental selectors , which return information your application can use to guide
its actions

= informational selectors, which return information that cannot be used to determine
whether a feature is available

It is particularly important that you understand the difference between environmental
and informational selectors. The response returned by Gest al t when it is passed an
informational selector is for your (or the user’s) edification only; it should never be used
by your application to determine whether a specific hardware or software feature is
available. For example, you can use Gest al t to test for the version of the ROM installed
on a particular machine. You can display this information to the user, but you should not
infer from it anything about the actual software available. Routines you expect to be in
ROM may actually be in RAM; hence, you cannot know that a routine usually found in
ROM is not present simply because the ROM version predates the routine. Also, routines
contained in ROM may have been patched by the system at startup time, in which case
the system might not have the features you think it has on the basis of the reported ROM
version. A Macintosh Plus with an old ROM, for example, could be running System 7.
Similar remarks apply to other informational selectors, including ROM size, machine
type, and System file version number.

Jabeuel 1e1s99 -

To retrieve specific information about the hardware and software features available, you
can use the following environmental selectors:

CONST
gest al t Addr essi nghModeAttr
gestal tAliasMgrAttr
gestal t Appl eEvent sAttr
gest al t Appl eTal kVer si on

addr' ; {addressing-node attributes}
alis'; {Alias Minager attributes}
evnt'; {Apple events attributes}
atlk'; {old format Appl eTal k versi on}

gest al t ATal kVer si on = tatkv'; {new format Appl eTal k version}
gest al t AUXVer si on = "alux'; {ANUX version, if present}
gestal t CFMAt t r = "cfrg'; {Code Fragnent Manager attri butes}
gestal tCl oseVi ewAttr = 'BSDa'; {C oseView attri butes}
gest al t Conponent Myr "cpnt'; {Conponent Manager version}
gest al t Conpr essi onMyr ='"icnp'; {lmge Conpression Manager version}
gestal t ConnMgr At t r = 'conn'; {Connection Manager attri butes}
gestal t CRMAL t r ='crm'; {Communication Resource Manager }

{ attributes}
gest al t CTBVer si on = 'cthv'; {Communication Tool box version}

gest al t DBAccessMyr Attr
gestaltDi ctionaryMyrAttr
gestal t Di spl ayMgr At tr
gestal t Di spl ayMyr Ver s
gestal t Dl TLExt Attr

gestal t DragWgr Attr

gest al t EasyAccessAttr
gestal tEditi onMyrAttr

"dbac'; {Data Access Manager attri butes}
"dict'; {Dctionary Manager attributes}
"dply'; {Display Manager atributes}
"dplv'; {Display Manager version}
"ditl'; {D alog Manager extensions}
"drag'; {Drag Manager attributes}
"easy'; {Easy Access attri butes}

"edtn'; {Edition Manager attri butes}

Using the Gestalt Manager 1-7

1-8

CHAPTER 1

Gestalt Manager

gest al t Ext Tool boxTabl e
gestal t Fi nderAttr

gest al t Fi ndFol der Attr
gestal t Fi rst Sl ot Nunber
gestal t Font Mgr At tr

gest al t FPUType

gestal t FSAttr

gestal t FXfriMgr At tr
gestal t Hel pMgr At t r
gestaltlconUtilitiesAttr
gest al t Keyboar dType
gest al t Logi cal PageSi ze
gest al t Logi cal RAMSI ze
gest al t LowMenorySi ze
gestalt M scAttr

gestal t M xedMbdeVer si on
gest al t MMUType

gestal t Nati veCPU ype

gestal tNotificati onMgrAttr

gest al t NuBusConnect ors
gest al t NuBusSI ot Count
gestal t CSAttr

gest al t OSTabl e

gestaltParityAttr
gestal t PCXAt t r

gest al t Physi cal RAVSI ze
gest al t PopupAt tr

gest al t Power Mgr At tr
gest al t PPCTool boxAt tr

gest al t Processor Type
gest al t Qui ckdr awFeat ur es
gest al t Qui ckdr awVer si on
gest al t Qui ckTi neVer si on
gestal t Real Ti meMgr At tr
gest al t ResourceMgr Attr
gestal t ScrapMyrAttr
gestal t Scri pt Count
gestal t Scri pt Mygr Ver si on
gestaltSerial Attr
gestaltSlotAttr

gestal t SoundAt tr

Using the Gestalt Manager

xttt';
fndr';

fold'
sltl'
font’
fpu '
fs
fxfr’
hel p'
i con'
kbd '
pgsz'’
I ram
I mem
nm sc'
m xd'

cput’
nngr'
sltc’
nubs’
0s
ostt'

prty’
pcxg’
ram'
pop!”’
powr
ppc

proc'
gdrw

qtim
renr!
rsrc'
scra'
scr#'

scri';

ser

slot';
snd ';

{Tool box trap di spatch table info}
{Finder attributes}

{Fi ndFol der attri butes}

{first physical slot}

{Font Manager attri butes}
{floating-point unit (FPU) type}
{file systemattributes}

{File Transfer Manager attri butes}
{Hel p Manager attri butes}

{lcon Utilities attributes}
{keyboard type code}

{l ogi cal page size}
{l ogi cal RAM si ze}
{size of |ow nmenory}

{m scel | aneous attri butes}

{M xedMbde versi on}

{MW type}

{native CPU type}

{Notification Manager attributes}
{NuBus connector bitmap}

{nunmber of | ogical NuBus sl ots}
{Operating System attri but es}
{base address of Operating System}
{ trap dispatch tabl e}
{parity attributes}

{PC exchange attri butes}
{physi cal RAM si ze}
{pop-up ' CDEF' attributes}
{Power Manager attri butes}

{ Programt o- Program Conmuni cati ons }

{ (PPC) Tool box attributes}
{m croprocessor type code}

{ Qui ckDr aw f eat ur es}

{ Qui ckDr aw ver si on}

{Qui ckTi ne version}

{Real ti me Manager attri butes}
{Resource Manager attri butes}
{Scrap Manager attri butes}
{nunber of active script systens}
{Script Manager version}
{serial hardware attri butes}
{slot attributes}

{sound attributes}

CHAPTER 1

Gestalt Manager

gestal t SpeechAttr = "ttsc'; {Speech Manager attri butes}
gestal t StandardFi |l eAttr = "stdf'; {Standard File attri butes}}
gestal t St dNBPAt t r = 'nlup'; {StandardNBP attri butes} o
gestal t SysArchitecture = 'sysa'; {Native System Architecture} o
gestal t TEAttr = "teat'; {TextEdit attributes} “:—’
gestal t Termvgr At tr = 'term; {Terminal Manager attributes} §
gest al t Text Edi t Ver si on "te '; {TextEdit version code} é
gestal t ThreadMgr At tr = "thds'; {Thread Manager attri butes} <
gest al t Ti meMgr Ver si on = '"tmgr'; {Time Manager version code}
gest al t Tool boxTabl e = "tbtt'; {base address of Tool box trap }

{ dispatch tabl e}
gestal t Transl ati onAttr = 'xlat'; {Translation Manager attri butes}
gestal t TSMyr Ver si on = "tsnmv'; {Text Services Manager version}
gest al t Ver si on = 'vers'; {Gestalt version}
gestal t VMAt t r ='vm '; {virtual nenory attributes}

The informational selectors are provided for your or the user’s information only. You can
display the information returned from these selectors, but you should never use this
information as an indication of what hardware or software features may be available.
You can use the following informational selectors:

CONST
gest al t Har dwar eAt tr = "hdwr'; {hardware attributes}
gest al t Machi nel con = 'mcn'; {machine "I CON /'cicn' resource |D}
gestal t Machi neType = "mach'; {Maci ntosh nodel code}
gest al t ROVSI ze ='rom'; {ROMsize}
gest al t ROWer si on = "romv'; {ROM version}
gest al t Syst enVer si on = 'sysv'; {Systemfile version nunber}

For a description of the return values for these environmental and informational
selectors, see the next section, “Interpreting Gestalt Responses,” and the list of constants
beginning on page 1-14.

Interpreting Gestalt Responses

The meaning of the value that Gest al t returns in the r esponse parameter depends
on the selector code with which it was called. For example, if you call Gest al t using
the gest al t Ti mreMgr Ver si on selector, it returns a version code in the r esponse
parameter. In this case, a returned value of 3 indicates that the extended Time Manager
is available.

In most cases, the last few characters in the selector’s symbolic name form a suffix that
indicates what type of value you can expect Gest al t to place in the r esponse
parameter. For example, if the suffix in a Gest al t selector is Si ze, then Gest al t
returns a size in the r esponse parameter. Table 1-1 lists the meaningful suffixes.

Using the Gestalt Manager 1-9

CHAPTER 1

Gestalt Manager

Table 1-1 Gest al t selector suffixes and their meanings

Suffix Returned value

Attr A range of 32 bits, the meanings of which are defined by a list of
constants. Bit 0 is the least significant bit of the long word.

Count A number indicating how many of the indicated type of item exist.

Si ze Assize, usually in bytes.

Tabl e The base address of a table.

Type An index to a list of feature descriptions.

Ver si on A version number, which can be either a constant with a defined
meaning or an actual version number, usually stored as four hexadecimal
digits in the low-order word of the return value. Implied decimal points
may separate digits. The value $0701, for example, returned in response
to the gest al t Syst emVer si on selector, represents system software
version 7.0.1.

Selectors that have the suffix At t r deserve special attention. They cause Gest al t

to return a bit field that your application must interpret to determine whether a
desired feature is present. For example, the application-defined sample function

My Get SoundAt t r, defined in Listing 1-2 on page 1-6, returns a Longl nt that
contains the Sound Manager attributes field retrieved from Gest al t . To determine
whether a particular feature is available, you need to look at the designated bit. The
application-defined sample function Myl sSt er eoM xi ng in Listing 1-3, for example,
determines whether stereo mixing is available.

Listing 1-3 Interpreting a Gest al t attributes response

1-10

FUNCTI ON Myl sSt er eoM xi ng: Bool ean;
BEG N

Myl sSt ereoM xi ng : = BTst (MyGet SoundAttr, gestaltStereoM xing);
END;

The Myl sSt er eoM xi ng function uses the MPW Pascal function BTst and

the application-defined MyGet SoundAt t r function to determine whether the
stereo-mixing bit is set in the r esponse value returned by Gest al t when it’s called
with the gest al t SoundAt t r selector. The constant gest al t St er eoM xi ng is
defined in the header files.

Adding a New Selector Code

You can add your own selector code to those already understood by Gest al t by calling
the NewGest al t function. Typically, a system extension registers itself with the Gestalt
Manager so that applications that might use its services can find out whether it’s there.
A debugger, for example, could register its presence. Programmers working on an
application could then embed instructions for the debugger in code under

Using the Gestalt Manager

CHAPTER 1

Gestalt Manager

development and call Gest al t to make sure the debugger is available before invoking
those instructions.

The NewGest al t function requires two parameters: the new selector to be registered
and the address of the associated selector function . Gest al t executes the selector
function to determine what value to pass back when it’s called with the new

selector code.

Jabeuel 1e1s99 -

The selector code is a four-character sequence of type OSType. If you have registered

a creator string with Apple Computer, Inc., you are strongly encouraged to use that
sequence as your selector code. The Pipeline debugger, for example, with a creator string
of ' PI PE' , would use a Gest al t selector code of ' PI PE' .

Note

Apple reserves for its own use all four-character sequences consisting
solely of lowercase letters and nonalphabetic ASCII characters. O

When you register your own selector code with the Gestalt Manager, you supply the
address of the selector function to be executed when an application calls Gest al t with
that code. Your selector function must reside in the system heap and must have the
following interface:

FUNCTI ON MySel ect or Functi on (sel ector: OSType;
VAR response: Longlnt): OSErr;

The Gest al t function passes its input parameters on to your selector function. Your
function places the requested information in the Longl nt pointed to by the r esponse
parameter and returns an error code, which Gest al t returns to its caller.

Your selector function should be as simple as possible. If your function needs to use
global variables from the A5 world—that of your own software or that of some other
software—it must explicitly set up A5 and then restore it upon exit. (See Inside Macintosh:
Memory for an explanation of setting up and restoring the A5 world.)

Your selector function can, if necessary, call Gest al t and pass it other selector codes.
Note that the r esponse parameter is merely the address into which your function
places the information requested. You cannot use that parameter to pass information to
your selector function.

Listing 1-4 illustrates a minimal selector function that sets the r esponse parameter
and returns an error code of noEr r. The application-defined sample function,

MyGest al t Pi pe, isisolated in a UNI T element for separate compilation and placement
in a resource.

Listing 1-4 Defining a simple Gest al t selector function

UNI T GestaltFunc;
| NTERFACE
USES CSIntf;
FUNCTI ON MyGest al t Pi pe (gestaltSel ector: OSType;

Using the Gestalt Manager 1-11

A

CHAPTER 1

Gestalt Manager

VAR gestal tReply: Longlnt): OSErr;
| MPLEMENTATI ON
FUNCTI ON MyGest al t Pi pe;

BEG N
gestal t Reply : = $ACE; {reply defined by Pipeline}
MyCGest al t Pi pe : = noErr; {too sinmple for errors}
END;
END.

This sample linking command places the compiled code in resource ID 128 of a type
arbitrarily named ' GDEF' .

Link GestaltFunc.p.o -rn -rt GDEF=128 -0 Pipeline

To add a Gest al t selector code, you first move the selector function into the system
heap and then call the NewGest al t function, which adds the selector code and its
function to the Gest al t repertoire.

WARNING

Take special care when accessing memory in the system heap; it persists
even after your application terminates. a

Listing 1-5 illustrates the installation of a new Gest al t selector.

Listing 1-5 Installing a new Gest al t selector

1-12

PROCEDURE Myl nst al | Gest Func;

VAR
gest FuncHandl e: Handl e;
gest FuncSi ze: Si ze;
gest SysPtr: Ptr;
myErr: OSErr;
BEG N

gest FuncHandl e : = Get Resource(' GDEF' , 128);
I F ResError = noErr THEN

BEG N
gest FuncSi ze : = Si zeResour ce(gest FuncHandl e) ;
gest SysPtr : = NewPtrSys(gest FuncSi ze);

| F MenError = noErr THEN
BEG N
Bl ockMove(gest FuncHandl e®, gest SysPtr, gestFuncSi ze);
Fl ushl nst ructi onCache;
nyErr := NewGestalt('PlPE,
Sel ect or Funct i onUUP(gest SysPtr));

END;

Using the Gestalt Manager

CHAPTER 1

Gestalt Manager

Rel easeResour ce(gest FuncHandl e) ;
END;
END;

The application-defined sample procedure Myl nst al | Gest Func loads the resource
and then gets its size so it can allocate a pointer in the system heap. It then copies the
resource to the pointer and releases the resource.

Jabeuel 1e1s99 -

WARNING
Be sure to call the Fl ushl nstructi onCache procedure every time
you modify code in RAM. See the chapter “Memory Management
Utilities” in Inside Macintosh: Memory for details about

Fl ushl nstructi onCache. a

Finally, Myl nst al | Gest Func calls NewGest al t to register the selector code ' Pl PE'
and its selector function with the Gestalt Manager.

Because the new selector function resides in the system heap, Gest al t recognizes and
responds to the new selector until the machine restarts, even if your software terminates
before that time. You might therefore want your selector function to determine whether
your software is still running before filling in the r esponse value. The simplest way

to report that your application is not available is to return an error code.

If you attempt to add a selector code that Gest al t already recognizes, NewGest al t
returns the error code gest al t DupSel ect or Err.

Modifying a Selector Function

You can use the Repl aceGest al t function to modify the function that Gest al t
executes when passed a particular selector code. Your replacement selector function
must reside in the system heap and must conform to the interface defined in the
previous section, “Adding a New Selector Code.”

To allow the new function to call the function it’s replacing, Repl aceGest al t returns
the address of the previous function.

If you attempt to redefine a selector that is not yet defined, Repl aceGest al t returns an
error code; in that case, the address of the previous function is undefined. Always test
the result code of Repl aceGest al t before calling Gest al t with that selector or
attempting to use the r esponse parameter.

Note

If you modify the function associated with an existing Gest al t selector,
do not use any bits in the r esponse parameter that are not documented
in this chapter. Apple reserves all undocumented bits in the r esponse
parameters returned by Apple-defined Gest al t selectors. O

Because Repl aceGest al t supplies the address of the function it’s replacing, you can
use it to retrieve the address of the selector function associated with a selector code.

Using the Gestalt Manager 1-13

CHAPTER 1

Gestalt Manager

Getting Environmental Information Without the Gestalt Manager

You can call the SysEnvi r ons function, which predates the Gestalt Manager, to get a
brief description of the operating environment. The SysEnvi r ons function is available
on all models of the Macintosh computer since the Macintosh SE and Macintosh 1.

Note

The SysEnvi r ons function is not part of the Gestalt Manager, but is
documented in this chapter for the sake of completeness. O

The SysEnvi r ons function fills in a record that contains the model of the machine, the
System file version number, the microprocessor type, a keyboard type code, and Boolean
indicators of whether the machine has a floating-point unit or Color QuickDraw. The
system environment record includes one detail not available through Gest al t : the
working directory reference number of the folder or volume that holds the System file
(although that information is available through the Fi ndFol der function). See “The
System Environment Record” beginning on page 1-28 for a complete description of the
system environment record.

Gestalt Manager Reference

Constants

This section lists the Gestalt selector codes and their defined return values and describes
the system environment record, the three Gestalt Manager functions, and the
SysEnvi r ons function.

1-14

This section lists the Apple-defined Gestalt Manager selector codes, describes the
formats of their responses, and lists the constants defined for their return values.

You pass a selector code when you call Gest al t to specify the kind of information you
need. Apple defines two distinct kinds of selector codes: environmental selectors, which
supply information you can use to control the behavior of your application, and
informational selectors, which supply information you can’t use to determine what
hardware or software features are available.

The selector code constants use a set of suffixes that indicate what format the response
value will take. Selectors with the suffix At t r, for example, return a 32-bit response
value in which the individual bits represent specific attributes. The constants listed for
these response values represent bit numbers. For a more general description of selectors
and their response values, see “Interpreting Gestalt Responses” beginning on page 1-9.

Gestalt Manager Reference

CHAPTER 1

Gestalt Manager

The Gest al t function accepts the following environmental selectors.

Selector
gest al t Addr essi nghbdeAttr

gestal tAliasMgrAttr

gest al t Appl eEvent sAttr

gest al t Appl eTal kVer si on

gest al t ATal kVer si on

Gestalt Manager Reference

Response bits and response values
Current addressing-mode attributes.

CONST

Jabeuel 1e1s99 -

gest al t 32Bi t Addr essing = 0;
gest al t 32Bi t SysZone = 1;
gest al t 32Bi t Capabl e = 2;

The gest al t 32Bi t Addr essi ng attribute
indicates that the machine started up with 32-bit
addressing. The gest al t 32Bi t SysZone attribute
indicates that the system heap has 32-bit clean
block headers (regardless of the type of addressing
the machine started up in). See the book Inside
Macintosh: Memory for more information about
32-bit addressing.

Alias Manager attributes.

CONST
gestal t Al i asMyr Pr esent = 0;
gestal t Al i asMgr Suppor t sRenot eAppl eTal k

The Apple events attribute.
CONST

gest al t Appl eEvent sPresent = 0;
gestal t Scri pti ngSupport = 1;
gestal t OSLI nSyst em = 2;

The version number of the AppleTalk driver (in
particular, the .MPP driver) currently installed. The
version number is placed into the low-order byte of
the result; ignore the three high-order bytes. If an
AppleTalk driver is not currently open, the

r esponse parameter is 0.

The version number of the AppleTalk driver, in the
format introduced with AppleTalk version 56. (For
a description of AppleTalk, see Inside AppleTalk,
second edition.) The version is stored in the high 3
bytes of the return value.

Byte 3 contains the major revision number, byte 2
contains the minor revision number, and byte 1
contains a constant that represents the release stage.

1-15

CHAPTER 1

Gestalt Manager

Selector Response bits and response values
gest al t ATal kVer si on CONST
(continued) devel opment = $20;

al pha = $40;

bet a = $60;

final = $80;

rel ease = $80;

For example, if you call Gest al t with the ' at kv’
selector when AppleTalk version 57 is loaded, you
receive the long integer response value $39008000.

Byte 0 always contains 0.

gest al t AUXVer si on The version of A/UX if it is currently executing.
The result is placed into the low-order word of the
r esponse parameter. If A/UX is not executing,
Gest al t returns gest al t UnknownErr.

gestal t CFMAt tr Code Fragment Manager attributes.

CONST
gest al t CFMPr esent = 0;

gestal tCl oseVi ewAttr The CloseView attributes

CONST
gest al t O oseVi ewknabl ed = 0;
gestal t Cl oseVi ewbi spl ayMyr Fri endl y

get st al t Conponent Myr The version of the Component Manager.
get stal t Conpr essi onMyr The version of the Image Compression Manager.
gestal t ConnMgr At tr Connection Manager attributes.

CONST

gest al t ConnMyr Pr esent

gest al t ConnMgr CMSear chFi x
gestal t ConnMgrError String
gest al t ConnMgr Mul ti Asyncl O ;

The gest al t ConnMgr CMSear chFi x bit flag
indicates that the fix is present that allows the
CMAddSear ch routine to work over the mAt t n

WNkR©o

channel.
gestal t CRMAL t r Communications Resource Manager attributes.
CONST
gest al t CRMPr esent = 0;
gest al t CRMPer si st ent Fi x = 1;
gest al t CRMIool RsrcCal | s = 2;

gest al t CTBVer si on The version number of the Communications
Toolbox (in the low-order word of the return value).

gest al t DBAccessMyr Attr The Data Access Manager attribute.

CONST
gest al t DBAccessMyr Present = O;

1-16 Gestalt Manager Reference

CHAPTER 1

Gestalt Manager

Selector Response bits and response values
gestaltDi cti onaryMyrAttr The Dictionary Manager attributes.

CONST
gestal tDictionaryMyrPresent = O;

gestal t Di spl ayMyrAttr The Display Manager attributes.

CONST
gestal t Di spl ayMyr Present = 0;

gestal t DI TLExt Attr The Dialog Manager extensions attributes.

CONST
gest al t DI TLExt Pr esent = 0;

If this flag bit is TRUE, then the Dialog Manager
extensions included in System 7 are available. See
the book Inside Macintosh: Macintosh Toolbox
Essentials for details about the Dialog Manager.

gestal t DragMgr At tr Drag Manager attributes.

CONST
gest al t DragMgr Pr esent = 0;

gest al t EasyAccessAttr Easy Access attributes.

CONST
gest al t EasyAccessO f
gest al t EasyAccessOn
gest al t EasyAccessSti cky
gest al t EasyAccessLocked

gestal tEditi onMgrAttr Edition Manager attributes.

CONST
gest al t Edi ti onMyr Pr esent 0;
gestal t Edi ti onMgr Tr ansl ati onAwar e
= 1,

gest al t Ext Tool boxTabl e The base address of the second half of the Toolbox
trap table if the table is discontiguous. If the table is
contiguous, this selector returns 0.

TNTRNTINT
whkR o

gestal t Fi nder Attr Finder attributes.

CONST
gest al t Fi nder Dr opEvent = 0;
gest al t Fi nder Magi cPl acenent
= 1;
gest al t Fi nder Cal | SAEPr ocess
= 2,
gestal t OSLConpl i ant Fi nder = 3;
gest al t Fi nder Suppor t s4@GVol umne

= 4;
gest al t Fi nder Handl esCFMFai | ur es

= 5,
gest al t Fi nder Hasd i ppi hgs = 6;

Gestalt Manager Reference 1-17

Jabeuel 1e1s99 -

CHAPTER 1

Gestalt Manager

Selector Response bits and response values
gest al t Fi ndFol der Attr The Fi ndFol der function attribute.
CONST
gest al t Fi ndFol der Present = 0O;
gest al t Fi rst Sl ot Nunber The first physical slot.
gestal t Font Mgr At tr The Font Manager attribute.
CONST
gestaltQutlineFonts = O;
gest al t FPUType A constant that represents the type of floating-point
unit currently installed, if any.
CONST

gest al t NoFPU
gest al t 68881
gest al t 68882
gest al t 68040FPU

gestal t FSAttr File system attributes.

CONST
gest al t Ful | Ext FSDi spat chi ng
gest al t HasFSSpecCal | s
gest al t HasFi | eSyst emvanager
gest al t FSMDoesDynamni cLoad
gest al t FSSupport s4GBVol s
gest al t HasExt endedDi skl ni t

gestal t FXfrMgrAttr The File Transfer Manager attributes.

CONST
gest al t FXf r Myr Pr esent
gestaltFXfrMgrMultiFile
gestalt FXfrMgrError String

gestal t Hel pMgr At tr The Help Manager attribute.

CONST
gest al t Hel pMgr Pr esent = 0;

gestaltlconUtilitiesAttr The Icon Utilities attribute.

CONST
gestaltlconUilitiesPresent = O;

o n
whkRo

oRrwWNRO

non
NP O

gest al t Keyboar dType A constant that represents the type of keyboard.

CONST
gest al t Mackbd
gest al t MacAndPad
gest al t MacPl usKbd
gest al t Ext ADBKbd
gest al t St dADBKbd
gest al t Prt bl ADBKbd
gestal t Prt bl | SOKbd

TR T T TR TR TR
~NOUAWNR

1-18 Gestalt Manager Reference

CHAPTER 1

Gestalt Manager

Selector

gest al t Keyboar dType
(continued)

gest al t Logi cal PageSi ze

gest al t Logi cal RAMSI ze

gestal t LowMenorySi ze

Gestalt Manager Reference

Response bits and response values

gest al t St dl SOADBKbd = 8;

gest al t Ext | SOADBKbd = 9; o
gest al t ADBKbdlI | = 10; g,
gest al t ADBI SOKbdl | = 11; -
gest al t Pwr Book ADBKbd = 12; s
gest al t Pwr Bookl SOADBKbd = 13; 3
gest al t Appl eAdj ust Keypad = 14; D
gest al t Appl eAdj ust ADBKbd = 15;

gest al t Appl eAdj ust | SOKbd = 16;

If the Apple Desktop Bus (ADB) is in use, there
may be multiple keyboards or other ADB devices
attached to the machine. The

gest al t Keyboar dType selector identifies only
the type of the keyboard on which the last
keystroke occurred.

You cannot use this selector to find out what ADB
devices are connected. For that, you can use the
Apple Desktop Bus Manager, described in Inside
Macintosh: Devices. Note that the ADB keyboard
types described by Gest al t do not necessarily
map directly to ADB device handler IDs.

Future support for the gest al t Keyboar dType
selector is not guaranteed. To determine the type of
the keyboard last touched without using Gest al t,
check the system global variable KbdType,
documented in Inside Macintosh: Devices.

If the Gestalt Manager does not recognize the
keyboard type, it returns an error.

The logical page size. This value is defined only on
machines with the MC68010, MC68020, MC68030,
or MC68040 microprocessors. On a machine with
the MC68000, Gest al t returns an error when
called with this selector.

The amount of logical memory available. This
value is the same as that returned by

gest al t Physi cal RAVSI ze when virtual
memory is not installed. On some machines,
however, this value might be less than the value
returned by gest al t Physi cal RAVSI ze because
some RAM may be used by the video display and
the Operating System.

The size (in bytes) of the low-memory area. The
low-memory area is used for vectors, global
variables, and dispatch tables.

1-19

1-20

CHAPTER 1

Gestalt Manager

Selector
gestaltM scAttr

gestal t M xedMbdeVer si on
gest al t MUType

gestal t Nati veCPU ype

gestaltNotificati onMyrAttr

gest al t NuBusConnect or s

gestal t CSAttr

Gestalt Manager Reference

Response bits and response values

Information about miscellaneous pieces of the
Operating System or hardware configuration.

CONST
gestaltScrol lingThrottle
gest al t Squar eMenuBar

0;
2;

The version of Mixed Mode Manager.

A constant that represents the type of MMU
currently installed.

CONST
gest al t NovWJ
gestal t AMUJ
gest al t 68851
gest al t 68030MV
gest al t 68040MVU
gest al t EMMUL

Native CPU type.

CONST
gest al t CPU68000
gest al t CPU68010
gest al t CPU68020
gest al t CPU68030
gest al t CPU68040

gRONRO

$000;
$001;
$002;
$003;
$004;

gest al t CPU601 $101;

Note, to check whether the native system
architecture is a MC680x0 or a PowerPC
microprocessor, use the

gest al t SysArchi t ect ur e selector.

The Notification Manager attribute.

CONST
gestaltNotificationPresent = 0;

A bitmap that describes the NuBus'" slot connector
locations. On a Macintosh Il, for example, the
return value would have bits 9 through 14 set,
indicating that 6 NuBus slots are present, at
locations 9 through 14.

General Operating System attributes, such as
whether temporary memory handles are real
handles. The low-order bits of the r esponse
parameter are interpreted as bit flags. A flag is set
to 1 to indicate that the corresponding feature is
available. Currently, the following bits are
significant:

CHAPTER 1

Gestalt Manager

Selector

gestal t CSAttr
(continued)

gest al t OSTabl e

gestaltParityAttr

gestal t PCXAt t r

gest al t Physi cal RAVSI ze

gest al t PopupAttr

gest al t Power Mgr At t r

gest al t PPCTool boxAt tr

Gestalt Manager Reference

Response bits and response values

CONST
gest al t SysZoneG owabl e
gest al t LaunchCanRet ur n
gestal t LaunchFul | Fi | eSpec
gestal t LaunchCont r ol
gest al t TenpMenSuppor t
gest al t Real TenpMenory
gest al t TenpMeniTr acked

Jabeuel 1e1s99 -

TR TR TR TR T I TR
QR ONRO

See the book Inside Macintosh: Memory for a full

explanation of the temporary memory features, and

see the book Inside Macintosh: Processes for a full
explanation of the launch control features.

The base address of the Operating System trap
dispatch table.

Information about the machine’s parity-checking
features.

CONST
gestal t HasParityCapability 0;
gestal t Parit yEnabl ed 1;

Note that parity is not considered to be enabled
unless all installed memory is parity RAM.

PC Exchange attributes.

CONST
gest al t PCXHas8and16Bi t FAT 0;
gest al t PCXHasPr oDCS 1;

The number of bytes of physical RAM currently
installed.

The attribute of the pop-up control definition.
CONST gest al t PopupPresent = 0;
Power Manager attributes.

CONST
gestal t PMyr Exi st's
gestal t PMgr CPUI dI e
gest al t PMgr SCC
gest al t PMgr Sound
gest al t PMgr Di spat chExi st's

Program-to-Program Communication (PPC)
Toolbox attributes. Note that these constants are
defined as masks, not bit numbers.

CONST

T TE TR
hroNvRO

gest al t PPCTool boxPr esent = $0000;
gest al t PPCSupport sReal Ti re = $1000;
gest al t PPCSupport sl ncomi ng = $0001;
gest al t PPCSupport sQut goi ng = $0002;

1-21

CHAPTER 1

Gestalt Manager

Selector Response bits and response values

gest al t Processor Type A constant that represents the type of
microprocessor currently running.
CONST

gest al t 68000
gestal t 68010
gest al t 68020
gest al t 68030
gest al t 68040

gest al t Qui ckdr awFeat ur es QuickDraw features.

CONST
gest al t HasCol or
gest al t HasDeepGWr | ds
gest al t HasDi r ect Pi xMaps
gest al t HasGrayi shText Or
gestal t SupportsMrroring

TR TRNTINT
ORWNP

nnononon
hoNRO

gest al t Qui ckdr awVer si on The version of QuickDraw, encoded as a revision
number in the low-order word of the return value.
The high-order byte represents the major revision
number, and the low-order byte represents the
minor revision number. For example, version 1.3 of
32-Bit QuickDraw represents QuickDraw revision
2.3;itsr esponse value is $0230.

CONST

gestaltOriginal @ = $000;
gestal t 8Bi t QD = $100;
gestal t 32Bi t QD = $200;
gestal t 32Bi t QD11 = $210;
gestalt32Bit QD12 = $220;
gestal t32Bit QD13 = $230;

Values having a major revision number of 1 or 2
indicate that Color QuickDraw is available, in
either the 8-bit or 32-bit version. These results do
not, however, indicate whether a color monitor is
attached to the system. You must use high-level
QuickDraw routines to obtain that information.

gest al t Qui ckTi neVer si on The QuickTime version.
gestaltReal ti meMyrAttr Realtime Manager attributes.
CONST
gestal t Real ti meMgr Present = O;
gest al t ResourceMgr Attr The Resource Manager attribute.
CONST

gestaltPartial Rsrcs = O;

1-22 Gestalt Manager Reference

CHAPTER 1

Gestalt Manager

Selector
gestal t ScrapMyr Attr

gestal t Scri pt Count
gestal t Scri pt Myr Ver si on

gestaltSerial Attr

gestaltSlotAttr

gestal t SoundAttr

Gestalt Manager Reference

Response bits and response values
Scrap Manager attributes.

CONST
gestal t ScrapMyr Tr ansl at i onAwar e
= 0,
gestal t Transl ati onMgr Hi nt Or der
= 1;

The number of script systems currently active.

The version number of the Script Manager (in the
low-order word of the return value).

Serial hardware attributes of the machine, such as
whether or not the GPla line is connected and can
be used for external clocking.

CONST
gest al t HasGPl aToDCDa
gest al t HasGPl aToRTxCa
gest al t HasGPl aToDCDb

Slot Manager attributes.

CONST
gestal t Sl ot Myr Exi sts
gest al t NuBusPr esent
gest al t SESI ot Pr esent
gest al t SE30SI ot Pr esent
gestal t Port abl eS|l ot Present

I n

I TR
hroNRO

Sound attributes.

CONST
gestal t St ereoCapability
gestal t St ereoM xi ng
gest al t Soundl Owvgr Pr esent
gestal t Bui | t 1 nSoundI nput
gest al t HasSoundl nput Devi ce
gest al t Pl ayAndRecord
gestal t 16Bi t Soundl O
gest al t St er eol nput
gest al t Li neLevel I nput
gest al t SndPl ayDoubl eBuf f er
gestal t Mul ti Channel s
gestal t 16Bi t Audi oSupport

CoNOORWRO

=
L

=
N

1-23

Jabeuel 1e1s99 -

1-24

CHAPTER 1

Gestalt Manager

Selector

gest al t SoundAttr
(continued)

gestal t SpeechAttr

gestal tStandardFi |l eAttr

gestal t St dNBPAt t r

gestal t SysArchitecture

Gestalt Manager Reference

Response bits and response values

If the bitgest al t St er eoCapabi | i ty is TRUE,
the available hardware can play stereo sounds. The
bit gest al t St er eoM xi ng indicates that the
sound hardware of the machine mixes both left and
right channels of stereo sound into a single audio
signal for the internal speaker. The

gest al t Soundl Ovgr Pr esent bit indicates that
the new sound input routines are available, and the
gest al t Bui | t I nSoundI nput bit indicates that a
built-in sound input device is available. The

gest al t HasSoundl nput Devi ce bit indicates
that some sound input device is available.

Note, bits 7 through 12 are not defined for versions
of the Sound Manager prior to version 3.0.

Speech Manager attributes.
CONST

get al t SpeechMyr Pr esent = 0;
get al t SpeechHasPPCd ue = 1;
Standard File Package attributes.
CONST
gest al t St andar dFi | e58 = 0;
gest al t St andar dFi | eTr ansl at i onAwar e
= 1;
gest al t St andar dFi | eHasCol or | cons
= 2,

If the gest al t St andar dFi | e58 flag bit is set,
you can call the four new procedures—

St andar dPut Fi | e, St andar dGet Fi | e,

Cust onPut Fi | e, and Cust ontet Fi | e—
introduced with System 7. (The name of the
constant reflects the enabling of selectors 5 through
8 on the trap macro that handles the Standard File
Package.)

Information about the St andar dNBP
(Name-Binding Protocol) function.

CONST
gest al t St dNBPPresent = O;

The native system architecture.

CONST
gest al t 68k = 1;
gest al t Power PC = 2;

If the gest al t 68k flag bit is set, the native
microprocessor is a MC680x0 chip. If the
gest al t Power PCflag bit is set, the native
microprocessor is a PowerPC chip.

CHAPTER 1

Gestalt Manager

Selector
gestal t TEAttr

gestal t Term\vgr At tr

gest al t Text Edi t Ver si on

gestal t ThreadMyr At t

gestal t Ti meMgr Ver si on

gest al t Tool boxTabl e
gestal tTransl ati onAttr

gest al t TSMyr Ver si on
gest al t Ver si on

gestal t VMAt tr

Gestalt Manager Reference

Response bits and response values
TextEdit attributes.

CONST
gestalt TEHasGet Hi | i teRgn = O;

Terminal Manager attributes.

CONST
gest al t Ter mM\vgr Pr esent 0;
gestal t TermvgrError String 2;

A constant that indicates which version of TextEdit
is present.

CONST
gestal t TEL
gestal t TE2
gestal t TE3
gestal t TE4
gestal t TES ;

Thread Manager attributes.

CONST
gest al t ThreadMyr Pr esent
gest al t Speci fi cMat chSupport

Jabeuel 1e1s99 -

TR TRNTINT
gRONRE

0;

1;

A constant that indicates which version of the Time
Manager is present.

CONST

gest al t St andar dTi mreMgr = 1;
gest al t Revi sedTi neMgr = 2;
gest al t Ext endedTi reMgr = 3;

The base address of the Toolbox trap dispatch table.
The Translation Manager attributes.

CONST
gestal t Transl ati onMyr Exi sts = O;

The version of the Text Services.

The version of the Gestalt Manager (in the
low-order word of the return value). The current
version is 1, corresponding to a returned value of
$0001.

The virtual memory attributes.

CONST
gest al t VMPr esent = 0;

1-25

CHAPTER 1

Gestalt Manager

The Gest al t function also accepts the following informational selectors.

A WARNING
Never infer the existence of certain hardware or software features from
the responses that Gest al t returns when you pass it an informational

selector. a
Selector Meaning
gestal t Har dwar eAt t r Low-level hardware configuration attributes.
CONST
gest al t HasVI Al = 0;
gest al t HasVI A2 = 1;
gest al t HasASC = 3;
gest al t HasSCC = 4;
gest al t HasSCSI =7
gest al t HasSof t Power OF f = 19;
gest al t HasSCSI 961 = 21;
gest al t HasSCSI 962 = 22;
gest al t HasUni ver sal ROM = 24;
The gest al t HasSCSI bit means the machine is
equipped with a SCSI implementation based on the
53C80 chip, which was introduced in the Macintosh
Plus. This bit is 0 on computers with a different SCSI
implementation. Those computers set the
gest al t HasSCSI 961 or gest al t HasSCSI 962 bit to
report a SCSI implementation based on the 53C96 chip
installed on an internal or external bus, respectively.
The gest al t HasSCCbit is normally returned as 0 on
the Macintosh IIfx and Macintosh Quadra 900
computers, which have intelligent 1/0 processors that
isolate the hardware and make direct access to the SCC
impossible. However, if the user has used the
Compatibility Switch control panel to enable
compatibility mode, gest al t HasSCCis set.
gestal t Machi nel con The icon family resource ID for the current type of
Macintosh.
gest al t Machi neType A constant that indicates the model of computer.
CONST
gestaltd assic = 1;
gest al t MacXL = 2;
gest al t Mac512KE = 3;
gest al t MacPl us = 4;
gest al t MacSE = b;
gestal t Macl | = 6;
gestal t Macl | x = 7;
gestal t Macl | cx = 8;
gest al t MacSE030 =09
gestal t Port abl e = 10;

1-26 Gestalt Manager Reference

CHAPTER 1

Gestalt Manager

Selector

gest al t Machi neType
(continued)

Gestalt Manager Reference

Meaning

gestal t Macl | ci

gestal t Macl | fx

gestal t MacC assi ¢
gestal t Macl | si

gestal t MacLC

gest al t Quadr a900

gest al t Power Book170
gest al t Quadr a700
gestaltC assicl |

gest al t Power Book100
gest al t Power Book140
gest al t Quadr a950

gestal t MacLCl | |

gest al t Power BookDuo210
gestal t MacCentri s650
gest al t Power BookDuo230
gest al t Power Book180
gest al t Power Book160
gest al t MacQuadr a800
gestal t MacLCl |

gest al t Power BookDuo250
gestal t Macl | vi

gest al t Per f or mra600
gestal t Macl | vx

gest al t MacCol or d assi ¢
gest al t Power Book165c¢
gestal t MacCentri s610
gest al t MacQuadr a610
gest al t Power Book145
gestal t MacLC520

gest al t MacCent ri s660AV
gest al t Power Book180c
gest al t Power BookDuo270c
gest al t MacQuadr a840AV
gest al t Power Book165
gestal t MacTV

gestal t MacLCA75

gestal t MacLC575

gest al t MacQuadr a605
gest al t Power Mac8100_80
gest al t Power Mac6100_60
gest al t Power Mac7100_66

11;
13;
17,
18;
19;
20;
21;
22;
23;
24;
25;
26;
27;
29;
30;
32;
33;
34;
35;
37;
38;
44,
45;
48;
49;
50;
52;
53;
54;
56;
60;
71;
77;
78;
84;
88;
89;
92;
94,
65;
75;
112;

kMachi neNaneStr| D = -16395;

To obtain a string containing the machine’s name, you
can pass the returned value to the Get | ndStri ng
procedure as an index into the resource of type ' STR#'
in the System file having the resource ID defined by the
constant kMachi neNameStr | D.

CONST

1-27

Jabeuel 1e1s99 -

CHAPTER 1

Gestalt Manager

Selector
gest al t ROVSI ze

gest al t ROWer si on

gest al t Syst emVer si on

Data Structures

Meaning

The size of the installed ROM, in bytes. The value is
returned in only one word.

The version number of the installed ROM (in the
low-order word of the return value).

The version number of the currently active System file,
represented as four hexadecimal digits in the low-order
word of the return value. For example, if your
application is running in version 7.0.1, then Gest al t
returns the value $0701. Ignore the high-order word of
the returned value.

This section describes the record filled in by the SysEnvi r ons function.

The System Environment Record

The SysEnvi r ons function fills in a system environment record, which describes some
aspects of the software and hardware environment.

TYPE SysEnvRec =
RECORD
envi ronsVer si on:
machi neType:
syst enVer si on:
processor:
hasFPU:
hasCol or QD:
keyBoar dType:
at Drvr Ver sNum
sysVRef Num
END;

FIELD DESCRIPTIONS

1-28

envi ronsVer si on

| nt eger;
I nt eger;
I nt eger;
I nt eger;
Bool ean;
Bool ean;
| nt eger;
I nt eger;
I nt eger;

The version number of the SysEnvi r ons function that was used to
fill in the record.

When you call SysEnvi r ons, you specify a version number to
ensure that you receive a system environment record that matches
your expectations, as explained in the description of SysEnvi r ons
beginning on page 1-32. If you request a more recent version of
SysEnvi r ons than is available, SysEnvi r ons places its own
version number in the envi r onsVer si on field and returns a
function result envVer sTooBi g.

Gestalt Manager Reference

CHAPTER 1

Gestalt Manager

nmachi neType

Note

A code for the Macintosh model, which can be one of these values:

CONST
env XL = -2; {Macintosh XL}
envMac = —-1; {Macintosh with 64K }
{ ROM
envMachUnknown = 0; {unknown nodel, }
{ after Macintosh }
{ 11fx}
env512KE = 1; {Macintosh 512K }
{ enhanced}
envMacPl us = 2; {Macintosh Pl us}
envSE = 3; {Macintosh SE}
envMacl | 4; {Macintosh |1}
envMacl | x = 5; {Macintosh IIx}
envMacl | cx = 6; {Macintosh I1lcx}
envSE30 = 7; {Macintosh SE30}
envPort abl e = 8; {Macintosh Portabl e}
envMacl | ci = 9; {Macintosh Ilci}
envMacl | f x = 11; {Macintosh IIfx}

Use Gestalt to obtain information about machine types not

listed above. O
syst emVer si on

processor

hasFPU

hasCol or @D

The version number of the current System file, represented as two
byte-long numbers with one or more implied decimal points. The
value $0410, for example, represents system software version 4.1.

If you call SysEnvi r ons when a system earlier than 4.1 is running,
the MPW glue places $0 in this field and returns a result code of
envNot Present .

A code for the microprocessor, which can be one of these values;

CONST
envCPUUnknown = 0; {unknown }

{ mcroprocessor}
env68000 = 1, {M268000}
env68010 = 2; {Mc68010}
env68020 = 3; {MC68020}
env68030 = 4; {M68030}
env68040 = 5; {MC68040}

A Boolean value that indicates whether hardware floating-point
processing is available.

A Boolean value that indicates whether Color QuickDraw is
present. This field says nothing about the presence of a color
monitor.

Gestalt Manager Reference 1-29

Jabeuel 1e1s99 -

CHAPTER 1

Gestalt Manager

keyboar dType A code for the keyboard type, which can be one of these values:

CONST
envUnknownKbd =

envMacKbd =
envMacAndPad =
envMacPl usKbd =
envAExt endKbd =
env St andADBKbd =
envPrt bl ADBKbd =
envPrt bl | SOKbd =
env St dl SOADBKbd =
envExt | SOADBKbd =

Note

e

CoNoaRONRE

{Maci ntosh Plus with }

{ keypad}

{ Maci nt osh}

{Maci ntosh wi th keypad}
{Maci ntosh Pl us}

{ Appl e ext ended}
{standard ADB}

{Maci ntosh Port abl e ADB}
{Maci ntosh Portabl e | SG
{standard | SO ADB}

{ext ended | SO ADB}

Use Gestalt to obtain information about keyboard types not

listed above. O

If the Apple Desktop Bus is in use, this field returns the keyboard
type of the keyboard on which the last keystroke was made.

at Drvr Ver sNum The version number of the AppleTalk driver (specifically, the .MPP
driver) currently installed. If AppleTalk is not loaded, this field is 0.

sysVRef Num The working-directory reference number of the folder or volume
that holds the open System file.

Gestalt Manager Routines

Getting Information About the Operating Environment

This section describes the three Gestalt Manager functions, Gest al t, NewGest al t , and
Repl aceCest al t . It also describes the SysEnvi r ons function, which can give you a
brief description of the operating environment when Gest al t is not available. The

Gestalt Manager functions allow you to

» find out what hardware and software features are present

= add new selectors to those understood by the Gest al t function

= replace the functions associated with known selectors

1-30

This section describes both the Gest al t function, which you use to find out about the
operating environment, and the SysEnvi r ons function, which you use only when

Gest al t is not available.

Gestalt Manager Reference

CHAPTER 1

Gestalt Manager

Gestalt
You can use the Gest al t function to obtain information about the operating
environment. You specify what information you need by passing one of the selector
codes recognized by Gestalt.
FUNCTI ON Gestalt (selector: OSType; VAR response: Longlnt): OSErr;
sel ector The selector code for the information you need.
response On exit, the requested information whose format depends on the selector

code specified in the selector parameter.
DESCRIPTION

The Gest al t function places the information requested by the sel ect or parameter in
the variable parameter r esponse. Note that Gest al t returns the response from all
selectors in a long word, which occupies 4 bytes. When not all 4 bytes are needed, the
significant information appears in the low-order byte or bytes. Although the r esponse
parameter is declared as a variable parameter, you cannot use it to pass information to
Gestal t ortoaCestalt selector function. Gest al t interprets the r esponse
parameter as an address at which it is to place the result returned by the selector
function specified by the sel ect or parameter. Gest al t ignores any information
already at that address.

The Apple-defined selector codes fall into two categories: environmental selectors, which
supply specific environmental information you can use to control the behavior of your
application, and informational selectors, which supply information you can’t use to
determine what hardware or software features are available. You can use one of the
selector codes defined by Apple (listed in the “Constants” section beginning on

page 1-14) or a selector code defined by a third-party product.

Selectors with the suffix At t r return a 32-bit response value in which the individual bits
represent specific attributes. The constants listed for these response values represent
bit numbers.

SPECIAL CONSIDERATIONS

When passed one of the Apple-defined selector codes, the Gest al t function does not
move or purge memory and therefore may be called at any time, even at interrupt time.
However, selector functions associated with non-Apple selector codes might move or
purge memory, and third-party software can alter the Apple-defined selector functions.
Therefore, it is safest always to assume that Gest al t could move or purge memory.

Gestalt Manager Reference 1-31

Jabeuel 1e1s99 -

CHAPTER 1

Gestalt Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The registers on entry and exit for the Gest al t function are

Registers on entry
Do Selector code

Registers on exit

A Response
0
Do Result
code
nokErr 0 No error
gest al t UnknownEr r —-5550 Could not obtain the response
gest al t Undef Sel ect orErr -5551 Undefined selector

See the documentation of the features you’'re interested in for more information on the
various response values and their meanings.

See “Interpreting Gestalt Responses” beginning on page 1-9 for a discussion of the
different response value formats and a sample function that checks an attributes value
for a specific feature.

See “Getting Information About the Operating Environment” beginning on page 1-6 for
a sample function that calls the Gest al t function and checks the validity of the return
value. See the “Constants” section beginning on page 1-14 for a list of selector codes
defined by Apple and the formats of their responses.

SysEnvirons

1-32

You can use the SysEnvi r ons function when you need information about the operating
environment and the Gest al t function is not available.

FUNCTI ON SysEnvirons (versi onRequested: |nteger;
VAR t heWorl d: SysEnvRec): OSErr;

ver si onRequest ed
The version number of SysEnvi r ons you expect.

t hewsrl d A system environment record.

Gestalt Manager Reference

DESCRIPTION

CHAPTER 1

Gestalt Manager

The SysEnvi r ons function fills in a system environment record identified by the
variable parameter t heWor | d. It returns a result code.

You use the ver si onRequest ed parameter to tell SysEnvi r ons which version of
the system environment record you’re prepared to receive. This chapter documents
version 2, which contains the same fields as version 1 but recognizes a more complete
set of descriptive constants. Apple will raise the SysEnvi r ons version number in the
future only if the record structure changes. You can trust any future revision to return
the version 2 record if you request it, although the record might contain whatever
constants are then current. To request the most recent version, you can use the
constant cur SysEnvVer s:

CONST
cur SyseEnvVers = 2;

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the SysEnvi r ons function are

Registers on entry

A Address of a system environment record
0

DO Version requested

Registers on exit

A Address of a system environment record
0

DO Result code

RESULT CODES
nokErr 0 No error
envNot Pr esent -5500 SysEnvi r ons trap not present
envBadVer s -5501 Nonpositive version number passed
envVer sTooBi g -5502 Requested version of SysEnvi r ons not available
SEE ALSO
See “The System Environment Record” beginning on page 1-28 for a detailed description
of the system environment record.
Adding a Selector Code
You can add your own selector code using the NewGest al t function.
Gestalt Manager Reference 1-33

Jabeuel 1e1s99 -

NewGestalt

CHAPTER 1

Gestalt Manager

DESCRIPTION

You can use the NewGest al t function to add a selector code to those already recognized
by Gestal t.

FUNCTI ON NewCestalt (selector: OSType;
gestal t Function: Sel ector Functi onUUP)
OSErr;

sel ect or The selector code you’re adding, which is a four-character sequence of
type OSType.

gestal t Functi on
A pointer to the selector function that Gest al t executes when it receives
the new selector code.

The NewGest al t function registers a specified selector code with the Gestalt Manager
so that when Gest al t is called with that selector code, the specified selector function is
executed. The function result of NewGest al t is a result code.

Before calling NewGest al t, you must define a selector function and install it in the
system heap. The selector function must conform to the interface defined in “Adding a
New Selector Code” beginning on page 1-10.

Registering with the Gestalt Manager is a way for software such as system extensions to
make their presence known to potential users of their services.

SPECIAL CONSIDERATIONS

The NewGest al t function might move memory and should not be called at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

1-34

The registers on entry and exit for the NewGest al t function are

Registers on entry

A Address of new selector function
0

Do Selector code
Registers on exit

DO Result
code

Gestalt Manager Reference

RESULT CODES

SEE ALSO

CHAPTER 1

Gestalt Manager

nokErr 0 No error
mentul | Err -108 Ran out of memory
gestal t DupSel ect or Err -5552 Selector already exists o
gestal tLocati onErr -5553 Function not in system g,
heap =
=
Q
>
QD
«Q
@

See “Adding a New Selector Code” beginning on page 1-10 for a sample selector
function and a sample procedure that installs it. For information about the Gest al t
function, see page 1-31.

Modifying a Selector Function

You can install your own selector function for an established selector code using the
Repl aceGest al t function.

ReplaceGestalt

DESCRIPTION

You can use the Repl aceGest al t function to replace the function that is currently
associated with a selector.

FUNCTI ON Repl aceGestalt (selector: OSType;
gestal t Function: Sel ectorFuncti onUUP;
VAR ol dGest al t Functi on:
Sel ect or Functi onUUP) : OSErr;

sel ect or The selector code for the function being replaced.

gestal t Function
A pointer to the new selector function.

ol dGest al t Functi on
On exit, a pointer to the function previously associated with the specified
selector.

The Repl aceCest al t function replaces the selector function associated with an
existing selector code.

So that your function can call the function previously associated with the selector,
Repl aceCest al t places the address of the old selector function in the

ol dGest al t Funct i on parameter. If Repl aceGest al t returns an error of any type,
then the value of ol dGest al t Funct i on is undefined.

Gestalt Manager Reference 1-35

CHAPTER 1

Gestalt Manager

SPECIAL CONSIDERATIONS
The Repl aceGest al t function might move memory and should not be called at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for the Repl aceGest al t function are

RESULT CODES

SEE ALSO

Registers on entry

A Address of new selector function
0

DO Selector code

Registers on exit

A Address of old selector function
0

DO Result code

noErr 0
gest al t Undef Sel ectorErr -5551
gestal tLocati onErr —-5553

See “Modifying a Selector Function” on page 1-13 for a discussion of replacing selector

No error

Undefined selector
Function not in system
heap

functions. See “Adding a New Selector Code” beginning on page 1-10 for a sample

selector function.

Application-Defined Routines

This section describes the Gest al t selector function, which is the function Gest al t

executes to retrieve the information specified by a selector.

The Selector Function

1-36

If you add your own selector code or modify an existing selector code, you supply a

selector function that returns the information associated with the selector.

Gestalt Manager Reference

CHAPTER 1

Gestalt Manager

MySelectorFunction

The selector function is responsible for placing the requested information in the
r esponse parameter and returning an appropriate error code.

FUNCTI ON MySel ect or Functi on (sel ector: OSType;
VAR response: Longlnt): OSErr;

sel ect or The selector code that triggers the function.
response On exit, the information.

DESCRIPTION

The selector function places the requested information in the r esponse parameter and
returns a result code. If the information is not available, the selector function returns the
appropriate error code, which Gest al t returns as its function result.

A selector function can call Gest al t or even other selector functions. It must reside in
the system heap.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for the selector function are

Registers on entry
Do Selector code

Registers on exit

A Response

0

Do Result

code

RESULT CODES

nokErr 0 No error

gest al t UnknownEr r -5550 Could not obtain the response
SEE ALSO

See “Adding a New Selector Code” beginning on page 1-10 for a sample selector
function and a procedure that installs it in the system heap. For information about the
NewGest al t function, see page 1-34. For information about the Repl aceGest al t
function, see page 1-35.

Gestalt Manager Reference 1-37

Jabeuel 1e1s99 -

CHAPTER 1

Gestalt Manager

Summary of the Gestalt Manager

Pascal Summary

Constants

Environmental Selector Codes

CONST
gest al t Addr essi nghModeAttr =
gestal tAliasMgrAttr =
gest al t Appl eEvent sAttr =
gest al t Appl eTal kVer si on =
gest al t ATal kVer si on =
gest al t AUXVer si on =
gestal t CFMAt tr =
gestal tCl oseVi ewAttr =
gest al t Conponent Myr =
gest al t Conpr essi onMyr =

gestal t ConnMgr At tr =
gestal t CRVAL t r =

gest al t CTBVer si on =
gest al t DBAccessMyrAttr =
gestal tDi ctionaryMgrAttr =
gestal t Di spl ayMyrAttr =
gestal t D spl ayMyr Ver s =
gestal t DI TLExt Attr =
gestal t DragMgr At tr =
gest al t EasyAccessAttr =
gestal t Edi ti onMgr At tr =
gest al t Ext Tool boxTabl e =
gestal t Fi nderAttr

gest al t Fi ndFol der Attr
gestal t Fi rst Sl ot Nunber
gestal t Font Mgr At tr
gest al t FPUType

1-38 Summary of the Gestalt Manager

addr ' ;
alis';
evnt';
atl k' ;
at kv'
al/ ux';
cfrg'
' BSDha' ;
cpnt';
icnp'

conn';
crm’

ctbv';
dbac' ;
dict';
dply';
dpl v’
ditl';
drag'
easy';
edtn';
xttt';

"fndr’

"fold';
"sltl';
"font';

"fpu

{addr essi ng- node attri butes}
{Al'i as Manager attri butes}
{Appl e events attributes}

{old format AppleTal k versi on}
{new format AppleTal k versi on}
{AUX version, if present}
{Code Fragnent Manager attr}
{Cl oseView attributes}

{ Conponent Manager version}

{1 mage Conpressi on Manager }

{ version}

{Connecti on Manager attri butes}
{Communi cati on Resource }

{ Manager attr}

{ Comm Tool box versi on}

{Data Access Manager attri butes}
{Dictionary Manager attri butes}
{Di spl ay Manager attri butes}
{Di spl ay Manager version}

{Di al og Manager extensions}
{Drag Manager attributes}

{Easy Access attributes}

{Edi ti on Manager attri butes}
{Tool box trap di spatch tabl e}
{Finder attributes}

{Fi ndFol der attri butes}

{first physical slot}

{Font Manager attributes}
{floating-point unit type}

CHAPTER 1

Gestalt Manager

gestal t FSAttr

gestal t FXfriMgr At tr
gestal t Hardwar eAt t r
gestal t Hel pMgr At tr
gestaltlconUilitiesAttr
gest al t Keyboar dType
gest al t Logi cal PageSi ze
gest al t Logi cal RAMSI ze
gest al t LowivenorySi ze
gestalt M scAttr

gest al t M xedMbdeVer si on
gest al t MMUType

gestal t Nati veCPU ype

gestaltNotificati onMyrAttr

gest al t NuBusConnect or s
get st al t NuBusSl ot Count
gestal t OSAttr

gest al t OSTabl e

gestaltParityAttr

gestal t PCXAt t r

gest al t Physi cal RAMVSI ze
gest al t PopupAttr

gest al t Power Mgr At t r

gest al t PPCTool boxAt tr
gest al t Processor Type
gest al t Qui ckdr awFeat ur es
gest al t Qui ckdr awVer si on
gest al t Qui ckTi ne
gestaltReal ti meAttr

gest al t ResourceMgr Attr
gestal t ScrapMyrAttr
gestal t Scri pt Count

gestal t Scri pt Myr Ver si on
gestaltSerial Attr

gestal t SoundAt tr

gest al t SpeechAttr

gestal t StandardFi | eAttr
gestal t St ANBPAt t r

gestal t SysArchitecture

gestal t TEAt tr

gestal t Termvgr At tr

Summary of the Gestalt Manager

"fxfr';
"hdwr ' ;

" hel p'

i con'
"kbd '
pgsz’
I ram
| mem
m sc'
m xd'

cput'’
nngr'
sltc'
nubs’
0s
ostt'

prty’
pcxg’
ram'
pop!’
powr
ppc

proc'
gdrw

qtim
renr!
rsrc'
scra'
scr#'

scri’
ser
snd
ttsc'
stdf'
nl up'
sysa'

"term

teat';

{file systemattributes}
{File Transfer Manager attr}
{hardware attri butes}

{Hel p Manager attributes}
{lcon Uilities attributes}
{keyboard type code}

Jabeuel 1e1s99 -

{l ogi cal page size}
{l ogi cal RAM si ze}
{size of |ow nenory}

{m scel | aneous attri butes}
{M xedMode versi on}

{ MW type}

{Native CPU type}
{Notification Manager attr}
{NuBus connector bit map}
{count of |ogical NuBus sl ots}
{OQperating System attributes}
{base address of Operating }
{ Systemtrap dispatch table}
{parity attributes}

{PC exchange attri butes}
{physi cal RAM si ze}

{pop-up ' CDEF' attributes}
{Power Manager attri butes}
{PPC Tool box attri butes}

{m croprocessor type code}

{ Qui ckDr aw f eat ur es}

{ Qui ckDr aw ver si on}

{Qui ckTi ne version}

{Real ti me Manager attri butes}
{Resource Manager attri butes}
{Scrap Manager attri butes}
{nunber of active script }

{ systens}

{Script Manager version}
{serial hardware attributes}
{sound attri butes}

{Speech Manager attri butes}
{Standard File attributes}
{Standar dNBP attri but es}
{native system architecture}
{TextEdit attri butes}

{Term nal Manager attri butes}

1-39

CHAPTER 1

Gestalt Manager

gest al t Text Edi t Ver si on ='te '; {TextEdit version code}
gestal t ThreadMgr At t = "thds'; {Thread Manager attri butes}
gest al t Ti meMgr Ver si on ='tmgr'; {Ti me Manager version code}
gestal tTransl ati onAttr = "xlat'; {Transl ati on Manager attri butes}
gest al t TSMyr Ver si on = "tsnv'; {Text Services Manager version}
gest al t Tool boxTabl e = "tbtt'; {base address of Tool box trap }
{ dispatch tabl e}
gest al t Ver si on = 'vers'; {Gestalt version}
gestal t VMAt t r ='vm ', {virtual nenory attributes}
Informational Selector Codes
CONST
gestal t Har dwar eAt t r = "hdw'; {hardware attri butes}
gest al t Machi nel con ='mcn'; {machine "ICON/'cicn' res |D}
gest al t Machi neType = '"mach'; {Maci nt osh nodel code}
gest al t ROVSEI ze ='rom"'; {ROM si ze}
gest al t ROWer si on ='rom'; { ROM ver si on}
gest al t Syst enVer si on = 'sysv'; {System file version nunber}
Environmental Selector Response Values
CONST
{gest al t Addr essi ngModeAttr response bits}
gest al t 32Bi t Addr essi ng = 0; {booted in 32-bit node}
gest al t 32Bi t SysZone = 1; {32-bit conpatible system zone}
gest al t 32Bi t Capabl e = 2; {machine is 32-bit capabl e}

{gestaltAliasMyrAttr response bits}

gestal t Al i asMgr Pr esent = 0; {Al'i as Manager is present}
gestal t Al i asMyr Support sRenot eAppl et al k {Ali as Manager knows about }
=1, { renote Appl eTal k}

{gestal t Appl eEvent sAttr response bits}

gest al t Appl eEvent sPresent = 0; {Appl e events avail abl e}
gestal t Scri pti ngSupport = 1;

gest al t OSLI nSyst em 2; {OSL in systent

{gestal t ATal kVersi on rel ease stage constant s}

devel opnent = $20; {devel oprent }
al pha = $40; { al pha}

bet a = $60; { bet a}

final = $80; {final}

rel ease = $80; {rel ease}

1-40 Summary of the Gestalt Manager

CHAPTER 1

Gestalt Manager

{gestal t CFMAttr response bits}
gest al t sCFMPr esent = 0;

{gestaltC oseVi ewAttr response bits}
gestal t O oseVi ewEnabl ed = 0;
gestal t G oseVi ewDi spl ayMyr Fri endl y

= 1;

{gestal t ConnMgr Attr response bits}

gest al t ConnMgr Pr esent = 0;
gest al t ConnMgr C\VBear chFi x = 1;
gestal t ConnMgr Error Stri ng = 2;
gest al t ConnMgr Mul ti Asyncl O = 3;

{gestal t CRVAttr response bits}
gest al t CRMPr esent = 0;

gest al t CRMPer si st ent Fi x = 1;
gest al t CRMIool RsrcCal | s

n
N

{gest al t DBAccessMyr At tr
gest al t DBAccessMyr Pr esent = 0;

{gestal tDi spl ayMgr Attr response bits}
gestal t D spl ayMgr Present = 0;

{gestaltDictionaryMgrAttr
gestal tDi ctionaryMr Present = 0;
{gestal tDI TLExt Attr response bits}
gest al t DI TLExt Pr esent = 0;

{gestal t DragMgr ATt r response bits}

gest al t DragMgr Pr esent = 0;
{gest al t EasyAccessAttr response bits}
gest al t EasyAccessOf f = 0;
gestal t EasyAccessOn = 1;
gest al t EasyAccessSti cky = 2;
gest al t EasyAccessLocked = 3;

Summary of the Gestalt Manager

response bits}

{Code Fragnent Manager present}

{C oseVi ew enabl ed}

{Cl oseView conpatible with }
{ Display Mnger}

{Connecti on Manager present}
{CvAddSearch fix present}

{has CMGet Error String}

{has CWNewl OPB, CMDi sposel OPB, }
{ CVWPBRead, CMPBWIite, and }

{ CwPBIOKi I |}

Jabeuel 1e1s99 -

{ Communi cati on Resource Mnager }

{ present}
{fix for persistent tools}
{tool resource calls avail abl e}

{Data Access Manager

present}

{Di spl ay Manager Present}

response bits}

{Di ctionary Manager present}

{Di al og Manager extensions }
{ present}

{Drag Manager present}

{Easy Access
{Easy Access
{Easy Access
{Easy Access

pr esent
on}

sticky}
| ocked}

but of f}

1-41

CHAPTER 1

Gestalt Manager

{gestal tEditi onMgr Attr response bits}

gest al t Edi ti onMyr Pr esent = 0; {Edi ti on Manager present}
gestal t Edi ti onMgr Tr ansl at i onAwar e {Edi ti on Manager aware of }
= 1; { Transl ati on Manager}

{gestal tFinderAttr response bits}

gest al t Fi nder Dr opEvent = 0; {Fi nder recogni zes drop event}

gest al t Fi nder Magi cPl acenent = 1; {Fi nder supports nagic icon }
{ placenent}

gest al t Fi nder Cal | SAEPr ocess = 2; {Finder calls }

{ AEProcessAppl eEvent}
gest al t Fi nder OSLConpl i ant Fi nder
= 3; {Finder is scriptable and }
{ recordabl e}
get st al t Fi nder Support s4GBVol unes
= 4; {Fi nder handl es 4GB vol unes}
get st al t Fi nder Handl esCFMFai | ur es
= b; {Fi nder handl es Code Fragnent }
{ Manager errors}
{Fi nder supports Drag Manager }
{ cliping files}

get st al t Fi nder HasC i ppi ngs

I
2

{gestal t Fi ndFol der Attr response bits}
gest al t Fi ndFol der Present = 0; { Fi ndFol der avai |l abl e}

{gestal t Font Mgr Attr response val ues}
gestal tQutlineFonts = 0; {outline fonts supported}

{gestal t FPUType response val ues}

gest al t NoFPU = 0; {no FPU}
gestal t 68881 = 1; { Mot orol a 68881 FPU}
gest al t 68882 = 2; { Mot orol a 68882 FPU}
gest al t 68040FPU = 3; {built-in 68040 }

{ floating-point processing}
{gestal t FSAttr response bits}
gest al t Ful | Ext FSDi spat chi ng = 0; {new HFSDi spatch avai |l abl e}
gest al t HasFSSpecCal | s = 1; {has FSSpec call s}
gest al t HasFi | eSyst emvanager = 2; {has File System Manager}
gest al t HasFi | eSyst emvanager = 3; {supports dynanic | oadi ng}
gest al t FSSupport s4G@GBVol s = 4; {supports 4 gigabyte vol une}
gest al t HasExt endedDi skl ni t = 6; {has extended disk }

{ initialization calls}

1-42 Summary of the Gestalt Manager

CHAPTER 1

Gestalt Manager

{gestal t FXfrMgr Attr response bits}

gest al t FXfr Mgr Pr esent = 0;
gestaltFXfrMgrMul tiFile = 1;
gestal t FXfrMgrError String = 2;

{gestal tHel pMgr Attr response bits}
gest al t Hel pMgr Pr esent = 0;

{gestaltlconUtilitiesAttr
gestaltlconUtilitiePresents

response val ue}
= 0;

{gest al t Keyboar dType response val ues}
gest al t MacKbd = 1;

gest al t MacAndPad = 2;
gest al t MacPl usKbd = 3;
gest al t Ext ADBKbd = 4;
gest al t St dADBKbd = b;
gestal t Prt bl ADBKbd = 6;
gestal t Prt bl I SOKbd =7,
gest al t St dl SOADBKbd = 8;
gest al t Ext | SOADBKbd = 9;
gest al t ADBKbdI | = 10;
gest al t ADBI SOKbd] | = 11;
gest al t Pwr Book ADBKbd = 12;
gest al t Pwr Book| SOQADBKbd = 13;
gest al t Appl eAdj ust Keypad = 14;
gest al t Appl eAdj ust ADBKbd = 15;
gest al t Appl eAdj ust | SOKbd = 16;

{gestaltM scAttr response bits}
gestaltScrollingThrottle = 0;
gest al t Squar eMenuBar =

N

{gestal t MMUType response val ues
gest al t NoMWJ =
gestal t AMUJ =
gestal t 68851 =
gestal t 68030MWJ =
gestal t 68040V =
gest al t EMMU1 =

aRONREO

{gestal t Nati veCPUt ype response val ues}

gest al t CPU68000 = $000;
gest al t CPU68010 = $001;
gest al t CPU68020 = $002;

Summary of the Gestalt Manager

{File Transfer Manager present}
{supports FTSend and FTRecei ve}
{supports FTGet ErrorString}

{Hel p Manager present}

Jabeuel 1e1s99 -

{lcon Uilities are present}

{ Maci nt osh}

{Maci ntosh wi th keypad}
{Maci nt osh Pl us}
{ext ended ADB}
{standard ADB}
{Portabl e ADB}
{Portabl e | SO ADB}
{1 SO st andard ADB}
{1SO ext ended ADB}
{ADB |1}

{1SO ADB |1}

{ Power Book ADB}

{ Power Book | SO ADB}
{ Adj ust abl e Keypad}
{ Adj ust abl e ADB}
{Adj ust abl e | SC

{scrolling throttle is on}
{menu bar is square}

{no MV}

{Mac |l address nanagenent
{ Mot orol a 68851 PMWJ}
{built-in 68030 MV}
{built-in 68040 MV}

{emul ated MWJ type 1}

unit}

{Maci nt osh 68000 CPU}
{Maci ntosh 68010 CPU}
{Maci nt osh 68020 CPU}

1-43

CHAPTER 1

Gestalt Manager

gest al t CPU68030 = $003;
gest al t CPU68040 = $004;
gest al t CPU601 = $101;

{gestaltNotificationMgrAttr response bits}

gestal t NotificationPresent = 0;

{gestal t CSAttr response bits}

gest al t SysZoneG owabl e = 0;
gestal t LaunchCanRet ur n = 1;
gest al t LaunchFul | Fi | eSpec = 2;
gest al t LaunchCont r ol = 3;
gest al t TenpMenSupport = 4;
gest al t Real TempMenory = b;
gest al t TempMenilr acked = 6;

{gestaltParityAttr response bits}
gestal tHasParityCapability = 0;
gestal t Pari t yEnabl ed = 1;

{gestal t PCXAttr response bits}
gest al t PCXHas8and16Bi t Fat

I
L

gest al t PCXHasPr oDOS = 1;

{gestal t PopupAttr response bits}
gest al t PopupPr esent = 0;

{gestal t Power Mgr Attr response bits}

gest al t PMyr Exi st s = 0,
gestal t PMgr CPUI dl e = 1;
gest al t PMgr SCC = 2;
gest al t PMyr Sound = 3;
gest al t PMyr Di spat chExi st's = 4,

{gest al t PPCTool boxAttr response nasks}

gest al t PPCTool boxPr esent = $0000;
gest al t PPCSupport sReal Ti ne = $1000;
gest al t PPCSupport sl ncom ng = $0001;

1-44 Summary of the Gestalt Manager

{Maci nt osh 68030 CPU}
{Maci ntosh 68040 CPU}
{ Power PC 601 CPU}

{Notification Manager present}

{system heap can grow}

{can return from | aunch}
{LaunchAppl i cati on avail abl e}
{Process Manager avail abl e}
{tenporary nenory support }

{ avail abl e}

{tenmporary menory handl es are }
{ real}

{tenporary nenory handl es are}
{ tracked}

{machi ne can check parity}
{parity RAMis install ed}

{PC exchange supports both }
{ 8 and 16 bit FATs}
{PC exchange supports ProDos}

{pop-up 'CDEF' is present}

{ Power Manager is present}
{CPU can idl e}

{ Power Manager can stop SCC }

{ cl ock}

{Power Manager can turn off }
{ sound power}

{ Power Manager dispatch exi sts}

{PPC Tool box is present;

{ PPClnit has been call ed}
{supports real -tine delivery}
{accepts sessions fromrenote }

CHAPTER 1

Gestalt Manager

{ conputers}
gest al t PPCSupport sQut Goi ng = $0002; {can initiate sessions with }
{ renote conputers}

{gestal t Processor Type response val ues}

gest al t 68000 = 1; {68000 mi croprocessor}
gestal t 68010 = 2; {68010 mi croprocessor}
gest al t 68020 = 3 {68020 mi croprocessor}
gestal t 68030 = 4; {68030 mi croprocessor}
gest al t 68040 = b; {68040 mi croprocessor}

g~ WN

{gestal t Qui ckdr awFeat ures response bits}

gest al t HasCol or = 0; {Col or Qui ckDraw present}

gest al t HasDeepGWr | ds =1, {graphics worlds can be deeper }
{ than 1 bit}

gestal t HasDi r ect Pi xMaps = 2; {Pi xMaps can be direct }

{ (16- or 32-bit)}
gest al t HasGrayi shText O = 3; {supports text node }

{ grayishText O}
gestal t SupportsMrroring = 4, {supports video nmirroring }

{ using the Display Manager}

{gestal t Qui ckdrawMer si on response val ues}

gestaltOrigi nal @D = $000; {original 1-bit QuickDraw}
gestal t 8Bi t QD = $100; {8-bit QuickDraw}

gestal t 32Bi t QD = $200; {32-Bit QuickDraw vers. 1.0}
gestal t 32Bi t QD11 = $210; {32-Bit QuickDraw vers. 1.1}
gest al t 32Bi t QD12 = $220; {32-Bit QuickDraw vers. 1.2}
gestal t 32Bi t QD13 = $230; {32-Bit QuickDraw vers. 1.3}

{gestaltReal ti neAttr response bits}

gest al t Real ti meMgr Pr esent = 0; {Real ti me Manager present}
{gestal t ResourceMyrAttr response bits}
gestal tPartial Rsrcs = 0; {partial resources supported}

{gestaltScrapMyrAttr response bits}
gest al t Scr apMyr Tr ansl at i onAwar e

= 0; {aware of Transl ation Manager}
gestal t Transl ati onMgr H nt Or der

=1, {hint order reversal present}

Summary of the Gestalt Manager 1-45

Jabeuel 1e1s99 -

CHAPTER 1

Gestalt Manager

{gestaltSerial Attr response bits}

gest al t HasGPl aToDCDa = 0;
gest al t HasGPl aToRTxCa = 1;
gest al t HasGPl aToDCDb = 2;

{gestal t SoundAttr response bits}

gestal t StereoCapability = 0;
gestal t St er eoM xi ng = 1;
gest al t Soundl Ovgr Pr esent = 3;
gestal t Bui | t I nSoundl nput = 4;
gest al t HasSoundl nput Devi ce = b;
gest al t Pl ayAndRecor d = 6;
get stal t 16Bi t Soundl O =7
get stal t St er eol nput = 8;
get st al t SndPl ayDoubl eBuf f er = 10;
getstal t Mul ti Channel s = 11;
get stal t 16Bi t Audi oSuuport = 12;

{gestal t SpeechAttr response bits}
gest al t SpeechMyr Pr esent = 0;
gest al t SpeechHasPPCd ue =1,

{gestaltStandardFil eAttr response bits}

get al t St andar dFi | €58 = 0;
gest al t St andar dFi | eTr ansl ati onAwar e
=]_,
gest al t St andar dFi | eHasCol or | cons
= 2;

{gestalt St dNBPAttr response bits}
gest al t St dNBPPr esent = 0;

{gestalt SysArchitecture response bits}

gest al t 68k = 1;
gest al t Power PC = 2;

{gestal t TEAttr response bits}
gestal t TEHasGet Hi | i t eRgn

1
e

1-46 Summary of the Gestalt Manager

{GPlI connected to DCD on port A}
{GPl connected to RTxC on }

{ port A}

{GPlI connected to DCD on port B}

{stereo capability present}
{stereo mixing on internal }

{ speaker}

{sound input routines present}
{built-in input device present}
{sound i nput device present}
{built-in hardware can play }
{ and record sinmultaneousl vy}
{sound hardware can play and }
{ record 16-bit sampl es}
{sound hardware can }

{ record steore}

{SndPl ayDoubl e buffer present}
{nul tiple channel support}
{16-bit audi o data support ed}

{Speech Manager present}
{Speech Manager has native PPC }
{ glue for API}

{has functions new with 7.0}
{aware of Transl ation Manager}

{di al og boxes use snall color }
{ icons}

{StandardNBP i s present}

{ MC680x0 architecture}
{ Power PC ar chi t ect ure}

{TextEdit has TEGet HiliteRgn}

CHAPTER 1

Gestalt Manager

{gestalt Term\Wgr Attr response bits}
gest al t Ter m\vgr Pr esent = 0;
gestal t Term\vgrError String = 2;

{gestal t Text Edi t Versi on response val ues}

gestal t TE1 = 1;
gestal t TE2 = 2;
gestal t TE3 = 3;
gestal t TE4 = 4;
gestal t TES = b;

{gestal t ThreadMgr Attr response bhits}
gestal t ThreadMgr Pr esent = 0;
gest al t Speci fi cMat chSupport 1;

{gestal t Ti meMgr Ver si on response val ues}

gest al t St andar dTi neMyr = 1;
gest al t Revi sedTi meMyr = 2;
gest al t Ext endedTi neMyr = 3;

{getstaltTransl ati onAttr response codes}
gestal t Transl ati onMgr Exi st's = 0;

{gestalt VMAttr response bits}
gest al t VMPr esent = 0;

Informational Selector Response Values

CONST

{gestal t Har dwar eAttr response bits}
gest al t HasVI Al = 0;
gest al t HasVI A2 = 1;
gest al t HasASC = 3;
gest al t HasSCC = 4;
gest al t HasSCSI =7,
gest al t HasSof t Power Of f = 19;
gest al t HasSCSI 961 = 21;
gest al t HasSCSI 962 = 22;
gest al t HasUni ver sal ROM = 24,

Summary of the Gestalt Manager

{Term nal Manager present}
{supports error string }
{ function}

{in Macllci ROM
{with 6.0.4 scripts on Mac llci}

{with 6.0.4 scripts on other }
{ machi nes}

{in 6.0.5 and 7.0}

{ Text W dt hHook avai | abl e}

{Thread Manger present}
{Thread Manager supports }
{ exact match creation option}

{standard Ti me Manager}
{revised Tine Manager}
{extended Ti me Manager}

{Transl ati on Manager present}

{virtual nenory present}

{has VI Al chi p}

{has VI A2 chi p}

{has Appl e sound chi p}

{has SCC}

{has SCsI}

{capabl e of software power off}
{has 53C96 SCSI on internal bus}
{has 53C96 SCSI on external bus}
{has universal ROV

1-47

Jabeuel 1e1s99 -

CHAPTER 1

Gestalt Manager

{gest al t Machi neType response val ues}
gestaltdC assic =1, {Maci ntosh 128K}

gest al t MacXL = 2; {Maci nt osh XL}

gest al t Mac512KE = 3; {Maci nt osh 512K enhanced}
gest al t MacPl us = 4, {Maci ntosh Pl us}

gest al t MacSE = b; { Maci nt osh SE}

gestal t Macl | = 6; {Maci ntosh |1}

gestal t Macl | x =7, {Maci ntosh 11x}
gestal t Macl | cx = 8; {Maci ntosh 11cx}

gest al t MacSE030 = 9; {Maci nt osh SE/ 30}

gestal t Port abl e = 10; {Maci nt osh Port abl e}

gest al t Macl | ci = 11; {Maci ntosh Ilci}

gestal t Macl | fx = 13; {Maci ntosh I1fx}

gestal t MacC assi c = 17; {Maci ntosh C assi c}

gest al t Macl | si = 18; {Maci ntosh I1si}

gestal t MacLC = 19; {Maci ntosh LC}

gest al t Quadr a900 = 20; {Maci nt osh Quadra 900}
gest al t Power Book170 = 21; { Maci nt osh Power Book 170}
gest al t Quadr a700 = 22; {Maci nt osh Quadra 700}
gestaltd assicl | = 23; {Maci ntosh Classic |1}
gest al t Power Book100 = 24; {Maci nt osh Power Book 100}
gest al t Power Book140 = 25; {Maci nt osh Power Book 140}
gest al t Quadr a950 = 26; {Maci ntosh Quadra 950}
gestal t MacLCl | | = 27; {Maci ntosh LC 111}

gest al t Power BookDuo210 = 29; {Maci nt osh Power Book Duo 210}
gestal t MacCent ri s650 = 30; {Maci ntosh Centris 650}
gest al t Power BookDuo230 = 32; {Maci nt osh Power Book Duo 230}
gest al t Power Book180 = 33; {Maci nt osh Power Book 180}
gest al t Power Book160 = 34; {Maci nt osh Power Book 160}
gest al t MacQuadr a800 = 35; {Maci nt osh Quadra 800}
gestal t MacLCl | = 37; {Maci ntosh LC |1}

gest al t Power BookDu0250 = 38; {Maci nt osh Power Book Duo 230}
gest al t Macl | vi = 44; {Maci ntosh 11vi}

gest al t Per f or ra600 = 45; {Maci nt osh Performa 600}
gest al t Macl | vx = 48; {Maci ntosh 11 vx}

gestal t MacCol or Ol assi ¢ = 49; {Maci ntosh Col or C assi c}
gest al t Power Book165c¢ = 50; {Maci nt osh Power Book 165c}
gestal t MacCentri s610 = b52; {Maci ntosh Centris 610}
gest al t MacQuadr a610 = 53; {Maci ntosh Quadra 610}
gest al t Power Book145 = 54; {Maci nt osh Power Book 145}
getstal t MacLC520 = 56; {Maci ntosh LC 520}

get stal t MacCentri s660AV = 60; {Maci ntosh Centris 660 AV}
get st al t Power Book180c = 71; {Maci nt osh Power Book 180c}

1-48 Summary of the Gestalt Manager

CHAPTER 1

Gestalt Manager

get st al t Power BookDuo270c
get stal t MacQuadr a840AV
get st al t Power Book165
getstal t MacTV
getstal t MacLC475

get stal t MacLC575

get st al t MacQuadr a605

get st al t Power Mac8100_80
get st al t Power Mac6100_60
get st al t Power Mac7100_66

kMachi neNanmeStr | D

SysEnvirons Constants

CONST

cur SysEnvVer s

{machi ne types}

env XL
envhMac
envMachUnknown
env512KE
envMacPl us
envSE
envMacl
envMacl | x
envMacl | cx
envSE30
envPortabl e
envMacl | ci

envMacl | f x

{system environment record m croprocessor

envCPUUnknown
env68000
env68010
env68020
env68030
env68040

Summary of the Gestalt Manager

77,
78;
84;
88;
89;
92;
94;

65;
75;
112;

-16395;

CoNoahRONE

[
[

0;

aRLdE

{Maci i nt osh Power Book Duo 270c}
{Maci ntosh Quadra 840 AV}
{Maci nt osh Power Book 165}

{Maci ntosh TV}

{Maci ntosh LC 475}

{Maci ntosh LC 575}

{Maci nt osh Quadra 605}

{Power Maci nt osh 8100/ 80}
{Power Maci nt osh 6100/ 60}
{Power Maci ntosh 7100/ 66}

{' STR#' resource that }
{ contai ns machi ne nanes}

{current SysEnvirons version}

{Maci ntosh XL}

{Maci ntosh with 64K ROM
{unknown nodel, after }
{ Macintosh IIfx}

{Maci ntosh 512K enhanced}
{Maci nt osh Pl us}

{Maci nt osh SE}

{Maci ntosh 11}

{Maci ntosh |1x}

{Maci ntosh I1cx}
{Maci nt osh SE30}

{ Maci nt osh Port abl e}
{Macintosh Ilci}

{Maci ntosh I1fx}

codes}

{unknown ni cr oprocessor}
{68000 m croprocessor}
{68010 mi croprocessor}
{68020 mi croprocessor}
{68030 m croprocessor}
{68040 mi croprocessor}

1-49

Jabeuel 1e1s99 -

CHAPTER 1

Gestalt Manager

{system environnment record keyBoardType codes}

envUnknownKbd = 0; {Maci ntosh Plus with keypad}
envMacKbd = 1 { Maci nt osh}

envMacAndPad = 2 {Maci ntosh wi th keypad}
envMacPl usKbd = 3 {Maci ntosh Pl us}

envAExt endKbd = 4 { Appl e ext ended}

env St andADBKbd = b5 {standard ADB}

envPrt bl ADBKbd = 6; {Maci ntosh Port abl e ADB}
envPrt bl | SOKbd = 7 {Maci ntosh Portable | SG

env St dl SOADBKbd = 8 {standard | SO ADB}

envExt | SOADBKbd = 09 {ext ended | SO ADB}

Data Types
TYPE SysEnvRec = {system environnment record}
RECORD
envi ronsVer si on: |nteger; {SysEnvi rons versi on numnber}
machi neType: I nt eger; {Maci nt osh nodel code}
syst enVer si on: I nt eger; {System file version nunber}
processor: I nt eger; {m croprocessor type code}
hasFPU: Bool ean; {floating-point unit flag}
hasCol or QD: Bool ean; {Col or Qui ckDraw fl ag}
keyBoar dType: I nt eger; {keyboard type code}
at Drvr Ver sNum I nt eger; { Appl eTal k driver version nunber}
sysVRef Num I nt eger; {working directory reference nunber of }
{ folder or volune containing open }
{ Systemfile}
END;

Gestalt Manager Routines

Getting Information About the Operating Environment

FUNCTI ON Cest al t (sel ector: OSType;
VAR response: Longlnt): OSErr;

FUNCTI ON SysEnvi rons (versi onRequest ed: | nteger;
VAR t heWorl d: SysEnvRec): OSErr;

1-50 Summary of the Gestalt Manager

CHAPTER 1

Gestalt Manager

Adding a Selector Code

FUNCTI ON NewGCest al t (sel ector: OSType;
gestal t Functi on: Sel ect or Functi onUUP): OSErr;

Modifying a Selector Function

FUNCTI ON Repl aceGest al t (sel ector: OSType;
gestal t Function: Sel ector Functi onUUP;
VAR ol dGest al t Functi on: Sel ect or Functi onUUP)
CSErr;

Jabeuel 1e1s99 -

Application-Defined Routines

FUNCTI ON MySel ect or Funct i on
(sel ector: OSType; VAR response: Longlnt)
CSErr;

C Summary

Constants

Environmental Selector Codes

#defi ne gestal t Addressi nghodeAttr "addr’ / *addr essi ng- node attri butes*/
#define gestaltAliasMrAttr "alis' /*Alias Manager attributes*/
#def i ne gestal t Appl eEvent sAttr "evnt' /*Appl e events attributes*/
#defi ne gestalt Appl eTal kVer si on "atl k' /*old format Appl eTal k version*/
#def i ne gestal t ATal kVer si on "at kv' /*new format Appl eTal k versi on*/
#def i ne gest al t AUXVer si on "al ux' /*AUX version, if present*/
#define gestal t CFMAttr "cfrg’ / *Code Fragnent Manager attr*/
#defi negestal t Cl oseVi ewAt tr ' BSDa' /*Cl oseView attributes*/

#def i ne gestal t Conponent Myr 'cpnt'’ / *Conponent Manager version*/

#defi ne gestalt Conpressi onMyr icnp' /*1 mage Conpressi on Manager */

/* version*/

#def i ne gestalt ConnMgr Attr ' conn' /*Connecti on Manager attr*/
#define gestalt CRVAttr ‘crm' /*Conm Resour ce Manager attr*/
#defi ne gestal t CTBVersi on "¢t bv' / *Conm Tool box versi on*/

#def i ne gestal t DBAccessMyr Attr " dbac' /*Data Access Manager attr*/
#define gestaltDictionaryMgrAttr "dict' /*Dictionary Manager attr*/
#define gestaltDi splayMyrAttr "dply’ /*Di spl ay Manager attributes*/
#def i ne gestal t Di spl ayMyr Ver s "dpl v' /*Di spl ay Manager version*/

Summary of the Gestalt Manager 1-51

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

1-52

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

CHAPTER 1

Gestalt Manager

gestal t Dl TLEXt Attr
gestal t DragMgr At tr

gest al t EasyAccessAttr
gestal tEditi onMgrAttr
gest al t Ext Tool boxTabl e
gestal t Fi nder Attr
gestal t Fi ndFol der Attr
gest al t Fi r st SI ot Nunber
gestal t Font Mgr At tr

gest al t FPUType

gestal t FSAttr

gestal t FXfrMgrAttr
gestal t Hel pMyr At tr

gest al t Keyboar dType
gest al t Logi cal PageSi ze
gest al t Logi cal RAMSI ze
gest al t LowMenorySi ze
gestalt M scAttr

gestal t M xedMbdeVer si on
gest al t MMUType

gestal t Nati veCPU ype
gestaltNotificati onMgrAttr
gest al t NuBusConnect ors
get st al t NuBusSl ot Count
gestal t CSAttr

gest al t OSTabl e

gestaltParityAttr

gestal t PCXAt t r

gest al t Physi cal RAVSI ze
gest al t PopupAt tr

gest al t Power Mgr At tr

gest al t PPCTool boxAt tr
gestal t Processor Type
gest al t Qui ckdr awfeat ur es
gest al t Qui ckdr awVer si on
gestal t Qui ckTi ne
gestaltReal ti meAttr

gest al t ResourceMgr At tr
gestal t ScrapMyr Attr
gestal t Scri pt Count

gestal t Scri pt Mygr Ver si on

Summary of the Gestalt Manager

ditl'
drag’
easy'
edt n'
xttt'
fndr’
fold'
sltl
font'
fpu'
fs
fxfr'
hel p'
kbd '
pgsz'’
| ram
| mem
m sc'
m xd'

cput'’
nngr'
sltc’
nubs’
0s
ostt'

prty’
pcxg’
ram'
pop!"’
powr
ppc

proc'
qdrw

gtim
renr!
rsrc'
scra'
scr#'

scri'

/*Di al og Manager extensions*/
/*Drag Manager attri butes*/

/ *Easy Access attributes*/
/*Edi ti on Manager attributes*/
/*Tool box trap dispatch tabl e*/
/*Fi nder attributes*/

/ *Fi ndFol der attributes*/
/*first physical slot*/

/*Font Manager attributes*/
/*floating-point unit type*/
/*file systemattributes*/
/*File Transfer Manager attr*/
/*Hel p Manager attributes*/

/ *keyboard type code*/

/*1 ogi cal page size*/
/*1 ogi cal RAM size*/
/*size of | ow nmenory*/

/*m scel | aneous attributes*/
/*M xedMbde ver si on*/

/*MVUJ type*/

/*Native CPU type*/
/*Notification Manager attr*/

/ *NuBus connector bitnap*/
/*count of |ogical NuBus slots*/
/*QOperating System attributes*/
/ *base address of QOperating */
/* Systemtrap dispatch table*/
[*parity attributes*/

/*PC exchange attri butes*/

[*physi cal RAM si ze*/

/*pop-up ' CDEF' attributes*/

/ *Power Manager attributes*/
/*PPC Tool box attributes*/

/*m croprocessor type code*/
/*Qui ckDr aw f eat ures*/

/ *Qui ckDr aw versi on*/

/*Qui ckTi nme version*/

/*Real time Manager attributes*/
/ *Resour ce Manager attributes*/
/*Scrap Manager attributes*/
/*nunber of active script */

/* systens*/

/*Script Manager version*/

CHAPTER 1

Gestalt Manager

#define gestaltSerial Attr
#define gestalt SoundAttr

#defi ne gestaltSpeechAttr

#defi ne gestaltStandardFil eAttr
#define gestaltStdNBPAttr
#define gestaltSysArchitecture
#defi ne gestal t TEAttr

#define gestaltTermwgrAttr
#defi ne gestalt Text Edit Version
#def i ne gestalt ThreadMgrAttr
#defi ne gestalt Ti neMgr Ver si on
#defi ne gestalt Tool boxTabl e

#define gestaltTransl ati onAttr
#def i ne gestal t TSMyr Ver si on

#define getstaltlconUtilities
#def i ne gestaltVersion
#define gestal t VMALtr

Informational Selector Codes

#def i ne gestal t HardwareAttr
#defi ne gestal t Machi nel con
#def i ne gestal t Machi neType
#def i ne gestal t ROVSI ze

#def i ne gestal t ROWer si on
#def i ne gestalt SystenVersion

Environmental Selector Response Values

enum {
/ *gest al t Addr essi nghvbdeAt tr
gest al t 32Bi t Addr essi ng
gestal t 32Bi t SysZone

gest al t 32Bi t Capabl e
1

enum {

ser
snd
ttsc'
st df'
nl up'
sysa'
teat'
term
te '
t hds'
tngr'
tbtt'

x|l at'

tsmv

i con'
vers'
vm

hdwr '
mcn'
mach’
rom'
rom'
sysv'

01
11

/[*gestal tAliasMygrAttr response bits*/

gestal t Al i asMyr Pr esent

Summary of the Gestalt Manager

01

/*serial hardware attributes*/
/*sound attributes*/

/ *Speech Manager attributes*/
/*Standard File attributes*/
/*St andar dNBP attri but es*/
/*native system architecture*/
/*TextEdit attributes*/
/*Term nal Manager attributes*/
/*Text Edit version code*/
/*Thread Manager attributes*/
/*Ti me Manager version code*/
/ *base address of Tool box */
/* trap dispatch table*/
/*Transl ati on Manager */

/* attributes*/

/*Text Services Manager */

/* version*/

/*lcon Utilities attributes*/
/*Cestalt version*/

/*virtual nmenory attributes*/

/*hardware attri butes*/
/*machine "I CON /' cicn'
/*Maci nt osh nodel code*/
/*ROM si ze*/

/*ROM ver si on*/
/*System file version nunber*/

res | D¢/

response bits*/

/*booted in 32-bit node*/
/*32-bit conpatible system*/
/* zone*/

/*machine is 32-bit capabl e*/

/*Ali as Manager present*/

1-53

Jabeuel 1e1s99 -

CHAPTER 1

Gestalt Manager

gestal t Al i asMyr Support sRenot eAppl et al k

/*Ali as Manager knows about */
/* renmote Appl etal k*/

/*Appl e Events avail abl e*/

/*OSL in systent/

/ *devel opnent */
/ *al pha*/

/ *bet a*/
/*final*/

/*rel ease*/

/*Code Fragnent Manager */
/* present*/

/ *Cl oseVi ew enabl ed*/

/*Cl oseView conpatible with */
/* Display Manger*/

/*Connecti on Manager present*/
/*CMAddSearch fix present*/
/*has CMGet ErrorString*/

/ *has CWVMNewl OPB, */

/* CMDi sposel OPB, CMPBRead, */
/[* CMPBWite, CWPBICKill*/

=1

i

enum {
/ *gestal t Appl eEvent sAttr response bits*/
gest al t Appl eEvent sPresent = 0,
gestal t Scri pti ngSupport =1,
gestal t OSLI nSyst em =2

1

enum {
/ *gest al t ATal kVersi on rel ease stage constants*/
devel opnent = $20,
al pha = $40,
bet a = $60,
final = $80,
rel ease = $80

1

enum {
/*gestal t CFMAttr response bits*/
gest al t CFMPr esent =0

1

enum {
/*gestaltCl oseViewAttr response bits*/
gest al t C oseVi ewknabl ed = 0,
gest al t C oseVi ewDi spl ayMyr Fri endl y

=1

i

enum {
/*gestal t ConnMgr Attr response hits*/
gest al t ConnMgr Pr esent = 0,
gest al t ConnMgr C\VBear chFi x =1,
gestal t ConnMgrError Stri ng = 2,
gest al t ConnMgr Mul ti Asyncl O =3

1

1-54 Summary of the Gestalt Manager

CHAPTER 1

Gestalt Manager

enum {
/*gestal t CRMAttr response hits*/
gest al t CRMPr esent = 0, / *Conm Resour ce Manager */
/* present*/
gest al t CRMPer si st ent Fi x =1, /*fix for persistent tools*/
gest al t CRMIool RsrcCal | s =2 /*tool resource calls */
/* avail abl e*/
b
enum {
/*gestal t DBAccessMyr Attr response bits*/
gest al t DBAccessMyr Pr esent =0 /*Data Access Manager present*/
1
enum {
/*gestaltDictionaryMgrAttr response bits*/
gestal tDi cti onaryMyr Present =0 /*Di ctionary Manager present*/
1
enum {
/*gestal tDi spl ayMyr Attr response hits*/
gestal t D spl ayMgr Present =0 /*Di spl ay Manager Present*/
b
enum {
/*gestal t DI TLExt Attr response bits*/
gest al t DI TLExt Present =0 /*Di al og Manager extensions */
/* present*/
b
enum {
/*gestal t DragMgr Attr response bits*/
gest al t DragMgr Pr esent =0 /*Drag Manager present*/
1
enum {
/ *gestal t EasyAccessAttr response hits*/
gest al t EasyAccessO f = 0, [/ *Easy Access present but off*/

, / *Easy Access on*/
, / *Easy Access sticky*/
/ *Easy Access | ocked*/

gest al t EasyAccessOn =
gest al t EasyAccessSti cky =
gest al t EasyAccesslLocked =

W N -

Summary of the Gestalt Manager 1-55

Jabeuel 1e1s99 -

CHAPTER 1

Gestalt Manager

enum {
/*gestaltEditi onMgrAttr response bits*/
gest al t Edi ti onMgr Present = 0, /*Editi on Manager present*/
gestal t Edi ti onMyr Transl ati onAware = 1 /*Edi ti on Manager aware of */
/* Transl ati on Manager*/
i
enum {
/*gestalt Finder Attr response bits*/
gest al t Fi nder Dr opEvent = 0, /*Fi nder recogni zes drop event*/
gest al t Fi nder Magi cPl acenent =1, / *Fi nder supports magic icon */
/* placenent*/
gest al t Fi nder Cal | SAEPr ocess = 2, /*Finder calls */

/* AEProcessAppl eEvent */
gest al t Fi nder OSLConpl i ant Fi nder
= 3, /*Finder is scriptable and */
/* recordabl e*/
get st al t Fi nder Support s4GBVol unes

= 4, /*Fi nder handl es 4GB vol unes*/
get st al t Fi nder Handl esCFMFai | ur es
= 5, / *Fi nder handl es Code */
/ *Fragment Manager errors*/
get st al t Fi nder Hasd i ppi ngs =6 /*Fi nder supports Drag */

/* Manager cliping files*/

enum {
/*gestal t Fi ndFol der Attr response bits*/
gest al t Fi ndFol der Present =0 / *Fi ndFol der avai |l abl e*/
b
enum {
/*gestalt Font Mgr Attr response bits*/
gestal tQutlineFonts =0 /*outline fonts supported*/
1
enum {

/ *gestal t FPUType response val ues*/
gest al t NoFPU =
gest al t 68881 =
gestal t 68882 =
gest al t 68040FPU =

/*no FPU*/

/*NMotorol a 68881 FPU*/
/*NMotorola 68882 FPU*/
/*built-in 68040 */

/* floating-point processing*/

w N P o

1-56 Summary of the Gestalt Manager

CHAPTER 1

Gestalt Manager

enum {

/*gestal t FSAttr response bits*/
gest al t Ful | Ext FSDi spat chi ng =
gest al t HasFSSpecCal | s =
gest al t HasFi | eSyst emvanager =
gest al t HasFi | eSyst envanager =
gest al t FSSupport s4G@GVol s =
gest al t HasExt endedDi skl ni t

/ *new HFSDi spat ch avai | abl e*/
/*has FSSpec cal |l s*/

/*has File System Manager*/
/*supports dynam c | oadi ng*/
/*supports 4 gi gabyte vol une*/
/*has extended disk */

/* initialization calls*/

o~ WNPEO

1
enum {
[*gestal t FEXfrMgrAttr response bits*/
gest al t FXf r Mgr Pr esent = 0, /*File Transfer Manager */
/* present*/
gestaltFXfrMgrMul tiFile = 1, /*supports FTSend and */
/* FTRecei ve*/
gestal t FXfrMgrError String =2 /*supports FTGetErrorString*/
1
enum {
/*gestal t Hel pMgr Attr response bhits/*
gest al t Hel pMgr Pr esent =0 /*Hel p Manager present*/
i
enum {
/*gestaltlconUtilitiesAttr response bits*/
gestaltlconUtilitiesPresent = 0 /*icon utilities present*/
b
enum {

/ *gest al t Keyboar dType response val ues*/
gest al t MacKbd = 1, / *Maci nt osh*/

gest al t MacAndPad = 2, /*Maci ntosh with keypad*/
gest al t MacPl usKbd = 3, /*Maci ntosh Pl us*/
gest al t Ext ADBKbd = 4, / *ext ended ADB*/
gest al t St dADBKbd = b5, /*standard ADB*/
gest al t Prt bl ADBKbd = 6, /*Portable ADB */
gestal t Prtbl | SOKbd =7, /*Portabl e | SO ADB*/
gest al t St dl SOADBKbd = 8, /*1 SO standard ADB*/
gest al t Ext | SOADBKbd =9, /*1 SO ext ended ADB*/
gest al t ADBKbdI | = 10, /*ADB || */
gest al t ADBI SOKbd] | = 11, /*1SO ADB || */

gest al t Pw Book ADBKbd = 12, / * Power Book ADB*/

Summary of the Gestalt Manager 1-57

Jabeuel 1e1s99 -

CHAPTER 1

Gestalt Manager

gest al t Pw Book| SOQADBKbd = 13, / * Power Book | SO ADB*/
gest al t Appl eAdj ust Keypad = 14, / *Adj ust abl e Keypad*/
gest al t Appl eAdj ust ADBKbd = 15, / * Adj ust abl e ADB*/
gest al t Appl eAdj ust | SOKbd = 16 / *Adj ust abl e |1 SO*/
b
enum {
/*gestalt M scAttr return bits*/
gestaltScrollingThrottle = 0, /*scrolling throttle is on*/
gest al t Squar eMenuBar =2 /*menu bar is square*/
b
enum {
/*gestal t MUType return val ues*/
gest al t NoMWJ = 0, /*no MM/
gestal t AMUJ = 1, /*Mac |l address managenent */
[* unit*/
gestal t 68851 = 2, /*NMotorola 68851 PVMJ*/
gestal t 68030MVJ = 3, /*built-in 68030 MVLJ/
gest al t 68040MVJ = 4, [*built-in 68040 MM/
gest al t EMMUL =5 /*emul ated MW type 1%/
1
enum {
/*gestal t Nati veCPUt ype response val ues*/
gest al t CPU68000 = $000, /*Macintosh 68000 CPU*/
gest al t CPU68010 = $001, /*Macintosh 68010 CPU*/
gest al t CPU68020 = $002, /*Macintosh 68020 CPU*/
gest al t CPU68030 = $003, /*Macintosh 68030 CPU*/
gest al t CPU68040 = $004, /*Macintosh 68040 CPU*/
gest al t CPU601 = $101, /*PowerPC 601 CPU*/
b
enum {
/*gestaltNotificationMgrAttr response bits*/
gestal t Noti ficati onPresent =0 /*Notification Manager present*/
1
enum {
/*gestal t OSAttr response bits*/
gest al t SysZoneG owabl e = 0, /*system heap can grow*/
gest al t LaunchCanRet urn = 1, /*can return from | aunch*/
gest al t LaunchFul | Fi | eSpec = 2, /*LaunchAppl i cation avail abl e*/
gestal t LaunchCont r ol = 3, /*Process Manager avail abl e*/

1-58 Summary of the Gestalt Manager

CHAPTER 1

Gestalt Manager

gest al t TenpMenSupport
gest al t Real TenpMenory

gest al t TempMenilr acked

1
enum {
/*gestaltParityAttr response bits*/
gestal tHasParityCapability = 0,
gestal t Parit yEnabl ed =1
1
enum {
/*gestal t PCXAttr response bits*/
gest al t PCXHas8and16Bi t Fat = 0,
/ *gest al t PCXHasPr oDOS =1
b
enum {
[*gest al t PopupAttr response bits*/
gest al t PopupPr esent =0
1
enum {
/*gestal t Power Mgr Attr response bits*/
gest al t PMyr Exi st's = 0,
gestal t PMgr CPUI dl e = 1,
gest al t PMyr SCC = 2,
gest al t PMyr Sound = 3,
gest al t PMgr Di spat chExi sts =4
1
enum {

/* gestal t PPCTool boxAttr
gest al t PPCTool boxPr esent

gest al t PPCSupport sReal Ti ne
gest al t PPCSupport sl ncom ng

Summary of the Gestalt Manager

response bhits*/

0x0000,

0x1000,
0x0001,

/*tenporary menory support */
/* avail abl e*/
/*tenporary nenory handl es */
[* are real */
/*tenporary nenory handl es */

/* are tracked*/

Jabeuel 1e1s99 -

/*machi ne can check parity*/
/*parity RAMis installed*/

/ *PC exchange supports both */
/* 8 and 16 bit FATs*/
/*PC exchange supports ProDos*/

/*pop-up ' CDEF' is present*/

/ *Power Manager
/*CPU can idle*/
/ *Power Manager can stop SCC */
/* cl ock*/

/ * Power Manager
/* sound power*/
/ *Power Mgr di spatch exists*/

is present*/

can turn off */

/*PPC Tool box is present; */

/* PPClnit has been called*/
/*supports real -tine delivery*/
/*accepts sessions from */

/* renote computers*/

1-59

CHAPTER 1

Gestalt Manager

gest al t PPCSupport sQut Goi ng = 0x0002 /*can initiate sessions with */
/* renmote conputers*/
i
enum {
/ *gestal t Processor Type response val ues*/
gest al t 68000 = 1, /*68000 ni croprocessor*/
gest al t 68010 = 2, /*68010 mi croprocessor*/
gestal t 68020 = 3, /*68020 mi croprocessor*/
gest al t 68030 = 4, /*68030 ni croprocessor*/
gest al t 68040 =5 /*68040 ni croprocessor*/
i
enum {
/ *gest al t Qui ckdr awfeat ures response bits*/
gest al t HasCol or = 0, /*Col or Qui ckDraw present*/
gest al t HasDeepGWr | ds =1, /*graphics worlds can be */
/* deeper than 1 bit*/
gestal t HasDi r ect Pi xMaps = 2, /*Pi xMaps can be direct */
/* (16- or 32-bit)*/
gest al t HasGrayi shText O = 3, /*supports text node */
/[* grayi shTextO*/
gestal t SupportsMrroring =4 /*supports video mirroring */
/* using the Display Manager*/
1
enum {
/ *gest al t Qui ckdr awMer si on response val ues*/
gestaltOrigi nal @D = 0x000, /*original 1-bit QuickDraw/
gestal t8Bit QD = 0x100, /*8-bit Qui ckDraw/
gestal t 32Bi t Q@D = 0x200, /*32-Bit QuickDraw vers. 1.0*/
gestal t32Bi t QD11 = 0x210, /*32-Bit QuickDraw vers. 1.1*/
gestal t 32Bi t QD12 = 0x220, /*32-Bit QuickDraw vers. 1.2*/
gestal t 32Bi t QD13 = 0x230 /*32-Bit QuickDraw vers. 1.3*/
b
enum {
/*gestaltReal ti neAttr response bits*/
gest al t Real ti meMyr Pr esent =0 /*Real ti me Manager present*/
1

1-60 Summary of the Gestalt Manager

CHAPTER 1

Gestalt Manager

enum {
/*gestal t ResourceMgr Attr response bits*/
gestal tPartial Rsrcs =0

1

enum {
/*gestal t ScrapMgr Attr response bits*/
gestal t ScrapMyr Transl ati onAware = 0,
gestal t Trasnl ati onMgr H nt Or der =1

1

enum {
/*gestaltSerial Attr response bits*/
gest al t HasGPl aToDCDa =0
gest al t HasGPl aToRTxCa = 1,
gest al t HasGPl bToDCDb =2

b

enum {
/*gestal t SoundAttr response bits*/
gestal t StereoCapability = 0,
gestal t St er eoM xi ng = 1,
gest al t Soundl OMgr Pr esent = 3,
gestal t Bui | t I nSoundl nput = 4,
gest al t HasSoundl nput Devi ce = b5,
gest al t Pl ayAndRecor d = 6,
get stal t 16Bi t Soundl O =7,
get stal t St er eol nput = 8,
get st al t SndPl ayDoubl eBuf f er = 10,
getstal t Mul ti Channel s =11
get stal t 16Bi t Audi oSuuport = 12

1

enum {
/*gestal t SpeechAttr response bits*/
gest al t SpeechMyr Pr esent = 0,

Summary of the Gestalt Manager

/*partial resources supported*/

/*aware of Transl ati on Manager*/
/*hint order reversal present*/

/*GPl connected to DCD on */
[* port A*/
/*GPl connected to RTXC on */
/* port A*/
/*GPl connected to DCD on */
/* port B*/

/*stereo capability present*/
/*stereo mixing on internal */
/* speaker*/

/*sound input routines present*/
/[*built-in input device */

/* present*/

/*sound i nput device present*/
/*built-in hardware can play */
/* and record sinultaneously*/
/*sound hardware can play and */
/* record 16-bit sanpl es*/
/*sound hardware can */

/* record steore*/

/ *SndPl ayDoubl e buf fer present*/
/*mul tiple channel support*/
/*16-bit audi o data supported*/

/ *Speech Manager present*/

1-61

Jabeuel 1e1s99 -

CHAPTER 1

Gestalt Manager

gest al t SpeechHasPPCd ue

i

enum {
/*gestalt StandardFil eAttr response hits*/
get al t St andar dFi | e58 = 0,
gestal t Standar dFi | eTransl ati onAware = 1
gest al t St andar dFi | eHasCol or | cons =2

b

enum {
/*gestalt StdNBPAttr response bits*/
gest al t St dNBPPr esent =0

1

enum {
/*gestal t SysArchitecture response bits*/
gest al t 68k =1,
gest al t Power PC =2

1

enum {
/*gestal t TEAttr response bits*/
gestal t TEHasGet Hi | i t eRgn =0

i

enum {
/*gestal t Termvgr Attr response hits*/
gest al t Ter m\Vgr Pr esent =0
gestalt Term\vgrError String =2

1

enum {
/ *gestal t Text Edi t Ver si on response codes */
gestal t TEL =1,
gestal t TE2 = 2,
gestal t TE3 = 3,
gestal t TE4 = 4,
gestal t TE5 =5

i

1-62 Summary of the Gestalt Manager

/ *Speech Manager has native *
/* PPC glue for API*/

/*has functions new with 7.0*/
/*aware of Transl ati on Manager*/
/*di al og boxes use small */

/* col or icons*/

[*Standar dNBP i s present*/

/ *MC680x0 architecture*/
/ *Power PC ar chi t ect ure*/

/*TextEdit has TEGet HiliteRgn*/

/*Term nal Manager present*/
/*supports error string */
/* function*/

/*in Macllci ROW/

/*with 6.0.4 scripts on */
/* Macllci*/

/*with 6.0.4 scripts on*/
/* other machi nes*/

/*in 6.0.5 and 7.0*/

[*Text W dt hHook avai | abl e*/

CHAPTER 1

Gestalt Manager

enum {
/*gestal t ThreadMgr Attr response bits*/
gestal t ThreadMgr Pr esent = 0, /*Thread Manager present*/
gestal t Speci fi cMat chSupports =1 /*Thread Manager supports */
/* exact match creation option*/
1
enum {
/*gestal t Ti neMgr Ver si on response codes*/
gest al t St andar dTi neMyr = 1, /*standard Ti ne Manager*/
gest al t Revi sedTi meMyr = 2, /*revised Time Manager*/
gest al t Ext endedTi neMyr =3 /*ext ended Ti ne Manager*/
1
enum {
/*getstaltTransl ati onAttr response codes*/
gestal t Transl ati onMyr Exi sts =0 /*Transl ati on Manager present*/
1
enum {
/*gestal t VMAttr response hits*/
gest al t VMPr esent =0 /[*virtual menory present*/
b

Informational Selector Response Values

enum {

/*gestal t Har dwareAttr response bits*/

gest al t HasVI Al =
gest al t HasVI A2 =
gest al t HasASC =
gest al t HasSCC =
gest al t HasSCSI =
gest al t HasSof t Power Of f =

gest al t HasSCSI 961 =
gest al t HasSCSI 962 =

gest al t HasUni ver sal ROM =

Summary of the Gestalt Manager

0, /*has VI Al chi p*/

1, /*has VI A2 chi p*/

3, /*has Appl e Sound Chi p*/

4, / *has SCC+/

7, /*has SCSI */

19, /*capabl e of software power */
[* of f*/

21, /*has 53C96 SCSI
/* bus*/

22, /*has 53C96 SCsSI
/* bus*/

24 /*has uni ver sal

on internal */

on external */

ROMF /

1-63

Jabeuel 1e1s99 -

1-64

CHAPTER 1

Gestalt Manager

enum {

/ *gestal t Machi neType response codes*/

gestal tC assic
gestal t MacXL

gest al t Mac512KE
gest al t MacPI us
gestal t MacSE
gestal t Macl |
gestal t Macl | x
gestal t Macl | cx

gest al t MacSE030
gestal t Port abl e
gestal t Macl | ci
gestal t Macl | f x
gestal t MacC assi c
gestal t Macl | si
gestal t MacLC

gest al t Quadr a900
gest al t Power Book170
gest al t Quadr a700
gestal t O assi cl

gest al t Power Book100
gest al t Power Book140
gest al t Quadr a950
gestal t MacLCl | |

gest al t Power Book210
gestal t MacCent ri s650
gest al t Power Book230
gest al t Power Book180
gest al t Power Book160
gest al t MacQuadr a800
gest al t MacLCl

gest al t Power BookDuo250
gestal t Macl | vi

gest al t Per f or ma600
gestal t Macl | vx
gestal t MacCol or C assi c
gest al t Power Book165c
gestal t MacCentri s610
gest al t MacQuadr a610
gest al t Power Book145
get stal t MacLC520

get stal t MacCentri s660AV

Summary of the Gestalt Manager

11

U U U ODDAEDWWWWWWINNNNNNNNNRERERRRREROOO~NOOOAMWN
SO0, ONOLOODAPRPONORONODONIPOAAONPOOON®O®ER O & ° 7 T

/ * Maci
/ *Maci
/ * Maci
/ * Maci
/ *Maci
/ * Maci
/ *Maci
/ *Maci
/ * Maci
/ * Maci
/ *Maci
/ * Maci
/ * Maci
/ *Maci
/ * Maci
/ * Maci
/ *Maci
/ * Maci
/ * Maci
/ *Maci
/ * Maci
/ * Maci
/ *Maci
/ * Maci
/ * Maci
/ *Maci
/ * Maci
/ * Maci
/ *Maci
/ * Maci
/ * Maci
/ *Maci
/ * Maci
/ * Maci
/ *Maci
/ * Maci
/ * Maci
/ *Maci
/ * Maci
/ * Maci
/ *Maci

nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh
nt osh

128K*/

XL*/

512K enhanced*/
Pl us*/

SE*/

[1*/

I x*/

I'1cx*/

SE/ 30*/
Port abl e*/
I'1ci*/

I1fx*/

d assi c*/
I'1si*/

LCx/

Quadra 900*/
Power Book 170*/
Quadra 700*/
Classic II*/
Power Book 100*/
Power Book 140*/
Quadra 950*/

LC III*/

Power Book Duo 210*/
Centris 650*/
Power Book Duo 230*/
Power Book 180*/
Power Book 160*/
Quadra 800*/

LC I1*/

Power Book Duo 230*/
I1vi*/

Per forma 600*/
I1vx*/

Col or O assic*/
Power Book 165c*/
Centris 610*/
Quadra 610*/
Power Book 145*/
LC 520*/

Centris 660 AV*/

CHAPTER 1

Gestalt Manager

get st al t Power Book180c
get st al t Power BookDuo270c
get st al t MacQuadr a840AV
get st al t Power Book165
getstalt MacTV

get stal t MacLCA475
getstal t MacLC575

get stal t MacQuadr a605

get st al t Power Mac8100_80
get st al t Power Mac6100_60
get st al t Power Mac7100_66

b
enum {

kMachi neNameStr | D
b

SysEnvirons Constants

enum {
cur SyskEnvVer s

b

enum {
/*machi ne types*/
env XL
envhMac
envMachUnknown
env512KE
envMacPl us
envSE
envMacl
envMacl | x
envMacl | cx
envSE30
envPort abl e
envMacl | ci

envMacl | f x
envMacd assi c
envMacl | si
enviacLC

Summary of the Gestalt Manager

71,

=77,

78,

= 84,
= 88,

89,

= 92,

04,

65,
75,

= 112

-16395

© 0O ~NO U~ WNBE

N e
No oRE

/ *Maci nt osh Power Book 180c*/

/ *Maci nt osh Power Book Duo 270c*/

/*Maci nt osh Quadra 840 Av*/
/ *Maci nt osh Power Book 165*/
/*Maci ntosh TV*/

/*Maci ntosh LC 475*/

/*Maci nt osh LC 575*/

/*Maci ntosh Quadra 605*/

/ *Power Naci nt osh 8100/ 80*/
/ *Power Maci ntosh 6100/ 60*/
/ *Power Maci ntosh 7100/ 66*/

/*' STR#' resource that */
/* contai ns nachi ne nanes*/

/*current SysEnvirons version*/

/*Maci nt osh XL*/

/*Maci ntosh with 64K ROWr/
/*unknown nodel, after */
/* Macintosh IIfx*/

/*Maci nt osh 512K enhanced*/
/*Maci nt osh Pl us*/

/ *Maci nt osh SE*/

/*Maci ntosh 11*/

/*Maci ntosh || x*/

/*Maci ntosh |1 cx*/

/*Maci nt osh SE30*/

/*Maci nt osh Portabl e*/
/*Maci ntosh |lci*/

/*Maci ntosh 1I1fx*/

/*Maci ntosh O assi c*/
/*Maci ntosh |1Isi*/

/*Maci nt osh LC*/

1-65

Jabeuel 1e1s99 -

}s

CHAPTER

1

Gestalt Manager

enviMacQuadr a900

envMacPower Book170

envMacQuadr a700
envMacdC assi cl

envMacPower Book100
envMacPower Book140

enviacQuadr a950
enviMacLCl

envMacPower Book145

enum {

b

/*CPU types*/
envCPUUnknown
env68000
env68010
env68020
env68030
env68040

enum {

}s

/ *keyboard types*/

envUnknownKbd
envMacKbd
envMacAndPad
envMacPl uskbd
envAExt endKbd
env St andADBKbd
envPrt bl ADBKbd
envPrtbl | SOKbd
env St dl SOADBKbd
envExt | SOADBKbd

Data Types

18,
19,
20,
21,
22,
23,
24,
35,
52

a s~ owODNEFEO

© o ~NOoO b~ whNPEF O

/ *Maci nt osh
/*Maci nt osh
/*Maci nt osh
/ *Maci nt osh
/*Maci nt osh
/*Maci nt osh
/ *Maci nt osh
/*Maci nt osh
/*Maci nt osh

Quadra 900*/
Power Book 170*/
Quadra 700*/
Classic II*/
Power Book 100*/
Power Book 140%*/
Quadra 950*/

LC II*/

Power Book 145*/

/*unknown mi croprocessor*/
/*68000 mi croprocessor*/
/*68010 m croprocessor*/
/*68020 mi croprocessor*/
/*68030 mi croprocessor*/
/*68040 m croprocessor*/

/*Maci ntosh Plus with keypad*/
/ *Maci nt osh*/

/*Maci ntosh with keypad*/
/*Maci nt osh Pl us*/

[*Appl e extended*/

/*standard ADB*/

/*Maci nt osh Portabl e ADB*/
/*Maci nt osh Portabl e | SO/
/*standard | SO ADB */

/ *ext ended | SO ADB*/

struct SysEnvRec {

1-66

short
short
short
short
Bool ean

envi ronsVer si on;
machi neType;
syst enmVer si on;
processor;
hasFPU;

Summary of the Gestalt Manager

/*system envi ronnent record*/
/ *SysEnvi rons version nunber*/
/ *Maci nt osh nodel code*/
/*System file version nunber*/
/*m croprocessor type code*/
/*floating-point unit flag*/

CHAPTER 1

Gestalt Manager

Bool ean hasCol or QD; /*Col or QuickDraw fl ag*/

short keyBoar dType; / *keyboard type code*/

short at Drvr Ver sNum /*Appl eTal k driver version nunber*/
short sysVRef Num /*wor ki ng-di rectory reference */

[* nunber of folder or volunme */
/* containing open Systemfile*/

}s

typedef struct SysEnvRec SysEnvRec;

Gestalt Manager Routines

Getting Information About the Operating Environment

pascal OSErr Gestalt (OSType selector, long *response);
pascal OSErr SysEnvirons (short versi onRequested, SysEnvRec *theWrld);

Adding a Selector Code

pascal OSErr NewGestalt (OSType sel ector,
Sel ect or Functi onUUP gest al t Functi on);

Modifying a Selector Function

pascal OSErr Repl aceCestalt
(OSType sel ector,
Sel ect or Functi onUUP gestal t Functi on,
Sel ect or Functi onUUP *ol dGest al t Functi on);

Application-Defined Routines

pascal OSErr MSel ector Func
(OSType selector, long *response);

Summary of the Gestalt Manager 1-67

Jabeuel 1e1s99 -

CHAPTER 1

Gestalt Manager

Assembly-Language Summary

Data Structures

SysEnvRec Data Structure

0 environsVersion word SysEnvi r ons version number

2 machineType word Macintosh model code

4 systemVersion word System file version number

6 processor word microprocessor type code

8 hasFPU byte floating-point unit flag

9 hasColorQD byte Color QuickDraw flag

10 keyBoardType word keyboard type code

12 atDrvrVersNum word AppleTalk driver version number
14 sysVRefNum word working-directory reference

number of directory or volume
containing open System file

Result Codes

nokEr r 0 No error

mentul | Err -108 Ran out of memory

envNot Pr esent -5500 SysEnvi r ons trap not present

envBadVer s -5501 Nonpositive version number passed

envVer sTooBi g -5502 Requested version of SysEnvi r ons not available
gest al t UnknownEr r —5550 Could not obtain the response

gest al t Undef Sel ector Err -5551 Undefined selector

gest al t DupSel ect or Err -5552 Selector already exists

gestal t Locati onErr -5553 Function not in system heap

1-68 Summary of the Gestalt Manager

CHAPTER 2

System Error Handler

Contents

About the System Error Handler 2-3
System Errors 2-6
Resume Procedures 2-11
System Error Handler Reference 2-13
System Error Handler Routines 2-13
Application-Defined Routines 2-15
Resources 2-15
The System Error Alert Table Resource 2-16
Summary of the System Error Handler 2-22
Pascal Summary 2-22
System Error Handler Routines 2-22
Application-Defined Routines 2-22
C Summary 2-22
System Error Handler Routines 2-22
Application-Defined Routines 2-22
Assembly-Language Summary 2-22
Global Variables 2-22

Contents 2-1

CHAPTER 2

System Error Handler

This chapter describes the System Error Handler. The System Error Handler assumes
control of the system when a system error occurs and is also responsible for displaying
certain alert boxes in response to a system startup. The System Error Handler displays
an alert box when a system error occurs and manages display of the “Welcome to
Macintosh” alert box and the disk-switch alert box.

This chapter explains what the Operating System does when a system error is
encountered, describes the routine and resource that the System Error Handler uses
when generating a system error alert box, and discusses how you can provide code that
can help your application recover from an system error.

Although your application may call the routine provided by the System Error Handler,
ordinarily there is no need to do so; this routine is primarily used by the Macintosh
Operating System.

This chapter also contains a list of all currently defined system errors and the conditions
under which they can arise.

About the System Error Handler

The System Error Handler employs a mechanism that allows for display of simple alert
boxes even when the Control Manager, Dialog Manager, and Memory Manager might
not be able to function properly. System Error Handler alert boxes can therefore be
displayed at times when the Dialog Manager cannot be called. This mechanism is useful
at two times. First, at system startup time, the Dialog Manager may not yet have been
initialized. Second, after a system error occurs, using the Dialog Manager or Memory
Manager may be impossible or cause a system crash.

Because the System Error Handler cannot use Dialog Manager resources to store
representations of its alert boxes, it defines its own resource, the system error alert table
resource, to store such information. This resource type is described in “The System Error
Alert Table Resource” beginning on page 2-16. The system alert table resource defines
for each system error the contents of the system alert box to be displayed. For example,
depending on the system error that occurred, the system error alert box may contain one
or more buttons, typically a Restart and a Continue button.

About the System Error Handler 2-3

Ja|pueH 1013 WaisAS -

CHAPTER 2

System Error Handler

At system startup time, the System Error Handler presents the system startup alert box,
shown in Figure 2-1.

Figure 2-1 The system startup alert box

el
i\)_m\. Welcome to Macintosh.

The system startup alert box can take different forms. In particular, if an error occurs
during the startup process, the System Error Handler might inform the user of the error
by displaying an additional line of information in the alert box. The System Error
Handler also uses the system startup alert box to post special messages to inform the
user about the status of the system. For example, in System 7 and later, if the user holds
down the Shift key while starting up, system extensions are disabled, and the system
startup alert box includes the message “Extensions off.” This is illustrated in Figure 2-2.

Figure 2-2 The system startup alert box when extensions have been disabled
el
QIT"&\; Welcome to Macintosh.

Extensions off.

Other messages that may be displayed at startup time include “Debugger Installed,”
“Disassembler Installed,” and “System 7.1 needs more memory to start up.”

About the System Error Handler

CHAPTER 2

System Error Handler

The System Error Handler also displays an alert box when the Operating System or
some other software invokes the SysEr r or procedure. Figure 2-3 illustrates a system
error alert box, sometimes called a bomb box. The conditions under which a system
error occur are described in the next section, “System Errors.”

Figure 2-3 The system error alert box

L

¢
Sorry, a system error occurred.

Ja|pueH 1013 WaisAS -

The system error alert box presents some information about the type of error that

has occurred and also includes buttons to allow possible recovery from the error. The
user may click the Restart button, in which case the System Error Handler attempts to
restart the computer. (Such attempts are not always successful, and the computer may
freeze, forcing the user to flip the power switch or depress the reset switch.) Some
system error alert boxes have Continue buttons. If the user clicks the Continue button,
the System Error Handler attempts to execute the application’s resume procedure.
Resume procedures are discussed in “Resume Procedures” on page 2-11. If no resume
procedure has been defined, then only the Restart button is available.

Note

The layout and form of the system error alert box have changed
considerably in different versions of system software. In early versions
of system software, there was always a Resume button, which had the
same effect as the Continue button, but it was grayed out when no
resume procedure was defined. The Resume and Restart buttons were
both at the left of the alert box. In some versions of system software,
information about the type of error was displayed at the bottom of the
alert box, and the ID information may have been conveyed in words
(“bus error”) instead of numbers (“ID = 1”). However, your application
should not need to be familiar with the layout of the system error alert
box. O

A close examination of the button in Figure 2-3 reveals that the button has a different
appearance from that of buttons displayed by the Control Manager. This is because the
System Error Handler does not use the Control Manager to create buttons. Instead, it
draws the buttons itself and highlights them when the mouse is clicked within the
button area.

About the System Error Handler 2-5

2-6

CHAPTER 2

System Error Handler

System Errors

A system error is the result of the detection of a problem by the microprocessor

or the Operating System. For example, if your application attempts to execute a
system software routine that is not available on a certain Macintosh computer, the
microprocessor detects the exception. The Operating System then calls the SysEr r or
procedure to produce a system error alert box. Similarly, the Operating System itself
might detect a problem; for example, it might detect that a menu record that is needed
has been purged. In this case, the Operating System calls SysEr r or directly.

Your application can also call SysEr r or if it detects that something that never should
happen actually has happened. Ordinarily, it is more graceful for an application to use
the Dialog Manager to warn the user that an error has occurred. You should call the
SysEr r or procedure only if there is reason to believe that an abnormal condition could
prevent the Dialog Manager from working correctly. The Dialog Manager is described in
the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Associated with each type of system error is a system error ID. This ID is typically
presented to the user in the system error alert box. Although the system error IDs are
meaningless to most users, a user can report the ID to you, thus possibly making it easier
for you to track down the problem and provide the user with a solution.

Table 2-1 lists and briefly describes the system error IDs that are currently defined.

Note, however, that sometimes system error IDs may be misleading. For example, your
application might make an invalid memory reference that does not cause a system error
immediately. However, the effects of that reference could cause another problem leading
to a system error of a different type.

Note also that some system errors occur in the ordinary course of an application’s
execution but are handled by the Operating System with no need to display an

error message to the user. For example, when virtual memory is in operation and an
application attempts to access memory that has been paged out, a bus error is generated.
Because the Virtual Memory Manager intercepts the bus error and determines that
memory needs to be paged in, this error is generated transparently to the user. If
possible, when a system error occurs, the System Error Handler stops execution of

the application that caused the error and displays an alert box with the message
“Application has unexpectedly quit.” (See Figure 2-4 on page 2-12 for an example of
this alert box.)

About the System Error Handler

CHAPTER 2

System Error Handler

Table 2-1 System error IDs

ID and name
1 (Bus error)

2 (Address error)

About the System Error Handler

Explanation

A memory reference was invalid. This is the most common type
of system error.

An application might have tried to access memory in another
application’s partition or in a portion of memory not accessible
to the application.

Typically, this error occurs if your application uses a handle

or pointer reference that is no longer valid or was never valid.
For example, if your application does not initialize a variable

of type Handl e or Pt r to the correct value and then tries to use
that value as a memory reference, a bus error could occur.

Or if you have made an error in performing pointer arithmetic,
a bus error could occur.

This error could also occur if your application attempts to
access a block of memory that has been moved or disposed of.
Once your application disposes of a block of memory, either
directly or indirectly, all pointer and handle references to

that block of memory are invalid and could cause bus errors.

If your application dereferences a handle, calls a routine that
could move or purge memory, and then relies on the master
pointer value, a bus error could occur. See Inside Macintosh:
Memory for more information.

If your application is careless in using the Memory Manager’s
Bl ockMove procedure or another technique to copy bytes
directly, data structures used by the Memory Manager could
be altered and a bus error generated.

A reference to a word (2 bytes) or long word (4 bytes) was not
on a word boundary.

An address error is often simply a bus error in which the
memory reference happens to be odd. Thus, any programming
errors that could cause a bus error might result in an address
error as well. Indeed, sometimes the same programming error
can generate both types of errors if you execute the offending
code several times.

Address errors are often microprocessor-specific. That is, code
that executes correctly on MC68030 microprocessors might
generate an address error on MC68000 microprocessors. This
is most likely to be a problem for assembly-language
programmers.

continued

2-7

Ja|pueH 1013 WaisAS -

CHAPTER 2

System Error Handler

Table 2-1 System error IDs (continued)

ID and name
3 (Illegal instruction)

4 (Zero divide)

5 (Check exception)

6 (TrapV exception)

7 (Privilege violation)

8 (Trace exception)

9 (A-line exception)

10 (F-line exception)

Explanation

The microprocessor attempted to execute an instruction not
defined for that version of the microprocessor. This might occur
if you set a compiler to generate MC68030 code and then
attempt to execute that code on a MC68000 microprocessor.
Attempting to execute PowerPC code on a MC680x0
microprocessor could also cause this problem.

Typically, this problem occurs only if you are programming
in assembly language or if your compiler generates illegal
instructions. If your application (either intentionally or
unintentionally) modifies its own code while executing,
then this problem could also occur.

The microprocessor received a signed divide (DI VS) or
unsigned divide (DI VU) instruction, but the divisor was 0.
When you write code that performs the division operation,
you should ensure that the divisor can never be 0, unless you
are using Operating System or SANE numeric types that
support division by 0.

The microprocessor executed a check-register-against-bounds
(CHK) instruction and detected an out-of-bounds value. If you
are programming in a high-level language, this might occur

if you have enabled range-checking and a value is out of range
(for example, you attempt to access the sixth element of a
five-element array).

The microprocessor executed a trap-on-overflow (TRAPV)

instruction and detected an overflow. If you are programming
in a high-level language, this might occur if you have enabled
integer-arithmetic overflow checking and an overflow occurs.

The Macintosh computer was in a mode that did not allow
execution of the specified microprocessor instruction. This
should not happen because the Macintosh computer always
runs in supervisor mode. However, if you are programming
in assembly language, this error could occur if you execute
an erroneous return-from-execution (RTE) instruction.

The trace bit in the status register is set. Debuggers use this
error to force code execution to stop at a certain point. If you are
programming in a high-level language, this system error should
always be intercepted by your low-level debugger.

The trap dispatcher failed to execute the specified system
software routine. This error might occur if you attempt to
execute a Toolbox routine that is not defined in the version
of the system software that is running.

Your application executed an illegal instruction.

2-8 About the System Error Handler

CHAPTER 2

System Error Handler

Table 2-1 System error IDs (continued)

ID and name
11 (Miscellaneous exception)

12 (Unimplemented core routine)

13 (Spurious interrupt)

14 (1/0 system error)

15 (Segment loader error)

16 (Floating-point error)
17-24 (Can’t load package)

25 (Out of memory)

Explanation

The microprocessor invoked an exception not covered by
system error IDs 1 to 10. This exception might be generated
in the case of a hardware failure.

The Operating System encountered an unimplemented trap
number.

The interrupt vector table entry for a particular level of interrupt
is NI L. This error usually occurs with level 4,5, 6, or 7
interrupts. Typically, this error should affect only developers

of low-level device drivers, NuBus cards, and other

expansion devices.

A Device Manager or Operating System queue operation failed.
This might occur if the File Manager attempts to remove an
entry from an 1/0 request queue, but the queue entry has an
invalid queue type (perhaps the queue entry is unlocked). Or
this might occur as a result of a call to Fet ch or St ash, but the
dC | QHead field was NI L. This error can also occur if your
driver has purged a needed device control entry (DCE).

A call was made to load a code segment, but a call to

CGet Resour ce to read the segment into memory failed. This
could occur if your application attempts to load a segment that
does not exist, or if your application attempts to load a segment
but there is not enough memory for it in the application heap.
When an attempt to load a code resource with resource ID 0
fails, a system error with ID 26 is generated instead.

The halt bit in the floating-point environment word was set.

The Package Manager attempted to load a package into
memory, but the call to Get Resour ce failed. This could occur
because the system file is corrupted, or because there is not
enough memory for the package to be loaded. For example, if
you call a List Manager routine when memory is very low, the
SysEr r or procedure could be executed.

The requested memory block could not be allocated in the heap
because there is insufficient free space. Typically, a Toolbox
routine generates this system error if it requires heap space

to run but there is insufficient space. Your application should
prevent this from occurring by ensuring that it always leaves
enough memory for Toolbox operations. See Inside Macintosh:
Memory for more details.

You can also get this error if the Package Manager was unable
to load the Apple Event Manager (Pack 8). See the chapter
“Package Manager” in this book for an explanation of this error.

continued

About the System Error Handler 2-9

Ja|pueH 1013 WaisAS -

CHAPTER 2

System Error Handler

Table 2-1 System error IDs (continued)

ID and name
26 (Segment loader error)

27 (File map destroyed)

28 (Stack overflow error)

30 (Disk insertion required)

31 (Wrong disk inserted)

Explanation

A call was made to load a code segment with resource ID 0, but
the call to Get Resour ce failed. This usually occurs if your
application attempts to execute a nonexecutable file.

You can also get this error if the Package Manager was unable
to load the Program-to-Program Communications (PPC)
Toolbox package (Pack 9). See the chapter “Package Manager”
in this book for an explanation of this error.

The File Manager encountered a paradox. A logical block
number was found that is greater than the number of the last
logical block on the volume or less than the logical block
number of the first allocation block on the volume. The disk
is probably corrupted.

The Operating System detected that the application’s stack
collided with its heap. This could happen when a deeply nested
routine is executed or when interrupt routines use more stack
space than available. If your application relies on recursion,

it should monitor the size of the stack to prevent such an error
from occurring.

If this error occurs simply because your application attempted
to execute a deeply nested routine, you can prevent this from
occurring by increasing the minimum size of the stack at
application startup. Because the size of the stack may differ
from one Macintosh model to another, an application might
encounter no problems on a Macintosh LC but crash on a
Macintosh Plus, for example. For more information, see

Inside Macintosh: Memory.

You can also get this error if the Package Manager was unable
to load the Edition Manager (Pack 11). See the chapter “Package
Manager” in this book for an explanation of this error.

A necessary disk is not available. The System Error Handler
responds to this error by requesting that the user insert the
requested disk. Often, the user can cancel this alert box by
pressing Command-period repeatedly; in certain circumstances,
however, pressing Command-period repeatedly can lead to a
system crash.

You can also get this error if the Package Manager was unable
to load the Data Access Manager (Pack 13). See the chapter
“Package Manager” in this book for an explanation of this error.

The user inserted the incorrect disk in response to a
disk-insertion request. The System Error Handler ejects
the disk and allows the user to insert another.

You can also get this error if the Package Manager was unable
to load the Help Manager (Pack 14). See the chapter “Package
Manager” in this book for an explanation of this error.

2-10 About the System Error Handler

CHAPTER 2

System Error Handler

Table 2-1 System error IDs (continued)
ID and name Explanation
33 (Negative zcbFr ee value) The Memory Manager’s calculation of the number of bytes free

in a heap zone (that is, the value of the zcbFr ee field) resulted
in a negative number. Your application might have used up too
much memory in the heap zone, or the heap is corrupted

41 (Finder not found) The Operating System could not locate the Finder on the disk.
The disk might be corrupted.

84 (Menu purged) The Menu Manager attempted to access information about a
menu, but the menu record was purged. You should ensure that
all menus stored in your application’s resource file are marked
as unpurgeable.

100 (Can’t mount system startup The Operating System could not mount the system startup
volume) volume and thus is unable to read the system resource file into
memory. The startup volume could be corrupted or broken.
Your application can force startup on another volume by
clearing parameter RAM, as discussed in the chapter
“Parameter RAM Ultilities” in this book.

32767 (Default system error) This is the default system error that executes when an undefined
problem occurs. Your application can call the SysEr r or
procedure with this value.

Resume Procedures

The Operating System supports a mechanism that allows your application to resume
execution after a system error if the user clicks the Continue button (or the Resume
button in earlier versions of system software). When initializing the Dialog Manager
using the | ni t Di al ogs procedure, your application passes a pointer to a resume
procedure or passes NI L if no resume procedure is desired. A resume procedure takes no
parameters.

In general, you should not write code to allow an application to continue to execute
normally after a system error has occurred. Because current versions of system software
allow multiple applications to be open at once, a system error could affect other
processes than the one that is executing. Indeed, the System Error Handler often simply
stops execution of the application that caused the error rather than present the system
error alert box. In this case, the Finder reports that the application has unexpectedly quit,
as shown in Figure 2-4.

About the System Error Handler 2-11

Ja|pueH 1013 WaisAS -

CHAPTER 2

System Error Handler

Figure 2-4 Handling of a nonfatal system error in System 7

The application “unknown™ has
unexpectedly quit, because an error of

type 12 occurred.

An application that attempts to resume execution after a system error is likely to
encounter the same problem again and might even encounter more serious problems.
In early versions of system software, such an attempt constituted a harmless last-ditch
effort by an application to salvage itself. In current versions of system software, such an
attempt may cause a fatal system error—that is, a system error that crashes the entire
system—even if the initial system error was nonfatal.

If your application is designed to work with System 7 only, you should always pass NI L
tol ni t Di al ogs and forego a resume procedure. You might alternatively pass a pointer
to a simple resume procedure that simply quits the program, as illustrated in Listing 2-1.

Listing 2-1 A simple resume procedure

2-12

PROCEDURE MyResunePr oc;
BEG N

Exi t ToShel | ;
END;

If you wish, you might write a custom resume procedure that you install only on
Macintosh computers running versions of system software prior to System 7. Typically,
such resume procedures simply jump to the beginning of the application’s main event
loop and hope for the best. Because Pascal does not permit a procedure to include a
GOTOstatement that references a label outside its scope, resume procedures typically
are written in assembly language.

WARNING

Implementing a resume procedure is not an adequate substitute for
guality assurance. Your application should not, for example, allow the
user to open so many documents that memory runs out, causing a
system error. Calling the System Error Handler’s SysEr r or procedure
to report a problematic condition to the user might cause a system crash
even if no crash would have otherwise occurred and even if your
application uses the simple resume procedure defined in Listing 2-1. a

About the System Error Handler

CHAPTER 2

System Error Handler

System Error Handler Reference

This section describes the routine and resource that the System Error Handler uses when
generating a system error. Although your application may use the routine, ordinarily
there is no need to do so. The system error alert table resource is private to the System
Error Handler and documented for completeness only.

System Error Handler Routines

The Operating System calls the SysEr r or procedure to force display of the system error
alert box.

SysError
You can use the SysErr or procedure to simulate a system error. Ordinarily, however,
only the Operating System invokes this procedure.
PROCEDURE SysError (errorCode: Integer);
error Code The system error ID corresponding to the system error condition
identified.
DESCRIPTION

The SysEr r or procedure generates a system error with the system error 1D specified
by the er r or Code parameter. The value of the system error ID determines the exact
response of the System Error Handler (for example, whether it can intercept the error)
and determines the contents of the system error alert box displayed for the error.

The SysEr ror procedure begins by saving all registers and the stack pointer and by
storing the system error ID in a global variable (hamed DSEr r Code). The Finder uses
this global variable when reporting that an application unexpectedly quit.

If there is not a system error alert table in memory, SysEr r or loads it in. (The global
variable DSAl er t Tab stores a pointer to the current system error alert table. If no
system error alert table is in memory, DSAl ert Tab is NI L.) If there is no table in
memory (indicating that the error likely occurred at the beginning of system startup),
the System Error Handler draws the “sad Macintosh” icon and plays appropriate
ominous tones through the Macintosh speaker. Different tones correspond to different
problems that the SysEr r or procedure determines have occurred.

After allocating memory for QuickDraw global variables on the stack and initializing
QuickDraw, SysEr r or initializes a graphics port in which the alert box is drawn.

System Error Handler Reference 2-13

Ja|pueH 1013 WaisAS -

CHAPTER 2

System Error Handler

The SysEr ror procedure draws the alert box (in the rectangle specified by the global
variable DSAl er t Rect) unless the er r or Code parameter contains a negative value.
Note that the system error alert box is not a Dialog Manager modal dialog box. Negative
values are used to force the SysEr r or procedure to display a sequence of consecutive
messages in a system startup alert box without redrawing the entire alert box. If the
value in the er r or Code parameter does not correspond to an entry in the system error
alert table, the default alert box definition at the start of the table is used, displaying the
message “Sorry, a system error occurred.”

The SysEr ror procedure uses the value in the er r or Code parameter to determine the
contents of the system error alert box. It looks in the system error alert table resource for
an alert definition whose definition ID matches the er r or Code parameter. It then draws
the text and icon of the alert box according to that alert definition in the system error
alert table.

System error alert tables include procedures and button definitions. (See the description
of the system error alert table resource in the section “The System Error Alert Table
Resource” beginning on page 2-16, for details.) If the procedure definition ID in the table
isnot 0, SysEr r or invokes the procedure with the specified ID. If the button definition
ID in the table is 0, SysEr r or returns control to the procedure that called it. This
mechanism allows the disk-switch alert box to return control to the File Manager after
the “Please insert the disk:” message has been displayed.

If a resume procedure has been defined, the button definition ID is incremented by 1.
This mechanism allows the System Error Handler to use one of two layouts depending
on whether a resume procedure has been defined. After drawing the buttons using
QuickDraw rather than the Control Manager, SysEr r or performs hit-testing on the
buttons, highlighting them appropriately. When a button is pressed, the appropriate
procedure is invoked. If there is no procedure code defined for a button, the SysErr or
procedure returns to the routine that called it. The resume procedure is described in the
next section.

SPECIAL CONSIDERATIONS

SEE ALSO

2-14

Calling the SysEr r or procedure might cause a system crash even if no condition that
would have caused a system crash existed prior to the invocation of SysErr or.

SysEr r or works correctly only if the following conditions are met:

= The trap dispatcher is operative. (See the chapter “Trap Manager” in this book for
information about the trap dispatcher.)

= The Font Manager procedure | ni t Font s has been called. Ordinarily, it is called
when the system starts up.

= Register A7 points to a reasonable place in memory (for example, not to video RAM).

= Afew important system data structures do not appear to be too badly damaged.

A list of system error IDs is provided in Table 2-1 on page 2-7.

System Error Handler Reference

CHAPTER 2

System Error Handler

Application-Defined Routines

The System Error Handler calls your application’s resume procedure when the user
clicks the Continue button (or the Resume button on earlier versions of system software)
in the system error alert box.

MyResumeProc

When you call the Dialog Manager procedure | ni t Di al ogs, your application can pass
a pointer to a resume procedure. If you don’t want to install a resume procedure, pass
NI L. A resume procedure has the following syntax:

PROCEDURE MyResumnePr oc;

Ja|pueH 1013 WaisAS -

DESCRIPTION
If your application is the current process, your application’s resume procedure is called
when the user responds to a system error alert box by clicking the Continue button. No
parameters are passed to a resume procedure.

In System 7, the System Error Handler intercepts many system errors and stops
execution of the process, causing an error rather than calling the application’s
resume procedure.

SPECIAL CONSIDERATIONS

In general, you should not write code to allow your application to continue to execute
normally after a system error has occurred. An application that attempts to resume
execution after a system error is likely to encounter the same problem again and might
even encounter more serious problems. In early versions of system software, such an
attempt constituted a harmless last-ditch effort by an application to salvage itself. In
current versions of system software, such an attempt may cause a fatal system error—
that is, a system error that crashes the entire system—even if the initial system error
was nonfatal.

SEE ALSO
For more information about resume procedures, see the section “Resume Procedures” on
page 2-11.

Resources

This section describes the system error alert table (‘'DSAT") resource. The System Error
Handler uses resources of this type to determine what to display in the system startup

System Error Handler Reference 2-15

CHAPTER 2

System Error Handler

alert box and the system error alert box. You should never need to access or change these
resources; the information is provided for completeness only.

The System Error Alert Table Resource

The System Error Handler stores system error alert tables in resources with resource type
' DSAT' . During system startup, the system error alert table resource with resource ID 0
is loaded. This resource describes the “Welcome to Macintosh” alert box. Immediately
thereafter, that table is disposed of and replaced with the system error alert table
resource with resource ID 2.

Note

In early versions of system software the system error alert table was
called the “user alert table” and its resource type was of type' INI T' . O

A system error alert table consists of a group of alert definitions, text definitions, icon
definitions, procedure definitions, button definitions, and button-title definitions. These
definitions provide information about the alert box as a whole: the text, icon, buttons,
and titles for those buttons to be displayed in the alert box, and the procedures to be
executed. The first word (2 bytes) of any definition contains a definition ID, which

must be unique across all definitions. Some definitions reference other definitions. For
example, a button definition includes a word to reference a button-title definition and a
word to reference a procedure definition. This section describes the format of the system
error alert table as a whole and of the various types of definitions.

A system error alert table’s first word indicates the number of entries in the table.
Following these 2 bytes is a 14-byte alert definition that defines an alert box to be used
for all system errors that do not have their own alert box definitions. This alert box
definition is followed by additional definitions, which need not be in any particular
order. For example, a system alert table could contain all alert box definitions before any
other definitions, but this might not be the case. Figure 2-5 illustrates the overall
structure of a system error alert table.

Figure 2-5 The structure of a system error alert table
' DSAT' resource type Bytes
Number of entries in table 2
Default alert definition 14

Additional definitions (alerts, text,)
buttons, button-titles, Variable
procedures, icons)

2-16 System Error Handler Reference

CHAPTER 2

System Error Handler

All definitions in a system error alert table contain a 4-byte definition header. The first
word of the header is the unique definition ID for that definition, which corresponds to
the appropriate system error for alert box definitions, and the second word is a number
indicating the length in bytes of the remainder of the definition.

Figure 2-6 shows the format of an alert definition.

Figure 2-6 The structure of an alert definition
Alert definition Bytes
System error ID 2
Length of the remainder of the definition | 2
Primary text definition ID 2
Secondary text definition ID 2
Icon definition ID 2
Procedure definition ID 2
Button definition ID 2

Following the definition header, the alert definition consists of five word-length fields
containing the definition IDs for a primary text definition, a secondary text definition,
an icon definition, a procedure definition, and a button definition. For each alert
definition, two button definitions must be defined with consecutive numbers. The lower
of these numbers is specified in the button definition ID field. When an application
specifies a resume procedure, the SysEr r or procedure uses the button definition with
the higher ID.

A definition ID of 0 is used for any field to which no definition corresponds. For
example, if a system error alert box contains only one text string, the field for the
secondary text definition ID contains 0. A button definition ID of 0 indicates that

SysEr r or should return to the procedure that called it; this is used for disk-insertion
alerts. If the procedure definition ID is 0, SysEr r or does not invoke an alert procedure
(which should not be confused with a resume procedure).

A text definition specifies the text that is to be drawn in the system error alert box.
Because an alert box can have up to two lines of text, the alert definition allows for two
text definitions. The primary text definition specifies the first line of text in the system
error alert box and the secondary text definition specifies the second line of text.
Figure 2-7 illustrates the format of a text definition.

System Error Handler Reference 2-17

Ja|pueH 1013 WaisAS -

CHAPTER 2

System Error Handler

Figure 2-7 The structure of a text definition
Text definition Bytes
Text definition ID 2

Length of the remainder of the definition | 2

Text location 4
Z Text to be drawn / Variable
0 1

Following the definition header, a text definition includes a 4-byte field indicating the
point, specified in global coordinates, at which the text is to be drawn. Following this
field is a variable-length field consisting of the text to be drawn. The System Error
Handler responds to the slash (/) character by advancing to the beginning of the next
line. This mechanism allows a single text definition to consist of a multiline message.
The last byte of the definition must contain 0 to indicate the end of the text.

An icon definition specifies what icon the System Error Handler draws in the system
error alert box, where to draw it, whether the icon is black-and-white or color, the bit
depth of the icon, and other data as necessary. Figure 2-8 shows the format of an icon
definition.

2-18

Figure 2-8 The structure of an icon definition
Icon definition Bytes
Icon definition 1D 2

Length of the remainder of the definition | 2

Z Icon location / 8

{ Icon data { 128

System Error Handler Reference

CHAPTER 2

System Error Handler

Following the definition header, the icon definition contains an 8-byte field indicating
the rectangle, specified in global coordinates, in which to draw the icon. The following
128 bytes consist of icon data.

An alert definition uses a procedure definition to specify a procedure to be executed
whenever the SysEr r or procedure draws a system error alert box. Button definitions
(described next) use procedure definitions to specify an action to be taken when the user
presses a particular button. Figure 2-9 illustrates the format of a procedure definition.

Figure 2-9 The structure of a procedure definition
Procedure definition Bytes
Procedure definition ID 2

Length of the remainder of the definition | 2

{ Procedure’s code {Vafiable

After the definition header, a procedure definition consists only of a variable-length field
that contains the procedure’s code. The procedure takes no parameters.

A button definition specifies the buttons that the System Error Handler should draw in
the system error alert box. A button definition may reference 0, 1, 2, or more buttons.
Figure 2-10 shows the format of a button definition.

System Error Handler Reference 2-19

Ja|pueH 1013 WaisAS -

CHAPTER 2

System Error Handler

Figure 2-10 The structure of a button definition

2-20

Button definition Bytes
Button definition ID 2
Length of the remainder of the definition | 2
Number of buttons 2
Button-title definition ID 2
Z Button location /8 First button
Procedure definition 1D 2
Button-title definition ID 2
Z Button location / 8 Last button
Procedure definition 1D

Following the definition header is a word indicating the number of buttons in the
button definition. Following this is 12 bytes for each defined button. Each of these
12-byte groups consists of a word containing the button-title definition ID for the text
within the button, 8 bytes containing a rectangle, in global coordinates, that specifies the
location of the button, and a word containing the procedure definition ID for the
procedure to be executed when the button is pressed.

A button-title definition specifies the text to be drawn within a button. Figure 2-11
shows a button-title definition. Following the definition header of the button-title
definition are the actual characters in the string.

System Error Handler Reference

CHAPTER 2

System Error Handler

Figure 2-11 The structure of a button-title definition

Button-title definition Bytes

Button-title definition ID 2

Length of the remainder of the definition | 2

{ Text to be drawn { Variable

%]
<
&
[¢)
3
m
=
o
=
I
QD
>
=3
o

System Error Handler Reference 2-21

CHAPTER 2

System Error Handler

Summary of the System Error Handler

Pascal Summary

System Error Handler Routines

PROCEDURE SysError (errorCode: Integer);

Application-Defined Routines

PROCEDURE MyResumnePr oc;

C Summary

System Error Handler Routines

pascal void SysError (short errorCode);

Application-Defined Routines

pascal void MyResuneProc;

Assembly-Language Summary

Global Variables

DSEr r Code The system error ID of the last system error.
DSAl ert Tab A pointer to the system error alert table in memory, or NI L if none has been loaded.
DSAl ert Rect The rectangle, in global coordinates, in which to draw the system error alert box.

2-22 Summary of the System Error Handler

CHAPTER 3

Mathematical and Logical
Utilities

Contents

About the Mathematical and Logical Utilities 3-3
Bits, Bytes, Words, and Long Words 3-4
Bit Manipulation and Logical Operations 3-7
Reversed Bit-Numbering 3-7
Data Compression 3-8
Pseudorandom Number Generation 3-9
Fixed-Point Data Types 3-11
Angle-Slope Conversion 3-12
Using the Mathematical and Logical Utilities 3-14
Performing Low-Level Manipulation of Memory 3-14
Testing and Manipulating Bits 3-14
Performing Logical Operations on Long Words 3-16
Extracting a Word From a Long Word 3-18
Hardcoding Byte Values 3-19
Compressing Data 3-20
Obtaining Pseudorandom Numbers 3-22
Using Fixed-Point Data Types 3-24
Mathematical and Logical Utilities Reference 3-27
Data Structures 3-27
64-Bit Integer Record 3-27
Routines 3-27
Testing and Setting Bits 3-28
Performing Logical Operations 3-30
Getting and Setting Memory Values 3-32
Compressing and Decompressing Data 3-34
Obtaining a Pseudorandom Number 3-36
Converting Between Angle and Slope Values 3-37

Contents 3-1

3-2

CHAPTER 3

Multiplying and Dividing Fixed-Point Numbers 3-38
Performing Calculations on Fixed-Point Numbers 3-41
Converting Among 32-Bit Numeric Types 3-43
Converting Between Fixed-Point and Floating-Point Values 3-45
Converting Between Fixed-Point and Integral Values 3-46
Multiplying 32-bit values 3-47
Summary of the Mathematical and Logical Utilities 3-48

Pascal Summary 3-48
Data Types 3-48
Routines 3-48

C Summary 3-50
Data Types 3-50
Routines 3-50

Global Variables 3-52

Contents

CHAPTER 3

Mathematical and Logical Utilities

This chapter describes a number of utility routines that you can use to perform
mathematical and logical operations supported directly by the Macintosh Operating
System. In particular, this chapter discusses how you can

= perform low-level logical manipulation of bits and bytes when using a compiler that
does not directly support such manipulations

= save disk space by using simple compression and decompression routines
= obtain a pseudorandom number

= perform mathematical operations with two fixed-point data types supported directly
by the Operating System

= convert numeric variables of different types

You need to read this chapter only if you need access to any of these features. With the
exception of the mathematical operations and conversions, the routines this chapter
describes are intended for programmers who occasionally need to access some of

these features and do not require that the algorithms used to implement them be
sophisticated. For example, if you are developing an advanced mathematical
application, the pseudorandom number generator built into the Operating System might
be too simplistic to fit your needs. Similarly, if you wish to access individual bits of
memory in a time-critical loop, the Operating System routines that perform these
operations are probably too slow to be practical.

You do not need any prior knowledge of the Operating System to read this chapter,
which begins by describing the building blocks of memory in any operating system: bits,
bytes, words, and long words. After subsequent discussions of the built-in compression
and decompression routines provided by the Operating System, this chapter illustrates
how you can use the Operating System’s Mathematical and Logical Utilities. The chapter
concludes with a reference to all mathematical and logical routines supported by the
Operating System. If you are an experienced programmer, you might be able to skip
directly to that section to determine which routine you need.

This chapter does not describe the numeric data types supported by the Standard Apple
Numerics Environment (SANE) that the Operating System does not support directly.
For more information on such data types, consult the Apple Numerics Manual and

Inside Macintosh: PowerPC Numerics.

About the Mathematical and Logical Utilities

This section begins by introducing the building blocks of memory and then discusses
some low-level routines the Mathematical and Logical Utilities provide, such as routines
that compress data and generate pseudorandom numbers. Finally, the section concludes
by introducing two fixed-point data types the Operating System supports.

About the Mathematical and Logical Utilities 3-3

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

Bits, Bytes, Words, and Long Words

This section describes the fundamental memory units used in all computer systems and
discusses some of the operations that you can perform on them using the Mathematical
and Logical Utilities. If you already know what bits, bytes, words, and long words are,
you can skip this section.

A bit is the atomic memory unit. Each bit can be set to one of two values. Often these
values are called 0 and 1. A bit is said to be cleared when its value is 0 and set when its
value is 1.

Eight bits form a single byte. The first bit in a byte is bit number 7, and the last bit is bit
number 0. Bit number 7 is called the most significant bit or the high-order bit, and bit
number 0 is the least significant bit or the low-order bit. A byte can thus store 28, or 256,
different possible values. In Pascal, a byte is thus defined like this:

TYPE
Byte = 0..255;

Figure 3-1 illustrates a byte set to the base-10 value 109.

Figure 3-1 A byte set to 109 ($6D)

3-4

A byte

7 0
CIENECIENEN I ES

The base-10 value 109 is equivalent to the binary value 01101101. This sequence of binary
digits exactly corresponds to the status of each bit in the byte illustrated in Figure 3-1.

A byte value is typically represented by two hexadecimal digits. The value in Figure 3-1,
for example, is equivalent to $6D.

Sometimes it is useful to quickly convert between hexadecimal and binary number
formats during debugging when examining the values of individual bits in a byte.
Table 3-1 provides an easy way to do this on a digit-by-digit basis.

About the Mathematical and Logical Utilities

CHAPTER 3

Mathematical and Logical Utilities

Table 3-1 Converting hexadecimal digits to binary values
Hexadecimal Binary
$0 0000
$1 0001
$2 0010
$3 0011
$4 0100
$5 0101
$6 0110
$7 0111
$8 1000
$9 1001
$A 1010
$B 1011
$C 1100
$D 1101
$E 1110
$F 1111

For example, the hexadecimal value $AS8 is equivalent to the binary value 10101000
because the hexadecimal digit $A is equivalent to 1010 and the digit $8 is equivalent
to 1000. You can use Table 3-1 to convert numbers in both directions.

While you can always think of a byte as a particular value from $00 to $FF, sometimes
that value is irrelevant. For example, an application might use a byte simply as a way

to store eight flag bits; in this case, the application cares about only individual bits within
the byte and not the value of the byte as a whole. Also, bytes are often used to store
signed values, in which case a byte can be considered equivalent to values from -$80

to +$7F. If you use a low-level debugger like MacsBug to examine individual bytes in
memory, you should also be aware that different compilers might use bytes in

different ways.

Two bytes form a word. A word is thus a 16-bit quantity and can be used to store 216

(or 65,536) possible values. Aword boundary is the memory location that divides two
words. The first byte in a word is known as the high-order byte, and the second byte
is known as the low-order byte. A pointer to a word points to the high-order byte.
Figure 3-2 illustrates a word.

About the Mathematical and Logical Utilities 3-5

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

Figure 3-2 A word set to $3AD4

A word
15 0
lofofafafrfoafofaf1]ofr]of1]0]0]

High-order byte Low-order byte

In Figure 3-2, the high-order byte is set to $3A. The low-order byte is set to $D4. The
word thus has the value $3ADA4.

Two words form a long word. A long word is thus a 32-bit quantity and can be used to
store 232 (or 4,294,967,296) values. A long-word boundary is the memory location that
divides two long words. A long word consists of a high-order word and a low-order
word, as illustrated in Figure 3-3.

Figure 3-3 A long word set to $C24DAF2F

3-6

A long word

31 16
(1] sfofofofo]sfolofsofofafs]o]s]

High-order word
15 0
(2fofafofajajafafofofafofa]a]a]a]

Low-order word

In Figure 3-3, the high-order word is set to $C24D. The low-order word is set to $AF2F.
The long word thus has the value $C24DAF2F.

Variables of type | nt eger are signed words, and variables of type Longl nt are signed
long words. On current versions of the Operating System, a memory address is stored
using all 32 bits of a long word.

Typically, Macintosh compilers align all values on word boundaries (and in some cases
on long-word boundaries). This means that when you declare a variable of type Byt e

in Pascal, the compiler is in fact likely to allocate 2 bytes of memory to store the byte; the
extra byte is called a pad byte. In this case, when you attempt to test bits in a byte you
have allocated, the compiler might test the corresponding bit in the wrong byte.

In Pascal, there are two easy ways to avoid this problem. One is to aggregate variables
of type Bool ean and of type Byt e in a packed record. In this case, as long as the packed
record’s size is a number of bytes that is a multiple of 4, no pad bytes are added. The

About the Mathematical and Logical Utilities

CHAPTER 3

Mathematical and Logical Utilities

second technique is, for variables in which you wish to test individual bits, to allocate
2 or 4 bytes for the variable (using a variable of type | nt eger or Longl nt, respectively).

Bit Manipulation and Logical Operations

The Mathematical and Logical Utilities provide a number of routines that provide
bit-level and byte-level control over memory, as described in “Performing Low-Level
Manipulation of Memory” beginning on page 3-14. Given a pointer and offset, these
routines can manipulate any specific bit in a stream of bits.

The Bi t Tst, Bi t Set,and Bi t O r routines allow you to test and clear individual bits
within a byte. These functions are introduced in “Testing and Manipulating Bits” on
page 3-14.

Note

TheBi t Tst,Bit Set,and Bi t C r routines use a bit-numbering

scheme that is opposite that of the MC680x0 microprocessor. This
reversed bit-numbering scheme is described in the next section. 0O

The Bi t And, Bi t Or, Bi t Xor, and Bi t Not functions allow you to perform logical
operations on long words, and the Bi t Shi ft function allows you to shift the bits in
a long word to the right or to the left. These functions are introduced in “Performing
Logical Operations on Long Words” on page 3-16.

You might also need to extract one of a long word’s words. The Hi Wor d and LoWor d
functions allow you to do this and are described in “Extracting a Word From a Long
Word” on page 3-18. Finally, you might need to set a group of bytes’ values directly.
The St uf f Hex procedure enables you to hardcode hexadecimal values to bytes
anywhere in memory and is described in “Hardcoding Byte Values” on page 3-19.

Reversed Bit-Numbering

Three of the routines described in this chapter (the Bi t Tst ,Bit Set,andBitC r
routines) use a bit-numbering scheme that is opposite from that of the bit-numbering
scheme used by the MC680x0 microprocessor.

TheBi t Tst, Bi t Set,and Bi t C r routines count the bit numbers from left to right.
That is, the most significant bit has the bit number 0. The MC680x0 bit number notation
counts the bit numbers from right to left. (That is, the most significant bit has the biggest
bit number.) Figure 3-1 illustrates these bit-numbering schemes.

About the Mathematical and Logical Utilities 3-7

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

Figure 3-4 Bit-numbering schemes

3-8

MC680x0 bit-numbering
7 0
lo1]1]o]1]1]o]2] sitset

64+32 *+ 8+t4 + 1 Calculation

Value = 109

Reversed bit-numbering

0 7
o[a o1 [3 o] suse

64+32 + 8+4 + 1 Calculation

Value = 109

When using routines other than the Bi t Tst, Bi t Set, and Bi t C r routines or if you are
an assembly-language programmer, you should use the MC680x0 bit-numbering scheme.

To convert from MC680x0 bit notation to the scheme described in this section, subtract
the MC680x0 bit number from the highest bit number. For example, to clear bit number
3 in a byte, you must clear bit number 4 (7-3 = 4).

Data Compression

The Mathematical and Logical Utilities include two procedures, PackBi t s and
UnpackBi t s, that allow you to provide rudimentary data compression and
decompression, respectively. The procedures are not powerful enough to provide
effective compression for applications that primarily concern themselves with data
compression. Also, if you are compressing sound, image, or video data, the Sound
Manager (described in Inside Macintosh: Sound) and the Image Compression Manager
(described in Inside Macintosh: QuickTime) provide far more effective compression
algorithms.

You can use the PackBi t s and UnpackBi t s procedures to conserve memory both in
RAM and on disk. However, because decompressing data is time consuming, typically
you compress data using the PackBi t s procedure before saving a file or resource to
disk and decompress data using the UnpackBi t s procedure after reading the data
back from disk. Because the time required for compression and decompression using
PackBi t s and UnpackBi t s is usually trivial compared to the time it takes to access a
typical hard disk, the routines provide a simple, low-overhead way for an application to
minimize the size of its data files.

About the Mathematical and Logical Utilities

CHAPTER 3

Mathematical and Logical Utilities

The PackBi t s procedure is effective when an uncompressed buffer of data is likely to
have many consecutive bytes containing the same value. For example, some applications
use data structures that include fields that the application reserves for future use. These
fields are typically all set to 0. The PackBi t s procedure senses that there is a long string
of consecutive bytes containing the same value and compresses the string of bytes by
using 1 byte to indicate that the subsequent compressed byte represents a number of
consecutive uncompressed bytes.

PackBi t s was originally intended as an easy way to compress black-and-white image
data, such as MacPaint documents. However, because each pixel of a color picture is
typically represented by multiple bytes of data, PackBi t s is unlikely to provide
effective compression for such pictures.

If there is no reason to think that your data format might contain long strings of
consecutive bytes, then the PackBi t s procedure is probably not useful and might even
increase the size of your files. The PackBi t s procedure packs data 127 bytes at a time. If
within the 127 bytes there is no series of 3 consecutive bytes containing the same value,
then there are no gains to be made from compression. In this case, the PackBi t s
procedure must use an initial byte to specify that the 127 subsequent bytes contain
uncompressed data. You can compute the worst-case performance of PackBi t s (that is,
the maximum number of output bytes) by using the following formula:

maxDst Bytes : = srcBytes + (srcBytes+126) DIV 127,

where maxDst Byt es stands for the maximum number of destination bytes and
sr cByt es stands for the number of bytes in the uncompressed source data.

You can, if desired, pack a buffer of data, and then pack the packed buffer again.
However, packing data twice not only is slower than packing data once, but also is likely
to result in a larger output buffer than just packing data once. If your application does
pack data twice, it should unpack the data twice.

Note

In current versions of system software, you can request that PackBi t s
pack up to 32,767 bytes. The PackBi t s procedure then processes the
input buffer in 127-byte chunks. In versions of system software prior to
version 6.0.2, however, you should pass to PackBi t s only buffers up to
127 bytes in length. O

Pseudorandom Number Generation

Because digital computers continuously execute instructions, it is impossible for a
computer to select a truly random number. To force the computer to output a number,
the programmer must create an algorithm, but because algorithms always execute in
the same way, the numbers an algorithm produces cannot be truly random. Random
numbers are often necessary in software applications, however. For example, an
entertainment software application might need to ensure that the user is not faced

About the Mathematical and Logical Utilities 3-9

saminN [e21607 pue [eanewsyen -

3-10

CHAPTER 3

Mathematical and Logical Utilities

with the exact same game every time. Or a spreadsheet application might offer
a randomization function for business users attempting to simulate various possible
scenarios.

To get around the impossibility of producing truly random numbers, computer scientists
rely on pseudorandom number generation algorithms. These are complex numeric
algorithms used to produce a series of numbers. All such series eventually repeat, but
typically not until the pseudorandom number generation algorithm has been executed
millions or even billions of times. Because the series is generated by an algorithm, it is
possible to discern a pattern; given the first few numbers of a series, a clever user might
be able to guess the next number. Typically, however, these algorithms are complicated
enough to make the numbers appear random, at least to the casual observer.

Of course, because pseudorandom number generation algorithms are algorithms,

they produce the same series of numbers every time. However, you can seed the
pseudorandom number generator to force it to start somewhere in the middle of the
series. By seeding the generator to a constantly changing variable when your application
starts up, your application can produce different results each time. The value typically
used to seed the pseudo-random number generator is the current date and time. Of
course, time isn’t random—it moves forward at a constant linear rate—but in the
absence of a stopped system clock, the user will never launch your application at the
same time twice, so you can be confident that your application will produce different
results each time it is executed.

The Macintosh Operating System’s pseudorandom number generation algorithm is
accessible through the Randomfunction. The Randomfunction returns a pseudorandom
integer from —32767 to 32767. The value that the Randomfunction produces depends

on the r andSeed global variable. The Randomfunction changes r andSeed while
generating a pseudorandom number, thus enabling a subsequent call to Randomto
produce the next number in the series. You only need to seed the global variable once,
at the start of your program.

The pseudorandom number generation algorithm is designed so that as the number of
times Randomis executed approaches infinity, the percentage difference in the number
of times any two integers in the range —32767 to 32767 are produced approaches 0. Thus,
the pseudorandom number generator is said to produce pseudo-random numbers that
are uniformly distributed in the range —-32767 to 32767.

This chapter does not describe the algorithm that Randomuses to generate
pseudorandom numbers. While the algorithm is sufficiently complex for most
applications, applications that perform mathematical or statistical analysis might require
a better pseudo-random number generator. Consult the computer science literature for
information on sophisticated pseudorandom number generation algorithms.

About the Mathematical and Logical Utilities

CHAPTER 3

Mathematical and Logical Utilities

Fixed-Point Data Types

The Operating System supports two fixed-point data types, that is, numeric types that
consist of integral and fractional components. Depending on the type of information you
are representing with a fixed-point data type, these might be better suited for your needs
than the types | nt eger, Longl nt, and the many floating-point types supported by the
Standard Apple Numerics Environment.

A variable of type Fi xed is defined like this:

TYPE
Fi xed = Longlnt;

A variable of type Fi xed is a 32-bit signed quantity containing an integer part in the
high-order word and a fractional part in the low-order word. Figure 3-5 illustrates the
format for Fi xed.

Figure 3-5 The Fi xed data type

A Fi xed data type

31 16
lol1]1]ofa]ola|a]ofa]o]1]o]1]1]o]Bitset
Signz“ vallv el il sl Sl s L S S S A S S &

15 0
|tjofzjofofsjsfofofofsfzfofs]o]1|bitset

-11 12

2-1 2—2 2»3 2-4 2—5 2»6 2-7 2»8 2—9 2-10 oty 2-13 2»14 2—15 2—18

The high-order word consists of the integral component of the fixed-point number, and
the low-order word consists of the fractional component of the fixed-point number. Each

bit, other than the most significant bit, represents a power of 2, as indicated in Figure 3-5.

Negative numbers of type Fi xed are the two’s complement; that is, the negative
numbers are formed by treating the fixed-point number as a long integer, inverting each
bit, and adding 1 to the least significant bit.

The Fr act data type is useful for allowing accurate representation of small numbers,
that is, numbers between -2 and 2. It is defined just like Fi xed:

TYPE
Fract = Longlnt;

Figure 3-6 illustrates the format for Fr act .

About the Mathematical and Logical Utilities 3-11

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

Figure 3-6 The Fr act data type

3-12

A Fract datatype

31 16
lol1fofs]a]o]a]o]a]o]o]1]o]o]1]0]Bise

) 20 2»1 2-2 2-3 2»4 2»5 2-6 2-7 2-8 2-9 2»10 2»11 2»12 2-13 2»14

15 0
[of1]ofafofa]sfofafofa|s]o]1]a]1]Bitset

2»15 2—16 2—17 2»18 2»19 2—20 2»21 2»22 2»23 2—24 2—25 2—26 2—27 2»28 2—29 2—30

Like a Fi xed number, a Fr act number is a 32-bit quantity, but its implicit binary point
is to the right of bit 30 of the number; that is, a Fr act number has 2 integer bits and

30 fraction bits. As with the type Fi xed, a number is negated by taking its two’s
complement. Thus, Fr act values range between -2 and 2 — (2‘30), inclusive.

All routines that operate on fixed-point numbers handle boundary cases uniformly.
Results are rounded by adding half a unit in magnitude in the last place of the stored
precision and then chopping toward zero. Overflows are set to the maximum
representable value with the correct sign ($80000000 for negative results and $7FFFFFFF
for positive results). Division by zero results in $8000000 if the numerator is negative
and $7FFFFFFF otherwise; thus, the special case 0/0 yields $7FFFFFFF.

Angle-Slope Conversion

The Mathematical and Logical Utilities provide two functions for applications that need
to draw lines at particular angles. For example, a mathematical plotting application
might need to draw a 30-degree line. The S| opeFr omAngl e and Angl eFr ontl ope
functions provide simple conversion between slope and angle values. Slopes and angles
are defined in such a way as to be convenient to a computer programmer rather than
correspond to the conventional mathematical interpretation.

Note

You should not rely on the SI opeFr omAngl e and Angl eFr onSl ope
functions to produce values that will allow you to draw lines at a precise
angle on the screen. The functions do not take into account the size of
pixels on a screen. If pixels on a screen are not perfect squares, a
30-degree angle might appear to be a different angle to the user. O

Since QuickDraw and other computer imaging schemes typically invert the y-axis
(making positive down and negative up), the angle-slope conversion routines use this
convention as well. Angles are measured clockwise relative to the negative y-axis (that is,
relative to 12 o’clock), and are taken MOD 180, so that a 270-degree angle is considered to
be equivalent to a 90-degree angle.

About the Mathematical and Logical Utilities

CHAPTER 3

Mathematical and Logical Utilities

Slopes are defined as Ax/Ay, the horizontal change divided by the vertical change for
any two points on a line with the slope. Note that mathematicians typically measure
slopes Ay/Ax. The convention of angle-slope conversion is convenient for applications
that plot a number of lines in a graph one horizontal line at a time.

Figure 3-7 shows some equivalencies between angle and slope values for the angle-slope
conversion routines.

Figure 3-7 Some slope and line equivalencies using the conventions of the angle-slope
conversion routines
-y -y
Angle = 45 Angle = 135
-X X -X \ X
y y

45 MOD 180 = 45
Sl opeFr omAngl e(45) = -1
Angl eFr ontl ope(-1) = 45

135 MOD 180 = 135
Sl opeFr omAngl e(135) =1
Angl eFr onSl ope(1) =135

-y -y
Angle = 225 Angle = 315
A A
-X X -X
/ N
y y

225 MOD 180 = 45
S| opeFr onAngl e(45) =-1
Angl eFr onSl ope(-1) =45

Slope: —1.0 is $00010000
Slope: 1.0 is $FFFF0000

315 MOD 180 = 135
Sl opeFr omAngl e(135) =1
Angl eFr onSl ope(1) =135

About the Mathematical and Logical Utilities

3-13

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

The Angl eFr onSl ope function is useful primarily only when speed is more important
than accuracy because the function might return an angle off by as much as 1 degree
from the actual angle. The function returns values between 1 and 180 (inclusive), and
thus never returns an angle value between 0 and 1 degrees. If your application is likely
to need precise differentiation in angles, you should probably develop alternative
routines to handle angle-slope conversions.

Sl opeFr omAngl e(0) is 0, and Angl eFr ontl ope(0) is 180. For all x except for 0,
however, Angl eFr ontSl ope(SI opeFr omAngl e(x)) = x istrue. But the reverse,
Sl opeFr omAngl e(Angl eFr onSl ope(x)) = x is not necessarily true.

Using the Mathematical and Logical Utilities

This section describes how you can take advantage of the Mathematical and Logical
Utilities supported by the Operating System, it describes how you can

= test and set individual bits, perform logical operations on long words, divide a long
word into its high word and low word, and set memory values directly.

= Use the PackBi t s and UnpackBi t s procedures to compress and decompress data.

= seed the pseudo-random number generator and obtain random integers or long
integers within a given range.

= perform simple calculations involving fixed-point numbers and convert fixed-point
numbers to other numeric types.

Performing Low-Level Manipulation of Memory

The Mathematical and Logical Utilities provide several routines to perform bit-level and
byte-level manipulation of memory. These routines are provided primarily for Pascal
programmers. C and assembly-language programmers can use these routines also;
however, in general it is easier and more efficient to achieve the same effects as these
routines by using built-in C or assembly constructs.

Testing and Manipulating Bits

The Bi t Tst function lets you test whether a given bit is set. The function requires that
you specify a bit through an offset from a pointer. Listing 3-1 is an example of an
application-defined function that tests a specified bit.

Listing 3-1 Testing bits

3-14

FUNCTI ON MyTestBit (bytePtr: Ptr; bitNum Longlnt): Bool ean;
BEG N

MyTestBit := BitTst(bytePtr, bitNun);
END;

Using the Mathematical and Logical Utilities

CHAPTER 3

Mathematical and Logical Utilities

The byt ePt r parameter specifies a pointer to a byte in memory. The bi t Numparameter
specifies the number of the bit to be tested as an offset from byt ePt r. For example, you
can use the application-defined function My Test Bi t to test specific bits of the word
specified in Figure 3-8.

Figure 3-8 A sample word (in MC680x0 notation)

A sample word

15 0
lofofafa]afolajolalaa]ajofa]o]1]
High-order byte Low-order byte

Using the word in Figure 3-8, the call Bi t Tst (myPtr, 0) returns FALSE because bit
number 0 in the first byte is not set. But the call Bi t Tst (myPtr, 11) returns TRUE
because bit number 3 in the second byte is set.

When using the Bi t Tst function, be sure to specify bits as positive offsets from
the high-order bit rather than using the normal MC680x0 notation (see “Reversed
Bit-Numbering” on page 3-7). Listing 3-2 illustrates a use of the Bi t Tst function in
conjunction with a bit traditionally identified with MC680x0 notation.

Listing 3-2 Determining whether a handle is purgeable using the Bi t Tst function

FUNCTI ON MyHandl el sPur geabl e (myHandl e: Handl e) : Bool ean;
CONST

kMyBi t Nun68000 = 6;
VAR

propertiesByte: SignedByte;
BEG N

properti esByte : = HGet State(nyHandl e);

MyHandl el sPurgeabl e : = BitTst (@ropertiesByte,

7 - kMyBi t Nun68000) ;

END;

The MyHandl el sPur geabl e function defined in Listing 3-2 determines whether a
handle references a relocatable block by examining the properties byte for that handle.
The purgeable bit is, in MC680x0 notation, bit number 6 of the properties byte; because
Bi t Tst uses reverse numbering, so bit number 7 — 6 = 1 is tested.

The Bi t Set and Bi t O r procedures require that you specify bits using the same
scheme as with the Bi t Tst procedure (see “Reversed Bit-Numbering” on page 3-7).
The Bi t Set procedure sets a bit (that is, sets its value to 1), while Bi t C r clears a bit

Using the Mathematical and Logical Utilities 3-15

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

(that is, sets its value to 0). For example, if you issue the following two calls to
the Bi t Set procedure

Bit Set (bytePtr, 5);
BitClr(bytePtr, 7);

bit 5 (using the reversed bit-numbering scheme) of the byte in memory pointed to by
the byt ePt r parameter is set to 1, and bit 7 (using reversed bit-numbering) of the same
byte is cleared.

Note

In C, you can test bits by using the & operator. You can set and clear bits
by using the | = and &= operators, respectively. In all three cases,

one operand should be the byte (or word or long word you wish to
manipulate), and the other should be a value in which only the relevant
bit is set or cleared. Many Pascal compilers also support built-in
operations that accomplish these tasks efficiently. Note that C uses

the MC680x0 bit-numbering scheme (normal bit-numbering). ©

Performing Logical Operations on Long Words

The Macintosh Operating System provides routines that allow you to perform basic
bitwise logical operations, including the AND, OR, and XOR operations on long words.
Each of the functions takes two long integers as parameters and returns another long
integer. You can use these functions on other 32-bit data types, as long as you cast values
to Longl nt as required by your compiler. The functions that perform the AND, OR, and
XOR operations are Bi t And, Bi t Or, and Bi t Xor respectively. Figure 3-9 illustrates
these functions.

Figure 3-9 The Bi t And, Bi t Or, and Bi t Xor functions

3-16

=
=
=
=
o

. 1111 10101111 101111
Bi t And 000 00001010 0010

Result 111100000000000010101121001201111

111100001111000012010111100101111

BitQr 11110000000011112121711122100101111
Result 111100001111 1111112111112100101111
. 11110000111100001010111100101111
Bi t Xor

=
=
=
=
o

ooo0000O011111111111100101111

Result 00000000111111110101000000000000

Using the Mathematical and Logical Utilities

CHAPTER 3

Mathematical and Logical Utilities

As shown in Figure 3-9, the Bi t And function returns a long word in which each bit is set
if and only if the corresponding bit is set in both long words passed in. The Bi t O
function returns a long word in which each bit is set if and only if the corresponding bit
is set in either long word passed in. The Bi t Xor function returns a long word in which
each bit is set if and only if one but not both of the corresponding bits in the long words
passed in is set.

Note

In C, you can achieve the same effects as the Bi t And, Bi t O, and

Bi t Xor functions by using the &, | , and ~ operators, respectively, in
conjunction with the = assignment operator. Many Pascal compilers also
support built-in operations that accomplish these tasks more

efficiently. O

A common use of the Bi t And function is to mask out certain bytes within a long word
(that is, clear all bits in those bytes). For example, to mask out the second byte of a long
word stored in a variable val ue, you could write the following code:

val ue : = BitAnd(val ue, $FFOOFFFF);

The Macintosh Operating System also offers two bit-manipulation routines that simulate
unary operators, the Bi t Not and the Bi t Shi ft functions, which perform the NOT
operation and bit-shifting, respectively. You specify the long integer on which to perform
the operation as a parameter to the Bi t Not and Bi t Shi ft functions. In addition, you
specify how to shift the bits as a parameter to the Bi t Shi f t function.

Figure 3-10 illustrates Bi t Not and Bi t Shi f t .

Figure 3-10 The Bi t Not and Bi t Shi ft functions

Bi t Not 011111111000000001111111210101110
Result 10000000011111111000000001010101
Bi t Shift

(left) 01111111100000000111111110101110
Result 11111111000000001121211111101011100
Bit Shift

(right) 01111111100000000111111110101110
Result 00111111110000000011211121111010111

Using the Mathematical and Logical Utilities 3-17

saminN [e21607 pue [eanewsyen -

3-18

CHAPTER 3

Mathematical and Logical Utilities

As shown in Figure 3-10, the Bi t Not function returns a long word in which each bit
is set if and only if the corresponding bit in the long word passed in is not set. The

Bi t Shi ft function shifts bits—to the left if the count parameter is greater than 0 and
to the right if the count parameter is less than 0. (Shifting to the left means shifting
towards the high-order bit.) When shifting count bits to the left, the count low-order
bits are set to 0; when shifting count bits to the right, the count high-order bits are
set to 0.

Note

In C, you can achieve the same effect as the Bi t Not function more
efficiently by using the » operator on the value whose bits are to be
inverted and the value $FFFFFFFF. You can achieve the same effect as
the Bi t Shi ft function more efficiently by using the >> operator for
shifting to the right and the << operator for shifting to the left. Many
Pascal compilers support built-in operations that accomplish these tasks
efficiently. O

Extracting a Word From a Long Word

Often a long word stored as a variable of type Longl nt is used to hold two different
pieces of information in its two different words. For example, when a disk-inserted event
occurs, the message field of the event record contains the drive number in the low-order
word and a result code in the high-order word. To access these two types of information,
you can use the Hi Wor d and LoWbr d functions. For example:

VAR
x: Longl nt;
hi gh, low Integer;
high := H Wrd(x);
| ow : = LoWord(x);

The Hi Wor d function returns the high-order word of the long word passed in, and the
LoWor d function returns the low-order word of the long word passed in. You can use
these functions with types other than Longl nt and | nt eger, as long as they are 4 bytes
and 2 bytes, respectively, and, if you are using Pascal, you cast the quantities to the
correct types.

The Operating System does not provide any routines that allow you to set the high-order
or low-order words of a long integer. It might seem that you could set the low-order
word by calling the Bi t And function with the original long integer and the low-order
word as parameters, and set the high-order word by calling Bi t And with the original
long integer and the high-order word shifted left 16 bytes as parameters. The problem
with this approach is that when you pass an integer variable to Bi t And, the compiler
automatically casts the variable to a long integer. But for both integers and long integers,
it is the leftmost byte that indicates the sign of the number. So when a negative integer is
cast to a long integer, the low-order word of the long integer is not equal to the original
integer.

Using the Mathematical and Logical Utilities

CHAPTER 3

Mathematical and Logical Utilities

However, you can use the Memory Manager’s Bl ockMove procedure to directly
copy the bytes of a word to the high-order or low-order word of a long word. See
Inside Macintosh: Memory for more information. Or, if you wish to set both the
high-order word and the low-order word of a long integer at once, you can define
the following type:

TYPE MyLongWor dType =
PACKED RECORD
nyH Wor d: I nt eger; {hi gh-order word}
nyLoWor d: I nt eger; {I ow order word}
END;

Then you can define a variable of this type and set the high-word and low-word fields.

By casting a long integer to MyLongWor dType, you could also extract a word from a
long word more efficiently than you can using the H Wor d and LoWor d functions.

Hardcoding Byte Values

Occasionally, you might need to set a group of bytes in memory to specific hexadecimal
values. For example, suppose your application uses a data structure with a 16-byte flags
field and you wish to initialize each of the bytes in the flags field to particular values.
While there are a number of ways that you might do this, the St uf f Hex procedure
provides a simple, though usually inefficient, option.

You provide a pointer to any data structure in memory, and a string of hexadecimal
digits as parameters to the St uf f Hex procedure. For example:

St uf f Hex(@, ' D34EQF29');

Of course, it would in this case be just as easy—and more efficient—to write the
following code:

X = $D34E0F29;

The St uf f Hex procedure is perhaps most useful when you wish to assign a large or odd
number of bytes or set the values of particular bytes within a variable. For example, to
set the low-order word of a long integer x to $64B5, you could use the following code:

StuffHex(Ptr(ORD4(@) + 2), '64B5');
You could use this code rather than use the techniques described in the previous section,
“Extracting a Word From a Long Word.”

Note that Pt r and ORD4 are used here simply to satisfy Pascal type-casting rules.

The St uf f Hex procedure might also be useful if you are developing a calculator or
other application that allows users to enter hexadecimal values directly.

Using the Mathematical and Logical Utilities 3-19

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

Compressing Data

The PackBi t s and UnpackBi t s procedures, introduced in “Data Compression” on
page 3-8, allow you to compress (or decompress) data stored in RAM. Typically, you use
PackBi t s before writing data to disk and UnpackBi t s immediately after writing data
from disk.

Both procedures require that you pass in the sr cPt r and dst Pt r parameters values
that point to the beginning of the source buffer and the destination buffer, respectively.
The PackBi t s procedure compresses the data in the source buffer and stores the result
in the destination buffer; the UnpackBi t s procedure decompresses the data in the
source buffer and stores the result in the destination buffer. You must also pass to the
PackBi t s procedure and the UnpackBi t s procedure a value that specifies the size

of the original, uncompressed data. Because you must pass this information to
UnpackBi t s, you typically use these procedures only to compress a data structure
with a fixed size, so that this size can be passed as a parameter to PackBi t s.

Your application is responsible for allocating memory for both the source and

the destination buffers. When PackBi t s and UnpackBi t s complete operation, the
srcPtr and dst Pt r parameter are incremented so that sr cPt r points to the memory
immediately following the source bytes, and dst Pt r points to the data immediately
following the destination bytes. This feature was originally designed to allow you to
pack large buffers of data at once in chunks, although PackBi t s can automatically
chunk large data buffers in versions of system software 6.0.2 and later. In any case, your
application must store copies of srcPt r and dst Pt r to access the start of the source or
destination buffer after calling PackBi t s or UnpackBi t s.

One use of the compression routines might be to compress resources in your
application’s resource fork. Many types of resources can be made significantly smaller by
compression. Listing 3-3 shows how you can pack data stored in a handle to a specified
resource.

Listing 3-3 Packing data to a resource

PROCEDURE MyAddPackedResource (srcData: Handl e; theType: ResType;

thel D: Integer; name: Str255);

VAR
srcBytes: I nt eger; {bytes of unpacked dat a}
maxDst Byt es: Longl nt; {maxi mum | engt h of packed dat a}
dst Dat a: Handl e; {packed dat a}
srcPtr: Ptr; {poi nter to unpacked dat a}
dstPtr: Ptr; {poi nter to packed data}
srcProperties: Si gnedByt e; {properties of source handl e}
BEG N
srcBytes : = Get Handl eSi ze(srcDat a) ; {find size of source}
{cal cul at e maxi mum possi bl e }
{ size of packed data}
3-20 Using the Mathematical and Logical Utilities

CHAPTER 3

Mathematical and Logical Utilities

maxDst Bytes : = srcBytes + (srcBytes + 126) DIV 127;

dstDat a : = NewHandl e(maxDst Bytes + 2); {al |l ocate nenory for source, }
{ plus length info}

| F dstData <> NIL THEN {check for N L handl e}

BEG N
Bl ockMove(@r cByt es, dstData”, 2); {copy source into buffer}
srcPtr := srcbhata”; {copy source pointer}
dstPtr := Ptr(ORD4(dstData”) + 2); {copy destination pointer}
PackBits(srcPtr, dstPtr, srcBytes); {pack source to destination}

{shrink destination data}
Set Handl eSi ze(dst Data, ORD4(dstPtr) - ORD4(dstData’));

srcProperties := HGet State(srcData); {get source handl e properties}
I F BitTst (@rcProperties, 2) THEN {is source a real resource?}
RenmoveResour ce(srchDat a) ; {renmove current resource}

{add to resource file}
AddResour ce(dstData, theType, thel D, nane);

WiteResource(dstData); {write resource data}

Det achResour ce(dst Dat a) ; {detach fromresource nap}

Di sposeHandl e(dst Dat a) ; {di spose of destination data}
END;

END;

The MyAddPackedResour ce procedure declared in Listing 3-3 initially allocates a
destination buffer to hold compressed data that is big enough to hold the compressed
data in a worst-case scenario, plus 2 bytes to store information at the beginning of the
resource about the size of the source data. Because PackBi t s does not move memory,
the handle storing the destination buffer does not need to be locked. However, to
prevent the PackBi t s procedure from changing the value of a master pointer, you
should only pass copies of the dereferenced handle to the procedure. After PackBi t s
returns, MyAddPackedResour ce determines how much memory the compressed data
takes up by computing how much the dst Pt r variable has changed.
MyAddPackedResour ce then resizes the handle containing the compressed data to the
appropriate size. Finally, MyAddPackedResour ce writes the new resource, after first
removing the existing resource if the source handle is a handle to a resource. For more
information on resources, see Inside Macintosh: More Macintosh Toolbox.

Having used the MyAddPackedResour ce procedure to compress resource data, your
application needs to be able read the resource and decompress it using the UnpackBi t s
procedure. Listing 3-4 shows how you might accomplish this.

Listing 3-4 Decompressing data from a packed resource

FUNCTI ON MyGet PackedResource (theType: ResType; thelD: Integer): Handl e;

VAR

srcDat a: Handl e; {handl e to packed dat a}

Using the Mathematical and Logical Utilities 3-21

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

dst Dat a: Handl e;
srchPtr: Ptr;
dstPtr: Ptr;
dst Byt es: I nt eger;
BEG N
srcData : = GetResource(theType, thelD);

Bl ockMove(srcDat a®, @istBytes, 2);
dst Dat a : = NewHandl e(dst Byt es);

IF dstData <> NIL THEN

{handl e to unpacked dat a}
{pointer to packed data}

{poi nter to unpacked dat a}
{nunber of unpacked byt es}

{get the resource}

{read nunber of bytes of }
{ unpacked dat a}

{all ocate nenmory for }

{ unpacked dat a}

BEG N
srchPtr := Ptr(ORD4(srchata®) + 2); {copy source pointer}
dstPtr := dstData®; {copy destination pointer}
UnpackBits(srcPtr, dstPtr, dstBytes); {unpack source to }
{ destination}
END;
IF srcData <> NIL THEN {if there was a resource}
BEG N
Det achResour ce(srcbhDat a) ; {detach from resource map}
Di sposeHand! e(srcDat a) ; {di spose the resource}
END;
My Get PackedResour ce : = dstDat a; {return destination handl e}
END;
The MyGet PackedResour ce function reads in a resource that has previously been
packed, determines the size of the unpacked data by copying the first 2 bytes of the
resource data, and allocates a relocatable block of this size. The remainder of the data
is unpacked using the UnpackBi t s procedure, and the original packed resource data is
disposed of.
Obtaining Pseudorandom Numbers
The Randomfunction makes it easy to obtain pseudorandom numbers. Before you use
Random however, you should seed the pseudo-random number generator. Listing 3-5
shows a common technique for doing this.
Listing 3-5 Seeding the pseudo-random number generator
PROCEDURE My SeedGener at or ;
BEG N
Get Dat eTi ne(randSeed) ;
END;
3-22 Using the Mathematical and Logical Utilities

CHAPTER 3

Mathematical and Logical Utilities

The MySeedGener at or procedure defined in Listing 3-5 simply uses the Date and Time
Utilities’ Get Dat eTi ne procedure to copy the number of seconds since midnight,
January 1, 1904, to the global variable r andSeed. You might use some other volatile
long-word value—such as the mouse location—to seed the pseudo-random number
generator, or you might even take a word from one source and a word from another.
However, just using Get Dat eTi ne is sufficient for most applications.

Sometimes you wish to obtain a pseudo-random integer from a large range of integers;
for example, you might need a pseudo-random integer in the range of —20,000 to 20,000.
Listing 3-6 shows how you might do this.

Listing 3-6 A simple way of obtaining a large random integer from a range

of pseudo-random numbers

FUNCTI ON MyRandomnlLar geRange (mn, nax: Integer): Integer;
VAR

randl nt : I nt eger;
BEA N
REPEAT
randl nt := Random

UNTIL (randlnt >= mn) AND (randlnt <= nax);
MyRandoniar geRange : = randl nt;
END;

The MyRandonlLar geRange function defined in Listing 3-6 simply calls the Random
function until it returns an acceptable value. This approach is efficient when you need

a random integer from a range of integers that is wide, though not quite as wide as

the range the Randomfunction returns by default. However, if you need a random
number from a small range—for example, a random number from 1 to 10—the
MyRandoniar geRange function is inefficient. Listing 3-7 shows an alternative approach.

Listing 3-7 Obtaining a pseudo random integer from a small range of numbers

FUNCTI ON MyRandonRange (min, max: Integer): Integer;
CONST

kM nRand = -32767.0;

kMaxRand = 32767. 0;
VAR

nyRand: I nt eger;

X: Real ; {Random scaled to [0..1]}
BEG N

{find random nunber, and scale it to [0.0..1.0]}
X := (Random - kM nRand) / (kMaxRand + 1.0 - kM nRand);

Using the Mathematical and Logical Utilities 3-23

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

{scale x to [min, max + 1.0], truncate, and return result}
MyRandonRange := TRUNC(x * (max + 1.0 - min) + mn);
END;

The MyRandonRange function defined in Listing 3-7 first scales the integral value
returned by the Randomfunction to a floating-point value from 0 up to, but not
including, 1. The function then scales the result to a real number greater than or equal
to m n but less than max + 1. By truncating extra decimal places, the correct result is
achieved. Note that to force the compiler to perform floating-point calculations, all
constants in the function are expressed as real numbers rather than as integers.

Sometimes an application might require a pseudo-random long integer. Listing 3-8
shows how you can do this.

Listing 3-8 Obtaining a pseudo-random long integer

FUNCTI ON MyRandoniongl nt: Longlnt;

TYPE
MyLongWor dType = PACKED RECORD
nyH Wor d: I nt eger; {hi gh-order word}
nyLoWor d: I nt eger; {I ow order word}
END;
VAR
nmyLongWor d: MyLongWor dType; {random | ong wor d}
BEG N

{obtai n random hi gh-order word}

nmyLongWor d. myH Word : = Random

{obtain random | ow order word}

nyLongWor d. myLowsrd : = Random

{cast and return result}

MyRandoniongl nt : = Longl nt (myLongWord);
END;

The MyRandoniongl nt function defined in Listing 3-8 uses a technique discussed in
“Extracting a Word From a Long Word” on page 3-18 to stuff a pseudo-random number
in the high-order word of a long integer and another pseudo-random number in the
low-order word of the long integer. If you need to obtain a long integer within a
specified range, you can define routines analogous to Listing 3-6 and Listing 3-7 but
use the MyRandonlongl nt function in place of the Randomfunction.

Using Fixed-Point Data Types

Most high-level language compilers include built-in support for the Fi xed and Fr act
data types so that you can perform regular mathematical operations with fixed-point
variables. Also, the algorithms for performing addition and subtraction on Fi xed and

3-24 Using the Mathematical and Logical Utilities

CHAPTER 3

Mathematical and Logical Utilities

Fract variables are the same as the algorithms for performing such operations on
variables of type Longl nt .

The Operating System, however, includes several routines that allow you to convert

Fi xed and Fr act variables to other formats, including SANE’s Ext ended data type,
and allow you to perform some simple operations on Fi xed and Fr act variables. If you
need more sophisticated numeric functions, consult the Apple Numerics Manual.

To perform multiplication and division of fixed-point numbers, you can use the Fi xMul ,
Fi xDi v, FracMul , and Fr acDi v functions, which allow you to multiply Fi xed point
numbers with each other or with other long integers.

You can multiply and divide 32-bit quantities of different types using these functions.
The format of the result in this case depends on the particular function being used. See
descriptions of the individual functions in “Multiplying and Dividing Fixed-Point
Numbers” beginning on page 3-38 for more information.

Using the FracSqrt, FracCos, FracSi n, and Fi xATan2 functions, you can perform a
few special arithmetic operations involving variables of type Fi xed and Fr act .

The FracSqgrt function allows you to obtain the square root of a variable of type

Fract , interpreting bit 0 as having weight 2 rather than -2. The Fr acCos and FracSi n
provide support for the trigonometric cosine and sine functions. The Fi xATan2 function
provides support for the arctangent function. The arguments to all of these functions
should be expressed in radians, not in degrees.

Note

To provide fast trigonometric approximations, these trigonometric
functions use values of Ttcorrect only to 4 decimal places. You should
thus use alternative SANE routines when you require better precision. O

To convert among 32-bit numeric types, you can use the Long2Fi x, Fi x2Long,
Fi x2Fr ac, and Fr ac2Fi x functions.

Each of the functions returns its parameter converted into the appropriate format.

You can also convert fixed-point values to and from the SANE Ext ended floating-point
type using the Fi x2X, X2Fi x, Fr ac2X, and X2Fr ac functions.

Two additional functions, Fi xRat i o and Fi xRound, allow you to perform special
conversions on variables of type Fi xed.

The Fi xRat i o function returns the fixed-point quotient of the nuner and denom
parameters. The Fi xRound function rounds a variable of type Fi xed to the nearest
integer. If the value is halfway between two integers (0.5), it is rounded to the integer
with the higher absolute value. To round a negative fixed-point number, negate it, round
it, and then negate it again.

Note

To convert a variable of type Fi xed to a variable of type | nt eger
simply use the Hi WWr d function to extract the integral component of the
fixed-point number. O

Using the Mathematical and Logical Utilities 3-25

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

The Operating System also provides the LongMul procedure that allows you to multiple
two 32-bit quantities and obtain a 64-bit quantity.

Table 3-2 summaries the routines that perform operations on the Fi xed and Fr act data
types.

Table 3-2 Routines for fixed-point data types

Routine Description

Fi xMul Multiply a variable of type Fi xed with another variable of type Fi xed
or with a variable of type Fr act or Longl nt

Fi xDi v Divide two variables of the same type (Fi xed, Fr act, or Longl nt)
or divide a Longl nt or Fract number by a Fi xed number

FracMul Multiply a variable of type Fr act with another variable of type Fr act
or with a variable of type Fi xed or Longl nt

FracDi v Divide two variables of the same type (Fi xed, Fr act, or Longl nt)
or divide a Longl nt or Fi xed number by a Fr act number

FracSqgrt Compute the square root of a variable of type Fr act

Fr acCos Obtain the cosine of a variable of type Fi xed

FracSin Obtain the sine of a variable of type Fi xed

Fi xATan2 Obtain the arctangent of a variable of type Fi xed, Fract, or Longl nt
Long2Fi x Convert a variable of type Longl nt to Fi xed

Fi x2Long Convert a variable of type Fi xed to Longl nt

Fi x2Fr ac Convert a variable of type Fi xed to Fr act

Frac2Fi x Convert a variable of type Fr act to Fi xed

Fi x2X Convert a variable of type Fi xed to Ext ended
X2Fi x Convert a variable of type Ext ended to Fi xed
Frac2X Convert a variable of type Fr act to Ext ended
X2Fr ac Convert a variable of type Ext ended to Fr act

Fi xRati o Obtain the Fi xed equivalent of a fraction
Fi xRound Round a fixed-point number to the nearest integer
LongMul Multiply two 32-bit quantities and obtain a 64-bit quantity

3-26 Using the Mathematical and Logical Utilities

CHAPTER 3

Mathematical and Logical Utilities

Mathematical and Logical Utilities Reference

This section provides a complete reference to the Mathematical and Logical Utilities
routines provided by the Macintosh Operating System. The section “Data Structures”
describes the 64-bit integer record. The section “Routines” describes the routines that
the Operating System includes to allow you to perform simple mathematical and
logical operations.

Data Structures

This section describes the 64-bit integer record. For information on the numeric formats
of fixed-point numbers, see “Fixed-Point Data Types” beginning on page 3-11. For
information on the format of other numeric data types, consult the Apple Numerics
Manual.

64-Bit Integer Record

Routines

By using the LongMul procedure, you can multiply two 32-bit quantities and obtain a
64-bit quantity stored in a 64-bit integer record. The | nt 64Bi t data type defines a 64-bit
integer record.

TYPE Int64Bit =
RECORD
hi Long: Longlnt;
| oLong: Longlnt;
END;

Field descriptions
hi Long The high-order long integer of the 64-bit integer.

| oLong The low-order long integer of the 64-bit integer.

This section describes the Mathematical and Logical Utilities supported directly by the
Macintosh Operating System. Note that none of the routines in this section moves
memory; therefore, all of the described routines in this section can be called at
interrupt time.

Mathematical and Logical Utilities Reference 3-27

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

Testing and Setting Bits

This section describes the Bi t Tst function and the Bi t Set and Bi t Cl r procedures.
You can test a bit using Bi t Tst and specify a bit’s value using Bi t Set andBi t Cl r.
All three of these procedures use the reversed bit-numbering scheme described in the
section “Reversed Bit-Numbering” on page 3-7.

BitTst
You can use the Bi t Tst function to determine whether a given bit is set.
FUNCTION BitTst (bytePtr: Ptr; bitNum Longlnt): Bool ean;
byt ePtr A pointer to a byte in memory.
bi t Num The bit to be tested, specified as a positive offset from the high-order bit
of the byte pointed to by the byt ePt r parameter. The bit being tested
need not be in the byte pointed to by byt ePt r.
DESCRIPTION

The Bi t Tst function returns TRUE if the bit specified by the byt ePt r and bi t Num
parameters is set (that is, has a value of 1) and returns FALSE if the specified bit is
cleared (that is, has a value of 0).

SPECIAL CONSIDERATIONS

The bit-numbering scheme used by the Bi t Tst function is the opposite of MC680x0 bit
numbering. To convert an MC680x0 bit number to the format required by the Bi t Tst
function, subtract the MC680x0 bit number from the highest bit number.

SEE ALSO

For an example of the use of the Bi t Tst function, see Listing 3-2 on page 3-15. For more
information about reversed bit-numbering see, “Reversed Bit-Numbering” on page 3-7.

BitSet

You can use the Bi t Set procedure to set a particular bit.
PROCCEDURE Bit Set (bytePtr: Ptr; bitNum Longlnt);

byt ePtr A pointer to a byte in memory.

3-28 Mathematical and Logical Utilities Reference

DESCRIPTION

CHAPTER 3

Mathematical and Logical Utilities

bi t Num The bit to be set, specified as a positive offset from the high-order bit of
the byte pointed to by the byt ePt r parameter. The bit being set need
not be in the byte pointed to by byt ePtr.

The Bi t Set procedure sets (to a value of 1) the bit specified by the byt ePt r and
bi t Numparameters.

SPECIAL CONSIDERATIONS

The bit-numbering scheme used by the Bi t Set procedure is the opposite of MC680x0
bit numbering. To convert an MC680x0 bit number to the format required by the Bi t Set
procedure, subtract the MC680x0 bit number from the highest bit number.

SEE ALSO
For an example of the use of the Bi t Set procedure, see page 3-16. For more information
about reversed bit-numbering see “Reversed Bit-Numbering” on page 3-7.
BitClIr
You can use the Bi t O r procedure to clear a particular bit.
PROCCEDURE BitClr (bytePtr: Ptr; bitNum Longlnt);
byt ePtr A pointer to a byte in memory.
bi t Num The bit to be cleared, specified as a positive offset from the high-order bit
of the byte pointed to by the byt ePt r parameter. The bit being cleared
need not be in the same byte pointed to by byt ePt r.
DESCRIPTION

The Bi t Cl r procedure clears (to a value of 0) the bit specified by the byt ePt r and
bi t Numparameters.

SPECIAL CONSIDERATIONS

The bit-numbering scheme used by the Bi t O r procedure is the opposite of MC680x0
bit numbering. To convert an MC680x0 bit number to the format required by the Bit C r
procedure, subtract the MC680x0 bit number from the highest bit number.

Mathematical and Logical Utilities Reference 3-29

saminN [e21607 pue [eanewsyen -

SEE ALSO

CHAPTER 3

Mathematical and Logical Utilities

For an example of the use of the Bi t Cl r procedure, see page 3-16. For more information
about reversed bit-numbering, see “Reversed Bit-Numbering” on page 3-7.

Performing Logical Operations

The Operating System supports five functions to support bit-level logical operations. The
Bi t And, Bi t O, Bi t Xor, Bi t Not , and Bi t Shi ft functions perform AND, OR, XOR, NOT,
and bit-shifting operations, respectively. These routines are intended primarily for Pascal
programmers. If you are programming in C, you can typically use C operators to
perform the same logical operations more efficiently.

BitAnd
You can use the Bi t And function to perform the AND logical operation on two long
words.
FUNCTI ON Bit And (val uel, value2: Longlnt): Longlnt;
val uel A long word.
val ue2 A long word.

DESCRIPTION
The Bi t And function returns a long word that is the result of performing the AND
operation on the long words specified by the val uel and val ue2 parameters. Each bit
in the returned value is set if and only if the corresponding bit is set in both val uel and
val ue2.

SEE ALSO
For an illustration of the result of performing an operation using the Bi t And function,
see Figure 3-9 on page 3-16.

BitOr
You can use the Bi t O function to perform the OR logical operation on two long words.
FUNCTION BitOr (val uel, value2: Longlnt): Longlnt;
val uel A long word.
val ue2 A long word.

3-30 Mathematical and Logical Utilities Reference

CHAPTER 3

Mathematical and Logical Utilities

DESCRIPTION
The Bi t O function returns a long word that is the result of performing the OR operation
on the long words specified by the val uel and val ue2 parameters. Each bit in the
returned value is set if and only if the corresponding bit is set in val uel or val ue2, or
in both val uel and val ue2.

SEE ALSO
For an illustration of the result of performing an operation using the Bi t O function, see
Figure 3-9 on page 3-16.

BitXor
You can use the Bi t Xor function to perform the XOR logical operation on two long
words.

FUNCTI ON Bi t Xor (val uel, value2: Longlnt): Longlnt;
val uel A long word.
val ue2 A long word.

DESCRIPTION
The Bi t Xor function returns a long word that is the result of performing the XOR
operation on the long words specified by the val uel and val ue2 parameters. Each bit
in the returned value is set if and only if the corresponding bit is set in either val uel or
val ue2, but not in both val uel and val ue2.

SEE ALSO
For an illustration of the result of performing an operation using the Bi t Xor function,
see Figure 3-9 on page 3-16.

BitNot

You can use the Bi t Not function to perform the NOT logical operation on a long word.
FUNCTI ON Bit Not (value: Longlnt): Longlnt;

val ue A long word.

Mathematical and Logical Utilities Reference 3-31

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

DESCRIPTION

The Bi t Not function returns a long word that is the result of performing the NOT
operation on the long word specified by the val ue parameter. Each bit in the returned
value is set if and only if the corresponding bit is not set in val ue.

SEE ALSO
For an illustration of the result of performing an operation using the Bi t Not function,
see Figure 3-10 on page 3-17.
BitShift
You can use the Bi t Shi ft function to shift bits in a long word.
FUNCTI ON Bit Shift (value: Longlnt; count: Integer): Longlnt;
val ue A long word.
count The number of bits to shift. If this number is positive, Bi t Shi f t shifts
this many positions to the left; if this number is negative, Bi t Shi f t
shifts this many positions to the right. The value in this parameter is
converted to the result of MOD 32.
DESCRIPTION
The Bi t Shi ft function returns a long word that is the result of shifting the bits in the
long word specified by the val ue parameter. The shift’s direction and extent are
determined by the count parameter. Zeroes are shifted into empty positions regardless
of the direction of the shift.
SEE ALSO

For an illustration of the result of performing an operation using the Bi t Shi ft function,
see Figure 3-10 on page 3-17.

Getting and Setting Memory Values

The H Wor d and LoWor d functions allow you to extract a word from a long word. The
St uf f Hex procedure provides a quick way to convert hexadecimal values stored in a
string into byte values in memory.

To copy a range of bytes from one memory location to another, you should ordinarily
use the Memory Manager’s Bl ockMove procedure, which is described in Inside
Macintosh: Memory.

3-32 Mathematical and Logical Utilities Reference

Hiword

CHAPTER 3

Mathematical and Logical Utilities

DESCRIPTION

LoWord

You can use the Hi Wor d function to obtain the high-order word of a long word. One use
of this function is to obtain the integral part of a fixed-point number.

FUNCTI ON Hi Word (x: Longlnt): |nteger;

X The long word whose high word is to be returned.

The Hi Wor d function returns the high-order word of the long word specified by the
X parameter.

DESCRIPTION

StuffHex

You can use the LoWor d function to obtain the low-order word of a long word. One use
of this function is to obtain the fractional part of a fixed-point number.

FUNCTI ON Lowsrd (x: Longlnt): Integer;

X The long word whose low word is to be returned.

The LoWbr d function returns the low-order word of the long word specified by the
X parameter.

You can use the St uf f Hex procedure to hardcode byte values into memory.
PROCEDURE StuffHex (thingPtr: Ptr; s: Str255);

t hi ngPtr A pointer to any data structure in memory. If t hi ngPt r is an odd
address, then t hi ngPt r is interpreted as pointing to the next word
boundary.

S A string of characters representing hexadecimal digits. Be sure that all
characters in this string are hexadecimal digits (0, 1, 2, 3, 4,5,6,7,8,9, A,
B, C, D, E, F). Otherwise, St uf f Hex may set bytes in the data structure
pointed to by t hi ngPt r to arbitrary values. If there are an odd number
of characters in the string, the last character is ignored.

Mathematical and Logical Utilities Reference 3-33

saminN [e21607 pue [eanewsyen -

DESCRIPTION

CHAPTER 3

Mathematical and Logical Utilities

The St uf f Hex procedure sets bytes in memory beginning with that byte specified by
the parameter t hi ngPt r. The total number of bytes set is equivalenttos[0] DIV 2
(that is, half the length of the string, ignoring the last character if the number of
characters is odd).

Each byte to be set corresponds to two characters in the string. These characters should
represent hexadecimal digits. For example, the string ' D41A' results in 2 bytes being set
to the values $D4 and $1A, respectively.

Although the St uf f Hex procedure sets the value of individual bytes, it does not move
relocatable blocks. Thus, you can call it at interrupt time.

SPECIAL CONSIDERATIONS

SEE ALSO

The St uf f Hex procedure does no range checking to ensure that bytes being set are
within the bounds of a certain data structure. If you do not use St uf f Hex carefully,
you may change memory in the partition of your application or another application in
unpredictable ways.

For examples of the use of the St uf f Hex procedure, see page 3-19.

Compressing and Decompressing Data

You can use the PackBi t s function to compress a source buffer of data into a
destination buffer and the UnpackBi t s function to decompress a source buffer of
PackBi t s-compressed data into a destination buffer.

PackBits
You can use the PackBi t s procedure to compress a data buffer stored in RAM.
PROCEDURE PackBits (VAR srcPtr, dstPtr: Ptr; srcBytes: Integer);
srcPtr On entry, a pointer to the first byte of a buffer of data to be compressed.
On exit, a pointer to the first byte following the bytes compressed.
dst Ptr On entry, a pointer to the first byte in which to store compressed data. On
exit, a pointer to the first byte following the compressed data.
srcBytes The number of bytes of uncompressed data to be compressed. In versions
of software prior to version 6.0.2, this number must be 127 or less.
3-34 Mathematical and Logical Utilities Reference

DESCRIPTION

CHAPTER 3

Mathematical and Logical Utilities

The PackBi t s procedure compresses sr cByt es bytes of data beginning at the location
specified by the sr cPt r parameter and stores it at the location specified by the dst Pt r
parameter. It then modifies the srcPt r and dst Pt r variables to point to the first bytes
after the uncompressed and compressed data, respectively.

Your application must allocate memory for the destination buffer itself. In general,
you should allocate enough memory for a worst-case scenario. In the worst case, the
destination buffer is 128 bytes long for each block of source data up to 127 bytes. Thus,
you can use the following formula to determine how much space to allocate for the
destination buffer:

maxDst Bytes := srcBytes + (srcBytes+126) DV 127,

where maxDst Byt es stands for the maximum number of destination bytes.

The PackBi t s algorithm is most effective on data buffers in which there are likely to be
series of bytes containing the same value. For example, resources of many formats often
contain many consecutive zeros. If you have a data buffer in which there are only likely

to be series of words or long words containing the same value, PackBi t s is unlikely to

be effective.

Because your application must allocate memory for the source and destination buffers,
PackBi t s does not move relocatable blocks. Thus, you can call it at interrupt time.

SPECIAL CONSIDERATIONS

SEE ALSO

UnpackBits

Because PackBi t s changes the values of the sr cPt r and dst Pt r parameters, you
should pass to PackBi t s only copies of pointers to the source and destination buffers.
This allows you to access the beginning of the source and destination buffers after
PackBi t s returns. Also, if the source or destination buffer is stored in an unlocked,
relocatable block, this technique prevents PackBi t s from changing the value of a
master pointer, which would make the original handle invalid.

For an example of the use of the PackBi t s procedure, see Listing 3-3 on page 3-20.

You can use the UnpackBi t s procedure to decompress a data buffer containing data
compressed by PackBi t s.

PROCEDURE UnpackBits (VAR srcPtr, dstPtr: Ptr; dstBytes: Integer);

srcPtr On entry, a pointer to the first byte of a buffer of data to be decompressed.
On exit, a pointer to the first byte following the compressed data.

Mathematical and Logical Utilities Reference 3-35

saminN [e21607 pue [eanewsyen -

DESCRIPTION

CHAPTER 3

Mathematical and Logical Utilities

dstPtr On entry, a pointer to the first byte in which to store decompressed data.
On exit, a pointer to the first byte following the decompressed data.

dst Byt es The number of bytes of the data before compression. In general, you
should either use PackBi t s to compress data structures of a fixed size
that you can then pass in this parameter to UnpackBi t s, or store with
the compressed data the original size of the uncompressed data.

The UnpackBi t s procedure decompresses sr cByt es bytes of data beginning at the
location specified by the sr cPt r parameter and stores it at the location specified

by the dst Pt r parameter. It then modifies the srcPt r and dst Pt r variables to point to
the first bytes after the compressed and decompressed data, respectively.

Because your application must allocate memory for the source and destination buffers,
UnpackBi t s does not move relocatable blocks. Thus, you can call it at interrupt time.

SPECIAL CONSIDERATIONS

SEE ALSO

Because UnpackBi t s changes the values of the sr cPt r and dst Pt r parameters, you
should pass to UnpackBi t s only copies of pointers to the source and destination
buffers. This allows you to access the beginning of the source and destination buffers
after UnpackBi t s returns. Also, if the source or destination buffer is stored in an
unlocked, relocatable block, this technique prevents UnpackBi t s from changing the
value of a master pointer, which would make the original handle invalid.

For an example of the use of the UnpackBi t s procedure, see Listing 3-4 on page 3-21.

Obtaining a Pseudorandom Number

You can gain access to the Operating System’s pseudorandom number generator by
using the Randomfunction.

Random
You can use the Randomfunction to obtain a pseudorandom integer.
FUNCTI ON Random | nt eger;
DESCRIPTION
The Randomfunction returns a pseudorandom integer, uniformly distributed in the
range —32767 to 32767.
3-36 Mathematical and Logical Utilities Reference

CHAPTER 3

Mathematical and Logical Utilities

The value Randomreturns depends solely on the global variable r andSeed, which
the QuickDraw | ni t Gr af procedure initializes to 1. Each time the Randomfunction
executes, it uses a numerical algorithm to change the value of r andSeed to prevent it
from returning the same value each time it is called.

To prevent your application from generating the same sequence of pseudo-random
numbers each time it is executed, initialize the r andSeed global variable, when your
application starts up, to a volatile long word variable such as the current date and time.
If you would like to generate the same sequence of pseudo-random numbers twice, on
the other hand, simply set r andSeed to the same value before calling Randomfor

each sequence.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

You can access the global variable r andSeed through the system global variable
RndSeed.

Listing 3-5 on page 3-22, Listing 3-6 on page 3-23, Listing 3-7 on page 3-23,
and Listing 3-8 on page 3-24 for examples of how to use the Randomfunction.

Converting Between Angle and Slope Values

You can use the S| opeFr omAngl e and Angl eFr oSl ope functions to convert between
angle and slope values.

SlopeFromAngle

DESCRIPTION

You can convert an angle value to a slope value using the SI opeFr omAngl e function.
FUNCTI ON Sl opeFromAngl e (angl e: | nteger): Fixed;

angl e The angle, expressed in clockwise degrees from 12 o’clock and treated
MOD 180. (90 degrees is thus at 3 o’clock and —90 degrees is at 9 o’clock.)

The Sl opeFr omAngl e function returns the slope corresponding to the angle specified

in the angl e parameter. Slopes are defined as Ax/Ay, the horizontal change divided by
the vertical change between any two points on a line with the given angle. The negative
y-axis is defined as being at 12 o’clock, and the positive y-axis at 6 o’clock. The x-axis is
defined as usual, with the positive side defined as being at 3 o’clock.

Mathematical and Logical Utilities Reference 3-37

saminN [e21607 pue [eanewsyen -

SEE ALSO

CHAPTER 3

Mathematical and Logical Utilities

For an example of the use of the SI opeFr omAngl e function, see Figure 3-7 on page 3-13.

AngleFromSlope

DESCRIPTION

You can convert a slope value to an angle value using the Angl eFr ontSl ope function.
FUNCTI ON Angl eFrontl ope (sl ope: Fixed): Integer;

sl ope The slope, defined as Ax/Ay, which is the horizontal change divided by
the vertical change between any two points on a line with the slope.

The Angl eFr onSl ope function returns the angle corresponding to the slope specified in
the sl ope parameter treated MOD 180. Angles are defined in clockwise degrees from 12
o’clock. The negative y-axis is defined as being at 12 o’clock, and the positive y-axis at 6
o’clock. The x-axis is defined as usual, with the positive side defined as being at 3 o’clock.

SPECIAL CONSIDERATIONS

SEE ALSO

The Angl eFr ontl ope function is most useful when you require speed more than
accuracy in performing the calculation. The integer result is within 1 degree of the
correct answer, but not necessarily within half a degree.

For an example of the use of the Angl eFr oSl ope function, see Figure 3-7 on page 3-13.

Multiplying and Dividing Fixed-Point Numbers

The Fi xMul and FracMul functions allow you to multiply fixed-point numbers.
The Fi xDi v and Fr acDi v functions allow you to divide fixed-point numbers. By
performing appropriate type casting, you can multiply or divide a fixed-point
number of one type with a fixed-point number of another type or a long integer.

FixMul
You can use the Fi xMul function to multiply a variable of type Fi xed with another
variable of type Fi xed or with a variable of type Fr act or Longl nt .
FUNCTI ON Fi xMul (a, b: Fixed): Fixed;

3-38 Mathematical and Logical Utilities Reference

DESCRIPTION

SEE ALSO

FixDiv

CHAPTER 3

Mathematical and Logical Utilities

a The first operand, which can be a variable of type Fi xed or a variable of
type Fract or Longl nt.
b The second operand, which can be a variable of type Fi xed or a variable

of type Fr act or Longl nt.

The Fi xMul function returns the product of the numbers specified in the a and b
parameters. At least one of a and b should be a variable of type Fi xed.

The returned value is in the format of a Longl nt ifoneofaorbisalonglnt.Itisa
Fract number if oneofaorbisFract. ItisaFi xed number if both a and b are Fi xed
numbers.

Overflows are set to the maximum representable value with the correct sign ($80000000
for negative results and $7FFFFFFF for positive results).

For a summary of the routines that perform operations on the Fi xed and Fr act data
type, see Table 3-2 on page 3-26.

DESCRIPTION

You can use the Fi xDi v function to divide two variables of the same type (Fi xed,
Fract, or Longl nt) or to divide a Longl nt or Fr act number by a Fi xed number.

FUNCTION FixDiv (a, b: Fixed): Fixed;

a The first operand, which can be a variable of type Fi xed or a variable of
type Fract or Longl nt .

b The second operand, which can be a variable of type Fi xed or it can be a
variable of the same type as the variable in parameter a.

The Fi xDi v function returns the quotient of the numbers specified in the a and b
parameters. If the b parameter is in the format of a Fi xed number, then the a parameter
can be in the format of a Fi xed, Fr act, or Longl nt number. If the b parameter is in the
format of a Fr act or Longl nt number, then the a parameter must be in the same
format.

The returned value is in the format of a Fi xed number if both a and b are both Fi xed
numbers, both Fr act numbers, or both Longl nt numbers. Otherwise, the returned
value is the same type as the number in the a parameter.

Mathematical and Logical Utilities Reference 3-39

saminN [e21607 pue [eanewsyen -

SEE ALSO

FracMul

CHAPTER 3

Mathematical and Logical Utilities

Division by zero results in $8000000 if a is negative, and $7FFFFFFF otherwise; thus the
special case 0/0 yields $7FFFFFFF.

For a summary of the routines that perform operations on the Fixed and Fract data type,
see Table 3-2 on page 3-26.

DESCRIPTION

SEE ALSO

FracDiv

You can use the Fr acMul function to multiply a variable of type Fr act with another
variable of type Fr act or with a variable of type Fi xed or Longl nt .

FUNCTI ON FracMul (a, b: Fract): Fract;

a The first operand, which can be a variable of type Fr act or a variable of
type Fi xed or Longl nt .

b The second operand, which can be a variable of type Fr act or a variable
of type Fi xed or Longl nt .

The FracMul function returns the product of the numbers specified in the a and b
parameters. At least one of a or b should be a variable of type Fr act .

The returned value is in the format of a Longl nt number if one of a and b is a Longl nt
number. It is a Fi xed number if one of a or b is a Fi xed number. Itis a Fr act number
if both a and b are Fr act numbers.

Overflows are set to the maximum representable value with the correct sign ($80000000
for negative results and $7FFFFFFF for positive results).

For a summary of the routines that perform operations on the Fixed and Fract data type,
see Table 3-2 on page 3-26.

3-40

You can use the Fr acDi v function to divide two variables of the same type (Fr act ,
Fi xed, or Longl nt) or to divide a Longl nt or Fi xed number by a Fract number.

FUNCTION FracDiv (a, b: Fract): Fract;

Mathematical and Logical Utilities Reference

DESCRIPTION

CHAPTER 3

Mathematical and Logical Utilities

a The first operand, which can be a variable of type Fr act or a variable of
type Fi xed or Longl nt .
b The second operand, which can be a variable of type Fr act or a variable

of the same type as the variable in parameter a.

The Fr acDi v function returns the quotient of the numbers specified in thea and b
parameters. If the b parameter is in the format of a Fr act number, then the a parameter
can be in the format of a Fr act , a Fi xed, or a Longl nt number. If the b parameter is in
the format of a Fi xed or a Longl nt number, then the a parameter must be in the same
format.

The returned value is in the format of a Fr act number if a and b are both Fr act
numbers, both Fi xed numbers, or both Longl nt numbers. Otherwise, the returned
value is in the same format as the number in the a parameter.

Division by zero results in $8000000 if a is negative, and $7FFFFFFF otherwise; thus the
special case 0/0 yields $7FFFFFFF.

Performing Calculations on Fixed-Point Numbers

The Operating System provides four functions that you can use to perform a few
common calculations on fixed-point numbers. The Fr acSqgrt function allows you to
obtain the square root of a number. The Fr acCos, Fr acSi n, and Fi xATan2 functions
allow you to obtain fast approximations of trigonometric functions on fixed-point
numbers.

FracSqrt
You can use the Fr acSqgrt function to obtain the square root of a Fr act number.
FUNCTI ON FracSgrt (x: Fract): Fract;
X The Fr act number to obtain a square root of. This parameter is
interpreted as being unsigned in the range 0 through 4 — 2730 inclusive.
That is, the bit of a Fr act number that ordinarily has weight -2 is instead
interpreted as having weight 2.
DESCRIPTION

The FracSqgrt function returns the square root of the Fr act number you supply in the
X parameter. The result is unsigned in the range 0 through 2, inclusive.

Mathematical and Logical Utilities Reference 3-41

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

FracCos

You can use the Fr acCos function to obtain a fast approximation of the cosine of a
Fi xed number.

FUNCTI ON FracCos (x: Fixed): Fract;

X The Fi xed number expressed in radians, whose cosine is to be calculated.

DESCRIPTION
The Fr acCos function returns the cosine, expressed in radians, of the Fi xed number x.
The approximation of /4 used to compute the cosine is the hexadecimal value 0.C910,
making the approximation of mequal to 3.1416015625, while mtitself equals 3.14159265....

Despite the approximation of 1t the cosine value obtained is usually correct to several
decimal places.

FracSin

You can use the Fr acSi n function to obtain a fast approximation of the sine of a
Fi xed number.

FUNCTION FracSin (x: Fixed): Fract;

X The Fi xed number expressed in radians, whose sine is to be calculated.

DESCRIPTION
The Fr acSi n function returns the sine, expressed in radians, of the Fi xed number x.
The approximation of /4 used to compute the sine is the hexadecimal value 0.C910,
making the approximation of Ttequal to 3.1416015625, while Ttitself equals 3.14159265....

Despite the approximation of 1t, the sine value obtained is usually correct to several
decimal places.

FixATan2

You can use the Fi xATan2 function to obtain a fast approximation of the arctangent of
a fraction.

FUNCTI ON Fi xATan2 (x, y: Longlnt): Fixed;

3-42 Mathematical and Logical Utilities Reference

DESCRIPTION

CHAPTER 3

Mathematical and Logical Utilities

X The numerator of the fraction whose arctangent is to be obtained. This
variable can be a Longl nt , Fi xed, or Fr act number.

y The denominator of the fraction whose arctangent is to be obtained. The

number supplied in this variable must be of the same type as that of the
number supplied in the x parameter.

The Fi xATan2 function returns, in radians, the arctangent of y/ x.

The approximation of /4 used to compute the arctangent is the hexadecimal value
0.C910, making the approximation of rtequal to 3.1416015625, while ttitself equals
3.14159265.... Thus Fi xATan2(1, 1) equals the equivalent of the hexadecimal value
0.C910. Despite the approximation of 1t, the arctangent value obtained will usually be
correct to several decimal places.

Converting Among 32-Bit Numeric Types

The Operating System includes functions that allow you to convert among variables of
type Longl nt, Fi xed, and Fr act . The Long2Fi x and Fi x2Long functions convert
between Longl nt variables and Fi xed variables. The Fi x2Fr ac functions and
Frac2Fi x functions convert between Fi xed and Fr act variables. Ordinarily, there is
no need to convert between Longl nt and Fr act variables, because Fr act variables
are used only to represent very small numbers. If you wish to do so, however, you can
combine functions shown in this section.

Long2Fix
You can use the Long2Fi x function to convert a Longl nt number to a Fi xed number.
FUNCTI ON Long2Fi x (x: Longlnt): Fixed;
X The long integer to be converted to a Fi xed number.

DESCRIPTION

The Long2Fi x function returns the Fi xed number equivalent to the long integer you
supply in the x parameter. If x is greater than the maximum representable fixed-point
number, the Long2Fi x function returns $7FFFFFFF. If x is less than the negative number
with the highest absolute value, Long2Fi x returns $80000000.

Mathematical and Logical Utilities Reference 3-43

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

Fix2Long
You can use the Fi x2Long function to convert a Fi xed number to a Longl nt number.
FUNCTI ON Fi x2Long (x: Fixed): Longlnt;
X The Fi xed number to be converted to a long integer.

DESCRIPTION
The Fi x2Long function returns the long integer nearest to the Fi xed number you
supply in the x parameter. If x is halfway between two integers (0.5), it is rounded to the
integer with the higher absolute value.

Fix2Frac
You can use the Fi x2Fr ac function to convert a Fi xed number to a Fr act number.
FUNCTI ON Fi x2Frac (x: Fixed): Fract;
X The Fi xed number to be converted to a Fr act number.

DESCRIPTION
The Fi x2Fr ac function returns the Fr act number equivalent to the Fi xed number x.
If x is greater than the maximum representable Fr act number, the Fi x2Fr ac function
returns $7FFFFFFF. If x is less than the negative number with the highest absolute value,
Fi x2Fr ac returns $80000000.

Frac2Fix
You can use the Fr ac2Fi x function to convert a Fr act number to a Fi xed number.
FUNCTI ON Frac2Fi x (x: Fract): Fixed;
X The Fr act number to be converted to a Fi xed number.

DESCRIPTION
The Fr ac2Fi x function returns the Fi xed number that best approximates the Fr act
number you supply in the x parameter.

3-44 Mathematical and Logical Utilities Reference

CHAPTER 3

Mathematical and Logical Utilities

Converting Between Fixed-Point and Floating-Point Values

The Mathematical and Logical Utilities provide four functions that allow you to convert
between fixed-point and floating-point values represented using SANE’s Ext ended
floating-point data type. The Fi x2X function and the X2Fi x function convert between
Fi xed and Ext ended numbers. The Fr ac2X and X2Fr ac functions convert between
Fract and Ext ended numbers. See Apple Numerics Manual for information about
numeric data types supported by SANE.

Fix2X
You can use the Fi x2X function to convert a Fi xed number to an Ext ended number.
FUNCTI ON Fi x2X (x: Fi xed): Extended;
X The Fi xed number to be converted to an Ext ended number.
DESCRIPTION

The Fi x2X function returns the Ext ended equivalent of the Fi xed number you supply
in the x parameter.

SPECIAL CONSIDERATIONS

Because the Fi x2X function does not move memory, you can call it at interrupt time.

X2Fix
You can use the X2Fi x function to convert an Ext ended number to a Fi xed number.
FUNCTI ON X2Fi x (x: Extended): Fi xed;
X The Ext ended number to be converted to a Fi xed number.
DESCRIPTION

The X2Fi x function returns the best Fi xed approximation of the Ext ended number
you supply in the x parameter. If x is greater than the maximum representable Fi xed
number, the X2Fi x function returns $7FFFFFFF. If X is less than the negative number
with the highest absolute value, X2Fi x returns $80000000.

Mathematical and Logical Utilities Reference 3-45

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

Frac2X
You can use the Fr ac2X function to convert a Fr act number to an Ext ended number.
FUNCTI ON Frac2X (x: Fract): Extended;
X The Fr act number to be converted to an Ext ended number.
DESCRIPTION
The Fr ac2X function returns the Ext ended equivalent of the Fr act number you
supply in the x parameter.
X2Frac
You can use the X2Fr ac function to convert an Ext ended number to a Fr act number.
FUNCTI ON X2Frac (x: Extended): Fract;
X The Ext ended number to be converted to a Fr act number.
DESCRIPTION

The X2Fr ac function returns the best Fr act approximation of the Ext ended number
you supply in the x parameter. If x is greater than the maximum representable Fr act
number, the X2Fr ac function returns $7FFFFFFF. If x is less than the negative number
with the highest absolute value, X2Fr ac returns $80000000.

Converting Between Fixed-Point and Integral Values

To convert the quotient of two integers to a Fi xed number, you can use the Fi xRati o
function. To obtain the integral portion of a number of type Fi xed, typically you just use
the Hi Wor d function, described on page 3-33. However, you can also use the Fi xRound
function to obtain the integer nearest a fixed-point number.

FixRatio
You can use the Fi xRat i o function to obtain the Fi xed equivalent of a fraction.
FUNCTI ON Fi xRati o (nunmer, denom |Integer): Fixed;
nuner The numerator of the fraction.
denom The denominator of the fraction.
3-46 Mathematical and Logical Utilities Reference

DESCRIPTION

FixRound

CHAPTER 3

Mathematical and Logical Utilities

The Fi xRat i o function return the Fi xed equivalent of the fraction nuner / denom

DESCRIPTION

You can use the Fi xRound function to round a fixed-point number to the nearest integer.

FUNCTI ON Fi xRound (x: Fixed): |nteger;

X The Fi xed number to be rounded.

The Fi xRound function returns the | nt eger number nearest the Fi xed number you
supply in the x parameter. If the value is halfway between two integers (0.5), it is
rounded up. Thus, 4.5 is rounded to 5, and -3.5 is rounded to -3.

To round a negative Fi xed number so that values halfway between two integers are
rounded to the number with the higher absolute value, negate the number, round it,
and then negate it again.

Multiplying 32-bit values

To multiply a 32-bit value and return a 64-bit value, you can use the LongMul procedure.

LongMul
You can use the LongMul procedure to multiply two 32-bit quantities and obtain a 64-bit
quantity.
Procedure LongMiul (a, b: Longlnt; VAR result: Int64Bit);
a The first operand, which is a variable of type Longl nt .
b The second operand, which is a variable of type Longl nt .
result A pointer to the returned value.
DESCRIPTION

Given two variables of type Longl nt , the LongMul procedure multiplies the two
variables specified in parameter a and b, and returns the value in the variable specified
by the r esul t parameter.

Mathematical and Logical Utilities Reference 3-47

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

Summary of the Mathematical and Logical Utilities

Pascal Summary

Data Types
TYPE

Fi xed = Longl nt; {fixed-poi nt nunber}

Fract = Longl nt; {fractional nunber}

Int64Bit = {64-bit integer record}

RECORD

hi Long: Longl nt ; {hi gh-order long integer}
| oLong: Longl nt; {low order |ong integer}

END;
Routines
Testing and Setting Bits
FUNCTI ON Bi t Tst (bytePtr: Ptr; bitNum Longlnt): Bool ean;
PROCEDURE Bi t Set (bytePtr: Ptr; bitNum Longlnt);
PROCEDURE BitClr (bytePtr: Ptr; bitNum Longlnt);
Performing Logical Operations
FUNCTI ON Bi t And (val uel, value2: Longlnt): Longlnt;
FUNCTION Bit O (val uel, value2: Longlnt): Longlnt;
FUNCTI ON Bi t Xor (val uel, value2: Longlnt): Longlnt;
FUNCTI ON Bi t Not (value: Longlnt): Longlnt;
FUNCTI ON Bit Shift (value: Longlnt; count: Integer): Longlnt;
Getting and Setting Memory Values
FUNCTI ON Hi Word (x: Longlnt): Integer;
FUNCTI ON LoWrd (x: Longlnt): Integer;
PROCEDURE St uf f Hex (thingPtr: Ptr; s: Str255);

3-48

Summary of the Mathematical and Logical Utilities

CHAPTER 3

Mathematical and Logical Utilities

Compressing and Decompressing Data

PROCEDURE PackBits (VAR srcPtr, dstPtr: Ptr; srcBytes:
PROCEDURE UnpackBits (VAR srcPtr, dstPtr: Ptr; dstBytes:

Obtaining a Pseudorandom Number
FUNCTI ON Random . Integer;

Converting Between Angle and Slope Values

FUNCTI ON Sl opeFr omAngl e (angl e: Integer): Fixed;
FUNCTI ON Angl eFr ontl ope (sl ope: Fixed): Integer;

Multiplying and Dividing Fixed-Point Numbers

FUNCTI ON Fi xMul (a, b: Fixed): Fixed;
FUNCTI ON Fi xDi v (a, b: Fixed): Fixed;
FUNCTI ON Fr acwul (a, b: Fract): Fract;
FUNCTI ON FracDi v (a, b: Fract): Fract;

Performing Calculations on Fixed-Point Numbers

FUNCTI ON FracSqrt (x: Fract): Fract;
FUNCTI ON Fr acCos (x: Fixed): Fract;
FUNCTI ON FracSi n (x: Fixed): Fract;
FUNCTI ON Fi xATan2 (x, y: Longlnt): Fixed;

Converting Among 32-Bit Numeric Types

FUNCTI ON Long2Fi x (x: Longlnt): Fixed;
FUNCTI ON Fi x2Long (x: Fixed): Longlnt;
FUNCTI ON Fi x2Fr ac (x: Fixed): Fract;
FUNCTI ON Fr ac2Fi x (x: Fract): Fixed;

Converting Between Fixed-Point and Floating-Point Values

FUNCTI ON Fi x2X (x: Fixed): Extended;
FUNCTI ON X2Fi x (x: Extended): Fixed;
FUNCTI ON Frac2X (x: Fract): Extended;
FUNCTI ON X2Fr ac (x: Extended): Fract;

Converting Between Fixed-Point and Integral Values
FUNCTI ON Fi xRati o (numer, denom |Integer): Fixed;
FUNCTI ON Fi xRound (x: Fixed): Integer;

Summary of the Mathematical and Logical Utilities

I nt eger);
I nt eger);

3-49

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

Multiplying 32-bit Values

Procedure LongMul (a, b: Longint; VARresult: Int64Bit);
C Summary
Data Types
typedef |ong Fixed; /*fixed-poi nt nunber*/
typedef |ong Fract; /*fractional number*/
struct Int64Bit { /*64-bit integer record*/
| ong hi Long; / *hi gh-order |ong integer*/
| ong | oLong; /*1 ow order |ong integer*/
b

typedef struct Int64Bit Int64Bit;

Routines

Testing and Setting Bits

pascal Bool ean Bit Tst (const void *bytePtr, |ong bitNun);
pascal void Bit Set (void *bytePtr, long bitNunm;
pascal void Bitdr (void *bytePtr, long bitNun;

Performing Logical Operations

pascal |ong BitAnd (long val uel, |ong val ue2);
pascal long BitOr (long val uel, long val ue2);
pascal |ong Bit Xor (long val uel, long val ue2);
pascal |ong Bit Not (long val ue);

pascal |ong BitShift (long val ue, short count);

Getting and Setting Memory Values

pascal short H Wrd (long x);
pascal short LoWrd (long x);
pascal void StuffHex (void *thingPtr, ConstStr255Param s)

Compressing and Decompressing Data

pascal void PackBits (Ptr *srcPtr, Ptr *dstPtr, short srcBytes);

3-50 Summary of the Mathematical and Logical Utilities

CHAPTER 3

Mathematical and Logical Utilities

pascal void UnpackBits (Ptr *srcPtr, Ptr *dstPtr, short dstBytes);

Obtaining a Pseudorandom Number

pascal short Random (void);

Converting Between Angle and Slope Values

pascal Fixed Sl opeFromAngl e
(short angle);

pascal short Angl eFronSl ope
(Fi xed sl ope);

Multiplying and Dividing Fixed-Point Numbers

pascal Fixed Fi xMul (Fixed a, Fixed b);
pascal Fixed FixD v (Fixed a, Fixed b);
pascal Fract FracMil (Fract a, Fract b);
pascal Fract FracDiv (Fract a, Fract b);

Performing Calculations with Fixed-Point Numbers

pascal Fract FracSqrt (Fract x);
pascal Fract FracCos (Fi xed x);
pascal Fract FracSin (Fi xed x);
pascal Fi xed Fi xATan2 (long x, long y);

Converting Among 32-Bit Numeric Types

pascal Fi xed Long2Fi x (long x);
pascal |ong Fix2Long (Fi xed x);
pascal Fract Fix2Frac (Fi xed x);
pascal Fixed Frac2Fi x (Fract x);

Converting Between Fixed-Point and Floating-Point Values

pascal Extended Fi x2X (Fi xed x);
pascal Fi xed X2Fi x (Ext ended x);
pascal Extended Frac2X (Fract x);
pascal Fract X2Frac (Ext ended x);

Converting Between Fixed-Point and Integral Values

pascal Fixed FixRatio (short numer, short denom
pascal short Fi xRound (Fi xed x);

Summary of the Mathematical and Logical Utilities 3-51

saminN [e21607 pue [eanewsyen -

CHAPTER 3

Mathematical and Logical Utilities

Mul tiplying 32-bit val ues
Pascal void LongMWil (long a, long b, Int64Bit *result);

Global Variables

randSeed The seed to the pseudorandom number generator.

3-52 Summary of the Mathematical and Logical Utilities

CHAPTER 4

Date, Time, and
Measurement Utilities

Contents

About the Date, Time, and Measurement Utilities 4-3
Date and Time 4-4
Geographic Location and Time Zone 4-7
System of Measurement 4-8
Time Measurement 4-9
Using the Date, Time, and Measurement Utilities 4-9
Getting the Current Date and Time 4-9
Setting the Current Date and Time 4-10
Converting Date-Time Formats 4-12
Calculating Dates 4-14
Working With Different Calendar Systems 4-16
Handling Geographic Location and Time-Zone Data 4-18
Determining the Measurement System 4-21
Determining the Number of Elapsed Microseconds 4-22
Date, Time, and Measurement Utilities Reference 4-23
Data Structures 4-23
The Date-Time Record 4-23
Long Date-Time Value and Long Date-Time Conversion Record
The Long Date-Time Record 4-26
The Geographic Location Record 4-29
The Toggle Parameter Block 4-30
The Unsigned Wide Record 4-32
Routines 4-32
Getting the Current Date and Time 4-33
Setting the Current Date and Time 4-36
Converting Between Date-Time Formats 4-38
Converting Between Long Date-Time Format 4-40

Contents

4-25

4-1

4-2

CHAPTER 4

Modifying and Verifying Long Date-Time Records
Reading and Writing Location Data 4-46
Determining the Measurement System 4-48
Measuring Time 4-49
Summary of the Date, Time, and Measurement Utilities
Pascal Summary 4-50
Constants 4-50
Data Types 4-51
Routines 4-53
C Summary 4-54
Constants 4-54
Data Types 4-55
Routines 4-57
Assembly-Language Summary 4-59
Data Structures 4-59
Global Variables 4-60
Result Codes 4-61

Contents

4-42

4-50

CHAPTER 4

Date, Time, and Measurement Utilities

This chapter describes a set of utility routines that you can use to operate on dates and
times. You can use these routines to get and change information about the current date,
time, geographic location, time zone, and units of measurement.

The routines described in this chapter return this information in a format that is best
suited to the current script. As a result, you can facilitate localization of your application
by using these date, time, and measurement utilities.

To understand the material in this chapter, you need to be familiar with the international
resources, especially the numeric-format and long-date-format resources, and the Script
Manager. These topics are described in Inside Macintosh: Text. In addition, the chapter
“Text Utilities” in Inside Macintosh: Text describes how to convert date and time
information into strings of text.

Many of the Date, Time, and Measurement Utilities were previously associated with
other managers in the Macintosh system software, and several of these routines have
been renamed. Table 4-4 on page 4-33 shows the original names and locations of the

modified Date, Time, and Measurement Ultilities routines.

The next section provides an introduction to the Date, Time, and Measurement Ultilities.

About the Date, Time, and Measurement Utilities

You can use the Date, Time, and Measurement Utilities to manipulate the date-time
information and geographic location data used by a Macintosh computer. A Macintosh
computer contains a battery-operated clock chip that maintains

= the current date-time information

= the geographic location and related time-zone information

The date-time information is stored in a 4-byte value located on the clock chip.The
geographic location and related time-zone information is stored in extended parameter
RAM. For information on extended parameter RAM, see the chapter “Parameter RAM
Utilities” in this book.

You can use the routines provided by the Date, Time, and Measurement Utilities to
manipulate this information. Specifically, the Date, Time, and Measurement Utilities
provide routines that you can use to

= get the current date and time

» set the current date and time, if necessary

= convert between internal date-time structures

= get and set the geographic location and time-zone information

= determine the current measurement system

= determine the number of elapsed microseconds since system startup
The following sections give an overview of these utilities.

About the Date, Time, and Measurement Utilities 4-3

SanInN WaWaINSea pue ‘awl] ‘areq -

4-4

CHAPTER 4

Date, Time, and Measurement Utilities

Date and Time

A Macintosh computer contains a battery-operated clock chip that maintains the current
date-time information. This date-time information is expressed, using 4 bytes, as the
number of seconds elapsed since midnight, January 1, 1904. At system startup the
date-time information is copied into low memory and is accessible through the system
global variable Ti me. System software updates the value of the global variable Ti e
each second. Doing this is faster than manipulating the clock chip directly.

The Date, Time, and Measurement Utilities provide four data structures that you can use
to access date-time information. You can access date-time information through

= astandard date-time value that consists of a 32-bit long integer indicating the total
number of seconds elapsed since midnight, January 1, 1904

= adate-time record that contains fields to indicate the year, month, day, hour, minute,
second, and day of the week

= along date-time record that extends the date-time record format by adding fields
for era, day of the year, week of the year, and morning/evening designations (for
example, Am. and pPm.)

= a long date-time value that consists of a 64-bit integer, in SANE conp (computational)
format, which also maintains the total number of seconds relative to midnight on
January 1, 1904

To access date-time information as a date and time, you can use a date-time record or a
long date-time record. A date-time record is defined by a data structure of type
Dat eTi meRec

TYPE Dat eTi neRec =

RECORD
year: I nt eger; {year, ranging from 1904 to 2040}
nont h: I nt eger; {ronth, 1 = January and 12 = Decenber}
day: I nt eger; {day, from1l to 31}
hour : I nt eger; {hour, fromO to 23}
nm nut e: I nt eger; {m nute, fromO to 59}
second: I nt eger; {second, fromO to 59}
dayOf Week: I nteger; {day of the week, 1 = Sunday, }
{ 7 = Saturday}
END;

The year field contains the year of the date, ranging from 1904 to 2040. The nont h
field contains the month of the year, where a value of 1 equals January and 12 equals
December. The day field contains the number of the day, ranging from day 1 to day 31.
The hour field contains the hour, where the value of 0 equals midnight and 23 equals
11p,m. The mi nut e field contains the number of minutes, ranging from 0 to 59 minutes.
The second field contains the number of seconds, ranging from 0 to 59 seconds. The
day Of ek field specifies the name of the day; a value of 1 equals Sunday and a value
of 7 equals Saturday. For additional information about the fields in a date-time record,
see “The Date-Time Record” beginning on page 4-23.

About the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Note

The date-time record can be used to hold date and time values only for a
Gregorian calendar. The long date-time record, described next, can be
used for a Gregorian calendar as well as other calendar systems. O

Because the values in a date-time record are simply a translation of the long integer
containing the number of seconds since midnight, January 1, 1904, the data structure
suffers the same limitation as the long integer representation: after the long integer has
reached its maximum value of $FFFFFFFF, it resets to 0. Therefore, the date-time record
can track dates and times only between midnight on January 1, 1904 and 6:28:15 A.m. on
February 6, 2040.

For some applications, this range might be inadequate. For example, a hotel
management application might need to let managers book reservations for customers
who think ahead to 2050, or a history multimedia application might need to track dates
in the first century s.c. If your application needs to track dates and times beyond the
range supported by the date-time record, you must use a long date-time record. A long
date-time record is defined by a data structure of type LongDat eRec

TYPE LongDat eRec =

RECORD
CASE | nt eger OF
0:
(era: I nt eger; {era}
year: I nt eger; {year, from 30081 B.C. to 29940 Ap}
nont h: I nt eger; {month, 1 = January and }
{ 12 = Decenber}
day: I nt eger; {day, from1l to 31}
hour : I nt eger; {hour, fromO to 23}
nm nut e: I nt eger; {m nute, fromO to 59}
second: I nt eger; {second, fromO to 59}
dayOf Week: I nteger; {day of the week, 1= Sunday, }
{ 7 = Saturday}
dayOf Year: Integer; {day of the year, 1 to 365}
weekOf Year: | nteger; {week of the year, 1 to 52}
pm I nt eger; {which half of day--0 for }
{ nmorning, 1 for evening}
resl: I nt eger; {reserved}
res2: I nt eger; {reserved}
res3: I nt eger); {reserved}
1
{index by LongDat eFi el d}
(list: ARRAY [0..13] OF Integer);
2:
(eraAlt: I nt eger; {era}

About the Date, Time, and Measurement Utilities 4-5

SanInN WaWaINSea pue ‘awl] ‘areq -

4-6

CHAPTER 4

Date, Time, and Measurement Utilities

{date-tinme record}
ol dDat e: Dat eTi mneRec) ;

END;

You can use a long date-time record for three purposes: to access a date and time, to
specify which of the fields in a long date-time record to verify, and to convert a date
and time represented by a date-time record into a date and time represented by a long
date-time record.

IMPORTANT

The long date-time record covers a much longer time span (30,000 .c. to
30,000 Ap.) than the date-time record. In addition, the long date-time
record allows conversions to different calendar systems, such as a lunar
calendar. a

A long date time-record includes all of the fields available in a date-time record

in addition to fields that describe the era, day of the year, week of the year, and
morning /evening designations (for example, Am. and pm.). The er a field contains the
era: a value of 0 represents Ap.,, and -1 represents B.c. The dayf Year field contains a
number that represents a day of a year. For example, the value 300 equals the 300th day
of a year. The weekOf Year field contains a week number. The pmfield contains the
morning or evening half of the 24-hour day cycle, where a value of 0 represents

the morning (for example, Am.) and 1 represents the evening (for example, pm.).

Thel i st field contains an array of values that indicate which of the fields in a long
date-time record need to be verified.

The er aAl t field, which indicates the era, and the ol dDat e field, which contains
a date-time record, are used only for conversion from a date-time record to a long
date-time record. For additional information about the fields in the long date-time
record, see “The Long Date-Time Record” beginning on page 4-26.

Note that if you specify, in either record, a value in the nont h, day, hour, m nut e,

or second field that exceeds the maximum value allowed for that field (for example,

a value larger than 23 for the hour field), the result is a wraparound to a future date
and time when you modify the date-time format. Suppose you set the year field in a
date-time record to a value greater than 2040, for example 2045. When you modify the
date-time format, you get a value of 1909, because the value 2045 caused a wraparound
to 1904 plus 5, the number of years over 2040. See “Calculating Dates” beginning on
page 4-14 to see how you can use a wraparound to calculate and retrieve information
about a specific date.

Note

To present a date and time value as a date and time text string, you need
to use the Text Utilities routines. For a complete description of these
routines, see Inside Macintosh: Text. O

A user can set the current date-time information by using the General Controls control
panel, the Date & Time control panel, or the Alarm Clock. After the user sets the new

About the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

date and time, this new date and time is written to the clock chip, and the global variable
Ti e is updated to reflect the new date and time. Figure 4-1 illustrates how a user might
change the date, using the Date & Time control panel.

Figure 4-1 The Date & Time control panel

[B=———=— Date & Time

% Current date Current time

B 5/94 | | [19:38:50 |

[Date Formats...] [Time Formats...]

Geographic Location and Time Zone

Geographic location and related time-zone information are stored in the Macintosh
parameter RAM (extended parameter RAM). System software provides routines that
allow you to read this information and, if necessary, make changes to it and then store
the new settings in the parameter RAM (extended parameter RAM).

You can read and store values for
= latitude

= longitude

» daylight saving time (DST)

= Greenwich mean time (GMT)

The Map control panel allows the user to get geographic location and time-zone
information. Figure 4-2 shows the Map control panel.

Figure 4-2 The Map control panel

ER————— Map

., N
\ '

(Rdd City] [Remove City] v 7.1
|I:c||:|enhager| |
Latitude 35 [* |43 [EN
Longitude 12 |1* (34 | HE
Time Zone 1 o |mE)+

mi 5450 17.57

About the Date, Time, and Measurement Utilities 4-7

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

The Map control panel specifies latitude and longitude, computation of Greenwich mean
time for international time specification (shown as the Time Zone information), and
computation of the distance and time difference between the current location (in this
case, the location of the user’s computer is Cupertino, California) and an arbitrary city
(in this case, Copenhagen, Denmark).

See “Handling Geographic Location and Time-Zone Data” beginning on page 4-18, to
see how you can use Date, Time, and Measurement Utilities routines to work with the
geographic location and time-zone information.

System of Measurement

The Date, Time, and Measurement Utilities provide a routine (the | sMet r i ¢ function)
that you can use to determine the type of measurement used by the current script
system. The system software supports two types of measurement systems:

= the International System of Units (also called the metric system)—for example
centimeters, kilometers, milligrams, degrees Celsius, and so on.

= the English system of measurement (also called the British or British imperial
system)—for example, inches, miles, ounces, degrees Fahrenheit, and so on.

The measurement information is stored in the numeric-format resource (resource
type'itl Q') of ascript system. The | sMet ri c function determines whether the
current script system uses the International System of Units or the English system of
measurement by examining the 'i t | 0' resource. Figure 4-3 depicts the window ResEdit
displays for a numeric-format resource. Note that in the bottom of the figure the metric
box is unchecked, indicating that the script system associated with this ‘i t | O' resource
uses the English system of measurement.

Figure 4-3 The numeric-format resource (resource type 'i t 10"
SO=—— itl0 “U.5.” ID = 0 from System
Numbers: Decimal Point: (<] Leading Currency Symbol

Thousands separator:
($1,23450) List separator:
CF0.SY ; (3050 Currency:

1 Minus sign for negative

(4 Trailing decimal zeros

(< Leading integer zero

Im“-'l

Short Date: Date separator: (] Leading 0 for day

Date Order:| M/D/Y w| []Leading 0 for month

2/8/94] Include century

Time: Time separator: |:] Leading O for seconds
10:04:37 &M Morning trailer: | AM tJ Leading O for minutes
12:0437 PM Evening trailer: | PM [JLeading O for hours

24-hour trailer: &d 12-hour time cycle

Country:[00 - USA v | [metric Version: El

About the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Time Measurement

The Date, Time, and Measurement Utilities provide a routine (the M cr oseconds
procedure) that you can use to measure the number of microseconds that have
elapsed since system startup. The M cr oseconds procedure is not effected by any
user-specified changes to the date and time information, that is, a user can modify
the current date-time information without effecting the value returned by the

M cr oseconds procedure.

The number of microseconds elapsed is returned in a 64-bit unsigned integer, specified
by the unsigned wide record. An unsigned wide record is defined by a data structure of
type Unsi gnedW de.

TYPE Unsi gnedW de =
PACKED RECORD
hi : Longl nt ; {hi gh-order 32 bits}
| o: Longl nt; {l oworder 32 bits}
END;

Using the Date, Time, and Measurement Utilities

This section describes how to

= get the current date and time

= set the current date and time

= calculate days and dates mathematically

= convert between date-time formats

= convert to different calendar systems

= read and store geographic location and time-zone data
= determine which measurement system to use

= determine the number of elapsed microseconds

Getting the Current Date and Time

The Date, Time, and Measurement Utilities provide

= afunction—ReadDat eTi me—that system software uses at system startup time to
copy the current date-time information from the clock chip into low memory. This
low-memory copy of the current date-time is accessible through the global variable
Ti me. You application should never need to use this function.

= two procedures —Cet Dat eTi ne and Get Ti me—that allow you to access the current
date-time information stored in the global variable Ti ne.

Using the Date, Time, and Measurement Utilities 4-9

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

You can access the date-time information through a date-time record, representing
the date and time, or you can access the date-time information through a standard
date-time value, a 32-bit integer representing the number of seconds since midnight,
January 1, 1904.

To obtain the current date-time information, you can use the Get Dat eTi e and

Get Ti e procedures. The Get Dat eTi e procedure requires that you pass it a standard
date-time value as a parameter. Listing 4-1 shows how you can get the current date-time
information, expressed as a number of seconds. The application-defined procedure
MyCur r ent Dat eTi nel nt returns in the long integer the number of seconds elapsed
since midnight, January 1, 1904,

Listing 4-1 Getting the current date and time with the Get Dat eTi ne procedure

PROCEDURE MyCurrent Dat eTi mel nt (VAR nySt andar dDat eTi ne: Longlnt);
BEG N

CGet Dat eTi ne(nySt andar dDat eTi ne) ;
END;

The Get Ti ne procedure requires that you pass it a date-time record as a parameter, and
it fills in the fields of this record appropriately. Listing 4-2 shows how you can get the
current date-time information, expressed as a date and time. The application-defined
procedure MyCur r ent Dat eTi meRec returns in the fields of the date-time record the
current date and time.

Listing 4-2 Getting the current date and time with the Get Ti me procedure

4-10

PROCEDURE MyCurrent Dat eTi mreRec (VAR nyDat eTi ne: Dat eTi neRec) ;
BEG N

Get Ti me(myDat eTi ne) ;
END;

If you need to access the date-time information through a long date-time value or a long

date-time record, see “Converting Date-Time Formats” beginning on page 4-12 for more
information about converting date-time formats.

Setting the Current Date and Time

Your application can change the current date-time information stored in both the system
global variable Ti e and in the clock chip by calling either the Set Dat eTi e function
or the Set Ti me procedure. The Set Dat eTi ne function requires a 32-bit integer as a
parameter. The Set Ti e procedure requires a date-time record as a parameter.

Using the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Note

If you are using formats other than a date-time value or a date-time
record to access date-time information, you must first convert these
formats into a standard date-time value or a date-time record before
you can write the new date-time information to the clock chip. See
“Converting Date-Time Formats” beginning on page 4-12 for more
information about converting date-time formats. O

Listing 4-3 shows an application-defined function that uses the Set Dat eTi ne function
to change the current date and time to 5:50 Am. on April 5, 1994,

Listing 4-3 Changing the current date and time with the Set Dat eTi e function

FUNCTI ON MyChangeDat eTi nel nt: OSErr;

VAR
myDat eTi mel nt: Longl nt;
myErr: CSErr;
BEG N

nyDat eTi nel nt : = $A9C6ACSS;
nyErr := SetDateTi me(nyDateTi nmelnt);
END;

Listing 4-4 shows an application-defined procedure that uses the Set Ti ne function to
change the current date and time to 5:50 Am. on April 5, 1994,

Listing 4-4 Changing the current date and time with the Set Ti e function

PROCEDURE My ChangeDat eTi neRec;

VAR
myDat eTi meRec: Dat eTi neRec;
myErr: CSErr;
BEG N
W TH nyDat eTi neRec DO
BEG N
year = 1994,
nmonth : = 4;
day := 5;
hour : = b5;
m nute : = 50;
second : = 0;
dayOf ek : = 3;
END;
Set Ti me(myDat eTi neRec) ;
END;

Using the Date, Time, and Measurement Utilities 4-11

SanInN WaWaINSea pue ‘awl] ‘areq -

4-12

CHAPTER 4

Date, Time, and Measurement Utilities

IMPORTANT

Users can change the current date and time stored in both the system
global variable Ti e and in the clock chip by using the General Controls
control panel, Date & Time control panel, or the Alarm Clock desk
accessory. In general, your application should not directly change the
current date-time information. If your application does need to modify
the current date-time information, it should instruct the user how to
change the date and time. a

Converting Date-Time Formats

The Date, Time, and Measurement Utilities provide four routines—

the Dat eToSeconds, SecondsToDat e, LongDat eToSeconds, and
LongSecondsToDat e procedures—that you can use to convert date-time
formats. You can convert a date and time to a number of seconds and a number
of seconds to a date and time.

Note that when you call one of these routines, system software uses
the Dat eToSeconds, SecondsToDat e, LongDat eToSeconds, and
LongSecondsToDat e procedures provided by the current script system.

Note

The routines that convert between time formats assume that each day
contains 86,400 seconds. Occasionally (approximately once each two
years) astronomers add a second to either June 31 or December 31 to
compensate for imperfections in the earth’s rotation. If you need to
compute the exact number of seconds between two points in time, you
might need to take these occasional additions into account. The routines
that convert between formats are designed not to provide astronomical
accuracy, but merely to convert data between one data structure and
another. O

If you use a standard date-time value or a date-time record to access date-time
information, you can use the SecondsToDat e procedure to convert a number of
seconds to a date and time, and the Dat eToSeconds procedure to convert a date

and time to a number of seconds. Listing 4-5 shows an application-defined procedure,
MyConvert SecondsAndDat es, that uses the SecondsToDat e and Dat eToSeconds
procedures to manipulate the date-time information. After calling the Get Dat eTi ne
procedure, MyConver t SecondsAndDat es calls the SecondsToDat e procedure to
convert the number of seconds (returned by the Get Dat eTi ne procedure) to a date and
time. The MyConvert SecondsAndDat es procedure manipulates the year field in the
date-time record and then calls Dat eToSeconds to convert the date and time back into
a number of seconds. The Set Dat eTi ne procedure writes the new date-time
information to the clock chip.

Using the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Listing 4-5 Manipulating date-time information

PROCEDURE MyConvert SecondsAndDat es;
VAR

nmyDat eTi meRec: Dat eRec;

mySeconds: Dat eTi me;

myErr: CSErr;
BEG N

Cet Dat eTi ne(mySeconds) ;

SecondsToDat e(nySeconds, nyDat eTi neRec);

W TH nyDat eTi neRec DO
year .= year + 1;

Dat eToSeconds (nyDat eTi neRec, mySeconds);

nyErr := SetDateTi ne(mySeconds);
END;

If you access date-time information through a long date-time value or a long date-time

record, you can use the LongSecondsToDat e procedure to convert a number of
seconds to a date and time and use the LongDat eToSeconds procedure to convert

a date and time to a number of seconds.

If the type of data structure that you are using to access date-time information is
insufficient, you can use a different date-time structure.

= To access a number of seconds through a long date-time value instead of a standard

date-time value, set the | Hi gh field of a long date-time conversion record (described
on page 4-25) to 0 and the | Lowfield to the total number of seconds since midnight,
January 1, 1904. Then copy the value of the c field into a variable of type

LongDat eTi ne.

To access a date and time through a long date-time record instead of a date-time
record, set the ol dDat e field of the LongDat eRec to the date-time record, and set the
er aAl t field to O, indicating that the date you have specified is AD.

To access a number of seconds through a standard date-time value instead of a long
date-time value, truncate the long date-time value to just the low-order 32 bits. The
year of the date being converted must fall within 1904 to 2040 of the Gregorian
calendar.

This type of conversion is important when you work with a script system that uses a
calendar system other than the Gregorian. Because you cannot write a long date-time
value to the clock chip, you must first convert the long date-time value (if possible) to
a standard date-time value. See “Working With Different Calendar Systems”
beginning on page 4-16 for more information about calendar systems.

To access a date and time through a date-time record instead of a long date-time
record, truncate the long date-time record so just the year through dayOf Week fields
are left. Once again, the year of the date being converted must fall within 1904 to 2040
of the Gregorian calendar.

Using the Date, Time, and Measurement Utilities 4-13

SanInN WaWaINSea pue ‘awl] ‘areq -

4-14

CHAPTER 4

Date, Time, and Measurement Utilities

= To access date-time information through a long date-time value instead of a date-time
record, use the Dat eToSeconds procedure to convert the date and time to a number
of seconds. Then set the | Hi gh field of a long date-time conversion record (described
on page 4-25) to 0 and the | Lowfield to the total number of seconds since midnight,
January 1, 1904,

= To access date-time information through a long date-time record (described on
page 4-26) instead of a standard date-time value, use the SecondsToDat e procedure
to translate the number of seconds to a date and time. Then set the ol dDat e field of
the long date-time record to the date-time record, and set the er aAl t field to 0.

= To access date-time information through a date-time value instead of long date-time
record, use the LongDat eToSeconds procedure to translate the date and time to a
number of seconds. Then truncate the long date-time value (returned by the
LongDat eToSeconds procedure) to just the low-order 32 bits. The year of the date
being converted must fall within 1904 to 2040 in the Gregorian calendar.

The Gregorian calendar is the default for converting to and from the long date-time
forms. The current range allowed in conversion is roughly 30,000 B.c. to 30,000 AD.

To present a date and time value as a date and time text string, you need to use Text
Utilities routines, such as the Dat eSt ri ng, Ti meStri ng, St ri ngToDat e,
StringToTi me, LongDat eStri ng, and LongTi neSt ri ng routines. (Note that the
date-string conversion routines do not append strings for aAp. or B.c.) For a complete
description of these routines, see Inside Macintosh: Text.

Calculating Dates

In the date-time record and long date-time record, any value in the nont h, day, hour,
m nut e, or second field that exceeds the maximum value allowed for that field, will
cause a wraparound to a future date and time when you modify the date-time format.

= In the nont h field, values greater than 12 cause a wraparound to a future year and
month.

= In the day field, values greater than the number of days in a given month cause a
wraparound to a future month and day.

= Inthe hour field, values greater than 23 cause a wraparound to a future day and hour.

= Inthe m nut e field, values greater than 59 cause a wraparound to a future hour and
minute.

= Inthe seconds field, values greater than 59 cause a wraparound to a future minute
and seconds.

You can use these wraparound facts to calculate and retrieve information about a specific
date. For example, you can use a date-time record and the Dat eToSeconds and
SecondsToDat e procedures to calculate the 300th day of 1994. Set the nont h field of
the date-time record to 1 and the year field to 1994. To find the 300th day of 1994, set the
day field of the date-time record to 300. Initialize the rest of the fields in the record to
values that do not exceed the maximum value allowed for that field. (Refer to the
description of the date-time record on page 4-23 for a complete list of possible values).

Using the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

To force a wrap-around, first convert the date and time (in this example, January 1, 1994)
to the number of seconds elapsed since midnight, January 1, 1904 (by calling the

Dat eToSeconds procedure). Once you have converted the date and time to a number
of seconds, you convert the number of seconds back to a date and time (by calling the
SecondsToDat e procedure). The fields in the date-time record now contain the values
that represent the 300th day of 1994. Listing 4-5 shows an application-defined procedure
that calculates the 300th day of the Gregorian calendar year using a date-time record.

Listing 4-6 Calculating the 300th day of the year

PROCEDURE MyCal cul at e300Day;

VAR
nyDat eTi meRec: Dat eTi neRec;
nmy Seconds: Longl nt ;
BEG N
W TH nyDat eTi neRec DO
BEG N
year := 1994;
nmonth := 1;
day := 300;
hour := O;
mnute := 0;
second : = 0;
dayOf Week : = 1;
END;

Dat eToSeconds (nyDat eTi neRec, mySeconds);
SecondsToDat e (mySeconds, myDat eTi neRec);
END;

The Dat eToSeconds procedure converts the date and time to the number of seconds
elapsed since midnight, January 1, 1904, and the SecondsToDat e procedure converts
the number of seconds back to a date and time. After the conversions, the values in the
year, nont h, day, and dayOf Week fields of the nyDat eTi neRec record represent the
year, month, day of the month, and day of the week for the 300th day of 1994. If the
values in the hour, m nut e, and second fields do not exceed the maximum value
allowed for each field, the values remain the same after the conversions (in this example,
the time is exactly 12:00 Am.).

Similarly, you can use a long date-time record and the LongDat eToSeconds and
LongSecondsToDat e procedures to compute the day of the week corresponding to a
given date. Listing 4-7 shows an application-defined procedure that computes and
retrieves the name of the day for July 4, 1776. Note that because the year is prior to 1904,
it is necessary to use a long date-time record.

Using the Date, Time, and Measurement Utilities 4-15

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

Listing 4-7 Computing the day of the week

4-16

PROCEDURE DoDayCal c;

VAR
myLongDat eRec: LongDat eRec;
myLongSeconds: LongDat eTi ne;

nmy Day OF Week: I nt eger;
BEA N

W TH nyLongDat eRec DO

BEG N
era := 0; /*initialize era field*/
year = 1776;
month = 7;
day := 4;
hour := 0; /*initialize hour field*/
mnute := 0; /[*initialize mnute field*/
second : = 0; /*initialize second field*/
dayOr Week : = 1; /*initialize dayOiWeek fiel d*/
dayOf Year := 1; [*initialize dayCOf Year field*/
weekOf Year :=1; /*initialize weekOf Year field*/
pm:= 1; [*initialize pmfield*/

END;

LongDat eToSeconds (myLongDat eRec, nyLongSeconds);
LongSecondsToDat e (nyLongSeconds, nyLongDat eRec) ;
nmyDayOf Week : = nyLongDat eRec. dayOf Veek;

END;

The LongDat eToSeconds procedure converts the date and time to the number of
seconds, and the LongSecondsToDat e procedure converts the number of seconds back
to a date and time. After the conversions, the value in the dayOf Week field of the
nmyLongDat eRec record represent the day of the week corresponding to July 4, 1776. If
the values in the hour, mi nut e, and second fields do not exceed the maximum value
allowed for each field, the values remain the same after the conversions (in this example,
the time is exactly 12:00 AMm.). The values in the dayf Year, weekOf Year, and pmfields
correspond to the date July 4, 1776 and the time 12:00 A M.

Working With Different Calendar Systems

The additional fields and wider ranges allowed by the long date-time record can help
you to do calculations and conversions for different calendar systems. For example, the
date January 1, 1993 in the Gregorian calendar year converts to 7 Rajab 1413 in the
Arabic Civil Lunar Calendar (CLC) and 4 Tevet 5753 in the Jewish calendar; the years
1413 and 5753 are outside of the year field’s range in the date-time record.

Using the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Note

Depending on the country, the change from the Julian calendar to the
Gregorian calendar occurred in different years. In western European
countries, the change occurred in 1582; in Russia, the calendar changed
in 1918. In these countries, dates before the calendar change should use
the Julian calendar for conversion. (The Julian calendar differs from the
Gregorian calendar by three days every four centuries.) O

In addition, the beginning of the year for one calendar system falls on different dates in
other calendar systems. Table 4-1 shows the equivalent dates for the first day of the
calendar year in the Gregorian, Arabic CLC, and Jewish calendars.

Table 4-1 Equivalent dates in the Gregorian, Arabic CLC, and Jewish calendars
Gregorian calendar Arabic CLC Jewish calendar

January 1, 1993 7 Rajab 1413 4 Tevet 5753

June 20, 1993 1 Muharram 1414 1 Tammuz 5753

September 16, 1993 29 Rabi 1 1414 1 Tishri 5754

Converting from one calendar system to another produces different values in the
dayf Year and week O Year fields of a long date-time record. For example, assuming
all the data for the date 1 Muharram 1414 is correctly put into a long date-time record,
the day O Year field value is 1, and the week Of Year value is also 1. Converting this
date to the Gregorian calendar results in June 20, 1993. The dayCf Year field value is
then 171, and the week O Year value is 26. Table 4-2 shows these values.

Table 4-2 Values for the dayOf Year and weekOf Year fields for the date 1 Muharram 1414
and equivalent values in the Gregorian calendar

LongDateRec field Arabic CLC Gregorian calendar

dayOf Year 1 171
weekOf Year 1 26
Note

Language-specific information, such as the name of the day, name of
the month, and so on, are stored in the international resources. The
international resources are provided by a script system, and the
information in these resources varies according to the language
associated with the script system. O

Table 4-3 shows how some of the fields in the long date-time record are set to show the
first day of the year 1414 in the Arabic CLC and the equivalent dates in the Gregorian
and Jewish calendars.

Using the Date, Time, and Measurement Utilities 4-17

SanInN WaWaINSea pue ‘awl] ‘areq -

4-18

CHAPTER 4

Date, Time, and Measurement Utilities

Table 4-3 Comparison of settings in fields of the long date-time record for Arabic CLC,
Gregorian, and Jewish calendars

Field of along

date-time record Arabic CLC calendar Gregorian calendar Jewish calendar
era 0 0 0
year 1413 1993 5753
nont h 1 6

day 1 21

dayOf \eek 4 2 3
dayf Year 1 172

weekOf Year 1 26

Note

The Arabic script system supports two lunar calendars: the astronomical
lunar calendar (ALC) and the civil lunar calendar (CLC). The Macintosh
user may choose either of the Arabic calendars or the Gregorian
calendar by clicking buttons in the Arabic Calendar control panel.

The Hebrew script system supports the Jewish calendar besides the
Gregorian calendar.

For more information on the different calendar systems supported
by localized versions of the Macintosh system software, see
Guide to Macintosh Software Localization. O

For calendars that have more than seven day names and 12 month names (for example,
the Jewish calendar sometimes has 13 months), you use the' it 1' resource, defined by
the | t | 1Ext Rec data type. To get more information on the format of the" it 1
resource, see the appendix “International Resources” in Inside Macintosh: Text.

Handling Geographic Location and Time-Zone Data

Geographic locations and time zones can affect date and time information. For example,
time-zone information can be used to derive the Greenwich mean time (GMT) at which
a document or mail message was created. With this information, when the document is
received by an application or user in a different time zone, the creation date and time are
correct. Otherwise, documents can appear to be created after they are read (for example,
a user creates a message in Tokyo on Tuesday and sends it to San Francisco, where it is
received and read on Monday). Geographic location information can also be used by
applications that require it.

The geographic location and time-zone information for a particular Macintosh
computers are stored in parameter RAM. You can work with this information through
the ReadLocat i onand Wit eLocat i on procedures. These procedures use the

Using the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

geographic location record (of date type Machi neLocat i on) to help you read and store
latitude, longitude, daylight saving time (DST), and GMT values.

TYPE Machi neLocation = {geographic | ocation record}
RECORD
l atitude: Fract; {latitude}
| ongi t ude: Fract; {l ongi t ude}
CASE | nteger OF
0:
(dl sDel t a: Si gnedByt e) ; {daylight saving tine}
1:
(gntDel ta: Longlnt); {G eenwi ch nmean tine}
END;

The daylight savings time value is a signed byte value that you can use to specify the
offset for the hour field—whether to add 1 hour, subtract 1 hour, or make no change
atall.

The Greenwich mean time value is in seconds east of GMT. For example, San Francisco
is at —28,800 seconds (8 hours * 3,600 seconds per hour) east of GMT.

If the geographic location record has never been set, all fields contain 0.

Generally, latitude and longitude are measured in degrees. These values also can be
thought of as fractions of a great circle.

Latitude and longitude information is stored in the geographic location record as values
of type Fr act . These values give accuracy to within 1 foot, which should be sufficient
for most purposes. For example, the Fr act value 1.0 equals 90 degrees; —1.0 equals

—90 degrees; and -2.0 equals —180 degrees.

To store latitude and longitude values, you need to convert them first to the Fi xed data
type, then to the Fr act data type. You can use the Operating System Utilities routines
Long2Fi x and Fi x2Fr act to accomplish this task. Listing 4-8 is an application-defined
procedure that converts San Francisco’s latitude and longitude to Fr act values, then
writes the Fr act values to parameter RAM using the Wi t eLocat i on procedure.

Listing 4-8 Converting latitude and longitude to Fr act values

PROCEDURE MyConvert Lat Long;

VAR
nyLatitude, myLongitude: Longl nt;
fi xedLatitude, fixedLongitude: Fi xed;
| at Fract, |ongFract: Fract;
nyLocati on: Machi neLocati on;
BEG N
nmyLatitude: = 37.48; {degrees | atitude}
nyLongi tude: = 122. 24; {degrees | ongitude}

Using the Date, Time, and Measurement Utilities 4-19

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

{convert fromlong to fixed data type}
fi xedLatitude: = Long2Fi x(nyLati tude);
fi xedLongi tude: = Long2Fi x(myLongi t ude) ;

{convert fromfixed to Fract data type}
| at Fract: = Fi x2Frac(fi xedLatitude);
| ongFract: = Fi x2Frac(fi xedLongi tude);

{write latitude and | ogitude to nyLocati on}
nyLocation.latitude: = | atFract;
myLocati on. | ongi tude: = | ongFract;

{write latitude and | ongitude to paraneter RAM
WitelLocation(myLocation);

END;

To read the latitude and longitude values from parameter RAM, you use the
ReadLocat i on procedure. To convert these values to a degrees format, you need to
convert the Fr act values first to the Fi xed data type, then to the Longl nt data type.
You can use the Mathematical and Logical Utilities routines Fr act 2Fi x and Fi x2Long
to accomplish this task. (For more information on the Fr act data type and the
conversion routines Long2Fi x, Fi x2Fr act , Fr act 2Fi x, and Fi x2Long, see the
chapter “Mathematical and Logical Utilities” in this book.)

The gnt Del t a field of the geographic location record is a 3-byte value contained in a
long word, so you must take care to get and set it properly. Listing 4-9 shows an
application-defined function for obtaining the value of gt Del t a.

Listing 4-9 Gettinggnt Del t a

4-20

FUNCTI ON MyGet Gnt Del ta (myLocation: Machi neLocation): Longlnt;
VAR
i nternal Grt Del ta: Longlnt;

BEG N
W TH nyLocati on DO
BEG N
internal GrtDelta := BitAnd(gntDelta, $00FFFFFF);
IF BitTst(internal GrtDelta, 23) THEN
{test sign extend bit}
internal GriDelta := BitO (internal Grt Del ta, $FFO000000);
MyGet Gt Delta := internal GrtDelta;
END;
END;

Using the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

When writing gnt Del t a, you should preserve the value of dl sDel t a. Listing 4-10
shows an application-defined procedure that writes gnt Del t a while preserving the
value of dl sDel t a.

Listing 4-10 Setting gnt Del t a

PROCEDURE MySet Gt Del ta (VAR myLocation: Location;
nmyGrt Del ta: Longlnt);

VAR
t enpSi gnedByt e: Si ghedByt e;
BEG N
W TH nyLocati on DO
BEG N
tenpSi gnedByt e : = dl sDel t a; {preserve dl sDel ta}
gmDelta := nyGnrtDelta; {write gntDelta}
dl sDelta : = tenpSi gnedByt e; {restore dlsDelta}
END;
END;

Note that you should mask off the top byte of the long word containing gnt Del t a
because it is reserved.

Determining the Measurement System

To implement measuring devices in applications, such as rulers in a word processor
or in drawing applications, you need to determine which measurement system your
application should use. You can use the | sMet ri ¢ function to determine if the
measurement system needs to be the metric system or the English system. The

I sMet ri ¢ function reads the numeric-format resource (resource type' i t1 0") of
the current script system to determine whether the user is using the metric system
or the English system.

Listing 4-11 shows an application-defined procedure that uses the result of the
I sMet ri ¢ function to determine which application-defined ruler setup to use for a
document window.

Listing 4-11 Getting the current units of measurement

PROCEDURE DoRul er (wi ndow. W ndowPtr);

VAR

myMeasur e: BOOLEAN,; {response returned by IsMetric}
BEG N

nyMeasure := Ishetric;

| F nyMeasure = TRUE THEN {metric systemis default}

Using the Date, Time, and Measurement Utilities 4-21

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

DoMet ri cRul er Set up {set up nmetric systemruler}
ELSE
DoEngl i shRul er Set up; {set up English systemruler}

END;

If you want to use a measurement system different from that of the current script, you
need to override the value of the net ri cSys field in the current numeric-format
resource (resource type ' i t1 0"). You can do this by using your own version of the
numeric-format resource instead of the current script system’s default international
resources. See the chapter “Script Manager” in Inside Macintosh: Text for information on
how to replace a script system’s default international resources.

Determining the Number of Elapsed Microseconds

Your application can use the M cr oseconds procedure to obtain the number of

elapsed microseconds since system startup time. You can use the value returned by

the M cr oseconds procedure to time an event. For example, Listing 4-11 shows an
application-defined function MyEvent Ti ner that computes and returns the time it takes
to execute an application-defined procedure DoMyEvent . The application-defined
function MyCal ul at eEl apsedTi e function uses the returned value of the

M cr oseconds procedure to compute the time it takes to execute the

DoMyEvent procedure.

Listing 4-12 Timing an event using the M cr oseconds procedure

4-22

FUNCTI ON MyEvent Ti mer: Unsi gnedW de;
VAR
myStart Ti ne: Unsi gnedW de;
nyEndTi ne: Unsi gnedW de;
BEG N
M croseconds(&ryStart Ti ne) ;
DoMyEvent ;
M cr oseconds(&ryEndTi ne) ;
MyEvent Ti ner : = MyConput eEl apsedTi ne(&yStart Ti me, &ryEndTi ne);
END;

Because there is no compiler support for 64-bit integers, you must write an
application-defined routine that calculates the elapsed time; you cannot obtain the
elapsed time by subtracting the value in the ny St ar t Ti me parameter from the value in
the nyEndTi nme parameter.

Using the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference

This section describes the data structures and routines that are specific to the Date,

Time, and Measurement Utilities. The section “Data Structures” shows the Pascal data
structures for the date-time record, long date-time record, standard date-time value, long
date-time value, and more. The section “Routines” describes the routines you can use to
read, write, and manipulate date-time information.

Data Structures

This section describes the data structures that you use to exchange information with the
Date, Time, and Measurement Utilities.

The Date-Time Record

The date-time record describes the date-time information as a date and time. The Date,
Time, and Measurement Utilities use a date-time record to read and write date-time
information to and from the clock chip. The Dat eTi neRec data type defines the
date-time record.

Note

The date-time record can be used to hold date and time values only for a
Gregorian calendar. The long date-time record (described on page 4-26)
can be used for a Gregorian calendar as well as other calendar

systems. O

TYPE Dat eTi neRec =

RECORD
year: I nt eger; {year, ranging from 1904 to 2040}
nont h: I nt eger; {rmonth, 1= January and 12 = Decenber}
day: I nt eger; {day of the month, from1 to 31}
hour : I nt eger; {hour, fromO to 23}
m nut e: I nt eger; {m nute, fromO to 59}
second: I nt eger; {second, fromO to 59}
dayOf Week: I nteger; {day of the week, 1 = Sunday, }
{ 7 = Saturday}
END;

Field descriptions

year The year, ranging from 1904 to 2040. Note that to indicate the year
1984, this field would store the integer 1984, not just 84. This field
accepts input of 0 or negative values, but these values produce
unpredictable results in the year, nont h, and day fields when you

Date, Time, and Measurement Utilities Reference 4-23

SanInN WaWaINSea pue ‘awl] ‘areq -

4-24

CHAPTER 4

Date, Time, and Measurement Utilities

nont h

day

hour

m nut e

second

use the SecondsToDat e and Dat eToSeconds procedures. In
addition, using SecondsToDat e and Dat eToSeconds with year
values greater than 2040 causes a wraparound to 1904 plus the
number of years over 2040. For example, setting the year to 2045
returns a value of 1909, and the other fields in this record return
unpredictable results.

The month of the year, where 1 represents January, and 12
represents December. Values greater than 12 cause a wraparound to
a future year and month. This field accepts input of 0 or negative
values, but these values produce unpredictable results in the year,
nmont h, and day fields when you use the SecondsToDat e and

Dat eToSeconds procedures.

The day of the month, ranging from 1 to 31. Values greater than the
number of days in a given month cause a wraparound to a future
month and day. This feature is useful for working with leap years.
For example, the 366th day of January in 1992 (1992 was a leap year)
evaluates as December 31, 1992, and the 367th day of that year
evaluates as January 1, 1993.

This field accepts 0 or negative values, but when you use the

SecondsToDat e and Dat eToSeconds procedures, a value of 0 in
this field returns the last day of the previous month. For example, a
month value of 2 and a day value of 0 return 1 and 31, respectively.

Using SecondsToDat e and Dat eToSeconds with a negative
number in this field subtracts that number of days from the last day
in the previous month. For example, a month value of 5 and a day
value of -1 return 4 for the month and 29 for the day; a month value
of 2 and a day value of 15 return 1 and 16, respectively.

The hour of the day, ranging from 0 to 23, where 0 represents
midnight and 23 represents 11:00 rm. Values greater than 23 cause a
wraparound to a future day and hour. This field accepts input of
negative values, but these values produce unpredictable results in
the nont h, day, hour, and i nut e fields you use the
SecondsToDat e and Dat eToSeconds procedures.

The minute of the hour, ranging from 0 to 59. Values greater than 59
cause a wraparound to a future hour and minute. When you use the
SecondsToDat e and Dat eToSeconds procedures, a negative
value in this field has the effect of subtracting that number from the
beginning of the given hour. For example, an hour value of 1 and a
ni nut e value of 10 return 0 hours and 50 minutes. However, if the
negative value causes the hour value to be less than 0, for example
hour =0, m nut e =-61, unpredictable results occur.

The second of the minute, ranging from 0 to 59. Values greater than
59 cause a wraparound to a future minute and second. When you
use the SecondsToDat e and Dat eToSeconds procedures, a
negative value in this field has the effect of subtracting that number
from the beginning of the given minute. For example, am nut e
value of 1 and a second value of -10 returns 0 minutes and 50
seconds. However, if the negative value causes the hour value to be

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

less than 0, for example hour =0, m nut e =0, and second =-61,
unpredictable results occur.

dayOf ek The day of the week, where 1 indicates Sunday and 7 indicates
Saturday. This field accepts 0, negative values, or values greater
than 7. When you use the SecondsToDat e and Dat eToSeconds
procedures, you get correct values because this field is
automatically calculated from the values in the year, nont h, and
day fields.

Long Date-Time Value and Long Date-Time Conversion Record

The long date-time value specifies the date and time as seconds relative to midnight,
January 1, 1904. But where the standard date-time value is an unsigned, 32-bit long
integer, the long date-time value is a signed, 64-bit integer in SANE conp format. This
format lets you use dates and times with a much longer span—roughly 500 billion years.
You can use this value to represent dates and times prior to midnight, January 1, 1904.
The LongDat eTi ne data type defines the long date-time value.

TYPE LongDat eTi me = conp;

When storing a long date-time value in files, you can use a 5-byte or 6-byte format for a
range of roughly 35,000 years. You should sign extend this value to restore it to a conp
format.

The Date, Time, and Measurement Ultilities provide the LongDat eCvt record to help in
setting up LongDat eTi ne values.

TYPE LongDat eCvt =

RECORD
CASE | nteger OF
0:
(c: conp) ; {nunber of seconds relative to }
{ mdnight, January 1, 1904}
1:
(I H gh: Longlnt; {high long integer}
| Low: Longl nt); {low Il ong integer}
END;

Field descriptions

c The date and time, specified in seconds relative to midnight,
January 1, 1904, as a signed, 64-bit integer in SANE conp format.
The high-order bit of this field represents the sign of the 64-bit
integer. Negative values allow you to indicate dates and times prior
to midnight, January 1, 1904.

| Hi gh The high-order 32 bits when converting from a standard date-time
value. Set this field to 0.

Date, Time, and Measurement Utilities Reference 4-25

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

| Low The low-order 32 bits when converting from a standard date-time
value. Set this field to the standard date-time value representing the
total number of seconds since midnight, January 1, 1904.

The Long Date-Time Record

4-26

In addition to the date-time record, system software provides the long date-time record,
which extends the date-time record format by adding several more fields. This format
lets you use dates and times with a much longer span (30,000 s.c. to 30,000 Ap.). In
addition, the long date-time record allows conversions to different calendar systems,
such as a lunar calendar.

The LongDat eRec data type defines the format of the long date-time record.

TYPE LongDat eRec =

RECORD
CASE | nteger OF
0:
(era: I nt eger; {era}
year: I nt eger; {year, from 30,081 B.C. }
{ to 29,940 A.D.}
nont h: I nt eger; { ront h}
day: I nt eger; {day of the nonth}
hour : I nt eger; {hour, fromO to 23}
nm nut e: I nt eger; {m nute, fromO to 59}
second: I nt eger; {second, fromO to 59}
dayOf Week: I nt eger; {day of the week}
dayf Year: I nt eger; {day of the year}
weekf Year : I nt eger; {week of the year}
pm I nt eger; { mor ni ng/ eveni ng}
resl: I nt eger; {reserved}
res2: I nt eger; {reserved}
res3: I nt eger); {reserved}
1
{i ndex by LongDat eFi el d}
(list: ARRAY[0. . 13] OF Integer);
2:
(eraAlt: I nt eger; {era}
ol dDat e: Dat eTi mreRec); {date-tine record}
END;

Field descriptions
era The era, where 0 represents Ap., and -1 represents B.c.

year The year, ranging from 30,081 s.c. to 29,940 ap. Values outside this
range produce unpredictable results in all fields of the record. Note
that to indicate the year 1984, this field would store the integer 1984,

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

nont h

day

hour

m nut e

second

not just 84. This field accepts input of 0 or negative values, but these
values return the positive result of the value plus one for the year.
For example, a year value of 0 returns 1, and ayear value of —-1993
returns 1994. Other fields are unaffected.

The month of the year, where 1 represents January, and 12
represents December. When you use the LongSecondsToDat e and
LongDat eToSeconds procedures, nont h values greater than 12
cause a wraparound to a future year and month. A value of 0 in this
field returns the 12th month of the previous year. For example, a
nmont h value of 0 and a year value of 1993 return 12 and 1992,
respectively. A negative value in this field has the effect of
subtracting that number from the first month of the given year. For
example, a mont h value of -2 and a year value of 1993 return 10
and 1992, respectively.

The day of the month, ranging from 1 to 31. When using the
LongSecondsToDat e and LongDat eToSeconds procedures, day
values greater than the number of days in a given month cause a
wraparound to a future month and day. This feature is useful for
working with leap years. For example, the 366th day of January in
1992 (1992 was a leap year) evaluates as December 31, 1992, and the
367th day of that year evaluates as January 1, 1993. Avalue of 0 in
this field produces unpredictable results in the mont h and day
fields. A negative value in this field has the effect of subtracting that
number from the first day of the given month. For example, a day
value of —10 and a nont h value of 10 return 9 and 20, respectively.

The hour of the day, ranging from 0 to 23, where 0 represents
midnight and 23 represents 11:00 pm. When you use the
LongSecondsToDat e and LongDat eToSeconds procedures,
hour values greater than 23 cause a wraparound to a future day
and hour. A negative value in this field produces unpredictable
results. Note that this field is always maintained in 24-hour time.
The pmfield, if used, is redundant.

The minute of the hour, ranging from 0 to 59. When you use the
LongSecondsToDat e and LongDat eToSeconds procedures,

m nut e values greater than 59 cause a wraparound to a future hour
and minute. A negative value in this field has the effect of
subtracting that number from the first minute of the given hour. For
example, an hour value of 10 and a i nut e value of -10 return 9
and 50, respectively. However, if the negative value causes the hour
value to become less than 0, for example hour =0and m nute =
—61, unpredictable results occur.

The second of the minute, ranging from 0 to 59. When you use the
LongSecondsToDat e and LongDat eToSeconds procedures,
second values greater than 59 cause a wraparound to a future
minute and second. A negative value in this field has the effect of
subtracting that number from the first second of the given minute.
For example, an ni nut e value of 10 and a second value of -10
return 9 and 50, respectively. However, if the negative value causes

Date, Time, and Measurement Utilities Reference 4-27

SanInN WaWaINSea pue ‘awl] ‘areq -

4-28

CHAPTER 4

Date, Time, and Measurement Utilities

dayOf eek

dayf Year

weekOf Year

pm

resl
res2
res3
list

eraAl t

ol dDat e

the hour value to become less than 0, for example hour =0,
m nut e =0, and second =-61, unpredictable results occur.

The day number of the week, where 1 indicates Sunday and 7
indicates Saturday. This field accepts 0, negative values, or values
greater than 7. When you use the LongSecondsToDat e and
LongDat eToSeconds procedures, you get correct values because
this field is automatically calculated from the values in the year,
nmont h, and day fields. For calendars that have more than 7 day
names and 12 month names (for example, the Jewish calendar
sometimes has 13 months), you use the ' i t1 1' resource, defined
by the I t | 1Ext Rec data type. To get more information on the
formatofthe' i t1 1' resource, see the appendix “International
Resources” in Inside Macintosh: Text.

The day number of the year, ranging from 1 to 366. Values greater
than the number of days in a given year cause a wraparound to a
future year and day. This feature is useful for working with leap
years. For example, in a Gregorian calendar the 366th day of
January in 1992 (1992 was a leap year) evaluates as December 31,
1992, and the 367th day of that year evaluates as January 1, 1993.

The week number of the year, ranging from 1 to 52. Note that
out-of-range values (such as 0, negative numbers, or numbers
greater than 52) can be set for this field. However, you can use the
LongSecondsToDat e procedure to convert these out-of-range
values to appropriate values.

The morning or evening half of the 24-hour day cycle, where 0
represents the morning (for example, Am.), and 1 represents the
evening (for example, pm.). Note that out-of-range values can be set
for this field. However, you can use the LongSecondsToDat e
procedure to convert these out-of-range values to appropriate
values.

Reserved. Set this field to 0.
Reserved. Set this field to 0.
Reserved. Set this field to 0.

An array of LongDat eFi el d values. The fi el d parameter of the
Toggl eDat e function uses the enumerated data type
LongDat eFi el d to indicate the LongDat eRec fields that the
Val i dDat e function should check. The following values are
available:
TYPE LongDateField =
(eraField, yearField, nonthField, dayField,
hour Fi el d, mi nuteField, secondField,
dayOf WeekFi el d, dayOf Year Fi el d,
weekOf Year Fi el d, pnField, reslField,
res2Field, res3Field);

The era, where 0 represents ap., and -1 represents s.c. Use this field
and the ol dDat e field to convert from a date-time record.

The date-time record to convert. Use this field and the er aAl t field
to convert from a date-time record.

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

The Geographic Location Record

The geographic location and time-zone information of a Macintosh computer are stored
in extended parameter RAM. The Machi neLocat i on data type defines the format for
the geographic location record.

TYPE Machi neLocation = {geographic |ocation record}

RECORD
| atitude: Fract; {latitude}
| ongi t ude: Fract; {l'ongi t ude}
CASE | nteger OF
0:
(dl sDel t a: Si gnedByt e) ; {dayl i ght saving tine}
1:
(gnDelta: Longl nt); {Greenwi ch nean tine}
END;

Field descriptions
latitude

| ongi t ude

dl sDelta

gmDelta

The location’s latitude, in fractions of a great circle. For example,
Copenhagen, Denmark is at 55.43 degrees north latitude. When
writing the latitude to extended parameter RAM with the

Wit elLocati on procedure, you must convert this value to a
Fract datatype. (For example, a Fr act value of 1.0 equals 90
degrees; 1.0 equals —90 degrees; and —-2.0 equals —180 degrees.) For
an example that shows this conversion process, see Listing 4-8 on
page 4-19. For more information on the Fr act data type, see the
chapter “Mathematical and Logical Utilities” in this book.

The location’s longitude, in fractions of a great circle. For example,
Copenhagen, Denmark is at 12.34 degrees east longitude. When
writing the longitude to extended parameter RAM with the

Wit elLocati on procedure, you must convert this value to a
Fract datatype. (For example, a Fr act value of 1.0 equals 90
degrees; —1.0 equals —90 degrees; and —-2.0 equals —180 degrees.) For
an example that shows this conversion process, see Listing 4-8 on
page 4-19. For more information on the Fr act data type, see the
chapter “Mathematical and Logical Utilities” in this book.

A signed byte value representing the hour offset for daylight saving
time. This field is a 1-byte value contained in a long word. It should
be preserved when writing gnt Del t a. See Listing 4-10 on

page 4-21 for an example that writes gnt Del t a while preserving
dl sDel t a.

The Greenwich mean time (GMT). For example, Copenhagen,
Denmark is at 1 hour west of GMT. This field is a 3-byte value
contained in a long word. In addition, the top byte of this field
should be masked off when writing because it is reserved. See
Listing 4-9 on page 4-20 and Listing 4-10 on page 4-21 for code
examples that get and set gt Del t a properly.

Date, Time, and Measurement Utilities Reference 4-29

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

The ReadLocat i onand Wit eLocat i on procedures use the geographic location
record to read and store the geographic location and time zone information in extended
parameter RAM. If the geographic location record has never been set, all fields contain 0.

The Toggle Parameter Block

4-30

The Toggl eDat e function exchanges information with your application using the
toggle parameter block, defined by the Toggl ePB data type.

TYPE Toggl ePB =

RECORD
t ogFl ags: Longl nt ; {fl ags}
antChars: ResType;
{ resource,
pnChars: ResType;
{ resource,
reserved: ARRAY[0. .3] OF Longlnt;
END;

Field descriptions
t ogFl ags

{A-M characters from'itl0' }

but made uppercase}

{P.M characters from'itl0 }

but made uppercase}
{reserved}

The high-order word of this field contains flags that specify special

conditions for the Toggl eDat e function:

genCdevRangeBi t = 27;
togDel tal2HourBit = 28;
t ogChar ZCycl eBit = 29;
t ogChar 12Hour Bi t =
smal | Dat eBi t =

genCdevRangeBi t

30;

31;

{restrict date/tinme to }
{ range used by }

{ General Controls }

{ control panel}

{if nodifying hour }

{ up/down, restrict to }
{ 12-hour range}
{nodifier for }

{ togChar12HourBit to }
{ accept hours }

{ 0..11 only}

{if nodifying hour by }
{ char, accept hours }

{ 1..12 only}

{restrict valid }

{ date/tinme to }

{ range of Tinme gl obal}

If this bit is set in addition to snal | Dat eBi t , then the date range is
restricted to that used by the General Controls control panel—

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

January 1, 1920 to December 31, 2019 in the Gregorian calendar (the
routine works correctly for other calendars as well). For dates
outside this range but within the range specified by the system
global variable Ti me—January 1, 1904 to February 6, 2040 in the
Gregorian calendar—Toggl eDat e adds or subtracts 100 years to
bring the dates into the range of the General Controls control panel
if these bits are set. The Toggl eDat e function returns an error if
the snal | Dat eBi t is set and the date is outside the range specified
by the system global variable Ti nme. This bit works with system
software version 6.0.4 and later.

t ogDel t al2Hour Bi t

If this bit is set, modifying the hour up or down is limited to a
12-hour range. For example, increasing by one from 11 produces 0,
increasing by one from 23 produces 12, and so on. This bit works
with system software version 6.0.4 and later.

t ogChar ZCycl eBi t

If this bit is set, the input character is treated as if it modifies an
hour whose value is in the range 0-11. If this bit is not set, the input
character is treated as if it modifies an hour whose value is in the
range 12, 1-11. This bit works with system software version 6.0.4
and later.

t ogChar 12Hour Bi t

If this bit is set, modifying the hour by character is limited to the
12-hour range defined by t ogChar ZCycl eBi t, mapped to the
appropriate half of the 24-hour range, as determined by the pmfield.
This bit works with system software version 6.0.4 and later.

smal | Dat eBi t

If this bit is set, the valid date and time are restricted to the range of
the system global variable Ti ne—that is, between midnight on
January 1, 1904 and 6:28:15 aAm. on February 6, 2040.

The low-order word of this field contains masks representing fields
to be checked by the Val i dDat e function. Each mask corresponds
to a value in the enumerated type LongDat eFi el d. You can set
this field to check the er a through second fields by using the
predeclared constant dat eSt dMask. The following constants
specify the LongDat eRec fields for the Val i dDat e function to
check.

CONST

er aMask = $0001; {verify the era}
year Mask = $0002; {verify the year}
nont hvask = $0004; {verify the nonth}
dayMask = $0008; {verify the day}
hour Mask = $0010; {verify the hour}
m nut eMask = $0020; {verify the }

Date, Time, and Measurement Utilities Reference 4-31

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

{ mnute}
secondMask = $0040; {verify the }

{ second}
dat eSt dvask = $007F; {verify the era }

{ through second}
dayOr WeekMask = $0080; {verify the day }

{ of the week}
dayf Year Mask = $0100; {verify the day }

{ of the year}
weekOf Year Mask = $0200; {verify the week }

{ of the year}
pmivask = $0400; {verify the }

{ evening (P.M)}

antChars The trailing string to display for morning (for example, Am.). This

string is read from the numeric-format resource (resource type
"itl0") of the current script system.

prmChar s The trailing to display for evening (for example, pm.). This string is
read from the numeric-format resource (resource type'itl 0") of
the current script system.

reserved Reserved. Set each of the three elements of this field to 0.

The Unsigned Wide Record

Routines

The Microseconds procedure uses the unsigned wide record to return the number of
microseconds elapsed since system startup time. The Unsi gnedW de data type defines
the format for the unsigned wide record.

Unsi gnedW de = {M croseconds procedure return type}
PACKED RECORD
hi : Longl nt; {hi gh-order 32 bhits}
| o: Longl nt; {I oworder 32 bits}
END;

Field descriptions
hi The high-order 32 bits
lo The low-order 32 bits

4-32

The Date, Time, and Measurement Utilities provide routines you can use to read and
write current date-time information, convert between internal date and time formats (for
example, you can access date-time information as a number of seconds elapsed since
midnight, January 1, 1904 or as a date and time), manipulate date-time information, read
and write location information, and determine the current measurement system.

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

Some of the routines provided by the Date, Time, and Measurement Utilities were
previously associated with the Script Manager or the International Utilities Package. In
addition, some routines have been renamed to reflect their functions more clearly. You
can access the renamed routines using more than one spelling of the routine’s name,
depending on the interface files supported by your development environment. For
example, the | sMet ri ¢ function is also available as the | UMet r i ¢ function. Table 4-4
provides a summary of these changes.

Table 4-4 Renamed and relocated routines

Current name Previous name Former location
Dat eToSeconds Dat e2Secs (Unchanged)

I sMetric | UMetric International Utilities Package
LongDat eToSeconds LongDat e2Secs Script Manager
LongSecondsToDat e LongSecs2Dat e Script Manager
ReadLocat i on ReadLocat i on Script Manager
SecondsToDat e Secs2Dat e (Unchanged)
Toggl eDat e Toggl eDat e Script Manager
Val i dDat e Val i dDat e Script Manager
Witelocation Witelocation Script Manager

Getting the Current Date and Time

At system startup time, system software uses the ReadDat eTi ne function to copy the
current date-time information from the clock chip into low memory. You can access this
date-time information as the number of seconds elapsed since midnight of January 1,
1904 or as a date and time. To obtain the current date-time information expressed as the
number of seconds elapsed since midnight of January 1, 1904, use the Get Dat eTi ne
procedure. To obtain the current date-time information expressed as a date and time, use
the Get Ti ne procedure.

IMPORTANT
If an application disables interrupts for longer than a second, the
date-time information returned by the Get Dat eTi e and Get Ti me
procedures might not be exact. The Get Dat eTi ne and Get Ti ne
procedures are intended to provide fairly accurate time information, but
not scientifically precise data. a

Date, Time, and Measurement Utilities Reference 4-33

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

ReadDateTime

System software uses at system startup time the ReadDat eTi ne function to copy the
date-time information from the clock chip into low memory. Your application should
never need to use this function.

FUNCTI ON ReadDat eTine (VAR tinme: Longlnt): OSErr;

time On return, the current time expressed as the number of seconds elapsed
since midnight, January 1, 1904.

DESCRIPTION

The ReadDat eTi ne function copies the current date-time information from the clock
chip into low memory. It then returns in the t i me parameter a copy of the date-time
information, expressed as the number of seconds elapsed since midnight, January 1, 1904.

The low-memory copy of the date and time information is accessible through the global
variable Ti ne.

If the clock chip cannot be read, ReadDat eTi ne returns the cl KRJEr r result code. The
operation might fail if the clock chip is damaged. Otherwise, the function returns the
noEr r result code.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register A0 with a pointer to a long integer in which you wish to store
the current date-time information. On exit, register A0 contains the same pointer to the
now-changed long integer, and register DO contains the result code.

The registers on entry and exit for this routine are

Registers on entry
A0 Pointer to long word

Registers on exit
A0 Pointer to current time
DO Result code

RESULT CODES

noErr 0 No error
cl kRdErr -85 Unable to read clock

4-34 Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

GetDateTime

DESCRIPTION

SEE ALSO

GetTime

You can use the Get Dat eTi ne procedure to obtain the current date-time information,
expressed as the number of seconds elapsed since midnight, January 1, 1904.

PROCEDURE Get Dat eTi me (VAR secs: Longlnt);

secs On return, the number of seconds elapsed since midnight, January 1, 1904.

The Get Dat eTi e procedure returns in the secs parameter the number of seconds
elapsed since midnight, January 1, 1904.

The low-memory copy of the date and time information (expressed as the number of
seconds elapsed since midnight, January 1, 1904) is also accessible through the global
variable Ti ne.

For an example that uses the Get Dat eTi e procedure to get the current date and time,
see Listing 4-1 on page 4-10.

DESCRIPTION

You can use the Get Ti e procedure to obtain the current date-time information,
expressed as a date and time.

PROCEDURE CGet Ti me (VAR d: DateTi neRec);

d On return, the fields of the date-time record contain the current date and
time.

The Get Ti e procedure returns in the d parameter the current date and time. The

Get Ti me procedure first calls the Get Dat eTi ne procedure to obtain the number of
seconds elapsed since midnight, January 1, 1904. It then calls the SecondsToDat e
procedure to convert the number of seconds (returned by the Get Dat eTi e procedure)
into a date and time.

As an alternative to using the Get Ti e procedure, you can pass the value of the global
variable Ti e to the SecondsToDat e procedure; a SecondsToDat e(Ti nme) procedure
call is identical to a Get Ti me(d) procedure call.

Date, Time, and Measurement Utilities Reference 4-35

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

SEE ALSO
For more information about the SecondsToDat e procedure, see page 4-38. The
CGet Dat eTi nme procedure is described on page 4-35. For sample code that uses the
Get Ti me procedure to get the current date and time, see Listing 4-2 on page 4-10.
The date-time record is described in detail beginning on page 4-23.

Setting the Current Date and Time

You can modify the date-time information stored in the clock chip by using the

Set Dat eTi ne function or the Set Ti e procedure. The two routines differ in the
type of arguments they require. The Set Dat eTi me function requires that the new
date-time information be expressed as the number of seconds elapsed since midnight
of January 1, 1904 (using a value of type Longl nt). The Set Ti me procedure requires
that the new date-time information be expressed as a date and time (using a value of
type Dat eTi neRec).

IMPORTANT

Users can change the current date and time stored in both the system
global variable Ti e and in the clock chip by using the General Controls
control panel, Date & Time control panel, or the Alarm Clock desk
accessory. In general, your application should not directly change the
current date-time information. If your application does need to modify
the current date-time information, it should instruct the user how to
change the date and time. a

SetDateTime

You can use the Set Dat eTi ne function to modify the date-time information stored

in the clock chip. The Set Dat eTi me function requires that the new date-time
information be passed to the function as the number of seconds elapsed since midnight,
January 1, 1904.

FUNCTI ON SetDateTine (time: Longlnt): OSErr;

tinme The number of seconds elapsed since midnight, January 1, 1904; this
value is written to the clock chip.

DESCRIPTION

The Set Dat eTi e function writes the number of seconds, specified by thet i ne
parameter, to the clock chip. The Set Dat eTi e function also updates the low-memory
copy of the date-time information.

The Set Dat eTi ne function attempts to verify the value written by reading it back in
and comparing it to the value in the low-memory copy. If a problem occurs, the
Set Dat eTi ne function returns either the cl KRdEr r result code, because the clock chip

4-36 Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

could not be read, or the cl kW Er r result code, because the time written to the clock
chip could not be verified. Otherwise, the function returns the noEr r result code.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register DO with the number of seconds to which you wish to change
the clock chip. When the Set Dat eTi ne function returns, register DO contains the result
code.

The registers on entry and exit for this routine are

Registers on entry
DO Seconds elapsed since midnight, January 1, 1904

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error

cl KRAEr r -85 Unable to read clock

cl KW Err -86 Time written did not verify
SEE ALSO

For sample code that uses the Set Dat eTi e function to write date-time information
(represented as a number of seconds) to the clock-chip, see Listing 4-3 on page 4-11.

SetTime
You can use the Set Ti e procedure to modify the date-time information in the clock
chip. The Set Ti me requires that the new date-time information be passed to the
function as a date and time.
PROCEDURE Set Ti ne (d: DateTi neRec);
d The date and time to which to set the clock chip.

DESCRIPTION

The Set Ti ne procedure writes the date and time specified by the d parameter to the
clock chip. The Set Ti me procedure first converts the date and time to the number of
seconds elapsed since midnight, January 1, 1904 (by calling the Dat eToSeconds
procedure). It then writes these seconds to the clock chip and to the system global
variable Ti e (by calling the Set Dat eTi e function).

Date, Time, and Measurement Utilities Reference 4-37

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

As an alternative to using the Set Ti me procedure, you can use the Dat eToSeconds
and Set Dat eTi e routines.

Note

The Set Ti ne procedure does not return a result code. If you need to
know whether an attempt to change the date and time information in
the clock chip is successful, you must use the Set Dat eTi ne function. O

SEE ALSO

See page 4-23 for a description of the fields of a date-time record. For more

information on the Dat eToSeconds procedure, see page 4-39. The Set Dat eTi ne
function is described on page 4-36. For sample code that uses the Set Ti ne procedure to
write date-time information (represented as a date and time) to the clock-chip, see
Listing 4-4 on page 4-11.

Converting Between Date-Time Formats

The Date, Time, and Measurement Utilities provide two procedure, SecondsToDat e
and Dat eToSeconds, that you can use to convert between date-time formats. You
can convert a number of seconds to a date and time and a date and time to a number
of seconds.

If you use a standard date-time value (used to access a number of seconds) or a
date-time record (used to access a date and time) to access date-time information, you
can use the SecondsToDat e and Dat eToSeconds procedures to convert between
these date-time formats. Use the SecondsToDat e procedure to convert a number of
seconds to a date and time, and use the Dat eToSeconds procedure to convert a date
and time to a number of seconds.

Note

The system software uses the SecondsToDat e and Dat eToSeconds
procedures provided by the current script system. O

SecondsToDate

You can use the SecondsToDat e procedure to convert a number of seconds elapsed
since midnight, January 1, 1904 to a date and time.

PROCEDURE SecondsToDate (s: Longlnt; VAR d: DateTi neRec);

The number of seconds elapsed since midnight, January 1, 1904.

On return, the fields of the date-time record that contain the date and time
corresponding to the value indicated in the s parameter.

4-38 Date, Time, and Measurement Utilities Reference

DESCRIPTION

CHAPTER 4

Date, Time, and Measurement Utilities

The SecondsToDat e procedure converts the number of seconds, specified in the s
parameter, to a date and time. The date and time values are returned in the d parameter.

The SecondsToDat e procedure is also available as the Secs2Dat e procedure.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for this routine are

Registers on entry
DO Seconds since midnight, January 1, 1904
A0 Pointer to a date-time record

Registers on exit
A0 Pointer to a date-time record

SEE ALSO
For a complete description of the date-time record, see page 4-23.
DateToSeconds
You can use the Dat eToSeconds procedure to convert a date and time to a number of
seconds elapsed since midnight, January 1, 1904.
PROCEDURE Dat eToSeconds (d: DateTi neRec; VAR s: Longlnt);
d The date-time record containing the date and time to convert.
S On return, the number of seconds elapsed between midnight,
January 1, 1904, and the time specified in the d parameter.
DESCRIPTION

The Dat eToSeconds procedure converts the date and time specified in the

d parameter to the number of seconds elapsed since midnight, January 1, 1904. The
number of seconds are returned in the s parameter. For example, specifying a date

and time of 5:50 Am. on June 13, 1990 results in 41627 being returned in the s parameter.

The Dat eToSeconds procedure is also available as the Dat e2Secs procedure.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register A0 with a pointer to the date and time record containing the
date and time you wish to convert. When Dat eToSeconds returns, register DO contains
a long integer representing the converted date and time.

Date, Time, and Measurement Utilities Reference 4-39

SanInN WaWaINSea pue ‘awl] ‘areq -

SEE ALSO

CHAPTER 4

Date, Time, and Measurement Utilities

The registers on entry and exit for this routine are

Registers on entry
A0 Pointer to date-time record

Registers on exit
DO Corresponding seconds since midnight, January 1, 1904

For a complete description of the date-time record, see page 4-23.

Converting Between Long Date-Time Format

The Date, Time, and Measurement Utilities provide two procedures,
LongSecondsToDat e and LongDat eToSeconds, that you can use to convert between
long date-time formats. You can convert a number of seconds to a date and time and a
date and time to a number of seconds.

If you use a long date-time value (used to access a number of seconds) or a long
date-time record (used to access a date and time) to access date-time information, you
can use the LongSecondsToDat e and LongDat eToSeconds procedures to convert
between these date-time formats. Use the LongSecondsToDat e procedure to convert a
number of seconds to a date and time, and use the LongDat eToSeconds procedure to
convert a date and time to a number of seconds.

Note

The system software uses the LongSecondsToDat e and
LongDat eToSeconds procedures provided by the current
script system. O

LongSecondsToDate

4-40

You can use the LongSecondsToDat e procedure to convert the number of seconds
elapsed since midnight, January 1, 1904 to a date and time.

PROCEDURE LongSecondsToDate (| Secs: LongDat eTi ne;
VAR | Dat e: LongDat eRec) ;

| Secs The number of seconds elapsed since midnight, January 1, 1904.

| Dat e On return, the fields of the long date-time record that contain the date and
time corresponding to the value indicated in the | Secs parameter.

Date, Time, and Measurement Utilities Reference

DESCRIPTION

SEE ALSO

CHAPTER 4

Date, Time, and Measurement Utilities

The LongSecondsToDat e procedure converts the representation of the date-time
information from a number of seconds, specified in the | Secs parameter, to a date and
time. The date and time are returned in the | Dat e parameter as values in the date-time
record. For example, specifying the number of seconds 41627 results in the date and
time 5:50 A.m. on June 13, 1990 being returned in the | Dat e parameter.

The LongSecondsToDat e procedure is also available as the LongSecs?2Dat e
procedure.

To learn more about the long date-time value, see the section page 4-25. For more
information on the long date-time record, see page 4-26.

LongDateToSeconds

DESCRIPTION

SEE ALSO

You can use the LongDat eToSeconds procedure to convert a date and time to the
number of seconds elapsed since midnight, January 1, 1904.

PROCEDURE LongDat eToSeconds (| Date: LongDat eRec;
VAR | Secs: LongDat eTi ne) ;

| Dat e The long date-time record containing the date and time to convert.

| Secs On return, the number of seconds elapsed since midnight,
January 1, 1904, and the time specified in the | Dat e parameter.

The LongDat eToSeconds procedure converts the representation of the date-time
information from a date and time, specified in the | Dat e parameter, to the number of
seconds elapsed since midnight, January 1, 1904. The number of seconds are returned as
a long date-time value in the | Secs parameter. For example, specifying the date and
time 5:50 Am. on June 13, 1990 results in 41627 being returned in the | Secs parameter.

The LongDat eToSeconds procedure is also available as the LongDat e2Secs
procedure.

To learn more about the long date-time value, see page 4-25. For more information on the
long date-time record, see page 4-26.

Date, Time, and Measurement Utilities Reference 4-41

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

Modifying and Verifying Long Date-Time Records

ToggleDate

You can modify and verify the values in a long date-time record by using the
Toggl eDat e function and the Val i dDat e function, respectively.

The Toggl eDat e function accepts a pointer to a toggle parameter block as a parameter.
Information about the fields in the toggle parameter block appears in the following
format:

Parameter block

- i nput 1 Longl nt Input parameter comment.
- out putl Longl nt Output parameter comment.

The arrow on the far left indicates whether the field is an input or output parameter. You
must supply values for all input parameters. The routine returns values in the output
parameters. The next column shows the field name as defined in the MPW interface files,
followed by the data type of that field. This matches the MPW interface name of the data
type as shown in the parameter block. The fourth column contains a comment about or
brief definition of the field.

4-42

You can use the Toggl eDat e function to modify a date and time, by modifying one
specific component of a date and time (day, hour, minute, seconds, day of week, and
so on). For example, you can use the Toggl eDat e function to increase a date and time
by one minute, decrease a date and time by one minute, or explicitly add or subtract a
number of seconds to or from a date and time.

FUNCTI ON Toggl eDate (VAR | Secs: LongDat eTi ne;
field: LongDateField; delta: DateDelta,;
ch: Integer; parans: Toggl ePB)
Toggl eResul t s;

| Secs The date-time information to modify, expressed as the number of seconds
elapsed since midnight, January 1, 1904.

field The name of the field in the date-time record you want modify. Use one
of the LongDat eFi el d enumeration constants for the value of this
parameter.

delta A signed byte specifying the action you want to perform on the value

specified in the fi el d parameter. Set del t a to 1, to increase the value in
the field by 1. Set del t a to -1, to decrease the value of the field by 1. Set
del t a to 0. If you want to set the value of the field explicitly; pass the
new value through the ch field, described next.

Date, Time, and Measurement Utilities Reference

DESCRIPTION

CHAPTER 4

Date, Time, and Measurement Utilities

ch If the value in the del t a field is O, the value of the field in the date-time
record (specified by the f i el d parameter) is set to the value in the
ch parameter. If the value in the del t a field is not equal to 0, the value in
the ch parameter is ignored.

par ans The settings of the toggle parameter block settings. Note that you are
responsible for setting this field.

Parameter block

= t ogFl ags Longl nt The fields to be checked by the
Val i dDat e function.
- antChar s ResType AmMm. characters from ' i t1 0" resource.
- pnChar s ResType pM. characters from ' i t1 Q' resource.
- reserved ARRAY [0..3] Reserved; set each element to 0.
CF Longl nt

The Toggl eDat e function first converts the number of seconds, specified in the

| Secs parameter, to a date and time—making each component of the date and time
(day, minute, seconds, day of week, and so on) available through a long date-time
record. The Toggl eDat e function then modifies the value of the field, specified by the
fi el d parameter. If the value in the del t a field is greater than 0, the value of the field
(specified in the f i el d parameter) increases by 1; if the value in the del t a field is less
than 0, the value of the field decreases by 1; and if the value of del t a is 0, the value of
the field is explicitly set to the value specified in the ch field.

After the Toggl eDat e function modifies the field, it calls the Val i dDat e function. The
Val i dDat e function checks the long date-time record for correctness, using the values
of the t ogFl ags field in the toggle parameter block that the Toggl eDat e function
passes to it. If any of the record fields are invalid, the Val i dDat e function returns a
LongDat eFi el d value corresponding to the field in error. Otherwise, it returns the
result code for val i dDat eFi el ds. Note that Val i dDat e reports only the least
significant erroneous field.

After the Toggl eDat e function checks the validity of the modified field, it converts the
modified date and time back into a number of seconds (the number of seconds elapsed
since midnight, January 1, 1904) and returns these seconds in the | Secs parameter.

The following constants specify the LongDat eRec fields for the Val i dDat e function
to check:

CONST

er aMask = $0001; { verify the er a}
year Mask = $0002; { verify the year}
nont hMask = $0004; { verify the nont h}
dayMask = $0008; { verify the day}
hour Mask = $0010; { verify the hour}
m nut eMask = $0020; { verify the m nut e}
secondMask = $0040; { verify the second}

Date, Time, and Measurement Utilities Reference 4-43

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

dat eSt dvask = $007F; { verify the era through second}
dayOr WeekMask = $0080; { verify the day of the week}
dayf Year Mask = $0100; { verify the day of the year}
weekOf Year Mask = $0200; { verify the week of the year}
pmvask = $0400; { verify the evening (P.M)}

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

4-44

Although Toggl eDat e does not move or purge memory, you should not call it at
interrupt time.

The Toggl eDat e function returns its own set of result codes. The Toggl eResul t s data
type defines the result code of the Toggl eDat e function:

TYPE Toggl eResults = Integer; {ToggleDate function return type}

The following list gives the result codes defined for this function:

t oggl eUndef i ned 0 Undefined error

t oggl eX 1 No error

t oggl eBadFi el d 2 Invalid field number

t oggl eBadDel t a 3 Invalid delta value

t oggl eBadChar 4 Invalid character

t oggl eUnknown 5 Unknown error

t oggl eBadNum 6 Tried to use character as number
t oggl eQut O Range 7 Out of range (synonym for t oggl eEr r 3)
toggl eErr3 7 Reserved

toggl eErr4 8 Reserved

t oggl eErr5 9 Reserved

To learn more about the LongDat eTi ne data type, see page 4-25. For more information
on the LongDat eRec structure, see page 4-26. The toggle parameter block record is
described on page 4-30.

For more information about the Get | nt | Resour ce function, see the chapter “Script
Manager” in Inside Macintosh: Text. For details on the Upper caseText procedure, see
the chapter “Text Utilities” in Inside Macintosh: Text. The Val i dDat e function is
described next.

Date, Time, and Measurement Utilities Reference

ValidDate

CHAPTER 4

Date, Time, and Measurement Utilities

DESCRIPTION

You can use the Val i dDat e function to verify specific date and time values in a long
date-time record.

FUNCTI ON Val i dDat e (VAR vDate: LongDateRec; flags: Longlnt;
VAR newSecs: LongDateTinme): |nteger;

vDat e The long date-time record whose fields you want to verify.
fl ags The fields that you want to verify in the long date-time record.

newsecs The date-time information, passed by the Toggl eDat e function, that you
want to verify.

The Val i dDat e function verifies the fields, specified by the f | ags parameter, in the
long date-time record specified by the vDat e parameter. If any of the specified fields
contain invalid values, the Val i dDat e function returns a LongDat eFi el d value
indicating the field in error. Otherwise, it returns the constant val i dDat eFi el ds.
Note that Val i dDat e reports only the least significant erroneous field.

The following constants specify the LongDat eRec fields for the Val i dDat e function
to check:

CONST
er avask = $0001; {verify the era}
year Mask = $0002; {verify the year}
mont hivask = $0004; {verify the nonth}
dayMask = $0008; {verify the day}
hour Mask = $0010; {verify the hour}
m nut eMask = $0020; {verify the mnute}
secondMask = $0040; {verify the second}
dat eSt divask = $007F; {verify the era through }
{ second}
dayOf WeekMask = $0080; {verify the day of the week}
dayOf Year Mask = $0100; {verify the day of the year}
weekOf Year Mask = $0200; {verify the week of the year}
pnivask = $0400; {verify the evening (P.M)}

SPECIAL CONSIDERATIONS

Although Val i dDat e does not move or purge memory, you should not call it at
interrupt time.

Date, Time, and Measurement Utilities Reference 4-45

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

SEE ALSO

To learn more about the LongDat eTi ne data type, see page 4-25. For more information
on the long date-time record, see page 4-26. The Toggl eDat e function is described on
page 4-42. The enumerated type LongDat eFi el d is described on page 4-29.

Reading and Writing Location Data

You can read and set geographic location and time-zone information using the
Readl ocati onand Wit eLocat i on procedures.

ReadLocation

You can use the ReadLocat i on procedure to get information about a geographic
location or time zone.

PROCEDURE ReadLocati on (VAR | oc: Machi neLocati on);

| oc On return, the fields of the geographic location record containing the
geographic location and the time-zone information.

DESCRIPTION

The ReadLocat i on procedure reads the stored geographic location and time zone
of the Macintosh computer from extended parameter RAM and returns it in the
| oc parameter.

You can get values for the latitude, longitude, daylight savings time (DST), or
Greenwich mean time (GMT). If the geographic location record has never been set,
all fields contain 0.

The latitude and longitude are stored as Fr act values, giving accuracy to within
one foot. For example, a Fract value of 1.0 equals 90 degrees; —1.0 equals —90 degrees;
and -2.0 equals —180 degrees.

To convert these values to a degrees format, you need to convert the Fr act values first
to the Fi xed data type, then to the Longl nt data type. You can use the Mathematical
and Logical Utilities routines Fr act 2Fi x and Fi x2Long to accomplish this task.

The DST value is a signed byte value that you can use to specify the offset for the
hour field—whether to add one hour, subtract one hour, or make no change at all.

The GMT value is in seconds east of GMT. For example, San Francisco is at
—28,800 seconds (8 hours * 3,600 seconds per hour) east of GMT. The gnt Del t a field
is a 3-byte value contained in a long word, so you must take care to get it properly.

4-46 Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

SPECIAL CONSIDERATIONS

SEE ALSO

Although the ReadLocat i on procedure does not move or purge memory, you should
not call it at interrupt time.

For more information on the geographic location record, see page 4-29. For an
example of how to use the ReadLocat i on procedure to get latitude and longitude,
see Listing 4-8 on page 4-19. Listing 4-9 on page 4-20 shows an application-defined
procedure for obtaining the value of gnt Del t a.

For more information on the Fr act data type and the conversion routines Long2Fi x,
Fi x2Fract , Fract 2Fi x, and Fi x2Long, see the chapter “Mathematical and Logical
Utilities” in this book.

WriteLocation

DESCRIPTION

You can use the Wi t eLocat i on procedure to change the geographic location or
time-zone information stored in extended parameter RAM.

PROCEDURE W iteLocation (loc: Machi neLocation);

| oc The geographic location and time-zone information to write to the
extended parameter RAM.

The Wit eLocat i on procedure takes the geographic location and time-zone
information, specified in the | oc parameter, and writes it to the extended
parameter RAM.

The latitude and longitude are stored in the geographic location record as Fr act values,
giving accuracy to within 1 foot. For example, a Fr act value of 1.0 equals 90 degrees;
-1.0 equals —-90 degrees; and —2.0 equals —180 degrees.

To store latitude and longitude values, you need to convert them first to the Fi xed data
type, then to the Fr act data type. You can use the Operating System Utilities routines
Long2Fi x and Fi x2Fr act to accomplish this task. Listing 4-8 on page 4-19 shows a
procedure that converts San Francisco’s latitude and longitude to Fr act values, then
writes the Fr act values to extended parameter RAM using the Wi t eLocati on
procedure.

The daylight savings time value is a signed byte value that you can use to specify the
offset for the hour field—whether to add one hour, subtract one hour, or make no
change at all.

The Greenwich mean time value is in seconds east of GMT. For example, San Francisco is
at —28,800 seconds (8 hours * 3,600 seconds per hour) east of GMT. The gnt Del t a field is

Date, Time, and Measurement Utilities Reference 4-47

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

a 3-byte value contained in a long word, so you must take care to set it properly. When
writing gnt Del t a, you should mask off the top byte because it is reserved. In addition,
you should preserve the value of dl sDel t a. Listing 4-10 on page 4-21 shows a
procedure that writes gnt Del t a, with the top byte masked off, while preserving

the value of dl sDel t a.

SPECIAL CONSIDERATIONS

SEE ALSO

Although Wi t eLocat i on does not move or purge memory, you should not call it at
interrupt time.

For more information on the geographic location record, see page 4-29. For more
information on the Fr act data type and the conversion routines Long2Fi x,

Fi x2Fr act , Fract 2Fi x, and Fi x2Long, see the chapter “Mathematical and Logical
Utilities” in this book.

Determining the Measurement System

IsMetric

You can determine the type of measurement system that is used by the current script
system by the using the | sMet ri ¢ function.

DESCRIPTION

4-48

You can use the | sMet ri ¢ function to determine whether the current script system is
using the metric system (also called the International System of Units) or the English
system of measurement (also called the British imperial system). The | sMet ri ¢ function
is also available as the | UMet ri ¢ function.

FUNCTI ON | sMetric: BOOLEAN

The I sMet ri ¢ function examines the net ri cSys field of the numeric-format resource
(resource type ' i t1 0") to determine if the current script is using the metric system.

A value of 255 in the net ri cSys field indicates that the metric system (centimeters,
kilometers, milligrams, degrees Celsius, and so on) is being used. In this case, t he

| sMet ri ¢ function returns a value of TRUE. A value of 0 in the et ri cSys field
indicates that the English system of measurement (inches, miles, ounces, degrees
Fahrenheit, and so on) is used. In that case, the | sMet ri ¢ function returns a value

of FALSE.

If you want to use units of measurement different from that of the current script, you
need to override the value of the net ri cSys field in the current numeric-format

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

resource (resource type ' i t1 0'). You can do this by using your own version of the
numeric-format resource instead of the current script system’s default international
resource.

SPECIAL CONSIDERATIONS

SEE ALSO

The I sMet ri ¢ function may move or purge blocks in the heap; calling it may cause
problems if you’ve dereferenced a handle. You should not call this function from within
interrupt code, such as in a completion routine or a VBL task.

For a complete description of the international numeric-format resource (resource
type'itl 0")and how to use it, see the appendix “International Resources” in
Inside Macintosh: Text.

For information on how to replace a script system’s default international resources, see
the chapter “Script Manager” in Inside Macintosh: Text.

Measuring Time

You can measure the number of elapsed microseconds since system startup, using the
M cr oseconds procedure.

Microseconds

DESCRIPTION

SEE ALSO

You can use the M cr oseconds procedure to determine the number of microseconds
that have elapsed since system startup time.

PROCEDURE M croseconds (VAR m croTi ckCount: UnsignedW de);

m cr osecondCount
The number of microseconds elapsed since system startup.

The M cr oseconds procedure returns, in the m cr osecondCount parameter, the
number of microseconds that has elapsed since system startup time.

For information about the return type for this procedure—the Unsi gnedW de record—
see page 4-32. For an example of how to use the M cr oseconds procedure, see
Listing 4-11 on page 4-21.

Date, Time, and Measurement Utilities Reference 4-49

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

Summary of the Date, Time, and Measurement Utilities

Pascal Summary

Constants
CONST
{date equates for Toggl eDate control bits}
val i dDat eFi el ds = -1; {date fields are valid}
genCdevRangeBi t = 27; {restrict date/tinme to range used by }
{ General Controls control panel}
t ogDel t al2Hour Bi t = 28; {if toggling hour up/down, restrict to }
{ 12-hour range}
t ogChar ZCycl eBi t = 29; {nodifier for togChar12HourBit to }
{ accept hours 0..11 only}
t ogChar 12Hour Bi t = 30; {if toggling hour by char, accept }
{ hours 1..12 only}
snal | Dat eBi t = 31; {restrict valid date/time to range }

{ of Tinme global}

{long date-tine record field nasks}

er aMask = $0001; {era}

year Mask = $0002; {year}

nont hMask = $0004; { mont h}

dayMask = $0008; { day}

hour Mask = $0010; {hour}

m nut eMask = $0020; {m nut e}
secondMask = $0040; { second}

dayOf WeekMask = $0080; {day of the week}
dayOf Year Mask = $0100; {day of the year}
weekOf Year Mask = $0200; {week of the year}
pmvask = $0400; {evening (P.M)}

{default value for togFlags field in the toggle paraneter bl ock }
{ and default value for the flags paraneter passed to the Verify function}
dat eSt divask = $007F; {default value for checking era }

{ through second fiel ds}

4-50 Summary of the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Data Types
TYPE
Dat eTi mreRec = {date-tinme record}
RECORD
year: I nt eger; {year}
nont h: I nt eger; { nront h}
day: I nt eger; {day of the nonth}
hour : I nt eger; {hour}
nm nut e: I nt eger; {m nut e}
second: I nt eger; {second}
dayOf Week: I nteger; {day of the week}
END;
LongDateFiel d = {long date field enuneration}
(eraField, yearField, nonthField, dayField,
hour Fi el d, m nuteField, secondField, dayOrWekFi el d,
dayOf Year Fi el d, weekOf Year Fi el d, pnField, reslField,
res2Field, res3Field);
LongDat eTi ne = conp; {date and tinme in 64-bit SANE conp fornat}
LongDat eCvt = {long date-time conversion record}
RECORD
CASE | nteger OF
0:
(c: conp) ; {copy field into a variable of type }
{ LongDat eTi ne}
1
(I H gh: Longlnt; {high-order 32 bits}
| Low: Longlnt); {l ow order 32 bits}
END;
LongDat eRec = {long date-tinme record}
RECORD
CASE | nteger OF
0:
(era: I nt eger; {era}
year: I nt eger; {year}
nont h: I nt eger; { ront h}
day: I nt eger; {day of the nonth}
hour : I nt eger; {hour}
nm nut e: I nt eger; {m nut e}
second: I nt eger; {second}

Summary of the Date, Time, and Measurement Utilities 4-51

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

dayOf eek: I nt eger; {day of the week}
dayOf Year : I nt eger; {day of the year}
weekOf Year : I nt eger; {week of the year}
pm I nt eger; {hal f of day--0 for norning,
{ 1 for evening}
resl: I nt eger; {reserved}
res2: I nt eger; {reserved}
res3: I nt eger); {reserved}
1: {index by LongDat eFi el d}
(list: ARRAY[0. . 13] OF Integer);
2:
(eraAlt: I nt eger; {era}
ol dDat e: Dat eTi nreRec); {date-tine record}
END;
Toggl ePB = {toggl e paraneter bl ock}
RECORD
t ogFl ags: Longl nt; {fl ags}
antChars: ResType; {from'itl0" resource, but nade uppercase}
pnChars: ResType; {from'itl 0" resource, but nade uppercase}
{reserved}
reserved: ARRAY[0. . 3] OF Longlnt;
END;
Toggl eResults = Integer; {Toggl eDate function return type}

Dat eDel ta = Si gnedByte

Machi neLocati on =
RECORD
| atitude:
| ongi t ude:
CASE | nteger OF
0:
(dl sDel t a:

(gnt Del t a:
END;

Fract;
Fract;

Longlnt);

{Toggl eDate function delta field type}

{geographic | ocation record}

{latitude}
{l'ongi t ude}

Si gnedByt e) ; {dayl i ght savings tine}

{Greenwi ch nean tine}

4-52 Summary of the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Unsi gnedW de = {M croseconds procedure return type}
PACKED RECORD
hi : [ongl nt; {hi gh-order 32 bits}
| o: | ongl nt; {low order 32 bits}
END;
Routines

Getting the Current Date and Time

FUNCTI ON ReadDat eTi e (VAR tine: Longlnt) : OSErr;
PROCEDURE Get Dat eTi ne (VAR secs: Longlnt);
PROCEDURE Get Ti ne (VAR d: DateTi meRec);

Setting the Current Date and Time
FUNCTI ON Set Dat eTi ne (time: Longlnt) : OSErr;
PROCEDURE Set Ti ne (d: DateTi neRec);

Converting Between Date-Time Formats
{each procedure has two spellings, see Table 4-4 for the alternate spelling}
PROCEDURE SecondsToDat e (secs: Longint; VAR d:. DateTi neRec);

PROCEDURE Dat eToSeconds (d: DateTi neRec; VAR secs: Longlnt);

Converting Between Long Date-Time Formats

{each procedure has two spellings, see Table 4-4 for the alternate spelling}
PROCEDURE LongSecondsToDate (VAR | Secs: LongDat eTi ne;
VAR | Dat e: LongDat eRec);

PROCEDURE LongDat eToSeconds (| Date: LongDateRec; VAR | Secs: LongDateTi ne);

Modifying and Verifying Long Date-Time Records

FUNCTI ON Toggl eDat e (VAR | Secs: LongDateTinme; field: LongDateField;
delta: DateDelta; ch: Integer;
parans: Toggl ePB): Toggl eResul ts;

FUNCTI ON Val i dDat e (vDat e: LongDateRec; flags: Longlnt;
VAR newSecs: LongDat eTine): | nteger;

Reading and Writing Location Data

PROCEDURE ReadLocati on (VAR | oc: Machi neLocation);
PROCEDURE Wit elocation (VAR | oc: Machi neLocati on);

Summary of the Date, Time, and Measurement Utilities 4-53

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

Determining the Measurement System

{this function has two spellings,

FUNCTION | sMetric:

Measuring Time
PROCEDURE M cr oseconds

C Summary

Bool ean;

see Table 4-4 for the alternate spelling}

(VAR i croTi ckCount Unsi gnedW de) ;

Constants

enum

{

/*date equates for ToggleDate control bits*/

val i dDat eFi el ds =
genCdevRangeBi t =

t ogDel t al2Hour Bi t

t ogChar ZCycl eBi t =
t ogChar 12Hour Bi t =

smal | Dat eBi t

-1,
27,

28,

29,

30,

31,

/*date fields are valid*/

/*restrict date/tine to range used by */
/* General Controls control panel*/
/*if toggling hour up/down, restrict */
/* to 12-hour range*/

/*modi fier for TogChar12HourBit to */
/* accept hours 0..11 only*/

/*if toggling hour by char, accept */
/* hours 1..12 only*/

/*restrict valid date/tine to range */
/* of Tinme gl obal*/

/*long date-time record field masks*/

er aMask =
year Mask =
nmont hivask =
dayMask =
hour Mask =
m nut eMask =
secondMask =
day Of WeekMask
dayOf Year Mask
weekOf Year Mask =
pmvask =

0x0001,
0x0002,
0x0004,
0x0008,
0x0010,
0x0020,
0x0040,

= 0x0080,
= 0x0100,

0x0200,
0x0400

/*era*/

/*year*/

[*day*/

/ *mont h*/

/ *hour */

/*m nut e*/

/ *second*/

/*day of the week*/
/*day of the year*/
/*week of the year*/
/*evening (P.M)*/

4-54 Summary of the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

enum

{

/*default value for togFlags field in the toggle paraneter block and */

/* default value for the flags paraneter passed to the Verify function*/

dat eSt dMvask = 0x007F, /*default value for checking era */
/* through second fields*/
1
Data Types
struct DateTi meRec /*date-time record*/
{
short year; /*year*/
short nmont h; / *nont h*/
short day; /*day of the nonth*/
short hour ; / *hour */
short m nut e; /*m nut e*/
short second; [*second*/
short dayOf Week; /*day of the week*/
1
t ypedef struct DateTi meRec Dat eTi neRec
enum /*long date field enuneration*/
{

eraField, yearField, nonthField, dayField, hourField, mnuteField,
secondFi el d, dayOf WeekFi el d, dayOf Year Fi el d, weekOf Year Fi el d, pnField,
reslField, res2Field, res3Field

1
t ypedef unsi gned char LongDat eFi el d;
t ypedef conp LongDat eTi ne; /*date and tine in 64-bit SANE conp fornat*/
uni on LongDat eCvt /*1 ong date-time conversion record*/
{
conp C; /*copy field into a LongDateTi me vari abl e*/
struct
{
long | High; / *hi gh-order 32 bits*/
long | Low, /*1 oworder 32 bits*/
} hi;
1

t ypedef uni on LongDat eCvt LongDat eCvt;

Summary of the Date, Time, and Measurement Utilities

4-55

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

uni on LongDat eRec

{

struct

{
short
short
short
short
short
short
short
short
short
short
short
short
short
short

}old;

short i

struct

{

short

Dat eTi nreRec ol dDat e;

} od;
s

era;
year;

nont h;

day;

hour ;

nm nut e;
second;
dayOf eek;
dayf Year ;
weekf Year ;
pm

resil;

res2;

res3;

st[14];

eraAl t;

/*long date-time record*/

/[*era*/

[*year*/

[*mont h*/

/*day of the nonth*/
[*hour */

/*m nut e*/

/ *second*/

/*day of the week*/
/*day of the year*/
/ *week of the year*/
/*hal f of day--0 for
/*reserved*/
/*reserved*/
/*reserved*/

norning, 1 for evening*/

/*index by LongDat eFi el d*/

/| *era*/
/*date-tine record*/

t ypedef uni on LongDateRec LongDat eRec

struct Toggl ePB

{
| ong
ResType
ResType
| ong

b

t ogFl ags;
anChars;
prmChars;
reserved[4];

/*toggl e paraneter bl ock*/
[*flags*/

[*from'itl Q'
/[*from'itl Q'
/*reserved*/

resource, but
resource, but

made uppercase*/
made uppercase*/

t ypedef struct Toggl ePB Toggl ePB

t ypedef short Toggl eResults;

t ypedef char

struct

{

Fract

4-56

Dat eDel t a;

Machi neLocat i on

| atitude;

/*Toggl eDate function return type*/
/*Toggl eDate function delta field type*/

/ *geogr aphi c | ocation record*/

/*l atitude*/

Summary of the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Fract | ongi t ude; /*1 ongi tude*/
uni on
{
char dlsDelta; /*dayl i ght saving tinme*/
long gntDelta; /*Geenwi ch nmean tinme*/
} gnt Fl ags;
1
typedef struct Machi neLocati on Machi neLocati on
struct Unsi gnedW de /*M croseconds procedure return type*/
{
unsi gned | ong hi ; /*hi gh-order 32 bits*/
unsi gned | ong | 0; / *hi gh-order 32 bits*/
b

typedef struct Unsi gnedW de Unsi gnedW de;

Routines

Getting the Current Date and Time

pascal OSErr ReadDateTi ne (unsigned long *tine);
pascal void CGetDateTi ne (unsi gned | ong *secs);
pascal void GetTine (Dat eTi neRec *d);

Setting the Current Date and Time

pascal OSErr SetDateTine (unsigned long tine);
pascal void SetTine (const DateTi mreRec *d);

Converting Between Date-Time Formats

{each procedure has two spellings, see Table 4-4 for the alternate spelling}
pascal void SecondsToDate (unsi gned | ong secs, DateTinmeRec *d);

pascal void DateToSeconds (const DateTi meRec *d, unsigned |ong *secs);

Converting Between Long Date-Time Formats
{each procedure has two spellings, see Table 4-4 for the alternate spelling}
pascal void LongSecondsToDat e

(LongDat eTi ne *| Secs, LongDateRec *| Date);

pascal void LongDat eToSeconds
(const LongDat eRec *| Date, LongDateTine *| Secs);

Summary of the Date, Time, and Measurement Utilities 4-57

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

Modifying and Verifying Long Date-Time Records

pascal Toggl eResults Toggl eDat e
(LongDat eTi ne *| Secs, LongDateField field,
DateDel ta delta, short ch,
const Toggl ePB *parans);

pascal short ValidDate (const LongDat eRec vDate, |ong flags,
LongDat eTi me *newSecs) ;

Reading and Writing Location Data

pascal void ReadLocation (Machi neLocation *loc);
pascal void WitelLocation (Machi neLocation *loc);

Determining the Measurement System

{this functiosn has two spellings, see Table 4-4 for the alternate spelling}
pascal Bool ean IsMetric (void);

Measuring Time

pascal void M croseconds (Unsi gnedWde *m croTi ckCount);

4-58 Summary of the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Assembly-Language Summary

Data Structures

Date-Time Record

0 dt Year word year

2 dt Mont h word month

4 dt Day word day of the month
6 dt Hour word hour

8 dt M nute word minute

10 dt Second word second

12 dt Day Of ieek word day of the week

Long Date Field Enumeration

0 eraField byte era

1 yearField byte year

2 nmont hFi el d byte month

3 dayFiel d byte day of the month
4 hour Fi el d byte hour

5 m nut eFi el d byte minute

6 secondFi el d byte second

7 dayOf WeekFi el d byte day of the week
8 dayOf Year Fi el d byte day of the year
9 weekOf Year Fi el d byte week of the year
10 pnFiel d byte pm

11 resiField byte reserved

12 res?2Field byte reserved

13 res3Field byte reserved

Long Date-Time Value
0 hi ghLong long high-order 32 bits
4 | owLong long low-order 32 bits

Summary of the Date, Time, and Measurement Utilities

4-59

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

Long Date-Time Record

0 era word era

2 year word year

4 nmont h word month

6 day word day of the month
8 hour word hour

10 m nut e word minute

12 second word second

14 dayOf Week word day of the week
16 day O Year word day of the year
18 weekOf Year word week of the year
20 pm word half of day, morning or evening
22 | dReserved 6 bytes reserved

Geographic Location Record

0 | atitude long latitude

4 | ongi t ude long longitude

8 dl sDel ta byte daylight savings time
9 gntDelta 3 bytes Greenwich mean time

Toggle Parameter Block

0 t ogFl ags long flags

2 anChar s word ResType from' i t| 0' made uppercase
4 prmChar s word ResType from "' i t| 0' made uppercase
6 reserved word reserved

Unsigned Wide Record
0 hi long high-order 32 bits
4 l o long low-order 32 bits

Global Variables

Ti me The number of seconds since midnight, January 1, 1904

4-60 Summary of the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Result Codes

toggl eErr5 9 Reserved

toggl eErr4 8 Reserved

t oggl eErr3 7 Reserved

t oggl eQut OF Range 7 Out of range (synonym for t oggl eEr r 3)
t oggl eBadNum 6 Tried to use character as number
t oggl eUnknown 5 Unknown error

t oggl eBadChar 4 Invalid character

t oggl eBadDel t a 3 Invalid delta value

t oggl eBadFi el d 2 Invalid field number

t oggl eX 1 No error

t oggl eUndefi ned 0 Undefined error

nokErr 0 No error

cl KRAEr r -85 Unable to read clock

cl KW Err -86 Time written did not verify

Summary of the Date, Time, and Measurement Utilities 4-61

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 5

Control Panel Extensions

Contents

About Control Panel Extensions 5-3
Writing a Control Panel Extension 5-6
Creating a Component Resource for a Control Panel Extension 5-6
Dispatching to Control Panel Extension-Defined Routines 5-9
Installing and Removing Panel Items 5-13
Handling Panel Items 5-16
Handling Events in a Panel 5-17
Handling Title Requests 5-19
Managing Control Panel Settings 5-19
Control Panel Extensions Reference 5-20
Control Panel Extension-Defined Routines 5-20
Managing Panel Components 5-20
Handling Panel Events 5-25
Managing Panel Settings 5-28
Summary of Control Panel Extensions 5-31

Contents 5-1

CHAPTER 5

Control Panel Extensions

This chapter describes how you can create a control panel extension to add a panel to an
existing control panel. Some of the control panels provided with the Macintosh system
software allow you to install additional panels to control settings for your own devices.
You can also install additional panels to allow the user to manipulate other system-wide
settings or configuration data not directly associated with any hardware.

You need to read this chapter if you are developing hardware or software that provides
system-wide services and that has one or more settings that a user might want to alter.
However, you need to read this chapter only if some existing control panel is extensible
in the way described in the next section, “About Control Panel Extensions.” Currently,
only certain versions of the Sound control panel and the Video control panel allow

you to add panels by creating control panel extensions. In all other cases, you’ll need

to create a control panel to handle any necessary user interaction. For a complete
description of how to create a control panel, see the chapter “Control Panels” in

Inside Macintosh: More Macintosh Toolbox. (Also see the chapter “Control Panels”

if you are the manufacturer of a video card and need to create an extension to the
Monitors control panel.)

To use this chapter, you should already be familiar with creating dialog boxes and
handling user actions in them. See the chapters “Dialog Manager” and “Event Manager
in Inside Macintosh: Macintosh Toolbox Essentials for more information about these topics.
Because control panel extensions are components, you also need to be familiar with the
Component Manager, described in Inside Macintosh: More Macintosh Toolbox.

Note

The programming interface to control panel extensions described in this
chapter is virtually identical to the programming interface to sequence
grabber panel components, described in the chapter “Sequence Grabber
Panel Components” in Inside Macintosh: QuickTime Components. If you
are programming in C, you might find it useful to consult the source
code samples, which are in C in that chapter. O

About Control Panel Extensions

A control panel manages the settings of a system-wide feature, such as the amount of
memory allocated to a disk cache, the speed at which the cursor moves relative to
movement of the mouse, the background pattern used on the desktop, or the picture
displayed by a screen saver. On the screen, a control panel appears as a modeless dialog
box with controls that let users specify basic settings and preferences for the feature. A
control panel such as the General Controls or Color control panel usually defines the
contents of its display area and manages the settings of its own controls; however, a
control panel such as the Sound or Video control panel may use one or more control
panel extensions to manage parts of its display area. The rest of this chapter discusses
control panels that use control panel extensions and describes how to write a control
panel extension. For information on control panels that do not use control panel
extensions, see the chapter “Control Panels” in Inside Macintosh: More Macintosh Toolbox.

About Control Panel Extensions 5-3

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

A control panel extension works in conjunction with and at the request of a control
panel to manage a certain part of the control panel’s display area. The area managed by
a control panel extension is called a panel. A panel contains controls and other items
related to the features managed by the control panel extension. These items are the same
items used in dialog and alert boxes. The control panel extension is responsible for
handling events in its panel and for responding to requests from its associated control
panel. A control panel that uses control panel extensions typically includes a pop-up
menu, from which the user chooses which panel to view. The control panel displays the
current panel’s items within a dotted-line border extending from its pop-up menu.

Figure 5-1 shows the Sound control panel introduced with version 3.0 of the Sound
Manager. The Sound control panel manages the pop-up menu in its display area. When
the user chooses a menu item from the pop-up menu, the Sound control panel uses a
control panel extension to display the panel corresponding to the user’s choice. The
control panel extension is responsible for managing the area within its panel.

Figure 5-1 A control panel with a panel

Si— Sound ——"———

Panel-selection ——I " Rlert Sounds v |
pop-up menu

=4 Droplet -3
Indigo
Quack

Sosumi
Wild Eep

Settings area
(managed by
Lol control panel
ik extension)

o

Built-in [Add.. | [Remove |
Volume

As shown in Figure 5-1, control panels that use control panel extensions typically include
a pop-up menu from which the user can choose one or more items. Each item typically
corresponds to a feature managed by a control panel extension. For example, Figure 5-2
shows the menu items in the pop-up menu of the Sound control panel. This pop-up
menu can have the items Alert Sounds, Sound In, Sound Out, or Volumes as well as
items corresponding to other control panel extensions. Apple supplies the control panel
extensions for Alert Sounds, Sound In, Sound Out, and Volumes.

About Control Panel Extensions

CHAPTER 5

Control Panel Extensions

Figure 5-2 Panel-selection pop-up menu in a control panel
Si——————— Sound —"———
+ Alert Sounds
Panel-selection ound 1y
pop-up menu Sound Qut s
lolumes
Quack
Simple Beep
Sosumi
Wild Eep
e i
Built-in (Add...) [Remouve]

lolume

As shown in Figure 5-2, when the user chooses the Alert Sounds pop-up menu item, the
Sound control panel calls the Alert Sounds control panel extension to display a panel
and manage the items associated with the extension. The Alert Sounds control panel
extension is responsible for the items within its panel: the volume slider, the scrollable
list of sounds, and the two buttons.

The user interface for a panel consists of the display area defined by the owning control
panel and includes the items defined and managed by your panel. Each control panel
that supports control panel extensions defines the bounding area in which panels can
place items. For example, the panel inserted into the Sound control panel is given a
default rectangle size of 185 pixels in height, and 302 pixels in width. All of the items
for this panel must be placed at least 13 pixels from the dialog’s border.

Control panel extensions are implemented as components. A control panel uses the
Component Manager to request services from the appropriate control panel extension as
needed. For example, when the user opens a control panel, the Finder sends the control
panel an initialization request. In response to this request, the control panel uses the
Component Manager to determine which control panel extensions are available and
includes the name of each available extension in its pop-up menu.

The control panel then uses the Component Manager to open the control panel extension
associated with the current pop-up menu item and set up the panel. (For example, if the
Sound control panel determines that its panel area should display information for Alert
Sounds panel, the Sound control panel opens the Alert Sounds control panel extension.)
As directed, the control panel extension returns information about its controls and other
items in its panel area and sets initial values for these items. The control panel continues
to use the Component Manager to communicate with the control panel extension,
requesting it to respond to user events within the panel area. When the user closes the
control panel, the control panel uses the Component Manager to close the current control
panel extension before the control panel terminates.

About Control Panel Extensions 5-5

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

This chapter describes the general structure of a control panel extension. For information
on providing a control panel extension for a specific control panel, see the
documentation describing that control panel. For example, for information on the

Video control panel, see the chapter “Sequence Grabber Panel Components” in

Inside Macintosh: QuickTime Components.

Writing a Control Panel Extension

5-6

A control panel extension is a component that works with a control panel to manage a
panel—a certain part of an existing control panel’s display area. Because a control panel
extension is a component, it must be able to respond to standard request codes sent by
the Component Manager. In addition, a control panel extension must

= return information about the items in its panel
= handle user actions and other events in its panel
= get and set the values of its items

This section describes how to write a control panel extension. You need to read this
section if you want to create a new panel for an existing control panel.

Creating a Component Resource for a Control Panel Extension

A control panel extension is stored as a component resource. It contains a number of
resources, including icons, strings, pictures, and the standard component resource (a
resource of type ' t hng') required of any Component Manager component. In addition,
a control panel extension must contain code to handle required request codes passed to
it by the Component Manager as well as panel-specific request codes. A control panel
extension also usually contains an item list resource (' DI TL') that defines the items for
the panel.

Note

For complete details on components and their structure, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. This
section provides specific information about control panel extensions. O

The component resource binds together all the relevant resources contained in a
component; its structure is defined by the Conponent Resour ce data type.

TYPE Component Resource =

RECORD
cd: Conponent Descri pti on;
conponent : Resour ceSpec;
conmponent Nane: Resour ceSpec;

Writing a Control Panel Extension

CHAPTER 5

Control Panel Extensions

conponent | nf o: Resour ceSpec;
conmponent | con: Resour ceSpec;
END;

The cd field contains a component description record that specifies the component type,
subtype, manufacturer, and flags. The component field specifies the resource type and
resource ID of the component’s executable code. By convention, this resource should be
of the same type as the conponent Type field of the component description record
referenced through the cd field. (You can, however, specify some other resource type

if you wish.) The resource ID can be any integer greater than or equal to 128. See the
next section, “Dispatching to Control Panel Extension-Defined Routines,” for further
information about this code resource. The Resour ceSpec data type has this structure:

TYPE ResourceSpec =

RECORD
resour ceType: ResType;
resourcel D I nt eger;
END;

The conponent Nane field of the Resour ceSpec data type specifies the resource type
and resource ID of the resource that contains the component’s name. Usually the name is
contained in a resource of type ' STR ' . This string should be as short as possible.

The conponent | nf o field specifies the resource type and resource ID of the resource
that contains a description of the component. Usually the description is contained in a
resource of type' STR ' . This information is not currently used by control panels, but
some development tools may use it.

The conponent | con field specifies the resource type and resource ID of the resource
that contains an icon for the component. Usually the icon is contained in a resource of
type ' | CON . This icon is not currently used by control panels, but some development
tools may use it.

As previously described, the cd field of the Conponent Resour ce structure is a
component description record, which includes additional information about the
component. A component description record is defined by the

Conponent Descri pti on data structure.

TYPE Conponent Descri ption =

RECORD
conmponent Type: Longl nt;
conponent SubType: Longl nt;
conponent Manuf acturer: Longlnt;
conponent Fl ags: Longl nt;
conponent Fl agsMask: Longl nt;
END;

Writing a Control Panel Extension 5-7

SUOISU3)XT [dued |0AU0D -

5-8

CHAPTER 5

Control Panel Extensions

For control panel extensions, the conponent Type field must be set to a value associated
with an existing control panel. Currently, you can specify one of two available
component types for control panel extensions:

CONST
SoundPanel Type = 'sndP' ; {sound panel }
Vi deoPanel Type = 'vidP; {vi deo panel }

In addition, the conmponent SubType field must be set to a value that indicates the type
of control panel services your panel provides. For example, the Apple-supplied control
panel extensions for the Sound control panel have these subtypes:

CONST
kAl ert SoundsPanel ="alrt"; {al ert sounds panel}
kl nput sPanel = 'mcs'; {i nput devices panel}
kQut put sPanel = 'spek'; {out put devi ces panel}
kVol unesSubType = 'vol s'; {vol unes panel }

If you add panels to the Sound control panel, you should assign some other subtype.

Note
Apple reserves for its own uses all types and subtypes composed solely
of lowercase letters. O

You can assign any value you like to the conponent Manuf act ur er field; typically, you
put the signature of your control panel extension in this field.

The conponent Fl ags field of the component description for a control panel extension
contains bit flags that encode information about the extension. Currently, you can use
this field to specify whether the control panel should open your extension’s resource file.

CONST
channel Fl agDont OpenResFile = 2; {do not open resource file}

The channel FI agDont OpenResFi | e bit indicates to the owning control panel
whether or not to open the component’s resource file. When bit 2 is cleared (set to 0),

the control panel opens the component’s resource file for you. In general, this is the most
convenient way to gain access to your extension’s resources. However, if the component
is linked with an application and does not have its own resource file, you might not want
the control panel to try to open the resource file. In that case, set this bit to 1.

You should set the comrponent Fl agsMask field to 0.

Your control panel extension is contained in a resource file. The creator of the file can be
any type you wish, but the type of the file must be ' t hng' . If the extension contains a

" BNDL' resource, then the file’s bundle bit must be set. Control panel extensions should
be located in the Control Panels folder (or Extensions folder if the component needs
automatic registration).

Listing 5-1 shows the Rez listing of a component resource that describes a control panel
extension.

Writing a Control Panel Extension

CHAPTER 5

Control Panel Extensions

Listing 5-1 A component resource for a control panel extension

resource 'thng' (kExanpl ePanel | D, kExanpl eNane, purgeable) {
kExanpl ePanel Conponent Type, / *conmponent type*/

kExanpl ePanel SubType, / *conponent subtype*/
kExanpl eManuf act urer, / *conmponent manuf act urer*/
cnpWant sRegi st er Message, /*control flags*/

0, /*control flags nask*/

/*code res type, res I D*/
kExanpl ePanel CodeType, kExanpl ePanel Codel D,
'"STR ', kExanpl ePanel Nanmel D, /*nane res type, res |D*/
"STR ', kExanpl ePanellnfolD, /*info res type, res |ID*/
"I CON, kExanpl ePanellconlD /*icon res type, res |D*/

}s

Dispatching to Control Panel Extension-Defined Routines

As explained in the previous section, the code stored in the control panel extension
component should be contained in a resource whose resource type matches the type
stored in the conponent Type field of the component description record. The
Component Manager expects that the entry point in this resource is a function having
this format:

FUNCTI ON MyPanel Di spat ch (VAR parans: Conponent Par anet ers;
storage: Handl e): Conponent Result;

Whenever the Component Manager receives a request for your control panel extension,
it calls your component’s entry point and passes any parameters, along with information
about the current connection, in a component parameters record. The Component
Manager also passes a handle to the global storage (if any) associated with that instance
of your component.

When your component receives a request, it should examine the parameters to
determine the nature of the request, perform the appropriate processing, set an error
code if necessary, and return an appropriate function result to the Component Manager.

The component parameters record is defined by a data structure of type

Conponent Par anet er s. The what field of this record contains a value that specifies
the type of request. Your component’s entry point should interpret the request code and
possibly dispatch to some other subroutine. Your extension must be able to handle the
required request codes, defined by these constants:

CONST
kComponent OpenSel ect = -1;
kConmponent C oseSel ect = -2;
kConponent CanDoSel ect = -3;
kComponent Ver si onSel ect = -4,

Writing a Control Panel Extension 5-9

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

Note

For complete details on required component request codes, see the

chapter “Component Manager” in Inside Macintosh: More Macintosh

Toolbox. O

In addition, your extension must be able to respond to panel-specific request codes.
Currently, you need to be able to handle these request codes:

CONST
kPanel GCet Di t | Sel ect =
kPanel Get Titl eSel ect =
kPanel | nst al | Sel ect =
kPanel Event Sel ect =
kPanel | t entel ect =
kPanel RenpoveSel ect
kPanel Val i dat el nput Sel ect
kPanel Get Setti ngsSel ect
kPanel Set Setti ngsSel ect

{get panel's itemlist}

{get panel's nane}

{restore item settings}
{handl e event in panel}
{handl e click in a panel iten}
{panel is about to be renoved}
{val i date panel settings}

{get panel settings}

{set panel settings}

NSO REONREO

You should respond to these request codes by performing the requested action. To
service the request, your component may need to access additional information
provided in the par ans field of the component parameters record. The par ans field
is an array that contains the parameters specified by the control panel that called your
component. You can directly extract the parameters from this array, or you can use the
Cal | Conmponent Functi on or Cal | Conponent Functi onW t hSt or age function to
extract the parameters from this array and pass these parameters to a subroutine of
your component.

Listing 5-2 illustrates how to define the entry-point routine for a control panel extension.

Listing 5-2 Handling Component Manager request codes

FUNCTI ON MyPanel Di spat ch (VAR parans: Component Paramet ers; storage: Handl e)

CONST

Conponent Resul t ;

kPanel Version = 1;

kExanpl ePanel DI TLI D

128;

kDef aul t Button = 1;

kExanmpl eQt her But t on

1
N

kExanpl eBeepButton = 3;

kExanmpl eRadi oButtonl = 4;
kExanpl eRadi oButtonl = 5;
TYPE
Panel d obal sRec = {gl obal storage for this conponent instance}
RECORD
itenffset: I nt eger;
5-10 Writing a Control Panel Extension

CHAPTER 5

Control Panel Extensions

nySel f: Conponent | nst ance;
END;
Panel d obal sPtr = ~Panel G obal sRec;
Panel G obal sHandl e = ~“Panel d obal sPtr;
VAR
nyd obal s: Panel d obal sHandl e;
sel ector: I nt eger;
BEG N
CASE par ans. what OF
kConponent OpenSel ect : {conponent is opening}
BEG N
nmyd obal s : =
Panel A obal sHandl e(NewHandl eC ear (Si zeOf (Panel d obal sRec)));
IF nyd obals <> NIL THEN
BEG N
nyd obal s*. nySel f : = Conponent | nst ance(par ans. parans[0]);
Set Conponent | nst anceSt or age(nyd obal s, mySel f,
Handl e(nyd obal s));

MyPanel Di spatch : = noErr;
END
ELSE
MyPanel Di spatch := MenError;
END;
kConmponent C oseSel ect : {conponent is closing; clean up}
BEG N

| F storage <> NIL THEN
Di sposeHandl e(st orage);
MyPanel Di spatch : = noErr;

END;
kConponent CanDoSel ect : {i ndi cat e whet her conponent }
{ supports this request code}
BEG N
sel ector := Integer((Ptr(parans. paramnms)”));

I F (((kConponent Ver si onSel ect <= sel ector)
AND (sel ector <= kConponent OpenSel ect))
OR ((kPanel GetDi tl Sel ect <= sel ector)
AND (sel ector <= kPanel Set SettingsSelect))) THEN
MyPanel Di spatch := 1 {valid request}
ELSE
MyPanel Di spatch :

0;{invalid request}
END;

Writing a Control Panel Extension 5-11

SUOISU3)XT [dued |0AU0D -

5-12

CHAPTER 5

Control Panel Extensions

kConponent Ver si onSel ect: {return versi on nunber}
MyPanel Di spatch : = kPanel Ver si on;

kPanel GetDi t | Sel ect : {get panel's itemlist}
MyPanel Di spatch : = Cal | Conponent Functi onW t hSt or age
(storage, parans,
Component Functi on(@WPanel Get DI TL)) ;

kPanel | nst al | Sel ect : {restore itens' settings if necessary}
MyPanel Di spatch : = Cal | Component Functi onWt hSt or age
(storage, parans,
Conponent Functi on(@4 Panel I nstall));

kPanel Event Sel ect : {handl e event in panel}
MyPanel Di spatch : = Cal | Component Functi onWt hSt or age
(storage, pararnms,
Conponent Functi on(@4 Panel Event));

kPanel I t enSel ect : {handl e hit in one of panel's itens}
MyPanel Di spatch : = Cal | Conponent Functi onW t hSt or age
(storage, parans,
Component Functi on(@WPanel ltem) ;

kPanel RenoveSel ect: {panel is about to be renoved, respond as needed}

MyPanel Di spatch : = Cal | Component Functi onWt hSt or age

(storage, parans,
Conponent Functi on(@4 Panel Renove)) ;

kPanel Val i dat el nput Sel ect: {val i date panel settings}

MyPanel Di spatch : =

Cal | Component Functi onWt hSt oMyPanel Val i dat el nput r age
(storage, pararnms,
Conponent Functi on(@4 Panel Val i dat el nput));

kPanel Get Titl eSel ect : {get panel's nane}
MyPanel Di spatch : = Cal | Conponent Functi onW t hSt or age
(storage, parans,
Component Functi on(@WPanel Get Title));

kPanel Get Setti ngsSel ect: {get panel settings}
MyPanel Di spatch : = Cal | Component Functi onWt hSt or age
(storage, parans,
Conponent Functi on(@4 Panel Get Setti ngs));

Writing a Control Panel Extension

CHAPTER 5

Control Panel Extensions

kPanel Set Setti ngsSel ect: {set panel settings}
MyPanel Di spatch :

Cal | Conponent Functi onW t hSt or age
(storage, parans,
Component Functi on(@WPanel Set Settings));

OTHERW SE {unrecogni zed request code}
MyPanel Di spatch :

badConponent Sel ect or;

END; {of CASE}

END;

The MyPanel Di spat ch function defined in Listing 5-2 simply inspects the what field
of the component parameters record to determine which request code to handle. For
panel-specific request codes, it dispatches to the appropriate function in the control
panel extension. See the following sections for more details on handling panel-specific
request codes.

Your extension can be dynamically loaded or unloaded at any time. When the owning
control panel first discovers the extension, it loads it into a subheap of some existing
heap. In all likelihood, your extension is loaded into either the system heap or temporary
memory. In some cases, however, your extension might be loaded into an application’s
heap. Your extension is guaranteed 32 KB of available heap space. You should do all
allocation in that heap using normal Memory Manager routines.

If you need to access resources that are stored in your control panel extension, you can
use the OpenConponent ResFi | e and Cl oseConponent ResFi | e functions (which
are provided by the Component Manager), or you can allow the control panel to open
your resource fork for you automatically by setting the appropriate component flag. The
OpenConponent ResFi | e routine requires the Conponent | nst ance parameter
supplied to your routine. You should not call the Resource Manager routines
OpenResFi | e or d oseResFi | e.

WARNING
Do not leave any resource files open when your control panel extension
is closed. Their maps will be left in the subheap when the subheap is
freed, causing the Resource Manager to crash. a

The following sections illustrate how to write control panel extension functions that
respond to panel-specific request codes.

Installing and Removing Panel Items

After opening your control panel extension, the control panel calls your control panel
extension with a get-item list request followed by an install request. When your
component receives a get-item list request, it should return the item list that defines

the items in its panel. When your component receives an install request, it should set the
default values of any items in the panel or set up any user items in the panel. For
example, your component can restore previous settings as set by the user or create lists

Writing a Control Panel Extension 5-13

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

at this time. When your component receives a remove request, it should perform any
processing that is necessary before the panel is removed from the display area of
the control panel.

A control panel that uses your control panel extension calls your component with the
get-item list request (followed by an install request) before displaying the panel to the
user. If your component returns a result code of noEr r in response to both of these
request codes, the control panel displays your panel to the user.

The relevant fields in the component parameters record when your component receives
a get-item list request are:

Field Description
what This field is set to kPanel Get Di t| Sel ect .
par ams The first entry in this array contains a handle to a block of memory.

Your component should resize the handle as necessary and then use this
memory to return an item list of the items supported by your control
panel extension.

In response to a get-item list request, set your component’s function result to noEr r if
your component successfully placed the item list in memory; otherwise, set it to a
nonzero value.

Listing 5-3 shows an example of a control panel extension-defined routine that handles
the get-item list request.

Listing 5-3 Responding to the get-item list request

5-14

FUNCTI ON MyPanel Get DI TL(gl obal s: Panel d obal sHandl e;
di tl Handl e: Handl e): Conponent Resul t;
BEG N
MyPanel Get DI TL : = resNot Found; {set default return val ue}
ditl Handl e : = Get 1Resource(' DI TL', kExanpl ePanel DI TLI D) ;
IF (ditl Handl e <> NIL)
BEG N
Det achResour ce(di t| Handl e) ;
MyPanel Get DI TL : = noErr;
END;
END;

Writing a Control Panel Extension

CHAPTER 5

Control Panel Extensions

The relevant fields in the component parameters record when your component receives
an install request are:

Field Description
what This field is set to kPanel | nst al | Sel ect .
par ams The first entry in this array contains the dialog pointer of the owning

control panel. The dialog box can be a color dialog box on systems that
support color windows. The second entry contains the item offset to your
panel’s first item.

In response to an install request, set your component’s function result to noEr r if your
component successfully handled the request; otherwise, set it to a nonzero value.

Listing 5-4 shows an example of a control panel extension-defined routine that handles
the install request.

Listing 5-4 Responding to the install request

FUNCTI ON MyPanel I nstal | (gl obal s: Panel d obal sHandl e;
cpDi al ogPtr: DialogPtr;
itemOffset: Integer): ConponentResult;

BEG N
{restore previous settings of panel itenms as set by user}
MyPanel I nstall := My/RestoreSettings(globals, itenOffset,
cpDi al ogPtr);
END;

The MyPanel I nst al | function shown in Listing 5-4 calls one of its own routines
(MyRest or eSet t i ngs) to set the panel’s items to the last settings chosen by the user. In
response to the install request, you can also create other elements needed by your panel,
such as lists.

The relevant fields in the component parameters record when your component receives a
remove request are:

Field Description
what This field is set to kPanel RenoveSel ect .
par ams The first entry in this array contains the dialog pointer of the owning

control panel. The dialog box can be a color dialog box on systems that
support color windows. The second entry contains the item offset to your
panel’s first item.

In response to a remove request, dispose of any additional dialog data you created (for
example, if you created a list, call LDi spose), but do not dispose of your component’s
global storage. Also, set your component’s function result to noEr r if your component
successfully handled the request; otherwise, set it to a nonzero value.

Writing a Control Panel Extension 5-15

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

Handling Panel Items

Your control panel extension typically receives an item-select request (indicated by the
kPanel | t enSel ect request code) when the user clicks in one of your panel’s items.
When your component receives an item-select request, it should perform the appropriate
action for the selected item.

Note that when a click in one of your panel’s items occurs, the owning control panel

first sends your component an event-select request, giving your component a chance

to filter the event, if necessary. A control panel sends your component an item-select
request only if your component returns FALSE in the handl ed parameter in response to
an event-select request. Typically, your component only returns FALSE in response to an
event-select request if the event is a mouse event. The event-select request is discussed in
detail in the next section, “Handling Events in a Panel” beginning on page 5-17.

The relevant fields in the component parameters record when your component receives
an item-select request are:

Field Description
what This field is set to kPanel | t enel ect .
par ams The first entry in this array contains the dialog pointer of the owning

control panel. The dialog box can be a color dialog box on systems that
support color windows. The second entry contains the item number of
the item selected by the user. Note that to map the item number to an
item in your panel, you must offset the item number by the number of
items in the owning control panel.

You must set your component’s function result to noEr r in response to an item-select
request; otherwise, the owning control panel closes the panel.

Listing 5-5 shows an example of a control panel extension-defined routine that handles
an item-select request.

Listing 5-5 Responding to an item-select request

5-16

FUNCTI ON MyPanel | t enSel ect (gl obal s: Panel d obal sHandl e;
cpDi al ogPtr: DialogPtr;
itenHit: Integer): ConponentResult;

BEG N
MyPanel | t enSel ect : = noErr; {set return val ue}
{adj ust item nunber to take into account control panel's itens}
itenHit :=itenHit - (globals?).itensOfset;

CASE itenHit OF
kExanpl eBeepButton: {user clicked beep button}

SysBeep(40);
kExanpl et her Button: {user clicked this button}
MyPanel | t enSel ect := MyDoButton(cpDi al ogPtr, itenHit);

kExanpl eRadi oButt onl: {user clicked this radi o button}

Writing a Control Panel Extension

CHAPTER 5

Control Panel Extensions

MyPanel | t enSel ect : = MySet Radi oButt on(cpDi al ogPtr,
itemHit);
kExanpl eRadi oButt on2: {user clicked this radio button}
MyPanel | t enSel ect : = MySet Radi oButt on(cpDi al ogPtr,
itemHit);
kDef aul t But t on: {user clicked the default button}

MyPanel | t enSel ect : =
MyDoDef aul t But t onAct i on(cpDi al ogPtr,
itenmHit);
END; {of CASE}
END;

Handling Events in a Panel

A control panel sends an event-select request (indicated by the kPanel Event Sel ect
request code) to your extension whenever an event occurs in your panel. The
event-select request is intended to provide your extension with the ability to respond
just like an event filter function specified in calls to the Modal Di al og procedure or
other Dialog Manager routines. A control panel sends your extension the event-select
request to give it an opportunity to intercept events in its panel and handle events
before, or instead of the owning control panel. For example, you can change a keystroke
into a click on an item, use idle time during null events, or track the movement of the
cursor through mouse events.

The relevant fields in the component parameters record when your component receives
an event-select request are:

Field Description
what This field is set to kPanel Event Sel ect .
par ams The first entry in this array contains the dialog pointer of the owning

control panel. The second entry contains the item offset to your panel’s
first item. Note that to map the item number to an item in your panel,
you must offset the item number by the number of items in the owning
control panel. The third entry contains an event record describing the
event. If your extension handles the event, it should return in the fourth
entry the item number of the associated panel item. On exit, your
extension should indicate in the fifth entry whether it has handled the
event by returning TRUE (handled the event) or FALSE (did not handle
the event).

When your extension receives an event-select request, it indicates (through the fifth entry
in par ans) whether it handled the event or not. Typically, your extension responds to an
event-select request in this manner:

= maps the Return or Enter key to the default button, performs the action
corresponding to the default button, and returns TRUE and the item number of the
default button through entries in par ans

Writing a Control Panel Extension 5-17

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

= maps the Esc (Escape) key or Command-period combination to the Cancel button (if
any), performs the action corresponding to the Cancel button, and returns TRUE and
the item number through entries in par ans

= updates the panel if needed (typically updating only those items that need updating
apart from the standard updating performed by the Dialog Manager, such as
user-defined panel items or lists) and returns TRUE and the item number of the
default button through entries in par ans

= activates certain panel items (such as lists) as necessary and returns TRUE

= maps keyboard equivalents (if any) to corresponding item numbers, performs the
corresponding action for that item number, and returns TRUE

= tracks movement of the cursor as needed (typically tracking the cursor only in those
items, such as user-defined items or lists, that the Dialog Manager doesn’t handle)
and returns TRUE

In general, for all other events, your extension should return FALSE (in the fifth entry
of par ans) and allow the owning control panel to handle the event. However, note that
if your extension returns FALSE, the owning control panel calls your extension with the
item-select request code. See the previous section, “Handling Panel Items” on page 5-16
for information on handling clicks in your panel’s items.

Listing 5-6 shows an example of a control panel extension-defined routine that handles
the event-select request.

Listing 5-6 Responding to an event-select request

FUNCTI ON MyPanel Event (gl obal s: Handl e; dialog: D alogPtr;
itemOf fset: Integer;
t heEvent: event Record;
VAR itenmHi t: Integer;
VAR handl ed: Bool ean): Conponent Resul t;

VAR
i tenlype: I nt eger;
i tenHandl e: Handl e;
itemRect: Rect ;
final Ti cks: Longl nt;
BEG N
MyPanel Event := noErr;

CASE t heEvent . what OF
keyDown, aut oKey:
BEG N
CASE ((char) (theEvent - >message & char CodeMask))
kEnt er Key, kRet ur nKey:
BEG N {respond as if user clicked Default button}
itenH t := kDefaultButton + itenmOffset;

5-18 Writing a Control Panel Extension

CHAPTER 5

Control Panel Extensions

CGetDialoglten(dialog, itenHit, itenlype,
itenHandl e, itenRect);
HiliteControl (Control Handl e(i t enHandl e), i nButton);
Del ay(kVi sual Del ay, fi nal Ticks);
Hi l'iteControl (Control Handl e(i temHandl e), 0) ;
MyPanel Event : =
MyDoDef aul t Butt onActi on(di al og, itenHit);
END;
OTHERW SE
{let control panel/Di alog Myr handl e ot her keyboard events}
handl ed : = FALSE;
END; {of CASE keyDown, autoKey}
updat eEvt :
DoUpdat ePanel (gl obal s, dial og);
OTHERW SE
{let owning control panel & Dialog Myr handl e ot her events}
handl ed : = FALSE;
END; {of CASE}
END;

Handling Title Requests

A control panel may send your control panel extension a title request to determine the
name it should display for the panel in the control panel’s pop-up menu. Note that a
control panel usually uses the name of your component as the name to display.

The relevant fields in the component parameters record when your component receives
a title request are:

Field Description
what This field is set to kPanel Get Ti t| eSel ect .
par ams The first entry in this array contains a value that identifies a specific

instance of your component. In the second entry of this array, your
component should return the name you want displayed in the pop-up
menu associated with your panel.

Note
Current versions of the Sound and Video control panels do not send the
kPanel Get Ti t| eSel ect request code. O

Managing Control Panel Settings

A control panel may send the kPanel Val i dat el nput Sel ect,
kPanel Get Setti ngsSel ect, or kPanel Set Set ti ngsSel ect request codes to your
extension to request it to validate the settings of its items, or return or set the current

Writing a Control Panel Extension 5-19

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

settings of its items. If a control panel sends this request code, your extension should
respond appropriately.

Note

Current versions of the Sound and Video control panels do not send the
kPanel Val i dat el nput Sel ect , kPanel Get Setti ngsSel ect, or
kPanel Set Setti ngsSel ect request code. 0O

Control Panel Extensions Reference

This section describes the extension-defined routines that you can write to handle the
panel-specific request codes that your control panel extension receives. See “Writing a
Control Panel Extension” beginning on page 5-6 for information on creating a
component that contains these extension-defined routines.

Control Panel Extension-Defined Routines

This section describes the routines you’ll need to define in order to write a control panel
extension. You need to write routines that respond to panel-specific request codes. The
panel-specific request codes request your control panel extension to perform various
actions. These actions include:

= returning an item list describing the panel’s items and setting up the initial values of
these items

= receiving and handling events in the panel
= getting and setting a panel’s settings

Your control panel extension-defined routines should always return result codes of type
Component Resul t . If a routine succeeds, it should return noEr r.

See “Dispatching to Control Panel Extension-Defined Routines” beginning on page 5-9
for a description of how you call these routines from within a control panel extension.

Managing Panel Components

5-20

A control panel extension should respond to the kPanel Get Di t | Sel ect,

kPanel | nstal | Sel ect, kPanel Get Ti t| eSel ect, and kPanel RenoveSel ect
request codes. You typically define subroutines that the main program of your control
panel extension calls (using Cal | Conponent Funct i onW t hSt or age) to handle
these requests. You can choose any name for these subroutines, but by convention
they’re called MyPanel CGet DI TL, MyPanel | nstal | , MyPanel GetTitl e,

and MyPanel Renove.

When the appropriate control panel prepares to add a control panel extension’s items to
a control panel, it obtains a list of those items by calling the extension and specifying the

Control Panel Extensions Reference

CHAPTER 5

Control Panel Extensions

kPanel Get Di t| Sel ect request code. The control panel extension typically responds
by calling a subroutine (for example, MyPanel Get DI TL) to handle the request. Once
the control panel has installed the items, it calls the extension and specifies the

kPanel | nst al | Sel ect request code to give the extension the opportunity to set any
default values in the panel. The extension’s MyPanel | nst al | function responds to this
request code.

Before the control panel removes the panel from its display, it calls the extension and
specifies the kPanel RenoveSel ect request code. The extension’s MyPanel Renove
function responds to this request code. The kPanel Get Ti t | eSel ect request code is
currently optional for control panel extensions. If your extension responds to this request
code, it should return the name that the control panel should display for the panel in the
control panel’s pop-up menu. The extension’s MyPanel Get Ti t | e function responds to
this request code.

MyPanelGetDITL

A control panel extension must respond to the kPanel Get Di t| Sel ect request code. A
control panel sends this request code to an extension to obtain a list of the panel’s items.
A control panel extension typically responds to the kPanel Get Di t | Sel ect request
code by calling an extension-defined subroutine (for example, MyPanel Get DI TL) to
handle the request.

FUNCTI ON MyPanel Get DI TL (gl obal s: Handl e; VAR ditl: Handl e)
Conponent Resul t ;

gl obal s A handle to the control panel extension’s global data.

ditl On entry, a handle to a block of memory in your application heap. On
exit, a handle to an item list.

DESCRIPTION

Your MyPanel Get DI TL function should return, through the di t | parameter, an item
list of the items supported by your extension. The control panel then places those items
into the control panel and, after installing the panel, displays the panel to the user. When
the control panel creates the panel, it places the items at the locations specified in the
item list.

On entry to your MyPanel Get DI TL function, the di t | parameter contains a handle to a
block of memory in your application heap. You should resize the handle as necessary to
hold the item list you return to the control panel. (If you use a Resource Manager routine
such as Get 1Resour ce, the Resource Manager automatically resizes the handle for you.)

In general, the owning control panel disposes of the handle you pass it once it’s finished
constructing the panel. As a result, you must make sure that the handle you pass to the
control panel is not a resource handle. If you obtain your item list by reading it into
memory from a resource, you should call the Resource Manager’s Det achResour ce

Control Panel Extensions Reference 5-21

SUOISU3)XT [dued |0AU0D -

RESULT CODES

SEE ALSO

CHAPTER 5

Control Panel Extensions

procedure to convert that resource handle into one that is suitable for use with the
MyPanel Get DI TL function.

The conponent Fl ags field of the component description record for a control panel
extension contains a bit flag, channel Fl agDont QpenResFi | e, that indicates
whether the control panel should open your extension’s resource file before calling
your extension.

Set the channel Fl agDont OpenResFi | e component flag to 0 if you want the

control panel to open your extension’s resource file before calling your extension. Set the
channel Fl agDont OpenResFi | e component flag to 1 to specify that the control panel
should not open your extension’s resource file before calling your extension.

Your MyPanel Get DI TL function should return noEr r if successful, or an appropriate
result code otherwise.

For an example of the MyPanel Get DI TL function, see Listing 5-3 on page 5-14.

MyPanellnstall

DESCRIPTION

5-22

A control panel extension must respond to the kPanel | nst al | Sel ect request code.
A control panel sends this request code to an extension immediately after sending the
kPanel Get Di t| Sel ect request code (which initially adds your panels’s items to

the control panel) and just before displaying the panel to the user. A control panel
extension typically responds to the kPanel | nst al | Sel ect request code by calling an
extension-defined subroutine (for example, MyPanel | nst al |) to handle the request.

FUNCTI ON MyPanel I nstall (gl obals: Handle; dialog: D alogPtr;
itemOffset: Integer): ConponentResult;

gl obal s A handle to the control panel extension’s global data.

di al og A pointer to the dialog record of the owning control panel. The owning
control panel displays your panel’s items in the dialog box referenced
through this parameter.

itenOffset
An offset to the panel’s first item.

Your MyPanel | nst al | function should perform any processing that must occur after
the panel is created but before it is displayed to the user. For example, your

Control Panel Extensions Reference

RESULT CODES

SEE ALSO

CHAPTER 5

Control Panel Extensions

MyPanel | nst al | function can set or restore default values of various items in the
panel. You can also use this opportunity to create user items (such as lists) in the panel.

Thei t enf f set parameter specifies the offset from 1 to the first item in your panel.
The items installed by your control panel extension are contained in a larger dialog box
containing other items; as a result, if you call the Get Di al ogl t emprocedure to obtain
a handle to an item, you need to increment the i t emNo parameter passed to

CGet Di al ogl t emby the value of i t en(X f set .

In most cases, you’ll need to save the value passed in thei t entTX f set parameter in
your extension’s global storage for later use. For example, you usually need this value
to determine which panel item the user selected when your extension responds to the
kPanel | t enSel ect request code.

The value passed to your MyPanel | nst al | functionintheit enffset parameter
may be different each time MyPanel | nst al | is called. You should not assume it is
always the same value.

Your MyPanel | nst al | function should return noEr r if successful, or an appropriate
result code otherwise.

For an example of the MyPanel | nst al | function, see Listing 5-4 on page 5-15.

MyPanelGetTitle

A control panel extension should respond to the kPanel Get Ti t | eSel ect request code
but is not required to do so. A control panel sends this request code to your extension to
get the name of your panel extension. A control panel extension typically responds to the
kPanel Get Ti t| eSel ect request code by calling an extension-defined subroutine (for
example, MyPanel Get Ti t | e) to handle the request.

FUNCTI ON MyPanel Get Titl e (sel f: Conponentlnstance; title: Str255)
Conponent Resul t ;

sel f A component instance identifying the specific instance of your control
panel extension.

title On exit, the name of your control panel extension as you want it to
appear in the panel-selection pop-up menu of the control panel.

Control Panel Extensions Reference 5-23

SUOISU3)XT [dued |0AU0D -

DESCRIPTION

CHAPTER 5

Control Panel Extensions

Your MyPanel Get Ti t | e function should return, through the ti t | e parameter, a string
that is the desired title of your control panel extension. This name appears as a menu
item in the pop-up menu that lets the user select which panel to view.

SPECIAL CONSIDERATIONS

RESULT CODES

Currently, all control panels use the component name as the title of the control panel
extension. The MyPanel Get Ti t | e function is intended to allow your extension to
assign a title different from the component name. Future control panels are likely to call
your MyPanel Get Ti t | e function.

Your MyPanel Get Ti t | e function should return noEr r if successful, or an appropriate
result code otherwise.

MyPanelRemove

DESCRIPTION

5-24

A control panel extension must respond to the kPanel RenoveSel ect request code. A
control panel sends this request code to an extension just before removing the panel
from the enclosing dialog box. A control panel extension typically responds to the
kPanel RenpoveSel ect request code by calling an extension-defined subroutine (for
example, MyPanel Renpve) to handle the request.

FUNCTI ON MyPanel Renpbve (gl obal s: Handl e; dialog: DialogPtr;
itemOffset: Integer): ConponentResult;

gl obal s A handle to the control panel extension’s global data.
di al og A pointer to the dialog record of the owning control panel.
itenOfset

An offset to the panel’s first item.

Your MyPanel Renpve function should perform any processing that must occur

before your panel is removed from the enclosing dialog box. For example, your

MyPanel Renove function can save the current values of any items in the dialog box.
You can also use this opportunity to dispose of any user items (such as lists) in the dialog
box. If the control panel opened your component’s resource file, that file is still open at
the time MyPanel Renove is called.

Thei t enOf f set parameter specifies the offset from 1 to the first item in your control
panel. The dialog items installed by your control panel extension are contained in a
larger dialog box containing other items; as a result, if you call the Get Di al ogl t em

Control Panel Extensions Reference

RESULT CODES

CHAPTER 5

Control Panel Extensions

procedure to obtain a handle to a dialog item, you need to increment the i t emmNo
parameter passed to Get Di al ogl t emby the value of i t enOf f set .

The value passed to your MyPanel Renove function inthei t entTX f set parameter may
be different each time MyPanel Renove is called. You should not assume it is always the
same value.

Your MyPanel Renpve function should return noEr r if successful, or an appropriate
result code otherwise.

Handling Panel Events

A control panel extension should respond to the kPanel | t enSel ect and
kPanel Event Sel ect request codes. You typically define subroutines that

the main program of your control panel extension calls (using the

Cal | Conmponent Functi onW t hSt or age function) to handle these requests.
You can choose any name for these subroutines, but by convention they’re called
MyPanel | t emand MyPanel Event . These two routines should respond to mouse
clicks and other events in the items of the panel.

MyPanelltem

A control panel extension must respond to the kPanel | t enSel ect request code. In
general, a control panel sends this request code to your extension whenever the user
clicks an item in your panel. A control panel extension typically responds to the
kPanel | t enel ect request code by calling an extension-defined subroutine (for
example, MyPanel | t em) to handle the request.

FUNCTI ON MyPanel Item (gl obal s: Handl e; dialog: Dial ogPtr;
itenOffset: Integer; itenNum |Integer)
Conponent Resul t ;

gl obal s A handle to the control panel extension’s global data.

di al og A pointer to the dialog record of the owning control panel. The owning
control panel displays your panel’s items in the dialog box (of the control
panel) referenced through this parameter.

itenOffset
An offset to the panel’s first item.

i temNum The item number of the item selected by the user. This item number is an
index into the list of items in the dialog box. To map this value to the item
list you passed to the control panel (in the MyPanel Get DI TL function),
you need to compensate for the offset reported in thei t enOf f set
parameter.

Control Panel Extensions Reference 5-25

SUOISU3)XT [dued |0AU0D -

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 5

Control Panel Extensions

Your MyPanel | t emfunction should handle mouse clicks on specific items in your
panel. The owning control panel calls your control panel extension with the
kPanel | t enSel ect whenever your component returns FALSE in response to an
event-select request. Your MyPanel | t emfunction is therefore typically invoked
each time the user clicks on some item in your panel. Your function should respond
appropriately, according to the item that was clicked.

As just described, note that when a click in one of your panel’s items occurs, the

owning control panel first sends your component an event-select request, giving your
component a chance to filter the event, if necessary. In this case, if your component
returns FALSE in the handl ed parameter, then the control panel sends your component
the item-select request code; if your component returns TRUE in the handl ed parameter,
the control panel does not send your component the subsequent item-select request code.

Your MyPanel | t emfunction should return noEr r if successful, or an appropriate result
code otherwise.

For an example of the MyPanel | t emfunction, see Listing 5-5 on page 5-16. For
information on responding to events, see the description of the MyPanel Event function
in the next section.

MyPanelEvent

5-26

A control panel extension must respond to the kPanel Event Sel ect request code. A
control panel sends this request code to your extension whenever an event occurs in
your panel. A control panel extension typically responds to the kPanel Event Sel ect
request code by calling an extension-defined subroutine (for example, MyPanel Event)
to handle the request.

FUNCTI ON MyPanel Event (gl obal s: Handl e; dialog: DialogPtr;
itemOffset: Integer;
t heEvent: event Record;
VAR itenHit: |nteger;
VAR handl ed: Bool ean): Conponent Result;

gl obal s A handle to the control panel extension’s global data.

di al og A pointer to the dialog record of the owning control panel. The owning
control panel displays your items in the dialog box (of the control panel)
referenced through this parameter.

Control Panel Extensions Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 5

Control Panel Extensions

itenOffset
An offset to the panel’s first item.

t heEvent An event record describing the event being reported to your control panel
extension.

itenHt On entry, the item number of an item. This number is valid only for
mouse events (on input, do not interpret this parameter for any other type
of event). On exit, if the MyPanel Event function has handled the event,
it should return the item number of the associated item in this parameter.

handl ed On entry, the value FALSE for mouse events; the value TRUE for all other
events. On exit, the MyPanel Event function should return a Boolean
value that indicates whether it has handled the event (TRUE) or has not
handled the event (FALSE).

Your MyPanel Event function is called whenever an event occurs in your panel. The
parameter t heEvent contains a complete description of the event. A control panel
handles events in its own items and also gives your component a chance to handle
events in its own panel.

The MyPanel Event function is intended to operate just like an event filter function
specified in calls to the Mbdal Di al og procedure or other Dialog Manager routines.
The main difference between MyPanel Event and other event filter functions is that
MyPanel Event does not return a Boolean value as its function result. Instead, it
indicates whether it handled the event in the handl ed parameter.

If the specified event is a mouse event, you might prefer your extension’s MyPanel |1 t em
function to handle the event. In that case, you should return FALSE in the handl ed
parameter. Otherwise, you should attempt to handle the event.

If your MyPanel Event function does handle the event, it should update thei t enHi t
parameter to reflect the affected item and return TRUE in the handl ed parameter. If you
set handl ed to FALSE, the owning control panel sends your panel an item-select request.

Your MyPanel Event function should return noEr r if successful, or an appropriate
result code otherwise.

For an example MyPanel Event function, see Listing 5-6 on page 5-18. See the
description of MyPanel | t emon page 5-25 for information on handling clicks in dialog
items. For a description of the fields of the event record, see the chapter “Event
Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Control Panel Extensions Reference 5-27

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

Managing Panel Settings

A control panel extension should respond to the kPanel Val i dat el nput Sel ect,
kPanel Get Setti ngsSel ect,and kPanel Set Setti ngsSel ect request codes. You
typically define subroutines that the main program of your control panel extension calls
(using the routine Cal | Conponent Funct i onW t hSt or age) to handle these requests.
You can choose any name for these subroutines, but by convention they’re called
MyPanel Val i dat el nput, MyPanel Get Set ti ngs, and MyPanel Set Setti ngs.
These routines should manage item settings in a panel.

Note

Current versions of the Sound and Video control panels do not send the
kPanel Val i dat el nput Sel ect , kPanel Get Setti ngsSel ect, or
kPanel Set Setti ngsSel ect request code. O

MyPanelValidatelnput

DESCRIPTION

RESULT CODES

5-28

A control panel extension must respond to the kPanel Val i dat el nput Sel ect request
code. A control panel sends this request code to your extension whenever the user

clicks a control panel’s close box. A control panel extension typically responds to

the kPanel Val i dat el nput Sel ect request code by calling an extension-defined
subroutine (for example, MyPanel Val i dat el nput) to handle the request.

FUNCTI ON MyPanel Val i dat el nput (gl obal s: Handl e; VAR ok: Bool ean)
Conponent Resul t ;

gl obal s A handle to the control panel extension’s global data.

ok On return, a Boolean value that indicates whether the panel’s current
values are valid (TRUE) or invalid (FALSE).

Your MyPanel Val i dat el nput function should perform any processing necessary to
validate the current settings in the panel. For example, if your panel contains any
editable text items, you might need to ensure that the text they contain makes sense.
The control panel calls this function when the user clicks the control panel’s close box.

If the current settings of the panel items are acceptable, set the ok parameter to TRUE
before returning from MyPanel Val i dat el nput . If the current settings are not valid, set
ok to FALSE. When you set ok to FALSE, the control panel ignores any of the user’s
subsequent clicks in the panel’s OK button.

Your MyPanel Val i dat el nput function should return noEr r if successful, or an
appropriate result code otherwise.

Control Panel Extensions Reference

CHAPTER 5

Control Panel Extensions

MyPanelGetSettings

DESCRIPTION

RESULT CODES

A control panel extension must respond to the kPanel Get Setti ngsSel ect request
code. A control panel sends this request code to your extension to get the panel’s
current settings. A control panel extension typically responds to the

kPanel Get Setti ngsSel ect request code by calling an extension-defined
subroutine (for example, MyPanel Get Set t i ngs) to handle the request.

FUNCTI ON MyPanel Get Settings (gl obals: Handle; VAR ud: UserDat a;
flags: Longlnt): ConponentResult;

gl obal s A handle to the control panel extension’s global data.
ud A handle to the control panel’s configuration data.
flags Reserved. This parameter is always 0.

Your MyPanel Get Set ti ngs function should return, through the ud parameter, a copy
of the panel’s current settings. This copy is maintained privately by the control panel.
The control panel may subsequently restore your panel’s settings by passing those
settings to your MyPanel Set Set ti ngs function.

Your control panel extension is responsible for allocating storage for the configuration
data to which ud is a handle. You might do that when the Component Manager passes
your extension the kConponent QpenSel ect parameter. Your extension should not
dispose of that storage until it closes (that is, when the Component Manager passes it
the kConponent C oseSel ect parameter).

You can arrange the panel configuration data in any way you like. The data needs to
contain whatever information is necessary for your MyPanel Set Set t i ng function to
set all relevant panel items to specified values. For example, the standard Apple sound
panels save information such as the component type of the default sound output device,
the current volumes levels, the current alert beep, and so forth. You might want to begin
the configuration data with a version number so that you can easily change the format of
the rest of the data, if necessary.

The information you return to the control panel may get stored as part of the owner’s
configuration information and might therefore persist across system restarts. As a result,
you should not store values that might change without the control panel’s knowledge
(such as component ID numbers, file reference numbers, and similar volatile
information).

Your MyPanel Cet Set t i ngs function should return noEr r if successful, or an
appropriate result code otherwise.

Control Panel Extensions Reference 5-29

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

MyPanelSetSettings

DESCRIPTION

RESULT CODES

5-30

A control panel extension must respond to the kPanel Set Setti ngsSel ect request
code. A control panel sends this request code to your extension to request that your
extension set the panel’s current settings to the specified values. A control panel
extension typically responds to the kPanel Set Set ti ngsSel ect request code by
calling an extension-defined subroutine (for example, MyPanel Set Set ti ngs) to
handle the request.

FUNCTI ON MyPanel Set Settings (gl obal s: Handl e; ud: UserDat a;
flags: Longlnt): ConponentResult;

gl obal s A handle to the control panel extension’s global data.
ud A handle to the control panel’s configuration data.
flags Reserved. This parameter is always 0.

Your MyPanel Set Set ti ngs function should parse the block of configuration data
passed in the ud parameter and set the values of the items in the panel based on that
data. The control panel calls this function just before your panel is displayed to the user
and whenever a user cancels changes to your panel. You can assume that the data passed
in the ud parameter was created by a previous call to your extension’s

MyPanel Get Set t i ng function.

It’s possible that your extension might not able to set the value of one or more panel
items to the values specified in the configuration data. (For example, the hardware
environment might have changed since the configuration data was last stored by the
control panel.) When this happens, you should try to match the specified panel settings
as closely as possible. If you cannot match perfectly, you should return some nonzero
result code.

Your MyPanel Set Set t i ngs function should return noEr r if successful, or an
appropriate result code otherwise.

Control Panel Extensions Reference

CHAPTER 5

Control Panel Extensions

Summary of Control Panel Extensions

Pascal Summary

Constants

CONST
{conponent types}
SoundPanel Type = 'sndP'; {sound panel }
Vi deoPanel Type = 'vidP; {vi deo panel}

{conponent subtypes}

kAl ert SoundsPanel ="'alrt"; {al ert sounds panel}
kl nput sPanel = 'mcs'; {i nput devi ces panel}
kCut put sPanel = 'spek'; {out put devi ces panel}
kVol unesSubType = 'vols'; {vol unes panel }

{conponent fl ags}
channel Fl agDont OpenResFi | e = 2; {do not open resource file}

{ Conponent Manager request codes for routines}

kPanel Get Di t | Sel ect = {get panel's itemlist}

kPanel Get Titl eSel ect = {get panel's nane}

kPanel | nst al | Sel ect = {restore item settings}

kPanel Event Sel ect = {handl e event in panel}

kPanel | t entel ect {handle click in a panel itent
kPanel RenmbveSel ect = {panel is about to be renoved}
kPanel Val i dat el nput Sel ect = {val i date panel settings}
kPanel Get Setti ngsSel ect {get panel settings}

kPanel Set Set ti ngsSel ect {set panel settings}

N ONREO

Control Panel Extension-Defined Routines

Managing Panel Components

FUNCTI ON MyPanel Get DI TL (globals: Handle; VAR ditl: Handle)
Conponent Resul t ;

Summary of Control Panel Extensions 5-31

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

FUNCTI ON MyPanel | nst al | (gl obals: Handl e; dialog: DalogPtr
itenOffset: Integer): ConponentResult;
FUNCTI ON MyPanel Get Titl e (self: Conponentlnstance; title: Str255)
Conmponent Resul t ;

FUNCTI ON MyPanel Renove (gl obal s: Handl e; dialog: D alogPtr
itemOffset: Integer): ConponentResult;

Handling Panel Events

FUNCTI ON MyPanel It em (gl obal s: Handl e; dialog: DialogPtr
itenOffset: Integer; itemNum |Integer)
Conponent Resul t ;
FUNCTI ON MyPanel Event (gl obal s: Handl e; dial og: DialogPtr
itenOffset: Integer; theEvent: eventRecord;
VAR itenHit: Integer; VAR handl ed: Bool ean)
Component Resul t;

Managing Panel Settings

FUNCTI ON MyPanel Val i dat el nput
(gl obal s: Handl e; VAR ok: Bool ean)
Component Resul t ;
FUNCTI ON MyPanel Get Settings (globals: Handl e; VAR ud: UserDat a;
flags: Longlnt): ConponentResult;

FUNCTI ON MyPanel Set Setti ngs (gl obals: Handle; ud: UserData
flags: Longlnt): ConponentResult;

C Summary

Constants

/ *conponent types*/
#def i ne SoundPanel Type 'sndP /*sound panel */
#def i ne Vi deoPanel Type "vidP /*vi deo panel */

/ *conmponent subt ypes*/

#def i ne kAl ert SoundsPanel "alrt'’ /*al ert sounds panel */
#def i ne Kkl nput sPanel "m cs' /*input devices panel */
#def i ne kQut put sPanel ' spek’ / *out put devi ces panel */
#def i ne kVol unesSubType "vol s' /*vol unmes panel */

5-32 Summary of Control Panel Extensions

CHAPTER 5

Control Panel Extensions

/ *conmponent fl ags*/

enum {
channel Fl agDont OpenResFi | e =2 /*do not open resource file*/
1
/ *Conponent Manager request codes for routines*/
enum {
kPanel Get Di t | Sel ect = 0, /*get panel's itemlist*/
kPanel Get Titl eSel ect, /*get panel's nane*/
kPanel | nst al | Sel ect, /*restore itemsettings*/
kPanel Event Sel ect /*handl e event in panel*/
kPanel | t entel ect /*handle click in a panel itent/
kPanel RenmpoveSel ect /*panel is about to be renoved*/
kPanel Val i dat el nput Sel ect, /*val i dat e panel settings*/
kPanel Get Setti ngsSel ect, /*get panel settings*/
kPanel Set Setti ngsSel ect /*set panel settings*/
b

Control Panel Extension-Defined Routines

Managing Panel Components

pascal Component Result MPanel Get DI TL
(Handl e gl obals, Handle *ditl);

pascal Conponent Result MyPanel I nstal |
(Handl e gl obal s, Dial ogPtr dial og,
short itentOffset);

pascal Conponent Result MyPanel GetTitle
(Component I nst ance self, StringPtr title);

pascal Component Result MPanel Renove
(Handl e gl obal s, D alogPtr dial og,
short itenOffset);

Handling Panel Events

pascal Component Result MyPanelltem
(Handl e gl obal s, Dial ogPtr dial og,
short itenOfset, short itemNun;

pascal Component Result MPanel Event
(Handl e gl obal s, Dial ogPtr dial og,
short itenmOffset, eventRecord *theEvent,
short *itenHit, Bool ean *handl ed);

Summary of Control Panel Extensions 5-33

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

Managing Panel Settings

pascal Component Result MPanel Val i dat el nput
(Handl e gl obal s, Bool ean *o0k);

pascal Component Result MyPanel Get Setti ngs
(Handl e gl obals, UserData *ud, long flags);

pascal Component Result MyPanel Set Setti ngs
(Handl e gl obals, UserData *ud, |ong flags);

5-34 Summary of Control Panel Extensions

CHAPTER 6

Queue Utilities

Contents

About Queues 6-3
The Queue Header 6-5
The Queue Element 6-6
Using the Queue Utilities 6-8
Searching for an Element in an Operating-System Queue 6-9
Adding Elements to an Operating-System Queue 6-10
Removing Elements From an Operating-System Queue 6-11
Queue Utilities Reference 6-13
Data Structures 6-13
Queue Headers 6-13
Queue Elements 6-13
Routines 6-15
Summary of the Queue Utilities 6-18
Pascal Summary 6-18
Constants 6-18
Data Types 6-18
Routines 6-19
C Summary 6-19
Constants 6-19
Data Types 6-20
Routines 6-20
Assembly-Language Summary 6-21
Result Codes 6-21

Contents 6-1

CHAPTER 6

Queue Utilities

This chapter describes how your application can directly add elements to and remove
them from an operating-system queue. The Macintosh Operating System stores some of
the information it uses in data structures called queues. The Queue Utilities allow you to
manipulate those queues directly by adding and removing elements.

Ordinarily, you do not need to use the Queue Utilities. The Operating System itself is
responsible for managing the various operating-system queues that it creates internally,
and you should manipulate those queues only indirectly. For example, to add an element
to the notification queue maintained by the Notification Manager, you should call the
NM nst al | function. To remove an element from that queue, you should call the
NVRenove function. But if you discover some unusual need for adding or removing
such elements directly, you can use the Queue Utilities routines. In addition, you can

use the Queue Utilities routines for directly manipulating queues that you create.

This chapter describes the general structure of operating-system queues and then

= lists the routines your application should use to manipulate an operating-system
gueue indirectly

= shows how your application can use the Queue Utilities for directly manipulating
queues that you create.

About Queues

The Macintosh Operating System uses operating-system queues to keep track of a wide
variety of items, including VBL tasks, notifications, /0 requests, events, mounted
volumes, and disk drives (or other block-formatted devices). A queue is a list of
identically structured entries linked together by pointers. A single entry in a queue

is called a queue element. Figure 6-1 illustrates the general structure of an
operating-system queue.

About Queues 6-3

samnn anand n

CHAPTER 6

Queue Utilities

Figure 6-1 An operating-system queue
Queue header
Queue header pointer I:> Queue flags
Queue
(7 ‘ head
Queue
tail
First element Last element
Next queue Next queue Next queue Next queue
@ entry I:> entry entry entry NIL
Queue type Queue type Queue type Queue type Queue type
Data Data Data Data Data
As you can see, the addresses of the first and last elements in the queue are stored in
a queue header. The queue header also contains some queue flags, which contain
information about the queue.
Each queue element contains the address of the next element in the queue (or the value
NI L if there is no next element), an indication of the type of queue to which the next
element belongs, and some data. The exact format and size of the data differs among the
various queue types. In some cases, the data in the queue element contains the address
of a routine to be executed. Table 6-1 on page 6-7 lists the different types of
operating-system queues used by the Macintosh Operating System.
6-4 About Queues

CHAPTER 6

Queue Utilities

The Queue Header

The queue header is the head of a list of identically structured entries linked together by
pointers. Figure 6-2 shows the format of a queue header.

Figure 6-2 The format of a queue header
Queue header Bytes
Queue flags 2
First queue element 4
Last queue element 4

A queue header is a record defined by a data structure of type QHdr, which contains
three fields: flags, a pointer to the first element in the queue (qHead), and a pointer to the
last element in the queue (gTai |). The flags field contains information specific to each
gueue. Ordinarily, these flags are for use by the system software only, and your
application should not need to read or manipulate these flags. The gHead field is a
pointer to the first element in a queue, and the gTai | field is a pointer to the last
element in a queue. If the queue has no elements, both of these fields are set to NI L.
Thus, if you have access to a variable nyQueueHdr of type QHdr Pt r, you can access the
corresponding first queue element of a non-empty queue with myQueueHdr~.qHead”
and access the last element with myQueueHdr™.qTail™.

Each queue element itself is a record of type QEl em which is described in the
next section.

About Queues 6-5

samnn anand n

CHAPTER 6

Queue Utilities

The Queue Element

The exact format of a queue element is not the same for all types of operating-system
gueues; thus, a queue element is defined by a variant record that is a data structure of
type QEl em Figure 6-3 shows the format of a queue element.

6-6

Figure 6-3 The format of a queue element
Queue element Bytes
Next queue element 4
Queue type 2

{ Queue-specific data { Variable

Each queue element contains two fixed fields: a pointer to the next element in the queue
(qLi nk), a value describing the queue type (qType), and a variable data field specific to
each queue type.

The gLi nk field contains a pointer to the next element in the queue. All queue elements
are linked through these pointers. Each pointer points to the gLi nk field in the next
gueue element, and the last queue element contains a NI L pointer. The data type of the
pointer to the next queue element is always QEl enPt r.

The qType field contains an integer that usually designates the queue type; for example,
ORD(evType) for the event queue. Table 6-1 contains a list of all the supported
operating-system queue types.

About Queues

CHAPTER 6

Queue Utilities

Table 6-1 Operating-system queue types
Constant Queue type Description
vType Vertical retrace queue A list of tasks to be executed during VBL
interrupts
i 0QType File 1/0 queue (or A list of parameter blocks for all asynchronous
driver 170 queue) routines awaiting execution
dr vQrlype Drive queue A list of all disk drives connected to the
computer
evType Event queue A list of pending events
f sQlype Volume control block A list of volume control blocks for each
queue mounted volume
sl QType Slot interrupt queue A list of slot interrupts
dt Qlype Deferred task queue A list of deferred tasks
nmQType Notification queue A list of notification requests
sl pQType Sleep queue A list of routines to be notified before a

Macintosh Portable or a PowerBook is put into
the sleep state

Often, you need to set the qType field of a queue element to an appropriate value before
installing the queue element. However, some operating-system queues use this field for
different purposes. For example, the Time Manager uses an operating-system queue to
track Time Manager tasks. In the high bit of this field, the revised Time Manager places a
flag to indicate whether a task timer is active. The Time Manager (along with other parts
of the Operating System that use this field for their own purposes) shields you from the
implementation-level details of operating a queue. Indeed, there is no way for you to
access a Time Manager queue directly, and the QEl emdata type does not support access
of Time Manager task records from Time Manager queue elements.

The third field contains data that is specific to the type of operating-system queue to
which the queue element belongs. For example, a queue element in a vertical retrace
gueue, maintained by the Vertical Retrace Manager, includes information about the task
procedure to be called, the number of interrupts, and the task phase. A queue element in
a notification queue, maintained by the Notification Manager, includes information
about the alert box, the sound response, the item to be marked in the Application menu,
a response procedure, and some reserved values. Figure 6-4 shows the format of these
two different types of queue elements.

About Queues 6-7

samnn anand n

CHAPTER 6

Queue Utilities

Figure 6-4

Formats of a vertical retrace queue element and a notification queue element

Pointer to
next element
in vertical
retrace queue

Pointer
to task
procedure

Interrupts
until next
execution

Phase count

Vertical retrace

gueue element Bytes
gLi nk 4
qType 2
R
vbl Addr 4
— Vertical
vbl Count 4 | retrace
queue
data
vbl Phase 2
P

Pointer to next
element in
notification queue

Reserved

Reserved

Reserved

Item to mark
in menu

Handle
toicon

Handle to
sound
resource

Pointer to
appear in
alert box

Pointer to
response
procedure

For use by
application

Notification
gqueue element

gLi nk

qType

nnFl ags

nnPrivate

nmReser ved

nmvar k

nm con

nnSound

nnStr

nnResp

nmRef Con

Bytes

— Notification
4 queue data

Figure 6-4 illustrates how the format and size of an operating-system queue element can
vary because of the variable data field. For example, an element of type vType (a vertical

retrace queue element) uses 10 bytes for VBL-specific data, whereas an element of type
nmrype (a notification queue element) uses 30 bytes for notification-specific data. All
operating-system queue elements use at least 6 bytes: 4 bytes to store a pointer to the
next element in the queue and 2 bytes to store a value indicating the queue type.

Using the Queue Utilities

6-8

The Queue Utilities provide routines for directly adding elements to a queue and
removing them from a queue. The Enqueue procedure lets you add elements to the
end of a queue, and the Dequeue function lets you remove elements from a queue.

Using the Queue Utilities

CHAPTER 6

Queue Utilities

You should manipulate an operating-system queue used by the Macintosh Operating
System indirectly, by calling special-purpose routines. For example, to install a deferred
task into a deferred task queue, your application should use the DTI nst al | function
instead of the Enqueue procedure. However, if you create your own queues, you can
use the Enqueue procedure and the Dequeue function to manipulate these queues
directly. This section describes how to

= search for an element in an operating-system queue
= add an element to an operating-system queue

= remove an element from an operating-system queue

Searching for an Element in an Operating-System Queue

You can search an operating-system queue for a specific element or elements. For
example, Listing 6-1 shows a simplified way to search a drive queue for all the drives
connected to the computer. The application-defined function, MySear chDr i veQueue,
walks through the drive queue searches for all connected drives. If it finds any; it calls
the application-defined function DoDi spl ayDr i vel nf o to display information about
the connected drive.

Listing 6-1 Searching for drives in the drive queue

FUNCTI ON MySear chDri veQueue: Bool ean;

VAR
driveQHdr: QHdr Pt r;
result: Bool ean;
BEG N
result := FALSE; {assume no drivers in the queue}
drive@dr := GetDrvQHdr; {get the drive queue header}

drive@tr := DrvQEl Ptr(driveQ@idr”. gHead);

WHI LE (driveQPtr <> NIL) DO

{while drive queue is not enpty}

BEG N
result := TRUE {found a drive}
DoDi spl ayDri vel nfo(driveQ@Ptr); {di splay drive information}

{go to next drive in the queue}

driveQPtr := DrvQEl Ptr(driveQPtr”. qLink);
END;, {of while}
MySear chDri veQueue : = result; {return result of search}

END;

Using the Queue Utilities 6-9

samnn anand n

CHAPTER 6

Queue Utilities

Adding Elements to an Operating-System Queue

You should avoid direct manipulation of an operating-system queue used by the
Macintosh Operating System. Your application should, when possible, use the
installation routines in Table 6-2 to add new elements to an operating-system queue.

Table 6-2 Installation routines for operating-system queue elements
Queue element Installation routine Additional information
Slot-based VBL task Sl ot Vinstall The chapter “Vertical Retrace Manager” in

Inside Macintosh: Processes

System-based VBL task Vlnstal | The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

Parameter block for an * The chapter “File Manager” in Inside Macintosh: Files
asynchronous routine
awaiting execution

Disk drive AddDri ve The chapter “File Manager” in Inside Macintosh: Files
Event PPost Event The chapter “Event Manager” in Inside Macintosh:
and Post Event Macintosh Toolbox Essentials
Volume control block ! The chapter “File Manager” in Inside Macintosh: Files
Deferred task DTl nst al | The chapter “Deferred Task Manager” in
Inside Macintosh: Processes
Slot interrupt SIntinstall The chapter “Slot Manager” in Inside Macintosh:
Devices
Notification request NM nst al | The chapter “Notification Manager” in
Inside Macintosh: Processes
Sleep Sl eepQ nst al | The chapter “Power Manager” in Inside Macintosh:
Devices

* No comparative installation routine available.

IMPORTANT

It is not recommended that you directly add elements to an
operating-system queue used by the Macintosh Operating System. If
at all possible, your application should use the installation routines
provided by the various managers. a

If you have created a queue for your own use, you can use the Enqueue procedure
to add a new element to your queue. For example, Listing 6-2 presents the
application-defined procedure DoAddBankCust omer, which uses the Enqueue
procedure for directly installing a customer into a bank-teller queue.

6-10 Using the Queue Utilities

CHAPTER 6

Queue Utilities

Listing 6-2 Using the Enqueue procedure to add a bank customer to a teller queue

PROCEDURE DoAddBankCust omer (myQueueHdrPtr: CQHdrPtr,
Var bankCustomer: MyCust omer Record);

BEG N
W TH bankCust onmer® DO {get bank custoner data}
BEG N
gType := kTel |l er QType; {queue type for the bank-teller queue}
account := MyGet Next Account; {get account nunber}
action := MyGet BankActi on; {get action to perforni
amount : = MyGet Anount ; {get the amount}
END;
Enqueue(QEl enPt r (bankCust oner), myQueueHdrPtr); {add customer to queue}
END;

Note that you are responsible for allocating memory for a queue element before you
insert into a queue and for deallocating that memory when you remove the queue
element.

Removing Elements From an Operating-System Queue

This section describes how your application can remove elements from an
operating-system queue. Whenever possible, your application should use the removal
routines listed in Table 6-3 to remove elements indirectly from an operating-system
gueue used by the Macintosh Operating System.

Using the Queue Utilities 6-11

samnn anand n

CHAPTER 6

Queue Utilities

Table 6-3

Removal routines for operating-system elements

Queue element
Slot-based VBL task

System-based VBL task

Parameter block for an
asynchronous routine
awaiting execution

Disk drive

Event

Volume control block

Deferred task

Slot interrupt

Notification request

Sleep

Removal routine
S| ot VRenove

VRenove

Wi t Next Event

S| nt Rermove

NMRenove

Sl eepQRenove

* No comparative removal routine available.

IMPORTANT

Additional information

The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

The chapter “File Manager” in Inside Macintosh: Files

The chapter “File Manager” in Inside Macintosh: Files

The chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials

The chapter “File Manager” in Inside Macintosh: Files

The chapter “Deferred Task Manager” in
Inside Macintosh: Processes

The chapter “Slot Manager” in Inside Macintosh:
Devices

The chapter “Notification Manager” in
Inside Macintosh: Processes

The chapter “Power Manager” in Inside Macintosh:
Devices

It is not recommended that you directly remove queue elements from an
operating-system queue used by the Macintosh Operating System. If at
all possible, your application should use the removal routines provided
by the various managers. a

If you have created a queue for your own use, you can use the Dequeue function to

remove elements from that queue.

Listing 6-3 shows the application-defined function DoRenoveBankCust omner, which
uses the Dequeue procedure for directly removing the first customer from a bank-teller
gueue. The DoRenmoveBankCust orrer function returns TRUE if it removes the customer.

6-12 Using the Queue Utilities

CHAPTER 6

Queue Utilities

Listing 6-3 Using Dequeue to remove the first customer in the bank-teller queue

FUNCTI ON DoRenpveBankCust oner (VAR nyQueueHdr: QHdr): BOCLEAN,
VAR

bankCust omer Pt r: MyCust omer RecordPtr;

cust omer Renoved: Bool ean;

BEG N
cust omer Renoved : = FALSE;
bankCust orrer Pt r MyCust oner Recor dPt r (myQueueHdr . qHead) ;
| F bankCustonerPtr <> NIL THEN {Check for non-enpty queue}
BEG N
Dequeue(QEl enPt r (bankCust oner Ptr), &myQueueHdr) {renpbve custoner}
cust omer Renoved : = TRUE;
END; {of queue not enpty}
DoRermoveCust oner : = cust omer Renoved;
END;

Queue Utilities Reference

This section describes the data structures of operating-system queues and two Queue
Utilities routines for directly adding elements to and removing them from queues that
you create.

Data Structures

Each operating-system queue created and maintained by the Macintosh Operating
System consists of a queue header and a linked list of queue elements. This section
describes the structure of queue headers and queue elements.

Queue Headers

A queue header is a block of data that contains information about a queue. The QHdr
data type defines the structure of a queue header.

TYPE QHdr =
RECORD
gFl ags: I nt eger; {informati on on queue}
gHead: QEl enPtr; {pointer to first queue entry}
gTail : QEl enPtr; {pointer to | ast queue entry}
END;

Queue Utilities Reference 6-13

samnn anand n

CHAPTER 6

Queue Utilities

Field descriptions

gFl ags Queue flags. This field contains information that is different for
each queue type. Ordinarily, these flags are reserved for use by
system software.

gHead A pointer to the first element in the queue. If a queue has no
elements, this field is set to NI L.
gTai | A pointer to the last element in the queue. If a queue has no

elements, this field is set to NI L.

Queue Elements

A queue element is a single entry in a queue. The exact structure of an element in an
operating-system queue depends on the type of the queue. The different queue types
that are accessible to your application are defined by the QTypes data type.

TYPE Qlypes =
(dummyType, {reserved}
vType, {vertical retrace queue type}
i 0QType, {file I/Oor driver 1/0O queue type}
dr vQType, {drive queue type}
evType, {event queue type}
f sQlype, {vol urme- control - bl ock queue type}
sl QType, {slot interrupt queue type}
dt Qlype, {deferred task queue type}
{nnType, } {notification queue type}
{sl pQlype} {sl eep queue type}
)

Each of these enumerated queue types determines a different type of queue element. The
(El emdata type defines the available queue elements.

TYPE CEl em =
RECORD
CASE Qlypes OF

vType: (vbl QEl em VBLTask);
i oQType: (i oQEl em Par anBl ockRec) ;
dr vQrlype: (drvQeElem DrvQEl);
evType: (evQEl em EvCQEl) ;
f sQlype: (vcbQElem VCB);
dt Qlype: (dt QEl em Def erredTask) ;
{si Qlype: (si QEl em Sl ot I nt QEl enent) ; }
{ nnilype: (nmQEl em NMRec) ; }

{sl pQrype: (slpQlem SleepQRec);}
END;

Bl enPtr = "QEl em

6-14 Queue Utilities Reference

Routines

CHAPTER 6

Queue Utilities

Data type Additional information

VBLTask The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

Par amBl ockRec The chapter “File Manager” in Inside
Macintosh: Files

Dr vCEI The chapter “File Manager” in Inside
Macintosh: Files

EvCQEl The chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials

VCB The chapter “File Manager” in Inside
Macintosh: Files

Def er r edTask The chapter “Deferred Task Manager” in
Inside Macintosh: Processes

Sl ot | nt QeI enent The chapter “Slot Manager” in Inside
Macintosh: Devices

NVRec The chapter “Notification Manager” in Inside
Macintosh: Processes

Sl eepQRec The chapter “Power Manager” in Inside
Macintosh: Devices

Enqueue

The Queue Utilities provide two routines: Enqueue and Dequeue. The Enqueue
procedure allows you to add queue elements directly to an operating-system queue, and
the Dequeue function allows you to remove the element. Ordinarily, these routines are
used only by system software. If possible, you should manipulate an operating-system
gueue indirectly, by calling special-purpose routines. For example, to install a task record
into a slot-based vertical retrace queue, your application should use the Sl ot VI nst al |
function (provided by the Vertical Retrace Manager) instead of the Enqueue procedure.
In addition, you can use the Queue Utilities routines for directly manipulating queues
that you create.

You can use the Enqueue procedure to add elements directly to an operating-system
queue or a queue that you create.

PROCEDURE Enqueue (gEl enent: QEl enPtr; qgHeader: QHdrPtr);

gEl enent A pointer to the queue element to add to a queue.
gHeader A pointer to a queue header.

Queue Utilities Reference 6-15

samnn anand n

DESCRIPTION

CHAPTER 6

Queue Utilities

The Enqueue procedure adds the queue element specified by gEl enent parameter to
the end of the queue specified by the qHeader parameter. The specified queue header is
updated to reflect the new queue element.

SPECIAL CONSIDERATIONS

Because interrupt routines are likely to manipulate operating-system queues, interrupts
are disabled for a short time while the specified queue is updated. You can call the
Enqueue procedure at interrupt time. Whenever possible, use the installation routines
listed in Table 6-2 on page 6-10 instead of the Enqueue procedure.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the Enqueue procedure are

Registers on entry
A Pointer to the queue element to be added

Pointer to the queue header

H}O

Registers on exit

A Pointer to the queue header
1

SEE ALSO
For a description of the QEl emrecord, see page 6-14; for a description of the QHdr
record, see page 6-13.
Dequeue
You can use the Dequeue function to remove a queue element directly from an
operating-system queue or from a queue that you have created.
FUNCTI ON Dequeue (qEl enent: QElenPtr; qHeader: QHdrPtr): OSErr;
gEl enent A pointer to a queue element to remove from a queue.
gHeader A pointer to a queue header.
DESCRIPTION
The Dequeue function attempts to find the queue element specified by the gEl enent
parameter in the queue specified by the qHeader parameter. If Dequeue finds the
6-16 Queue Utilities Reference

CHAPTER 6

Queue Utilities

element, it removes the element from the queue, adjusts the other elements in the queue
accordingly, and returns noEr r. Otherwise, it returns gEr r, indicating that it could not
find the element in the queue. The Dequeue function does not deallocate the memory
occupied by the queue element.

SPECIAL CONSIDERATIONS

The Dequeue function disables interrupts as it searches through the queue for the
element to be removed. The time during which interrupts are disabled depends on the
length of the queue and the position of the entry in the queue. The Dequeue function
can be called at interrupt time. Whenever possible, use the removal routines listed in
Table 6-3 on page 6-12 instead the Dequeue function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The registers on entry and exit for the Dequeue function are

Registers on entry
A Pointer to the queue element to be removed

0
A Pointer to the queue header
1

Registers on exit

A Pointer to the queue header
1

DO Result code

nokErr 0 No error
gErr -1 Entry is not in specified queue

For a description the QEl emrecord, see page 6-14; for a description of the QHdr record,
see page 6-13.

Queue Utilities Reference 6-17

samnn anand n

CHAPTER 6

Queue Utilities

Summary of the Queue Utilities

Pascal Summary

Constants

CONST {queue types}

vType = 1; {vertical retrace queue type}
i 0QType = 2; {file I/O or driver 1/0O queue type}
drvQlype = 3; {drive queue type}
evType = 4; {event queue type}
fsQlype = 5; {vol urme- control - bl ock queue type}
sl QType = 6; {slot interrupt queue type}
dt Qlype = 7; {deferred task queue type}
nmrype = 8; {notification queue type}
sl pQType = 16; {sl eep queue type}
Data Types
TYPE QHdr = {queue header record}
RECORD
gFl ags: I nt eger; {informati on on queue}
gHead: CEl enPtr; {pointer to the first queue el emrent}
gTail : QEl enPtr; {pointer to the |ast queue el enent}
END;
QHdrPtr = ~QHdr;
Qrypes = ({queue types}
dumyType, {reserved}
vType, {vertical retrace queue type}
i 0QType, {file I/O or driver 1/0O queue type}
dr vQType, {drive queue type}
evType, {event queue type}
f sQlype, {vol urme- control - bl ock queue type}
sl Qlype, {slot interrupt queue type}
dt Qlype, {deferred task queue type}

6-18 Summary of the Queue Utilities

CHAPTER

Queue Utilities

6

{nnType, } {notification queue type}
{sl pQlype} {sl eep queue type}
);
Bl em = {queue el enent record}
RECORD
CASE Qlypes OF
dt Qlype: (dt QEl em Def err edTask) ; {deferred task }
{ queue el enent}
vType: (vbl QEl em VBLTask); {vertical retrace }
{ queue el enent}
i 0QType: (i oQEl em Par anmBl ockRec) ; {file 1/ 0O queue el enent}
dr vQrlype: (drvQElem DrvQEl); {drive queue el ement}
evType: (evQEl em EvQEl) ; {event queue el enent}
f sQlype: (vcbhQElem VCB); {vol urme- control - bl ock }
{ queue el enent}
{sl QType: (si QEl em SlotIntQEl ement;} {slot interupt }
{ queue el enent}
{ nmlype: (nnEl em NVRec) ; } {notification }
{ queue el enent}
{sl pQrype: (slpQlem SleepQRrec);} {sl eep queue el enent}
END;

Bl enPtr = "QEl em

Routines

PROCEDURE Engueue
FUNCTI ON Dequeue

(gEl ement: C(El enPtr; gHeader: QHdrPtr);
(gEl enent: CEl enPtr; gHeader: QHdrPtr): OSErr;

C Summary
Constants
enum { / *queue types*/
vType = 1, /*vertical retrace queue type*/
i 0QType = 2, /[*file 1/O or driver 1/0O queue type*/
drvQlype = 3, /*drive queue type*/
evType = 4, /*event queue type*/
fsQlype =5, /*vol unme-control - bl ock queue type*/

Summary of the Queue Utilities 6-19

samnn anand n

CHAPTER 6

Queue Utilities

sl Qlype = 6, /*slot interrupt queue type*/
dt Qlype =7, /*deferred task queue type*/
1
enum { /*value for the notification queue type*/
nmrype =8 /*notification queue type*/
1
enum { /*value for the sleep queue type*/
sl pQType = 16 /*sl eep queue type*/
b
Data Types

struct QHdr { /*queue header record*/

short gFl ags; /*information on queue*/
CEl enPtr gHead; /*pointer to the first queue el ement*/
QEl enPtr gTail ; /*pointer to the |last queue el enent*/

b

typedef struct QHdr QHdr;

typedef QHdr *QHdrPtr;

t ypedef unsi gned short Qlypes; / *queue types*/

struct QElem{ /*queue el enment record*/

struct QElem *qLi nk; /*pointer to the next queue el enent*/
short gType; /*type of queue el enent*/
short gbat a[1] ; /*variable array of data; type of data and */

/* length depend on the queue type, */
/* specified in the qType field*/

b

typedef struct QEl em CQEl em

typedef QEl em *CQEl enPtr;

Routines
pascal void Enqueue (CEl enPtr gEl erent, QHdrPtr qHeader);
pascal OSErr Dequeue (CEl enPtr gEl ement, QHdrPtr qHeader);

6-20 Summary of the Queue Utilities

CHAPTER 6

Queue Utilities

Assembly-Language Summary

QHdr Data Structure

0 gFl ags word information on queue
2 gHead long pointer to first queue entry
6 gTai | long pointer to last queue entry

QElem Data Structure

0 gLi nk long pointer to the next queue element
4 qType word type of queue element
6 gDat a word variable array of data; type of data and length depend on

the queue type, specified in the qType field

Result Codes

noErr 0 No error
gErr -1 Entry is not in specified queue

Summary of the Queue Utilities

6-21

samnn anand n

CHAPTER 7

Parameter RAM Utilities

Contents

About Parameter RAM 7-3
Using the Parameter RAM Utilities 7-7
Parameter RAM Utilities Reference 7-8
Data Structures 7-9
The System Parameters Record 7-9
Routines 7-10
Summary of the Parameter RAM Ultilities 7-14
Pascal Summary 7-14
Data Types 7-14
Routines 7-14
C Summary 7-15
Data Types 7-15
Routines 7-15
Assembly-Language Summary 7-16
Data Structures 7-16
Global Variables 7-16
Result Codes 7-16

Contents

7-23

CHAPTER 7

Parameter RAM Utilities

This chapter describes how your application can access and modify the information used
by the system software at system startup time. Various user settings, such as the volume
setting for the built-in speaker, need to be present at the next system startup. This startup
information is stored in battery-powered parameter RAM, located in the computer’s
real-time clock chip. The Parameter RAM Utilities available in the Macintosh Operating
System allow you to manipulate startup information stored in parameter RAM.

Because you can use Toolbox routines to indirectly access most of the useful information
stored in parameter RAM, you should not need to use the utility routines described in
this chapter. However, if you should discover some important need to directly
manipulate the startup information in parameter RAM, you can use the Parameter RAM
Utilities routines.

To use this chapter, you should already understand how to read and change the values
of low-memory global variables. See the chapter “Memory Manager” in Inside Macintosh:
Memory for a discussion on how to read and write system global variables.

This chapter
= introduces the kinds of information stored in parameter RAM

= describes some of the values stored in parameter RAM

About Parameter RAM

Most user settings that need to be present at system startup are stored in parameter
RAM . Parameter RAM takes up 256 bytes of battery-powered RAM: 20 bytes are
documented in this chapter, and 236 bytes are reserved by the system software. The 236
bytes of parameter RAM are also known as extended parameter RAM . The parameter
RAM is located in the computer’s real-time clock chip, together with the date and time
setting. No matter what system disk is used at system startup, parameter RAM ensures
that certain settings remain the same on a given computer from one session to another.

Much of the information stored in parameter RAM is used exclusively by the system
software. For example, system software uses 2 bits of parameter RAM to keep track of
how many times menu items should blink after being selected. Other values stored in
parameter RAM are useful to applications. For example, parameter RAM stores the
suggested time interval that your application should use when determining whether two
mouse clicks constitute a double-click. You can access this double-click time indirectly by
using the Toolbox Event Manager’s Get Dbl Ti ne function. Whenever possible, you
should use Toolbox routines to access parameter RAM values.

WARNING
The operating-system routines described in this chapter let you
directly manipulate values in parameter RAM; however, because the
organization of parameter RAM is subject to change, you should rarely
use them. Instead, use the appropriate Toolbox routines to indirectly
manipulate values in parameter RAM. a

About Parameter RAM 7-25

.

samnN INVY Jalowered

CHAPTER 7

Parameter RAM Utilities

The 20 bytes of parameter RAM that are commonly accessible by applications are copied
into low memory at system startup. Figure 7-1 illustrates the interaction between
parameter RAM and low memory. Parameter RAM is read into low memory at system
startup, and any modifications to this low-memory copy of parameter RAM are written
back to the clock chip.

Figure 7-1 Interaction between parameter RAM and low memory

Clock IC

Real-time clock

Parameter RAM

CPU

20-byte section of low memory

—
—

The 20 accessible bytes of parameter RAM are described by the system parameters
record, which is defined by a data structure of type SysPar nTType.

Figure 7-2 shows the general structure of the system parameters record, which
contains 11 fields.

7-26 About Parameter RAM

CHAPTER 7

Parameter RAM Utilities

Figure 7-2 The format of the system parameter record
System parameters record Bytes
Validity status 1
Node ID hint for modem port 1
Node ID hint for printer port 1
Serial port setting 1
Setting for modem port 2
Setting for printer port 2
Alarm setting 4
Font setting 4
Setting for printer and keyboards 2
Setting for caret-blink time, 2
double-click time, and speaker volume
Setting for menu-blink time, 2
startup disk, and mouse scaling

A system parameters record contains 11 fields. See page 7-31 for the exact structure of
each field.

The first field of the system parameters record contains information about the validity
status of the clock chip. Whenever a write to the clock chip is successful, the value $A8 is
stored in this field. The status is examined when the clock chip is read at system startup.

The second and third fields contain information about the node 1D for the modem port
and printer port.

The fourth field tells which device or devices may use each of the serial ports.

The fifth field contains the baud rate, data bits, stop bits, and parity for the modem port.
Bits 0-9 define the baud rate; bits 10 and 11 define the number of data bits; bits 12 and 13
define the parity; and bits 14 and 15 define the number of stop bits.

The sixth field contains the baud rate, data bits, stop bits, and parity for the printer port.
As with the modem port, bits 0-9 define the baud rate; bits 10 and 11 define the number
of data bits; bits 12 and 13 define the parity; and bits 14 and 15 define the number of
stop bits.

The seventh field contains the time at which the alarm clock should sound. The time is
defined in terms of seconds since midnight, January 1, 1904.

The eighth field contains the default application font number minus 1.

The ninth field contains the settings for the printer and for the keyboard. Bit 0 designates
whether the currently chosen printer (if any) is connected to the printer port (0) or the

About Parameter RAM 7-27

samIN WYY Jo1ewesed .

7-28

CHAPTER 7

Parameter RAM Utilities

modem port (1). Bits 1-7 are reserved for future use. Bits 8-11 of this field contain the
auto-key rate, the rate at which a character key repeats when it’s held down; this value is
stored in 2-tick units. Bits 12-15 contain the auto-key threshold, the length of time a key
must be held down before it begins to repeat; this value is stored in 4-tick units.

The tenth field contains miscellaneous user settings. Bits 0-3 contain the caret-blink time,
and bits 4-7 contain the double-click time; both values are stored in four-tick units. The
caret-blink time is the interval between blinks of a caret that marks the insertion point
in text. The double-click time is the greatest interval between a mouse-up and
mouse-down event that would qualify two mouse clicks as a double click. Bits 8-10
contain the speaker volume setting, which ranges from silent (0) to loud (7).

The last field contains more miscellaneous user settings. Bits 2 and 3 contain a value
from 0 to 3 designating the menu-blink time , which is how many times a menu item
blinks when the user chooses it. Because system software automatically calls both
standard and nonstandard menu definition procedures the appropriate number of
times, you should not need to worry about that value in parameter RAM. Bit 4 indicates
whether the preferred system startup disk is in an internal (0) or external (1) drive. If
there is any problem using the disk in the specified drive, the other drive is used. Bit 6
designates whether mouse scaling is on (1) or off (0). If mouse scaling is on, cursor
movement doubles if the user moves the mouse more than a certain number of pixels
between vertical retrace interrupts.

The global variable SysPar amcontains the address of the start of the system parameters
record. Other global variables allow you to access individual fields of the system
parameters record directly. These global variables all begin with the letters SP and point
directly into the system parameters record stored in low memory. Other global variables
referencing memory locations outside of the system parameters record are used to store
copies of individual fields of the system parameters record.

WARNING

The default values for parameter RAM vary depending on the version of
the system software. Therefore, do not rely on any one default value
being the same for all machines. a

Though default values can vary, most of the U.S. system software “shares” default
values. The default values for parameter RAM, for U.S. system software, are shown
in Table 7-1.

About Parameter RAM

CHAPTER 7

Parameter RAM Utilities

Table 7-1 Default values for parameter RAM (for U.S. system software)
Description Default value

Validity status $A8

Node ID hint for modem port 0

Node ID hint for printer port 0

Serial port use 0 (both ports)

Modem port configuration 9600 baud, 8 data bits, no parity, 2 stop bits
Printer port configuration 9600 baud, 8 data bits, no parity, 2 stop bits
Alarm setting 0 (midnight, January 1, 1904)

Application font minus 1 2 (indicating Geneva)

Auto-key threshold 6 (24 ticks)

Auto-key rate 3 (6 ticks)

Printer connection 0 (printer port)

Caret-blink time 8 (32 ticks)

Double-click time 8 (32 ticks)

Speaker volume 3 (medium)

Menu-blink time 3

Preferred system start-up disk 0 (internal drive)

Mouse scaling 1 (on)

In System 7, a user can clear the current settings in the parameter RAM and restore the
default values by holding down the x-Option-P-R keys at system startup. When system
software detects this key combination, it resets parameter RAM to the default values and
then restarts the computer again. Clearing the current settings in the parameter RAM
also causes system software to change other settings not stored in parameter RAM to
default values. These settings include the desktop pattern and the color depth of the
default monitor.

Using the Parameter RAM Utilities

The Parameter RAM Utilities provide two functions—GCet SysPPtr and Wi t ePar am—
that allow you to directly manipulate parameter RAM. The Get SysPPt r function lets
you access the low-memory copy of the parameter RAM, and the Wi t ePar amfunction
lets you write the modified low-memory copy back to parameter RAM. A third function,
InitUil,isused by the system software only. At system startup, this function reads
the values from parameter RAM into low memory.

You may find it necessary to read the values in parameter RAM or even change them.
You read from and write to parameter RAM using the Get SysPPt r and Wi t ePar am
functions.

Using the Parameter RAM Utilities 7-29

samIN WYY Jo1ewesed .

CHAPTER 7

Parameter RAM Utilities

Many of the values held in parameter RAM are also copied at system startup into other
low-memory locations. Therefore, to change a value in parameter RAM, you must
change all low-memory copies representing the value before you call Wi t ePar amto
write the values back to the clock chip. For example, the global variable SPVol Ct |
points to the location within the system parameters record that stores the speaker
volume, and the global variable SdVol une references a copy of this information stored
elsewhere in low memory. You could change one without changing the other, although
ordinarily you change both simultaneously.

WARNING
It is not recommended that you directly manipulate parameter RAM.
Your application should, if at all possible, use the routines provided by
the Toolbox to read the information stored in parameter RAM. a

The global variable SysPar ampoints to the beginning of the system parameters record
stored in low memory. You can access the system parameters record directly by using
this global variable, or you can use the Get SysPPt r routine to return a pointer to the
system parameters record. Thus, you can access the low-memory system parameters
record like this:

W TH Get SysPPtr” DO
BEG N

{access the system paraneters record directly here}
END;

IMPORTANT
Though system software automatically copies parameter RAM into low
memory at startup, it does not automatically do the reverse. Therefore,
after you make a change to the information in the low-memory system
parameters record, you must use the W i t ePar amfunction to copy
values from that record back to the clock chip to make the change
permanent. a

At startup, system software calls the I ni t Ut i | function (which you should never need
to call yourself) to copy the values stored in parameter RAM into low memory. (It then
copies those values into other appropriate global variables.) When you make changes to
the low-memory copy of parameter RAM, you must call the W i t ePar amfunction to
record your changes in the clock chip.

Parameter RAM Utilities Reference

7-30

This section describes the data structure and routines that are specific to the Parameter
RAM Utilities. The section “Data Structures” shows the Pascal data structure for the
system parameters record. The section “Routines” describes the routines that are used
to access and manipulate the startup information stored in parameter RAM.

Parameter RAM Utilities Reference

CHAPTER 7

Parameter RAM Utilities

Data Structures

This section describes the systems parameter record, which contains the current settings
for startup information stored in parameter RAM. For information about parameter
RAM default values, see Table 7-1 on page 7-29.

The System Parameters Record

The SysPar niType data type describes a system parameters record.

samIN WYY Jo1ewesed .

TYPE SysPar nlype =
PACKED RECORD

val i d: Byt e; {validity status}

aTal kA: Byt e; {node ID hint for nodem port}

aTal kB: Byt e; {node ID hint for printer port}

config: Byt e; {use types for serial ports}

portA: I nteger; {nmodem port configuration}

portB: Integer; {printer port configuration}

alarm Longlnt; {alarmsetting}

font: Integer; {application font nunber m nus 1}

kbdPri nt: Integer; {printer connection, auto-key settings}

vol A i k: Integer; {caret blink, double click, speaker vol.}

m sc: Integer; {menu blink, startup disk, nouse scaling }
END;

SysPPtr = ~ASysParnilype;

Field descriptions

valid Contains information about the validity status of the clock chip.
Whenever a write to the clock chip is successful, the value $A8 is
stored in this field. The status is examined when the clock chip
is read at system startup.

aTal kA Contains the node ID hint for the modem port.

aTal kB Contains the node ID hint for the printer port.

config Indicates which device or devices may use each of the serial ports.
portA Contains the baud rate, data bits, parity, and stop bits for the

modem port. Bits 0-9 define the baud rate; bits 10 and 11 define the
number of data bits; bits 12 and 13 define the parity; and bits 14 and
15 define the number of stop bits.

portB Contains the baud rate, data bits, parity, and stop bits for the printer
port. Bits 0-9 define the baud rate; bits 10 and 11 define the number
of data bits; bits 12 and 13 define the parity; and bits 14 and 15
define the number of stop bits.

alarm Contains the time at which the alarm clock should sound. The time
is defined in terms of seconds since midnight, January 1, 1904.
f ont Adding 1 to this field produces the font number of the default

application font.

Parameter RAM Utilities Reference 7-31

CHAPTER 7

Parameter RAM Utilities

kbdPri nt Contains the settings for the printer and for the keyboard. Bit 0
designates whether the currently chosen printer (if any) is
connected to the printer port (0) or the modem port (1). Bits 1-7 are
reserved for future use. Bits 8-11 of this field contain the auto-key
rate, whose value is stored in 2-tick units. Bits 12-15 contain the
auto-key threshold, whose value is stored in 4-tick units.

vol ik Contains miscellaneous user settings, including the caret-blink time,
double-click time, and the speaker volume setting.
m sc Contains more miscellaneous user settings. Bits 2 and 3 contain a

value from 0 to 3 designating the menu-blink time. Because system
software automatically calls both standard and nonstandard menu
definition procedures many times, you should not need to worry
about that value in parameter RAM. Bit 4 indicates whether the
preferred startup disk is in an internal (0) or external (1) drive. If
there is any problem with using the disk in the specified drive, the
other drive is used. Bit 6 designates whether mouse scaling is on (1)
or off (0).

Routines
The Parameter RAM Utilities provide two functions for use by your application and
one function for use by system software. At startup, system software usesthe I nit Uti |
function to read parameter RAM values into low memory. You can access the values
through a system parameters record of type SysPar niType described in the previous
section. To obtain a pointer to the low-memory system parameters record, call the
Get SysPPt r function. To copy the values in the system parameters record back into
the clock chip, call the Wi t ePar amfunction.

A WARNING

The organization of parameter RAM is subject to change. Therefore, you
should not manipulate parameter RAM values directly using the
operating-system routines described in this chapter; instead, use the
appropriate Toolbox routines. a

InitUtil
System software uses the | ni t Ut i | function at startup time to copy values from
parameter RAM and date and time information into low memory. Your application
should never need to use this function.
FUNCTION I nitUil: OSErr;

7-32 Parameter RAM Utilities Reference

DESCRIPTION

CHAPTER 7

Parameter RAM Utilities

ThelnitUtil function copies the contents of parameter RAM into 20 bytes of low
memory and calls the Date, Time, and Measurement Utilities’ ReadDat eTi ne function
to copy the date and time from the clock chip into a separate low-memory location.

If the validity status in parameter RAM is not $A8 when | ni t Uti | iscalled, I nit Uti |
returns a non-zero result code. In this case, the default values are read into the
low-memory copy of parameter RAM; these values are then written to the clock chip.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

GetSysPPtr

The registers on exit for the I ni t Ut i | function are

Registers on exit
DO Result code

noErr 0 No error
prinitErr -88 Validity status not $A8

For more information about the ReadDat eTi ne function, see the chapter “Date, Time,
and Measurement Utilities” in this book.

DESCRIPTION

You can use the Get SysPPt r function to obtain a pointer to the low-memory copy of
parameter RAM.

FUNCTI ON Get SysPPtr: SysPPtr;

The Get SysPPt r function returns a pointer to the low-memory copy of parameter
RAM. The copied parameter RAM values are accessible through the system parameters
record.

You can examine the values stored in the various fields of this record, or you can change
them and call the Wi t ePar amfunction to copy your changes back into parameter RAM.

Parameter RAM Utilities Reference 7-33

samIN WYY Jo1ewesed .

CHAPTER 7

Parameter RAM Utilities

SPECIAL CONSIDERATIONS

Because of the organization of parameter RAM is subject to change, you should not use
the Get SysPPt r function to change the values in parameter RAM. Instead use the
appropriate Toolbox routines to modify values in parameter RAM.

ASSEMBLY-LANGUAGE INFORMATION

The global variable SysPar amcontains the address of the start of the system parameters
record. Other global variables allow you to access individual fields of the system
parameters record directly. These global variables all begin with the letters SP and point
directly into the system parameters record stored in low memory. Other global variables
referencing memory locations outside of the system parameters record are used to store
copies of individual fields of the system parameters record.

SEE ALSO
For information about the system parameters record, see page 7-31. For a list of global
variables associated with the system parameters record, see “Global Variables” on
page 7-38. The Wi t ePar amfunction is described next.

WriteParam
You can use the Wi t ePar amfunction to write the modified values in the system
parameters record to parameter RAM.
FUNCTI ON WiteParam OSErr;

DESCRIPTION

The Wi t ePar amfunction writes the modified values in the system parameters record
to parameter RAM. Your application should call this function only after making changes
to the system parameters record (returned by the Get SysPPt r function described in the
previous section).

The Wi t ePar amfunction also attempts to verify the values written by reading them
back in and comparing them to the values in the low-memory copy.

SPECIAL CONSIDERATIONS

7-34

Because the organization of parameter RAM is subject to change, you should not use
the Wi t ePar amfunction to change the values in parameter RAM. Instead use the
appropriate Toolbox routines to modify values in parameter RAM.

Parameter RAM Utilities Reference

CHAPTER 7

Parameter RAM Utilities

Note

If you accidentally use W i t ePar amto write incorrect values into
parameter RAM, the user can clear the current settings in the parameter
RAM and restore the default values by holding down the x-Option-P-R
keys at system startup. O

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The registers on entry and exit for the Wi t ePar amfunctions are

Registers on entry

A SysParam
0

DO MinusOne

Registers on exit
DO Result code

For historical reasons, you must set up register A0 with the global variable SysPar am
and register DO with the global variable M nusOne. When W i t ePar amreturns, register
DO contains the result code.

nokErr 0 No error
pr WErr -87 Parameter RAM written did not verify

For a description of the system parameters record, see page 7-31.

Parameter RAM Utilities Reference 7-35

samIN WYY Jo1ewesed .

CHAPTER 7

Parameter RAM Utilities

Summary of the Parameter RAM Utilities

Pascal Summary

Data Types

TYPE SysPar nifype =
PACKED RECORD

val i d: Byt e; {validity status}
aTal kA Byt e; {node ID hint for nodem port}
aTal kB: Byt e; {node ID hint for printer port}
config: Byt e; {use types for serial ports}
portA: I nteger; {nmodem port configuration}
port B: Integer; {printer port configuration}
alarm Longlnt; {alarm setting}
font: Integer; {application font nunber m nus 1}
kbdPrint: Integer; {printer connection, auto-key settings}
vol i k: Integer; {caret blink, double click, speaker vol une}
m sc: Integer; {menu blink, startup disk, mouse scaling}
END;
SysPPt r = ASysPar nilype;
Routines
FUNCTION I nitUil . OSErr;
FUNCTI ON Get SysPPt r . SysPPtr;
FUNCTI ON Wit ePar am . COSErr;

7-36 Summary of the Parameter RAM Utilities

CHAPTER 7

Parameter RAM Utilities

C Summary

Data Types

struct SysParmlype {

}s

char
char
char
char
short
short
| ong
short
short
short
short

val i d; /[*validity status*/

aTal kA; /*node I D hint for nodem port*/

aTal kB; /*node I D hint for printer port*/

config; /*use types for serial ports*/

portA; / *modem port configuration*/

portB; /[*printer port configuration*/

alarm /*al arm setting*/

font; [*application font nunber mnus 1*/

kbdPri nt; /*printer connection, auto-key settings*/
vol d i k; /*caret blink, double click, speaker vol ume*/
m sc; /*menu blink, startup disk, mouse scaling*/

typedef struct SysParmlype SysParnilype;
t ypedef SysParniType *SysPPtr

Routines

pascal OSErr InitUtil (voi d);
SysPPtr Get SysPPtr (voi d)
pascal OSErr WiteParam (voi d)

Summary of the Parameter RAM Utilities

7-37

samIN WYY Jo1ewesed .

CHAPTER 7

Parameter RAM Utilities

Assembly-Language Summary

Data Structures

SysParmType Data Structure

0 valid 1 byte validity status

1 aTal kA 1 byte node ID hint for modem port

2 aTal kB 1 byte node ID hint for printer port

3 config 1 byte use types for serial ports

4 port A word modem port configuration

6 portB word printer port configuration

8 al arm long alarm setting

12 f ont word application font number minus 1

14 kbdPri nt word printer connection, auto-key settings

16 vol d ik word caret blink, double click, speaker volume
18 m sc word menu blink, system startup disk, mouse scaling

Global Variables

Cet Par am System parameter scratch

SPAl ar m The alarm setting

SPATal kKA The node ID hint for modem port

SPATal kB The node ID hint for printer port

SPd i kCar et The double-click and caret-blink times
SPConfi g The use types for serial ports

SPFont The application font number minus 1
SPKbd The auto-key threshold and rate

SPM scl Miscellaneous

SPM sc2 The setting for mouse scaling, the system startup disk, and menu-blink time
SPPort A The modem port configuration

SPPort B The printer port configuration

SPPri nt The printer connection

SPVal i d The validity status of parameter RAM
SPVol ¢t | The speaker volume

SysPar am The low-memory copy of parameter RAM

Result Codes

nokErr 0 No error
pr W Err -87 Parameter RAM written did not verify
prinitErr -88 Validity status is not $A8

7-38 Summary of the Parameter RAM Utilities

CHAPTER 8

Trap Manager

Contents

About the Trap Manager 8-3
Trap Dispatch Tables 8-5
Process for Accessing System Software Routines 8-5
Patches and System Software Routines 8-6
Daisy Chain of Patches 8-8
Head Patch (Normal Patch) 8-8
Tail Patch 8-8
Come-From Patch (Used Only by Apple) 8-8
Patch for One Application 8-9
Patch for All Applications 8-9
A-Line Instructions 8-10
A-Line Instructions for Operating System Routines 8-11
Calling Conventions for Register-Based Routines 8-12
Parameter-Passing Conventions for Operating System Routines 8-13
Function Results 8-13
Flag Bits 8-14
A-Line Instructions for Toolbox Routines 8-14
Calling Conventions for Stack-Based Routines 8-16
Parameter-Passing Conventions for Toolbox Routines 8-18
Function Results 8-19
The Auto-Pop Bit 8-20
About Trap Macros 8-20
About Routine Selectors 8-21
Using the Trap Manager 8-21
Determining If a System Software Routine is Available 8-21
Patching a System Software Routine 8-23
Trap Manager Reference 8-25
Routines 8-25
Accessing Addresses From the Trap Dispatch Tables 8-25
Installing Patch Addresses Into the Trap Dispatch Tables 8-28

Contents 8-1

8-2

CHAPTER 8

Detecting Unimplemented System Software Routines 8-32
Manipulating One Trap Dispatch Table (Obsolete Routines)
Summary of the Trap Manager 8-34
Pascal Summary 8-34
C Summary 8-35
Assembly-Language Summary 8-36

Contents

8-32

CHAPTER 8

Trap Manager

This chapter describes how your application can use the Trap Manager to augment or
override an existing system software routine.

Although this chapter describes patching in some depth, you should rarely, if ever, find
a need to use patches in an application. The primary purposes of patches, as their name
suggests, are to fix problems and augment routines in ROM code.

To use this chapter, you should have some knowledge of assembly language. For
information about the instruction sets of microprocessors in the Motorola MC680x0
family, see the appropriate user’s manual, for example, the MC68020 32-Bit
Microprocessor User’s Manual.

This chapter describes how the Trap Manager works and then shows how you can use
the Trap Manger to

» check for the availability of a system software routine

» alter the behavior of a system software routine

About the Trap Manager

The Trap Manager is a collection of routines that lets you add extra capabilities to system
software routines.

In order to execute system software routines, system software takes advantage of the
unimplemented instruction feature of the MC680x0 family of microprocessors, which
are the central processing units (CPUs) used in the Macintosh family of computers.

The MC680x0, like other microprocessors, executes a stream of instructions. Information
encoded in an instruction indicates the operation to be performed by the microprocessor.
The MC680x0 family of microprocessors recognizes a defined set of instructions. When
the microprocessor encounters an instruction that it doesn’t recognize, an exception

is generated. An exception refers to bus errors, interrupts, and unimplemented
instructions. When an exception occurs, the microprocessor suspends normal execution
and transfers control to an appropriate exception handler.

In the MC680x0 family of microprocessors, all instructions starting with the hexadecimal
digit $A are unimplemented instructions. These unimplemented instructions are also
called A-line instructions. System software uses these unimplemented A-line
instructions to execute system software routines. When you call a system software
routine, the call to the system software routine is translated into an A-line instruction.
The MC680x0 microprocessor doesn’t recognize this A-line instruction, and transfers
control to an exception handler.

System software provides an exception handler, called a trap dispatcher, to handle
exceptions generated by A-line instructions. Whenever a MC680x0 microprocessor
encounters an A-line instruction, an exception is generated, and the microprocessor
transfers control to the trap dispatcher. An exception generated by an A-line instruction
is called a trap.

About the Trap Manager 8-3

Jabeue deip n

CHAPTER 8

Trap Manager

When the trap dispatcher receives the A-line instruction, it looks into a table, called a
trap dispatch table, to find the address of the called system software routine. After the
trap dispatcher retrieves the address, it transfers control to the specified system software
routine. Figure 8-1 illustrates the processing of instructions that include the A-line

instructions that the microprocessor does not recognize.

Figure 8-1 How the CPU processes A-line instructions

8-4

Machine
instruction

Does
CPU
recognize
instruction?

No

@ Exception (trap)

CPU executes
Yes) instruction

. Retrieves
Trap dispatcher address | Trap dispatch

5 table

Executes

System
software
routine

You can use the Trap Manager routines to read from and write to the two trap dispatch

tables maintained by system software.

About the Trap Manager

CHAPTER 8

Trap Manager

Trap Dispatch Tables

System software uses trap dispatch tables to locate the address of system software
routines. System software maintains two trap dispatch tables: an Operating System
trap dispatch table and a Toolbox trap dispatch table. Figure 8-2 illustrates the two trap
dispatch tables.

Figure 8-2 Trap dispatch tables

Toolbox trap dispatch table Operating System trap dispatch table
Address Address
1 1
256
1024

At system startup time, system software builds the trap dispatch tables and places
them in RAM. The Operating System trap dispatch table contains 256 entries, and the
Toolbox trap dispatch table contains 1024 entries. Each entry in the Operating System
trap dispatch table contains a 32-bit address of an Operating System routine, and each
entry in the Toolbox trap dispatch table contains a 32-bit address of a Toolbox routine.
The system software routines can be located in either ROM or RAM.

Process for Accessing System Software Routines

As previously described, when your application calls a system software routine, an
A-line instruction is sent to the microprocessor. The microprocessor does not recognize
this instruction, and an exception is generated. This exception is then handled by the
trap dispatcher. When the trap dispatcher receives the A-line instruction, it looks into
one of the two trap dispatch tables to find the address of the called system software
routine. When the trap dispatcher retrieves the address, it transfers control to the
specified system software routine. For example, Figure 8-3 illustrates a call to the
Toolbox procedure, Fi | | Rect . When the application calls the Fi | | Rect procedure,
an exception is generated. The trap dispatcher looks into the Toolbox trap dispatch table
to find the address of the Fi | | Rect procedure. When the address is found, the trap
dispatcher transfers control to the Fi | | Rect procedure.

About the Trap Manager 8-5

Jabeue deip n

CHAPTER 8

Trap Manager

Figure 8-3 Accessing the Fi | | Rect procedure

Toolbox trap dispatch table

Address

SXXXXXXXX

1024

Trap dispatcher

e Applicati lls a Toolb
ppiication calls a Toolbox o Gets the address from

routine — the trap dispatch table
Fill Rect (r, pat);

A

e Transfers control to the

routine at the retrieved
address

System software routine

PROCEDURE
Fill Rect(r: Rect;
pat: Pattern);

8-6

Note

Not all A-line instructions are defined. When the trap dispatcher
receives an undefined A-line instruction, the trap dispatcher returns the
address of the Toolbox procedure Uni npl ement ed. When called, the
Uni mpl enent ed procedure triggers a system error. 0

Patches and System Software Routines

You can modify the trap dispatch table so that the address that gets returned to the trap
dispatcher points to a different routine instead of the intended system software routine;
this is useful if you want to augment or override an existing system software routine.
The routine that augment an existing system software routine is called a patch. The
method of augmenting or overriding a system software routine is called patching a trap.

For example, you can augment the Fi | | Rect procedure with your own procedure
MyPat chFi | | Rect . Figure 8-4 illustrates another call to the Toolbox procedure

Fi | | Rect . When the application calls the Fi | | Rect procedure the application-defined
patch MyPat chFi | | Rect is executed first. After the application-defined patch

MyPat chFi | | Rect completes its primary action, it transfers control (through a IMP
instruction) to the original Fi | | Rect procedure.

About the Trap Manager

CHAPTER 8

Trap Manager

IMPORTANT
Although this chapter describes patching in some detail, you should
avoid any unnecessary patching of the system software. One very good
reason to avoid patching is that is causes a performance reduction. The
performance reduction is especially substantial when your patch is
executed on a PowerPC processor-based Macintosh computer, where it
is necessary to switch execution environments when entering and
exiting your patch code. For more information about patching PowerPC
system software, see Inside Macintosh: PowerPC System Software. a

Figure 8-4 Augmenting the Fi | | Rect procedure with a single patch

Toolbox trap dispatch table

Address
1
SYYYYYYYY
1024
Trap dispatcher
- Gets the address from
® Application calls a Toolbox ° : .
routine the trap dispatch table -y
. e Transfers control to the
Fill Rect (r, pat); routine at the retrieved I
address
Patch System software routine
PROCEDURE PROCEDURE

MyPat chFi | | Rect Fill Rect (r: Rect;

r: Rect; pat: Pattern),;
(P) pat: Pattern);

<
* Calls orginal routine ($XXXXXXXX) |)

Note

To prevent dangling patch addresses, you must ensure that your patch
routine is in a locked memory block while its address is in the trap
dispatch table. O

About the Trap Manager

8-7

Jabeue deip n

8-8

CHAPTER 8

Trap Manager

Daisy Chain of Patches

It is possible to patch a system software routine with more than just one patch; this is
called a daisy chain of patches. Typically, you extract from the trap dispatch table the
address of the routine you wish to patch, save this address, and then install your own
patch routine. When your patch has completed its tasks, it should jump to the address
you previously extracted from the trap dispatch table. In this way, the patches take the
general form of a daisy chain. Each patch will execute in turn and jump to the next patch
until the last link in the chain, which returns control to the trap dispatcher.

IMPORTANT
Although this chapter describes patching in some depth, you should
rarely, if ever, find a need to use patches in an application. The primary
purposes of patches, as their name suggests, are to fix problems and
augment routines in ROM code. a

A patch can be implemented as either a head patch, tail patch, or come-from patch.
These are described in the next sections.

Head Patch (Normal Patch)

A head patch, also referred to as a normal patch, is a routine that gets executed before
the original system software routine. A head patch performs its primary action and then
uses a jump instruction (JMP) to jump to the system software routine. Thus the head
patch does not regain control after the execution of the system software routine. After
the execution of the system software routine, control is transferred back to the trap
dispatcher.

Tail Patch

Atail patchis a routine that gets executed before the original system software routine
and regains control after the execution of the system software routine. A tail patch uses
a jump-subroutine instruction (J SR) to transfer control to the system software routine.
After the system software routine returns control to the tail patch, the tail patch returns
control to the trap dispatcher.

WARNING
You should never install tail patches in system software versions earlier
than System 7. Tail patches may conflict with come-from patches,
installed by Apple. a

Come-From Patch (Used Only by Apple)

A come-from patch, also called a system patch, is a type of patch used only by Apple.
Come-from patches are used to replace erroneous code or to add capabilities not in ROM.

When a come-from patch is invoked, it examines the stack to determine where it was
called from. If the come-from patch was invoked from a particular place in ROM (a spot
where the code needs to be augmented or deleted), the come-from patch executes the

About the Trap Manager

CHAPTER 8

Trap Manager

modifying code. Otherwise, if the come-from patch was called from a part of the system
that does not need to be augmented, it transfers control to the next routine in the daisy
chain. This routine could be another patch or the system software routine.

Beginning with System 7, the addresses of come-from patches are permanently placed in
the trap dispatch table at system startup time. The addresses of come-from patches are
hidden and cannot be manipulated by any of the Trap Manger routines.

For example, if a system software routine has a come-from patch and if you use the

Trap Manger function NGet Tr apAddr ess to retrieve the address of the system software
routine, you will not get the address in the trap dispatch table (which is the address of
the come-from patch). NGet Tr apAddr ess instead returns the address of the routine
that is executed immediately after the come-from patch. This address could be the
address of another patch or the system software routine.

If a system software routine has a come-from patch and if you use the Trap Manager
procedure NSet Tr apAddr ess to install a patch to the system software routine,

the address of the patch is not written into the trap dispatch table. Instead, the

NSet Tr apAddr ess procedure installs the address of the patch into the last come-from
patch. The patch is executed after the completion of the come-from patch.

WARNING

In system software before System 7, if a come-from patch is invoked by a
tail-patch, the come-from patch does not work correctly. The come-from
patch never sees the ROM address on the stack—only the return address
of the tail-patch. a

Patch for One Application

If you install a patch into your application heap, the patch applies only to your
application. When your application is switched out, your application’s heap
(and patch) is swapped out. For example, if you patch Fi | | Rect with the patch
MyPat chFi | | Rect, the MyPat chFi | | Rect patch is executed only when the
Fi | | Rect procedure is called from your application.

Note

When running in System 7 or under MultiFinder in System 6, each
application has its own copy of the trap dispatch tables. This ensures
that an application’s patches apply only when it is running and that
they’re discarded when the application quits. O

Patch for All Applications

If you install a patch from a system extension during system startup, your patch is
placed in the system heap and applies to all applications. For example, if you patch the
Fi I | Rect procedure with the patch MyPat chFi | | Rect from a system extension, the
MyPat chFi | | Rect patch is executed every time the Fi | | Rect procedure is called, no
matter which application calls it.

About the Trap Manager 8-9

Jabeue deip n

CHAPTER 8

Trap Manager

A-Line Instructions

When your application calls a Toolbox or an Operating System routine, an A-line
instruction is sent to the microprocessor. Each A-line instruction contains information
about the called system software routine. Figure 8-5 shows the layout of an A-line
instruction.

Figure 8-5 A-line instruction format

15 14 13 12 11 10 0
| 1 ‘ 0 ‘ 1 ‘ 0 ‘ Flags and trap number

—|

$A 0 = Operating System trap
1 = Toolbox trap

The high-order 4 bits of an A-line instruction have the hexadecimal value $A, hence
the name A-line instruction. Bit 11 of the A-line instruction indicates the type of system
software routine to be invoked: a value of 0 in bit 11 indicates an Operating System
routine, a value of 1 in bit 11 indicates a Toolbox routine. The trap number in an A-line
instruction is used as an index into the appropriate dispatch table. The meaning of the
flags vary accordingly to the type of A-line instruction.

When your application calls a system software routine (thereby generating an
exception), the microprocessor pushes an exception stack frame onto the stack. Figure
8-6 shows a typical exception stack frame. After pushing the exception stack frame on
the stack, the microprocessor transfers control to the trap dispatcher.

Figure 8-6 Exception stack frame (on Macintosh computers with a MC68020 microprocessor

8-10

or greater)

Stack on entry to trap dispatcher

Vector offset

Program Counter

Status register
Stack

Pointer

About the Trap Manager

CHAPTER 8

Trap Manager

The trap dispatcher discards the status register and vector offset. Depending on whether
the A-line instruction is used to invoke an Operating System routine or a Toolbox
routine, the trap dispatcher deals with the stack and registers in two very different ways,
as described in the next section, “A-line Instructions for Operating System Routines,”
and in the section “A-Line Instructions for Toolbox Routines” beginning on page 8-14.

Note

The exception handler is located at address $28 on computers with an
MC68000 microprocessor and at address $28 offset from the address in
the microprocessor’s Vector Base Register (VBR) on computers with
other MC680x0 microprocessors. Consult the relevant microprocessor
handbook for the precise details of exception handling on the MC680x0
microprocessor of interest to you. O

A-Line Instructions for Operating System Routines

An Operating System trap is an exception that is caused by an A-line instruction that
executes an Operating System routine.

When dispatching an Operating System trap, the trap dispatcher extracts the trap
number from the A-line instruction and uses it as an index into the Operating System
trap dispatch table. The entry in the Operating System trap dispatch table contains the
address of the desired Operating System routine. Figure 8-7 illustrates an A-line
instruction for an Operating System routine.

Figure 8-7 An A-line instruction for an Operating System routine
15 14 13 12 11 10 9 8 7 0
|1‘0‘1‘0 0‘ ‘ ‘ ‘ Trap number
L L] .

Return/save AO bit
Flags
$A 0 = Operating System trap

Bit 11 tells the trap dispatcher that this A-line instruction invokes an Operating System
routine. Two flag bits, bit 10 and bit 9, are reserved for use by the Operating System
routine itself and are discussed in detail in “Flag Bits” on page 8-14. Bit 8 indicates
whether the value in register A0 is returned from the Operating System routine. If bit 8
is 0, the value in register AO is returned from the Operating System routine. If bit 8 is 1,
the value in register A0 is not returned by the Operating System routine. As previously
described, the trap number is in bits 7-0 and is used to determine which of the

256 possible Operating System routines is executed.

For example, a call to the Operating System function Get Pt r Si ze is translated to the
A-line instruction $A021. This A-line instruction causes the microprocessor to transfer

About the Trap Manager 8-11

Jabeue deip n

CHAPTER 8

Trap Manager

control to the trap dispatcher, which deals with any instruction of the form $Axxx. The
trap dispatcher first saves registers DO, D1, D2, Al, and, if bit 8 is 0, A0. The trap
dispatcher places the A-line instruction itself into the low-order word of register D1 so
that the Operating System routine can inspect the flag bits. Next, the trap dispatcher
examines the other bits in the A-line instruction. The value (0) of bit 11 indicates that

Get Pt r Si ze is an Operating System routine, and that the value in bits 7-0 is the index
into the Operating System trap dispatch table. The trap dispatcher uses the index (which
is 33 in this example) to find the address of the Get Pt r Si ze function in the Operating
System trap dispatch table. When the address is found, the trap dispatcher transfers
control to the Get Pt r Si ze function.

Figure 8-8 illustrates the stack after the trap dispatcher has transferred control to an
Operating System routine.

Figure 8-8 The stack on entry to an Operating System routine

8-12

Stack on entry to
Operating System routine

Program Counter

Unspecified long word

/ Savedregisters A0, Al, DO-D2 /

Program Counter
Stack (in trap dispatcher)

Pointer { {

The Operating System routine may alter any of the registers D0-D2 and A0-A2, but it
must preserve registers D3-D7 and A3-A6. The Operating System routine may return
information in register DO (and AO if bit 8 is set). To return to the trap dispatcher, the
Operating System routine executes the RTS (return from subroutine) instruction.

When the trap dispatcher resumes control, first it restores the value of registers D1, D2,
Al, A2, and, if bit 8 is 0, A0. The values in registers D0 and, if bit 8 is 1, in A0 are not
restored.

Calling Conventions for Register-Based Routines

Register-based routines receive their parameters from microprocessor registers, and they
pass their results in microprocessor registers. Virtually all Operating System routines are
register-based routines.

About the Trap Manager

CHAPTER 8

Trap Manager

An Operating System routine returns information only in registers D0 and, if bit 8 is 1,
AO0. The stack and all other registers are unchanged.

Many Operating System routines return a result code in the low-memory word of
register DO to report whether the requested operation was performed successfully.

A result code of 0 indicates that the routine completed successfully; any other value
typically indicates an error. Just before the trap dispatcher finishes execution, it tests
the low-order word of register DO with a TST.W instruction to set the condition codes
of the microprocessor.

Note

Calling conventions for PowerPC microprocessor-based Macintosh
computers are different from the calling conventions described for in
this section. For information about calling conventions for PowerPC
processor-based Macintosh computers, see Inside Macintosh: PowerPC
System Software. O

Parameter-Passing Conventions for Operating System Routines

By convention, register-based routines normally use register A0 for passing addresses
(such as pointers to data objects) and register DO for other data values (such as integers).

For routines that take more than two parameters, the parameters are normally collected
in a parameter block in memory and a pointer to the parameter block is passed in
register AQO. See the description of an individual routine in the appropriate

Inside Macintosh book for exact details.

Function Results

Most Operating System functions return their function result (or result code) in register
DO. Parameters are returned through register A0, usually as a pointer to a parameter
block.

Whether the trap dispatcher preserves register A0 depends on the setting of bit 8 in the
A-line instruction. If bit 8 is 0, the trap dispatcher saves and restores register AO; if it’s 1,
the routine passes back register A0 unchanged. Thus, bit 8 of the A-line instruction
should be set to 1 only for those routines that use register A0 to return information.

The trap macros automatically set this bit correctly for each routine.

To see in which register the function passes the function result, see the description of
the individual function in the appropriate Inside Macintosh book.

About the Trap Manager 8-13

Jabeue deip n

8-14

CHAPTER 8

Trap Manager

Flag Bits

Many Operating System routines use the flag bits in an A-line instruction to encode
additional information used by the routine. For example, the A-line instructions that
invoke Memory Manager routines define the two flag bits like this:

Bit Explanation

9 If 1, initialize all bytes in the allocated memory to 0.
If 0, do not initialize all bytes in the allocated memory to 0.

8 If 1, allocate memory from the system heap.
If 0, allocate memory from the application heap.

These two bits are defined in assembly language as:

CLEAR EQU $200 ;initialize block to zero
SYS EQU $400 ;use the system heap

When used with a Memory Manager A-line instruction, these modifiers cause flag bits
9 and 10, respectively, to be set. They could be used in an assembly-language instruction
sequence like

MOVEQ #124, DO ;need 124 bytes

_NewPt r SYS, CLEAR ;all ocate requested nenory in
; system heap and initialize to
; zeroes

The SYS modifier specifies allocation from the system heap, regardless of the value of
the global variable TheZone, and the CLEAR modifier specifies that the Memory
Manager should initialize the block contents to zero. For further details, consult Inside
Macintosh: Memory.

A-Line Instructions for Toolbox Routines

A Toolbox trap is an exception that is caused by an A-line instruction that executes a
Toolbox routine.

When dispatching a Toolbox trap, the trap dispatcher extracts the trap number from the
A-line instruction and uses it as an index into the Toolbox trap dispatch table. The index
points to the entry in the Toolbox trap dispatch table that contains the address of the
desired Toolbox routine. Figure 8-9 illustrates an A-line instruction that is used to access
a Toolbox routine.

About the Trap Manager

CHAPTER 8

Trap Manager

Figure 8-9 An A-line instruction for a Toolbox routine
15 14 13 12 11 10 9 0
|1‘0‘1‘0‘1‘ ‘ Trap number
Auto-pop bit
$A 1=Toolbox trap

Bit 11 tells the trap dispatcher that this A-line instruction is used to access a Toolbox
routine. Bit 10 is the auto-pop bit. Bits 9-0 contain the trap number which, as previously
described, determine which of the 1024 possible Toolbox routines is executed. The
auto-pop bit is described in detail in “The Auto-Pop Bit” on page 8-20.

For example, a call to the Toolbox function Wi t Next Event is translated to the A-line
instruction $A860. This A-line instruction causes the microprocessor to transfer control
to the trap dispatcher, which deals with any instruction of the form $Axxx. The trap
dispatcher examines the other bits in the A-line instruction. The value (0) of bit 11
indicates that Vi t Next Event is a Toolbox routine and that the value in bits 9-0 is

the index into the Toolbox trap dispatch table. The trap dispatcher uses the index (which
is $60 in this example) to find the address of the Wi t Next Event function in the
Toolbox trap dispatch table. When the address is found, the trap dispatcher transfers
control to the Wi t Next Event function.

Figure 8-10 illustrates the stack after the trap dispatcher has transferred control to a
Toolbox routine.

Figure 8-10 Stack when entering a Toolbox routine

Stack on entry to Toolbox routine

Additional parameters
and extra information

{ {
; ;

Program Counter
Stack

Pointer : Z Z

The value of the Program Counter that is left on the stack before entry to the Toolbox
routine points to the instruction that is executed after the completion of the
Toolbox routine.

About the Trap Manager 8-15

Jabeue deip n

8-16

CHAPTER 8

Trap Manager

After the trap dispatcher completes execution, the internal status of the stack is restored,
and normal execution resumes from the point at which processing was suspended.

A Toolbox routine changes the Stack Pointer in register A7 and pops the return address
and any input parameters. A routine might also alter registers D0-D2, A0, and Al.

WARNING

Some Toolbox routines (for example the LongMul procedure described
in the chapter “Mathematical and Logical Utilities” in this book)
preserve more than the required set of registers. However, you should
assume all of registers D0-D2, A0, and Al are altered by Toolbox
routines. a

Calling Conventions for Stack-Based Routines

Stack-based routines receive their parameters on the stack and return their results on the
stack. Virtually all Toolbox routines are stack-based routines.

Most Toolbox routines follow Pascal calling conventions; that is, Toolbox routine
parameters are evaluated from left to right and are pushed onto the stack in the order

in which they are evaluated. Function results are returned by value or by address on the
stack. Space for the function result is allocated by the caller before the parameters are
pushed on the stack. The caller is responsible for removing the result from the stack
after the call.

Note

Calling conventions for PowerPC microprocessor-based Macintosh
computers are different from the calling conventions described in this
section. For information about calling conventions for PowerPC
processor-based Macintosh computers, see Inside Macintosh: PowerPC
System Software. O

Figure 8-11 illustrates Pascal calling conventions. In this example, a routine calls the
application-defined function MyPascal Fn. When the application calls the function
MyPascal Fn, the application must first make room on the stack for the function result,
then push the parameters on the stack in left-to-right order.

About the Trap Manager

CHAPTER 8

Trap Manager

Figure 8-11

Pascal calling convention

Stack
Pointer

7

Stack on entry to function }

Reserved space for
function result

Return address

7

7

FUNCTI ON MyPascal Fn (x: | nt eger;

Stack
Pointer

Stack on return from function

7

/

Function result

7

y: I nteger; z:Longlnt): Longlnt;

Figure 8-12 illustrates C calling conventions. In this example, a routine calls the

application-defined function MyCFn. When the application calls the function MyCFn, the
application pushes the parameters on the stack in right-to-left order. The function result
is returned in register DO, and not on the stack.

Figure 8-12 C calling convention
Stack on entry to function
c
b a
Return address

Stack

Pointer { 4

Il ong MyCFn (short a, short b, long c);

About the Trap Manager

8-17

Jabeue deip n

8-18

CHAPTER 8

Trap Manager

Parameter-Passing Conventions for Toolbox Routines

All variable parameters (parameters of type VAR) are passed as pointers to the actual
storage location. In the case of byte-sized types, parameters of type VAR may have odd

values.

Nonvariable parameters are passed in different ways, depending on the type of the
parameter. Values of type Bool ean, elements of an enumerated type with fewer than
128 elements, and subranges within the range —128 to 127 are passed as signed byte
values. Values of type | nt eger and, Char and all other enumerations and subranges
are passed as signed word values. Pointers and values of type Longl nt are passed as
signed 32-bit values. Table 8-1 summarizes the parameter-passing conventions.

Table 8-1

Toolbox parameter-passing conventions

Parameter type
Boolean

Char

Integer

Longint

Pointer

Enumeration: range 0 to 127
Enumeration: range 0 to 32767
Subrange: range —-128 to 127
Subrange: range —32768 to 32767
Real

Double

Comp

Extended

ARRAY, RECORD, string < 4 bytes
ARRAY, RECORD, string > 4 bytes
SET

Data object pushed on stack
Byte: range O to 1

16 bits: range 0 to 255

16 bits: range —32768 to 32767
32 bits

32 bits

Byte: range 0 to 127

16 bits: range 0 to 32767

16 bits: range —-128 to 127
Word: range —32768 to 32767
Address of Ext ended copy
Address of Ext ended copy
Address of Ext ended copy
Address of argument

Value (word or long word)
Address of value

SET value rounded to whole number of words

A parameter of type SET is passed by rounding its size up to the next whole word, if

necessary, then pushing its value so that the lowest-order word is pushed last. In the case
of a byte-size SET, the called procedure accesses only the low-order half of the word that

is pushed.

About the Trap Manager

CHAPTER 8

Trap Manager

Note

A byte pushed on the stack occupies the high-order byte of the word
allocated for it, according to conventions for the MC680x0
microprocessors. O

WARNING
A value of type Char is passed as a word value. The value occupies the
low-order half of the word. a

Function Results

Function results are returned by value or by address on the stack. Space for the function
result is allocated by the caller before the parameters are pushed. The caller is
responsible for removing the result from the stack after the call.

For types Bool ean, Char, and | nt eger and for enumerated and subrange types, the
caller allocates a word on the stack to make space for the function result. Values of type
Bool ean, enumerated types with fewer than 128 elements, and subranges within the
range —128 to 127 are returned as signed byte values. The value is placed in the
high-order byte of the word.

Values of type | nt eger and Char and all enumerated and subrange types not covered
above are returned as signed word values.

Pointers and values of type Longl nt are returned as signed 32-bit values. Values of type
Real are returned as 32-bit real values. For types whose values are greater than 4 bytes
in size, the caller pushes a pointer to a temporary location into which the function places
the result; these types include Doubl e (8 bytes), Conp (8 bytes), and Ext ended (10 or 12
bytes); types SET, ARRAY, RECORD; and strings greater than 4 bytes in size.

For a 1-byte SET, for types SET, ARRAY, and RECORD, and for strings whose size is one
word, the caller allocates a word on the stack. For types SET, ARRAY, and RECORD and
strings whose size is two words, the caller allocates a long word on the stack.

The conventions for returning results of functions are summarized in Table 8-2.

Table 8-2 Conventions for returning results from Toolbox functions

Data object left on stack or returned

Function result type through pointer on stack
Boolean Byte: rangeOto 1

Char 16 bits: range 0 to 255

Integer 16 bits: range —32768 to 32767
Longlint 32 bits

Pointer 32 bits

Enumeration: range 0 to 127 Byte: range 0 to 127
Enumeration: range 0 to 32767 16 bits: range 0 to 32767

continued

About the Trap Manager 8-19

Jabeue deip n

8-20

CHAPTER 8

Trap Manager

Table 8-2

Conventions for returning results from Toolbox functions (continued)

Function result type
Subrange: range -128 to 127

Subrange: range 32768 to 32767
Real

Double

Comp

Extended

ARRAY, RECORD, string < 4 bytes
ARRAY, RECORD, string > 4 bytes
SET: one byte

SET: one word

SET: two words

SET > two words

Note

Data object left on stack or returned
through pointer on stack

Byte: range —-128 to 127

16 bits: range —32768 to 32767

Real

Doubl e at address given by pointer
Conp at address given by pointer
Ext ended at address given by pointer
Value (word or long word)

Value at address given by pointer
Byte value

16-bits value

32-bits value

Value at address given by pointer

A 1 byte-size return value occupies the high-order byte of the word

allocated for it. O

The Auto-Pop Bit

The auto-pop bit is bit 10 in an A-line instruction for a Toolbox routine. Some language
systems prefer to generate jump-subroutine calls (J SR) to intermediate routines, called
glue routines, which then call Toolbox routines instead of executing the Toolbox routine
directly. This glue method would normally interfere with Toolbox traps because the
return address of the glue subroutine is placed on the stack between the Toolbox
routine's parameters and the address of the place where the glue routine was called
from (where control returns once the Toolbox routine has completed execution).

The auto-pop bit forces the trap dispatcher to remove the top 4 bytes from the stack
before dispatching to the Toolbox routine. After the Toolbox routine completes execution,
control is transferred back to the place where the glue routine was called from, not back
to the glue routine.

Most development environments, including MPW, do not use this feature.

About Trap Macros

A trap macro is an assembly-language macro that assembles into an A-line instruction,
used for calling a Toolbox or Operating System routine from assembly language. The
names of all trap macros begin with the underscore character (), followed by the name

About the Trap Manager

CHAPTER 8

Trap Manager

of the corresponding routine. As a rule, the macro name is the same as the name used
to call the routine from Pascal. For example, to call the Window Manager function
NewwW ndow you should use an instruction with the macro name _NewW ndow There
are some exceptions, however, in which the spelling of the macro differs from the name
of the Pascal routine itself; these are noted in the documentation for the individual
routines.

Trap macros for Toolbox routines take no arguments; any parameters must be pushed

on the stack before invoking the routine. See “Calling Conventions for Stack-Based
Routines” on page 8-16 for more information. Trap macros for Operating System
routines may have as many as three optional arguments. The first argument, if present,

is used to load a register with a parameter value for the routine you’re calling. The
remaining arguments control the settings of the various flag bits in the A-line instruction.

About Routine Selectors

A routine selector is a value that is pushed on the stack to select a particular routine from
a group of routines to be executed. Many trap macros take routine selectors. For
example, the trap macro _HFSDi spat ch has the possibility of calling 42 different
system software routines. Hence, the trap macro has 42 different routine selectors. The
routine selector that is passed on the stack (for _HFSDi spact h to access) selects which
of the 42 software routines _HFSDi spat ch executes.

Most system software routines that are accessed through a trap macro and a routine
selector also have a corresponding macro that expands to call the original trap macro
and automatically puts the correct routine selector on the stack. For example, the trap
macro _Get Cat | nf o expands to call _HFSDi spat ch and places the selector $0009 on
the stack after the parameters.

Using the Trap Manager

You can use the Trap Manger to read from and write to a trap dispatch table. To

read an address from a trap dispatch table, you can call the NGet Tr apAddr ess,

CGet OSTr apAddr ess, or Get Tool boxTr apAddr ess functions. To write an address to
a trap dispatch table, you can use the NGet Tr apAddr ess, Get OSTr apAddr ess, or
Cet Tool boxTr apAddr ess procedures.

This section shows how you can use the Trap Manager to
= determine if a system software routine is available

= patch a system software routine

Determining If a System Software Routine is Available

You can use the Trap Manager to determine the availability of system software routines.

Using the Trap Manager 8-21

Jabeue deip n

CHAPTER 8

Trap Manager

The Gestalt Manager, introduced in System 6.0.4 and discussed in the chapter “Gestalt
Manager” in this book, is the primary tool for querying the system about its features. But
if you expect your application to run on a system older than System 6.0.4, the Gestalt
Manager may not be available.

The example in this section shows how you can use the Trap Manager to check whether
a particular system software routine is available on the installed system.

At startup time, system software places the address of the Uni npl erment ed procedure
into all entries of each trap dispatch table that do not contain an address of a Toolbox or
Operating System routine (or the address of a come-from patch). Listing 8-1 illustrates
how you can use these Uni npl ermrent ed addresses to determine whether a particular
system software routine is available on the user’s system. If a system software routine
is available, its address differs from the address of the Uni npl enment ed procedure.

Listing 8-1 Determining if a system software routine is available

FUNCTI ON MySWRout i neAvai |l abl e (trapWrd: Integer): Bool ean;
VAR
trType: TrapType;
BEG N
{first deternmine whether it is an Operating System or Tool box routine}
| F ORD(BAND(t rapWord, $0800)) = 0 THEN
trType := OSTrap
ELSE
trType : = Tool Trap;
{filter cases where ol der systens nask w th $1FF rather than $3FF}
IF (trType = Tool Trap) AND (ORD(BAND(trapWord, $03FF)) >= $200) AND
(Get Tool boxTr apAddr ess($AB6E) = Get Tool boxTr apAddr ess($AAGE)) THEN
MySWRout i neAvai | abl e : = FALSE
ELSE
MySWRout i neAvai | abl e :

(NGet Tr apAddr ess(trapWrd, trType) <>
CGet Tool boxTr apAddr ess(_Uni npl enent ed)) ;
END;

Note

Macintosh Plus and Macintosh SE computers with system software prior
to System 7 masked their trap numbers with $1FF in the

CGet Tool boxTr apAddr ess function so that the address of A-line
instruction $AAGE (whether implemented or not) would be the same as
A-line instruction $A86E, which invokes the | ni t Gr af routine. O

You can use the application-defined procedure MySWRout i neAvai | abl e to check for
system software routines not supported by the Gestalt Manager. A notable example is
the Wai t Next Event function, which has never had Gest al t selectors. Listing 8-2
shows two common uses of the application-defined MySWRout i neAvai | abl e
procedure.

8-22 Using the Trap Manager

CHAPTER 8

Trap Manager

Listing 8-2 Determining whether VAi t Next Event and Gest al t are available

VAR
gHasWNE, gHasGCestalt: Bool ean;

{check for the availability of WitNextEvent}
gHasWNE : = MySWRout i neAvai | abl e(_Wai t Next Event);
{check for the availability of Getstalt}
gHasCGestalt := MySWRouti neAvail abl e(_GCestalt);

Patching a System Software Routine

Although this chapter describes patching in some depth, you should rarely, if ever, find
a need to use patches in an application. The primary purposes of patches, as their name
suggests, are to fix problems and augment routines in ROM code. The examples in this

section are only included for the sake of completeness.

Listing 8-3 illustrates a patch for the SysBeep Operating System procedure. When
SysBeep is called, this application-defined patch My SysBeep is executed before
transferring control to the original SysBeep procedure.

Listing 8-3 Patching the Sy sBeep Operating System procedure

PROCEDURE MySysBeep (duration: Integer);
VAR
ol dPort: GafPtr;
w\gr Port : Gafbtr;
i I nt eger;
BEG N
Get Port (ol dPort);
Get WWMgr Por t (wivgr Port) ;
Set Port (wMpgr Port) ;
FOR := 3 DOANTO 0 DO BEA N
I nvert Rect (wMgr Port”. portBits. bounds);
END;
Set Port (ol dPort);
END; {of MySysBeep}

To transfer control to the next routine in the daisy chain (in this example the

original SysBeep procedure), the application-defined Myl nst al | APat ch procedure
(Listing 8-5) uses the application-defined procedure MyFol | owbai syChai n, shown in
Listing 8-4. The MyFol | owDai syChai n duplicates the parameter for the SysBeep
procedure and then pushes the address of the SysBeep procedure on the stack.

Listing 8-4 shows the application-defined procedure MyFol | owDai syChai n.

Using the Trap Manager 8-23

Jabeue deip n

CHAPTER 8

Trap Manager

Listing 8-4 Jumping to the next routine in the daisy chain

MyFol | owDai syChai n PROC EXPORT
| MPORT MYSYSBEEP

BRA. S @

@ DC. L $50FFC001

@ MOWE.W $4(A7), - (A7) ;duplicate the paraneters
MOVE. L @, - (A7) ; and push the chain |ink
BRA. S MYSYSBEEP
NOP

ENDPROC

END

The application-defined procedure Myl nst al | APat ch in Listing 8-5 installs a patch
into the daisy chain (in this example, the My SysBeep patch). First, the procedure calls
the NGet Tr apAddr ess function to get the address of the next routine in the daisy chain.
This address could be the address of another patch or the system software routine. Next,
Myl nst al | APat ch calls the NSet Tr apAddr ess procedure to put the address of the
new patch (in this example, the address of My SysBeep patch) into the trap dispatch
table.

Listing 8-5 Installing a patch

PROGRAM MyPat chl nst al | er;

USES Menory, ToollIntf, OSIntf, OSUils, Wndows,
Tool Utils, Traps, Resources, SanplePatch;

TYPE

Pat chCodeHandl e = ~Pat chCodePtr;

Pat chCodePtr = "Pat chCodeHeader ;

Pat chCodeHeader =

RECORD
br anch: I nt eger;
ol dTr apAddr ess: Longl nt;
END;

PROCEDURE MyFol | owDai syChai n (duration: |nteger); EXTERNAL;
PROCEDURE Myl nstal | APatch (trapNumber: Integer; tType: TrapType;
pPat chCode: PatchCodePtr);

BEG N

pPat chCode”. ol dTr apAddr ess : = NGet Tr apAddr ess(trapNunber,

t Type);

NSet Tr apAddr ess (ORD4(pPat chCode), trapNunber, tType);

END; {of Ml nstall APAt ch}

8-24 Using the Trap Manager

CHAPTER 8

Trap Manager

BEG N
InitGaf (@d.thePort);
I ni t Fonts;
I ni t Wndows;
Myl nst al | APat ch(_SysBeep, Tool Trap,
Pat chCodePt r (@#/Fol | owbDai syChai n));
SysBeep(1);
END. {of MyPatchlnstaller}

Note

The Myl nst al | APat ch procedure used in this example was designed
to install both Operating System and Toolbox patches; it uses the

NCGet Tr apAddr ess and NSet Tr apAddr ess routines. The

NCet Tr apAddr ess and NSet Tr apAddr ess routines both need

a parameter that indicates which type of routine is being patched,

an Operating System or Toolbox routine. O

Trap Manager Reference

This section describes the routines provided by the Trap Manager. You can use these
routines to

= access an address in a trap dispatch table

» install a patch address into a trap dispatch table
This section also documents the Uni npl enent ed procedure.

Routines

This section describes the routines provided by the Trap Manager.

Accessing Addresses From the Trap Dispatch Tables

You can access the address of a system software routine by using the
Get OSTr apAddr ess, Get Tool boxTr apAddr ess or NGet Tr apAddr ess function.

The Get OSTr apAddr ess function retrieves only an Operating System routine address,

and the Get Tool boxTr apAddr ess retrieves only a Toolbox routine address. The
NCGet Tr apAddr ess function is the most general of these functions; you can use the
function to retrieve the address of an Operating System routine or a Toolbox routine.

Trap Manager Reference

8-25

Jabeue deip n

CHAPTER 8

Trap Manager

GetOSTrapAddress

DESCRIPTION

SEE ALSO

You can use the Get OSTr apAddr ess function to access the address of an Operating
System routine, that is located in the Operating System trap dispatch table.

FUNCTI ON Get OSTr apAddress (trapNum Integer): Longlnt;

trapNum Operating System A-line instruction or a trap number. If you specify an
Operating System A-line instruction, the function extracts the trap
number for you.

The Get OSTr apAddr ess function returns the address of the Operating System routine
specified by the t r apNumparameter. If the desired Operating System routine is not
supported on the installed system software, the Get OSTr apAddr ess function returns
the address of the Uni npl enment ed procedure. The t r apNumparameter should contain
a trap number in bits 0-7. Get OSTr apAddr ess masks the irrelevant high-order bits.

A Cet OSTr apAddr ess(trapNum) function call performs the same operation as a
NGet Tr apAddr ess(trapNum OSTr ap) function call.

For more information about the Uni npl enent ed procedure, see page 8-29. For
information about the NGet Tr apAddr ess function, see page 8-27.

GetToolboxTrapAddress

DESCRIPTION

8-26

You an use the Get Tool boxTr apAddr ess function to access the address of a Toolbox
routine, which is located in the Toolbox trap dispatch table. The

Cet Tool boxTr apAddr ess function is also available as the Get Tool Tr apAddr ess
function.

FUNCTI ON Get Tool boxTr apAddress (trapNum |Integer): Longlnt;

trapNum Toolbox A-line instruction or a trap number. If you specify a Toolbox
A-line instruction, the function extracts the trap number for you.

The Get Tool boxTr apAddr ess function returns the address of the Toolbox routine
specified by the t r apNumparameter. If the desired Toolbox routine is not supported
on the installed system software, the Get Tool boxTr apAddr ess function returns the
address of the Uni npl enment ed procedure. The t r apNumparameter should contain a
trap number in bits 0-9. Get Tool boxTr apAddr ess masks the irrelevant high-order

Trap Manager Reference

CHAPTER 8

Trap Manager

bits. A Get Tool boxTr apAddr ess(trapNun) function call performs the same
operation as a NGet Tr apAddr ess(t rapNum Tool Trap) function call.

SEE ALSO
For more information about the Uni npl enent ed procedure, see page 8-29. The
NGet Tr apAddr ess function is described next. For an example of how to use the
Get Tool boxTr apAddr ess function, see Listing 8-1 on page 8-22.
NGetTrapAddress
You can use the NGet Tr apAddr ess function to retrieve the address of either an
Operating System routine or a Toolbox routine.
FUNCTI ON NGet Tr apAddress (trapNum |nteger; tTyp: TrapType)
: Longl nt;
trapNum A-line instruction or a trap number. If you specify an A-line instruction,
the function extracts the trap number for you.
t Typ The trap type. If you supply the t Typ parameter with the constant
OSTr ap, the NGet Tr apAddr ess function retrieves the address from the
Operating System trap dispatch table. If you supply t Typ parameter with
the constant Tool Tr ap, the NGet Tr apAddr ess function retrieves the
address from the Toolbox trap dispatch table.
DESCRIPTION

The NGet Tr apAddr ess function returns the address of the system software routine
specified by the t Typ and t r apNumparameters. Ift Typ is OSTr ap, the

NCet Tr apAddr ess function retrieves the address from the Operating System trap
dispatch table. Ift Typ is Tool Tr ap, the NGet Tr apAddr ess function retrieves the
address from the Toolbox trap dispatch table. If the desired system software routine is
not supported on the installed system software, NGet Tr apAddr ess returns the address
of the Uni npl enent ed procedure. The t r apNumparameter should contain a trap
number in bits 0-7 if t Typ is OSTr ap, and in bits 0-9 if t Typ is Tool Tr ap.

The t r apNumparameter may have any word value; its irrelevant high-order bits are
masked according to the value of the t Typ parameter.

Note

If the system software routine has a come-from patch, the

NCGet Tr apAddr ess function returns the address of the routine
immediately following the come-from patch. O

Trap Manager Reference 8-27

Jabeue deip n

CHAPTER 8

Trap Manager

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The registers on entry and exit for the _Get Tr apAddr ess macro are

Registers on entry
DO An A-line trap word

Registers on exit
A0 Address of next routine in the daisy chain (a system software routine or a patch)

When calling the _Get Tr apAddr ess macro, you set bit 9 of the A-line instruction to
indicate a “new” system; that is, any version since the Macintosh Plus or Macintosh
512K. You use bit 10 to indicate whether the trap in question is a Toolbox routine (by
setting bit 10 to 1) or an Operating System routine (by setting bit 10 to 0). Macintosh
development environments provide the modifier words newTool and newCS to be used
as arguments in the _Get Tr apAddr ess macro.

To obtain the address of a Toolbox trap whose number is in register DO, you use
the macro

_Get TrapAddr ess newTool

This is equivalent to calling NGet Tr apAddr ess (t rapNum newTool). ThetrapNum
parameter is the A-line trap word placed in register DO for the assembly-language call.
Similarly, to obtain the address of an Operating System routine whose A-line trap word
is in register DO, you use the macro

_Get Tr apAddr ess newOS

This is equivalent to calling NGet Tr apAddr ess(trapNum newGCs) .

For information about the Uni npl enent ed procedure, see page 8-29. For information
about the NSet Tr apAddr ess function, see page 8-30.

Installing Patch Addresses Into the Trap Dispatch Tables

8-28

You can install the address of a patch into a trap dispatch table by using the

Set OSTr apAddr ess, Set Tool boxTr apAddr ess, or NSet Tr apAddr ess procedure.
The Set OSTr apAddr ess procedure installs a patch address into the Operating System
trap dispatch table, and the Set Tool boxTr apAddr ess installs a patch address into the
Toolbox trap dispatch table. The NSet Tr apAddr ess procedure is the most general of
these procedures. You can use the NSet Tr apAddr ess procedure to install a patch
address into the Operating System trap dispatch table or into the Toolbox trap

dispatch table.

Trap Manager Reference

CHAPTER 8

Trap Manager

SetOSTrapAddress

DESCRIPTION

SEE ALSO

You can use the Set OSTr apAddr ess procedure to install an Operating System patch
address into an Operating System trap dispatch table.

PROCEDURE Set OSTr apAddr ess (trapAddr: Longlnt; trapNum |nteger);

t r apAddr The Operating System patch address.

trapNum Operating System A-line instruction or a trap number. If you specify
an Operating System A-line instruction, the function extracts the trap
number (located in bits 0-7) for you.

The Set OSTr apAddr ess procedure places the Operating System patch address
specified by the t r apAddr parameter into the Operating System trap dispatch
table. The t r apNumparameter specifies the location of the Operating System
patch address in the Operating System trap dispatch table. The procedure call
Set OSTr apAddr ess(trapAddr, trapNun) performs the same operation as
aNSet Tr apAddr ess(trapAddr, trapNum OSTrap) procedure call.

Note

If the system software routine that is being patched has any come-from
patches, the Set OSTr apAddr ess procedure installs the address of the
patch into the exit JMP instruction of the last come-from patch in the
chain rather than into the trap dispatch table. O

For information about the Uni npl enent ed procedure, see page 8-29. For more
information about the NSet Tr apAddr ess function, see page 8-30.

SetToolboxTrapAddress

You can use the Set Tool boxTr apAddr ess procedure to install a Toolbox patch
address into the Toolbox trap dispatch table. The Set Tool boxTr apAddr ess procedure
is also available as the Set Tool Tr apAddr ess procedure.

PROCEDURE Set Tool boxTr apAddr ess (trapAddr: Longlnt;
trapNum I nteger);

t r apAddr The Toolbox patch address.

trapNum Toolbox A-line instruction or a trap number. If you specify a Toolbox
A-line instruction, the function extracts the trap number (located in
bits 0-9) for you.

Trap Manager Reference 8-29

Jabeue deip n

DESCRIPTION

SEE ALSO

CHAPTER 8

Trap Manager

The Set Tool boxTr apAddr ess procedure places the Toolbox patch address s pecified
by the t r apAddr parameter into the Toolbox trap dispatch table. Thet r apNum
parameter specifies the location of the Toolbox patch address in the Toolbox trap
dispatch table. The Set Tool boxTr apAddr ess(trapAddr, trapNum procedure
performs the same operation as a NSet Tr apAddr ess(t rapAddr, trapNum
ToolTrap) procedure call.

Note

If the system software routine that is being patched has any come-from
patches, the Set Tool boxTr apAddr ess procedure installs the address
of the patch into the exit JMP instruction of the last come-from patch in
the chain rather than into the trap dispatch table. 0O

For information about the Uni npl enment ed procedure, see page 8-29. The
NSet Tr apAddr ess function is described next.

NSetTrapAddress

DESCRIPTION

8-30

You can use the NSet Tr apAddr ess procedure to install a patch address into either an
Operating System trap dispatch table or a Toolbox trap dispatch table.

PROCEDURE NSet Tr apAddress (trapAddr: Longlnt; trapNum |nteger;
t Typ: TrapType);

t rapAddr The patch address.

trapNum A-line instruction or a trap number. If you specify a A-line instruction, the
function extracts the trap number you.

t Typ The trap type. If you supply the t Typ parameter with the constant
OSTr ap, the NSet Tr apAddr ess procedure installs the address into the
Operating System trap dispatch table. If you supply thet Typ parameter
with the constant Tool Tr ap, the NGet Tr apAddr ess function installs
the address into the Toolbox trap dispatch table.

The NSet Tr apAddr ess procedure places the patch address specified by the t r apAddr
parameter into a trap dispatch table. Use the t Typ parameter to specify whether the
patch address belongs in the Operating System trap dispatch table or the Toolbox trap
dispatch table. Ift Typ is OSTr ap, the NSet Tr apAddr ess procedure installs the
address into the Operating System trap dispatch table. Ift Typ is Tool Tr ap, the

NCGet Tr apAddr ess function installs the address into the Toolbox trap dispatch table.
Use the t r apNumparameter to specify the location of the patch address in the dispatch

Trap Manager Reference

CHAPTER 8

Trap Manager

table. The trap number may be any word value; its irrelevant high-order bits are masked
according to the value of the t Typ parameter.

Note

If the system software routine that is being patched has a come-from
patch, the NSet Tr apAddr ess procedure installs the address of the
patch into the exit JMP instruction of the come-from patch (rather than
into the trap dispatch table). O

WARNING
If the first 4 bytes of the t r apAddr parameter is $60064EF9 (indicating a
come-from patch), NSet Tr apAddr ess triggers a system error. a

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry for the _Set Tr apAddr ess macro are

Registers on entry
DO An A-line trap word
A0 Address of next routine in the daisy chain (a system software routine or a patch)

When calling the _Set Tr apAddr ess macro, you set bit 9 of the A-line trap word to
indicate a “new” system; that is, any version since the Macintosh Plus or Macintosh
512K. You use bit 10 to indicate whether the system software routine that is being
patched is a Toolbox routine (by setting bit 10 to 1) or an Operating System routine
(by setting bit 10 to 0).

Macintosh development environments provide the modifier words newTool and newGOS
to be used as arguments in the _Set Tr apAddr ess macro.

Given an A-line instruction in register DO and a system software address in register A0,
you set the Toolbox routine with the trap number in register DO to have the address in
AQ, you use the macro

_Set TrapAddr ess newTool

This is equivalent to calling NSet Tr apAddr ess(trapAddr, trapNum newTlool).
Thet r apAddr parameter is the address placed in register AQ0. Thet r apNumparameter
is the A-line instruction placed in DO for the assembly-language call. Similarly, to set the
address of an Operating System trap whose A-line instruction is in register DO to the
address in register A0 you use the macro

_Set Tr apAddr ess new(CS

This is equivalent to calling NSet Tr apAddr ess(trapAddr, trapNum newOS).

Trap Manager Reference 8-31

Jabeue deip n

SEE ALSO

CHAPTER 8

Trap Manager

The Uni npl enent ed procedure is described next. For information about the

NCGet Tr apAddr ess function, see page 8-27. For an example of how to use the
NSet Tr apAddr ess function, see Listing 8-5 on page 8-24.

Detecting Unimplemented System Software Routines

This section describes the Uni npl enent ed procedure. The address of this procedure
is placed in all undefined entries of a trap dispatch table. When invoked, the
Uni npl enent ed procedure triggers a system error.

Unimplemented

DESCRIPTION

A

The Uni npl enent ed procedure triggers a system error when called.

PROCEDURE Uni npl enrent ed;

The address of the Uni npl ement ed procedure is at system startup time placed into all
entries of each trap dispatch table that do not contain an address of a system software
routine. When called, the Uni npl erment ed procedure triggers the system error 12,
dsCor eEr r, which crashes the currently running application.

WARNING
Your application should never use this procedure. a

Manipulating One Trap Dispatch Table (Obsolete Routines)

This section describes two obsolete Trap Manager routines: Get Tr apAddr ess and
Set Tr apAddr ess. Though a description of the routines are included here, any use
of these routines is discouraged.

GetTrapAddress

8-32

The Get Tr apAddr ess function is obsolete and is documented here only for the sake
of completeness.

FUNCTI ON Get Tr apAddress (trapNum Integer): Longlnt;

trapNum Toolbox A-line instruction or a trap number. If you specify an A-line
instruction, the function extracts the trap number for you.

Trap Manager Reference

CHAPTER 8

Trap Manager

DESCRIPTION

The Get Tr apAddr ess function was used when both the Operating System trap
addresses and Toolbox trap addresses were located in the same trap dispatch table.
Today, any system software routine with the trap number $00 to $4F, $54, or $57 is
drawn from the Operating System dispatch table; any other software routine is taken
from the Toolbox dispatch table.

A WARNING
The Get Tr apAddr ess function is not supported under Power PC. a

A WARNING
The Get Tr apAddr ess procedure ignores the high-order bits in
the t r apNumparameter; the procedure is not able to differentiate
between Operating System routines and Toolbox routines. The
Get Tr apAddr ess procedure is not reliable on any computer today. a

SetTrapAddress

The Set Tr apAddr ess procedure is obsolete, and is documented here only for the sake
of completeness.

PROCEDURE Set Tr apAddress (trapAddr: Longlnt; trapNum Integer);

t rapAddr The address of the system software routine.

trapNum A-line instruction or a trap number. If you specify an A-line instruction,
the function extracts the trap number you.

DESCRIPTION

The Set Tr apAddr ess procedure was used when both the Operating System routine
addresses and Toolbox routine adddresses were located in the same trap dispatch table.
Today, any routine address with the trap number $00 to $4F, $54, or $57 is installed
into the Operating System dispatch table; any other system software routine is installed
into the Toolbox dispatch table.

A WARNING
The Set Tr apAddr ess procedure is not supported under Power PC. a

A WARNING
The Set Tr apAddr ess procedure ignores the high-order bits in
the t r apNumparameter; the procedure is not able to differentiate
between Operating System routines and Toolbox routines. The
Set Tr apAddr ess procedure is not reliable on any computer today. a

Trap Manager Reference 8-33

Jabeue deip n

CHAPTER 8

Trap Manager

Summary of the Trap Manager

Pascal Summary

Constants

CONST
{Gestalt selectors}

gest al t OSTabl e = 'ostt'; {base of QOperating System dispatch }
{ table}

gest al t Tool boxTabl e = "tbtt"; {base of Tool box di spatch tabl e}

gest al t Ext Tool boxTable = "'xttt'; {0, unless Tool box dispatch table }

{ is disjoint, in which case base }
{ of upper half}

{systemerrors triggered by the Trap Manager}

dsCor eErr = 12; {uni npl emented trap error}

dsBadPat chHeader = 83; {attenpt to install a cone-from patch}
Data Types
TYPE TrapType = (OSTrap, Tool Trap);
Routines

Accessing Addresses From the Trap Dispatch Tables
FUNCTI ON Get OSTr apAddr ess (trapNum Integer): Longlnt;
{ Get Tool boxTr apAddress is al so spelled as Get Tool TrapAddr ess}
FUNCTI ON CGet Tool boxTr apAddr ess
(trapNum Integer): Longlnt;

FUNCTI ON NGet Tr apAddr ess (trapNum Integer; tTyp: TrapType): Longlnt;
Installing Patch Addresses Into the Trap Dispatch Tables

PROCEDURE Set OSTr apAddress (trapAddr: Longlnt; trapNum Integer);
{ Set Tool boxTr apAddress is al so spelled as Set Tool TrapAddr ess}

8-34 Summary of the Trap Manager

CHAPTER 8

Trap Manager

PROCEDURE Set Tool boxTr apAddr ess
(trapAddr: Longlnt; trapNum Integer);

PROCEDURE NSet Tr apAddr ess (trapAddr: Longlint; trapNum | nteger
t Typ: TrapType);

Detecting Unimplemented System Software Routines
PROCEDURE Uni npl enent ed;

Manipulating One Trap Dispatch Table (Obsolete Routines)

FUNCTI ON Get Tr apAddr ess (trapNum Integer): Longlnt;

PROCEDURE Set Tr apAddr ess (trapAddr: Longlnt; trapNum Integer);
C Summary

Constants

/| *CGestalt sel ectors*/

#def i ne gestal t OSTabl e "ostt' /*base of Operating Systemdi spatch */
/* table*/

#def i ne gestal t Tool boxTabl e "tbhtt' /*base of Tool box di spatch table*/

#defi ne gestalt Ext Tool boxTabl e' xttt' /*0, unless Tool box dispatch table */

/* is disjoint, in which case base */

[* of upper half*/

/*val ues of TrapType*/
enum { OSTrap, Tool Trap};

/*systemerrors triggered by Trap Manager*/

enum {

dsCor eErr = 12, [*uni npl enented trap error*/

dsBadPat chHeader = 83 /*attenpt to install cone-from patch*/
b
Data Types

t ypedef unsi gned char TrapType;

Summary of the Trap Manager

8-35

Jabeue deip n

CHAPTER 8

Trap Manager

Routines

Accessing Addresses From the Trap Dispatch Tables
pascal | ong NGet Tr apAddress
(short trapNum TrapType tTyp);

pascal |ong Get OSTrapAddress
(short trapNun;

/ *CGet Tool boxTrapAddress is al so spelled as Get Tool Tr apAddr ess*/

pascal |ong Get Tool boxTr apAddress
(short trapNum;

Installing Patch Addresses Into the Trap Dispatch Tables

pascal void NSet TrapAddress
(long trapAddr, short trapNum
TrapType tTyp);

pascal void Set OSTrapAddress
(long trapAddr, short trapNum;

/ *Set Tool boxTrapAddress is al so spelled as Set Tool Tr apAddr ess*/

pascal void Set Tool boxTrapAddress
(long trapAddr, short trapNun;

pascal void Set Tool TrapAddress
(long trapAddr, short trapNum;

Detecting Unimplemented System Software Routines

pascal void Uninpl emrent ed (void);

Manipulating One Trap Dispatch Table (Obsolete Routines)

pascal |ong Get TrapAddress (short trapNun;
pascal void SetTrapAddress (long trapAddr, short trapNum;

Assembly-Language Summary

Constants
newos EQU $200 ;access Qperating Systemtrap dispatch table;
newTool EQU $600 ; access Tool box trap dispatch table

8-36 Summary of the Trap Manager

CHAPTER 8

Trap Manager

Trap Macros

Trap Macros Requiring Register Setup

Trap macro name Registers on entry
_CGet Tr apAddr ess DO: trap number
_Set Tr apAddr ess DO: trap number

AO0: address of patch
__Uni nmpl enent ed

Summary of the Trap Manager

Registers on exit
AO0: address of patch

8-37

Jabeue deip n

CHAPTER 9

Start Manager

Contents

System Initialization and Startup 9-3
System Initialization 9-3
System Startup 9-4
Boot Blocks 9-6
Global Timing Variables 9-9
About the Start Manager 9-9
Using the Start Manager 9-9
Writing a System Extension 9-10
Profile of a System Extension 9-10
Defining the User Interface for a System Extension 9-14
Creating a System Extension’s Resources 9-15
Creating Icons for a System Extension 9-16
Creating a System Heap Zone Resource for a System Extension
Building a System Extension 9-17
Start Manager Reference 9-18
Data Structures 9-18
The Default Startup Device Parameter Block 9-18
The Default Video Device Parameter Block 9-19
The Default Operating System Parameter Block 9-19
Routines 9-20
Identifying and Setting the Default Startup Device 9-20
Identifying and Setting the Default Video Device 9-23
Identifying and Setting the Default Operating System 9-25
Getting and Setting the Timeout Interval 9-27
Summary of the Start Manager 9-29
Pascal Summary 9-29
Data Types 9-29
Routines 9-30
C Summary 9-30
Data Types 9-30

Contents

9-16

9-1

9-2

CHAPTER 9

Routines 9-31
Assembly-Language Summary
Data Structures 9-32
Trap Macros 9-33
Global Variables 9-33

Contents

9-32

CHAPTER 9

Start Manager

This chapter describes the system initialization and system startup process performed by
the Macintosh computer. It describes the Start Manager, which lets you specify a few
global settings that affect the startup process, and it describes initialization-dependent
code, such as system extensions, that the system runs while starting up the computer.

You should read this chapter if you are developing a device driver or other code that is
installed at some point during the system initialization and startup process, or if you
want to use the Start Manager routines.

This chapter begins with a description of the initialization and startup process
performed on Macintosh computers. It then

= describes the boot blocks and defines the fields in the boot block header
= defines global variables that provide timing information

» discusses the Start Manager routines you can use to identify and set default devices
and to get and set the timeout interval for the startup drive

= describes how to write a system extension

System Initialization and Startup

When a Macintosh computer is first turned on, but before it can load and run an
application, it must go through system initialization and system startup. At system
initialization the system initialization code located in ROM is executed: memory is
tested and initialized, slot cards are initialized, ROM drivers are installed, device drivers
are located, and more. The next section, “System Initialization,” describes the various
steps included in system initialization. At system startup, the system code that is located
on the startup disk is executed: various software modules are initialized and system
extensions are run. The section “System Startup” on page 9-4 describes various steps
included in system startup.

WARNING
The system initialization and system startup process is not the same for
all Macintosh models. In addition, the system initialization sequence
and system startup sequence listed in this chapter are both subject to
change; therefor use the information in these sections only for
informational purposes. a

You should read this section if you provide a system extension that installs software,
such as a device driver or other code, during system initialization or system startup.

System Initialization

Initialization on a Macintosh computer begins as soon as the powver is first supplied to it.
Built-in hardware circuits initialize the main processor and other ICs and temporarily
alter the memory mapping to make an image of the ROM appear at the location where
RAM normally starts (address 0), while making RAM appear at a location higher in

System Initialization and Startup 9-3

Jabeue 1RIS n

9-4

CHAPTER 9

Start Manager

memory. This mapping scheme allows the startup routines in the initialization code to
obtain critical low-memory vectors. After the initialization code begins executing and
obtains the low-memory vectors, it resets the memory mapping back to normal. For
further details on this process, see the Guide to Macintosh Family Hardware.

The following list summarizes the events that typically take place when the initialization
code in ROM is executed.

IMPORTANT
The system initialization sequence is subject to change; the information
in this section is provided for informational purposes only. a

1. Hardware is initialized. The initialization code performs a set of diagnostic tests to
verify functionality of some vital hardware components. If the diagnostics succeed,
the initialization code initializes these hardware components. If diagnostics fail, the
initialization code issues diagnostic tones to indicate the type of hardware failure.
The initialization code determines how much RAM is available and tests it, then
validates the parameter RAM (PRAM). Parameter RAM contains a user’s preferences
for settings of various control panel settings and port configurations.

The initialization code determines the global timing variables, Ti meDBRA,

Ti meSCCDB, and Ti neSCSI DB. (See “Global Timing Variables” on page 9-9 for
more information) and initializes the Resource Manager, Notification Manager,
Time Manager, and Deferred Task Manager.

2. On machines with expansion slots, the initialization code initializes the Slot Manager.
The Slot Manager then initializes any installed cards by executing the primary
initialization code in each card’s declaration ROM. Video expansion cards, including
built-in video, initialize themselves by determining the type of connected monitor,
and then set the display to 1 bit per pixel, and display a gray screen (alternating black
and white dots).

3. The initialization code initializes the Vertical Retrace Manager and Gestalt Manager.
ROM drivers for all built-in functionality are installed in the unit table and initialized.
The initialization code initializes the Apple Desktop Bus (ADB) Manager that then
initializes each ADB device. The initialization code initializes the Sound Manager and
SCSI Manager.

4, The initialization code loads drivers from all on-line SCSI devices.

5. The initialization code chooses the boot device, and calls the boot blocks to begin
initialization of the System Software.

Having initialized the computer’s slots, drivers, and hardware, as well as some of the
Operating System managers, the initialization code dispatches to the startup code,
which immediately begins the startup procedure described in the next section,
“System Startup.”

System Startup

System startup begins as soon as the initialization code in ROM transfers control to the
system startup code. The system startup code is responsible for initializing AppleTalk,

System Initialization and Startup

CHAPTER 9

Start Manager

the debugger, and system extensions. System extensions are covered in detail in the
section “Writing a System Extension” beginning on page 9-10.

This section covers the startup sequence for Macintosh computers running System 7 or
later; it then describes the boot blocks and defines the boot block header.

The following list summarizes the events that take place when the system startup code
is executed.

IMPORTANT
The system startup sequence is subject to change; the information in this
section is provided for informational purposes only. a

1.

The system startup code looks for an appropriate startup device. It first checks the
internal 3.5-inch floppy drive. If a disk is found, it attempts to read it and looks for a
System file. If it doesn’t find a disk or System file, it checks the default startup device
specified by the user in the Startup Disk control panel. If no default device is specified
or if the device specified is not connected, it checks for other devices connected to the
SCSI port, beginning with the internal drive and proceeding successively from drive 6
through drive 1. If it doesn’t find a startup device, it displays the question-mark disk
icon until a disk is inserted. If the startup device itself fails, the startup code displays
the sad Macintosh icon until the computer is turned off.

. After selecting a startup device, the system startup code reads system startup

information from the startup device. The system startup information is located in the
boot blocks, the logical blocks 0 and 1 on the startup disk. The boot blocks contain
important information such as the name of the System file and the Finder. The boot
blocks are described in detail in the next section.

. The system startup code displays the happy Macintosh icon.

. The system startup code reads the System file and uses that information to initialize

the System Error Handler and the Font Manager.

. The system startup code verifies that the necessary hardware is available to boot the

system software and displays on the startup screen an alert box with the message
“Welcome to Macintosh.”

. The system startup code performs miscellaneous tasks: it verifies that enough RAM

is available to boot the system software, it loads and turns on Virtual Memory if it is
enabled in the Memory control panel, it loads the debugger, if present. (The system
startup information contains the name of the debugger —usually MacsBug), it sets up
the disk cache for the file system, and it loads and executes CPU-specific software
patches. At this point, the system begins to trace mouse movement.

. For any NuBus cards installed, the system startup code executes the secondary init

code on the card’s declaration ROM.

. The system startup code loads and initializes all script systems, including components

for all keyboard input methods. It also executes the initialization resources in the
System file.

. The system startup code loads and executes system extensions. (System extensions

can be located in the Extensions folder, in the Control Panels folder, and in the
System Folder).

System Initialization and Startup 9-5

Jabeue 1RIS n

9-6

A

CHAPTER 9

Start Manager

10. The system startup code launches the Process Manager, which takes over at this point

and launches the Finder. The Finder then displays the desktop and the menu bar. The
desktop shows all mounted volumes; it also shows any windows that were open

the last time the computer was shut down. The Memory Manager sets up a large,
unsegmented application heap, which is divided into partitions as applications

start up.

At this point, the system has successfully booted.

The next section, “Boot Blocks,” describes the format of the boot block header. This
header contains information that the startup code uses to start up the system.

Boot Blocks

The first two logical blocks on every Macintosh volume are boot blocks. These blocks
contain system startup information: instructions and information necessary to start up
(or “boot”) a Macintosh computer. This information consists of certain configurable
system parameters (such as the capacity of the event queue, the number of open files
allowed, and so forth) and is contained in a boot block header. The system startup
information also includes actual machine-language instructions that could be used to
load and execute the System file. Usually these instructions follow immediately after the
boot block header. Generally, however, the boot code stored on disk is ignored in favor of
boot code stored in a resource in the System file.

The boot block header has a structure that can be described by the Boot Bl kHdr
data type.

WARNING

The format of the boot block header is subject to change. If your
application relies on the information presented here, it should check the
boot block header version number and react gracefully if that number is
greater than that documented here. a

Note that there are two boot block header formats. The current format includes two
fields at the end that are not contained in the older format. These fields allow the
Operating System to size the system heap relative to the amount of available physical
RAM. A boot block header that conforms to the older format sizes the system heap
absolutely, using values specified in the header itself. You can determine whether a boot
block header uses the current or the older format by inspecting a bit in the high-order
byte of the bbVer si on field, as explained in its field description.

TYPE Boot Bl kHdr = {boot bl ock header}

RECORD
bbl D: I nteger; {boot blocks signature}
bbEnt ry: Longlint; {entry point to boot bl ocks}
bbVer si on: I nteger; {boot blocks version nunber}
bbPageFl ags: Integer; {used internally}
bbSysNane: Str15; {System fil enane}
bbShel | Nare: Str15; {Fi nder filenane}
bbDbglNarre: Str15; {first debugger filenane}

System Initialization and Startup

CHAPTER 9

Start Manager

bbDbg2Nane:
bbScr eenNare:
bbHel | oNarre:
bbScr apNane:
bbCnt FCBs:
bbCnt Evt s:
bb128KSHeap:
bb256KSHeap:

Str15; {second debugger fil enane}

Str15; {nane of startup screen}
Str15; {nane of startup progran
Str15; {nane of systemscrap file}

I nteger; {nunmber of FCBs to all ocate}

I nteger; {nunber of event queue el ements}
Longl nt; {system heap size on 128K Mac}
Longl nt; {system heap size on 256K Mac}

bbSysHeapSi ze: Longlnt; {system heap size on all nachines}

filler:

I nteger; {reserved}

bbSysHeapExtra: Longl nt; {additional system heap space}
bbSysHeapFract: Longlnt; {fraction of RAMfor system heap}

END;

Field descriptions
bbl D

bbEntry

bbVer si on

A signature word. For Macintosh volumes, this field always
contains the value $4C4B.

The entry point to the boot code stored in the boot blocks. This field
contains machine-language instructions that translate to BRA. S
*+$90 (or BRA. S *+$88, if the older block header format is used),
which jumps to the main boot code following the boot block header.
This field is ignored, however, if bit 6 is clear in the high-order byte
of the bbVer si on field or if the low-order byte in that field
contains $D.

A flag byte and boot block version number. The high-order byte of
this field is a flag byte whose bits have the following meanings:

Bit Meaning

0-4 Reserved; must be 0
5 Set if relative system heap sizing is to be used
6 Set if the boot code in boot blocks is to be executed
7 Set if new boot block header format is used

If bit 7 is clear, then bits 5 and 6 are ignored and the version number
is found in the low-order byte of this field. If that byte contains a
value that is less than $15, the Operating System ignores any values
in the bb128KSHeap and bbSysHeapSi ze fields and configures
the system heap to the default value contained in the

bbSysHeapSi ze field. If that byte contains a value that is greater
than or equal to $15, the Operating System sets the system heap to
the value in bbSysHeapsSi ze. In addition, the Operating System
executes the boot code in the bbEnt r y field only if the low-order
byte contains $D.

If bit 7 is set, the Operating System inspects bit 6 to determine

whether to execute the boot code contained in the bbEnt r y field
and inspects bit 5 to determine whether to use relative sizing of the

System Initialization and Startup 9-7

Jabeue 1RIS n

9-8

CHAPTER 9

Start Manager

bbPageFl ags
bbSysNane
bbShel | Nare
bbDbglNane

bbDbg2Nane
bbScr eenNane
bbHel | oNane

bbScr apNane
bbCnt FCBs

bbCnt Evt s

bb128KSHeap

bb256KSHeap

bbSysHeapSi ze

filler

bbSysHeapExtra

bbSysHeapFr act

system heap. If bit 5 is clear, the Operating System sets the system
heap to the value in bbSysHeapSi ze. If bit 5 is set, the system
heap is extended by the value in bbSysHeapEXxt r a plus the
fraction of available RAM specified in bbSysHeapFr act .

Used internally.
The name of the System file.
The name of the shell file. Usually, the system shell is the Finder.

The name of the first debugger installed during the boot process.
Typically this is Macsbug.

The name of the second debugger installed during the boot process.
Typically, this is Disassembler.

The name of the file containing the information (welcome message)
initially displayed on the startup screen. Usually, this is
StartUpScreen.

The name of the startup program. Usually, this is the Finder.
The name of the system scrap file. Usually, this is the Clipboard.

The number of file control blocks (FCBs) to put in the FCB buffer.
In System 7 and later, this field specifies only the initial number of
FCBs in the FCB buffer because the Operating System can usually
resize the FCB buffer if necessary. See the chapter “File Manager”
in Inside Macintosh: Files for details on the file control block

(FCB) buffer.

The number of event queue elements to allocate. This number
determines the maximum number of events that can be stored by
the Event Manager at any one time. Usually this field contains the
value 20.

The size of the system heap on a Macintosh computer having
128 KB of RAM.

Reserved.

The size of the system heap on a Macintosh computer having
512 KB or more of RAM. This field might be ignored, as explained
in the description of the bbVer si on field.

Reserved.

The minimum amount of additional system heap space required.
If bit 5 of the high-order word of the bbVer si on field is set, this
value is added to the bbSysHeapSi ze.

The fraction of RAM available to be used for the system heap. If bit
5 of the high-order word of the bbVer si on field is set, this fraction
of available RAM is added to the bbSysHeapSi ze.

System Initialization and Startup

CHAPTER 9

Start Manager

Global Timing Variables

During system initialization, the initialization code initializes the following global
variables with timing information.

Variable Contents

Ti meDBRA The number of times the DBRA (decrement branch always instruction)
can be executed per millisecond.

Ti meSCCDB The number of times the SCC can be accessed per millisecond.

Ti meSCSI DB The number of times the SCSI can be accessed per millisecond.

Note

The Ti meDBRAVvalue is calculated in ROM and is affected by the
processing method of the CPU. Accordingly, for routines running in
RAM, it is not necessarily a good measure of how fast the computer is. O

About the Start Manager

The Start Manager lets you set the Macintosh computer’s default startup and video
devices. The Start Manager also lets you get or set the timing interval for the startup
drive.

The Start Manager provides routines that let you specify a default startup device, a
default video device, a default operating system, and a default timeout interval for the
startup drive. Because all Start Manager routines run under the Macintosh Operating
System, you cannot execute them early enough in the initialization process to transfer
control to another operating system. Start Manager routines constitute just a small part
of the process required to boot another operating system on a Macintosh computer. Most
programmers should have no reason to use these routines.

The next section gives an overview of how to use the Start Manager routines.

Using the Start Manager

The Start Manager provides a set of simple routines that get and set information in a
word in parameter RAM. This information indicates the default status of some
peripheral devices connected to the Macintosh computer. Three of these routines get
information about the default startup device, default video device, and the default
operating system. Another three routines enable you to set this information. The
remaining two routines get and set the timeout interval for the startup drive.

The Get Def aul t St ar t up procedure returns information about the default startup
device, and the Set Def aul t St ar t up procedure lets you specify a slot or SCSI device
as the default startup device. The default startup device is the drive on which the
startup code first attempts to start up the Operating System. The Startup Disk control

About the Start Manager 9-9

Jabeue 1RIS n

CHAPTER 9

Start Manager

panel calls the Get Def aul t St art up and Set Def aul t St ar t up procedures when
the user changes the startup disk. Another pair of routines, t he Get Vi deoDef aul t
and Set Vi deoDef aul t procedures, get information about and set the default video
device — essentially, the monitor on which the Macintosh computer displays the
message “Welcome to Macintosh” and other startup information. The Monitors control
panel calls the Get Vi deoDef aul t and Set Vi deoDef aul t procedures when the user
changes the startup screen. Any changes made to settings in the Monitors control panel
take affect at the next system startup.

A third pair of routines, the Get OSDef aul t and Set CSDef aul t procedures, enable
you to get information about and set the default operating system —the operating
system that the processor attempts to initialize and start up. At present, the only default
operating systems allowed is the Macintosh Operating System.

The last two routines, the Get Ti meout and Set Ti meout procedures, get or set the
timeout interval for the startup drive. The timeout interval is the interval of time the
system waits for the startup drive to respond while the computer is booting. A disk
driver might need to change the timeout interval, for example if the drive takes a long
time to reach operating speed.

Writing a System Extension

9-10

This section discusses

= the profile of a system extension

= the user interface for a system extension

= how to create additional resources for a system extension
= how to compile a system extension

Before you begin to write a system extension, consider whether the feature that you have
in mind is best governed by a system extension. A system extension does not enjoy the
full status of an application. The user cannot launch a system extension. During system
startup, each system extension is simply loaded and executed in a temporary heap that
the system deallocates after the extension is called.

Profile of a System Extension

A system extension is a file (of file type 'l NI T) containing a code resource of type 'l NI T'
and additional other resources. A system extension typically contains code that provides
a system-level service, such as a printer driver or a patch to a system software routine,
and it contains code that loads this system-level service into the system at system
startup time.

Listing 9-1 illustrates code for a simple system extension called MySanpl el NI T. When
launched at system startup, MySanpl el NI T loads the My Shut DownBeep code resource
into the system heap, installs a pointer to the shutdown code in the shutdown queue,

Writing a System Extension

CHAPTER 9

Start Manager

and displays an icon indicating whether the installation succeeded or failed. The

My Shut DownBeep procedure is executed just before the Macintosh computer shuts
down or restarts. For more information about the shutdown process and the Shutdown
Manager, see the chapter “Shutdown Manager” in Inside Macintosh: Processes.

The code for MySanpl el NI T places the My Shut DownBeep procedure in the system
heap, making this procedure available after system startup. The My Shut DownBeep
procedure calls SysBeep just before the Macintosh computer shuts down or restarts.

Listing 9-1 The MySanpl el NI T system extension

UNIT MySanpl el NI T {wite a Pascal system extension as a UN T}

| NTERFACE
USES
Types, Events, Errors, Resources, Menory, Shutdown;
CONST
kl conl DSuccess
kl conl DFai | ure

128; {icon of this system extension}

129; {icon of this system extension }
{ with an “X" on it}

kMyShut DownResour ceType = ' SHUT'

kMyShut DownResour cel D = 128;

moveX = -1,

| MPLEMENTATI ON
PROCEDURE MyShowi NI T(t hel con, nmoveX: |nteger); EXTERNAL;
PROCEDURE My Shut DownBeep; FORWARD;

PROCEDURE Myl NI T;
VAR
t hel con: Char;
nmy Shut DownCodeHndl : Handl e;
my Shut DownCodePt r : ProcPtr;
BEG N
t hel con : = kl conl DSuccess;
{retrieve a handl e to MyShut DownBeep procedure}
nmy Shut DownCodeHnd!l : = Get Resour ce(kMyShut DownResour ceType,
kMy Shut DownResour cel D) ;
I F ((rmyShut DownCodeHndl = NIL) OR
(ResError <> noErr)) THEN
t hel con : = kl conl DFai | ed;

Writing a System Extension 9-11

Jabeue 1RIS n

CHAPTER 9

Start Manager

I F (thel con = kil conl DSuccess) THEN
BEG N
{t he MyShut DownBeep code resource is present, detach it}
{ fromthe resource file and check for an error}
Det achResour ce(nyShut DownCodeHndl) ;
|F (ResError <> noErr) THEN
t hel con = kl conl DFai | ed;
ELSE
Rel easeResour ce(myShut DownCodeHndl) ;
END;
I F (thelcon = klconl DSuccess) THEN
BEG N
MoveHH (myShut DownCodeHndl) ;
HLock(my Shut DownCodeHndl) ;
END;
MyShowl NI T(t hel con, noveX);{place the icon at boot tine}
{install MyShut DownBeep procedure into shutdown queue}
ny Shut DownCodePtr : = myShut DownCodeHnd! *) ;
Shut Dl nst al | (myShut DownCodePt r, sdOnUnnount) ;
END;

PROCEDURE My Shut DownBeep;
BEG N

SysBeep(40);
END;

END. {of UNIT}

Notice that the code for the MySanpl el NI T extension is defined as a Pascal UNI T rather
than a PROGRAM This distinction is important because Pascal programs are applications
that require an application heap, an initialized A5 register, the Segment Loader, and the
services of other Operating System and Toolbox managers. By comparison, a Pascal unit
is merely a collection of routines. It does not enjoy the full status of an application. You
cannot launch a system extension. It is simply loaded and executed in a temporary heap
that the system deallocates soon after the system finishes booting the computer.

When MySanpl el NI T calls the application-defined procedure MyShow! ni t ,

My Showl ni t displays an icon on the bottom left of the startup screen, and it does not
erase the screen. If you want an icon displayed at system startup time, you must supply
this application-defined procedure.

IMPORTANT

If you provide a procedure that displays an icon of your system
extension, do no erase the screen. a

9-12 Writing a System Extension

CHAPTER 9

Start Manager

For information about compiling system extensions, see the section “Building a System
Extension” beginning on page 9-17.

Note

System extensions are not well equipped to declare global variables

and deal with the A5 world. Stand-alone code modules that do these
things are not system extensions and thus are beyond the scope of

this discussion. See the chapter “Writing Stand-Alone Code” in

Building and Managing Programs in MPW for information on this topic. O

Because a system extension possesses no A5 world of its own, it cannot easily define
global variables: the system allocates no space for them, and the A5 register contains no
meaningful value. Extension code that defines global variables usually compiles and
links successfully without a warning from the linker; however, the extension’s global
variables typically overwrite globals defined by the current application.

WARNING
Code containing references to global variables defined in the MPW
libraries, such as QuickDraw globals, generate fatal link errors. a

As a general rule, a system extension can call Operating System managers at any time,
but it can call only a few of the Toolbox managers before the startup process completes.

It can call the routines from the File Manager, Memory Manager, Resource Manager, and
the Notification Manager before the system extension is completely launched, but it
must refrain from calling the | ni t Font s, | ni t W ndows, | ni t Di al ogs, | ni t Menus
and TEI ni t procedures, as well as other QuickDraw, Window Manager, Dialog
Manager, and Font Manager routines. (Note that the code installed by a system extension
can utilize the full set of Operating System and Toolbox routines.)

Jabeue 1RIS n

A system extension must do without the services of the Segment Loader, which divides
application code into segments that the processor can handle. The size of a system
extension’s code resource should not exceed 32 KB.

You should consider installing your system extension in the system heap if you want its
resources to be available after the computer finishes booting. For example, some system
extensions leave routines in the system heap that can be called through patches to those
routines. The MySanpl el NI T system extension shown in Listing 1-1 on page 9-11 loads
the My Shut DownBeep procedure in the system heap.

The procedure your system extension uses to install code in the system heap varies
according to what you want to accomplish. Basically, you have to request a block of
memory in the system heap and store the code or resources you want to preserve in the
block. To allocate memory in the system heap in System 7 and later, you merely need to
call the appropriate Memory Manager routines, and the system heap expands
dynamically to meet your requests. In earlier versions of system software, you must use
a system heap space resource of type 'sysz' to indicate how much the Operating System
should increase the size of the system zone.

See the chapter “Memory Manager” in Inside Macintosh: Memory for details on how to
allocate memory in the system heap.

Writing a System Extension 9-13

CHAPTER 9

Start Manager

Defining the User Interface for a System Extension

The user interface for a system extension consists of
= the system extension icon
= other elements your system extension needs to communicate with the user

You should provide an icon for the file that contains your system extension. An
extension icon looks like a puzzle piece. Figure 9-1 illustrates the default icon for a
system extension that appears in the Finder if you don’t supply a custom icon for your
system extension. You can customize an extension icon by adding a graphic to the
default icon. You can display the system extension icon in a horizontal or vertical
orientation with the protruding part facing any direction. If you do add graphics, keep
them simple so that the icon still looks good when scaled to the small, 16-by-16 pixel
icon size.

Figure 9-1 The default system extension icon

9-14

|) O

The code in your system extension should also display the icon for your system
extension when it is first executed at system startup time. You typically display this icon
near the bottom-left corner of the startup screen. If the code installed by your extension
requires resources or hardware that is not available at system startup, your extension can
instead display a crossed-out version of the system extensions icon in the bottom-left
corner of the screen.

You should design a system extension so that a user can install it by dragging the icon on
top of the System Folder. The Finder then asks the user whether to place the system
extension in the Extensions folder. Do not install system extensions in the System file.

When designing a system extension, avoid displaying dialog or alert boxes that interrupt
system booting. Whenever possible, use the Notification Manager to notify users of
important messages. See the chapter “Notification Manager” in Inside Macintosh:
Processes for a description on how to send a notification request. You should also avoid
calling routines like | ni t W ndows that wipe the entire screen clean, obliterating any
startup icons that other system extensions and drivers might have displayed.

Your system extension may only create files in the Preferences folder during execution. It
is important that your system extension does not create files in the Extensions folder, the
Control Panels folder, or the System Folder during execution. The system reads the files
in each of these folders sequentially. Creating an additional file in one of these folders
shifts the location of the other files, causing the system to either skip a system extension
or execute one twice.

If your system extension requires a user interface, you can also create a control panel. If
you use a system extension with your control panel, include it in the control panel file

Writing a System Extension

CHAPTER 9

Start Manager

along with the required resources and any other optional resources you use. In System 7,
system extensions can be installed in the Control Panels folder or in the Extensions
folder (both of which are stored in the System Folder) or directly in the System Folder.
However, if it contains a system extension, your control panel file must reside in the
Controls Panels folder within the System Folder. At startup time, the system software
opens files of type 'cdev' that reside in the Control Panels folder and executes any
system extensions that it finds there. If the system extension portion of a control panel

is not loaded at startup, the control panel won’t function properly. For additional
information about control panels, see the chapter Control Panels in Inside Macintosh:
More Macintosh Toolbox.

Creating a System Extension’s Resources

A file comprising a system extension contains a resource of type 'l NI T' and additional
resources. A resource of type 'l NI T' contains the code that loads the system-level service
into the system at system startup time, and it often contains the code that provides the
system-level service. You can use additional resources to describe the icons for the
system extension, specify a version number and copyright information for the
information window displayed by the Get Info command, increase the size of the system
heap, and more.

This list describes some of the additional resources you typically use when you create a
system extension:

= The version (‘'ver s') resource, which you can use to record version information for
your system extension. The version resource allows you to store a version number,
a version message, and a region code.

= The bundle ('BNDL") resource, which groups together your system extension’s icons.

= lcon family resources ('l CN#', i cs#',i c18','i c14',i cs8',and 'i cs4') to represent
your system extension in the Finder.

= The system heap space ('sysz') resource.

The 'sysz' resource is described in this section. See the chapter “Finder Interface” in
Inside Macintosh: Macintosh Toolbox Essentials for additional information about the other
resources mentioned in this section.

Figure 9-2 shows a ResEdit window containing additional resources for a system
extension. These additional resources can be compiled withan' I NI T' resource into
a system extension that goes in the Extensions folder.

Writing a System Extension 9-15

Jabeue 1RIS n

CHAPTER 9

Start Manager

9-16

Figure 9-2 Typical resources for a system extension
E[[=——— INIT.rsict ==

e g e

2 M 9 &

EMDL cicn FREF icl4

al

gD oD o
. @ °
ICN# s icsd PLAY

i 2.0kl
b E.05
E T.0..
ST wers

=[]

Not all of the resources in Figure 9-2 are required for all system extensions, but they do
add useful features to a system extension.

Note

You can use a high-level tool such as the ResEdit application, which is
available through APDA, to create your resources. See ResEdit Reference
for details on using ResEdit. O

Creating Icons for a System Extension

You should provide two sets of icons for your system extension:
= an icon family for the file that contains your system extension

= an icon that your system extension displays at system startup time. This icon indicate
whether the installation succeeded or failed

You should provide icon family resources for the file that contains your system
extension. See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for a detailed description of the icon family resources.

You can create a color icon resource of type 'ci cn' for your system extension if you want
to display a color startup icon at the bottom left of the screen. You can implement this
feature by creating your own application-defined MyShow NI T procedure, or you can
use a similar program called Show ni t . You can obtain the Show ni t program from
various on-line services. (You can also contact APDA for further developer product
information). To use Show NI T, you pass the resource 1D of your system extension’s

'ci cn' resource to the Showl NI T procedure, and Showl NI T displays the 'ci cn'icon

on the bottom-left corner of the screen.

Creating a System Heap Zone Resource for a System Extension

You should read the information in this section only if you plan to install code from your
system extension into the system heap and run your system extension on system
software prior to System 7.

Writing a System Extension

CHAPTER 9

Start Manager

If you install code in the system heap and run your system extension on system software
prior to System 7, you should include a system heap space resource of type 'sysz'. The
'sysz' resource tells the system software the amount of memory the system heap needs
to expand by, in order to accommodate space for code installed by your system extension.

Note

It is not necessary to include a 'sysz' resource for system extensions
running only on System 7 and later. The system heap in System 7
grows dynamically and expands as long as there is any unused
RAM available. O

Using a 'sysz' resource, you can request the system software to increase the memory in
the system heap by the amount specified in the 'sysz' resource. If the system software
is able to allocate the needed memory in the system heap, your system extension will
execute. If the system is unable to allocate the extra memory to the system heap, your
system extension will not be able to execute.

To create a 'sysz' resource, you can use an editor like the ResEdit application. Specify, in
bytes, the amount of memory you want the system heap to increase by. For example, if
your system extension takes 8 KB to execute, you should increase the system heap by
that amount.

You do not need to allocate memory for the actual system extension code ('l NI T'
resource), only for the amount of memory for any code installed by your system
extension needs to execute.

Building a System Extension

Once you have created a file containing the ‘I NI T' resource and a file containing all the
additional resources, you can build your system extension. To build a system extension,
compile and link the ' I NI T' resource and the additional resources into an executable
file for your system extension.

When you compile the 'l NI T' resource and your additional resources, you should keep
the following points in mind:

= Make sure that the file type of the system extension is of type 'l NI T".
= Specify a creator if you want the Finder to use icons for your system extension.
= Specify the resource type 'l NI T' and a resource 1D (usually 128).

= Specify the main entry point for your system extension. When written in Pascal, the
main entry point of a module is the first written instruction.

= Specify that the 'l NI T' resource be loaded into the system heap if you want its
resources to be available after the computer finishes booting.

= Specify the 'l NI T' resource (code resource) as locked to prevent the system from
moving the resource during execution.

= Make sure that all additional resources are unlocked and purgeable.

Writing a System Extension 9-17

Jabeue 1RIS n

CHAPTER 9

Start Manager

Start Manager Reference

This section describes the data structures and routines that are specific to the Start
Manager. The “Data Structures” section explains the data structures for the default
startup device parameter block, the default video device parameter block, and the
default operating system record. The “Routines” section describes routines that get
information about and set devices or values that the system uses as defaults when
booting a Macintosh computer.

Data Structures

This section describes the data structures that you use to provide information to the Start
Manager or the Start Manager uses to return information to your application.

The Default Startup Device Parameter Block

Two procedures, Get Def aul t St art up and Set Def aul t St ar t up, use the default
startup device parameter block. You can use these procedures and the default startup
device parameter block to get or set the default startup device. As defined by the

Def St art Type data type, a startup device is either a slot or a SCSI device. The

Def St ar t Rec data type defines the default startup device parameter block.

TYPE DefStartType = (sl otDev, scsiDev);

Def Start Rec =
RECORD
CASE Def Start Type OF
sl ot Dev:
sdExt Devl D: Si gnedByte; {external device |ID}
sdPartition: SignedByte; {reserved}
sdSl ot Num Si gnedByte; {slot nunber}
sdSRsrcl D: SignedByte; {SResourcel D}
scsi Dev:
sdReservedl: Si gnedByt e; {reserved}
sdReserved2: Si gnedByt e; {reserved}
sdRef Num I nt eger; {driver reference nunber}
END;
Def StartPtr = ~Def St art Rec;

9-18 Start Manager Reference

CHAPTER 9

Start Manager

Field descriptions

sdExt Devl D The external device ID specified by a slot’s driver. This ID identifies
one of perhaps several devices connected through a single slot.

sdPartition Reserved.

sdSl ot Num A number that identifies the location of the NuBus slot containing

the default startup card. (Currently, these numbers range from
$9 through $E on six-slot computers.)

sdSRsrcl D The resource ID (SResour cel D) for the slot.

sdReservedl Reserved.

sdReserved?2 Reserved.

sdRef Num A negative value in this field indicates the driver reference number

for a SCSI device. A positive number indicates a slot device, in
which case the fields in the sl ot Dev variant.

The Default Video Device Parameter Block

Two procedures, Get Vi deoDef aul t and Set Vi deoDef aul t, use the default video
device parameter block. You can use these procedures with the default video device
parameter block to get or set the default video device. The Def Vi deoRec data type
defines the default video device parameter block.

TYPE Def Vi deoRec =

RECORD
sdSl ot : Si gnedByte; {slot nunber}
sdsResour ce: Si gnedByt e; {SResourcel D}
END;

Def Vi deoPtr = ~Def Vi deoRec;

Field descriptions

sdSl ot The physical slot number for the default video device. A value of 0
indicates no video device is the default.
sdSResour ce The slot resource ID (SResour cel D) for the default video device.

The Default Operating System Parameter Block

Two procedures, Get Def aul t OS and Set Def aul t OS, use the default operating system
parameter block. You can use these procedures with the default operating system
parameter block to get or set the default operating system. The Def OSRec data type
defines the default operating system parameter block.

TYPE Def OSRec =
RECORD
sdReserved: SignedByte; {reserved}

Start Manager Reference 9-19

Jabeue 1RIS n

Routines

CHAPTER 9

Start Manager

sdCSType: Si gnedByte; {operating-systemtype}
END;
Def OSPtr = ~Def OSRec;

Field descriptions
sdReserved Reserved.
sdOSType A value identifying the operating system installed at startup.

A1 indicates the Macintosh Operating System. The numbers
0 through 15 are reserved.

This section describes the Start Manager routines you can use to identify and change the
default startup device, the default video device, default operating system, and the
default timeout value for the startup drive.

Many Start Manager routines specify a pointer to a parameter block as a parameter. For
these routines, the routine description includes a list of the fields in the parameter block
used by the routine. For each routine that uses a parameter block, information about the
fields appears in the following format:

Parameter block

- i nput 1 Longl nt Input parameter comment.
- out put 1 Longl nt Output parameter comment.

The arrow on the far left indicates whether the field is an input or output parameter. You
must supply values for all input parameters. The routine returns values in the output
parameters. The next column shows the field name as defined in the MPW interface files,
followed by the data type of that field. This matches the MPW interface name of the data
type as shown in the parameter block. The fourth column contains a comment about or a
brief definition of the field.

Identifying and Setting the Default Startup Device

You can use the routines in this section to get information that identifies the default
startup device or to supply information that sets a default startup device. These routines
provide applications with the same capability that the Startup Disk control panel
supplies for Macintosh users.

GetDefaultStartup

9-20

You can use the Get Def aul t St ar t up procedure to return information about the
default startup device.

PROCEDURE Get Defaul t Startup (paranBl ock: Def StartPtr);

Start Manager Reference

DESCRIPTION

CHAPTER 9

Start Manager

par anmBl ock A pointer to a default startup device parameter block.

Parameter block

sdExt Devl D Si gnedByt e External device ID.
sdPartition Si gnedByt e Reserved.

sdSl ot Num Si gnedByt e Physical slot number.
sdSRsrcl D Si gnedByt e Slot resource ID (SResourcelD).
sdReservedl Si gnedByt e Reserved.

sdReserved?2 Si gnedByt e Reserved.

sdRef Num I nt eger Driver reference number.

The Get Def aul t St ar t up procedure returns information about the default startup
device from parameter RAM. The default startup device parameter block of data type
Def St ar t Type defines two kinds of startup devices: either a slot or a SCSI device. The
CGet Def aul t St ar t up procedure returns in the sdRef Numfield a value indicating the
startup device type. A negative value indicates a SCSI device. A positive value indicates
a slot device. If the value is negative, the sdRef Numfield contains the driver reference
number needed to identify that device. If the value is positive, the sl ot Dev variant of
the default startup device parameter block contains information about the slot device.

You cannot read the system’s default startup device parameter block directly. Instead,
create another parameter block to which the Get Def aul t St ar t up procedure can write
and pass Get Def aul t St ar t up a pointer to that parameter block.

ASSEMBLY LANGUAGE INFORMATION

SEE ALSO

The registers on entry and exit for this routine are

Registers on entry
A0 Address of the default startup device parameter block

Registers on exit
A0 Address of the default startup device parameter block

For more information about the default startup device parameter block

see “The Default Startup Device Parameter Block™ beginning on page 9-18.

To specify the default startup device, see the description of the Set Def aul t St art up
procedure described next.

Start Manager Reference 9-21

Jabeue 1RIS n

CHAPTER 9

Start Manager

SetDefaultStartup

DESCRIPTION

You can use the Set Def aul t St ar t up procedure to write information to parameter
RAM that specifies the default startup device.

PROCEDURE Set Def aul t Startup (paranBl ock: DefStartPtr);
par anBl ock A pointer to a default startup device parameter block.

Parameter block for a slot device

> sdExt Devl D Si gnedByt e External device ID.

N sdPartition Si gnedByt e Reserved.

N sdSl ot Num Si gnedByt e Physical slot number.

N sdSRsrcl D Si gnedByt e Slot resource ID (SResour cel D).

Parameter block for a SCSI device

- sdReservedl Si gnedByt e Reserved.
- sdReserved2 Si gnedByt e Reserved.
- sdRef Num I nt eger Driver reference number.

The Set Def aul t St ar t up procedure writes information to parameter RAM that
specifies the default startup device. The default startup parameter block of data type
Def St ar t Type defines two kinds of startup devices: either a slot or a SCSI device.

To specify a slot device as the default, pass the external device ID, the slot number, and
the slot resource ID. The external device ID, supplied by the slot’s driver, identifies a
particular device connected through that slot. It’s possible that the card in this slot could
have several devices connected to it.

To specify a SCSI device as the default, pass its driver reference number (always
negative) in the sdRef Numfield. To specify no device as the default, pass a value
of 0 in this field.

ASSEMBLY LANGUAGE INFORMATION

9-22

The registers on entry and exit for this routine are

Registers on entry
A0 Address of the default startup device parameter block

Registers on exit
A0 Address of the default startup device parameter block

Start Manager Reference

SEE ALSO

CHAPTER 9

Start Manager

For more information about the default startup device parameter block see “The Default
Startup Device Parameter Block™ beginning on page 9-18.

To retrieve information about the default startup device, see the description of the
Get Def aul t St ar t up procedure described on page 9-20.

Identifying and Setting the Default Video Device

You can use the routines in this section to get information about the default video device
or to supply information that sets or changes a default video device. These routines
provide applications with the same capability that the Monitors control panel supplies
for Macintosh users. The default video device is equivalent to the monitor that displays
the startup message “Welcome to Macintosh” as well as other startup indications.

GetVideoDefault

DESCRIPTION

You can use the Get Vi deoDef aul t procedure to return information that identifies the
default video device.

PROCEDURE Get Vi deoDef ault (paranBl ock: Def Vi deoPtr);
par anmBl ock A pointer to a default video device parameter block.

Parameter block

- sdSl ot Si gnedByt e Physical slot number.
- sdSResour ce Si gnedByt e Slot resource 1D (SResourcelD).

The Get Vi deoDef aul t procedure returns information from parameter RAM that
identifies the default video device. If the sdSl ot field returns a 0, indicating no default
video device, the Start Manager chooses the first available video device when the
computer starts up.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry and exit for this routine are

Registers on entry
A0 Address of the default video device parameter block

Registers on exit
A0 Address of the default video device parameter block

Start Manager Reference 9-23

Jabeue 1RIS n

CHAPTER 9

Start Manager

SEE ALSO

For more information about the default startup device parameter block see “The Default
Video Device Parameter Block beginning on page 9-19.

To specify the default video device, see the description of the Set Vi deoDef aul t
procedure described next.

SetVideoDefault

You can use the Set Vi deoDef aul t procedure to write information to parameter RAM
that sets or changes the default video device.

PROCEDURE Set Vi deoDef aul t (paranBl ock: Def Vi deoPtr);
par anBl ock A pointer to a default video device parameter block.

Parameter block

- sdSl ot Si gnedByt e Physical slot number.
- sdSResour ce Si gnedByt e Slot resource 1D (SResourcelD).

DESCRIPTION

The Set Vi deoDef aul t procedure writes information to parameter RAM that sets or
changes the default video device. If you set the sdSI ot field to 0, indicating no default
video device, the Start Manager chooses the first available video device when the
computer starts up.

ASSEMBLY LANGUAGE INFORMATION
The registers on entry and exit for this routine are

Registers on entry
A0 Address of the default video device parameter block

Registers on exit
A0 Address of the default video device parameter block

SEE ALSO

For more information about the default video device parameter block see “The Default
Video Device Parameter Block™ beginning on page 9-19.

To retrieve information about the default video device, see the description of the
CGet Vi deoDef aul t procedure on page 9-23.

9-24 Start Manager Reference

CHAPTER 9

Start Manager

Identifying and Setting the Default Operating System

You can use the routines in this section to get information about the default operating
system or to supply information that sets or changes a default operating system. These
routines read from and write to a byte in parameter RAM.

GetOSDefault

DESCRIPTION

You can use the Get OSDef aul t procedure to identify the operating system that gets
booted on the Macintosh computer.

Procedure Get CSDefault (paranBl ock: Def GSPtr);
par anBl ock A pointer to a default operating system parameter block.

Parameter block

- sdReser ved byt e Reserved.
- sdOSType byt e Operating-system type.

The Get OSDef aul t procedure identifies the operating system that gets booted on the
Macintosh computer. A value of 1 returned in the sdOSTy pe field indicates the
Macintosh Operating System. Apple Computer, Inc. reserves the numbers 0 through 15
for its use.

When the Macintosh Operating System boots, certain startup routines call

Get OSDef aul t and compare the value it returns with the value in the ddType field of
the driver’s portion of the driver descriptor record. Each driver for the startup device
has its own block of fields in this record. The startup routine tries to match the
operating-system type returned by Get OSDef aul t with the value in one of the ddType
fields. If it finds a match, the computer continues to boot; if it doesn’t, the startup routine
searches other drives attached to the computer. The boot process does not continue until
the startup routine finds a ddType value that matches the one returned by

Get CSDef aul t .

ASSEMBLY LANGUAGE INFORMATION

The registers on entry and exit for this routine are

Registers on entry
A0 Address of the default operating system parameter block

Registers on exit
A0 Address of the default operating system parameter block

Start Manager Reference 9-25

Jabeue 1RIS n

SEE ALSO

CHAPTER 9

Start Manager

For more information about the default operating system parameter block, see “The
Default Operating System Parameter Block™ beginning on page 9-19.

For information about the driver descriptor record, see the chapter “SCSI Manager”
in Inside Macintosh: Devices.

To specify the default operating system, see the description of the Set OSDef aul t
procedure described next.

SetOSDefault

DESCRIPTION

You can use the Set OSDef aul t procedure to set a byte in parameter RAM that
indicates the operating system that gets booted on the Macintosh computer.

PROCEDURE Set OsDef aul t (par anBl ock: Def OSPtr);
par anBl ock A pointer to a default operating system parameter block.

Parameter block

- sdReser ved Si gnedByt e Reserved.
- sdOSType Si gnedByt e Operating-system type.

The Set OSDef aul t procedure sets a byte in parameter RAM that indicates the
operating system that gets booted on the Macintosh computer. Setting a value of 1 in the
sdCOSType field indicates the Macintosh Operating System, which is currently the only
default operating system allowed. The numbers 0 through 15 are reserved by Apple
Computer.

Unless the value in the sdOSType field matches the value in one of the ddType fields of
the driver descriptor record, the computer cannot continue booting. Every drive
connected to the computer has a driver descriptor record at the beginning of physical
block 0.

ASSEMBLY LANGUAGE INFORMATION

9-26

The registers on entry and exit for this routine are

Registers on entry
A0 Address of the parameter block for the default operating system record

Registers on exit
A0 Address of the parameter block for the default operating system record

Start Manager Reference

CHAPTER 9

Start Manager

SEE ALSO
For information about the driver descriptor record, see the chapter “SCSI Manager” in
Inside Macintosh: Devices.

Getting and Setting the Timeout Interval

You can use the routines in this section to get or set the default timeout interval for the
startup drive. This timeout indicates how long the system waits for the startup drive to
respond while the computer is booting.

GetTimeout

You can use the Get Ti neout procedure to identify the current timeout interval set for
the startup drive.

PROCEDURE Get Ti neout (VAR count: Integer);

count Indicates the number of seconds the system waits for the startup drive to
respond during the boot cycle. A value of 0 indicates the default timeout
of 20 seconds.

DESCRIPTION

The Get Ti neout procedure identifies the current timeout interval set for the
startup drive. Timeout values increment in 1-second intervals, from 1 to a maximum of
31 seconds. A count of 1 equals 1 second.

ASSEMBLY LANGUAGE INFORMATION
The register on exit from the routine is

Registers on exit
A0 Value of count field

The _CGet Ti meout macro expands to invoke another trap macro, whose routine selector
is passed in the A0 register.

Trap Macro Selector
_Internal Wai t $0000

Start Manager Reference 9-27

Jabeue 1RIS n

CHAPTER 9

Start Manager

SetTimeout

You can use the Set Ti neout procedure to set the timeout interval for the startup drive.

PROCEDURE Set Ti neout (count: Integer);

count Indicates the number of seconds that you want the system to wait for the
startup drive to respond during the boot cycle. A value of 0 indicates the
default timeout of 20 seconds. The maximum value is 31 seconds.

DESCRIPTION

The Set Ti neout procedure sets the timeout interval for the startup drive. Timeout
values increment in 1-second intervals, from 1 to a maximum of 31 seconds. Setting the
count parameter to a value of 1 indicates 1 second.

ASSEMBLY LANGUAGE INFORMATION
The registers on entry for this routine are

Registers on entry

A0 $0001

The _Set Ti meout macro expands to invoke another trap macro, whose routine selector
is passed in the AOQ register:

Trap Macro Selector
_Internal Wai t $0001

9-28 Start Manager Reference

CHAPTER 9

Start Manager

Summary of the Start Manager

Pascal Summary

Data Types

TYPE
Def St art Type = (sl ot Dev, scsiDev);

Def Start Rec = H
RECORD 4]
CASE Def Start Type OF 5
sl ot Dev: gf,
sdExt Devl D: Si gnedByt e; {external device |ID} a
sdPartition: Si gnedByte; {reserved} &
sdSl ot Num Si gnedByt e; {sl ot nunber}
sdSRsrcl D: Si gnedByt e; { SResour cel D}
scsi Dev:
sdReservedl: Si gnedByt €; {reserved}
sdReserved?2: Si gnedByt e; {reserved}
sdRef Num I nt eger {driver reference nunber}
END;
Def StartPtr = ~Def Start Rec; {pointer to a start definition record}
Def Vi deoRec =
RECORD
sdSl ot : Si gnedByt €; {sl ot nunber}
sdsResour ce: Si gnedByt e; { SResour cel D}
END;

Def Vi deoPtr = ~Def Vi deoRec; {pointer to a video definition record}

Def OSRec =

RECORD
sdReserved: SignedByte; {reserved--shoul d be 0}
sdCSType: Si gnedByt €; {operating-systemtype}

Summary of the Start Manager 9-29

CHAPTER 9

Start Manager

END;

Def OSPt r = "Def OSRec; {pointer to a default Operating System Record}

Routines

Identifying and Setting the Default Startup Device

PROCEDURE Cet Default Startup (paranBl ock: Def Startbtr);
PROCEDURE Set Def aul t Startup (paranBl ock: DefStartPtr);

Identifying and Setting the Default Video Device

PROCEDURE Get Vi deoDef aul t (paranBl ock: Def Vi deoPtr);
PROCEDURE Set Vi deoDef aul t (paranBl ock: Def Vi deoPtr);

Identifying and Setting the Default Operating System

PROCEDURE Get OSDef aul t (paranBl ock: Def GSPtr);
PROCEDURE Set OSDef aul t (paranBl ock: Def GSPtr);

Getting and Setting the Timeout Interval

PROCEDURE Get Ti neout (VAR count: Integer);
PROCEDURE Set Ti neout (count: Integer);

C Summary

Data Types

struct Sl otDev {

char sdExt Devl d; /*external device |ID*/
char sdPartition; /*reserved*/

char sdSl ot Num /*sl ot nunber*/

char sdSRsrcl D; / * SResour cel D*/

typedef struct Sl otDev Sl otDev;
struct SCSI Dev {

char sdReservedi; [*reserved*/
char sdReserved?; / *reserved*/

9-30 Summary of the Start Manager

CHAPTER 9

Start Manager

short sdRef Num [*driver reference nunber*/

t ypedef struct SCSI Dev SCSI Dev;

uni on Def Start Rec {
Sl ot Dev sl ot Dev;
SCSI Dev scsi Dev;

b

typedef union Def StartRec Def Start Rec;
typedef DefStartRec *DefStartPtr;

struct DefVi deoRec {
char sdSl ot ; /*sl ot nunber*/
char sdsResource; /*SResourcel D*/

t ypedef struct DefVi deoRec Def Vi deoRec;
t ypedef Def Vi deoRec *Def Vi deoPtr;

struct Def OSRec {
char sdReserved; /*reserved —should be 0*/
char sdOSType; / *operating-systemtype*/
1

typedef struct Def OSRec Def OSRec;
t ypedef Def OSRec *Def OSPtr;

Routines

Identifying and Setting the Default Startup Device

pascal void GetDefaultStartup (DefStartPtr paranBl ock);
pascal void SetDefaultStartup (DefStartPtr paranBl ock);

Identifying and Setting the Default Video Device

pascal void CetVideoDefault (DefVideoPtr paranBl ock);
pascal void SetVideoDefault (DefVideoPtr paranBl ock);

Identifying and Setting the Default Operating System
pascal void Get OSDef aul t (Def OSPtr par anBl ock) ;

Summary of the Start Manager 9-31

Jabeue 1RIS n

CHAPTER 9

Start Manager

pascal void Set OSDef aul t (Def OSPtr par anBl ock) ;

Getting and Setting the Timeout Interval

pascal void GetTi nmeout (short *count);
pascal void SetTi meout (short count);

Assembly-Language Summary

Data Structures

Default Startup Device Data Structure
0 sdExt Devl D byte external device ID

1 sdPartition byte reserved

2 sdSl ot Num byte slot number

3 sdSRsrcl D byte slot resource 1D

0 sdReservedl byte reserved

1 sdReserved2 byte reserved

2 sdRef Num word driver reference number

Default Video Device Data Structure

0 sdSl ot byte slot number
1 sdSResour ce byte slot resource ID

Default Operating System Data Structure

0 sdReser ved byte reserved
1 sdOSType byte operating-system type

9-32 Summary of the Start Manager

CHAPTER 9

Start Manager

Trap Macros

Trap Macros Requiring Register Setup

Trap macro name
_CGetDefaultStartup

_SetDefaul t Startup
_CGet Vi deoDef aul t
_Set Vi deoDef aul t
_CetDefault Cs

_Set Defaul t Cs

_CGet Ti neout
_Set Ti neout

Registers on entry

AQ0: address of default video
device parameter block

AO0: address of default video
device parameter block

AQ0: address of default video
device parameter block

AO0: address of default video
device parameter block

AO0: address of default operating
system parameter block

AO0: address of default operating
system parameter block

DO: count (word)

Trap Macros Requiring Routine Selectors

_Internal Wit
Selector Routine
$0000 Get Ti meout
$0001 Set Ti meout

Global Variables

Registers on exit

AQ0: address of default startup device
parameter block

AQ0: address of default startup device
parameter block

AO0: address of default video device
parameter block

AO0: address of default video device
parameter block

AO0: address of default operating
system parameter block

AO0: address of default operating
system parameter block

DO: count (word)

Ti mreDBRA
Ti meSCCDB
Ti meSCS| DB

Summary of the Start Manager

The number of times the DBRA instruction is executed per millisecond.
The number of times the SCC is accessed per millisecond.
The number of times the SCSI is accessed per millisecond.

9-33

Jabeue 1RIS n

CHAPTEHR 10

Package Manager

Contents

About the Package Manager 10-3
Using the Package Manager 10-6
Package Manager Reference 10-6
Routines 10-6
Initialization of Packages 10-7
Summary of the Package Manager 10-8
Pascal Summary 10-8
Constants 10-8
Routines 10-8
C Summary 10-9
Constants 10-9
Routines 10-9
Assembly-Language Summary 10-10
Trap Macros 10-10

Contents 10-1

CHAPTER 10

Package Manager

This chapter describes the Package Manager, the part of the system software that loads
packages into memory. The packages include one for presenting the standard user
interface when afile is to be saved or opened and others for doing more specialized
operations such as floating-point arithmetic.

Read the information in this chapter to get a complete list of all packages and to get a
description of the Package Manager routines that load the packages into memory.

Ordinarily, you do not need to use the Package Manager routines described in this
chapter. The Operating System itself is responsible for installing the packages when an
application is launched. While your application probably won’t ever need to use these
routines, for the sake of completeness they are described in this chapter.

About the Package Manager

The Package Manager lets you load packages into memory. A package is a set of routines
and data types that is stored as a resource of type 'PACK'. In early models of the
Macintosh computer, all packages were disk-based and brought into memory only when
needed; some packages are now in ROM. The System file contains the standard
Macintosh packages and the resources they use or own. Table 10-1 lists the standard
Macintosh packages.

Table 10-1 The standard Macintosh packages

Package Description Resource ID

List Manager Provides routines that your 0
application can use to create
scrollable lists that allow the user
to select one or more of a group of
items.

Jabeuely abexoed H

Disk Initialization Manager Provides routines that initialize 2
and name new floppy disks. This
package is called by the Standard
File Package and applications.

Standard File Package Provides routines that your 3
application can use to display
dialog boxes that let the user
specify the locations of files to be
saved or opened.

Floating-Point Arithmetic Provides routines that support 4
Package extended-precision arithmetic
according to IEEE Standard 754.

continued

About the Package Manager 10-3

10-4

CHAPTER 10

Package Manager

Table 10-1 The standard Macintosh packages (continued)

Package Description Resource ID

Transcendental Functions Provides routines that support 5

Package trigonometric, logarithmic,
exponential, and financial
functions, and a random number
generator.

Text Utilities Provides routines that your 6

(formerly referred to as the application can use to specify

International Utilities strings for various purposes, to

Package) format numbers and currency,
format date and time, search and
replace text, and more.

Text Utilities Provides routines that your 7

(formerly referred to as the application can use to specify

Binary-Decimal Conversion strings for various purposes, to

Package) format numbers and currency;,
format date and time, search and
replace text, and more.

Apple Event Manager Provides routines that your 8
application can use to respond,
send, and record Apple events.

PPC Browser Provides routines that your 9
application can use to display the
program linking dialog box, which
allows a user to select a port to
communicate with.

Edition Manager Provides routines that your 11
application can use to allow users
to share and automatically update
data and numerous documents and
applications.

Color Picker Provides routines that your 12

About the Package Manager

application can use to display a
standard dialog box for choosing a
color, and converts color
specifications from one color model
to another.

CHAPTER 10

Package Manager

Table 10-1 The standard Macintosh packages (continued)

Package
Data Access Manager

Help Manager

Picture Utilities

Description

Provides routines that your
application can use to gain access
to data in another application, and
provides templates to be used for
data transactions.

Provides routines that your
application can use to provide
Balloon Help online assistance.

Provides routines that obtain
qualitative and quantitative
information about pictures and
pixel maps.

Resource ID
13

14

15

If the Package Manager is not able to load a package, the Package Manager adds the
resource ID number of the affected package to 17 to get an error number. The System
Error Handler uses this error number to display an error message. Originally this
approach worked because there were only 7 packages, and the error number would fall
between 17 and 24, which are the error numbers that define the “Can’t load package”
error. However, now there are more packages and the resulting error messages from
packages with resource IDs greater than 7 are misleading.

The error messages that corresponds to packages with resource 1Ds greater than 7 are as

follows:

Resource ID Package

Error ID Error

9 Apple Event Manager

25 Out of memory

9 PPC Toolbox 26 Can’t launch file
11 Edition Manager 28 Stack overflow
12 Color Picker 29 7
13 Data Access Manager 30 Disk insertion required
14 Help Manager 31 Wrong disk inserted
15 Picture Utilities 32 *

* There is not a defined system error for this error ID.

The system errors are described in detail in the chapter “System Error Handler” in

this book.

About the Package Manager

10-5

Jabeuely abexoed H

CHAPTER 10

Package Manager

Using the Package Manager

The Package Manager provides two routines: the | ni t Pack procedure and the

I ni t Al | Packs procedure. The | ni t Pack procedure loads one specified package into
memory. To specify which package to load, you pass, as a parameter to the | ni t Pack
procedure, the package’s resource ID. You can use the | ni t Al | Packs procedure to load
all packages into memory. Typically, you do not need to use either of these two
procedures because the | ni t Al | Packs procedure is automatically called when your
application is launched.

The I ni t Pack and | ni t Al | Packs procedures do not initialize the packages. Consult
the description of the specific package to see if it needs to be initialized before your
application can utilize all of its routines. For example, to use the Data Access Manager
routines, your application must first call the | ni t DBPack function (an initialization
routine provided by the Data Access Manager). If a package needs to be initialized, it
provides an initialization routine.

Note

You can access a routine in a package through a trap macro and a
routine selector. The name of the trap macro includes the word “Pack”
and the resource ID of the specific package. For example, the trap macro
for the routines in the Edition Manager is _Pack11. Most system
software routines that are accessed through a trap macro and a routine
selector also have a corresponding macro that expands to call the
original trap macro and automatically puts the correct routine selector
on the stack. For example, to access the Standard File Package routine
St andar dGet Fi | e, you can call the _St andar dGet Fi | e macro. The
_St andar dCGet Fi | e macro then expands to call the _Pack3 trap
macro and places the routine selector on the stack (in this example the
routine selector is $0006). See the chapter “Trap Manager” in this book
for more information about trap macros and routine selectors. O

Package Manager Reference

This section describes routines that are specific to the Package Manager.

Routines
This section describes the two routines in the Package Manager. One routine lets you
load a specified package into memory, and one routine lets you load all packages into
memory.

10-6 Using the Package Manager

CHAPTER 10

Package Manager

Initialization of Packages

You use the routines in this section to load one specified package or all packages into
memory.

InitPack
You can use the | ni t Pack procedure to load a specified package into memory.
PROCEDURE | nit Pack (packlD: |nteger);
packl D A package resource ID.
DESCRIPTION
The I ni t Pack procedure loads the package specified by the packl D parameter into
memory. The packl D parameter is the package’s resource ID. To initialize a specific
package or manager, consult the documentation of the specific package or manager.
InitAllPacks
You can use the | ni t Al | Packs procedure to load all packages into memory.
PROCEDURE | ni t Al | Pack;
DESCRIPTION

The I ni t Al | Packs procedure loads all the packages into memory. The | ni t Al | Packs

procedure is automatically called when your application is launched.

Package Manager Reference

10-7

Jabeuely abexoed H

CHAPTER 10

Package Manager

Summary of the Package Manager

Pascal Summary

Constants
CONST
[istMr = 0; {Li st Manager}
dsklnit = 2, {Disk Initialization Minager}
stdFile = 3; {Standard Fil e Package}
f | Poi nt = 4; {Fl oating-Point Arithmetic Package}
tr Func = b5; {Transcendent al Functions Package}
textUill = 6; {Text Utilities}
textUil2 =7, {Text Utilities}
aevt Mgr = 8; {Appl e Event Manager}
ppcBrowser = 9; { PPC Browser}
editionMgr = 11; {Edition Manager}
col or Pi cker = 12; {Col or Picker}
dat aAccess = 13; {Data Access Manager}
hel pMgr = 14; {Hel p Manager}
pictUil = 15; {Picture Utilities}
intUil = 6; {Text Utilities}
bdConv =7, {Text Utilities}
Routines

Initializing Packages
PROCEDURE | ni t Pack (packlD: Integer);
PROCEDURE | ni t Al | Packs;

10-8 Summary of the Package Manager

CHAPTER 10

Package Manager

C Summary
Constants
enum {
listMr = 0, /*Li st Manager*/
dskl ni t = 2, /*Disk Initialization Manager*/
stdFile = 3, /*Standard Fil e Package*/
f | Poi nt = 4, /*Floating-Point Arithnetic Package*/
tr Func = b5, /*Transcendent al Functi ons Package*/
textUill = 6, [*Text Utilities*/
textUtil2 =7, [*Text Utilities*/
aevt Mgr 8, /*Appl e Event Manager*/
ppcBrowser = 9, / *PPC Browser */
editionMgr = 11, /*Edi ti on Manager*/
col or Pi cker = 12, /*Col or Pi cker*/
dat aAccess = 13, /*Data Access Manager*/
hel pMgr = 14, /*Hel p Manager */
pictUtil = 15, [*Picture Utilities*/
intUWUil = 6, [*Text Utilities*/
bdConv =7 [*Text Utilities*/
1
Routines

Initializing Packages
pascal void InitPack
pascal void InitAllPacks

(short packl D);
(void);

Summary of the Package Manager

10-9

Jabeuely abexoed H

CHAPTER 10

Package Manager

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_PackO0 ; Li st Manager

_Pack?2 ;Disk Initialization Manager
_Pack3 ; Standard Fil e Package
_Pack6 ; Text Wilities

_Pack7 ; Text Wilities

_Pack8 ; Appl e Event Manager
_Pack9 ; PPC Br owser

_Pack11 ; Edi ti on Manager
_Pack12 ; Col or Picker

_Pack13 ; Data Access Manager
_Pack14 ; Hel p Manager

_Pack15 ;Picture UWilities

10-10 Summary of the Package Manager

Glossary

A-line instruction An unimplemented
instruction of the form $Axxx (the high-order
4 bits have the hexadecimal value $A).

auto-key rate The rate at which a character key
repeats after it’s begun to do so.

auto-key threshold The length of time a
character key must be held down before it
begins to repeat.

auto-pop bit Bit 10 of a Toolbox trap word,
signifying that an extra return address is placed
on the stack.

bit The atomic memory unit. Each bit can be
either set (the value of the bit is 1) or cleared
(the value of the bit is 0).

bomb box See system error alert box.

boot blocks The first two logical blocks on
every Macintosh volume. Boot blocks contain
instructions and information necessary to start
up (or “boot”) a Macintosh computer.

byte A bit quantity, used to store 28, or 256,
different possible values. In the MC680x0
bit-numbering scheme, the first bit in a byte

is bit number 7, and the last bit is bit number 0.
See also reversed bit-numbering .

caret A generic term meaning a symbol that
indicates where something should be inserted in
text. The specific symbol used is a vertical bar(]).

caret-blink time The interval between blinks of
the caret that marks an insertion point.

clock chip A special integrated circuit (IC) used
for storing parameter RAM and the current date
and time. This IC is powered by a battery when
the system is off, thus keeping correct time and
preserving the parameter RAM information.

come-from patch A system software patch used
only by Apple to add enhancements to system
software. Come-from patches are placed before
any other types of patches in a patch daisy chain.

control panel A modeless dialog box that
contains controls that let users specify basic
settings and preferences for a systemwide
feature, such as the speaker volume, desktop
pattern, or picture displayed by a screen saver.

control panel extension A collection of routines
that manages a certain part of a control panel’s
display area.

daisy chain A chain of any number of patches
and one system software routine.

dangling reference Typically, a pointer whose
target has been either destroyed or moved
elsewhere in memory.

date-time record A data structure that
represents date and time as a record rather than
a 32-bit long integer. The date-time record is a
translation of the standard date-time value, so
it can represent only dates and times between
midnight on January 1, 1904 and 6:28:15 Am. on
February 6, 2040.

default operating system The operating system
that gets initialized and booted on a Macintosh
computer. Currently, the only default operating
system allowed is the Macintosh Operating
System.

default startup device The first drive on which
the boot code attempts to start up the Macintosh
Operating System.

default video device The first monitor on
which the system displays the startup message
“Welcome to Macintosh.” and other startup
indications.

double-click time The greatest interval
between a mouse-up and mouse-down event that
would qualify two mouse clicks as a double-click.

environmental selector A Gestalt selector code,
used with the Gest al t function, that returns
information about the operating environment
that can be used by an application to guide its
actions. Compare informational selector.

GL-1

GLOSSARY

exception Any of various situations in which
the normal flow of execution of a program is
interrupted, with control passing to a system
exception handler.

exception handler A system routine invoked
automatically by the processor in any of a variety
of exceptional circumstances. For example, the
trap dispatcher is an exception handler that is
called by the processor, to dispatch
unimplemented A-line instructions.

exception stack frame A block of data placed
on the stack automatically by the processor when
an exception occurs.

extended parameter RAM The 236 bytes of
parameter RAM that is reserved by the system
software.

fatal system error A system error that causes
the entire system to crash.

Gestalt Manager The part of the Macintosh
Operating System that you can use to determine
the features of the current software and hardware
operating environment.

glue routine Aruntime library routine, usually
provided by the development environment, that
provides a linkage between high-level language
code and a system routine with an interface
protocol different from that of the high-level
language.

head patch A patch that, upon completion
does not regain control. A head patch jumps
to the next routine. Compare tail patch.

high-order bit The bit contributing the greatest
value in a string of bits. For example, in the
MC680x0 numbering scheme bit number 7
contributes a value of 27, or 128. Same as

most significant bit. Compare low-order bit.

informational selector A Gestalt selector code,
used with the Gest al t function, that supplies
information about the operating environment
that cannot be used to determine whether a
software or hardware feature is available.
Compare environmental selector.

GL-2

least significant bit The bit contributing the
least value in a string of bits. For example, in the
MC680x0 numbering scheme bit number 0 in a
byte contributes a value of 20 or 1. Same as
low-order bit. Compare most significant bit

long date-time record A data structure that
represents date and time as a record rather than
a 64-bit long integer.

long date-time value A 64-bit integer in SANE
conp format that represents date and time purely
in seconds. This format allows dates and times
before and after the range of the date-time record
(30,000 8.c. to 30,000 AD.).

longword A 32-bit quantity used to store
(or 4,294,967,296) values.

long-word boundary = The memory location that
divides two long words.

232

low-order bit The bit contributing the least
value in a string of bits. For example, in the

MC680x0 numbering scheme bit number 0 in
a byte contributes a value of 20 or 1. Same as
least significant bit. Compare high-order bit.

MC680x0 bit-numbering The bit-numbering
scheme used by Motorola. Bit numbers are
counted from right to left. (That is, the most
significant bit has the highest bit number, and
the least significant bit number has the lowest bit
number). Compare reversed bit-numbering.

menu-blink time The number of times a menu
item blinks when the user chooses it.

mouse-down event An event indicating that the
user pressed the mouse button.

most significant bit The bit contributing the
greatest value in a string of bits. For example, in
the MC680x0 numbering scheme bit number 7 in
a byte contributes a value of 27, or 128. Same as
high-order bit. Compare least significant bit.

mouse scaling A feature that causes the cursor
to move twice as far during a mouse stroke as it
would have otherwise, provided the change in
the cursor’s position exceeds the mouse-scaling
threshold within one tick after the mouse is
moved.

GLOSSARY

mouse-scaling threshold A number of pixels
that, if exceeded by the sum of the horizontal and
vertical changes in the cursor’s position during
one tick of mouse movement, causes mouse
scaling to occur (if that feature is turned on);
normally six pixels.

mouse-up event An event indicating that the
user released the mouse button.

operating-system queue A queue used by the
Macintosh Operating System.

Operating System trap An exception that is
caused by an A-line instruction that executes an
Operating System routine.

Operating System trap dispatch table A table
in RAM containing addresses of Operating
System routines.

package A setof routines and data types that’s
stored as a resource of type 'PACK' and only
brought into memory when needed.

Package Manager A set of routines that loads
the packages into memory.

pad byte The extra byte added to make 2 bytes,
when you declare a variable of type Byte.

panel The area managed by a control panel
extension. A panel contains controls and other
dialog items related to the features managed by
control panel extensions.

parameter RAM Battery-powered RAM
(random-access memory) contained in the clock
chip, which preserves settings such as those
made with the control panels. Parameter RAM
takes up 256 bytes of battery-powered RAM: 20
bytes are commonly accessible by applications,
and 236 bytes are reserved by the system
software. See also clock chip.

patch Generally, any code used to repair or
augment an existing piece of code. In the context
of system software, a patch repairs or augments a
system software routine. See also head patch, tail
patch, and come-from patch.

pseudo-random number generator An
algorithm that is designed to return a value
that is as random as possible.

queue Alist of identically structured entries
linked together by pointers.

queue element A data structure that contains a
pointer to the next queue element in the queue,
a value indicating the queue type, and a variable
data field.

queue header A data structure that contains
flags specific to the queue, a pointer to the first
element in the queue, and a pointer to the last
element in the queue.

Queue Utilities The collection of routines for
directly adding a queue element to a queue or
directly removing a queue element from a queue.

resume procedure A procedure within an
application that allows the application to recover
from system errors.

reversed bit-numbering A bit-numbering
scheme opposite that of the MC680x0 numbering
scheme. Bit numbers are counted from left to
right instead of right to left. For example, using
the reversed bit-numbering scheme on a byte,
the first bit is bit number 0 and the last bit is bit
number 7. (That is, the most significant bit has
the lowest bit number, and the least significant
bit number highest bit number). Compare
MC680x0 bit-numbering.

selector See selector code.

selector code A parameter to the Gest al t
function that specifies what information about
the operating environment the caller requires.
See environmental selector and informational
selector.

selector function A function that is executed
when an application calls Gest al t and passes
the associated selector code.

standard date-time value A 32-bit long integer
that represents date and time purely in seconds.
The standard date-time value can track dates and
times only between midnight on January 1, 1904
and 6:28:15 aA.m. on February 6, 2040.

Start Manager A collection of routines that let
you get and set system startup information
located parameter RAM.

system environment record A description
of the operating environment filled in by the
SysEnvi r ons function and defined by the
SysEnvRec data type.

GL-3

GLOSSARY

system error An error generated by the
Operating System.

system error alert box An alert box displayed
by the System Error Handler when a system
error has occurred.

system error alert table resource A resource
that determines the appearance and function
of system error alert boxes and system startup
alert boxes.

System Error Handler The part of the
Operating System that displays an alert box
when an system error occurs and manages
display of the “Welcome to Macintosh” alert
box at system startup time.

systemerror ID An ID number that may
appear in a system error alert box to identify
the error.

system extension A file (with the file type

‘I NI T") containing a code resource of type 'l NI T'
and additional other resources. A system
extension typically contains code that performs
a system-level service and code that loads this
system-level service into the system at system
startup time.

system initialization The process when the
system initialization code located in ROM is
executed. Memory is tested and initialized, ROM
drivers are installed, device drivers are located,
and more.

system startup The process when the system
startup code located in ROM is executed.
Memory is tested and initialized, ROM drivers
are installed, device drivers are located, and
more.

system startup alert box The alert box
displayed at system startup time. It contains
the startup greeting “Welcome to Macintosh.”

system startup information Configurable
system parameters and machine-language
instructions needed to start up a Macintosh
computer.

tail patch A patch that transfers control to
routine, and then regains control after the routine
completes execution. Compare head patch.

GL-4

timeout interval The interval of time the
system waits for the startup drive to respond
while the computer is booting.

Toolbox trap An exception that is caused by an
A-line instruction that executes a Toolbox routine.

Toolbox trap dispatch table Atable in RAM
that contains addresses to Toolbox routines.

trap An exception caused by an A-line
instruction.

trap dispatcher The exception handler that
deals with the occurrence of A-line instructions.

trap dispatch table A table of entry points to
system routines that are invoked with A-line
instructions. Compare Operating System trap
dispatch table and Toolbox trap dispatch table.

Trap Manager A collection of routines that lets
you add extra capabilities to system software
routines.

trap number The bits of a trap word (bits 0-7
for an Operating System routine, bits 0-9 for a
Toolbox routine) that serve as an index into the
trap dispatch tables.

trap word See A-line instruction

vertical retrace interrupt An interrupt
generated 60 times a second by the Macintosh
video circuitry while the beam of the display
tube returns from the bottom of the screen to
the top; also known as vertical blanking interrupt.

word A 16-bit quantity, used to store 216
(or 65,536) possible values.

word boundary The memory location that
divides two words.

Index

Numerals

32-bit addressing

testing for availability 1-15
32-bit quantities

multiplying to obtain 64-bit quantities 3-26
64-bit integer record 3-27

A

ADb register
saving when using Gest al t selector functions 1-11
address errors 2-7
Alarm Clock 4-6
default alarm time 7-5
alert boxes
avoiding use of by system extensions 9-14
alert definitions (System Error Handler) 2-17
Alias Manager
testing for features 1-15
A-line exception errors 2-8
A-line instructions 8-10 to 8-20
for Operating System routines 8-11 to 8-14
for Toolbox routines 8-14 to 8-20
trap number 8-11
AND (logical) operation on bits 3-16 to 3-17
Angl eFr onSl ope function 3-12, 3-38
angles
defined 3-12
angle-slope conversion utilities 3-12 to 3-14
accuracy of 3-14
Apple Desktop Bus
testing for last keyboard used 1-19
Apple Event Manager
and Package Manager 10-4
testing for availability 1-15
AppleTalk drivers
testing for version 1-15
AppleTalk node ID
and parameter RAM 7-5
application creator string, as Gest al t selector
code 1-11
auto-key rate
and parameter RAM 7-6
auto-key threshold
and parameter RAM 7-6
auto-pop bit 8-20

A/UX
testing for version 1-16

B

binary values
converting to hexadecimal values 3-5
Bi t And function 3-16, 3-30
Bi t r procedure 3-15, 3-16, 3-29
Bi t Not function 3-17, 3-31 to 3-32
bit-numbering, reversed 3-7 to 3-8
Bi t O function 3-16, 3-30 to 3-31
bits
defined 3-4
manipulating 3-14 to 3-16
testing 3-14 to 3-16
Bi t Set procedure 3-15, 3-28 to 3-29
Bi t Shi ft function 3-17, 3-32
Bi t Tst function 3-14, 3-28
Bi t Xor function 3-16, 3-31
bomb box. See also system errors 2-5
Boot Bl kHdr data type 9-6
boot block header
formats for 9-6
boot block header record 9-6
boot blocks 9-6 to 9-8
defined 9-6
bus errors 2-7
button definitions (System Error Handler) 2-19 to 2-20
buttons
created by System Error Handler 2-5
button-title definitions (System Error Handler) 2-20
bytes
defined 3-4
hardcoding values into 3-19
masking out 3-17

C

calendars
Arabic CLC 4-17
Gregorian 4-17
Jewish 4-17
Julian 4-17

IN-1

INDEX

caret-blink time
and parameter RAM 7-6
check exception errors 2-8
CHK instructions 2-8
clock chip 4-3
validity of settings 7-5
Color Picker
and Edition Manager 10-4
come-from patches 8-8 to 8-9
Communications Resource Manager
testing for availability 1-16
Communications Toolbox
testing for features 1-16
Conponent Descri pti on data type
and control panel extensions 5-7
Component Manager
checking for features 1-7
Conponent Resour ce data type
and control panel extensions 5-6
compression utilities 3-8 to 3-9, 3-20 to 3-22
Connection Manager
testing for features 1-16
Continue button (system error alert) 2-5
control panel extension-defined routines
MyPanel Event function 5-26 to 5-27
MyPanel Get DI TL function 5-21 to 5-22
MyPanel CGet Set ti ngs function 5-29
MyPanel Get Ti t | e function 5-23 to 5-24
MyPanel | nst al | function 5-22 to 5-23
MyPanel | t emfunction 5-25 to 5-26
MyPanel Renpve function 5-24 to 5-25
MyPanel Set Set ti ngs function 5-30
MyPanel Val i dat el nput function 5-28
control panel extensions 5-3 to 5-34
creating a component for 5-6 to 5-9
extension-defined routines 5-20 to 5-30
opening resource files of 5-13
control panels
and control panel extensions 5-4 to 5-6
creating 5-3, 5-8
sound 5-8
video 5-8
CPUs, testing for type 1-22
crashes. See system errors
Cust ontGet Fi | e procedure
testing for availability 1-24
Cust onPut Fi | e procedure
testing for availability 1-24

D

daisy chains 8-8

IN-2

Data Access Manager
and Package Manager 10-5
testing for availability 1-16
data compression 3-8, 3-9
data decompression 3-8, 3-9
date
getting the current 4-9 to 4-10
Date & Time control panel 4-6
Date, Time, and Measurement Utilities 4-3 to 4-61
data structures in 4-23 to 4-32
routines in 4-32 to 4-49
Dat e2Secs procedure. See Dat eToSeconds
procedure
date and time
getting the current 4-9 to 4-10, 4-33 to 4-36
updating 4-10 to 4-12, 4-36 to 4-38
dates
calculating 4-14 to 4-16
converting from short to long formats 4-13
date-time formats
converting between 4-14 to 4-16, 4-38 to 4-40
Dat eTi meRec data type 4-4 to 4-5, 4-23 to 4-25
date-time record 4-23 to 4-25
Dat eToSeconds procedure 4-38
day
getting the current 4-9 to 4-10
daylight saving time 4-19
decompression utilities 3-8 to 3-9
default application font
and parameter RAM 7-5
default operating system
data structure for 9-19
defined 9-10
identifying 9-25, 9-26
routines for 9-25 to 9-26
default operating system parameter block 9-19
default startup device
data structure for 9-18
defined 9-10
identifying 9-20
routines for 9-20 to 9-22
setting 9-22
timeout interval for 9-10
types of 9-18, 9-21
default startup device parameter block 9-18
default system errors 2-11
default timeout interval
defined 9-27
setting for startup drive 9-28
default video device
data structure for 9-19
defined 9-10
identifying 9-23
routines for 9-23 to 9-24
setting 9-24

INDEX

default video device parameter block 9-19
Deferred Task Manager
and Queue Utilities 6-10, 6-12, 6-15
Def OSRec data type 9-19
Def Vi deoRec data type 9-19
Dequeue function 6-11 to 6-13, 6-16 to 6-17
dialog boxes
avoiding use of by system extensions 9-14
Dialog Manager
testing for features 1-17
Dictionary Manager
testing for availability 1-7
Disk Initialization Manager
and Package Manager 10-3
disk-insertion required errors 2-10
division by zero 2-8
Dl VS instructions 2-8
DI VUinstructions 2-8
dl sDel t a field 4-29
double-click time
and parameter RAM 7-6
driver descriptor record
use during system startup 9-25
' DSAT" resource type 2-16 to 2-20

E

Easy Access
testing for features 1-17
Edition Manager
and Package Manager 10-4
testing for features 1-17
Enqueue procedure 6-10 to 6-11, 6-15 to 6-16

environment, getting information about. See Gestalt

Manager

era 4-6,4-26
errors

system. See system errors
Event Manager

and Queue Utilities 6-10, 6-12, 6-15
exception errors 2-8
exception stack frames 8-10
extensions. See system extensions

F

File Manager

and Queue Utilities 6-10, 6-12, 6-15
file map destroyed errors 2-10
file system, testing for features 1-18

File Transfer Manager
testing for features 1-18
Finder not found errors 2-11
Fi ndFol der function
testing for availability 1-18
Fi x2Fr ac function 3-44
Fi x2Long function 3-44
Fi x2Xfunction 3-45
Fi xATan2 function 3-42 to 3-43
Fi xDi v function 3-39 to 3-40
Fi xed data type 3-11
Fi xed data type. See also fixed-point data types
fixed-point data types 3-11 to 3-12
converting to other numeric types 3-24 to 3-26
division by 0 3-12
overflow handling 3-12
performing operations on 3-24 to 3-26
Fi xMul function 3-38 to 3-39
Fi xRat i o function 3-25, 3-46 to 3-47
Fi xRound function 3-25, 3-47
F-line exception errors 2-8
Floating-Point Arithmetic Package
and Package Manager 10-3
floating-point errors 2-9
floating-point unit (FPU)
testing for type 1-18
Font Manager
testing for features 1-18
FPU. See floating-point unit
Fr ac2Fi x function 3-44
Frac2X function 3-46
Fr acCos function 3-42
FracDi v function 3-40 to 3-41
FracMul function 3-40
FracSi n function 3-42
FracSqgrt function 3-41
Fr act data type. See also fixed-point data types
range of values
function results
Operating System routines 8-13
Toolbox routines 8-19 to 8-20

G

geographic location 4-7, 4-18 to 4-21
geographic location record 4-29 to 4-30
Gest al t function 1-31to 1-33
adding selectors to 1-10to 1-13
relation to SysEnvi r ons and Envi rons 1-4
selector codes 1-14 to 1-28
testing for availability 1-5

IN-3

INDEX

Gestalt Manager 1-3to 1-68
constants 1-14 to 1-28
data structures in 1-28 to 1-30
response parameter of 1-6
routines in 1-30 to 1-36
testing for availability 1-5
testing for version 1-25
Gest al t selector codes
adding 1-11 to 1-13, 1-33
defined 1-6
environmental 1-7 to 1-9, 1-15 to 1-25
environmental versus informational 1-7
informational 1-9, 1-26 to 1-28
modifying 1-11 to 1-13, 1-35
suffixesin 1-9
Get Dat eTi ne procedure 4-35
Get Def aul t St ar t up procedure 9-20
Get OSDef aul t procedure 9-25
Get OSTr apAddr ess function 8-26
Get SysPPt r function 7-7 to 7-8, 7-11 to 7-12
Get Ti meout procedure 9-27
Get Ti me procedure 4-35
Get Tool boxTr apAddr ess function 8-26 to 8-27
Get Tr apAddr ess function 8-32 to 8-33
Get Vi deoDef aul t procedure 9-23
global timing variables 9-9
global variables. See system global variables 1-19
GMT (Greenwich mean time) 4-18
Greenwich mean time (GMT) 4-18
Gregorian calendar 4-17

H

Image Compression Manager
checking for version 1-7
I ni t Al l Packs procedure 10-7
I ni t Pack procedure 10-7
InitUtil function 7-7,7-8, 7-10
I nt 64Bi t data type 3-27
interrupt time
calling Gestal t at 1-31
1/0 system errors 2-9
I sMet ri c function 4-48 to 4-49
"itl 0" resource
determining the measurement system 4-21

K

kComponent C oseSel ect constant 5-9
kConponent OpenSel ect constant 5-9
keyboards
testing for type with Gestal t 1-18
testing for type with SysEnvi r ons 1-30

L

hardware environment, testing for features 1-26
head patches 8-8
Help Manager
and Package Manager 10-5
testing for availability 1-18
hexadecimal values
converting to binary values 3-5
high-order bit 3-4
Hi Wor d function 3-18, 3-33

icon definitions (System Error Handler) 2-18 to 2-19
icons
default for system extensions 9-14, 9-16
Icon Utilities
checking for availability 1-18
illegal instruction errors 2-8

IN-4

latitude 4-19, 4-29
least significant bit 3-4
List Manager
and Package Manager 10-3
logical operations. See Mathematical and Logical
Utilities
logical RAM, testing for size 1-19
Long2Fi x function 3-43
LongDat e2Secs. See LongDat eToSeconds
procedure
long date-time formats
converting between 4-40 to 4-41
LongDat eCvt data type 4-25
LongDat eRec data type 4-5 to 4-6, 4-26 to 4-28
long date-time record 4-5to 4-6
long date-time record 4-26 to 4-28
long date-time value 4-25
LongDat eToSeconds procedure 4-41
longitude 4-19, 4-29
LongMul procedure 3-26, 3-47
LongSecondsToDat e procedure 4-40 to 4-41
LongSecs2Dat e. See LongSecondsToDat e
procedure
long words
performing logical operations on 3-16 to 3-18
setting high word of 3-19
setting low word of 3-19

INDEX

low-memory global variables
testing for size 1-19
LoWor d function 3-18, 3-33

M

machine icon, testing for 1-26
Machi neLocat i on datatype 4-29
machine name 1-27
machine type, testing for 1-26, 1-29
MacPaint images
compressing 3-9
Map control panel 4-7
masking out bytes 3-17
Mathematical and Logical Utilities 3-3 to 3-52
calculating angle from slope 3-12 to 3-14
calculating slope from angle 3-12 to 3-14
clearing bits 3-15
data structures in 3-27
logical operations on bits 3-16 to 3-18
obtaining pseudorandom numbers 3-22 to 3-24
routines in 3-27 to 3-47
setting bits 3-15
shifting bits 3-17 to 3-18
working with Fi xed numbers 3-11 to 3-12
MC680x0 microprocessor, testing for type 1-29
measurement systems
determining 4-21
English system 4-8
metric system 4-8
memory management unit (MMU)
testing for type 1-20
menu blinking
and parameter RAM 7-6
setting in parameter RAM 7-3
menu purged errors 2-11
metric system
measurement system 4-8
M cr oseconds procedure 4-49
miscellaneous exception errors 2-9
modem port
communications settings of 7-5
nmont h field 4-23
most significant bit 3-4
mouse scaling
and parameter RAM 7-6
.MPP driver, determining version number 1-15
MyPanel Event function 5-26 to 5-27
MyPanel Get DI TL function 5-21 to 5-22
MyPanel Get Set ti ngs function 5-29
MyPanel Get Ti t | e function 5-23 to 5-24
MyPanel | nst al | function 5-22 to 5-23
MyPanel | t emfunction 5-25 to 5-26

MyPanel Renove function 5-24 to 5-25
MyPanel Set Set ti ngs function 5-30
MyPanel Val i dat el nput function 5-28
MyResumePr oc procedure 2-15

My Sel ect or Funct i on function 1-37

N

negative zcbFr ee value errors 2-11
NewGest al t function 1-11, 1-12, 1-34 to 1-35
NGet Tr apAddr ess function 8-27 to 8-28
NOT (logical) operation on bits 3-17 to 3-18
Notification Manager

and Queue Utilities 6-10, 6-12, 6-15

testing for availability 1-20

use by system extensions 9-14
NSet Tr apAddr ess procedure 8-30 to 8-31
NuBus slots

testing for locations 1-20
numeric-format resource

determining measurement system 4-21

O

Operating System
testing for features 1-20
operating system
default on startup. See default operating system

Operating System parameter-passing conventions 8-13

operating-system queues 6-3 to 6-21
adding new elements to 6-10, 6-15
generic routines for manipulating 6-15 to 6-17
queue elements 6-6 to 6-11
queue headers 6-5
removing elements from 6-11, 6-16

Operating System trap dispatch table 8-5
testing for base address 1-21

Operating System traps 8-10, 8-11

OR (logical) operation on bits 3-16 to 3-17

outline fonts
testing for availability 1-18

out-of-memory errors 2-9

P

Package Manager 10-3 to 10-10
and Apple Event Manager 10-4
and Color Picker 10-4
and Data Access Manager 10-5

IN-5

INDEX

Package Manager (continued)
and Disk Initialization Manager 10-3
and Edition Manager 10-4
and Floating-Point Arithmetic Package 10-3
and Help Manager 10-5
and List Manager 10-3
and Picture Utilites 10-5
and PPC Browser 10-4
and Standard File Package 10-3
and Text Utilities 10-4
and Transcendental Functions Package 10-4
routines in 10-6 to 10-7
package resource IDs 10-3 to 10-5
package resources 10-3 to 10-5
packages 10-3 to 10-5
PackBi t s procedure 3-8, 3-9, 3-20, 3-34 to 3-35
' PACK' resource type 10-3
pages (memory), testing for size 1-19
panels
and control panel extensions 5-4 to ??
parameter-passing conventions
Operating System routines 8-13
Toolbox routines 8-18 to 8-19
parameter RAM
changing settings in 7-7 to 7-8
information stored in 7-3to 7-7
low-memory copy of 7-8
restoring default values in 7-7, 7-13
Parameter RAM Utilities 7-3 to 7-16
data structures in 7-9 to 7-10
routines in 7-10 to 7-13
parity-checking, testing for attributes 1-21
parity RAM, testing for size 1-20
patches 8-6 to 8-9
come-from 8-8 to 8-9
daisy chain of 8-8
head 8-8
tail 8-8
patching a system software routine 8-6 to 8-8, 8-23 to
8-25
patching a trap. See patching a system software routine
physical RAM, testing for size 1-21
Picture Utilities
and Package Manager 10-5
pop-up control definition
testing for availability 1-21
Power Manager
and Queue Utilities 6-15
testing for 1-21
PPC Browser
and Package Manager 10-4
printer port
communications settings of 7-5
privilege violation errors 2-8

IN-6

Program-to-Program Communications (PPC) Toolbox
testing for features 1-21

pseudorandom number generation 3-9 to 3-10
obtaining a pseudorandom number 3-22 to 3-24

Q

(E! emdata type 6-6 to 6-11, 6-13 to 6-15
(Hdr data type 6-5, 6-13
Qlypes data type 6-13
queue elements
adding new 6-10, 6-15
defined 6-6
removing from queues 6-11, 6-16
queue headers 6-5, 6-13
queues. See operating-system queues
queue types 6-7
Queue Utilities 6-3 to 6-21
and Deferred Task Manager 6-10, 6-12, 6-15
and Event Manager 6-10, 6-12, 6-15
and File Manager 6-10, 6-12, 6-15
and Notification Manager 6-10, 6-12, 6-15
and Power Manager 6-15
and Slot Manager 6-10, 6-12, 6-15
and Time Manager 6-7
and Vertical Retrace Manager 6-10, 6-12, 6-15
data structures in 6-13 to 6-15
routines in 6-15 to 6-17
QuickDraw
testing for features 1-22
testing for version 1-22

R

RAM
checking size of 1-21
parity 1-21
Randomfunction 3-36 to 3-37
distribution of output 3-10
example of 3-23
random number generation. See pseudorandom
number generation
r andSeed global variable 3-10, 3-37
ReadDat eTi me function 4-34
ReadLocat i on procedure 4-46 to 4-47
register-based routines 8-12
Repl aceGest al t function 1-13, 1-35 to 1-36
Resource Manager
testing for features 1-22
resources
compressing 3-20 to 3-21

INDEX

resources (continued)

decompressing 3-21 to 3-22

package 10-3

system heap zone 9-16
Resour ceSpec data type

and control panel extensions 5-7
resource types

' DSAT' 2-16 to 2-20

' PACK' 10-3

'sysz' 9-16

"thng' 5-6to05-8
Restart button (system error alert) 2-5
Resume button (system error alert) 2-5
resume procedures 2-11 to 2-12
reversed bit-numbering 3-7 to 3-8
RndSeed system global variable 3-37
ROM

testing for size 1-28

testing for version 1-28
routine selectors 8-21
RTE instructions

erroneous execution of 2-8

S

sad Macintosh icon 2-13
Scrap Manager

testing for features 1-23
Script Manager

testing for version 1-23
script systems

testing for number 1-23
scrolling throttle, testing for 1-20
SCSI (based on 53C80 chip)

checking for availability 1-26
SecondsToDat e procedure 4-38 to 4-39
Secs?2Dat e procedure. See SecondsToDat e

procedure

segment loader errors 2-9, 2-10
selector codes. See Gest al t selector codes
selectors. See Gest al t selector codes
serial hardware, testing for features 1-8
Set Dat eTi ne function 4-36 to 4-37
Set Def aul t St ar t up procedure 9-22
Set OSDef aul t procedure 9-26
Set OSTr apAddr ess procedure 8-29
Set Ti meout procedure 9-28
Set Ti me procedure 4-37
Set Tool boxTr apAddr ess procedure 8-29 to 8-30
Set Tr apAddr ess procedure 8-33
Set Vi deoDef aul t procedure 9-24
shifting bits 3-17 to 3-18
SHI FT operation on bits 3-17 to 3-18

signed values 3-5
64-bit integer record 3-27
Sl opeFr omAngl e function 3-12, 3-37
slopes
defined 3-13
Slot Manager
and Queue Utilities 6-10, 6-12, 6-15
slots
testing for locations 1-20
slot secondary init code
when initialized 9-5
Sound control panel
and panels 5-4
sound hardware
testing for features 1-23
sound panels
creating 5-8
speaker volume
and parameter RAM 7-6
special folders
testing for availability 1-18
spurious interrupt errors 2-9
square menu bar, testing for 1-20
stack-based routines
calling conventions 8-16 to 8-17
stack overflow errors 2-10
Standard File Package
and Package Manager 10-3
testing for features 1-24
St andar dGet Fi | e procedure
testing for 1-24
St andar dNBP function
testing for 1-24
St andar dPut Fi | e procedure
testing for 1-24
Start Manager 9-9 to 9-28
data structures in 9-18 to 9-20
routines in 9-20 to 9-28
startup device
default. See default startup device
startup disk
and parameter RAM 7-6
startup process
message during 2-4
St uf f Hex procedure 3-19, 3-33 to 3-34
SysEnvi r ons function 1-4, 1-14, 1-32 to 1-33
SysEnvRec data type 1-28 to 1-30
SysError procedure 2-13to 2-14
calling directly from an application 2-6
SysPar amglobal variable 7-8
SysPar nType data type 7-4 to 7-7, 7-9 to 7-10
default values of 7-7
system environment records 1-28 to 1-30
system error alert 2-5

IN-7

INDEX

system error alert box
layout of 2-5
system error alert table 2-16 to 2-20
system error alert table resources 2-16 to 2-20
structure of 2-16 to 2-17
System Error Handler 2-3to 2-22
display mechanism 2-3
resources in 2-15 to 2-20
routines in 2-13 to 2-14
system error IDs 2-7 to 2-11
system errors 2-3 to 2-22
default 2-11
170 2-9
list of 2-7 to 2-11
transparent 2-6
system extensions
and system startup 9-5
differences from an application 9-12
example of 9-11
human interface guidelines for 9-16
installing and removing 9-14
writing 9-10 to 9-13
System file, testing for version 1-28
system global variables
testing for size 1-19
system heap zone resources 9-16
system initialization, process of 9-3to 9-4
system parameters record 7-5, 7-9
default values of 7-7
system software routines
determining if available 8-21 to 8-23
patching 8-23 to 8-25
system startup, process of 9-4 to 9-6
system startup alert box 2-4
system startup information
defined 9-6
system startup messages 2-4

T

tail patches 8-8
temporary memory

testing for features 1-20
Terminal Manager

testing for features 1-25
text definitions (System Error Handler) 2-17 to 2-18
TextEdit

testing for version 1-25
Text Services Manager

testing for version 1-9
Text Utilites

and Package Manager 10-4

IN-8

"thng' resource type
for control panel extensions 5-6 to 5-8
time
getting the current 4-9 to 4-10
GMT 4-18
setting 4-10 to 4-12
setting. See Alarm Clock, Date & Time control panel
Ti meDBRAglobal variable
limitations of 9-9
Time Manager
and operating-system queues 6-7
testing for version 1-25
Ti meSCCDB global variable 9-9
Ti meSCSI DB global variable 9-9
time-zone information 4-7, 4-18 to 4-21
reading 4-46 to 4-48
setting 4-46 to 4-48
Toggl eDat e function 4-42 to 4-44
toggle parameter block 4-30 to 4-32
Toggl ePB data type 4-30
Toolbox trap dispatch table 8-5
testing for base address 1-25
testing for discontiguous half 1-17
Toolbox traps 8-14
trace exception errors 2-8
Transcendental Functions Package
and Package Manager 10-4
Translation Manager
testing for availability 1-17
trap dispatcher 8-12, 8-15
trap dispatch table
testing for base address 1-21, 1-25
trap dispatch tables 8-5
trap macros 8-20 to 8-21
Trap Manager 8-3to 8-33
getting a trap address 8-25 to 8-28
patching a trap 8-6 to 8-8, 8-23 to 8-25
routines 8-25 to 8-33
setting a trap address 8-28 to 8-33
trap-on-overflow exception errors 2-8
TRAPV instructions 2-8
TrueType fonts
testing for availability 1-18

U

unimplemented core routine errors 2-9

Uni npl enent ed procedure 8-6, 8-32
UnpackBi t s procedure 3-8, 3-20, 3-35 to 3-36
unsigned wide record 4-32

INDEX

\Y

Val i dDat e function 4-45 to 4-46
Vector Base Register (VBR) 8-11
Vertical Retrace Manager

and Queue Utilities 6-10, 6-12, 6-15
video device

default on startup. See default video device
video panels

creating 5-8
Vi deoPanel Type constant 5-8
virtual memory

testing for availability 1-25

\W

word boundaries 3-5
words
defined 3-5
extracting from long words 3-18
working directory reference number, of System
file 1-14
W itelLocati on procedure 4-47 to 4-48
W i t ePar amfunction 7-7 to 7-8, 7-12 to 7-13
wrong disk inserted errors 2-10

X

X2Fi x function 3-45
X2Fr ac function 3-46
XOR (logical) operation on bits 3-16 to 3-17

Z

zero divide errors 2-8

IN-9

T HE A P PLE P UBLI1ISHI

N G

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro 630 printer. Final page
negatives were output directly from text
files on an Optrotech SPrint 220
imagesetter. Line art was created

using Adobe Illustrator ™ and

Adobe Photoshop™. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as

program listings, are set in Apple Courier.

LEAD WRITER
Sharon Everson

WRITERS
Ulla Hald, Tim Monroe,
Michael Abramowicz

DEVELOPMENTAL EDITORS
George Truett, Antonio Padial,
Laurel Rezeau

ILLUSTRATORS
Bruce Lee, Ruth Anderson

COVER DESIGNER
Barb Smyth

PRODUCTION EDITOR
Gerri Gray

PROJECT MANAGER
Trish Eastman

Special thanks to Tony Francis,
Jim Mensch, Alex Rosenberg

Acknowledgments to Sam Barone,
Ray Chiang, Lorraine Findlay,

Carl Hewitt, Nick Kledzik, Jim Luther,
Sue Luttner, Joseph Maurer,

Josephine Manuele, Brian McGhie,
Martin Minow, and the entire

Inside Macintosh team.

	Operating System Utilities
	Copyright
	Table of Contents
	Figures, Tables, and Listings
	About This Book
	Format of a Typical Chapter
	Conventions Used in This Book
	Special Fonts
	Types of Notes
	Assembly-Language Information

	The Development Environment

	Gestalt Manager
	Contents
	About the Gestalt Manager
	Using the Gestalt Manager
	Determining Whether the Gestalt Manager Is Availab...
	Getting Information About the Operating Environmen...
	Interpreting Gestalt Responses
	Adding a New Selector Code
	Modifying a Selector Function
	Getting Environmental Information Without the Gest...

	Gestalt Manager Reference
	Constants
	Data Structures
	The System Environment Record

	Gestalt Manager Routines
	Getting Information About the Operating Environmen...
	Adding a Selector Code
	Modifying a Selector Function

	Application-Defined Routines
	The Selector Function

	Summary of the Gestalt Manager
	Pascal Summary
	Constants
	Data Types
	Gestalt Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Gestalt Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Data Structures

	Result Codes

	System Error Handler
	Contents
	About the System Error Handler
	System Errors
	Resume Procedures

	System Error Handler Reference
	System Error Handler Routines
	Application-Defined Routines
	Resources
	The System Error Alert Table Resource

	Summary of the System Error Handler
	Pascal Summary
	System Error Handler Routines
	Application-Defined Routines

	C Summary
	System Error Handler Routines
	Application-Defined Routines

	Assembly-Language Summary
	Global Variables

	Mathematical and Logical Utilities
	Contents
	About the Mathematical and Logical Utilities
	Bits, Bytes, Words, and Long Words
	Bit Manipulation and Logical Operations
	Reversed Bit-Numbering
	Data Compression
	Pseudorandom Number Generation
	Fixed-Point Data Types
	Angle-Slope Conversion

	Using the Mathematical and Logical Utilities
	Performing Low-Level Manipulation of Memory
	Testing and Manipulating Bits
	Performing Logical Operations on Long Words
	Extracting a Word From a Long Word
	Hardcoding Byte Values

	Compressing Data
	Obtaining Pseudorandom Numbers
	Using Fixed-Point Data Types

	Mathematical and Logical Utilities Reference
	Data Structures
	64-Bit Integer Record

	Routines
	Testing and Setting Bits
	Performing Logical Operations
	Getting and Setting Memory Values
	Compressing and Decompressing Data
	Obtaining a Pseudorandom Number
	Converting Between Angle and Slope Values
	Multiplying and Dividing Fixed-Point Numbers
	Performing Calculations on Fixed-Point Numbers
	Converting Among 32-Bit Numeric Types
	Converting Between Fixed-Point and Floating-Point ...
	Converting Between Fixed-Point and Integral Values...
	Multiplying 32-bit values

	Summary of the Mathematical and Logical Utilities
	Pascal Summary
	Data Types
	Routines

	C Summary
	Data Types
	Routines

	Global Variables

	Date, Time, and Measurement Utilities
	Contents
	About the Date, Time, and Measurement Utilities
	Date and Time
	Geographic Location and Time Zone
	System of Measurement
	Time Measurement

	Using the Date, Time, and Measurement Utilities
	Getting the Current Date and Time
	Setting the Current Date and Time
	Converting Date-Time Formats
	Calculating Dates
	Working With Different Calendar Systems
	Handling Geographic Location and Time-Zone Data
	Determining the Measurement System
	Determining the Number of Elapsed Microseconds

	Date, Time, and Measurement Utilities Reference
	Data Structures
	The Date-Time Record
	Long Date-Time Value and Long Date-Time Conversion...
	The Long Date-Time Record
	The Geographic Location Record
	The Toggle Parameter Block
	The Unsigned Wide Record

	Routines
	Getting the Current Date and Time
	Setting the Current Date and Time
	Converting Between Date-Time Formats
	Converting Between Long Date-Time Format
	Modifying and Verifying Long Date-Time Records
	Reading and Writing Location Data
	Determining the Measurement System
	Measuring Time

	Summary of the Date, Time, and Measurement Utiliti...
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Global Variables

	Result Codes

	Control Panel Extensions
	Contents
	About Control Panel Extensions
	Writing a Control Panel Extension
	Creating a Component Resource for a Control Panel ...
	Dispatching to Control Panel Extension-Defined Rou...
	Installing and Removing Panel Items
	Handling Panel Items
	Handling Events in a Panel
	Handling Title Requests
	Managing Control Panel Settings

	Control Panel Extensions Reference
	Control Panel Extension-Defined Routines
	Managing Panel Components
	Handling Panel Events
	Managing Panel Settings

	Summary of Control Panel Extensions
	Pascal Summary
	Constants
	Control Panel Extension-Defined Routines

	C Summary
	Constants
	Control Panel Extension-Defined Routines

	Queue Utilities
	Contents
	About Queues
	The Queue Header
	The Queue Element

	Using the Queue Utilities
	Searching for an Element in an Operating-System Qu...
	Adding Elements to an Operating-System Queue
	Removing Elements From an Operating-System Queue

	Queue Utilities Reference
	Data Structures
	Queue Headers
	Queue Elements

	Routines

	Summary of the Queue Utilities
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Result Codes

	Parameter RAM Utilities
	Contents
	About Parameter RAM
	Using the Parameter RAM Utilities
	Parameter RAM Utilities Reference
	Data Structures
	The System Parameters Record

	Routines

	Summary of the Parameter RAM Utilities
	Pascal Summary
	Data Types
	Routines

	C Summary
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Global Variables

	Result Codes

	Trap Manager
	Contents
	About the Trap Manager
	Trap Dispatch Tables
	Process for Accessing System Software Routines
	Patches and System Software Routines
	Daisy Chain of Patches
	Head Patch (Normal Patch)
	Tail Patch
	Come-From Patch (Used Only by Apple)
	Patch for One Application
	Patch for All Applications

	A-Line Instructions
	A-Line Instructions for Operating System Routines
	Calling Conventions for Register-Based Routines
	Parameter-Passing Conventions for Operating System...
	Function Results
	Flag Bits

	A-Line Instructions for Toolbox Routines
	Calling Conventions for Stack-Based Routines
	Parameter-Passing Conventions for Toolbox Routines...
	Function Results
	The Auto-Pop Bit

	About Trap Macros
	About Routine Selectors

	Using the Trap Manager
	Determining If a System Software Routine is Availa...
	Patching a System Software Routine

	Trap Manager Reference
	Routines
	Accessing Addresses From the Trap Dispatch Tables
	Installing Patch Addresses Into the Trap Dispatch ...
	Detecting Unimplemented System Software Routines
	Manipulating One Trap Dispatch Table (Obsolete Rou...

	Summary of the Trap Manager
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Constants
	Trap Macros

	Start Manager
	Contents
	System Initialization and Startup
	System Initialization
	System Startup
	Boot Blocks

	Global Timing Variables

	About the Start Manager
	Using the Start Manager
	Writing a System Extension
	Profile of a System Extension
	Defining the User Interface for a System Extension...
	Creating a System Extension’s Resources
	Creating Icons for a System Extension
	Creating a System Heap Zone Resource for a System ...

	Building a System Extension

	Start Manager Reference
	Data Structures
	The Default Startup Device Parameter Block
	The Default Video Device Parameter Block
	The Default Operating System Parameter Block

	Routines
	Identifying and Setting the Default Startup Device...
	Identifying and Setting the Default Video Device
	Identifying and Setting the Default Operating Syst...
	Getting and Setting the Timeout Interval

	Summary of the Start Manager
	Pascal Summary
	Data Types
	Routines

	C Summary
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Global Variables

	Package Manager
	Contents
	About the Package Manager
	Using the Package Manager
	Package Manager Reference
	Routines
	Initialization of Packages

	Summary of the Package Manager
	Pascal Summary
	Constants
	Routines

	C Summary
	Constants
	Routines

	Assembly-Language Summary
	Trap Macros

	Glossary
	Index
	Colophon

