
ti. Apple® Apple Numerics Manual

...
~

Second Edition

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Sanjuan

S APPLE COMPUTER, INC.
Copyright © 1988 by Apple
Computer, Inc.

All rights reserved. No part of
this publication may be repro­
duced, stored in a retrieval
system, or transmitted, in any
form or by any means, mechan­
ical, electronic, photocopying,
recording, or otherwise, without
prior written permission of
Apple Computer, Inc. Printed in
the United States of America.

Apple, the Apple logo,
Apple IIGS, LaserWriter,
Macintosh, ProDOS, and SANE
are registered trademarks of
Apple Computer, Inc.

Aztec C is a trademark of Manx
Software Systems.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered trade­
marks of International Typeface
Corporation.

Llghtspeed Pascal is a trademark
of 11-IINK Technologies, Inc.

Mac C is a trademark of
Consulair Corp.

Microsoft is a registered trade­
mark of Microsoft Corporation.

POSTSCRIPT is a registered
trademark of Adobe Systems
Incorporated.

Turbo Pascal is a registered
trademark of Borland
International.

Varityper is a registered trade­
mark, and VT600 is a trademark,
of AM International, Inc.

VAX is a trademark of Digital
Equipment Corporation.

Simultaneously published in the
United States and Canada.

ISBN 0-201-17738-2
ABCDEFGHIJ-D0-898
First printing, May 1988

WARRANTY INFORMATION

ALL IMPLIED WARRANfIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAJL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESENTA­
TION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
TIDS MANUAL, ITS QUALITY,
ACCURACY, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOID "AS IS," AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
UABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised o f the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTII ABOVE ARE EXCLU­
SIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITfEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is
authorized to make any modifica­
tion, extension, or addition to this
warranty.

Some states do not allow the exclu­
sion or limitation of implied warran­
ties or liability for incidental or
consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

Contents

Figures and tables xv

Foreword About Standard Numerics xxl

Preface About This Book xxv

About the second edition xxv
Parts of the manual xxvi
Special notation xxvi

Computer voice xxvi
Hexadecimal numbers xxvi

Part I The Standard Apple Numerics Environment

Chapter 1 About IEEE Standard Arithmetic 3

Starting to use IEEE standard arithmetic 4
Well-behaved arithmetic 4

Extended precision and range 4
Accurate results 5
Gradual underflow 5
Careful rounding 5

Example: inverse operations 6
Alternatives to stopping 7

Example: compound conditional statements 7
Searching without stopping 8
Example: parallel resistances 8

Advanced features 9
Control of rounding 9
Exception handling 10
Elementary functions 10

Iii

Iv Contents

Chapter 2 SANE Data Types 11

Choosing a data type 12
Values represented 13
Range and precision of SANE types 14

Example: range of single 15
Formats 15

Single 16
Double 17
Comp 17
Extended 18

Chapter 3 Conversions In SANE 19

Conversions between extended and single or double 21
Conversions from extended to single or double 21
Example: Is x negligible? 21

Conversions to comp and other integral formats 22
Conversions between binary and decimal 22

Example: binary approximation of decimal fractions 23
Accuracy of decimal-to-bina1y conversions 23
Reading and writing decimal data 24
Conversions from decimal strings to SANE types 25
Decform records and conversions from SAl"\ffi types

to decimal strings 26
The decimal record type 27
Conversions from decimal records to SANE types 28
Conversions from SANE types to decimal records 28

Unusual cases for decimal records 29
Conversions between decimal formats 29

Conversion from decimal strings to decimal records 30
Conversion from decimal records to decimal strings 31

Floating-style decimal output 31
Fixed-style decimal output 32
Unusual cases for decimal strings 32
Alignment and field width 33

Example: decimal records 33

Chapter 4 Expression Evaluatlon in SANE 35

Extended-precision expression evaluation 36
Example: expression evaluation 36

Using extended temporaries 37
Example: extended temporaries 37

Expression evaluation and the IEEE Standard 38

Chapter 5 Infinities, NaNs, and Denormalized Numbers 39

Infinities 40
NaNs 41
Denormalized numbers 42

Example: gradual underflow 42
Why gradual underflow? 43

Sign of zero 43
Inquiries: class and sign 44

Chapter 6 Arithmetic Operations, Comparisons,
and Auxiliary Procedures 45

Arithmetic operations 46
Remainder 46

Remainder example 1 47
Remainder example 2 47

Round-to-integer 47
SANE comparisons 47

Comparisons with NaNs and Infinities 48
The Relation function 49

Auxiliary procedures 49
Sign manipulation 49
Nextafter functions 50

Special cases for Nextafter functions 50
Binary scaling and logarithmic functions 50

Special cases for Logb 50

Chapter 7 Controlling the SANE Environment 51

Rounding direction 52
Example: rounding upward 53

Rounding precision 53
Exception flags and halts 54

Types of exceptions 55
Invalid operation 55
Underflow 56
Divide-by-zero 56
Overflow 56
Inexact 56

Managing environmental settings 57
Example: setting rounding direction 57
Example: setting environment 58
Example: setting exceptions 58

Contents v

vi Contents

Chapter 8 Elementary Functions In SANE 61

Logarithmic functions 62
Special cases for logarithmic functions 62

Exponential functions 63
Example: using Expl 63
Special cases for Exp2, Exp, and Expl 63
Special cases for XpwrI 64
Special cases for XpwrY 64

Financial functions 64
Compound 64
Annuity 65
Special cases for Compound 65
Special cases for Annuity 65

Trigonometric functions 66
Accuracy of pi 66
Special cases for Cos and Sin 66
Special cases for Tan 67
Special cases for ArcTan 67

Random number generator 67

Chapter 9 Other Elementary Functions 69

Exception handling 70
Functions 70

Secant 70
CoSecant 70
CoTangent 71
ArcSin 71
ArcCos 71
Constants for Sinh and Cosh 72
Sinh 72
Cosh 73
Tanh 73
ArcSinh 74
ArcCosh 74
ArcTanh 74

Chapter 10 More Examples Using SANE 75

Continued fraction 76
Area of a triangle 77

Heron's formula 77
Improved formula 78

Part II The 65C816 and 6502 Assembly-Language SANE Engines 79

Chapter 11 65C816 SANE Basics and Data Types 81

Operation forms 83
Arithmetic and auxiliary operations 83
Conversions 84
Comparisons 84
Other operations 84

External access 85
Calling sequence 86

The opword 88
Example 88

Assembly-language macros 88
Example 1 89
Example 2 89
Example 3 89

65C816 SANE data types 90

Chapter 12 65C816 SANE Arithmetic and Auxiliary Operations,
Comparisons, and Inquiries 91

Add, Subtract, Multiply, and Divide 93
Example 93

Square Root 93
Example 93

Round-to-Integer and Truncate-to-Integer 93
Remainder 94

Example 94
Logb and Scalb 94

Example 94
Negate, Absolute Value, and CopySign 95

Example 95
Nextafter 95

Example 95
Comparisons 96

Example 1 97
Example 2 97

Inquiries 97
Example 98

Contents vii

Chapter 13 Conversions In 65C816 SANE 99
Conversions between bina1y formats 100

Conversions to extended 100
Example 100

Conversions from extended 101
Example 101

Binary-decimal conversions 101
Binary to decimal 102

Example 102
Fixed-format overflow 102

Decimal to binary 102
Example 102
Techniques for maximum accuracy 103

Chapter 14 Controlling the 65C816 SANE Environment 105

The Environment word 106
Example 107

Get-Environment and Set-Environment 108
Example 108

Test-Exception and Set-Exception 109
Example 109

Procedure-Entry and Procedure-Exit 110
Example 110

Chapter 15 Halts In 65C816 SANE 111

Conditions for a halt 112
The halt mechanism 112

Halt status information 113
Halt vector operations 115

Using the halt mechanism 116
Halt example for the 65C816 116
Halt example for the 6502 117

Chapter 16 Elementary Functions In 65C816 SANE 119
One-argument functions 120

viii Contents

Example 121
Two-argument functions 122

Example 122
Three-argument functions 123

Example 123

Chapter 17 65C816 SANE Scanners and Formatter 125

Numeric scanners 126
Numeric formatter 127

Chapter 18 Examples: Using the 65C816 and 6502 SANE Engines 129

65C816 examples 130
65C816 example: polynomial evaluation 130
65C816 example: scanning and formatting 132

6502 examples 133
6502 example: polynomial evaluation 133
6502 example: scanning and formatting 135

Part Ill The MC68000 Assembly-Language SANE Engine 137

Chapter 19 MC68000 SANE Basics and Data Types 139

Operation forms 140
Arithmetic and auxiliary operations 141
Conversions 141
Comparisons 142
Other operations 142

External access 142
Calling sequence 143

The opword 143
Assembly-language macros 144

Example 1 144
Example 2 144
Example 3 144

MC68000 SANE data types 145

Chapter 20 MC68000 SANE Arithmetic and Auxiliary Operations,
Comparisons, and Inquiries 147
Add, Subtract, Multiply, and Divide 148

Example 148
Square Root 149

Example 149
Round-to-Integer and Truncate-to-Integer 149
Remainder 149

Example 149
Logb and Scalb 150

Example 150
Negate, Absolute Value, and CopySign 150

Example 150
Nextafter 151

Example 151
Comparisons 151

Example 1 152
Example 2 152

Inquiries 153
Example 153

Contents Ix

x Contents

Chapter 21 Conversions In MC68000 SANE 155

Conversions between binary formats 156
Conversions to extended 156

Example 156
Conversions from extended 157

Example 157
Binary-decimal conversions 157

Binary to decimal 158
Example 158
Fixed-format overflow 158

Decimal to binary 158
Example 158
Techniques for maximum accuracy 159

Chapter 22 Controlling the MC68000 SANE Environment 161

The Environment word 162
Example 163

Get-Environment and Set-Environment 164
Example 164

Test-Exception and Set-Exception 164
Example 165

Procedure-Entry and Procedure-Exit 165
Example 165

Chapter 23 Halts In MC68000 SANE 167

Conditions for a halt 168
The halt mechanism 168
Using the halt mechanism 170

Chapter 24 Elementary Functions In MC68000 SANE 171

One-argument functions 172
Example 173

Two-argument functions 173
Example 173

Three-argument functions 174
Example 174

Chapter 25 MC68000 SANE Scanners and Formatter 175

Numeric scanners 176
Numeric formatter 177

Chapter 26 Examples: Using the MC68000 SANE Engine 179

Example: polynomial evaluation 180
Example: language interface 181
Example: scanning and formatting 181

Part IV Using the MC68881 SANE Engine 183

Chapter 27 About the MC6888 l and SANE 185

SANE implementations on the Macintosh 186
SANE software for the MC68881 186

All calls to software packages 187
Fundamental operations on the MC68881 188
Transcendental operations on the MC68881 189

Calls to SANE and calls to the MC68881 190
MC68881 data types 190

MC68881 floating-point registers 191
96-bit extended format 191
Comparison of extended formats 192
Conversions between extended formats 193
Using the comp format with the MC68881 193

SANE macros for the MC68881 194

Chapter 28 Functions of the MC6888 l and SANE Software 195

Functions that are the same on both 196
Functions that are similar 197
Functions only the SANE software has 198
Functions only the MC68881 has 198
Accuracy of the MC68881 's elementary functions 199

Chapter 29 Controlling the MC6888 l Environment 20 l

The MC68881 's environment registers 202
The Exception Enable and Mode Control bytes 203
The Exception Status and Accrued Exception bytes 205

Chapter 30 The MC6888 l Trap Mechanism 207

Halts and traps 208
MC68881 exception handling 208

Chapter 31 Examples: Using the MC6888 l SANE Engine 211

Example: polynomial evaluation 212
Example: language interface 213
Example: scanning and formatting 213

Contents xi

Appendixes 217

Appendix A SANE In High-Level Languages 219

SANE programming 220
SAL'IB library 221
Pascal SANE extensions 221

Data types 221
Constants 222
Expressions 222
Comparisons 222
Functions and procedures 223
Input/ output 223
Numeric environment 223
Pascal SANE library 224

C SANE extensions 233
Data types 233
Constants 233
Expressions 233
Comparisons 234
Functions 234
Input/ output 234
Numeric environment 234
C SANE library 235

Appendix B The SANE Engines: Avallablllty 240

SANE for the 6502 240
SANE for the 65C816 240
SANE for the MC68000 241
SANE for the MC68020 and MC68881 241

Appendix C Porting Programs to SANE 242

Semantics of arithmetic evaluation 242
Mixed formats 243

xii Contents

Floating-point precision 243
Wider precision 243
Double rounding 244
Computed error bounds 244

The rules of evaluation 244
The invalid-operation flag 245

Appendix D 65C816 and 6502 SANE Quick Reference Gulde 246

Formats of SANE types 246
Single: 32 bits 247
Double: 64 bits 248
Comp: 64 bits 248
Extended: 80 bits 249

Operations 249
Abbreviations and symbols 249

Operands 250
Data types 251
65C816 and 6502 processor registers 251
Exceptions 252
Environment and halts 252

Arithmetic operations (entry points FP816, FP6502) 253
Auxiliary routines (entry points FP816, FP6502) 254
Conversions (entry points FP816, FP6502) 255
Comparisons (entry points FP816, FP6502) 256
Inquiries: class and sign (entry points FP816, FP6502) 257
Environmental control (entry points FP816, FP6502) 258
Halt control (entry points FP816, FP6502) 259
Elementary functions (entry points Elems816, Elems6502) 259
Scanners and formatter (entry points DecStr816,

DecStr6502) 260
The Environment word 261

Contents xiii

Appendix E MC68000 SANE Quick Reference Gulde 263

xiv Contents

Formats of SANE types 263
Single: 32 bits 264
Double: 64 bits 265
Comp: 64 bits 265
Extended: 80 bits 266

Operations 266
Abbreviations and symbols 266

Operands 267
Data types 267
MC68000 processor registers 268
Exceptions 268
Environment and halts 268

Arithmetic operations (entry point FP68K) 269
Auxiliary routines (entry point FP68K) 270
Conversions (entry point FP68K) 271
Comparisons (entry point FP68K) 272
Inquiries: class and sign (entry point FP68K) 273
Environmental control (entry point FP68K) 274
Halt control (entry point FP68K) 274
Elementary functions (entry point Elems68K) 275
Scanners and formatter (entry point DecStr68K) 275

The Environment word 276

Glossary 279
Bibliography 281
Index 287

Figures and tables

Part I The Standard Apple Numerics Environment

Chapter 1 About IEEE Standard Arithmetic 3

Figure 1-1 Parallel resistances 8

Chapter 2 SANE Data Types 11

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7

Single format 16
Double format 17
Comp format 17
80-bit extended format 18
96-bit extended format 18
Names of data types 13
SANE types 14
Symbols used in format diagrams 16
Values of single-format numbers (32 bits) 16
Values of double-format numbers (64 bits) 17
Values of comp-format numbers (64 bits) 17
Values of extended-format numbers 18

Chapter 3 Conversions In SANE 19

Conversions to and from extended format 20
Conversions to and from decimal formats 20
Conversion cycle with first-time error 24
Conversion cycle with correct result 25
Approximations of fractions 23
Syntax for string conversions 26

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6

Examples of conversions to decimal records 30
Format of decimal output string in floating style 31
Format of decimal output string in fixed style 32
Examples of conversions to decimal strings 34

Chapter 5 Infinities, NaNs, and Denormalized Numbers 39

Figure 5-1

Table 5-1
Table 5-2

Denormalized single-precision numbers
on the number line 43
SANE NaN codes 41
Example of gradual underflow 42

xv

Chapter 6 Arithmetic Operations, Comparisons,
and Auxiliary Procedures 45

Figure 6-1
Table 6-1
Table 6-2

Integer-division algorithm 46
Arithmetic operations in Pascal 46
Comparisons involving NaNs 48

Chapter 10 More Examples Using SANE 75

Figure 10-1
Table 10-1

Graph of continued fraction cfix) = rj(x) 76
Area using Heron's formula 78

Part 11 The 65C816 and 6502 Assembly-Language SANE Engines 79

Chapter 11 65C8 l 6 SANE Basics and Data Types 81

Figure 11-1
Figure 11-2
Figure 11-3
Table 11-1
Table 11-2

SANE operands on the 65C816 stack 87
SANE operands on the 6502 stack 87
Memory format of a variable of type single 90
65C816 SANE data types 90
Bits in a variable of type single 90

Chapter 12 65C816 SANE Arithmetic and Auxlllary Operations,
Comparisons, and Inquiries 91

Table 12-1 Results of comparisons 96
Table 12-2 Operand classes 97

Chapter 13 Conversions In 65C816 SANE 99

Table 13-1 Conversions to extended format 100
Table 13-2 Conversions from extended format 101

Chapter 14 Controlling the 65C816 SANE Environment 105

Figure 14-1
Table 14-1

Table 14-2

The Environment word for the 6502 and 65C816 106
Bits in the Environment word for the 6502
and 65C816 107
Bits in the Exception word 109

Chapter 15 Halts In 65C816 SANE 111

xv I Figures and tables

Figure 15-1
Figure 15-2
Figure 15-3

65C816 SANE direct-page contents upon halt 113
6502 SANE status record upon halt 114
Data returned in X and Y registers 115

Part Ill The MC68000 Assembly-Language SANE Engine 137

Chapter 19 MC68000 SANE Basics and Data Types 139

Figure 19-1
Figure 19-2
Table 19-1
Table 19-2

SANE operands on the MC68000 stack 143
Memory format of a variable of type single 145
MC68000 SANE data types 145
Bits in a variable of type single 145

Chapter 20 MC68000 SANE Arithmetic and Auxiliary Operations,
Comparisons, and Inquiries 147

Table 20-1 Results of comparisons 152
Table 20-2 Operand classes 153

Chapter 21 Conversions In MC68000 SANE 155

Table 21-1
Table 21-2

Conversions to extended format 156
Conversions from extended format 157

Chapter 22 Controlling the MC68000 SANE Environment 161

Figure 22-1
Table 22-1
Table 22-2

The Environment word for the MC68000 162
Bits in the Environment word for the MC68000 163
Bits in the Exception word 164

Chapter 23 Halts In MC68000 SANE 167

Figure 23-1 Stack frame for halt 169

Part IV Using the MC68881 SANE Engine 183

Chapter 27 About the MC68881 and SANE 185

Figure 27-1
Figure 27-2

Figure 27-3

Figure 27-4
Figure 27-5
Table 27-1

Application calling packages for all arithmetic 187
Application calling the MC68881
for fundamental operations 188
Application calling the MC68881
for all floating-point arithmetic 189
96-bit extended format 191
Comparison of extended formats 192
Values of extended-format numbers 191

Figures and tables xvii

Chapter 29 Controlling the MC68881 Environment 201

Figure 29-1

Figure 29-2

Figure 29-3

Figure 29-4

Table 29-1

Table 29-2

The MC68881 's Floating-Point Control register
(FPCR) 202
The MC68881's Floating-Point Status register
(FPSR) 202
The MC68881 's Exception Enable
and Mode Control bytes 203
The MC68881 's Exception Status
and Accrued Exception bytes 205
Bits in the MC68881 's Exception Enable
and Mode Control bytes 204
Bits in the MC68881 's Exception Status
and Accrued Exception bytes 206

Appendixes 217

Appendix A SANE In High-Level Languages 219

Table A-1 Pascal data types 221
Table A-2 C data types 233

Appendix D 65C816 and 6502 SANE Quick Reference Gulde 246

xvi ii Figures and tables

Figure D-1
Figure D-2
Figure D-3
Figure D-4
Figure D-5
Figure D-6
Figure D-7
Figure D-8
Figure D-9
Table D-1
Table D-2
Table D-3
Table D-4
Table D-5
Table D-6
Table D-7
Table D-8
Table D-9
Table D-10
Table D-11

Memory format of a variable of type single 246
Single format 247
Double format 248
Comp format 248
Extended format 249
SANE operands on the 65C816 stack 250
SANE operands on the 6502 stack 250
Data returned in X and Y registers 258
The Environment word for the 65C816 and 6502 261
Format diagram symbols 247
Values of single-format numbers (32 bits) 247
Values of double-format numbers (64 bits) 248
Values of comp-format numbers (64 bits) 248
Values of extended-format numbers (80 bits) 249
Operands 250
Data types 251
65C816 and 6502 processor registers 251
Exceptions 252
Environment and halts 252
Arithmetic operations (entry points FP816,
FP6502) 253

Table D-12
Table D-13

Table D-14

Table D-15

Table D-16
Table D-17
Table D-18
Table D-19
Table D-20
Table D-21

Table D-22
Table D-23

Table D-24

Table D-25

Auxiliary routines (entry points FP816, FP6502) 254
Binary-to-binary conversions (entry points FP816,
FP6502) 255
Binary-to-decimal conversions (entry points FP816,
FP6502) 255
Decimal-to-binary conversions (entry points FP816,
FP6502) 255
Relation information 256
Comparisons (entry points FP816, FP6502) 256
Class information 257
Sign information 257
Classify (entry points FP816, FP6502) 257
Environmental control (entry points FP816,
FP6502) 258
Halt control (entry points FP816, FP6502) 259
Elementary functions (entry points Elems816,
Elems6502) 259
Scanners and formatter (entry points DecStr816,
DecStr6502) 260
Bits in the Environment word for the 65C816
and 6502 262

Appendix E MC68000 SANE Quick Reference Gulde 263

Figure E-1
Figure E-2
Figure E-3
Figure E-4
Figure E-5
Figure E-6
Figure E-7
Table E-1
Table E-2
Table E-3
Table E-4
Table E-5
Table E-6
Table E-7
Table E-8
Table E-9
Table E-10
Table E-11
Table E-12
Table E-13

Memory format of a variable of type single 263
Single format 264
Double format 265
Comp format 265
Extended format 266
SANE operands on the MC68000 stack 267
The Environment word for the MC68000 276
Format diagram symbols 264
Values of single-format numbers (32 bits) 264
Values of double-format numbers (64 bits) 265
Values of comp-format numbers (64 bits) 265
Values of extended-format numbers (80 bits) 266
Operands 267
Dara types 267
MC68000 processor registers 268
Exceptions 268
Environment and halts 268
Arithmetic operations (entry point FP68K) 269
Auxiliary routines (entry point FP68K) 270
Binary-to-binary conversions
(entry point FP68K) 271

Figures and tables x Ix

xx Figures and tables

Table E-14

Table E-15

Table E-16
Table E-17
Table E-18
Table E-19
Table E-20
Table E-21
Table E-22
Table E-23
Table E-24

Table E-25

Binary-co-decimal conversions
(encry poinc FP68K) 271
Decimal-co-binary conversions
(encry poinc FP68K) 271
Relacion informacion 272
Comparisons (encry poinc FP68K) 272
Class informacion 273
Sign information 273
Classify (encry poinc FP68K) 273
Environmencal control (encry poinc FP68K) 274
Hale concrol (encry poinc FP68K) 274
Elemencary functions (encry poinc Elems68K) 275
Scanners and formaccer (encry poinc
DecScr68K) 275
Bits in the Environmenc word for the MC68000 277

Foreword

About Standard
Numerics

Part I of this book is mainly for people who perform scientific, statistical, or
engineering computations on Apple® computers. The rest is mainly for producers of
software, especially of language processors, that people will use on Apple computers
to perform computations in those fields and in finance and business too. Moreover, if
the first edition was any indication, people who have nothing to do with Apple
computers may well buy this book just to learn a little about an arcane subject, floating­
point arithmetic on computers, and will wish they had an Apple.

Computer arithmetic has two properties that add to its mystery:

o What you see is often not what you get, and

o What you get is sometimes not what you wanted.

Floating-point arithmetic, the kind computers use for protracted work with approximate
data, is intrinsically approximate because the alternative, exact arithmetic, could take
longer than most people are willing to wait-perhaps forever. Approximate results are
customarily displayed or printed to show only as many of their leading digits as matter
instead of all digits; what you see need not be exactly what you've got. To complicate
matters, whatever digits you see are decimal digits, the kind you saw first in school and
the kind used in hand-held calculators. Nowadays almost no computers perform their
arithmetic with decimal digits; most of them use binary, which is mathematically better
than decimal where they differ, but different nonetheless. So, unless you have a small
integer, what you see is rarely just what you have.

In the mid-1960's, computer architects discovered shortcuts that made arithmetic run
faster at the cost of what they reckoned to be a slight increase in the level of rounding
error; they thought you could not object to slight alterations in the rightmost digits of
numbers since you could not see those digits anyway. They had the best intentions, but
they accomplished the opposite of what they intended. Computer throughputs were
not improved perceptibly by those shortcuts, but a few programs that had previously
been trusted unreservedly turned treacherous, failing in mysterious ways on extremely
rare occasions.

xxl

For instance, a very Important Bunch of Machines launched in 1964 were found to
have two anomalies in their double-precision arithmetic (though not in single): First,
multiplying a number Zby 1.0 would lop off Z's last digit. Second, the difference
between two nearly equal numbers, whose digits mostly canceled, could be computed
wrong by a factor almost as big as 16 instead of being computed exactly as is normal.
The anomalies introduced a kind of noise in the feedback loops by which some
programs had compensated for their own rounding errors, so those programs lost
their high accuracies. These anomalies were not "bugs"; they were "features" designed
into the arithmetic by designers who thought nobody would care. Customers did care;
the arithmetic was redesigned and repairs were retrofitted in 1967.

Not all Capriciously Designed Computer arithmetics have been repaired. One family
of computers has enjoyed notoriety for two decades by allowing programs to generate
tiny "partially underflowed" numbers. When one of these creatures turns up as the
value of Tin an otheiwise innocuous statement like

if T = 0.0 then Q := 0.0 else Q := 702345.6/(T + 0.00189/T);

it causes the computer to stop execution and emit a message alleging "Division by
Zero." The machine's schizophrenic attitude toward zero comes about because the test
for T = 0 . 0 is carried out by the adder, which examines at least 13 of T's leading
bits, whereas the divider and multiplier examine only 12 to recognize zero. Doing so
saved less than a dollar's worth of transistors and maybe a picosecond of time, but at
the cost of some disagreement about whether a very tiny number Tis zero or not.
Fortunately, the divider agrees with the multiplier about whether Tis zero, so
programmers could prevent spurious divisions by zero by slightly altering the
foregoing statement as follows:

if 1.0 * T = 0.0 then Q := 0.0 else Q := 702345.6/(T + 0.00189/T);

Unfortunately, the Same Computer designer responsible for "partial underflow"
designed another machine that can generate "partially overflowed" numbers Tfor
which this statement malfunctions. On that machine, Q would be computed
unexceptionably except that the product 1 . 0 * T causes the machine to stop and
emit a message alleging "Overflow." How should a programmer rewrite that innocuous
statement so that it will work correctly on both machines? We should be thankful that
such a task is not encountered every day.

Anomalies related to roundoff are extremely difficult to diagnose. For instance, the
machine on which 1 . O * T can overflow also divides in a peculiar way that causes
quotients like 2 4 0 . 0 I 8 0 . 0, which ought to produce small integers, sometimes to
produce nonintegers instead, sometimes slightly too big, sometimes slightly too
small. The same machine multiplies in a peculiar way, and it subtracts in a peculiar
way that can get the difference wrong by almost a factor of 2 when it ought to be exact
because of cancellation.

xxll Foreword: About Standard Numerics

Another peculiar kind of subtraction, but different, afflicts the machines that are
schizophrenic about zero. Sets of three values X, Y, and Z abound for which the
statement

if (X = Y) and ((X - Z) > (Y - Z)) then writeln(' Strange! ') ;

will print "Strange!" on those machines. And many machines will print "Strange!" for
unlucky values X and Yin the statement

if (X - Y = 0 . 0) and (X > Y) then writeln(' Strange! ');

because of underflow.

These strange things cannot happen on current Apple computers.

I do not wish to suggest that all but Apple computers have had quirky arithmetics. A few
other computer companies, some Highly Prestigious, have Demonstrated Exemplary
Concern for arithmetic integrity over many years. Had their concern been shared
more widely, numerical computation would now be easier to understand. Instead,
because so many computers in the 1960's and 1970's possessed so many different
arithmetic anomalies, computational lore has become encumbered with a vast body
of superstition purporting to cope with them. One such superstitious rule is "Never ask
whether floating-point numbers are exactly equal."

Presumably the reasonable thing to do instead is to ask whether the numbers differ by
less than some tolerance; and tllis is truly reasonable provided you know what
tolerance to choose. But the word never is what turns the rule from reasonable into
mere superstition. Even if every floating-point comparison in your program involved
a tolerance, you would wish to predict which path execution would follow from various
input data, and whet11er the different comparisons were mutually consistent. For
instance, the predicates X < Y - TOL and Y - TOL > X seem equivalent to the
naked eye, but computers exist (not made by Apple!) on which one can be true and the
other false for certain values of the variables. To ask "Which?" violates the
superstitious rule.

There have been several attempts to avoid superstition by devising mathematical rules
called axioms that would be valid for all commercially significant computers and
from which a programmer nlight hope to be able to deduce whether his program will
function correctly on all those computers. Unfortunately, such attempts cannot
succeed without failing! The paradox arises because any such rules, to be valid
universally, have to encompass so wide a range of anomalies as to constitute me
specifications for a hypometical computer far worse arithmetically man any ever
actually built. In consequence, many computations provably impossible on that
hypothetical computer would be quite feasible on almost every actual computer. For
instance, tl1e axioms must imply linlits to the accuracy with which differential
equations can be solved, integrals evaluated, infinite series summed, and areas of
triangles calculated; but these linlits are routinely surpassed nowadays by programs
that run on most commercially significant computers, although some computers may
require programs that are so special that they would be useless on any other machine.

Foreword: About Standard Numerics xxlil

Arithmetic anarchy is where we seemed headed until a decade ago when work began
upon IEEE Standard 754 for binary floating-point arithmetic. Apple's mathematicians
and engineers helped from the very beginning. The resulting family of coherent
designs for computer arithmetic has been adopted more widely, and by more
computer manufacturers, than any other single design. Besides the undoubted
benefits that flow from any standard, the principal benefit derived from the IEEE
standard in particular is this:

Program importability: Almost any application of floating-point arithmetic,
designed to work on a few different families of computers in existence before the IEEE
Standard and programmed in a higher-level language, will, after recompilation, work
at least about as well on an Apple computer or on any other machine that conforms to
IEEE Standard 754 as on any nonconforming computer with comparable capacity
(memory, speed, and word size).

The Standard Apple Numerics Environment (SAl'IE) is the most thorough
implementation of IEEE Standard 754 to date. The fanatical attention to detail that
permeates SANE's implementation largely relieves Apple computer users from having
to know any more about those details than they like. If you come to an Apple computer
from some other computer that you were fond of, you will find the Apple computer's
arithmetic at least about as good, and quite likely rather better. An Apple computer
can be set up to mimic the worthwhile characteristics of almost any reasonable past
computer arithmetic, so existing libraries of numerical software do not have to be
discarded if they can be recompiled. SANE also offers features that are unique to the
IEEE Standard, new capabilities that previous generations of computer users could
only yearn for; but to learn what they are, you will have to read this book.

As one of the designers of IEEE Standard 754, I can only stand in awe of the efforts that
Apple has expended to implement that standard faithfully both in hardware and in
software, including language processors, so that users of Apple computers will actually
reap tangible benefits from the Standard. And I thank Apple for letting me explain in
this foreword why we needed that standard.

xxiv Foreword: About Standard Numerics

Professor W. Kahan
Mathematics Department and
Electrical Engineering and
Computer Science Department
University of California at Berkeley
December 16, 1987

Preface

About This Book

This book is the reference manual for the Standard Apple® Numerics Environment
(SANE®). Apple supports SANE on all its current microcomputers and intends to
support SA.1'\JE on future products. The core features of SANE are not exclusive to
Apple; rather they are taken from IEEE Standard 754 for binary floating-point
arithmetic (see the bibliography at the end of this manual).

In one sense, SA.1"\ffi is an abstraction: a definition of an environment for computer
numerics, independent of a specific computer. To have an instance of SANE, you
need a language in which to describe operations and an implementation unit-a SANE
engine-to carry them out. This manual is divided into four major parts: one part
describes the SANE definition, and other parts describe the different implementations
of SANE.

About the second edition
This edition is expanded from the fl'.st edition in three areas:

o additional explanatory material in Part I

o information about SANE for the 65C816 added to Part II

o a new Part IV with information about using the MC68881 floating-point coprocessor
as a SA..l'\JE engine

The organization of d1is book is also different from that of the first edition. To make it
easier to distinguish the parts, all the chapters are now numbered consecutively and all
have different tides. The quick reference guides for the different microprocessors are
together at the end of d1e book.

xxv

Parts of the manual
Part I describes the features that are shared by all implementations of SANE; it
includes examples that show how to use SANE effectively. There are different SANE
implementations for the microprocessors used in different Apple computers.
Whereas high-level languages insulate users from the differences, assembly-language
programmers need to know about them. Part II explains the use of assembly-language
SANE engines for the 65C816 and for the 6502, Part III does the same for the MC68000,
and Part IV discusses the MC68881 coprocessor as a SANE engine.

The facilities of SANE can be provided to users of virtually any high-level programming
language, as well as to assembly-language programmers. Appendix A describes
Apple's SANE extensions to the high-level languages Pascal and C, as implemented in
Apple's Macintosh® Programmer's Workshop (MPW) and Apple IIGs® Programmer's
Workshop (APW). Appendix B gives information about gaining access to the SANE
engines on different kinds of Apple computers. Appendix C gives a few suggestions for
programmers who are porting programs from other computers to run in SANE.
Appendix D is a quick reference guide for the 65C816 and 6502; Appendix E is a similar
guide for the MC68000.

Special notation
Throughout this manual, numbers in brackets are references to the annotated
bibliography at the end of the manual. Words printed in boldface type are defined in
the glossary at the end of the manual. Algebraic expressions appear in ordinary type,
with variables in italics.

0:. Note: Information that is incidental to the main text, such as language-specific
notes, appears in flagged paragraphs like this one.

Important
Warnings and especially important Information appear in boxes like this.

Computer voice
Program fragments-actual computer code, whether in assembly language or in
Pascal or other high-level languages-appear in a monospaced type named Courier.
Literal names of functions, where they differ from the English names, also appear in
Courier. Here is a sample of Courier:

if x = 0 or y/x < 3 then writeln (' Eureka !');

Hexadecimal numbers
Hexadecimal numbers are flagged with a leading dollar sign, like this: $FFOO.

xxvl Preface: About This Book

•,_ -. Apple® Apple Numerics Manual
~~~ Second Edition 



Part I 

The Standard 
Apple Numerics 
Environment 

Part I is a general description of SANE. Chapter 1 discusses some of the ways the 
Standard Apple Numerics Environment (SANE~) makes life easier for programmers. 
The chapters that follow describe the basic features that are shared by all 
implementations of SANE: 

o the SANE data types, including extended 

o conversions between the different types 

o operations supported by SANE, including basic arithmetic, auxiliary procedures, 
and elementary functions 

o special values NaN (Not-a-Number) and Infinity 

o environment options, such as rounding direction and exception handling 

Although Part I uses Pascal in its examples, the facilities of SANE can be provided co 
users of virtually any high-level programming language, as well as to assembly­
language programmers. Appendix A describes Apple's SANE extensions to the high­
level languages Pascal and C. 



Chapter 1 

About IEEE Standard 
Arithmetic 

3 



Example: inverse operations 

Suppose your program performs operations that are mutually inverse; that is, 
operations y = f(.x), x = g(y) such that g(f(.x)) = x. There are many such operations, 
such as 

y = log(x), x = exp(y) 
y = 375x, x = y/375 

The computed values F(x) and G(y) will sometimes differ from f(.x) and g(y). Even 
so, if both functions are continuous and well-behaved, and if you always round F(x) 
and G(y) to the nearest value, you might expect your computer arithmetic to return x 
when it performs the cycle of inverse operations, G(F(x)). It is difficult to predict when 
this relation w ill hold for computer numbers. Experience with other computers says it 
is too much to expect, but SANE very often returns the correct inverse value. 

There are two reasons for SA.l'IE's good behavior with respect to inverse operations. 
One is that SANE normally uses the extended data type for intermediate values. When 
you store the result in a narrower format, SANE rounds the result to the nearest value, 
often rounding away the errors. Another reason is that SANE rounds so carefully. Even 
with all operations in, say, single precision, SA.l'IE evaluates the expression 3 x (1/ 3) to 
1.0 exactly; some other computers don't. If you find that surprising, you might enjoy 
running the following example on a computer that doesn't use IEEE arithmetic and on 
an Apple® computer using SANE. SANE's default rounding gives good results: the 
Apple computer prints ' No failures ' . The program will fail on a compucer that 
doesn't have IEEE arithmetic-in particular, IEEE arithmetic's treatment of halfway 
cases of rounding to nearest. 

PROGRAM invop; 

VAR 
x, y, a, b : single; 
ix, iy: integer; 
nofail: boolean; 

BEGIN 
nofail : = true; 
FOR ix := 1 TO 12 DO 

IF ix<>7 AND ix<>ll THEN { so ix is a sum of two powers of 2 ) 
FOR iy : = 1 TO 50 DO 

BEGIN 
x ix; 
y : = iy; 
a : = y/x; 
b : = x*a; 
IF b<>y THEN 

BEGIN 
nofail := false; 
writeln('It failed for x = ' , ix, ' y = ' iy) 

END; 
END ; 

IF nofail THEN writeln( ' No failures ' ); 
END . 

6 Chapter l : About IEEE Standard Arithmetic 



•!• Note: This example deliberacely avoids che use of excended in order co demonscrace 
one effecc of careful rounding. Declaring che cemporary variable a co be 
excended-normally good programming practice w ich SANE-removes che 
necessity for rescricting ix co sums of cwo powers of 2. 

Alternatives to stopping 
There are limits co everyching; when you exceed chem, someching exceptional 
happens. The exceptional evencs are 

0 invalid operation 

0 underflow 

0 overflow 

0 division by zero 

0 inexacc result 

Many compucers eicher stop on chese excepcions or simply ignore chem. IEEE 
Scandard arithmecic gives programmers the choice of continuing, stopping, or 
executing special code. 

IEEE arichmetic includes special values NaN (Not-a-Number) and Infinity. When a 
program encouncers an invalid operation, overflow, or division by zero, che 
arichmetic rerums che appropriace NaN or Infinity so chac che program can continue. 
For detailed descriptions of Nai"\J and Infinity, p lease see Chapcer 5, "Infinities, NaNs, 
and Denormalized Numbers." 

IEEE Scandard arichmetic allows (and SANE provides) the option to stop computation 
when chese siruations arise, but chere are good reasons why you might prefer not to 
have to stop. The following examples illuscrate some of chem. 

Example: compound conditional statements 
Suppose a programmer wanes to write a simple scatement to perform cwo cests, one of 
which can cause an invalid operation such as 0/ 0. In Pascal, che statement mighc look 
like this: 

i f x = 0 or y / x < 3 t hen writeln ('Eureka!' ) ; 

When x and y are boch equal co 0, che programmer incends this scacemenc co prim 
"Eureka!" Wich a Pascal compiler chac supports SANE, che scatemenc will produce the 
desired result. To obcain the desired result on all compucers, the programmer would 
have to be careful and wrice something more cumbersome. By allowing y! x when x 
and y are zero, SANE lets che programmer write simpler code. 

Alternatives to stopping 7 



This program fragment demonstrates the principal service performed by NaNs: 
permitting deferred judgments about variables whose values may be unavailable (that 
is, uninitialized) or the result of invalid operations. Instead of having the computer 
stop a computation as soon as a NaN appears, you might prefer to have it continue in 
the hope that whatever caused the NaN will turn out to be irrelevant to the solution. 

•!• Pascal note: Apple's MPW Pascal compilers include a short-circuit option ($SC+) 
that causes the program not to evaluate the second part of a compound conditional 
if the result value is already determined. Code compiled with that option avoids 
evaluating 0/ 0 in the fragment above, but not in the following similar one: 

if y / x < 3 or x = 0 then writeln ( ' Eureka! ' ) ; 

Searching without stopping 

Suppose your program has to search through a database for something like a 
maximum value that has to be calculated. The search loop might call a subroutine to 
perform some calculation on the data in each record and return a value for the 
program to test or compare. For some records, data might be nonexistent or invalid. 
On many machines, that would cause the program to stop . To avoid having the 
program stop during the search, you'd have to add tests for all the exceptional cases. 
With SANE, the subroutine doesn't stop for nonexistent or invalid data; it simply 
returns a NaN. 

This is another example of d1e way arithmetic that includes NaN allows the program to 
ignore irrelevancies, even when they cause invalid operations. Using arithmetic 
without NaNs, you would have to anticipate all exceptional cases and add code to the 
program to handle every one of them in advance. With NaNs at your disposal, you can 
handle all exceptional cases after they have occurred. 

Example: parallel resistances 

Like NaNs, Infinities enable the program to handle cases that otherwise would require 
special programming to keep from stopping. Here is an example where arithmetic 
with Infinities is entirely reasonable. 

Rl 

A R2 B A ' R1 23 B' 

R3 

Figure 1-1 
Parallel resistances 

8 Chapter 1: About IEEE Standard Arithmetic 



When three electrical resistances Rl , R2, and R3 are connected in parallel as shown in 
Figure 1-1, their effective resistance is the same as a single resistance whose value R123 
is given by this formula: 

R123 ~ l 
..!_ + ..!_ + _!_ 
Rl R2 R3 

The formula gives correct results for positive resistance values between O 
(corresponding to a short circuit) and infinity (corresponding to an open circuit) 
inclusive. On computers that don't allow division by zero, the programmer would 
have to add tests designed to filter out the cases with resistance values of zero. 
(Negative values can cause trouble for this formula, regardless of the style of the 
arithmetic, but that reflects their troublesome nature in circuits, where they can cause 
instability.) 

Arithmetic with Infinities usually gives reasonable results for expressions in which each 
independent variable appears only once. 

Advanced features 
SANE also includes more advanced features, such as control of rounding direction 
and precision, tools for handling exceptional cases, and a set of elementary 
(transcendental) functions suitable for use as core routines in mathematical functions. 
These features are only introduced here; for complete descriptions, please see 
Chapter 7, "Controlling the SANE Environment," and Chapter 8, "Elementary 
Functions in SANE." 

Control of rounding 
Rounding is normally carried out to the nearest value, but IEEE Standard arithmetic 
gives the programmer complete control of rounding precision and direction (see the 
section "Rounding Direction" in Chapter 7). 

Sometimes you may want to know that roundoff has not invalidated a computation. 
One way to do that would be to force the rounding direction so that you can be sure 
your results are higher than the exact answer. IEEE arithmetic gives you a means of 
doing that. Fully developed, this strategy is called interval arithmetic. See Kahan (22). 

Advanced features 9 



Exception handling 

There are three ways for a program to deal with exceptions: 

o continue operation 

o stop on exceptions, if you think they're causing trouble 

o include code to do something special when exceptions happen 

The features of IEEE arithmetic enable programs to deal with the exceptions in 
reasonable ways, as this book explains. There are the special values NaN and Infinity 
so a program can continue operation: see the sections "Infinities" and "NaNs" in 
Chapter 5. There are also flags, which a program can test to detect exceptional events, 
and halts, which transfer control to code for handling special cases: see the section 
"Exception Flags and Halts" in Chapter 7. 

Elementary functions 

SANE includes high-precision elementary functions that are consistent with the IEEE 
Standard and that can be used as building blocks in numerical functions. The 
elementary functions include the usual logarithmic and exponential functions, plus 
ln(l + x) and ex - 1; financial functions for compound interest and annuity 
calculations; trigonometric functions; and a random number generator. 

10 Chapter l : About IEEE Standard Arithmetic 



Chapter 2 

SANE Data Types 

11 



SANE provides three application types (single, double, and comp) and the 
arithmetic type (extended). Single, double, and extended store floating-point 
values, and comp stores integral values. 

The extended type is called the arithmetic type because, to make expression 
evaluation simpler and more accurate, SANE performs all arithmetic operations in 
extended precision and delivers arithmetic results to the extended type. The 
application types single, double, and comp can be thought of as space-saving 
storage types for the extended-precision arithmetic. (This manual uses the term 
extended precision to denote both the extended precision and the extended range of 
the extended type.) 

The IEEE Standard gives exact specifications for the types single and double, but for 
the extended type, specifies only lower bounds for precision and exponent range. 
SANE implementations supported by hardware floating point may adopt the 
hardware's extended format, which may differ from the 80-bit format described here. 
You should store external data in one of the application types rather than in the 
extended type, not only for economy but also because the extended format may vary 
among different implementations of IEEE arithmetic. 

All values representable in single, double, and comp (as well as 16-bit and 32-bit 
integers) can be represented exactly in extended. Thus, values can be moved from any 
of these types to the extended type and back without any loss of information. 

Choosing a data type 
Typically, picking a data type requires that you determine the trade-offs between 

o fixed-point or floating-point form 

o precision 

o range 

o memory usage 

o speed 

The precision, range, and memory usage for each SANE data type are shown in 
Table 2-2. Effects of the data types on performance (speed) are different for different 
implementations of SANE. (See Chapter 3; "Conversions in SANE," for information 
on aspects of conversion relating to precision.) 

12 Chapter 2: SANE Data Types 



Most accounting applications require a counting type that counts things (pennies, 
dollars, widgets) exactly. Accounting applications can be implemented by 
representing money values as integral numbers of cents or mills, which can be stored 
exactly in the storage format of the comp (for computational) type. The sum, 
difference, or product of any two comp values is exact if the magnitude of the result 
does not exceed 263 - 1 (that is, 9,223,372,036,854,775,807). This number is larger 
than the U.S. national debt expressed in mills. In addition, comp values (such as the 
results of accounting computations) can be mixed with extended values in floating­
point computations (such as compound interest). 

Arithmetic with comp-type variables, like all SANE arithmetic, is done internally using 
extended-precision arithmetic. There is no loss of precision, as conversion from 
comp to extended is always exact. Space can be saved by storing numbers in the comp 
format, which is 20 percent shorter than the 80-bit extended format. Non-accounting 
applications will normally be better served by the floating-point data formats. 

•:• Language note: In SANE Pascal and C, floating-point constants are stored in 
extended format. 

Table 2-1 
Names of data types 

SANE type Pascal type 

IEEE single Real 
IEEE double Double* 
SANE comp Comp* 
IEEE extended Extended* 

• SANE extensions to the standard 
Pascal language 

Values represented 
The floating-point storage formats (single, double, and extended) provide binary 
encodings of a sign ( + or -) , an exponent, and a significand. A represented number 
has the value 

±significandx 2exponent 

where the significand has a single bit to the left of the binary point (that is, 
0 s; significand < 2) . 

•:• Note: This definition applies to both normalized and denormalized numbers. For a 
discussion of denormalized numbers, please refer to Chapter 5, "Infinities, NaNs, 
and Denormalized Numbers." 

Values represented 13 



Range and precision of SANE types 
Table 2-2 describes the range and precision of the numeric data types supported by 
SANE. Decimal ranges are expressed as chopped two-digit decimal representations of 
the exact binary values. 

Table 2-2 
SANE types 

Size (bytes:blts) 

Range of binary exponents 
Minimum 
Maximum 

Slgnlflcand precision 
Bits 
Decimal digits 

Decimal range approximate 

Maximum positive 
Minimum positive norm 
Minimum positive denorm t 
Maximum negative denormt 
Maximum negative norm 
Minimum negative 

lnflnltiest 

NaNst 

Application data types 

Single Double 

4:32 8:64 

-126 -1022 
127 1023 

24 53 
7-8 15-16 

3.4E+38 1.7E+308 
1.2E-38 2.3E-308 
1.5E-45 5.0E-324 

-1.5E-45 -5.0E-324 
- l.2E-38 -2.3E-308 
-3.4E+38 -l.7E+308 

Yes Yes 

Yes Yes 

Comp 

Arithmetic data type 
Extended• 

8:64 10:80 

-16383 
16383 

63 64 
18-19 19-20 

:::9.2E18 1.1E+4932 
1.7E-4932 
1.9E-4951 

- 1.9E-4951 
-1.7E-4932 

:::-9.2E18 - 1.1E+4932 

No Yes 

Yes Yes 

• A SANE implementation may have an extended type whose size, precision, or range 
exceeds these specifications. 

t Denorms (denormalized numbers), NaNs (Not-a-Number), and Infinities are defined in 
Chapter 5. 

Whenever possible, SANE stores results in a normalized number form, where the 
high-order bit in the significand is 1 (that is, 1 ~ significand < 2). Keeping numbers 
normalized assures uniqueness of representation and affords maximum precision for a 
given significand width. 

14 Chapter 2: SANE Data Types 



Example: range of single 

In single format, the largest representable number is made up as follows: 

significand = 2 - i-23 

= 1.111111111111111111111112 

exponent = 127 

value = (2 - i--23) x 2127 

== 3.403 x 1038 

The smallest positive normalized number representable in single format is made up as 
follows: 

significand = 1 

= 1. 000000000000000000000002 

exponent = -126 

value = 1 x i--126 

== 1.175 x 10-38 

For denormalized numbers (see Chapter 5), the smallest positive value representable 
in single is made up as follows: 

significand = 2-23 

= 0.000000000000000000000012 

exponent = -126 

value = 2-23 x 2-126 

== 1.401 x 10--45 

Formats 
This section shows the formats of the four SANE numeric data types. These are 
pictorial representations and may not reflect the actual byte order in any particular 
implementation. 

Each of the diagrams on the folloyving pages is followed by a table that gives the rules 
for evaluating the number. In each field of each diagram, the leftmost bit is the msb 
(most significant bit) and the rightmost is the lsb (least significant bit). Symbols used 
in the diagrams are defined in Table 2-3. 

Formats 15 



Table 2-3 
Symbols used in format diagrams 

Symbol 

v 
s 
e 
i 

f 
d 

Single 

Description 

Value of number 
Sign bit 
Biased exponent 
Explicit one's bit (extended type only) 
Fraction 
Nonsign bits (comp type only) 

The 32-bit single format is divided into three fields as shown in Figure 2-1. 

l 8 

Isl e 
msb lsbmsb 

Figure 2-1 
Single format 

23 

lsb 

The value v of the number is determined by these fields as shown in Table 2-4. See 
Chapter 5 for information about the contents of the /field for NaNs. 

Table 2-4 
Values of single-format numbe rs (32 bits) 

Biased exponent e Fraction f Value v Class of v 

0 < e< 255 (any) V = (-l)S X z(e-127) X (1.j) Normalized 

e =O f :t- 0 v= (-1)5 x 2<-126) x (0./) Denormalized 

e =O f=O v= (-1)5 x0 Zero 

e =255 f=O v = (-l)S x Infinity Infinity 

e=255 ft=O visa NaN NaN 

16 Chapter 2: SANE Data Types 



Double 
The 64-bit double format is divided into three fields as shown in Figure 2-2. 

1 11 

Isl e 
msb lsb msb 

Figure 2-2 
Double format 

52 

f 

lsb 

The value v of the number is determined by these fields as shown in Table 2-5. 

Table 2-5 
Values of double-format numbers (64 bits) 

Biased exponent e Fraction f Value v Class of v 

0 < e< 2047 (any) v = (-l)sx 2<e-1023) x (lj) Normalized 

e=O ft: 0 v= (-l)sx 2<- 102Z)x (Of) Denormalized 

e=O J=O v = (-1)5 x0 Zero 

e= 2047 f=O V = (-1) 5 X Infinity Infinity 

e= 2047 ft: 0 visa NaN NaN 

Comp 
The 64-bit comp format is divided into two fields as shown in Figure 2-3. 

msb 

Figure 2-3 
Comp format 

63 

d 

lsb 

The value v of the number is determined by these fields as shown in Table 2-6. 

Table 2-6 
Values of comp-format numbers (64 b its) 

Sign bits Nonslgn bits d Value v 

vis the unique comp NaN. s=l 
s= l 
s=O 

d =O 
d:t:O 
(any) 

vis the two's-complement value of the 64-bit representation. 
vis the two's-complement value of the 64-bit representation. 

Formats 17 



Extended 
The SANE software packages use an 80-bit extended format. The 80-bit extended 
format is made up of four fields as shown in Figure 2-4. 

15 63 

e f 

msb lsb msb lsb 

Figure 2-4 
80-bit extended format 

The MC68881 floating-point coprocessor uses a 96-bit extended format made up of 
five fields as shown in Figure 2-5. (The 96-bit format is used because the MC68020 
accesses data more efficiently on longword boundaries.) Note that the s, e, i, and/ 
fields in the 96-bit format are the same as those in the 80-bit format; the shaded field is 
unused. (For more information about the differences between the software SANE 
packages and the MC68881 SANE engine, refer to Part IV.) 

1 15 16 63 

Isl e I 
msb lsb msb lsb 

Figure 2-5 
96-bit extended format 

Table 2-7 shows how the value v of tl1e number is determined by the fields shown in 
Figures 2-4 and 2-5. 

Tobie 2-7 
Values of extended-format numbers 

Biased exponent e Integer I Fraction f Value v Class of v 

o~ e~ 32766 1 (any) v~ (-l)sx 2Ce-16383) x (lJ) Normalized 

o~ e~ 32766 0 /¢0 v= (-l)sx 2Ce-16383) x (OJ) Denormalized 

o~ e~ 32766 0 J=O v= (-1)5 x0 Zero 

e= 32767 (any) f=O v = (- l )S x Infinity Infinity 

e= 32767 (any) /¢0 visa NaN NaN 

18 Chapter 2: SANE Data Types 



Chapter 3 

Conversions in SANE 

19 



SANE provides conversions between the extended type and each of the other SANE 
types (single, double, and comp) . A particular SANE implementation also provides 
conversions between extended and those numeric types supported in its particular 
larger environment, as illustrated in Figure 3-1. For example, a Pascal 
implementation includes conversions between extended and the Pascal integer type. 

Single 1~ 
:::::=======~,_'-., ..... _E_xt_e-nd_e_d~,_ System-specific 

Double . . . integral types 

.__co_mp___,,J ~~~~ 

Figure 3-1 
Conversions to and from extended format 

SANE implementations also provide either conversions between decimal strings and 
SANE types, or conversions between a decimal record type and SANE types, or both. 
Conversions between decimal records and decimal strings may also be included. 

Single Decimal string 

Double 

Comp 

Extended Decimal record 

Figure 3-2 
Conversions to and from decimal formats 

•!• J,anguage note: This chapter, along with others throughout Part I, uses statements 
in Pascal to illustrate the features of SANE. These statements do not define an 
interface to SANE for other languages; for that, please refer to Appendix A, "SA.NE 
in High-Level Languages," the assembly-language sections of this book, and 
language reference manuals. 

20 Chapter 3: Conversions In SANE 



Conversions between extended and single or double 
A conversion co e}l.'tended is always exact. A conversion from extended co single or 
double moves a value to a storage type with less range and precision, and sets the 
overflow, underflow, and inexact exception flags as appropriate. (See Chapter 7, 
"Controlling the SANE Environment," for a discussion of exception flags.) 

•!• Pascal note: With Apple's SANE extensions (described in Appendix A), Pascal 
converts between extended format and single or double formats in the following 
cases: 

o during expression evaluation 

o on assignments to or from real or double 

o on parameter passing by value 

o by explicit conversion functions 

Conversions from extended to single or double 

FUNCTION Num2Real( x: extended): real ; 

FUNCTION Num2Double( x: extended): double; 

These conversion functions are useful when you want to coerce a result co single or 
double format without using a separate assignment statement. For example, you could 
use a conversion function co test a single-format variable against an expression, as 
shown in the example that follows. 

Example: Is x negligible? 

Suppose you need co find out whether some single-precision value xis negligible 
compared with some other single-precision value y. You might perform a calculation 
co determine this, such as 

if ((y + x) = y) then Xneglig : =true ; 

Because SANE implementations evaluate (y + x) in extended format and perform the 
comparison in extended, the test won't work the way you might expect it co. The 
statement above gives Xneglig the value true only for the far tinier values of x 
that are negligible with respect to extended precision. To determine whether xis 
negligible merely with respect to single precision, you could round (y + x) co single, 
like this: 

if (Num2Real(y + x) = y) then Xneglig :=true ; 

Conversions between extended and single or double 21 



Conversions to comp and other integral formats 
FUNCTION Num2Integer( x : extended ) : integer; 

FUNCTION Num2Longint( x: extended): longint; 

FUNCTION Num2Comp( x: extended ) : comp; 

The SANE routines convert numbers to integral formats by first rounding to an integral 
value (honoring the current rounding direction) and then, if possible, delivering this 
value to the destination format. If the source operand of a conversion from extended 
to comp is a NaN, an Infinity, or out-of-range for the comp format, then the result is 
the comp NaN. If the source is an Infinity or is out-of-range, the invalid exception is 
signaled. 

For conversion to a system-specific integer type (that doesn't have an appropriate 
representation for the exceptional result), if the source operand is a NaN, an Infinity, 
or is out-of-range for that type, then invalid is signaled. 

•!• Note: The result values of conversions of NaNs, Infinities, and out-of-range values 
to two's-complement integer types may be different in SANE implementations for 
different microprocessors. Please refer to the section on conversions in the part of 
this book for your machine's microprocessor. 

Note that IEEE rounding into integral formats differs from most common rounding 
functions on halfway cases. With the default rounding direction (to nearest), 
conversions to comp or to a system-specific integer type will round 0.5 to 0, 1.5 to 2, 
2.5 to 2, and 3.5 to 4, rounding to even on halfway cases. (Rounding is discussed in 
detail in Chapter 7, "Controlling the SANE Environment.") 

•!• Pascal note: Programs can use assignments to convert floating-point variables to 
comp format, but not to integer. For that, you must use the explicit functions 
Round, Trunc, Num2Integer, and Num2Longint. Note that Round is not 
sensitive to the setting of rounding direction, but always performs Pascal-type 
rounding to nearest (rounding away from zero on halfway cases). 

•!• Language note: In general, where languages define the rounding behavior for 
conversion to integer format or to integral value, SANE languages conform. 

Conversions between binary and decimal 
The IEEE Standard for binary floating-point arithmetic specifies the set of numerical 
values representable within each floating-point format. It is important to recognize 
that binary storage formats can exactly represent the fractional part of decimal 
numbers in only a few cases; in all other cases, the representation will be 
approximate. 

22 Chapter 3: Conversions in SANE 



.J Example: binary approximation of decimal fractions 
Some fractions that have exact decimal representations can also be represented 
exactly in binary; for example, 1/2 (0.5 exactly in decimal) can be represented 
exactly in binary as 0.1. Other fractions with exact representations in decimal have 
repeating digits in binary, as shown in Table 3-1. For example, 1/ 10, or decimal 0.1 
exactly, is 0.000110011 ... in binary. Its closest representation in single format is 
closer to 0.10000000110 than to 0.10000000010. 

•!• Note: Errors of this kind are unavoidable in any computer approximation of real 
numbers. Because of these errors, sums of fractions are often slightly incorrect. For 
example, 4/ 3 - 5/ 6 is not computed exactly equal to 1/2 on any computer that 
rounds correctly in either binary or decimal floatin g-point arithmetic. 

Table 3-1 
Approximations of fractions 

Fraction 

1/ 10 
1/2 
4/3 
5/6 
4/3-5/6 

Decimal approximation• 

0 .1000000000* 
0 .5000000000* 
1.333333333 
0.8333333333 
0.4999999997 

• 10 significant digits, rounded to nearest 
t single format, rounded to near(!st 
* exact value 

Binary approxlmafiont 

0.000110011001100110011001101 
0.100000000000000000000000* 
1.01010101010101010101011 
0.110101010101010101010101 
0.100000000000000000000001 

Accuracy of decimal-to-binary conversions 

As binary storage formats generally provide only close approximations to decimal 
values, it is important that conversions between the two types be as accurate as 
possible. Given a rounding direction, for every decimal value there is a best-that is, 
correctly rounded-binary value for each binary format. Conversely, for any 
rounding direction, each binary value has a corresponding best decimal 
representation for a given decimal format. Ideally, binary-to-decimal conversions 
should obtain this best value to reduce accumulated errors. 

Conversion routines in SANE implementations meet or exceed the stringent error 
bounds specified by the IEEE Standard. This means that, even though in extreme cases 
the conversions do not deliver the correctly rounded results, the results they do 
deliver are very nearly as good as the correctly rounded results. (The IEEE Standard 
does not specify error bounds for conversions involving values beyond the double 
format. See the IEEE Standard [21) for a more detailed description of error bounds.) 

Conversions between binary and decimal 23 



Reading and writing decimal data 

Suppose a program converts values from decimal to binary and back repeatedly. Such 
conversion cycles would occur, for example, in repeated execution of a program that 
updates a decimal file on a binary computer. Each time the program runs, it 
deliberately changes only a handful of values, but all the values get converted from 
decimal to binary and back again. A conversion strategy used by some computers just 
drops extra digits. Such rounding by truncation can cause severe downward drift when 
applied repeatedly. Using SANE arithmetic with rounding to nearest, the values don't 
drift when you run the program repeatedly. That is, even though the conversions may 
change a few values the first time you run the program, there won't be any further 
changes on subsequent conversions. 

Figure 3-3 is a graphical model of such a conversion cycle with rounding to nearest, 
where the vertical marks represent decimal and binary computer numbers on the 
number line. The one-way arrow shows a decimal-to-binary conversion that does not 
get converted back to the original decimal value; the two-way arrow shows subsequent 
conversions returning the same value. In all cases, repeated conversions after the first 
give the same binary value; the error doesn't go on increasing. 

Numbers with similar precision 

Decimal v 
Binary 

Figure 3-3 
Conversion cycle with first-time error 

What's more, if the binary format has enough extra precision beyond that of the 
decimal format, SANE returns the original value the first time. The two-way arrow in 
Figure 3-4 shows a conversion cycle with different degrees of precision; in this 
situation, the nearest decimal value to the binary result is always the original decimal 
value. 

You might ask, "How much precision is that?" Or, more precisely, "What is the largest 
number of decimal digits for which you can be certain that conversion from decimal 
to binary and back will return the exact original value?" The answer is different for 
different formats: for single, it is 6; for double, 15. 

24 Chapter 3: Conversions in SANE 



Numbers with different precision 

Decimal 

\ 
Binary I 
Figure 3-4 
Conversion cycle with correct result 

A similar question might arise for outputs: you might want to know how many decimal 
digits to print, assuming someone would use the printed value as input. The question 
then becomes, "How many decimal digits should you print to be confident that 
conversion from binary to decimal and back will return the exact original value?" For 
single, the answer is 9; for double, 17. 

+ Note: These values bracket the ones given in Table 2-2. 

Conversions from decimal strings to SANE types 

DecStr string[DecStrLen); 

FUNCTION Str2Num(s: DecStr): extended; 

Languages may provide routines to convert numeric decimal strings to the SANE data 
types. The accepted syntax is formally defined, using Backus-Naur form, in Table 3-2. 
Examples of acceptable input are 

123 

-INF 

123.4E-12 

Inf 

-123. 

NAN (12) 

.456 

-NaN() 

3e9 

nan 

-0 

The 12 in NAN { 12) is a NaN code (see Chapter 5 for a description of NaN codes). 

•:• JAnguage note: Conversions take place in the following cases: 

o use of decimal constants in source 

o input of decimal strings (by procedures such as r ead in Pascal) 

o calls to explicit routines (such as Str2Num in Pascal) 

Conversions between binary and decimal 25 



Table 3-2 
Syntax for string conversions 

Object Definition 

<decimal number> . · = [{space I tab}) <left decimal> 
<left decimal> ·· = [ + I -) <unsigned decimal> 
<unsigned decimal> . ·= <finite number> I <Infinity> I <NAN> 
<finite number> . ·= <significand> [<exponent>) 
<significand> ··= <integer> I <mixed> 
<integer> . · = <digits> [.) 

<digits> ··= (0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9) 
<mixed> ··= [<digits>) . <digits> 
<exponent> . ·= E [+ I -) <digits> 
<Infinity> . ·= INF 
<NAN> ··= NAN[([<digits> ])] 

Note: In the table, square brackets enclose optional items, braces 
(curly brackets) enclose elements to be repeated at least once, and 
vertical bars separate alternative elements; letters that appear literally, 
like the E marking the exponent field, may be either uppercase or 
lowercase. 

•:• Pascal note: With Apple's SANE extensions (described in Appendix A, "SANE in 
High-Level Languages"), Pascal accepts <Infinity> and <NAN> as decimal string 
input for read (see Table 3-2). In source code files, INF is a predefined 
constant and NAN is a function in the SANE library. 

Decform records and conversions from SANE types 
to decimal strings 

DecForm RECORD 
style : (FloatDecimal, FixedDecimal); 
digits : integer 

END; 

PROCEDURE Num2Str(f : DecForm; x : extended; VAR s : DecStr); 
{s <-- x according to format f} 

Languages may provide routines to convert SANE data types to numeric decimal 
strings. Each conversion to a decimal string is controlled by a decform record like 
that defined above in Pascal. A decform record contains two fields: 

o style, a 16-bitword 

o digits, a 16-bit integer 

26 Chapter 3: Conversions in SANE 



The value of style equals 0 for floating and 1 for fixed. The value of digits is the 
number of significant digits for the floating style and the number of digits co the right 
of the decimal point for the fixed style. (The value of digits may be negative if the 
style is fixed.) Decimal strings resulting from these conversions are always acceptable 
input for conversions from decimal strings to SANE types. For more information 
about the use of the decform record, see the sections "Conversions From SANE Types 
co Decimal Records" and "Conversion From Decimal Records co Decimal Strings," 
lacer in chis chapter. 

•:• Note: Formatting derails, such as the representations of 0 and 1 in the 16-bir style 
word, are implementation dependent. Please refer to Chapter 17, "65C816 SANE 
Scanners and Formatter," for derails about the 65C816 and 6502 implementations 
and co Chapter 25, "MC68000 SANE Scanners and Formatter," for derails about the 
68000 implementation. 

The decimal record type 

Decimal RECORD 

END; 

sgn: 0 . . 1; 
exp: integer; 
sig : string[SigDigLen) 

The decimal record type provides an intermediate unpacked form for programmers 
who wish co do their own parsing of numeric input or formatting of numeric output. 
The decimal record format has three fields: 

o sgn, a 16-bit word 

o exp, a 16-bic integer 

o sig, a string 

The value represented is 

(- l)sgn x sig x lOexp 

when the length of sig is 18 or less (see the note chat follows). String sig contains 
the significand as a decimal integer in the form of a Pascal string, that is, with the 
string length in the zeroth byte (s i g [ 0 J ) and the initial character of the string in the 
first byre (sig [ 1 J ). The value of sgn is 0 for plus and 1 for minus. For example, if 
sgn equals 1, exp equals -3, and sig equals '8 5 ' (string length sig [ 0 J 
equals 2, not shown), then the number represented is -0.085. 

•:• Note: The maximum length of the string sig is implementation dependent; some 
implementations allow additional information in characters beyond the 18th. 
Also, the representations of 0 and 1 in the 16-bit word sgn are implementation 
dependent. Please refer co Chapter 17 for derails about the 65C816 and 6502 
implementations and to Chapter 25 for derails about the MC68000 implementation. 

Conversions between binary and decimal 27 



Conversions from decimal records to SANE types 

FUNCTION Dec2Num(d: Decimal): extended; 

Conversions from the decimal record type handle any sig digit-string of length 18 
or less (with an implicit decimal point at the right end). The following special cases 
apply: 

o If sig [ l J is ' o' (zero), the decimal record is converted to zero. For example, a 
decimal record with s i g = ' O 913 ' is converted to zero. 

o If sig [ l J is 'N ' , the decimal record is converted to a NaN. Except when the 
destination is of type comp (which has a unique NaN), the succeeding characters of 
sig are interpreted as a hex representation of the result's significand: if fewer 
than four characters follow the N, then they are right justified in the high-order 15 
bits of the field/illustrated in the section "Formats" in Chapter 2, "SANE Data 
Types"; if four or more characters follow the N, then they are left justified in the 
result's significand; if no characters, or only zeros, follow the N, then the result NaN 
code is set to nanzero (that is, the number $15 is stored, right-justified, in the high­
order 15 bits of the /field; see Chapter 5 for a description of NaN codes). 

o If sig [ l J is ' I ' and the destination is not of comp type, the decimal record is 
converted to an Infinity. If the destination is of comp type, the decimal record is 
converted to a NaN and invalid is signaled. 

o Other special cases produce undefined results. 

Conversions from SANE types to decimal records 

PROCEDURE Num2Dec(f: DecForm; x : extended; VAR d: Decimal) 

Each conversion to a decimal record d is controlled by a decform record f. 
(DecForm is defined in a previous section.) All implementations allow at least 18 
digits to be returned in sig. The implied decimal point is at the right end of sig, 
with exp set accordingly. 

Zeros, Infinities, and NaNs are converted to decimal records with sig parts '0 ' , 
' I ' , and strings beginning with 'N ' , respectively, whereas exp is undefined. For 
NaNs, 'N' may be followed by a hex representation of the input significand. The 
third and fourth hex digits following the N give the NaN code. For example, 
' N4021000000000000 ' has NaN code $21. 

28 Chapter 3: Conversions in SANE 



Unusual cases for decimal records 

When the number of digits specified in a decform record exceeds an implementation 
maximum (which is at least 18), the result is undefined. 

A number may be too large to represent in a chosen fixed style. For instance, if the 
implementation's maximum length for sig is 18, then 1015 (which requires 16 digits 
to the left of the point in fixed-style representations) is too large for a fixed-style 
representation specifying more than two digits to the right of the point. If a number is 
too large for a chosen fixed style, then (depending on the SANE implementation) one 
of two results is returned: an implementation may return the most significant digits of 
the number in sig and set exp so that the decimal record contains a valid 
floating-style approximation of the number; alternatively, an implementation may 
simply set sig to the string ' ? ' . Note that in any implementation, the following 
test (using Pascal syntax) determines w hether a nonzero finite number is too large for 
the chosen fixed style. 

VAR 

d: Decimal; 
f: DecForrn; 
TooBig: Boolean; 

TooBig := (-ct . exp<> f.digits) or (d.sig(l] = ' ?'); 

For fixed-point formatting, SANE treats a negative value for digits as a specification for 
rounding to the left of the decimal; for example, digits = - 2 means round to 
hundreds. For floating-point formatting, a negative value for digits gives unspecified 
results. 

Conversions between decimal formats 
A SANE implementation may provide a scanner for converting from decimal strings 
to decimal records and a formatter for converting from decimal records to decimal 
strings. 

Conversions between decimal formats 29 



Conversion from decimal strings to decimal records 

PROCEDURE Str2Dec( s : DecStr; var Index : integer; var d: Decimal; 
va r ValidPrefix: boolean); 

The SANE scanner is designed for use either with fixed strings or with strings being 
received interactively character by character. On input, the integer argument Index 
gives the starting position in the string; on output, its value is one greater than the 
position of the last character in the numeric substring just parsed. The scanner parses 
the longest possible numeric substring; if no numeric substring is recognized, then the 
value of Index remains unchanged. The scanner returns a Boolean argument 
ValidPrefix indicating that the input string, beginning at the input index, is a valid 
numeric string or a prefix of a valid numeric suing. The accepted input for this 
conversion is the same as for conversions from decimal strings to SANE types; see the 
earlier section "Conversions From Decimal Strings to SANE Types." Output is the 
same as for conversions from SANE types to decimal records; see the earlier section 
"Conversions From SANE Types to Decimal Records.• The scanner signals no 
exceptions. It faithfully converts all values, within the extended range, that are 
representable in the decimal record format. 

Table 3-3 
Examples of conversions to decimal records 

Index 
Input string In Out Output va lue Valid-prefix 

' 12' 1 3 12 TRUE 
'12E' 1 3 12 TRUE 
' 12E- ' 1 3 12 TRUE 
'12E-3 ' 1 6 12E-3 TRUE 
'12E-X ' 1 3 12 FALSE 
' 12E-3X ' 1 6 12E-3 FALSE 
' xl2E-3 ' 2 7 12E-3 • TRUE 
' IN ' 1 1 NAN TRUE 
' INF ' 1 4 INF TRUE 

To convert floating-point sUings embedded in text, parse to the beginning of a 
floating-point sUing ( [+ I - ] digit) and pass the current scan location as the index into 
the text. The conversion routine will return the value scanned and a new value of the 
index for continued parsing. 

You may need to distinguish those numeric ASCII sUings that represent values of an 
integer format. You can do this by scanning the source, looking for integer syntax. 
You can handle integers yourself and send to the SANE scanner any strings with 
floating-point syntax (that is, containing . , E, o r e). You may want to pass along to 
the scanner any strings that cause integer overflow. 

30 Chapter 3: Conversions in SANE 



The SANE scanner can be used to process not only static strings but also strings 
received character by character. Here is a sample algorithm in Pascal: 

{ Initialize string.} 
ScanStr := ''; 

{Loop until string is not a valid prefix . } 
REPEAT 

{ 

... Code to get next character and append to string goes here ... 
} 

{Scan string.} 
Index := l; 
Str2Dec(ScanStr, Index, DecRec, ValidPrefix); 

UNTIL ValidPrefix = false; 

{Convert from decimal to SANE- type result.} 
Result := Dec2Num{DecRec); 

Conversion from decimal records to decimal strings 

PROCEDURE Dec2Str( f: DecForm; d: Decimal ; vars : DecStr ); 

The SANE formatter is controlled by a decform record f, as shown earlier in the 
section "Decform Records and Conversions From SAl\TE Types to Decimal Strings." 
Input d is a decimal record (with fields sgn, exp, and sig), the same as for 
conversions from decimal records to SANE types. The formatter is always exact and 
signals no exception. 

Floating-style decimal output 

If the style field of the decform record equals 0 (in Pascal, f. style = 
FloatDecimal), the output string is formatted in floating style, with the digits 
field specifying the number of significant digits required. Output in floating style is 
represented in the following format; Table 3-4 defines its components. 

[- I )m[. nnn)e[+ I -)dddd 

Table 3-4 
Format of decimal output string in floating style 

Component 

minus sign ( - ) or space 
m 
point(.) 
nnn 
e 
plus sign ( +) or minus sign ( -) 
dddd 

Description 

According as sgn is 1 or 0 
Single digit, 0 only if value represented is 0 
Present if digits > 1 
Digit-string, present if digits > 1 
The letter e 
According as exp ~ 0 or exp < 0 
One to four exponent digits 

Conversions between decimal formats 31 



Fixed-style decimal output 

If the style field of the decforrn record equals 1 (in Pascal, f. sty le = 

FixedDecimal), the output string is formatted in fixed style, with the digits field 
specifying the number of digits to follow the decimal point. All output in fixed style is 
represented in the following format; Table 3-5 defines its components. 

[-)mmm[. nnn) 

Table 3-5 
Format of decimal output string in f ixed style 

Component 

minus sign ( - ) 
mmm 
point ( . ) 
nnn 

Description 

Present if sgn = 1 
Digit-string: at least one digit but no superfluous leading zeros 
Present if digit s > 0 
Digit-string of length equal to digits, present if digits > 0 

Note that if sgn equals 0, then floating-style output begins with a space, but fixed­
style output does not. 

Unusual cases for decimal strings 

Negative values for digits are treated as 0 for fixed formatting, but give unspecified 
results in floating format. 

The formatter never returns fewer significant digits than are contained in sig. 
However, if the decforrn record calls for more significant digits than are contained in 
sig, then the formatter pads with zeros as needed. 

If more than 80 characters are required to honor digits , then the formatter returns 
the string ' ? ' . 

NaNs are formatted as NAN ( ddd) , where ddd is a three-decimal-digit code telling the 
origin of the NaN; Infinities are formatted as I NF. A leading sign or space is included 
according to the style convention. 

32 Chapter 3: Conversions in SANE 



Alignment and field width 

With floating style, numbers fonnatted using the same value for digits have 
aligning decimal points and e's. To assure also that numbers have the same width, pad 
the exponent-digits field with spaces to a width of 4. (Extended values may require four 
exponent digits.) For example, if digits = 12, then pad 12 + 8 - length(s) spaces 
on the right of the result string s. The value 8 accounts for the sign, point, e, exponent 
sign, and four exponent digits. Note that this scheme gives the correct field width for 
NaNs and Infinities too. 

With fixed style, numbers formatted using the same value for digits have aligning 
decimal points if enough leading spaces are added to the result string s to attain a fixed 
width, which must be no narrower than the widest s. 

Example: decimal records 
Suppose you have an accounting program that computes exact values using binary 
numbers of pennies and prints outputs in dollars and cents. If you simply divide the 
number of pennies by 100 to get dollars, you incur errors due to the fact that 
hundredths are not exact in binary. One way to print out exact values in dollars is to 
convert the number of pennies to a decimal record, perform the division by adjusting 
the exponent, and print the result. 

VAR 
df: 
pennies: 
dPennies : 
dollars: 

BEGIN 

DecForm; 
extended; 
decimal; 
DecSt r; 

df .style : - Fixedoecimal; 
di.digits : • O; 

Num2Dec(df, pennies, dPennies) ; 
dPennies.exp := dPennies.exp - 2; 

df.digits :~ 2; 
Dec2Str(df, dPennies, dollars); 

END; 

decimal value for pennies 
string to print as $$$.¢¢ 

start with 0 digits after dee . pt. } 

decimal pennies 
divide by 100 } 

request 2 digits after dee . pt. } 
dollar string to print } 

Conversions between decimal formats 33 



Table 3-6 
Exa mp les of conversions to decimal strings 

Style digits sgn exp slg Result string s 

Float 3 0 -2 ' 123 ' ' l.23e+0' 

Float 3 1 -4 ' 123 ' ' -l . 23e-2 ' 

Float 1 0 200 ' 123 ' ' l.23e+202' 

Float 5 1 1000 '123 ' ' -l . 2300e+l002 ' 

Float 1 0 -30 I 4 I ' 4e-30' 

Float 1 1 0 ' 0 ' •-oe+O' 

Float 30 0 0 'l ' I l.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOe+O ' 

Float 76 0 0 ' l ' t? I 

Float 76 1 0 I l' I? I 

Float 5 0 -98 'N0024' I NAN(036) I 

Float 2 1 103 'N0015 ' '-NAN(021) ' 

Float 2 0 0 I I I ' INF' 

Float 2 1 -217 I I ' ' -INF ' 

Fixed 3 0 -3 '12345 ' ' 12.345 ' 

Fixed 3 1 -3 '12345' ' -12.345 ' 

Fixed 5 0 -3 '12345 ' '12.34500' 

Fixed 3 1 -5 '1234567' '-12.34567' 

Fixed 0 0 0 '12345' ' 12345 ' 

Fixed 0 1 3 ' 12345 ' '-12345000 ' 

Fixed -2 0 2 '12345 ' '1234500' 

Fixed -2 1 1 '12345' '-123450' 

Fixed 3 0 63 I 0 I '0.000' 

Fixed - 3 1 0 '0' '-0 ' 

Fixed 5 0 74 I l ' I? I 

Fixed 4 1 74 ' l ' I? I 

Fixed 5 0 -98 ' N0024 ' 'NAN(036) ' 

Fixed 2 1 103 ' N0015 ' '-NAN(021)' 

Fixed 2 0 0 ' I ' ' INF' 

Fixed 2 1 - 217 ' I I ' -INF ' 

34 Chapter 3: Conversions In SANE 



Chapter 4 

Expression Evaluation in SANE 

35 



SANE arithmetic is extended-based. Arithmetic operations produce results with 
extended precision and extended range. For minimal loss of accuracy in more 
complicated computations, you should use extended temporary variables to store 
intermediate results. 

Extended-precision expression evaluation 
To obtain the full benefits of SANE, floating-point expressions should be evaluated 
using extended format. High-level languages that support SANE evaluate all 
noninteger numeric expressions to extended precision, regardless of the types of the 
operands. If you are a Pascal or C programmer, refer to Appendix A, "SANE in High­
Level Languages." 

Example: expression evaluation 

If c is of type comp and Max Comp is the largest comp value, then the right side of 

C: = (MaxComp + MaxComp)/2; 

would be evaluated in extended to the exact result C = MaxComp, even though the 
intermediate result MaxComp + MaxComp exceeds the largest possible comp value. 

If your program can generate intermediate values that are fractional or out-of-range, 
you may need to check the inexact and overflow flags to determine whether the final 
results are free of error. For example, the expression 

MaxCornp * 5 - MaxCornp * 4 

sets the inexact flag and returns an even result (even though MaxCornp is odd) 
because MaxComp * 5 is inexact even in extended format. 

36 Chapter 4: Expression Evaluation In SANE 



Using extended temporaries 
An algorithm that works well if carried out using substantially more precision than that 
of the given data and desired solution may fail ignominiously if the precision of the 
arithmetic is only slightly greater than the data and solution. Compilers that support 
SANE use extended format for temporary variables, thereby avoiding this kind of 
problem. Programmers can further reduce the effects of round-off error, overflow, 
and underflow on the final results by declaring their temporary variables as extended. 

Example: extended temporaries 
To compute the single-precision sum 

S = X [l ] x Y[l] + X [2] x Y[2] + ... + X[N] x Y[N] 

where X and Yare arrays of type single, declare an extended variable .xs and compute 
the extended-format sum as shown in the following example: 

VAR 
X: ARRAY [l . . N] OF real ; 
Y: ARRAY [l . . N] OF real ; 
s: real; 
xs: extended; 

BEGIN; 
xs : = O; 
FOR i:= 1 TON DO xs := xs+X[i]*Y[i); {extended- precision arithmetic } 
s : = xs; {deliver final result to singl e . I 

END; 

Even when input and output values have only single precision, it may be difficult to 
prove that single-precision arithmetic is sufficient for a given calculation. Using 
extended-precision arithmetic for intermediate values often improves the accuracy of 
single-precision results more than virtuoso algorithms would . Likewise, using the extra 
range of the extended type for intermediate results may yield correct final results in the 
single type in cases when using the single type for intermediate results would cause an 
overflow or a catastrophic underflow. Extended-precision arithmetic is also useful for 
calculations involving double or comp variables: see "Example: Expression 
Evaluation." 

•!• Note: Compilers that support SANE use extended format for intermediate values. 
To obtain the identical values when debugging, you must do tl1e same; that is, make 
sure any temporary variables you introduce are in extended format. 

Using extended temporaries 37 



Expression evaluation and the IEEE Standard 
The IEEE Standard encourages extended-precision expression evaluation. On rare 
occasions, extended evaluation produces results slightly different from those 
produced by other IEEE implementations that lack extended evaluation. Thus, in a 
single-only IEEE implementation, 

z := x + y; 

with x, y, and z all single, is evaluated in one single-precision operation, with at most 
one rounding error. Under extended evaluation, however, the addition x + y is 
performed in extended; then the result is coerced to the single precision of z, with at 
most two rounding errors. Both implementations conform to the standard. 

Programmers using SANE can obtain the effect of an IEEE implementation having 
only single-precision or double-precision numbers by using rounding precision 
control, as described in Chapter 7, "Controlling the SANE Environment." 

•!• .Language note: SANE Pascal and C compilers generate floating-point constants in 
extended format. 

38 Chapte r 4: Expression Evaluation in SANE 



Chapter 5 

Infinities, NaNs, and 
Denormalized Numbers 

39 



In addicion co che normalized numbers supported by masc floating-poinc syscems, 
IEEE flo2ting-point arithmetic also supports Infinities, NaNs, and denormalized 
numbers. 

Many programs deliver correct results despite che transient appearance of NaN or 
Infinity. You can use SANE wichout knowing anything about NaNs and Infinities unless 
you perform a calculation that would cause a malfunction on a machine char doesn'c 
have them. When char happens, NaNs and Infinities and che flags associaced wich chem 
help you diagnose che malfunction and deal wich ic appropriately. 

Infinities 
An Infinity is a special bit patcem char can arise in one of cwo ways: 

1 . When a SANE operation should produce a machematical infinity (such as 1/0), che 
resulc is an Infinity. 

2. When a SANE operation atcempts to produce a number wich magnicude too great for 
che number's intended floating-point storage format, che result may be a value wich 
che largest possible magnitude or it may be an Infinity (depending on the current 
rounding direction). 

These bit patterns (as well as NaNs, introduced next) are recognized in subsequent 
operations and produce predictable results. The Infinities, one positive (abbreviated 
+INF) and one negative (-INF), generally behave as suggesced by che cheory of limits. 
For example: 

o Adding 1 to +INF yields +INF. 

o Dividing-I by +O yields -INF. 

o Dividing 1 by -INF yields -0. 

Each of che storage types single, double, and extended provides unique 
represencations for +INF and -INF. The comp type has no represencations for 
Infinities. (An Infinity moved to che comp type becomes che comp ·aN.) 

•!• Pascal note: For input and output, Infinities are writcen as INF and - INF. In 
source code, INF is a predefined constant. 

40 Chapter 5: Infinities, NaNs, and Denormalized Numbers 



NaNs 
When a SANE operation cannot produce a meaningful result, the operation delivers a 
special bit pattern called a NaN (Not-a-Number). For example, 0 divided by 0, +INF 
added to -INF, and sqrt(-1) yield NaNs. A NaN can occur in any of the SANE storage 
types (single, double, extended, and comp); but, generally, system-specific integer 
types have no representation for NaNs. NaNs propagate through arithmetic 
operations. Thus, the result of 3.0 added to a NaN is the same NaN (and has the same 
NaN code). If two operands of an operation are NaNs, the result is one of the NaNs. 
NaNs are of two kinds: quiet NaNs, the usual kind produced by floating-point 
operations; and signaling NaNs. 

When a signaling NaN is encountered as an operand of an arithmetic operation, the 
invalid-operation exception is signaled and a quiet NaN is the delivered result. 
Signaling NaNs are not created by any SANE operations. The most significant bit of the 
fraction field/(illustrated in the section "Formats" in Chapter 2, "SANE Data Types") 
distinguishes quiet and signaling. It is set for quiet NaNs and clear for signaling NaNs. 

A NaN in a floating-point format may have an associated NaN code that indicates the 
NaN's origin. These codes are listed in Table 5-1. The NaN code is the 8th through 
15th most significant bits of the fraction field/(illustrated in the section "Formats" in 
Chapter 2). The comp NaN is unique and has no NaN code. 

•) Pascal note: For input and output, NaNs are written as NAN (ddd), where dddis the 
decimal representation of the NaN code. In source code, NaN is the function 

FUNCTION NAN( i: integer ) : extended; 

where the input argument i gives the NaN code. 

Table 5-1 
SANE NaN codes 

Name Dec Hex Meaning 

NANSQRT 1 $01 Invalid square root, such as sqrt(-1) 
NANADD 2 $02 Invalid addition, such as (+INF) - (+INF) 
NANDIV 4 $04 Invalid division, such as 0/ 0 
NANMUL 8 $08 Invalid multiplication, such as 0 x INF 
NANREM 9 $09 Invalid remainder or mod such as x rem 0 
NANASCBIN 17 $11 Attempt to convert invalid ASCII string 
NANCOMP 20 $14 Result of converting comp NaN to floating 
NANZERO 21 $15 Attempt to create a NaN with a zero code 
NANTRIG 33 $21 Invalid argument to trig routine 
NANINVTRIG 34 $22 Invalid argument to inverse trig routine 
NANLOG 36 $24 Invalid argur.1ent to log routine 
NANPOWER 37 $25 Invalid argument to x 1 or xY routine 
NANFINAN 38 $26 Invalid argument to financial function 

Note: All NaNs created by the MC68881 coprocessor have NaN code 255 (SFF). Codes of 
NaNs passed to the MC68881 are preserved. 

NaNs 41 



Denormalized numbers 
Whenever possible, floating-point numbers are normalized to keep the leading 
significand bit 1: normalization maximizes the resolution of the storage type and 
ensures that representations are unique. When a number is too small for a normalized 
representation, leading zeros are placed in the significand to produce a denormalized 
representation. A denormalized number is a nonzero number that is not 
normalized and whose exponent is the minimum exponent for the storage type. 

•!• Note: Some references use the term subnormal instead of denormalized. 

Example: gradual underflow 
Table 5-2 shows how a single-precision value Ao becomes progressively denormalized 
as it is repeatedly divided by 2, with rounding to nearest. This process is called 
gradual underflow. In the table, values A 1 ... A24 are denormalized; A24 is the 
smallest positive denormalized number in the single type. 

Table 5-2 
Example of gradual underflow 

Variable or 
operation 

Ao 
A1 =A0! 2 
A2 =A/2 
A3 =Az/2 

A22 = A2112 
A23 = A2zl2 
A24 =A2/ 2 
A2s =A2/2 

Value 

1.100 1100 1100 1100 1100 1101 * 2 -l26 
0.110 0110 0110 0110 0110 0110 * 2-126 
0.011 0011 0011 0011 0011 0011 * 2 -126 
0.001 1001 1001 1001 1001 1010 * 2 -126 

0.000 0000 0000 0000 0000 0011 * 2 -l26 
0.000 0000 0000 0000 0000 0010 * 2 -126 
o.ooo 0000 0000 0000 0000 0001 * 2-126 
0 .0 

Comment 

"'0.110 * 2-122 
Inexact• 
Exact result 
Inexact• 
The process continues 
Exact result 
Inexacr 
Exact result 
Inexact• 

• Whenever division returns an inexact tiny value, the exception bit for underflow is set 
to indicate that a low-order bit has been lost. 

Figure 5-1 illustrates the relative magnitudes of normalized and denormalized 
numbers in single precision. It shows two versions of the number line: first without 
denormalized numbers, then with denormalized numbers in place. The spacing of the 
vertical marks indicates the relative density of numbers in each part of the number 
line; the denormalized numbers have the same density as the normalized numbers in 
the smallest binade. 

42 Chapter 5: Infinities, NaNs, and Denormalized Numbers 



•!• Note: The figure shows only the relative density of the numbers; in reality, the 
density is immensely greater than it is possible to show in such a figure. For 
example, there are 223 (8,388,608) single-precision numbers x in the interval 
2-126 s; x < z--125. 

Figure 5-1 

_2- 124 _2- 125 _2- 126 
0 2

-126 
2

-125 r124 

I I I I I I I I 1111111 lj I 11 111 111 1 I I I I I I I I I 
'----y----J 

Gap in normalized numbers 

_2-124 _2- 125 -r126 0 r i26 r125 2-124 

11 I I I I I I 11111 1111 111 1111j111 11111111111111 I I I I I I I 
'----y----J 

Denormalized numbers in gap 

Denormalized single-precision numbers on the number line 

Why gradual underflow? 
The use of denormalized numbers makes the following statement true for all real 
numbers: 

x - y= 0 if and only if x= y 

This statement is not true for most older systems of computer arithmetic, because they 
exclude denormalized numbers. For those systems, the smallest nonzero number is a 
normalized number with the minimum exponent; when the result of an operation is 
smaller than that smallest normalized number, the system delivers zero as the result. 
For such flush-to-zero systems, if x-:;:. y but x - y is smaller than the smallest 
normalized number, then x - y is computed as 0. Systems using denormalized 
numbers do not have this defect: the value of x - y, although denormalized, is 
correctly nonzero. 

Another advantage of gradual underflow is that error analysis involving small values is 
much easier without the gap around zero shown in Figure 5-1. See Demmel (14]. 

Sign of zero 
Each floating-point format (single, double, and extended) has two representations for 
zero: +O and - 0. The two zeros compare as equal: +O = - 0; however, their behaviors in 
the arithmetic are slightly different. 

Sign of zero 43 



Ordinarily, the sign of zero doesn't matter except (possibly) for a function 
discontinuous at zero. Though the two forms are numerically equal, they are not 
identical; a program can distinguish +O from -0 by operations such as division by zero 
or performing the SANE CopySign or SignNum function. 

•!• Language note: Some languages define their own sign inquiry functions that ignore 
the sign of zero. 

The sign of zero obeys the usual sign laws for multiplication and division. For 
example, ( +O) x (-1) = -0 and 1/ (-0) =-INF. Because extreme negative underflows 
yield -0, expressions like 1/ x3 produce the correct sign for Infinity when x is tiny and 
negative. Addition and subtraction produce -0 only in these cases: 

o (-0) - ( +O) yields -0 

0 (-0) + (-0) yields-0 

When rounding downward, with x finite, 

o x- xyields-0 

o x + (-x) yields -0 

The square root of -0 is -0. 

The sign of zero is important in complex arithmetic. See Kahan [25]. 

Inquiries: class and sign 
NumClass (SNaN, QNaN, Infinite, ZeroNum, NormalNum, DenormalNum ); 

FUNCTION ClassReal ( x: real ) : NumClass ; 
FUNCTION ClassDouble( x : double ) : NumClass; 
FUNCTION ClassComp( x : comp ) : NumClass ; 
FUNCTION ClassExtended( x: extended ) : NumClass; 

FUNCTION SignNum( x : extended ) : integer; 
(0 if sign bit clear , 1 if sign bit set) 

Each valid representation in a SANE data type (single, double, comp, or extended) 
belongs to exactly one of these classes: 

o signaling NaN 

o quietNaN 

o Infinity 

o zero 

o normalized 

o denormalized 

SANE implementations provide the user with the facility to determine easily the class 
and sign of any valid representation. 

44 Chapter 5: Infinities, NaNs, and Denormalized Numbers 



Chapter 6 

Arithmetic Operations, 
Comparisons, and 
Auxiliary Procedures 

45 



This chapter describes the arithmetic operations, the comparisons, and the auxiliary 
procedures: functions for sign manipulation, obtaining Nextafter value, and binary 
scaling and logarithm. 

Arithmetic operations 
SANE provides the arithmetic operations for the SANE data types, as shown for Pascal 
in Table 6-1. 

Table 6-1 
Arithmetic operations In Pascal 

Operation 

Add 
Subtract 
Multiply 
Divide 
Square root 
Remainder 
Round-to-Integer 

Pascal 

+ 

* 
I 
Sqrt ( 
Remainder( 
Riot( ) 

Apple's Pascal and C language processors, and others that follow Apple's guidelines, 
automatically use SANE extended-precision arithmetic for the normal in-line 
operators ( +, - , *, I). All the arithmetic operations produce the best possible 
result: the mathematically exact result, coerced to the precision and range of the 
extended type. The coercions honor the user-selectable rounding direction and 
handle all exceptions according to the requirements of the IEEE Standard (see 
Chapter 7, "Controlling the SANE Environment"). 

Remainder 
FUNCTION Remainder{ x, y: extended; Var quo : integer ) : extended; 

Generally, Remainder (and modulo) functions are defined by the expression 

xremy-= x-yx n 

where n is some integral approximation to the quotient x/y. This expression can be 
found even in the conventional integer-division algorithm, shown in Figure 6-1. 

n ----- Integral quotient approximation 

--- -- Dividend Divisor - Y ) x 
yxn 
x-yxn -Remainder 

Figure 6-1 
Integer-division algorithm 

46 Chapter 6: Arithmetic Operations. Comparisons, and Auxiliary Procedures 



SANE supports the Remainder function specified in the IEEE Standard: When y :t- 0, 
the remainder r = x rem y is defined (regardless of the rounding direction) by the 
mathematical relation r= x- yx n, where n is the integral value nearest the exact value 
xi y; whenever I n - xi y I = 112, n is even. The remainder is always exact. If the value 
of r is 0, the sign of r is that of x. 

•!• Pascal note: The integer variable quo receives the seven low-order bits of I n I 
(negated if n is negative) as a value between- 127 and 127. It is useful for 
programming functions, such as the trigonometric functions, that require argument 
reduction. 

Remainder example 1 

Find 5 rem 3. Here x = 5 and y = 3. Because 1 < 513 < 2 and because 513 = 1.66666 ... is 
closer to 2 than to 1, quo is taken to be 2, so 

5rem3=r=5-3x2=- 1 

Remainder example 2 

Find 43.75 rem 2.5. Because 17 < 43.7512.5 < 18 and because 43.7512.5 = 17.5 is 
equally close to both 17 and 18, quo is taken to be the even quotient, 18. Hence, 

43.75 rem 2.5 = r= 43.75 - 2.5 x 18 = -1.25 

The IEEE Remainder function differs from other commonly used remainder and 
modulo functions. It returns a remainder of the smallest possible magnitude, and it 
always returns an exact remainder. Other remainder functions can be constructed 
from the IEEE Remainder function by appropriately adding or subtracting y. 

Round-to-integer 

FUNCTION Rint( x : extended) : extended; 

This function rounds an input argument according to the current rounding direction to 
an integral value and delivers the result to the extended format. For example, 
12345678.875 rounds to 12345678.0 or 12345679.0. (The rounding direction, which 
can be set by the user, is explained fully in Chapter 7, "Controlling the SANE 
Environment. ") 

Note that, in each floating-point format, all values of sufficiently great magnitude are 
integral. For example, in single, all numbers whose magnitudes are at least 223 are 
integral. 

SANE comparisons 
SANE supports the usual numeric comparisons: less, less-or-equal, greater, greater­
or-equal, equal, and not-equal. For real numbers, these comparisons behave 
according to the familiar ordering of real numbers. 

SANE comparisons 47 



Comparisons with NaNs and Infinities 
SANE comparisons handle NaNs and Infinities as well as real numbers. The usual 
trichotomy for real numbers is extended so that, for any SAL'\ffi values a and b, exactly 
one of the following is true: 
o a < b 

o a> b 
o a= b 

o a and b are unordered 

Determination is made by the following rule: If x or y is a NaN, then x and y are 
unordered; otherwise, x.and y are less, equal, or greater according to the ordering of 
the real numbers, with the understanding that +O = -0 and -oo < each real number< +oo. 
(Note that a NaN always compares unordered-even with itself.) 

The meaning of high-level language relational operators is a natural extension of their 
old meaning based on trichotomy. For example, the Pascal expression x <= y is true 
if xis less than y or if x equals y, and is false if xis greater than y or if x and y are 
unordered. Note that the SANE not-equal relation means less, greater, or 
unordered-even if not-equal is written <>, as in Pascal. 

Some relational operators in high-level language comparisons contain the predicate 
less or greater, but not unordered. In Pascal those relational operators are <, <=, >, 
and >= ( but not = and <> ). For those relations, comparisons signal invalid if the 
operands are unordered; that is, if either operand is a NaN. For the operators equal 
and nonequal, comparisons with NaN aren't misleading: thus, when x or y is a NaN, 
the relation x = y returns FALSE, which is not misleading. Likewise, when x or y is a 
NaN, x <> y returns TRUE, again not misleading. On the other hand, when x or y is a 
NaN, x < y being false might tempt you to conclude that x ~ y, so SANE signals invalid 
to help you avoid the pitfall. Table 6-2 shows the results of such comparisons in 
Pascal; other SANE-supporting high-level languages behave similarly. This issue is 
also discussed in the section "The Invalid-Operation Flag" in Appendix C, "Porting 
Programs to SANE." 

A comparison with a signaling NaN as an operand always signals invalid, just as in 
arithmetic operations. 

Table 6-2 
Comparisons involving NaNs 

Relational operation• 

x<y 
x <= y 
x >= y 
x>y 
x=y 
x <> y 

Signal 

Invalid 
Invalid 
Invalid 
Invalid 
(None) 
(None) 

• where x or y is a quiet NaN 

48 Chapter 6: Arithmetic Operations, Comparisons, and Auxiliary Procedures 



The Relation function 

RelOp = ( GreaterThan, LessThan , EqualTo, Unordered); 

FUNCTION Relation( x, y : extended ) : Rel Op; 

High-level languages supporting SANE supplement the usual comparison operators 
with a function that takes two numeric arguments and returns the appropriate relation 
(less, equal, greater, or unordered). Programs can use the result of this function in 
expressions to test for combinations not supported by the comparison operators, 
such as "less-than or unordered." 

The Relation function signals invalid only if an operand is a signaling NaN. 

Auxiliary procedures 
SANE includes the following special routines that are recommended in an appendix to 
the IEEE Standard as aids to programming: 

0 Neg, make negative 

0 Abs, absolute value 

0 Copy Sign, copy the sign 

0 Nextafter functions 

0 Scalb, binary scaling 

0 Logb, binary exponent 

Sign manipulation 
The sign manipulation operations change only the sign of their argument. The Negate 
function reverses the sign of its argument. The Absolute Value function makes the sign 
of its argument positive. 

•:• Pascal note: Pascal provides negation by means of the unary - operator and 
obtains absolute values by means of the function Abs. 

FUNCTION CopySign( x, y : extended ) : extended; 

Copy Sign takes two arguments and copies the sign of its first argument onto the 
absolute value of its second argument. 

+) Note: The order of the operands in the SANE CopySign function is reversed from 
that suggested in IEEE Standard 754. 

A SANE implementation may treat these operations as nonarithmetic in the sense that 
they raise no exceptions: even signaling NaNs do not signal the invalid-operation 
exception. 

Auxiliary procedures 49 



Nextaffer functions 
FUNCTION NextReal( x, y: real ) : real; 
FUNCTION NextDouble( x, y : double ) : double ; 
FUNCTION NextExtended( x, y: extended ) : extended; 

The floating-point values representable in single, double, and extended formats 
constitute a finite set of real numbers. The Nexcafter functions (one for each of these 
formats) generate the next representable neighbor in the proper format, starting with 
an initial value x and in the direction from x toward y. As elsewhere, the names of the 
functions may vary with the implementation. 

Special cases for Nextafter functions 

If the initial value and the direction value are equal, then the result is the initial value. 

If the initial value is finite but the next representable number is infinite, then overflow 
and inexact are signaled. 

If the next representable number lies strictly between - Mand + M, where Mis the 
smallest positive normalized number for that format, and if the arguments are not 
equal, then the Nextafter function returns the next representable denormalized 
number and signals underflow and inexact. 

Binary scaling and logarithmic functions 
FUNCTION Scalb( n: integer; x: extended ) : extended; 
FUNCTION Logb( x: extended ) : extended; 

The Scalb and Logb functions are provided for manipulating binary exponents. 

Sc alb ( n, x) efficiently scales a given number x by a given integer power n of 2, 
returning xx 2n. Using Scalb is more efficient than a straightforward computation 
of xx2n. 

Logb returns the binary exponent of its input argument as a signed integral value. 
When the input argument is a denormalized number, the exponent is determined as if 
the input argument had first been normalized. 

You can use Scalb and Logb to find tl1e value of the mantissa of a number, like this: 

m := Abs(Scalb(-Num2Integer(Logb(x)),x)); 

•:• C note: The C mathematical library has functions named frexp and ldexp that 
are similar in spirit to Logb and Sea lb, though different in details. 

•:• Note: Logb in SANE follows the recommendation in IEEE Standard 854. It differs 
from IEEE Standard 754 in its handling of denormalized numbers. 

Special cases for Logb 

If xis an Infinity, Logb (x) returns +INF. 

If x= 0, Logb (x) returns -INF and signals divide-by-zero. 

50 Chapter 6: Arithmetic Operations. Comparisons. and Auxiliary Procedures 



Chapter 7 

Controlling the SANE 
Environment 

51 



Environmental controls include the rounding direction, rounding precision, 
exception flags, and halt settings. 

Rounding direction 
RoundDir (ToNearest , Upward , Downward, TowardZero) ; 

PROCEDURE SetRound(r: RoundDir) ; 
FUNCTION GetRound: RoundDir ; 

The available rounding directions are 

o to-nearest 

o upward 

o downward 

o toward-zero 

The rounding direction affects all conversions except conversions between decimal 
records and decimal strings and all arithmetic operations except remainder. Except 
for conversions between binary and decimal (described in Chapter 3, "Conversions 
in SANE"), all operations are computed as if with infinite precision and range and 
then rounded to the destination format according to the current rounding direction. 
The rounding direction may be interrogated and set by the user. 

•:• Note: Transcendental functions are not arithmetic operations and do not produce 
the correctly rounded value described here. 

The default rounding direction is co-nearest. In this direction the representable value 
nearest to tl1e infinitely precise result is delivered; if the two nearest representable 
values are equally near, the one with least significant bit zero is delivered. Hence, 
halfway cases round to even when the destination is the comp or a system-specific 
integer type or when the round-to-integral-value operation is used. If the magnitude of 
the infinitely precise result exceeds the format's largest value (by at least one half unit 
in the last place), then the Infinity with the corresponding sign is delivered. 

The other rounding directions are upward, downward, and toward-zero. When 
rounding upward, the result is the format's value (possibly INF) closest to and no less 
than the infinitely precise result. When rounding downward, the result is the format's 
value (possibly -INF) closest to and no greater man the infinitely precise result. When 
rounding toward zero, the result is me format's value closest to and no greater in 
magnitude man the infinitely precise result. To truncate a number to an integral value, 
use toward-zero rounding either with conversion into an integer format or wim me 
round-to-integral-value operation. (See also the sections on expressions in "Pascal 
SANE Extensions" and "C SANE Extensions" in Appendix A.) 

52 Chapter 7: Controlling the SANE Environment 



Example: rounding upward 

One reason to change the rounding direction would be to put bounds on errors (at 
least for the rational operations and square root). Suppose you want to evaluate an 
expression like 

x=(axb+ cxd) / (f+g) 

where a, b, c, d, f, and g are positive. 

To make sure that the result is always larger than the exact value, you can change the 
expression such that all roundings cause errors in the same direction. The following 
code fragment changes the rounding direction to compute an upper bound for the 
expression, then restores the previous rounding. 

VAR 

r : RoundDir; 
xUp: extended; 

r := GetRound; 
SetRound(Downward); 
xUp := f+g; 
SetRound(Upward); 
xUp := (a*b+c*d)/xUp; 
Set Round ( r) 

Rounding precision 

{local storage for rounding direction} 

{save rounding direction} 
{downward rounding for denominator} 

(upward rounding for expression} 

(restore previous rounding direction} 

RoundPre = (ExtPrecision, DblPrecision, RealPrecision); 

PROCEDURE SetPrecision(p: RoundPre) ; 
FUNCTION GetPrecision: RoundPre; 

Normally, SANE arithmetic computations produce results to extended precision and 
range. To facilitate simulations of arithmetic systems that are not extended-based, the 
IEEE Standard requires that the user be able to set the rounding precision to single or 
to double. If the SANE user secs rounding precision to single (or to double), then all 
arithmetic operations produce results that are correctly rounded and that overflow or 
underflow as if the destination were single (or double), even though results are 
typically delivered to extended formats. Conversions to double and to extended 
formats are affected if rounding precision is set to single, and conversions to extended 
formats are affected if rounding precision is set to double; conversions to decimal, 
comp, and system-specific integer types are not affected by the rounding precision. 
Rounding precision can be interrogated as well as sec. 

Setting rounding precision co single or co double does not significantly enhance 
performance, and in some SANE implementations may hinder performance. 

Rounding precision 53 



Exception flags and halts 
TYPE 

Exception 

CONST 

integer; 

Invalid = l; 
Underflow = 2; 
Overflow = 4; 
DivByZero = 8; 
Inexact = 16; 

PROCEDURE SetException(e: Exception; b: boolean); 
FUNCTION TestException(e: Exception): boolean; 
PROCEDURE SetHalt(e: Exception; b: boolean); 
FUNCTION TestHalt(e: Exception): boolean; 

•:• Note: The values of the exception constants and the type definition for 
Exception vary among different implementations of SANE, but code that uses 
the functions, procedures, and symbolic constant names to access exceptions and 
halts should port across the different implementations. Please refer to other parts 
of this manual for implementation-dependent information. 

Exceptions are signaled when detected; if the corresponding halt is enabled, the SANE 
engine transfers control to a user-specified location. (A high-level language may not 
pass on to its user the facility to set this location, but instead may stop the user's 
program.) The user's program can examine or set individual exception flags and 
halts, and can save and get the entire environment (rounding direction, rounding 
precision, exception flags, and halt settings). 

{If halt vector is to be made available to Pascal users:} 
FUNCTION GetHaltVector: longint ; 
PROCEDURE SetHaltVector(v: longint); 

A control mechanism such as this can also be provided by hardware- for example, 
the Motorola MC68881 floating-point coprocessor. On machines with hardware 
exception trapping, programs should use the hardware mechanism instead of the 
software-supported mechanism described here. For information about the halt (trap) 
mechanism on the MC68881, please refer to Chapter 30, "The MC68881 Trap 
Mechanism," and to Motorola's MC68881 Floating-Point Coprocessor User's 
Manual. 

54 Chapter 7: Controlling the SANE Environment 



Types of exceptions 

SANE supports five exception flags with corresponding halt settings: 

o invalid operation (often called simply invalid) 

o underflow 

o overflow 

o divide-by-zero 

o inexact 

Invalid operation 

The invalid-operation exception is signaled if an operand is invalid for the operation 
to be performed. The result is a quiet NaN, provided the destination format is single, 
double, extended, or comp. The invalid conditions for the different operations are 
these: 

o addition or subtraction: magnitude subtraction of Infinities, for example, 
(+INF)+ (-INF) 

o multiplication: 0 x INF 

o division: 0/ 0 or INF /INF 

o remainder: x rem y, where y is zero or xis infinite 

o square root: if the operand is less than zero 

o conversion: to the comp format or to a system-specific integer format when 
excessive magnitude, Infinity, or NaN precludes a faithful representation in that 
format (see Chapter 3, "Conversions in SANE," for details) 

o comparison: with predicates involving less-than or greater-than, but not 
unordered, when at least one operand is a NaN 

o any operation on a signaling NaN except the following: class and sign inquiries and, 
on some implementations, sign manipulations (Negate, Absolute Value, and 
CopySign) 

•) Note: Compilers for high-level languages may move extended-format numbers 
either by extended-to-extended conversions, which detect signaling NaNs, or by 
bit copies, which don't. Thus, some compiler-generated moves cause signaling 
NaNs to raise the invalid exception earlier than expected. 

Exception flags and halts 55 



Underflow 

The (unhalted) underflow exception is signaled when a floating-point result is both 
tiny and inexact (and therefore is perhaps significantly less accurate than it would be if 
the exponent range were unbounded). A result is considered tiny if its magnitude is 
smaller than its format's smallest positive normalized number. 

•:• Note: Different SANE engines may test for a tiny result either before or after 
rounding the result to its destination format. If the underflow halt is set, the halt 
occurs either when the result is tiny and inexact or when the result is simply tiny; see 
"Example: Gradual Underflow" in Chapter 5. For details about the 65C816 and 6502 
SANE engines, refer to Chapter 15. For details about the MC68000 SANE engine, 
refer to Chapter 23. For details about the MC68881 SANE engine, refer to 
Chapter 30 and to Motorola's MC68881 Floating-Point Coprocessor User's 
Manual. 

Divide-by-zero 

The divide-by-zero exception is signaled when a finite nonzero number is divided by 
zero. It is also signaled, in the more general case, when an operation on finite 
operands produces an exact infinite result; for example, Logb ( 0) returns -INF and 
signals divide-by-zero. (Overflow, rather than divide-by-zero, flags the production of 
an inexact infinite result.) 

Overflow 

The overflow exception is signaled when a floating-point destination format's largest 
finite number is exceeded in magnitude by what would have been the rounded 
floating-point result were the exponent range unbounded. (Invalid, rather than 
overflow, flags the production of an out-of-range value for an integral destination 
format.) 

Inexact 

The inexact exception is signaled if the rounded result of an operation is not identical 
to the mathematical (exact) result. Thus, inexact is always signaled in conjunction with 
overflow or underflow. Valid operations on Infinities are always exact and therefore 
signal no exceptions. Invalid operations on Infinities are described at the beginning of 
this section. 

56 Chapter 7: Controlling the SANE Environment 



Managing environmental settings 
Environmental settings include the rounding direction, rounding precision, 
exception flags, and halt settings. These settings are global and can be explicitly 
changed by the program. Thus, all routines inherit these settings and are capable of 
changing them. Conventionally, routines that change these settings first save them, 
then restore when finished. 

Environment = integer; 

PROCEDURE SetEnvironment(e: Environment); 
PROCEDURE GetEnvironment(var e: Environment); 
PROCEDURE ProcEntry(var e: Environment); 
PROCEDURE ProcExit(e: Environment); 

+ Note: The type definition of the Environment word can be different for different 
SANE implementations, but code that uses the procedures to access the 
environment should port across the different implementations. On a machine with 
an MC68881, the SANE environment is stored in the MC68881's control and status 
registers; see Chapter 29, "Controlling the MC68881 Environment." 

Example: setting rounding direction 

A subroutine that includes the following statements uses to-nearest rounding while not 
affecting its caller's rounding direction. 

VAR 
r: RoundDir; 

BEGIN 
r : - GetRound; 
SetRound(ToNearest); 

{local storage for rounding direction} 

{save caller' s rounding direction) 
(set to-nearest rounding} 

{ subroutine's operations here ) 

SetRound(r} 
END; 

{restore caller's rounding direction} 

Notice that if the subroutine is to be reentrant, then storage for the caller's 
environment must be local. 

SANE implementations may provide two efficient procedures for managing the 
environment as a whole: the Procedure-Entry and Procedure-Exit procedures. 

The Procedure-Entry procedure returns the current environment (for saving in local 
storage) and sets the default environment: rounding direction to-nearest, rounding 
precision extended, and exception flags and halts clear. 

Managing environmental settings 57 



Example: setting environment 

A subroutine that includes the following statements runs under the default 
environment while not affecting its caller's environment. 

VAR 
e : Environment; 

BEGIN 

ProcEntry(e); 

{ subrout ine's operations here 

SetEnvironment(e) 
END; 

{l ocal storage for environment} 

{save caller's environment and set 
default environment} 

{restore caller's environment } 

Example: setting exceptions 

The Procedure-Exit procedure facilitates writing subroutines that appear to their 
callers to be atomic operations (such as addition, square root, and others). Atomic 
operations pass extra information back to their callers by signaling exceptions; 
however, they hide internal exceptions, which may be irrelevant or misleading. The 
Procedure-Exit procedure, which takes a saved environment as argument, does the 
following: 

1 . It temporarily saves the exception flags (raised by the subroutine). 

2. It restores the environment received as argument. 

3 . It signals the temporarily saved exceptions. (Note that if enabled, halts could occur 
at this step.) 

Thus, exceptions ·signaled between the Procedure-Entry and Procedure-Exit 
procedures are hidden from the calling program unless the exceptions remain raised 
when the Procedure-Exit procedure is called. 

58 Chapter 7: Controlling the SANE Environment 



The following function signals underflow if its result is denormalized, overflow if its 
result is Infinity, and inexact always, but hides spurious exceptions occurring from 
inte rnal computations: 

FUNCTION NumFcn : extended; 

VAR 

e: 
c: 

BEGIN 
ProcEntr y(e); 

Environment; 
NumClass; 

NumFcn := Result; 
c : = ClassExtended(Result); 

{local storage for environment} 
{for class inquiry} 

(NumFcn} 
{save caller ' s environment and set 
default environment - now halts are 
disabled} 

{internal computation} 

{result to be returned} 
{class inquiry} 

SetException(Invalid +Underflow+ Overflow+ DivByZero, false); 
(cl ear exceptions} 

SetException (Inexact, true); 

I F c = Infinite THEN 
SetException(Overflow, true) 

ELSE IF c = DenormalNum THEN 
SetException(Underflow, t rue) ; 

ProcExit(e) 

END 

{signal inexact} 

(restore caller's environment, including 
any halt e nables, and then signal 
exceptions from subroutine} 

{NumFcn} ; 

Managing environmenta l settings 59 



Chapter 8 

Elementary Functions in SANE 

61 



SANE provides several basic mathematical functions, including logarithms, 
exponentials, two important financial functions, trigonometric functions, and a 
random number generator. 

All the elementary functions except the random number generator handle NaNs, 
overflow, and underflow appropriately. Some elementary functions may 
conservatively signal inexact when determining exactness would be too costly. 

Logarithmic functions 
FUNCTION Log2(x: extended): extended; 
FUNCTION Ln(x: extended): extended; 
FUNCTION Lnl(x: extended): extended; 

SANE provides three logarithmic functions: 

o Log2 (x): base-2 logarithm 

o Ln (x): base-e or natural logarithm 

o Ln 1 ( x) : base-e logarithm of 1 plus argument 

Ln 1 ( x) accurately computes ln(l + x). If the input argument xis small, then the 
computation of Lnl (x) is more accurate than the straightforward computation of 
ln(l + x) by adding x to 1 and taking the natural logarithm of the rounded sum. 

Special cases for logarithmic functions 

If x= +INF, then Log2 (x), Ln (x), and Lnl (x) return +INF. No exception is 
signaled. 

If x = 0, then Log2 ( x) and Ln ( x) return - INF and signal divide-by-zero. 
Similarly, if x = - 1, then Lnl (x) returns - INF and signals divide-by-zero. 

If x< 0, then Log2 (x) and Ln (x) return NaN and signal invalid. Similarly, 
if x< - 1, then Lnl (x) returns NaN and signals invalid. 

62 Chapter 8: Elementary Functions In SANE 



Exponential functions 
FUNCTION Exp2(x : extended) : extended; 
FUNCTION Exp(x: extended) : extended; 
FUNCTION Expl(x: extended) : e xtended; 
FUNCT I ON XpwrI(x: extended; i : integer) : extended; 
FUNCTION XpwrY(x , y: extended) : extended; 

SANE provides five exponential functions : 

o Exp2 ( x) : the base-2 exponential zx 
o Exp (x): the base-e or natural exponential ex 

o Expl (x) : the base-e exponential minus 1 

o XpwrI (x , i): the integer exponential :xf 
o XpwrY (x, y): the general exponential xY 

The function Expl (x) accurately computes ex- 1. If the input argument x is small, 
then the computation of Ex pl ( x) is more accurate than the straightfoxward 
computation of ex - 1 by exponentiation and subtraction. 

Example: using Exp 1 
Financial applications often compute a value r for internal rate of return given the 
compounded value Q defined as 

Q(r,n) = (1 + r)n 

For very large values of n, the following obvious expression for r gives errors: 

r := Exp(Ln(Q) * (l/n)) -1; 

A better expression for large n uses Expl, like this: 

r := Expl (Ln (Q) * (l/n)) ; 

Special cases for Exp2, Exp, and Expl 

If x =+INF, then Exp2 (x), Exp (x), and Expl (x) return +INF and do not signal 
an exception. 

If x = -INF, then Exp2 (x) and Exp (x) return 0 and Expl (x) returns -1. The 
functions do not signal an exception in this case. 

Exponential functions 63 



Special cases for Xpwrl 
If the integer exponent i equals 0 and xis not a NaN, then XpwrI ( x, i) returns 1. 
Note that XpwrI (x, 0) returns 1 even if xis 0 or Infinity. 

If xis +O and i is negative, then XpwrI (x, i) returns +INF and signals divide-by-zero. 

If xis --0 and i is negative, then Xpwr I ( x, i) returns +INF if i is even, or -INF if i is 
odd. The function signals divide-by-zero in either case. 

Special cases for XpwrY 
If xis +O andyis negative, then the general exponential XpwrY (x, y) returns +INF 
and signals divide-by-zero. 

If xis --0 and y is integral and negative, then XpwrY (x, y) returns +INF if y is even, 
or - INF if y is odd. 

The function signals divide-by-zero in either case. The function XpwrY (x , y) 

returns a NaN and signals invalid if any of the following is true: 

o Both x and y equal 0. 

o xis ±INF and y equals 0. 

o x equals 1 and y is ±INF. 

o xis --0 or less than 0 and y is nonintegral. 

Financial functions 
SANE provides two functions, Compound and Annuity, that can be used to solve 
various financial, or time-value-of-money, problems. 

Compound 
FUNCTION Compound(r , n : extended): extended; 

The Compound function computes 

compound(r,n) = (1 + r)n 

where r is the interest rate and n is the number (perhaps nonintegral) of periods. 
When the rate ris small, compound gives a more accurate computation than does the 
straightforward computation of (1 + r)n by addition and exponentiation. 

The Compound function is directly applicable to computation of present and future 
values: 

PV= FVx(l + r)- n= FV 
compound(r, n) 

FV= PVx (l + r)n = PVx compound(r,n) 

64 Chapter 8: Elementary Functions In SANE 



Annuity 
FUNCTION Annuity(r , n: extended) : extended; 

The Annuity function computes 
. 1-(1 + r)-n 

annuity(r,n) = when r:;e 0 
r 

where ris the interest rate and n is the number of periods. Annuity is more accurate 
than the straightforward computation of the expression above using basic arithmetic 
operations and exponentiation. The Annuity function is directly applicable to the 
computation of present and future value:3 of ordinary annuities: 

PV = P.MTx l-(1 + r)- n 
r 

= P.MT x annuity(r, n) 

FV = P.MTx (1 + r)n - 1 
r 

R
,.,,.,.. (1 )n 1-(1 + r)-n 

= i ni x + r x 
r 

= P.MT x compound(r,n) x anrtuity(r,n) 

where PMTis the amount of one periodic payment. 

Special cases for Compound 
If r= 0 and n is infinite, or if r<-1, then Compound (r, n) returns a NaN and signals 
invalid. (The Compound function is intended for financial contexts where r< - 1 is 
regarded as a mistake.) 

If r= -1 and n < 0, then Compound ( r , n) returns +INF and signals divide-by-zero. 

Special cases for Annuity 
If r = 0, then Annuity (r, n) computes the sum of 1+1+ ... +1 over n periods, and 
therefore returns the value n and signals no exceptions (the value n corresponds to the 
limit as r approaches O). 

If r<-1, then Annuity (r, n) returns a NaN and signals invalid, because the 
function is intended for financial contexts where r< -1 is regarded as a mistake. 

If r= -1 and n > 0, then Annuity ( r , n) returns +INF and signals divide-by-zero. 

Financial functions 65 



Trigonometric functions 
FUNCTION Cos(x : extended) : extended; 
FUNCTION Sin(x: extended) : extended; 
FUNCTION Tan(x: extended) : extended; 
FUNCTION ArcTan (x : extended) : extended; 

SANE provides the basic trigonometric functions: 

o Cos (x) computes the cosine of x. 

o Sin (x) computes the sine of x. 

o Tan (x ) computes the tangent of x. 

o ArcTan (x) computes the arctangent of x. 

The remaining trigonometric functions can be easily and efficiently computed from 
the elementary functions provided (see Chapter 9, "Other Elementary Functions"). 

The arguments for Cos (x), Sin (x), and Tan (x) and the results of ArcTan (x) 
are expressed in radians. The Cosine, Sine, and Tangent functions use an argument 
reduction based on the Remainder function (see Chapter 6, "Basic Operations, 
Comparisons, and Auxiliary Procedures") and pi, where pi is the nearest extended­
precision approximation of n. The Cosine, Sine, and Tangent functions are periodic 
with respect to this pi, so their periods are slightly different from their mathematical 
counterparts and diverge from their counterparts when their arguments become very 
large. Number results from ArcTan (x) lie in the interval -pi/2 to pi/2. 

Accuracy of pi 

Programmers sometimes think they are having trouble because tl1e value they're using 
for n is not accurate enough. Actually, the trouble is often caused by rounding in 
earlier steps. 

Even mough SANE's pi is not exactly equal to n, it doesn't usually cause errors, 
because other sources of error are greater. For example, when large arguments have 
errors in me last digit, the trigonometric functions magnify me errors. Even if the 
trigonometric functions were computed absolutely accurately, this problem would still 
occur. 

Special cases for Cos and Sin 

If xis infinite, then Cos (x) and Sin (x) return a NaN and signal invalid. 

66 Chapter 8: Elementary Functions In SANE 



Special cases for Tan 

If xis ±pV2, then Tan (x) returns ±INF. 

•) Note: The MC68881 coprocessor returns large magnitudes, but not ±INF, for the 
tangent of ±pV2. For more information about the MC68881, please refer to Part IV 
of this book. 

If xis infinite, then Tan ( x) returns NaN and signals invalid. 

Special cases for ArcTan 

If x =±INF, then ArcTan (x) returns ±pV2. 

Random number generator 
FUNCTION RandomX(var x : extended) : extended; 

SANE provides a pseudorandom number generator, Rand omX ( x ) . The RandomX 
function has one argument, passed by address. A sequence of pseudorandom integral 
values x in the range 

1:::; x:::; 231 -2 

can be generated by initializing an extended variable x to an integral value (the seed) 
in the above range and making repeated calls to RandomX (x); each call delivers in x 
the next random number in the sequence. 

RandomX uses the iteration formula 

x~ (P xx) mod (231 -1) 

If seed values of x are nonintegral or outside the range 

l:::;x:::;231_2 

then results are unspecified. A pseudorandom rectangular distribution on the 
interval (0,1) can be obtained by dividing the results from RandomX by 

z31 - 1 = Scalb ( 31,1) -1 

•:• Pascal note: Pascal's RandomX function returns the next random number as the 
value of the function as well as in x. 

Random number generator 67 



Chapter 9 

Other Elementary Functions 

69 



The Standard Apple Numerics Environment (SANE) provides several transcendental 
functions; from these, you can construct other high-quality functions. This chapter 
gives several examples of such functions. These robust, accurate functions are based 
on algorithms developed by Professor William Kahan of the University of California at 
Berkeley. 

Exception handling 
Unlike the SANE elementary functions, these functions do not provide complete 
handling of special cases and exceptions. The most troublesome exceptions can be 
correctly handled if you 

o begin each function with a call to the Procedure-Entry procedure 

o clear the spurious exceptions indicated in che comments 

o end each function with a call to the Procedure-Exit procedure (see Chapter 7, 
"Controlling the SANE Environment") 

Functions 
All variables in the Pascal code in the following sections are extended. The constanc 
Cis 2-33 or Scalb (- 33, 1). Cwas chosen co be nearly the largesc value for which 
1- c2 rounds to 1. 

Secant 

FUNCTION Secant(x : extended): extended; 

BEGIN 
Secant := l / Cos(x) 

END; 

CoSecant 

FUNCTION CoSecant(x : extended) : extended; 

BEGIN 
CoSecant ·= l/Sin(x) 

END; 

70 Chapter 9: Other Elementary Functions 



Co Tangent 
FUNCTION CoTangent(x: extended): extended; 

BEGIN 
CoTangent := l/Tan(x) 

END; 

ArcSin 

FUNCTION ArcSin(x: extended): extended; 

VAR 
Y: extended; 

BEGIN 
Y := Abs (x); 
IF Y>c THEN 

BEGIN 
IF Y>0.5 THEN 

BEGIN 
Y := 1- Y; 
Y := 2*Y- Y*Y 

END 
ELSE 

Y := 1- Y*Y; 
ArcSin := ArcTan(x/sqrt(Y)) 
{ spurious divide-by-zero may arise 

END 
ELSE 

ArcSin : = x 
END ; 

Arc Cos 
FUNCTION ArcCos(x: extended): extended; 

BEGIN 
ArcCos : = 2*ArcTan(sqrt((l-x)/(l+x))) 
{ spurious divide-by-zero may arise } 

END; 

Functions 71 



Constants for Sinh and Cosh 
For values of x larger than about 105, intermediate values of Sinh (x) and Co sh (x) 
overflow even though Sinh (x) and Cosh {x) do not. To prevent overflows, these 
formulas use the following constants (in addition to C, defined earlier). 

gamma := -Ln(c) / 2; 
lambda : = Ln(NextExtended(+INF, 0)); 
lambda : = (Ln(2)+lambda)-lambda; {value for ln(2) with trailing zeros} 
mu := exp(lambda)/2; {compensates for lost digits of lambda} 

Sinh 
FUNCTION Sinh(x : extended) : extended; 

VAR 
Y: extended; 

BEGIN 
Y : = Abs (x); 
IF Y<c THEN 

Sinh : = x 
ELSE 

BEGIN 
IF Y<gamma THEN 

BEGIN 
Y : = Expl {Y) ; 
Y := O. S*(Y+Y/(l+Y)) 

END 
ELSE 

Y := mu*exp{Y-lambda); 
Sinh := CopySign{x , Y) 

END; 
END; 

72 Chapte r 9: Other Elementary Functions 



Co sh 

FUNCTION Cosh(x: extended): extended; 

VAR 
Y: extended; 

BEGIN 
Y := Abs (x); 
IF Y>gamma THEN 

Cosh := Sinh(Y) 
ELSE 

BEGIN 
Y : = O. S*exp(Y); 
Cosh := Y+0.25/Y 

END; 
END; 

Tanh 
FUNCTION Tanh(x: extended) : extended; 

VAR 
Y: extended; 

BEGIN 
Y : = Abs(x) ; 
IF Y>c THEN 

BEGIN 
Y : = Expl( - 2*Y); 
Y : = -Y/ (2+Y) 

END; 
Tanh := CopySign(x, Y) 

END; 

·Func tions 73 



ArcSinh 

FUNCTION ArcSinh(x: extended): extended; 

VAR 
Y: extended; 

BEGIN 
Y : = Abs (x); 
IF Y>c THEN Y := Lnl(Y+Y/(l/Y+sqrt(l+l / (Y*Y)))); 
{ spurious underfl ow may arise } 
ArcSinh := CopySign(x , Y) 

END ; 

ArcCosh 

FUNCTI ON ArcCosh(x: extended): extended; 

VAR 
Y: extended; 

BEGIN 
Y := sqrt(x- 1); 
ArcCosh ·= Lnl(Y*(Y+sqrt(x+l))) 

END; 

Arc Tanh 

FUNCTION ArcTanh(x: extended): extended; 

VAR 
Y: extended; 

BEGIN 
Y : =Abs(x) ; 
IF Y>c THEN Y : = 0 . 5*Lnl(2* (Y/ (l - Y))); 
ArcTanh : = CopySign(x , Y) 

END; 

7 4 Chapter 9: Other Elementary Functions 



Chapter 10 

More Examples Using SANE 

75 



Like the examples in Chapter 1, the examples in this chapter illustrate the ways in 
which SANE arithmetic makes programming easier. 

Continued fraction 
Consider a typical continued fraction cj(x). 

cj(x)=4- 3 ---
x-2- 1 ----

x- 7 + 10 ---
x - 2 - 2 

x-3 

An algebraically equivalent expression is rj(x). 

rj(x) = 622 - x (751 - x (324 - x (59 - 4x))) 
112-x(151 -x(72-x(14- x))) 

Both expressions represent the same rational function, one whose graph is smooth 
and unexceptional, as shown in Figure 10-1. 

-5 0 5 10 

Figure 10-1 
Graph of continued fraction cf (x) = rt (x) 

Although the two functions rj(x) and cj(x) are equal, they are not computationally 
equivalent. For instance, consider rj(x) at the following values of x: 

o x= 1, rj(l) = 7 

D X = 2, rj(2) = 4 

D x= 3, rj(3) = 8/ 5 

D x= 4, rj(4) = 5/ 2 

76 Chapter 10: More Examples Using SANE 



Whereas rj(x) is perfectly well behaved, those values of x lead to division by zero 
w hen computing cj(x) and cause many computers to stop. SANE arithmetic, where 
division by zero produces an Infinity, has no difficulty in computing cj(x) for those 
values. 

On the other hand, simply computing rj(x) instead of cj(x) can also cause problems. 
If the absolute value of xis so big that x 4 causes an overflow, then cj(x) approaches 
c/(oo) = 4 but computing rj(x) encounters (overflow)/ (overflow), which yields 
something else. SANE returns NaN for such cases; some other machines get 
(maximum value)/ (maximum value) = 1. Also, at arguments x between 1.6 and 2.4 the 
formula rj(x) suffers from round-off much more than cj(x) does. For those reasons, 
computing cj(x) is preferable to computing rj(x) if division by zero works the way it 
does in SANE; that is, if it produces Infinity instead of stopping computation. 

In general, division by zero is an exceptional event not merely because it is rare, but 
because different applications require different consequences. If you are not satisfied 
with the consequences supplied by default in SANE, you can choose other 
consequences by making the program test for NaNs and Infinities (or for the flags that 
signal their creation). 

Ratl1er than sprinkle tests throughout the program in an attempt to keep exceptions 
from occurring, you may prefer to put one or two tests near the end of the code to 
detect the (rare) occurrence of an exception and modify the results appropriately. 
That is more economical than testing every divisor for zero when zero divisors are 
rare. 

Area of a triangle 
Here is a familiar and straightforward task that fails when subtraction is aberrant: 
Compute the area A(x,y,z) of a triangle given the lengths x, y, zof its sides. The formula 
given here performs this calculation almost as accurately as floating-point 
multiplication, division, and square root are performed by the computer it runs on, 
provided the computer doesn't drop digits prematurely during subtraction. The 
formula works correctly, and provably so, on a wide range of machines, including all 
implementations of SANE. 

Heron's formula 

The classical formula, attributed to Heron of Alexandria, is 

A(x,y,z) = Ys(s - x)(s - y)(s - z) 

where s = (x + y + z)/2. 

Area of a triangle 77 



For needle-shaped triangles, that formula gives incorrect results on computers even 
when every arithmetic operation is correctly rounded. For example, Table 12-1 
shows an extreme case with results rounded to five decimal digits. With the values 
shown, rounding (x + (y + z))/ 2 must give either 100.01 or 100.02. Substituting those 
values for sin Heron's formula yields either 0.0 or 1.5813 instead of the correct value 
1.000025. 

Evidently, Heron's formula would be a very bad way to calculate ratios of areas of 
nearly congruent needle-shaped triangles. 

Table 10-1 
Area using Heron· s formula 

x 
y 
z 
(x + (y + z))/ 2 
A 

Correct 

100.01 
99.995 
0.025 
100.015 
1.000025 

Improved formula 

Rounding 
downward 

100.01 
99.995 
0.025 
100.01 
0.0000 

Rounding 
upward 

100.01 
99.995 
0.025 
100.02 
1.5813 

A good procedure, numerically stable on machines that don't truncate prematurely 
during subtraction, is the following: 

1 . Sort x, y, z, so that x ~ y ~ z. 

2 . Test for z ~ x - y to see whether the triangle exists. 

3 . Compute A by the formula 

A:= ..../((x + (y + z))(z-(x- y))(z + (x- y))(x + (y- z)))/4 

Warning 

This formula works correctly only if you don't remove parentheses. 

The success of this formula depends upon the following easily proved theorem. 

Theorem: If p and q are represented exactly in the same conventional floating-point 
format, and if 1/ 2 ~pl q ~ 2, then p- q too is representable exactly in the same format 
(unless p - q suffers underflow, something that can't happen in IEEE arithmetic). 

The theorem merely confirms that subtraction is exact when massive cancellation 
occurs. That is why each factor inside the square-root expression is computed 
correctly to within a unit or two in its last digit kept, and A is not much worse, on 
computers that subtract the way SANE does. On machines that flush tiny results to 
zero, this formula for A fails because ( p- q) can underflow. 

78 Chapter 10: More Examples Using SANE 



Part II 

The 65C816 and 6502 
Assembly-Language 
SANE Engines 

The software packages described in Part II of this manual provide the features of the 
Standard Apple Numerics Environment (SANE) to assembly-language programmers 
using Apple's 65C816-based and 6502-based systems. SANE-described in detail in 
Part I of this manual-fully supports the IEEE Standard 754 for binary floating-point 
arithmetic, and augments the Standard to provide greater utility for applications in 
accounting, finance, science, and engineering. The IEEE Standard and SANE offer a 
combination of quality, predictability, and portability heretofore unknown for 
numerical software. 

Part II describes two different SANE engines, one for the 65C816 microprocessor and 
one for the 6502. The emphasis is on the newer 65C816 version; in each instance where 
the 6502 version is different, a 6502 note makes the difference explicit. 

•:• 6502 note: .Notes like this contain information specific to the 6502 SANE engine. 

Functionally equivalent assembly-language SANE engines are available for Apple's 
68000-based systems and for Apple's 68020-based systems with the 68881 floating­
point coprocessor. Thus, numerical algorithms coded in assembly language for an 
Apple 65C816-based or 6502-based system can be readily recoded for an Apple 68000-
based or 68020-based system. Apple has defined macros for accessing the different 
engines to make it easier to port algorithms from one system to another. Part ID of this 
manual describes the 68000 SANE engine; Part IV describes the SANE engine for the 
68020 with the 68881 coprocessor. 

Part IT of this manual describes the use of the 65C816 and 6502 assembly-language 
SANE engines, but does not describe SANE itself. For example, Part II explains how to 
call the SANE Remainder function from assembly language but does not discuss what 
this function does. See Part I for information about the semantics of SA!'\ffi. 

•:• 6502 note: See Appendix B for information about obtaining the 6502 assernbly­
language SANE engine. 

79 



Chapter 11 

65C8 l 6 SANE Basics 
and Data Types 

81 



Programs using either 65C816-based or 6502-based SANE engines use the same 
convention for making most calls: first push the parameters on the stack, then invoke 
the macro for the desired operation. For example, a typical assembly-language call to 
the 65C816 SANE engine looks like this: 

PUSHLONG A ADR 

PUSHLONG B ADR 

FSUBS 

push address of (single-format) A 
push address of (extended-format) B 

Subtract with source operand in 

single format 

•!• 6502 note: The same call to the 6502 SANE engine looks like this: 

PUSH 

PUSH 

FSUBS 

A ADR 

B ADR 

push address of (single-format) A 
push address of (extended-format) B 
Subtract with source operand in 
single format 

This example is typical of SANE engine calls, most of which pass operands by pushing 
the addresses of the operands onto the stack prior to invoking the operation. The form 
of the operation in the example (B f- B- A, where A is a numeric type and Bis 

extended) is similar to the forms for most SANE operations. 

In both examples, FSUBS is an assembly-language macro defined in the macro file 
provided with the development software for the microprocessor you are using, either 
the 65C816 or the 6502. The macros expand into instructions that specify the 
operation and transfer control to the SA!'\!E engine; see the section "Calling Sequence" 
later in this chapter. 

•!• Note about macros: The macro names used in this and succeeding chapters are 
those provided with the Apple IIGs® Programmer's Workshop (APW). For more 
information about availability of SANE software and macros, please refer to 
Appendix B. 

PUSHLONG is the 65C816 assembly-language macro used for pushing a 4-byce address 
onto the stack. 

•!• 6502 note: PUSH is the 6502 assembly-language macro used for pushing a 2-byte 
address onto the stack. It is in the macro file provided with the 6502 SANE software. 

The SA!'\!E engine for the 65C816 occupies three sections of code named FP816, 
Elems816, and DecStr816. Arithmetic operations, comparisons, conversions, 
environmental control, and halt control are in FP816. The elementary functions are in 
Elems816 and the SANE scanners and formatter are in DecStr816. Chapters 12 through 
15 describe the functions of FP816. Chapters 16 and 17 describe the functions of 
Elems816 and DecStr816, respectively. 

•!• 6502 note: In the 6502 SANE engine, these routines are in three files named FP6502, 
Elems6502, and DecStr6502. Access to all three is similar; details are given with the 
corresponding routines for the 65C816 engine. 

82 Chapter l l: 65C816 SANE Basics and Data Types 



Operation forms 
The example at the beginning of the chapter illustrates the form of a SAl'\lE binary 
operation. Forms for other SANE operations are described in this section. Examples 
and further details are given in subsequent chapters. 

Arithmetic and auxiliary operations 

Most numeric operations are either una1y (one operand), like square root and 
negation, or binary (two operands), like addition and multiplication. 

The assembly-language SANE engines provide unary operations in a one-address 
form: 

DST~ <op> DST Example: B ~ sqrt(B) 

The operation <op> is applied to (or operates on) the operand DST and the result is 
returned to DST, overwriting the previous value. DSTstands for destination operand. 

The SANE engines provide binary operations in a two-address form: 

DST~ DST <op> SRC Example: B ~ Bl A 

The operation <op> is applied to the operands DSTand SRCand the result is returned 
to DST, overwriting the previous value . SRCstands for source operand. 

To store the result of an operation (unary or bina1y), the location of the operand DST 
must be known to the SANE engine, so DST is passed by address. In general, all 
operands, both source and destination, are passed by address. The only exceptions 
are operands in the 16-bit integer format, which are passed by value for certain 
operations. 

For most operations the storage format for a source operand (SRC) can be the 16-bit 
integer format, the 32-bit longint (long integer) format, or one of the SANE numeric 
formats (single, double, extended, or comp). The destination operand (DST) must 
be in the extended format. 

The Nextafter functions have the two-address form: 

DST~ DST <op> SRC 

They differ from the conventions above in that SRCand DSTare both single, both 
double, or both extended. 

Operation forms 83 



Conversions 

The 65C816 and 6502 SANE engines provide conversions between the extended format 
and other SANE formats, between extended and integers, and between extended and 
decimal records. Conversions between bina1y formats (single, double, extended, 
comp, and integers) and conversions from decimal to binary have the form 

DSTt- SRC 

Conversions from binary to decimal have the form 

DST t- SRC according to SRC2 

where SRC2 is a decform record specifying the decimal format for the conversion of 
SRCto DST. 

Comparisons 

Comparisons have the form 

<relation> t- SRC compared with DST 

where DSTis extended and SRCis single, double, comp, extended, integer, or longint 
and where <relation> is less, equal, greater, or unordered according as 

SRC <relation> DST 

Here the result <relation> is returned in the CPU's registers, rather than in a memory 
location. The details are given in the section "Comparisons" in Chapter 12, "65C816 
SANE Arithmetic and Auxilia1y Operations, Comparisons, and Inquiries." 

Other operations 

The 65C816 and 6502 SANE engines provide inquiries for determining the class and 
sign of an operand and operations for accessing the floating-point Environment word 
and the halt address. Forms for these operations va1y and are given as the operations 
are introduced. 

84 Chapter 11 : 65C8 l 6 SANE Basics and Data Types 



External access 
On Apple 65C816-based computers such as the Apple IIGS, the SANE engine is part of 
the Apple IIGS Toolbox and programs invoke it through the Tool Dispatcher. 

•) Note: Your program must start certain tool sets before initializing the SANE Tool 
Set. Those tool sets are the Tool Locator, the Memory Manager, and the 
Miscellaneous Tool Set. For information about those tool sets, refer to Chapter 2 of 
the Apple JIGS Toolbox Reference. 

Invocations to the 65C816 SANE engine end with the following instructions: 

LOX tToolSetNum + FuncNum*256 

JSL $El0000 

The value loaded into the X register contains both the tool set number for SANE and 
the SANE function number. The function number specifies a SANE function, which 
corresponds to one of the three operational divisions of the SANE engine: FP816, 
Elems816, and DecStr816. 

•:• Note: The tool set number for 65C816 SANE is $0A; the function numbers for the 
three operational divisions are $09 for FP816, $0A for Elems816, and $OB for 
DecStr816. 

•:• 6502 note: Each division of the 6502 SANE engine is accessed by a JSR instruction to 
an entry point in memory. The entry points are labeled FP6502, Elems6502, and 
DecStr6502. 

A program that uses the SANE engine should initialize the SANE Environment word. If 
the program handles floating-point exceptions, it must call SANE to enable the 
appropriate halt and set the halt vector. See Chapter 14, "Controlling the 65C816 
SANE Environment," and Chapter 15, "Halts in 65C816 SANE," for information about 
the Environment word and the halt vector. 

A program that uses the 65C816 SANE engine must provide a 256-byte direct page. To 
do this, the program first calls the Memory Manager to reserve the space and obtain 
its address. Then the program calls the routine SANEStartUp and passes it the 
address of the direct-page space. (The call to SANEStartUp is made through the 
Tool Dispatcher; the function number is $02.) The SANE engine requires that parts of 
the direct page remain unchanged between calls, so the program should not store 
anything in the space. 

•:• 6502 note: FP6502 uses 52 bytes of the zero page for temporary storage. FP6502 
does not preserve the pre-call contents of those 52 bytes. Note that FP6502's use of 
the zero page is temporary, so the calling program need not preserve the contents 
of those 52 bytes between calls to FP6502. DecStr6502 uses at most 30 bytes of the 
same part of zero page; Elems6502 uses none. 

External access 85 



The A, X, and Y registers and CPU status flags are not preserved by the SANE engine. 
All FP816 operations return 0 in the A register and set the carry bit to 0. Elems816 
returns through FP816, so it also returns 0 in A and carry, as does DecStr816. FP816 
operations return information in the X and Y registers and in the status flags. 
Operations by Elems816 and DecStr816 leave the contents of the X and Y registers 
unspecified. 

•) 6502 note: Calls to the 6502 SANE engine leave the contents of the A register 
unspecified. 

Each time it is called, the SANE engine removes its input arguments from the stack and 
returns no results on the stack. Temporary stack growth during calls to FP816 and 
Elems816 does not exceed 50 bytes; calls to DecStr816 do not add to the stack size. On 
exit, decimal mode is clear. 

•!• 6502 note: Elems6502 uses at most 50 bytes of the stack. FP6502 uses at most 20 
bytes of the stack. DecStr6502 requires no stack growth. 

Calling sequence 
A typical call to the 65C816 SANE engine consists of a sequence of PUSHLONG 

macros to push the operands and a PUSHWORD macro for the opword, followed by 
the invocation of the Tool Dispatcher at location $E10000. PUSHLONG pushes a 
4-byte address onto the stack: first the high word, then the low word. 

PUSHLONG <source address > 

PUSHLONG <destination address> 

PUSHWORD <opword> 

LOX <SANE toolset number> + 256*<function number> 

JSL $El0000 

•!• Operand note: For most SANE operations, the source operand is passed by address; 
for a few operations, the source operand is passed by value. 

•!• Macro note: Macros such as PUSHLONG and PUSHWORD are normally part of the 
standard macros provided in an assembly-language development system. 

Other calls may have more or fewer operands to push onto the stack. All source 
operands are pushed before the destination operand, as shown in Figures 11-1and11-2. 

86 Chapter 11: 65C8 l 6 SANE Basics and Data Types 



Offset 

Previous contents 
SOD 1-------------l 

SRC2 address Long 

$09 1-------------l 

SRC address Long 

$05 1------------l 

DST address Long 

$01 
SP --- ~----------' 

Figure 11 - 1 
SANE operands on the 65C816 stack 

Offset 

$07 

$05 

$03 

$01 
SP--

1--

1--

t-

t-

Figure 11-2 

Previous contents ____, 

SRC2 address ____, 

SRCaddress ___, 

DST address ____, 

SANE operands on the 6502 stack 

Word 

Word 

Word 

•:• 6502 note: A typical call to the 6502 SAl"ffi engine consists of a similar sequence of 
6502 assembly-language instructions and macros, where PUSH pushes a 2-byte 
address onto the stack: first the high byte, then the low byte. In this case, PUSH is a 
macro in the SANE library. There is no Tool Dispatcher; instead, the call passes 
control directly to the entry point of one of the three operational divisions: FP6502, 
Elems6502, and DecStr6502. 

PUSH <source address>l<sour ce va l ue > 
PUSH <de s t i nat i on addr ess> 
PUSH <opword> 
JSR <entry point> 

Calling sequence 87 



The opword 

The opword contains an operand format code in its high-order byte and an operation 
code in its low-order byte. 

The operand format code specifies the format (extended, double, single, integer, 
longint, or comp) of one of the operands. The operand format code typically gives 
the format for the source operand (SRC). At most one operand format need be 
specified, because other operands are always extended (or, in the case of Nextafter, 
because both operands are of the same format). 

The operation code specifies the operation to be performed by the SANE engine. 

Operation macro names, opwords, and operand format codes are listed in 
Appendix D, "65C816 and 6502 SANE Quick Reference Guide." 

Example 

The format code for single is $0200. The operation code for divide is $0006. Hence, 
the opword $0206 indicates divide by a value of type single. 

Assembly-language macros 
Assembly-language development systems such as APW provide mnemonic macros 
that invoke the Tool Dispatcher with the correct function number for each SANE 
operation. Each such macro combines a PUSHWORD instruction (with the 
appropriate opword) and a Tool Dispatcher call. For the macro names, see 
AppendixD. 

Using the macros, each call to the SANE engine consists of a PUSHLONG for the 
address of each operand followed by a macro whose name is a mnemonic for the 
operation and the operand type. 

•:+ 6502 note: The 6502 SANE macros (see Appendix D) combine PUSH <opword> 
and JSR FP6502 to provide mnemonics for calls to the 6502 SANE engine. 

88 Chapter 11: 65C8 l 6 SANE Basics and Data Types 



Example 1 

Add a single-format operand A to an extended-format operand B. 

PUSHLONG A ADR 

PUSHLONG B ADR 

FADDS 

push address of A 

push address of B 

Floating- point ADD Single : B <-- B + A 

•!• 6502 note: Using macros, calls to the 6502 SANE engine look much the same as 
calls to the 65C816 SANE engine. Example 1 looks like this: 

Example 2 

PUSH 

PUSH 

FADDS 

A ADR 

B ADR 

push address of A 

push address of B 

Floating-point ADD Single: B <-- B +A 

Compute (B ~ sqrt(A)), where A and B are extended. The value of A should be 
preserved. 

Example3 

PUSHLONG A ADR 

PUSHLONG B ADR 

FX2X 

PUSHLONG B ADR 

FSQRTX 

push address of A 

push address of B 

Floating- point extended to extended: 

B <-- A 
push address of B 

Floating SQuare RooT extended: 

B <-- sqrt(B) 

Compute (C~ A- B ), where A, B, and Care in the double format. Because 
destinations are extended, a temporary extended variable Tis required. 

PUSHLONG A ADR 

PUSHLONG T ADR 

FD2X 

PUSHLONG B_ADR 

PUSHLONG T ADR 

FSUBD 

PUSHLONG T ADR 

PUSHLONG C ADR 

FX2D 

push address of A 

push address of 10 byte temporary 

Fl - pt convert Double to extended : 

T <-- A 
push address of B 

push address of temporary 

Fl - pt SUBtract Double: 

T <-- T - B 

push address of temporary 

push address of c 

Fl-pt convert extended to Double : 

C <-- T 

Colllng sequence 89 



65C816 SANE data types 
Both the 65C816 SANE engine and the 6502 SANE engine fully support the SANE data 
types and the integer types shown in Table 11-1. 

Table 11-1 
65C816 SANE data types 

Name 

Single 
Double 
Comp 
Extended 
Integer 
Longint 

Description 

32-bit floating-point 
64-bit floating-point 
64-bit integer 
80-bit floating-point 
16-bit two's-complement integer 
32-bit two's-complement integer 

Both the 65C816 and the 6502 engines use the convention that least significant bytes 
are stored in low memory. For example, consider a variable of type single as shown in 
Table 11-2. 

Table 11-2 
Bits in a variable of type single 

Name 

s 
eo ... e7 
fo ... fi2 

Description 

Sign 
Exponent (msb ... lsb) 
Significand fraction (msb ... lsb) 

Figure 11-3 shows the logical structure of this 4-byte variable. If this variable is assigned 
the address $1000, its bits are distributed to the bytes in locations $1000 to $1003 as 
shown in the figure . The SANE engines for the 6502 and the 65C816 store the other 
SANE formats in memory in a similar fashion. Please refer to Chapter 2, "SANE Data 
Types," for the specifications of those data formats. 

Order of the bits in the variable 

msb lsb msb 

$1003 $1002 $1001 $1000 

Locations of the bytes in memory 

Figure 11-3 
Memory format of a variable of type single 

90 Chapter 11 : 65C8 l 6 SANE Basics and Data Types 

lsb 



Chapter 12 

65C816 SANE Arithmetic 
and Auxiliary Operations, 

· Comparisons, and Inquiries 

91 



The operations covered in this chapter follow the access schemes for assembly­
language macros described in Chapter 11, "65C816 SANE Basics and Dara Types." 

Unary operations follow the one-address form: 

DST ~ <op> DST 

In the 65C816 SANE engine, they use the calling sequence 

PUSHLONG <DST address> 

<callname> 

•:. 6502 note: In the 6502 SANE engine, unary operations use the calling sequence 

PUSH <DST address> 

<callname> 

Binary operations follow the two-address form: 

DST ~ DST <op> SRC 

In the 65C816 SANE engine, there are two calling sequences for binary operations. The 
following one is for operations with source operands passed by address: 

PUSHLONG <SRC address> 

PUSHLONG <DST address> 
<call name> 

The 65C816 SANE engine uses the following calling sequence for operations with 
source operands passed by value: 

PUSHWORD <SRC value> 

PUSHLONG <DST address> 

<ca llname> 

•!• 6502 note: In the 6502 SAJ\TE engine, binary operations use the calling sequence 

PUSH <S RC address> \<SRC value> 

PUSH <DST address> 

<callname> 

The destination operand (DST) for these operations is passed by address and is 
usually in the extended format Generally, the source operand (SRC) is passed by 
address and may be single, double, comp, extended, (16-bit) integer, or (32-bit) 
longint Some operations are distinguished by passing the source operand by value, 
by requiring some specific type for SRC, by using a nonextended destination, or by 
returning auxiliary information in the X and Y registers and in the processor status 
bits. In this section, operations so distinguished are noted. The examples employ the 
macro names listed in Appendix D, "65C816 and 6502 SANE Quick Reference Guide." 

•!• 6502 note: Unless specifically for the 6502, the examples that follow are written for 
the 65C816. Calls to the 6502 SANE engine are similar, but the macro they use for 
pushing 2-byce addresses onto the stack is named PUSH instead of PUSHLONG. 

92 Chapter 12: 65C8 l 6 Arithmetic and Auxiliary Operations, Comparisons, Inquiries 



Add, Subtract, Multiply, and Divide 
These are binary operations and follow the two-address form. 

Example 
B f- BI A, where A is double and Bis extended. 

PUSHLONG A ADR 
PUSHLONG B ADR 
FOIVD 

Square Root 

push address of A 
push address of B 
divide with source operand in 
double format 

Square Root is a unary operation and follows the one-address form. 

Example 
B f- sqrt(B), where Bis extended. 

PUSHLONG B ADR 
FSQRTX 

push address of B 
square root (operand is always 

extended format) 

Round-to-Integer and Truncate-to-Integer 
These are unary operations and follow the one-address form. 

The Round-to-Integer operation FRINTX rounds (according to the current rounding 
direction) to an integral value in the extended format. The Truncate-co-Integer 
operation FTINTX rounds coward zero (regardless of the current rounding direction) 
to an integral value in the extended format. The calling sequence is the usual one for 
unary operations, illustrated in the previous section for Square Root. 

' 

Round-to-Integer and Truncate-to-Integer 93 



Remainder 
This is a binary operation and follows the two-address form. 

Remainder rerurns auxiliary information. The seven low-order bits of the magnirude 
of the integer quotient n are rerurned in the X register. The N starus bit is set if and only 
if n is negative. The Y register receives $80 if n is negative and 0 otherwise. 

Example 
B f- Brem A, where A is single and Bis extended. 

PUSHLONG A ADR 

PUSHLONG B ADR 

FREMS 

Logb and Scalb 

push address of A 

push address of B 

remainder with source operand i n 

single format 

Logb is a unary operation and follows the one-address form. 

Scalb is a binary operation and follows the two-address form. Its form is unusual in that 
its source operand is a 16-bit integer passed by value. 

Example 
B f- B x zl30, where Bis extended. 

PUSHWORD #$0082 

PUSHLONG B ADR 

FSCALBX 

(82 hex = 130 decimal) 

push address of B 

scalb 

•!• 6502 note: In the 6502 SANE engine, calls Scalb and Logb push the source 
onto the stack a byte at a time and use a macro named PUSH in place of 
PUSHLONG. The code looks like this: 

LDA ito push high byte 

PHA of source 

LDA #82 push low byte of source 
PHA (82 hex = 130 decimal) 

PUSH B ADR push address of B 

FSCALBX scalb 

94 Chapter 12: 65C816 Arithmetic and Auxiliary Operations, Comparisons, Inquiries 



Negate, Absolute Value, and CopySign 
Negate and Absolute Value are unary operations and follow the one-address form. 
CopySign is a binary operation and follows the two-address form. The SANE engine 
treats these operations as nonarithmetic in the sense that they raise no exceptions: 
even signaling NaNs do not signal invalid. 

•!• Note: The order of the operands in the SANE CopySign function is reversed from 
that suggested in IEEE Standard 754. 

Example 
Copy the sign of a comp number A into the sign of an extended number B. 

PUSHLONG A ADR 
PUSHLONG B ADR 

FCPYSGNC 

Nextafter 

push address of A 
push address of B 

copy-s i gn with source operand in 
comp format 

The Nextafter operations are binary and use the two-address form; they require both 
source and destination operands to be of the same floating-point type (single, double, 
or extended). 

Example 
B f- Nextafter(B) in the direction of A, where A and Bare double (so next-after 
means next-double-after) . 

PUSHLONG A ADR 

PUSHLONG B ADR 

FNEXTD 

push address of A 
push address of B 

next-after in double format 

Nextafter 95 



Comparisons 
The SANE engine provides two comparison operations: FCPX (which signals invalid 
if its operands compare unordered) and FCMP (which does not). Each compares a 
source operand (which may be single, double, comp, extended, integer, or longint) 
with a destination operand (which must be extended). The result of a comparison is 
the relation (less, greater, equal, or unordered) for which 

SRC <relation> DST 

is true. The result is delivered in the Z, N, and V status bits and redundantly in the low 
bytes of the X and Y registers, as shown in Table 12-1. Note that the X and Y registers 
hold the same low byte value unless the relation is equal: this is a by-product of an 
implementation optimization. 

Table 12-1 
Results of comparisons 

Status bit 

Result z N v X register• Y register• 

Greater 0 0 1 $40 $40 
Less 0 1 0 $80 $80 
Equal 1 0 0 $02 $00 
Unordered 0 0 0 $01 $01 

• 1-byte value, in the low byte of register on the 65C816 

The IEEE Standard specifies that a relational operator that involves less or greater but 
not unordered should signal invalid if the operands are unordered. These relational 
operators are implemented by choosing the comparison that signals invalid 
appropriately. 

•!• Note: The comparison macros are listed in Appendix D, "65C816 and 6502 SANE 
Quick Reference Guide." 

96 Chapter 12: 65C8 l 6 Arithmetic and Auxiliary Operations. Comparisons. Inquiries 



Example 1 
Test A <a B, where A is single and Bis extended; if true, branch to LOC; signal if 
unordered. 

PUSHLONG A ADR 
PUSHLONG B ADR 
FCPXS 

FBLE LOC 

Example 2 

push addres s of A 
push address of B 
compare using source of type single, 
signal invalid if unordered 

branch if A <= B 

Test A not-equal B, where A is double and Bis extended; if true, branch to LOC. (Note 
that not-equal is equivalent to less, greater, or unordered, and invalid should not be 
signaled on unordered.) 

PUSH LONG A ADR push address of A 
PUSHLONG B ADR push address of B 
FCMPD compare using source of type double, 

do not signal invalid if unordered 
FBNE LOC branch if A not-equal B 

Inquiries 
The classify operation provides both class and sign inquiries. This operation takes one 
source operand (single, double, extended, comp, integer, or longint), which is 
passed by address. 

The class of the operand is returned in the low byte of the X register, as shown in 
Table 12-2. 

Table 12-2 
Operand classes 

Hexadecimal 
value 

$FC 
$FD 
$FE 
$FF 
$00 
$01 

Two's-complement 
value 

-4 
-3 
-2 
-1 
0 
1 

Class 

Signaling NaN 
Quiet NaN 
Infinity 
Zero 
Normalized 
Denormalized 

The N status bit receives the sign bit of the operand. Redundantly, the low byte of the 
Y register is set to $80 if the sign bit is set and $00 otherwise. 

Inquiries 97 



Example 
Branch to LOC if the single-format value A is an Infinity. 

PUSHLONG 

FCLASSS 
FBINF LOC 

A ADR push address of A 

classify single 
branch on infinite to LOC 

.:. Note about macros: Like the other macros in Part II, the floating-point branch­
control macros FBNE, FBLE, and FBI NF are provided with APW. 

98 Chapter 12: 65C816 Arithmetic and Auxiliary Operations, Comparisons, Inquiries 



Chapter 13 

Conversions in 65C816 SANE 

99 



This chapter discusses conversions between binary formats and conversions between 
binary and decimal formats. Conversions between decimal formats, provided by 
DecStr816 and DecStr6502, are discussed in Chapter 17, "65C816 SANE Scanners and 
Formatter." 

•) 6502 note: All the examples in this chapter are written for the 65C816. Calls to the 
6502 SANE engine are similar, but the macro they use for pushing 2-byte addresses 
onto the stack is named PUSH instead of PUSHLONG. 

Conversions between binary formats 
The SANE engine provides conversions between the extended type and the SANE types 
single, double, and comp, as well as the 16- and 32-bit integer types. 

Conversions to extended 
The SANE engine provides conversions of a source with format single, double, comp. 
extended, integer, or longint to a destination in extended format, as shown in 
Table 13-1. 

Table 13-1 
Conversions to extended format 

Function 
name Operation 

FS2X extended +--- single 
FD2X extended +--- double 
FC2X extended +--- comp 
FX2X extended +--- extended 
FI2X extended +--- integer 
FL2X extended +--- longint 

All operands, even integer ones, are passed by address. The following example 
illustrates the calling sequence. 

Example 

Convert A to B, where A is in comp format and Bis in extended format. 

PUSHLONG 
PUSHLONG 
FC2X 

A ADR 
B ADR 

push address of A 

push address of B 
convert comp to extended 

100 Chapter 13: Conversions In 65C816 SANE 



Conversions from extended 
The SANE engine provides conversions of an extended-format source to a destination 
of format single, double, comp, extended, integer, or longint, as shown in 
Table 13-2. 

Table 13-2 
Conversions from extended format 

Function 
name Operation 

FX2S single f- extended 
FX2D double f- extended 
FX2C comp f- extended 
FX2X extended f- extended 
FX2I integer f- extended 
FX2L longint f- extended 

Note that conversion to a narrower format may alter values. Contrary to the usual 
scheme, the destination for these conversions need not be of type extended. All 
operands are passed by address. The following example illustrates the calling 
sequence. 

Example 

Convert A to B, where A is in extended format and Bis double. 

push address of A 

push address of B 
PUSHLONG A ADR 
PUSHLONG B ADR 

FX2D convert extended to double 

Binary-decimal conversions 
The SANE engine provides conversions between the binary types (single, double, 
comp, extended, integer, and longint) and the decimal record type. 

Decimal records and decform records (used to specify the form of decimal 
representations) are described in Chapter 3, "Conversions in SANE." The maximum 
length of the sig digit-string of a decimal record is 28. 

•!• Note: The value 28 is specific to the 6502 and 65C816 implementations; algorithms 
you intend to port to other SA.NE implementations should use no more than 18 
digits in sig. 

Binary-decimal conversions 101 



The values of style fields of decform records and of sgn fields of decimal 
records are stored as 16-bit integers. The integer fields of decimal and decform 
records conform to the 65C816 and 6502 convention of storing the least significant 
byte at the lowest address. 

Binary to decimal 
The calling sequence for a conversion from a binary format to a decimal record passes 
the address of a decform record, the address of a binary source operand, and the 
address of a decimal-record destination. 

Example 

Convert a comp-format value A to a decimal record D according to the decform 
record F. 

PUSHLONG F ADR 

PUSHLONG A ADR 
PUSHLONG D ADR 

FC2DEC 

Fixed-format overflow 

push address of F 
push address of A 

push address of D 
convert comp to decimal 

If a number is too large for a chosen fixed style, the SANE engine returns the 28 most 
significant digits of the number in the sig field of the decimal record and sets the 
exp field so that the decimal record contains a valid floating-point representation of 
the number. (SANE implementations for the MC68000 simply set sig to the string 
I ? I.) 

Decimal to binary 
The calling sequence for a conversion from decimal to binary passes the address of a 
decimal-record source operand and the address of a binary destination operand. 

Example 

Convert the decimal record D to a double-format value B . 

PUSHLONG D ADR 
PUSHLONG B ADR 

FDEC2D 

push address of D 
push address of B 
convert decimal to double 

102 Chapter 13: Conversions in 65C816 SANE 



Techniques for maximum accuracy 

The following technique applies to the 65C816 and 6502 SAl'\TE engines; other SANE 
implementations require other techniques. 

If you are writing a parser and must handle a number with more than 28 significant 
digits, follow these rules: 

1 . Place the implicit decimal point to the right of the 28 most significant digits. 

2 . If any of the discarded digits to the right of the implicit decimal point is nonzero, 
then 

o signal the inexact exception 

o if the number is positive and the rounding direction is upward, or if the number 
is negative and the rounding direction is downward, then replace the last (28th) 
ASCII character with its successor to guarantee a correctly rounded result. (The 
successor of ' 9 ' is 1 

: 
1 
.) 

Binary-decimal conversions 103 



Chapter 14 

Controlling the 65C8 l 6 
SANE Environment 

105 



The Environment word 
The floating-point environment is encoded in the 16-bit integer format as shown in 
Figure 14-1. Table 14-1 gives the hexadecimal value of each of the environment flags. 
Rounding direction and precision are stored as 2-bit encoded values; exception and 
halt-enabled flags are set as individual bits. Note that the default environment is 
represented by the integer value zero. 

Rounding direction 
(see Table 14-l) 

Exception flags 

Rounding precision 
(see Table 14-1) 

Halts enabled 

Figure 14· 1 

Inexact 

Divide-by-zero 

Overflow 

Underflow 

Invalid 

Inexact 

Divide-by-zero 

Overflow 

Underflow 

invalid 

msb lsb 

I 1s I 14I13I12I11I10191 s I 7 161 s I 4 I 31 2 I 1 I o I 
J 

I 

L,J 

The Environment word for the 6502 and 65C8 l 6 

l 06 Chapter 14: Controlling the 65C8 l 6 SANE Environment 



Table 14-1 
Bits In the Environme nt word for the 6502 and 65C8 l 6 

Group name Mask bits Mask value Description 

Rounding direction 15 14 
(Bit group $COOO) 0 0 $0000 To-nearest 

0 1 $4000 Upward 
1 0 $8000 Downward 
1 1 $COOO Toward-zero 

Exception flags 12 11 10 9 8 
(Bit group $1FOO) 1 0 0 0 0 $1000 Inexact 

0 1 0 0 0 $0800 Divide-by-zero 
0 0 1 0 0 $0400 Overflow 
0 0 0 1 0 $0200 Underflow 
0 0 0 0 1 $0100 Invalid 

Rounding precision 

ITT 
(Bit group $00CO) 0 $0000 Extended 

1 $0040 Double 
0 $0080 Single 

1 1 $00CO (Undefined) 

Halts enabled 4 3 2 1 0 
(Bit group $001F) 1 0 0 0 0 $0010 Inexact 

0 1 0 0 0 $0008 Divide-by-zero 
0 0 1 0 0 $0004 Overflow 
0 0 0 1 0 $0002 Underflow 
0 0 0 0 1 $0001 Invalid 

• Note: Bits 5 and 13 are not used. 

Example 
With rounding toward-zero, inexact and underflow exception flags raised, extended 
rounding precision, and halt on invalid, overflow, and division-by-zero, the most 
significant byte of the Environment word has the value $D2 and the least significant 
byte has the value $OD. 

You gain access to the environment settings through the procedures Get-Environment, 
Set-Environment, Test-Exception, Set-Exception, Procedure-Entry, and 
Procedure-Exit. 

The Environment word l 07 



Get-Environment and Set-Environment 
Get-Environment takes no input operand. The Environment word is returned in the 
X register. The most significant byte of the environment is also returned in the low 
byte of the Y register. 

•:• 6502 note: In the 6502 SANE engine, Get-Environment returns the least significant 
byte of the Environment word in the X register and the most significant byte in the 
Y register. 

Set-Environment has one input operand: a 16-bit integer, passed by value, that is 
interpreted as an Environment word. 

•:• Note: Setting the Environment word does not cause halts. 

Example 
Set rounding direction to downward. 

FGETENV 

TXA 

AND 

ORA 

PHA 

FSETENV 

#$3FFF 

#$8000 

get environment 
A <-- environment word 
clear CO bits 
set bits for round downward 
push environment word 
set environment 

•:• 6502 note: The following code shows how to change the Environment word in the 
6502 SANE engine: 

FGETENV 

TYA 

AND #03F 

ORA #080 

PHA 

TXA 

PHA 

FSETENV 

get environment 
A <-- msbyte 
clear CO bits 
set bit for r ound downward 
push msbyte 
A <-- lsbyte 
push l sbyte 
set environment 

108 Chapter 14: Controlling the 65C816 SANE Environment 



Test-Exception and Set-Exception 
Test-Exception has one integer operand, passed by value, which is regarded as a sum 
of the hex values of the individual bits, as shown in Table 14-2. 

Table 14-2 
Bits In the Exception word 

Bit value 

$01 
$02 
$04 
$08 
$10 

Description 

Invalid 
Underflow 
Overflow 
Divide-by-zero 
Inexact 

If an exception flag is set for any of the corresponding bits set in the operand, 
then Test-Exception clears the Z flag in the Processor Status register; otherwise, 
Test-Exception sets the Z flag. 

Example 
Branch to XLOC if invalid or overflow is set. 

PUSHWORO #5 
FTESTXCP 

BNE XLOC 

invalid + overflow 

test exception 
branch if z is clea r 

•:• 6502 note: The following code shows how to check the exception flags in the 6502 
SANE engine: 

LOA #00 A <-- 0 

PHA push msbyte 
LOA lf05 A <-- inval id + ove r flow 

PHA push l sbyte 
FTESTXCP test excepti on 

BNE XLOC branch if Z is clear 

Set-Exception takes one integer operand, passed by value, which encodes a set of 
exceptions in the manner described above for Test-Exception. Set-Exception 
stimulates the exceptions indicated in the operand; that is, the command not only 
turns on the bits in the Environment word, it also causes a halt if any corresponding 
halt bit is set. 

Test-Exception and Set-Exception 109 



Procedure-Entry and Procedure-Exit 
Procedure-Entry saves the current SANE Environment word at the address passed as 
the 4>perand, and sets the operative environment to the default settings. 

Procedure-Exit saves the exception flags (temporarily), sets the Environment word to 
the value passed as the operand, and then stimulates the saved exceptions (that is, 
turns on the bits in the Environment word and causes a halt if any corresponding halt 
bit is set) . 

Example 

Here is a procedure that appears to its callers as an atomic operation: 

ATOMICPROC PUSHLONG ENV ADR push address to store 

e nvironme nt 
FPROCENTRY procedure entry 

... body of r outine . .. 

PUSHWORD ENV push s aved environment 
FPROCEXIT procedure exit 
RTS 

ENV ds 2 storage for saved 

environment 
ENV ADR de i4 ' ENV' address of ENV 

•!• 6502 note: The following code shows how to use these calls in a 6502 program: 

ATOMICPROC PUSH E ADR push address for storing 

environment 

E 

E ADR 

FPROCENTRY procedure entry 

. .. body of routine . .. 

PUSH E 

FPROCEXIT 

RTS 
. WORD 

.WORD E 

push saved e nvi ronment 

procedure exit 

stor age for saved environment 

address of E 

110 Chapter 14: Controlling the 65C816 SANE Environment 



Chapter 15 

Halts in 65C816 SANE 

111 



The 65C816 SANE engine lets the application transfer program control when selected 
floating-point exceptions occur. Because this facility is used to implement halts in 
high-level languages, we refer to it as a halt mechanism. The assembly-language 
programmer can write a halt handler routine to cause special actions for floating-point 
exceptions. (The 65C816 SANE halt mechanism differs from the traps that are an 
optional part of the IEEE Standard.) 

Conditions for a halt 
Any floating-point exception triggers a halt if the corresponding halt is enabled. The 
halt for a particular exception is enabled when two conditions are met: 

o The halt (trap) vector, which can be set by using the operation Set Hal t Vector, 
is not zero. 

o The halt-enable bit corresponding to that exception is set. 

The halt mechanism 
If the halt for a given exception is enabled, the 65C816 SANE engine does the following 
things when that exception occurs. 

1 . The engine returns the same result to the destination address that it would return if 
the halt were not enabled. (However, the engine does not set floating-point 
exception flags for the current operation and does not return results to the X, Y, 
and P registers.) 

2. The engine leaves the caller's return address on the top of the stack. 

3 . The engine leaves halt status information in its direct page, as shown in Figure 15-1. 

•) 6502 n ote: The 6502 SANE engine leaves ics halt status information in a record in 
memory and sets the X and Y registers to the least and most significant bytes, 
respectively, of the address of the record. Refer to Figure 15-2. 

4. The engine transfers control by means of a JSL (long jump-to-subroutine) 
instruction to the location given by the halt vector. 

Important 

Halts occur only on calls to FP816. Elems816 stimula tes halts only through a 
ProcExit call to FP81 6. DecStr816 makes no calls to FP81 6 and never stimulates 
halts. 

112 Chapter 15: Halts in 65C8 l 6 SANE 



Halt status information 
Figure 15-1 shows the contents of che 65C816 SANE engine's direcc page immediately 
after a halt occurs. In addition to halt status information, the direct page contains the 
input parameters and SANE opword. 

For one-argument calls, the Caddress is the address of DST. For rwo-argument calls, 
the Caddress is the address of DSTand Bis the address of SRC. For binary-to­
decimal conversion, the A address is che address of che decimal record, B is the 
address of the binary value, and C is the address of the decform record. 

Offset 

$22 Byte 

$21 Byte 

$20 
Byte 

Pending exceptions Word 
SlE 

Environment word Word 
SlC 

Halt vector Long 

$18 

A address Long 

$14 

B address Long 

$10 

C address Long 

soc 
Opword Word 

SOA 
Caller's data bank Word 

$08 
Caller's direct page Word 

$06 

Return address 3 bytes 

Return address 3 bytes 

$00 

Figure 15-1 
65C816 SANE direct-page contents upon halt 

The halt mechanism 113 



Important 
Future Implementations of SANE for the 65C8 l 6 may not store the floating-point 
environment and halt vector In the direct page. You may forfeit upward 
compatibility If you access these variables directly. Always access these 
variables only by means of SANE calls. 

•) Note: Scanners, which have four operands, do not cause halts, so halt handlers 
never deal with direct-page information for scanners. 

When a halt occurs, the SANE engine uses the halt vector to transfer control to the 
application's halt handler. When the halt handler receives control, the 65C816's 
A register contains the information in the pending-exceptions field. The halt 
handler can continue execution as if no halt had occurred by executing an RTL 
instruction. When the SANE engine regains control, it uses the contents of the A 
register, not the value in the pending-exceptions field, to set the final floating-point 
exceptions. Before it returns, the application's halt handler must load the A register 
with the contents of the pending-exceptions field to ensure that the exceptions from 
the current call are handled correctly. 

Important 
The value In pending exceptions Is a sum of the five exception constants, 
represented as an Integer from 0 to 31. Unpredictable results occur If the 
A register contains a value out of this range when your application exits 
from the halt handler. 

•:• 6502 note: Figure 15-2 shows the 6502 SANE halt status record. In 6502 SANE, 
exceptions from current operation are encoded like the exception flags in the most 
significant byte of the floating-point environment (see Chapter 7, "Controlling the 
SANE Environment"). The pending-X and pending-Y bytes contain what the X and 
Y registers would have contained on a normal (halts not enabled) exit. Those bytes 
can be used by a halt handler to set the relevant bits of the 6502 status byte, as well as 
the X and Y registers, to their normal exit state. (The example in the section "Using 
the Halt Mechanism" illustrates this use of pending X and pending Y.) 

Offset 

$08 
Byte 

Opword Word 
$06 

Pendin y Byte 
$05 

Pending X Byte 
$04 

Environment word Word 
$02 

Halt vector Word 

Figure 15-2 
6502 SANE status record upon halt 

114 Chapter 15: Halts In 65C816 SANE 



Halt vector operations 

The SA.t"'\1£ engine has two calls for manipulating the halt vector: SetHaltVector and 
GetHaltVector. 

The SetHaltVector routine sets the halt vector to the 4-byte vector passed by value on 
the stack. There are no other operands. 

•!• 65C816 note: Addresses in the 65C816 are 3 bytes long; Apple software for the 
65C816 passes addresses as 4 bytes by pushing or pulling two words on the stack. 

•!• 6502 note: The SetHaltVector routine has one input operand: a 16-bit integer, 
passed by value, that is interpreted as the halt vector. 

The GetHaltVector routine returns a 3-byte halt vector in the X and Y registers. 
X contains the low 2 bytes (first and second) of the halt vector, and Y contains the 
second and third bytes; the second byte of the halt vector occurs in both the X and 
the Y registers. 

•!• 6502 note: The GetHaltVector routine takes no input operand and returns the least 
and most significant bytes of a 2-byte halt vector in the X and Y registers, 
respectively. 

65C816 Y register -i._ __ Byt-...,e_3 __ ~ _ _ Byt_e,_2-~ 

65C816 X register ----'---___.,,____-1 Byte 2 Byte 1 

Return Information Byte3 Byte 2 Byte 1 

+ I 6502 Y register ________ __, Byte 2 

6502 X register ----------------1 Byte 1 .__ ____ _ 
Figure 15-3 
Data returned in X and Y registers 

The halt mechanism 115 



Using the halt mechanism 
These examples illustrate the use of the halt mechanism. To use the halt mechanism, 
the program must first set the halt vector to the starting address of a halt handler 
routine. The halt handler shown in these examples returns control to the program 
directly following the call that caused the halt as if no halt had occurred. 

Halt example for the 65C816 

The opcodes represented by question marks are in the application's code; the first line of 
the halt handler is labeled HH. 

; Set halt vector . 

PUSHLONG #HH 

FSETHV 

F??? 

??? 

HH START 

push address of halt handler 
set halt vector 

SANE call causing a halt 
halt handler returns control to 
here 

Insert any specific halt - handling code here. 

Finally , ensure that the exceptions are handled correctly (Remember t hat 
the contents of t he A register will be used to set the final exceptions .) 

LOA 

RTL 

END 

30 pending exceptions off set from 
beginning of SANE direct page 

116 Chapter 15: Halts In 65C816 SANE 



Halt example for the 6502 

The opcodes represented by question marks are in the application's code; the first 
line of the halt handler is labeled HH. 

; Set halt (trap) vector. 

HH 

PUSH 
FSETHV 

F??? 

??? 

HHADR push address of halt handler 
set halt vector 

call to FP6502 causing halt 

halt handler returns control to 

here 

halt handler routine starts here 

Store address in X and Y registers into temporary 

location . 
STX 
STY 

TEMP 
TEMP+! temp points to status info 

record 

OR exceptions from current operation into environment . 

LDY #8 

LDA 
LDY 

ORA 

STA 

(TEMP) , Y 
#3 

(TEMP),Y 

(TEMP) , Y 

A <-- current exceptions 

A <-- A OR msbyte of 

environment 
msbyte of environment <-- A 

Operate on result info to set registers and status bits 

as though no halt occurred . 
INY y <-- 4 

LDA (TEMP), Y 

TAX x <-- pending x 
INY y <-- 5 

LDA (TEMP) , Y 
STA TEMP TEMP <-- pending y 

BIT TEMP dete rmines V bit 

TAY Y <-- pending Y 
determines N and z bits 

Return to user operation after call to FP6502 which 

t riggered halt (address already on top-of-stack). 

RTS 

HHADR . WORD HH HHADR contains address of HH 

Using the halt mechanism 117 



Chapter 16 

Elementary Functions 
in 65C8 l 6 SANE 

119 



The elementary functions that are specified by the Standard Apple Numerics 
Environment are made available to 65C816 assembly-language programs by 
Elems816. Elems816 also includes two functions that compute log2(1 + x) and 2x - 1 
accurately. Elems816 makes calls to FP816 for its basic arithmetic. The access schemes 
for Elems816 are similar to those for FP816 (described in Chapter 11, "65C816 SANE 
Basics and Data Types"). Opwords and macro names used in the examples below are 
listed in Appendix D. 

•:• 6502 note: The elementary functions for the 6502 SANE engine are in Elems6502. 
Like Elems816, Elems6502 makes calls to FP6502 and uses similar access schemes. 

One-argument functions 
The tool set includes calls for the following one-argument elementary functions: 

o Log2(x) computes the base-2 logarithm of x. 

o Ln(x) computes the natural logarithm of x. 

o Lnl(x) computes the natural logarithm of (1 + x). 

o Exp2(x) computes 2x. 

o Exp(x) computes ex. 

o Expl(x) computes ex - 1. 

o Cos(x) computes the cosine of x. 

o Sin(x) computes the sine of x. 

o Tan(x) computes the tangent of x. 

o Atan(x) computes arctangent of x. 

o RandomX(x) computes a pseudorandom value with x as seed. 

o Log21(x) computes logi(l + x) . 

o Exp21(x) computes zx - 1. 

120 Chapter 16: Elementary Functions in 65C816 SANE 



These calls each have one extended argument, passed by address, and use the 
following one-address calling sequence to obtain DST f- <op> DST. 

PUSHLONG <DST address> 

PUSHWORD <opword> 
LOX tToolSetNurn + FuncNurn*256 

JSL $El0000 

This calling sequence is the same as that for unary operations, such as Square Root and 
Negate, in the core routines described in Chapter 11, "65C816 SANE Basics and Data 
Types." 

•:• 6502 note: A typical call to the 6502 SANE engine pushes a 2-byte address onto the 
stack: first the high byte, then the low byte. There is no Tool Dispatcher; instead, 
the call passes control directly to the entry point of Elems6502. 

PUSH <DST address> 

PUSH <opword> 

JSR ELEMS6502 

Example 
Like the core routines described in Chapter 11, the elementary functions are normally 
called by means of macros. For example, to obtain B f- sin(B), where Bis of 
extended type, the call looks like this: 

PUSHLONG B ADR 

FSINX 

push address of B 

B <-- sin(B) 

•:• 6502 note: Using macros, calls to the 6502 SANE engine look much the same as 
calls to the 65C816 SANE engine. The example looks like this: 

PUSH 

FSINX 

B ADR push address of B 

B <-- sin(B) 

One-argument functions 121 



Two-argument functions 
The tool set includes calls for the following two-argument elementary functions: 

o XPwrY(x,y) computes xY. 

o XPwrI(x,i) computes x'. 
General exponentiation (XPwrY) has two extended arguments, both passed by 
address. The result is returned in x. 

The function uses this calling sequence for binary operations to obtain 
DST~ DSTSRC_. 

PUSHLONG <SRC address> 

PUSHLONG <DST address> 

push exponent address first 

push base address second 

PUSHWORD <opword> 
LOX iToolSetNum + FuncNum*256 

JSL $El0000 

Integer exponentiation (XPwrI) has two arguments. The extended argument x, passed 
by address, receives the result. The 16-bit integer argument i is passed by value. 

The function uses this modified calling sequence for binary operations to obtain 
DST~ DSTSRC_. 

Example 

PUSHWORD <SRCvalue> 

PUSHLONG <DST address> 

PUSHWORD <opword> 

push integer exponent value first 

push base address second 

LOX iToolSetNum + FuncNum*256 

JSL $El0000 

To obtain B ~ B3, where Bis of extended type, the call looks like this (using a macro 
call): 

PUSHWORD i3 

PUSHLONG B ADR 
FXPWRI 

push exponent by value 

push address of B 
integer exponentiation 

•:• 6502 note: For 6502 SANE, the example looks like this: 

LOA iO A <-- 0 

PHA push msbyte of exponent 

LOA i3 A <-- 3 

PHA push lsbyte of exponent 

PUSH B ADR push address of B 

FXPWRI integer exponentiation 

122 Chapter 16: Elementary Functions In 65C8 l 6 SANE 



Three-argument functions 
The tool set includes calls for the following three-argument elementary functions: 

o Compound(r,n) computes (1 + r) n. 

o Annuity(r,n) computes (1 - (1 + r) - n)/ rwhen r :t 0. 

These functions use this calling sequence: 

PUSHLONG <SR2C address> 

PUSHLONG <SRC address> 

PUSHLONG <DST address> 

PUSHWORD <opword> 

push address of rate first 

push address of number of 

periods second 

push address of destination 

third 

LDX iToolSetNum + FuncNum*256 

JSL $El0000 

The operation syntax is 

DST f- <op> (SRC2, SRC) 

where <op> is Compound or Annuity, SRC2 is the rate, and SRC is the number of 
periods. All arguments SRC2, SRC, and DST must be of the extended type. 

Example 
To obtain C f- (1 + R)N, where C, R, and N are of type extended, the call looks like 
this (using macros): 

PUSHLONG R ADR push address of R 

PUSHLONG N ADR push address of N 

PUSHLONG C ADR push address of c 
FCOMPOUND compound operation 

·:· 6502 note: For 6502 SANE, the example looks like this: 

PUSH R ADR push address of R 

PUSH N ADR push address of N 

PUSH C_ADR push address of c 
FCOMPOUND compound operation 

Three-argument functions 123 



Chapter 17 

65C816 SANE Scanners 
and Formatter 

125 



The Standard Apple Numerics Environment specifies conversions between decimal 
strings and decimal records. In the SANE implementations for che 65C816 and the 
6502, chese scanning and formatting routines are contained in DecStr816 and 
DecStr6502. The routines in DecStr816 and DecStr6502 are designed for use wich FP816 
and FP6502, which provide binary-decimal conversions between decimal records and 
che SANE data formats. Thus, the SANE scanning routines provide che application 
developer che solution to che problems of scanning input strings to produce SANE­
type values and of formatting SA!'ffi-type values for output. 

Opwords and macro names are listed in Appendix D, "65C816 and 6502 SANE Quick 
Reference Guide." 

The scanning routines use an access scheme similar to that of the core routines. (See 
Chapter 11, "65C816 SANE Basics and Data Types.") The scanning routines clear their 
arguments from the stack before returning. 

Numeric scanners 
The SANE numeric scanners are called Pstr2dec (P for the Pascal programming 
language, strfor strinfi> and Cstr2dec (Cfor the Cprogramrning language, strfor 
strinfi>. Both scanners take four arguments, all passed by address: 

o string to be scanned (input) 

o 16-bit integer index into string (input and output) 

o decimal record for result (output) 

o 16-bit integer for valid-prefix indication (output) 

On input, the index indicates che position in the string where scanning is to begin; on 
output, the index is one greater than the position of che last character in che numeric 
substring just parsed. The longest possible numeric substring is parsed and returned in 
the decimal record. If no numeric substring is recognized, then che index remains 
unchanged. The valid-prefix parameter on output contains 1 (true) if the entire input 
string beginning at the input index is a valid numeric string or a prefix of a valid 
numeric string. It contains 0 (false) ocherwise. 

The only difference between the scanners is in the string input argument. Pstr2dec 
operates on a string having the string length in the zeroth byte of the string and the 
initial character of the string in the first byte. Cstr2dec operates on a string with the 
initial character of che string in the zeroch byte, no length byte, and termination of the 
string by a null character (ASCII code 0). 

•!• Note: Because it stops scanning when it encounters a nonnumeric character, 
Cstr2dec can be used to scan numbers embedded in large text buffers. 

126 Chapter 17: 65C8 l 6 SANE Scanners and Formatter 



The scanners use a calling sequence with four operands: 

PUSHLONG <address of string> 
PUSHLONG <address of index> 
PUSHLONG <address of decimal record> 
PUSHLONG <address of valid-pref ix> 
PUSHWORD <opword> 
LOX iToolSetNum + FuncNum*256 
JSL $El0000 

•) 6502 note: In 6502 SANE, addresses are 2 bytes and the calling sequence for the 
scanners looks like this: 

PUSH <address of str ing> 
PUSH <address of index> 
PUSH <address of decimal record> 
PUSH <address of valid-pref ix> 
PUSH <opword> 
JSR OecStr6502 

The next chapter gives examples of the use of the scanners. 

Numeric formatter 
The formatter Dec2Str takes three arguments, all passed by address: 

o decform record for formatting specification (input) 

o decimal record to be formatted (input) 

o string for result (output) 

This routine returns a decimal string representing the input value from the decimal 
record, formatted according to input specifications passed in the decform record. 
The result string is a Pascal string: the zeroth byte contains the string length, and the 
first byte contains the first character in the string. For a full description of Dec2Str, see 
the section "Conversions From Decimal Records to Decimal Strings" in Chapter 3. 

The formatter uses this calling sequence: 

PUSHLONG <address of decf orm record> 
PUSHLONG <address of decimal r ecord> 
PUSHLONG <address of string> 
PUSHWORO <opword> 
LOX i Tool SetNum + FuncNum*256 
JSL $El0000 

•:• 6502 note: In 6502 SANE, the calling sequence for the formatter looks like this: 

PUSH <address of decform record> 
PUSH <address of decimal record> 
PUSH <address of string> 
PUSH <opword> 
JSR OecStr6502 

Numeric formatter 127 



Chapter 18 

Examples: Using the 65C816 
and 6502 SANE Engines 

129 



The following examples illustrate the use of the SANE engines for the 65C816 and the 
6502. The names of the SANE macros used in the examples are listed in Appendix D, 
"65C816 and 6502 Quick Reference Guide"; macros not listed there, such as 
MOVEWORD and PUSHLONG, are provided by the APW development system. 

65C816 examples 
Each of the 65C816 examples assumes the programmer is using the Apple IIGS Toolbox 
and that the program starts up and shuts down the SANE tool correctly. The program 
must include the following steps: 

1 . Somewhere early in the program, call the Memory Manager to reserve 256 bytes 
of zero bank for use as SANE direct page. (For this example, #SANEdirectpg is 
the address of that memory.) 

2 . The program then makes the following call to initialize SANE: 

PUSHWORD #SANEdi rectpg 

_SANEStartup 

3. Near the end of the program, make the call to shut down SANE: 

SANEShutdown 

4 . The program then calls the Memory Manager to release the memory that was 
reserved for the SANE direct page (often by releasing all reserved memory). 

65C816 example: polynomial evaluation 

This example evaluates the polynomial 

x3+ 2x2-5 

It illustrates the evaluation of a polynomial 

eoxn + eixn-1 + . .. +en 

using Homer's recurrence: 

r~eo 

r~(rx x) + c1, forj= 1 ton 

On entry, rAdr points to an extended result field, cAdrBgn points to the 
coefficient table of extended values, byte nCoe f s contains the degree n ( <256) of 
the polynomial, and xAdr points to an extended function argument x. The 
coefficient table consists of n + 1 extended coefficients, starting with Co· In this 
example, n = 3, c0 = 1, c1 = 2, c2 = 0, and c3 = -5. 

130 Chapter 18: Examples: Using the 65C816 and 6502 SANE Engines 



Entry is by a JSR instruction to POLYEVAL. (POLYEVAL calls FP8 1 6.) 

POLYEVAL ENTRY 

MOVE LONG cAdrBgn, cAdr ; copy arguments 

MOVE WORD nCoefs,NumCoefs 
PUSHLONG cAdr ; cO --> r 
PUSHLONG rAdr 

FX2X 

POLYLOOP PUSHLONG xAdr r*x --> r 
PUSHLONG rAdr 

FMULX 

CLC 
LDA cAdr 
ADC no advance to next coefficient 

STA cAdr 

LDA cAdr+2 
ADC :o allow for possible carry 

STA cAdr+2 

PUSHLONG cAdr r+cj --> r 
PUSHLONG rAdr 
FAD DX 

DEC Numcoefs decrement Numcoefs and 
BNE POLYLOOP branch if not 0 

RTS 

cAdr ds 4 

NumCoefs ds 1 

cAdrBgn de i4'Coefs ' 
nCoefs de i' 3' ; n = 3 
Coefs de h ' OO 00 00 00 00 00 00 80 FF 3F ' co 1 

de h ' OO 00 00 00 00 00 00 80 00 40 ' cl 2 
de h ' OO 00 00 00 00 00 00 00 00 00 ' c2 0 
de h ' OO 00 00 00 00 00 00 AO 01 co I c3 -5 

xAdr de i4'XVal ' 
XVal ds 10 x 

rAdr de i4'Resul t ' 
Result ds 10 r 

65C816 examples 131 



65C816 example: scanning and formatting 
The following example illustrates the use of the numeric scanner and formatter. The 
procedure accepts as an argument an ASCII string representing a number of degrees 
and returns the trigonometric sine of its argument as a numeric ASCII string. Both 
input and output are Pascal strings; that is, byte 0 gives the length, and byte 1 
contains the first character in the string. The caller of the procedure pushes the 
address of the input string and executes a JSR instruction to location SINE. The 
procedure overwrites the input string with the result, whose length may be as large as 
80, and clears the stack. 

; Symbols : 
;Str: i/o string 
;Index: 16-bit integer index 
;Dec: decimal record 
;Valid.P: boolean for valid prefix 
;Form: decform record 
;XTemp: extended temporary variable 
;XConst: extended constant a pi/180 

SINE ENTRY 

FULLWORD Return save return adr 
PULLLONG Str Adr adr of Str --> Str_Adr 

LOA lil 
STA Index 1 --> Index 

PUS HLONG Str Adr 
PUSHLONG it Index 
PUSHLONG #Dec 
PUSHLONG JfValidP 
FPSTR2DEC Str --> Dec 

PUSHLONG it Dec 
PUSHLONG JtXTemp 
FDEC2X Dec --> XTemp 

PUSHLONG JtXConst 
PUSHLONG Jt XTemp 
FMULX convert to radians : 

XTemp * XConst --> XTemp 
PUSHLONG JIXTemp 
FSINX sin(XTemp) --> XTemp 

PUSHLONG it Form 
PUSHLONG JIXTemp 
PUSHLONG JI Dec 
FX2DEC ; XTemp --> Dec 

132 Chapter 18: Examples: Using the 65C8 l 6 and 6502 SANE Engines 



PUSHLONG JI Form 

PUSHLONG JI Dec 

PUSHLONG Str Adr 

FDEC2STR Dec - - > St r 

PUSHWORD Return 

RTS 

I ndex ds 2 

ValidP ds 2 

XConst de h ' AE ca E9 94 12 35 FA SE F9 3F ' ; xconst - pi / 1 80 

XTemp ds 10 

Fo r m de i ' l,10' fixed-point format with 10 places 

Dec ds 33 s ign, exp, length, ASCII ~ (2+2+1+28) 

Return ds 2 

Str Adr ds 4 

6502 examples 
The following examples illustrate the use of the 6502 SANE engine. 

6502 example: polynomial evaluation 

This example evaluates the polynomial 

x3 + 2x2-5 

It illustrates the evaluation of a polynomial 

eoxn+ '1_Xn-1 + .. . + Cn 

using Homer's recurrence: 

r~eo 

r~(rx x) + c1, forj= 1 ton 

On entry, rAdr points to an extended result field, c AdrBgn points to the 
coefficient table of extended values, byte ncoe f s contains the degree n ( <256) of 
the polynomial, and xAdr points to an extended function argument x. The 
coefficient table consists of n + 1 extended coefficients, starting with c0. In this 
example, n = 3, c0 - 1, c1 = 2, c2 = 0, and c3 = - 5. 

6502 examples 133 



Entry is by a JSR instruction co POLYEVAL. (POLYEVAL calls FP6502.) 

POLYEVAL 

POLYLOOP 

LOA CAdrBgn 

STA cAdr 

LOA cAdrBgn+l 

STA cAdr+l 

LOA nCoefs 

STA NumCoef s 

PUSH CAdr 

PUSH rAdr 

FX2X 

PUSH 

PUSH 

FMULX 

CLC 

LOA 

ADC 

xAdr 

rAdr 

cAdr 

uo. 
STA cAdr 

LDA cAdr+l 

ADC liO 

STA cAdr+l 

PUSH CAdr 

PUSH rAdr 

FADDX 

DEC 

BNE 

RTS 

NumCoefs 

POLYLOOP 

address of cO->cAdr 

cO - > r 

r*x - > r 

advance to next 

coefficient 

decimal 10 

r+cj -> r 

decrement NumCoefs and 

branch if not 0 

cAdr .WORD 

NumCoefs .BYTE 

CAdrBgn 

nCoefs 

Coef s 

XAdr 

XVal 

rAdr 

Result 

. WORD 

. BYTE 

.WORD 

. WORD 

. WORD 

. WORD 

Coefs 

3 ; n = 3 

00000,00000,00000,08000,03FFF 

00000,00000,00000,08000,04000 

00000,00000,00000,00000,00000 

00000,00000,00000,0AOOO,OCOOl 

. WORD XVal 

.BLOCK 10 . 

. WORD Result 

.BLOCK 10 . 

co - l 

cl D 2 

c2 D 0 

c3 -5 

x 

; r 

134 Chapter 18: Examples: Using the 65C8 l 6 and 6502 SANE Engines 



6502 example: scanning and formatting 
This example illustrates the use of the numeric scanner and formatter. The procedure 
accepts as argument an ASCII string representing a number of degrees and returns the 
trigonometric sine of its argument as a numeric ASCII string. Both input and output are 
Pascal strings: the zeroth byte gives the length, and the first byte contains the first 
character in the string. The caller of the procedure pushes the address of the input 
string and executes a JSR instruction to location SINE. The procedure oveiwrites the 
input string with the result, whose length may be as large as 80, and clears the stack. 
Sine calls FP6502, Elems6502, and DecSt r 6502. The Sine routine could be 
declared by the following Pascal statement: 

PROCEDURE Sine(VAR s : DecStr); 

Symbols: 
s: i/o string 

i: 16- bit integer index 

d: decimal record 
v: boolean for valid prefix 

f: decform record 
x: extended temporary 
c : e xtended constant pi/180 

SINE 
POP Retu r n 

POP sAdr 

LOA 101 
STA i 
LOA too 
STA i+l 

PUSH sAdr 
PUSH iAdr 

PUSH dAdr 
PUSH vAdr 
FPSTR20EC 

PUSH dAdr 
PUSH xAdr 
FOEC2X 

PUSH cAdr 

PUSH xAdr 
FMULX 

save return address 
address of s - > sAdr 

1 - > i 

s - > d 

d - > x 

convert to radians: x*c - > x 

6502 examples 135 



iAdr 

i 

vAdr 

v 

cAdr 

c 

xAdr 

x 

fAdr 

f 

style 

digits 

dAdr 

d 

sgn 

exp 

sig 

mark 

Return 

sAdr 

PUSH xAdr 

FSINX 

PUSH fAdr 

PUSH xAdr 

PUSH dAdr 

FX2DEC 

PUSH fAdr 

PUSH dAdr 

PUSH sAdr 

FDEC2STR 

PUSH Ret1,1rn 

RTS 

.WORD 

.WORD 

.WORD 

.WORD 

i 

v 

c 

sin(x) -> x 

x -> d 

d -> s 

.WORD 

. WORD OC8AE,94E9,3512,8EFA,3FF9; c = pi/ 180 

.WORD x 

. BLOCK 10 . 

.WORD f 

.WORD 1 fixed-point format 

. WORD 10 . 10 digits after point 

.WORD d 

.WORD 

.WORD 

. BYTE 

. BLOCK 28 . 

.WORD 

.WORD 

136 Chapter 18: Examples: Using the 65C816 and 6502 SANE Engines 



Part Ill 

The MC68000 
Assembly-Language 
SANE Engine 

The software described in Part ill of this manual provides the features of the Standard 
Apple Numerics Environment (SANE) co assembly-language programmers using 
Apple's MC68000-based systems. SANE-described in derail in Part I-fully supports 
the IEEE Standard 754 for binary floating-point arithmetic, and augments the 
Standard to provide greater utility for applications in accounting, finance, science, 
and engineering. The IEEE Standard and SANE offer a combination of quality, 
predictability, and portability heretofore unknown for numerical software. 

Part III of this manual describes the use of the assembly-language SANE engine for the 
MC68000, but does not describe SANE itself. For example, Part III explains how to call 
the SANE Remainder function from MC68000 assembly language, but dot::s not discuss 
what this function does. See Part I for information about the semantics of SANE. 

The MC68000 SANE engine is provided in all Apple MC68000-based systems; see 
AppendixB. 

137 



Chapter 19 

MC68000 SANE Basics 
and Data Types 

139 



Programs using MC68000-based SANE engines use the same convention for making 
most calls: first push the parameters on the stack, then invoke the macro for the 
desired operation. The following code illustrates a typical invocation of the MC68000 
SANE engine: 

PEA A ADR 

PEA B ADR 

FSUBS 

Push address of A (single format) 

Push address of B (extended format) 
Floating-point SUBtract Single: 
B <-- B - A 

This example is typical of SANE engine calls, most of which pass operands by pushing 
the addresses of the operands onto the stack prior to invoking the operation. The form 
of the operation in the example (B f- B- A, where A is a numeric type and Bis 
extended) is similar to the forms for most SAl'fE operations. In this example, FSUBS 
is an assembly-language macro listed in Appendix E, "MC68000 SANE Quick 
Reference Guide." Details of SANE engine calls are given later in this chapter, in the 
section "Calling Sequence." 

•) Note about macros: The macro names used in this and succeeding chapters are 
those provided with the Macintosh® Programmer's Workshop (MPW). For more 
information about the availability of SANE software and macros, please refer to 
Appendix B. 

The SANE engine for the MC68000 occupies three software packages named FP68K, 
Elems68K, and DecStr68K. Access to all three is similar. Arithmetic operations, 
comparisons, conversions, environmental control, and halt control are in FP68K. 
The elementary functions are in Elems68K, and the SANE scanners and formatter are 
in DecStr68K. Chapters 20 through 23 describe the functions of FP68K. Chapters 24 
and 25 describe the functions of Elems68K and DecStr68K, respectively. 

Operation forms 
The example above illustrates the form of an FP68K binary operation. Forms for other 
FP68K operations are described in this section. Examples and further details are given 
in subsequent chapters. 

140 Chapter 19: MC68000 SANE Basics and Data Types 



Arithmetic and auxiliary operations 
Most numeric operations are either unary (one operand), like Square Root and 
Negate, or binary (two operands), like Add and Multiply. 

The MC68000 assembly-language SANE engine, FP68K, provides una1y operations in 
a one-address form: 

DST ~ <op> DST Example: B ~ sqrt(B) 

The operation <op> is applied to (or operates on) the operand DST, and the result is 
returned to DST, overwriting the previous value. DSTstands for destination operand. 

FP68K provides binary operations in a two-address form: 

DST ~ DST <op> SRC Example: B ~ B l A 

The operation <op> is applied to the operands DSTand SRC, and the result is returned 
to DST, overwriting the previous value. SRCstands for source operand. 

To store the result of an operation (unary or binary), the location of the operand DST 
must be available to FP68K, so DST is passed by address to FP68K. In general, all 
operands, source and destination, are passed by address to FP68K. 

For most operations the storage fom1at for a source operand (SRC) can be the 16-bit 
integer format, the 32-bit longint (long integer) format, or one of the SANE numeric 
formats (single, double, extended, or comp). To support the extended-based SANE 
arithmetic, a destination operand (DST) must be in the extended format. 

The forms for the CopySign and Nextafter functions are unusual and are discussed in 
Chapter 20, "MC68000 SANE Arithmetic and Auxiliary Operations, Comparisons, 
and Inquiries." 

Conversions 
FP68K provides conversions between the extended format and other SANE formats, 
between extended and 16- or 32-bit integers, and between extended and decimal 
records. Conversions between binary formats (single, double, extended, comp , 
integer, and longint) and conversions from decimal to binary have the form 

DST~ SRC 

Conversions from binary to decimal have the form 

DST ~ SRC according to SRC2 

w here SRC2 is a decform record specifying the decimal format for the conversion of 
SRC to DST. 

Operation forms 141 



Comparisons 

Comparisons have the form 

<relation> f- SRC compared with DST 

where DSTis extended and SRC is single, double, comp, extended, integer, or 
longint, and where <relation> is less, equal, greater, or unordered according as 

DST <relation> SRC 

Here the result <relation> is indicated by setting the MC68000's CCR flags. 

Other operations 

FP68K provides inquiries for determining the class and sign of an operand and 
operations for accessing the floating-point Environment word and the halt address. 
Forms for these operations vary and are given as the operations are introduced. 

External access 
The SANE engine FP68K consists of position-independent code with a single entry 
point at its beginning. There is a static state area consisting of one word of mode bits 
and error flags, and a two-word halt vector. 

FP68K preserves all MC68000 registers across invocations, except that the Remainder 
function modifies DO. FP68K modifies the MC68000's CCR flags. Except for binary­
decimal conversions, it uses little more stack area than is required to save the sixteen 
32-bit registers. Because the binary-decimal conversions themselves call FP68K (to 
perform multiplies and divides), they use about twice the stack space of the regular 
operations. 

The access constraints described in this section also apply to Elems68K and 
DecStr68K, except that calls to DecStr68K do not preserve the contents of AO, Al, DO, 
and Dl. 

142 Chapter 19: MC68000 SANE Basics and Data Types 



Calling sequence 
A typical invocation of the engine consists of a sequence of PEA instructions to push 
operand addresses, followed by one of the macros listed in Appendix E: 

PEA <source address> 
PEA <destination address> 

<fopmacro> 

PEA instructions for source operands always precede those for destination operands, 
as shown in Figure 19-1. The macro call <fopmacro> represents a typical operation 
macro defined as 

MOVE.w· <opword>, - (SP) 

FP68K 

; Push op code. 

The macro call FP 68K expands to an A-line trap. 

Offset 

soc 
~ 

$08 
~ 

$04 
f--

SP-­

Figure 19-1 

Previous contents 

SRC2 address --1 Long 

SRC address - Long 

DST address -Long 

SANE operands on the MC68000 stack 

The opword 
The opword is the logical OR of an operand format code and an operation code. 

The operand format code specifies the format (extended, double, single, integer, 
longint, or comp) of one of the operands. The operand format code typically gives 
the format for the source operand (SRC). At most one operand format need be 
specified, because other operands' formats are implied. 

The operation code specifies the operation to be performed by FP68K. For example, 
the format code for single is $1000. The operation code for divide is $0006. Hence, 
the opword $1006 indicates "divide by a value of type single." 

Opwords, operand format codes, and operation codes are listed in Appendix E, 
"MC68000 SANE Quick Reference Guide." 

Calling sequence 143 



Assembly-language macros 

For most common <opword> calls to FP68K, the macros listed in Appendix E expand 
into the following form: 

MOVE . W <opword>,-(SP) 

FP68K 

Example 1 

Add a single-format operand A to an extended-format operand B. 

PEA 

PEA 

FADDS 

Example 2 

A ADR 

B ADR 

Push addr ess of A 

Push address of B 

Floating - point ADD Single: B <- - B + A 

Compute B f- sqrt(A), where A and Bare extended. The value of A should be 
preserved. 

PEA A ADR 

PEA B ADR 

FX2X 

PEA B ADR 

FSQRTX 

Example 3 

; Push address of A 

; Push address of B 

Float~ng-point extended to extended: 

B <- - A 

; Push address of B 

; Floating SQuare RooT extended: 

B <-- sqrt(B) 

Compute C f- A - B, where A, B, and Care in the double format. Because destinations 
are extended, a temporary extended variable Tis required. 

PEA A ADR 

PEA T ADR 

FD2X 

PEA B ADR 

PEA T ADR 

FSUBD 

PEA T ADR 

PEA C ADR 

FX2D 

; Push address of A 

; Push address of 10- byte temporary 

Floating- point convert Double to extended: 

T <-- A 

Push address of B 

Push address of temporary 

Floating-point SUBtract Double: T <-- T - B 

Push address of temporary 

Push address of C 

Floating- point convert extended to Double: 

C <-- T 

144 Chapter 19: MC68000 SANE Basics and Data Types 



MC68000 SANE data types 
FP68K fully supports the SANE data types and the integer types shown in Table 19-1. 

Table 19-1 
MC68000 SANE data types 

Name 

Single 
Double 
Comp 
Extended 
Integer 
Longint 

Description 

32-bit floating-point 
64-bit floating-point 
64-bit integer 
80-bit floating-point 
16-bit two's-complement integer 
32-bit two's-complement integer 

The MC68000 SANE engine uses the convention that least significant bytes are stored 
in high memory. For example, consider a variable of type single as shown in 
Table 19-2. 

Table 19-2 
Bits In a variable of type single 

Name 

s 
eo ... e1 
fo ···h2 

Description 

Sign 
Exponent (msb ... lsb) 
Significand fraction (msb .. . lsb) 

Figure 19-2 shows the logical structure of this 4-byte variable and the order of its bytes 
in memory. If this variable is assigned the address $1000, then its bits are distributed 
to the locations $1000 through $1003 as shown. 

Order of the bits In the variable 

msb lsb msb 

e,I fo 
·I . I I 

$100) $1001 $1002 $1003 

Locations of the b ytes in memory 

Figure 19-2 
Memory format of a variable of type single 

The other SANE formats are represented in memory in simil~ fashion. Please refer to 
Chapter 2, "SANE Data Types," for descriptions of the formats. 

lsb 

MC68000 SANE data types 145 



Chapter 20 

MC68000 SANE Arithmetic 
and Auxiliary Operations, 
Comparisons, and Inquiries 

147 



The operations covered in this chapter follow the access schemes described in 
Chapter 19, "MC68000 SANE Basics and Data Types." 

Unary operations follow the one-address form: 

DST~ <op> DST 

They use this calling sequence: 

PEA <DST address> 

<f opmacro> 

Binary operations follow the two-address form: 

DST~ DST<op> SRC 

They use the following calling sequence: 

PEA <SRC address> 

PEA <DST address> 

<fopmacro> 

The destination operand (DST) for these operations is passed by address and is 
generally in the extended format. The source operand (SRC) is also passed by address 
and may be single, double, comp, extended, integer, or longint. Some operations 
are distinguished by requiring some specific type for SRC, by using a nonextended 
destination, or by returning auxiliary information in the DO register and in the 
processor CCR status bits. In this section, operations so distinguished are noted. The 
examples employ the macros provided in the Macintosh Programmer's Workshop. 

Add, Subtract, Multiply, and Divide 
These are binary operations and follow the two-address form. 

Example 
B ~ BI A, where A is double and B is extended. 

PEA 

PEA 

FDIVD 

A ADR 

B ADR 

push address of A 
push address of B 

divide with source operand of type double 

148 Chapter 20: MC68000 Arithmetic and Auxiliary Operations, Comparisons, Inquiries 



Square Root 
This is a unary operation and follows the one-address form. 

Example 
B ~ sqrt(B), where Bis extended. 

PEA 

FSQRTX 

B ADR push address of B 
square root (operand is always extended) 

Round-to-Integer and Truncate-to-Integer 
These are unary operations and follow the one-address form. 

Round-to-Integer rounds (according to the current rounding direction) to an integral 
value in the extended format. Truncate-to-Integer rounds toward zero (regardless of 
the current rounding direction) to an integral value in the extended format. The 
calling sequence is the usual one for unary operators, illustrated in the previous 
section for Square Root. 

Remainder 
This is a binary operation and follows the two-address form. 

Remainder returns auxiliary information in DO.W: the seven low-order bits of I n I 
(negated if n is negative). The high half of DO.L is undefined. This intrusion into the 
register file is extremely valuable in argument reduction-the principal use of the 
Remainder function. The state of DO after, <lI?- invalid remainder is undefined. 

Example 
B ~ Brem A, where A is single and Bis extended. 

PEA A ADR 

PEA B ADR 
FREMS 

push address of A 
push address of B 
remainder with source operand of type single 

Remainder 149 



Logb and Scalb 
Logb is a unary operation and follows the one-address form. 

Scalb is a binary operation and follows the two-address form. Its source operand is a 
16-bit integer. 

Example 
Bf-- Bx 2~ where Bis extended. 

PEA I ADR 

PEA B ADR 

FSCALBX 

push address of I 

push address of B 
sea lb 

Negate, Absolute Value, and CopySign 
Negate and Absolute Value are unary operations and follow the one-address form. 

CopySign uses the following two-address calling sequence to copy the sign of DST onto 
the sign of SRC 

PEA <SRC address> 
PEA <DST address> 

FCPYSGNX 

•!• Note: The order of the operands in the SANE CopySign function is reversed from 
that suggested in IEEE Standard 754. 

The formats of the operands of FCPYSGNX can be single, double, or extended. (For 
efficiency, an MC68000 assembly-language program should copy signs directly rather 
than calling FP68K.) 

Example 

Copy the sign of B (single, double, or extended) into the sign of A (single, double, or 
extended). 

PEA A_ADR 
PEA B ADR 
FCPYSGNX 

push address of A 
push address of B 

copy-sign 

FP68K treats Negate, Absolute Value, and CopySign as nonarithmetic in the sense that 
they raise no exceptions: even signaling NaNs do not signal invalid. 

150 Chapter 20: MC68000 Arithmetic and Auxiliary Operations, Comparisons, Inquiries 



Nextafter 
Both source and destination operands must be of the same floating-point type (single, 
double, or extended). The Nextafter operations use the following calling sequence: 

PEA <SRC address> 
PEA <DST address> 
<Nextafter macro> 

They perform SRC r next value, in the format indicated by the macro, after SRC in 

the direction of DST. 

Important 
The Nextafter operations differ from most two-address operations in that they 
change the SRC values rather than the DST values. 

Example 
A r Nextafter(A) in the direction of B, where A and Bare double (so next-after means 
next-double-after). 

PEA 
PEA 

FNEXTD 

A ADR 

B ADR 

Comparisons 

push address of A 

push address of B 

next- after in double format 

FP68K provides two comparison operations: FCPX (which signals invalid if its 
operands compare unordered) and FCMP (which does not). Each compares a source 
operand (which may be single, double, extended , comp, integer, or longint) with a 
destination operand (which must be extended). The result of a comparison is the 
relation (less, greater, equal, or unordered) for which 

DST <relation> SRC 

is true. The result is delivered in the X, N, Z, V, and C status bits, as shown in 
Table 20-1. 

Comparisons 151 



Table 20· 1 
Results of comparisons 

Status bit 

Result x N z v c 

Greater 0 0 0 0 0 
Less 1 1 0 0 1 
Equal 0 0 1 0 0 
Unordered 0 0 0 1 0 

These status-bit encodings reflect that floating-point comparisons have four possible 
results, unlike the more familiar integer comparisons with three possible results. You 
need not learn these encodings, however; simply use the FBxxx series of macros for 
branching after FCMP and FCPX. 

FCMP and FCPX are both provided to facilitate implementation of relational 
operators defined by higher-level languages that do not contemplate unordered 
comparisons. The IEEE Standard specifies that the invalid exception shall be signaled 
whenever necessary to alert users of such languages that an unordered comparison 
may have adversely affected their program's logic. 

Example 1 
Test B <= A, where Bis extended and A is single; if true, branch to LOC; signal if 
unordered. 

PEA A ADR push a ddress of A 

PEA B ADR push address of B 

FCPXS compare using source of type single, 

signal invalid if unordered 

FBLES LOC ; branch if B <= A 

Example 2 
Test B not-equal A, where Bis extended and A is double; if true, branch to LOC. (Note 
that not-equal is equivalent to less, greater, or unordered, so invalid should not be 
signaled on unordered.) 

PEA 

PEA 

FCMPD 

FBNES 

A ADR 

B ADR 

LOC 

push address of A 

push address of B 

compare using source of type double, 

do not signal invalid if unordered 

; branch if B not- equal A 

•!• Note about macros: Like the other macros in Part III, the floating-point branch­
control macros FBLES and FBNES are provided with MPW. 

152 C hapter 20: MC68000 Arithmetic and Auxiliary Operations, Comparisons, Inquiries 



Inquiries 
The classify operation provides both class and sign inquiries. This operation takes one 
source operand (single, double, comp, or extended), which is passed by address, and 
places the result in a 16-bit integer destination. 

The sign of the result is the sign of the source; the magnitude of the result gives the class 
of the operand, as shown in Table 20-2. 

Table 20-2 
Operand classes 

Value 

1 
2 
3 
4 
5 
6 

Class 

Signaling NaN 
Quiet NaN 
Infinity 
Zero 
Normalized 
Denormalized 

Example 

Set C to the sign and class of A. 

PEA 

PEA 
FCLASSS 

A ADR 

C ADR 

push address of A 

push address of result 
classify single 

Inquiries 153 



Chapter 21 

Conversions in MC68000 SANE 

155 



This chapter discusses conversions between binary formats and conversions between 
binary and decimal formats. Conversions between decimal formats provided by 
DecStr68K are discussed in Chapter 25, "MC68000 SANE Scanners and Formatter." 

Conversions between binary formats 
FP68K provides conversions between the extended type and the SANE types single, 
double, and comp, as well as the 16- and 32-bit integer types. 

Conversions to extended 
FP68K provides conversions of a source-of type single, double, comp, extended, 
integer, or longint- to an extended destination. 

The MC68000 SANE engine provides conversions of a source with format single, 
double, comp, extended, integer, or longint, to a destination in extended format, as 
shown in Table 21-1. 

Table 21-1 
Conversions to extended format 

Function 
name Type of conversion 

FS2X extended f- single 
FD2X extended f- double 
FC2X extended f- comp 
FX2X extended f- extended 
FI2X extended f- integer 
FL2X extended f- longint 

All operands, even integer ones, are passed by address. The following example 
illustrates the calling sequence. 

Example 

Convert A to B, where A is of type comp and Bis extended. 

PEA 

PEA 

FC2X 

A ADR 

B ADR 

push address of A 
push address of B 
convert comp to extended 

156 Chapter 21 : Conversions In MC68000 SANE 



Conversions from extended 

The MC68000 SANE engine provides conversions of an extended source to a 
destination of type single, double, comp, extended, integer, or longint, as shown in 
Table 21-2. 

Table 21-2 
Conversions from extended format 

Function 
name Type of conversion 

FX2S single f- extended 
FX2D double f- extended 
FX2C comp f- extended 
FX2X extended f- extended 
FX2I integer f- extended 
FX2L longint f- extended 

Note that conversion to a narrower format may alter values. Contrary to the usual 
scheme, the destination for these conversions need not be of type extended. All 
operands are passed by address. The following example illustrates the calling 
sequence. 

Example 

Convert A to B, where A is extended and Bis double. 

PEA 

PEA 

FX2D 

A ADR 
B ADR 

push address of A 
push address of B 
convert extended to double 

Binary-decimal conversions 
FP68K provides conversions between the binary types (single, double, comp, 
extended, integer, and longint) and the decimal record type. 

Decimal records and decform records (used to specify the form of decimal 
representations) are described in Chapter 3, "Conversions in SANE." For FP68K, the 
maximum length of the sig digit-string of a decimal record is 20. (The value 20 is 
specific to this implementation; algorithms intended to port to other SANE 
implementations should use no more than 18 digits in sig.) Because decimal 
records contain an odd number of bytes (25), you may need to append an unused byte 
to preserve word alignment. The values of style fields of decform records and of 
sgn fields of decimal records are stored in the high-order byte of their word. 

Binary-decimal conversions 157 



Binary to decimal 
The calling sequence for a conversion from a binary format to a decimal record passes 
the address of a decform record, the address of a binary source operand, and the 
address of a decimal-record destination. The maximum number of significant digits 
that w ill be returned is 19. 

Example 

Convert a comp-format value A to a decimal record D according to the decform 
record F. 

PEA 

PEA 

PEA 

FC2DEC 

F ADR 

A ADR 

D ADR 

Fixed-format overflow 

push address of F 
push address of A 

push address of D 
convert comp to decimal 

If a number is too large for a chosen fixed style, then FP68K returns the string ' ? ' in 
the sig field of the decimal record. 

Decimal to binary 
The calling sequence for a conversion from decimal to binary passes the address of a 
decimal-record source operand and the address of a binary destination operand. 

The maximum number of significant digits in sig is 19. The presence of a nonzero 
20th digit represents one or more additional nonzero digits after the 19th. This binary 
information in the 20th digit is used by FP68K only for rounding. The exponent 
corresponds to the 19-digit integer represented by the first 19 digits of sig. 

Example 

Convert the decimal record D to a double-format value B. 

PEA D ADR 

PEA B ADR 

FDEC2D 

push address of D 
push address of B 
convert decimal to double 

158 Chapter 21: Conversions in MC68000 SANE 



Techniques for maximum accuracy 

The following techniques apply to FP68K; other SANE implementations require other 
techniques. 

For maximum accuracy, delete trailing zeros from the sig field of a decimal record 
in order to minimize the magnitude of the exp field. For example, for 300E-43 set 
sig to '3' and exp to -41. 

If you are writing a parser and must handle a number with more than 19 significant 
digits, follow these rules: 

o Place the implicit decimal point to the right of the 19 most significant digits. 

o If any of the discarded digits to the right of the implicit decimal point is nonzero, 
then concatenate the digit '1' to sig. 

Binary-decimal conversions 159 



Chapter 22 

Controlling the MC68000 
SANE Environment 

161 



The Environment word 
The floating-point environment is encoded in the 16-bit integer format, as shown in 
Figure 22-1. Table 22-1 gives the hexadecimal value of each of the environment flags. 
Rounding direction and precision are stored as 2-bit encoded values; exception and 
halt-enabled flags are set as individual bits. Note that the default environment is 
represented by the integer value zero. 

ti on Rounding direc 
(see Tobie 22-1 ) 

,..Inexact 

Divide-by-zero 

s -Exception flog Overflow 

Underflow 

Invalid 

Rounding prec 
(see Table 22-

is ion 
1) 

r 
Inexact 

Divide-by-zero 

Holts enabled - Overflow 

Underflow 

J nvolid 

Figure 22- 1 

m~ ~ 

iis I 14I13I12I11I1019 I s I 71 6 I s I 41 31 2 I 1 I o I 
~ 

I 

y 

The Environment word for the MC68000 

162 Chapter 22: Controlling the MC68000 SANE Environment 



Table 22-1 
Bits In the Environment word for the MC68000 

Group name 

Rounding direction 
(Bit group $6000) 

Exception flags 
(Bit group $1FOO) 

Rounding precision 
(Bit group $0060) 

Halts enabled 
(Bit group $001F) 

Mask bits 

14 13 
0 0 
0 1 
1 0 
1 1 

12 1110 9 8 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 

4 3 2 1 0 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 

Note: Bits 7 and 15 are not used. 

Example 

Mask value 

$0000 
$2000 
$4000 
$6000 

$1000 
$0800 
$0400 
$0200 
$0100 

$0000 
$0020 
$0040 
$0060 

$0010 
$0008 
$0004 
$0002 
$0001 

Description 

To-nearest 
Upward 
Downward 
Toward-zero 

Inexact 
Divide-by-zero 
Overflow 
Underflow 
Invalid 

Extended 
Double 
Single 
(Undefined) 

Inexact 
Divide-by-zero 
Overflow 
Underflow 
Invalid 

With rounding toward-zero, inexact and underflow exception flags raised, extended 
rounding precision, and halt on invalid, overflow, and division-by-zero, the most 
significant byte of the Environment word is $72 and the least significant byte is $OD. 

Access to the environment settings is via the procedures Get-Environment, 
Set-Environment, Test-Exception, Set-Exception, Procedure-Entry, and 
Procedure-Exit. 

The Environment word 163 



Get-Environment and Set-Environment 
Get-Environment takes one input operand: the address of a 16-bit integer destination. 
The Environment word is returned in the destination. 

Set-Environment has one input operand: the address of a 16-bit integer, which is to be 
interpreted as an Environment word. 

Example 
Set rounding direction to downward. 

PEA A ADR 

FGETENV 
LEA A_ADR,AO 
MOVE.W (AO),DO 

AND.W #$9FFF,DO 
OR .W #$4000,DO 

MOVE.W DO, (AO) 
PEA A ADR 

FSETENV 

AO gets address of A 
DO gets environment 

clear bits 6000 
set rounding downward 

restore A 

Test-Exception and Set-Exception 
Test-Exception takes one operand: the address of a 16-bit integer destination. On 
input the destination contains a bit index, as shown in Table 22-2. 

Table 22-2 
Bits In the Exception word 

Bit Index 

0 
1 
2 

3 
4 

Description 

Invalid 
Underflow 
Overflow 
Divide-by-zero 
Inexact 

If the corresponding exception flag is set, then Test-Exception returns the value 1 in 
the high byte of the destination; otherwise, it returns 0. 

164 Chapter 22: Controlling the MC68000 SANE Environment 



Example 
Branch to XLOC if underflow is set. 

MOVE.W 

PEA 

FTESTXCP 

TST.B 

BNE 

#FBUFLOW,-(SP) 

(SP) 

(SP)+ 

XLOC 

underflow bit i ndex 

; test byte, pop word 

Set-Exception takes one source operand, the address of a 16-bit integer that encodes 
an exception in the manner described above for Test-Exception. Set-Exception 
stimulates the indicated exception. 

Procedure-Entry and Procedure-Exit 
Procedure-Entry saves the current floating-point environment (16-bit integer) at the 
address passed as the sole operand, and sets the operative environment to the default 
state. 

Procedure-Exit s~ves (temporarily) the exception flags, sets the environment passed 
as the sole operand, and then stimulates the saved exceptions. 

Example 
Here is a procedure that appears to its callers as an atomic operation: 

ATOMICPROC 

PEA E ADR 

FPROCENTRY 

push address to store environment 
procedure entry 

... body of routi ne goes here ... 

PEA 

FPROCEXIT 

RTS 

E ADR push address of stored environment 
procedure e xit 

Procedure-Entry and Procedure-Exit 165 



Chapter 23 

Halts in MC68000 SANE 

167 



The software package FP68K lets you transfer program control when selected floating­
point exceptions occur. Because this facility is used to implement halts in high-level 
languages, it is referred to as a halt mechanism. An assembly-language program can 
include a halt handler routine to cause special actions for floating-point exceptions. 
The FP68K halt mechanism differs from the traps that are an optional part of the IEEE 
Standard. 

Conditions for a halt 
Any floating-point exception will, if the corresponding halt is enabled, trigger a halt. 
The halt for a particular exception is enabled when the user has set the halt-enable bit 
corresponding to that exception. 

When enabled, the FP68K halt-on-underflow occurs when the result is both tiny and 
inexact. 

The halt mechanism 
If the halt for a given exception is enabled, FP68K does these things when that 
exception occurs: 

1 . FP68K delivers the same result to the destination address that it would return if the 
halt were not enabled. 

2. It sets up the stack frame shown in Figure 23-1: 

The first word of the record MI SC contains in its five low-order bits the AND of the 
halt-enable bits with the exceptions that occurred in the operation just completing. 
If halts were not enabled, then (upon return from FP68K) CCR and DO would have 
the values given in MISC. 

3 . It passes control by a JSR instruction through the halt vector previously set by 
FSETHV, pushing another long word containing a return address in FP68K. If 
execution is to continue, the halt procedure must clear 18 bytes from the stack to 
remove the opword and the DST, SRC, SRC2, and MI SC addresses. 

168 Chapter 23: Halts In MC68000 SANE 



Offset 

Offset 
t-- MISC record pointer ---i Long 

$12 t-- Pending DO 

1-- SRC2 address ___, Long $04 
Pending CCR 

SOE $02 
Holt exceptions 

1-- SRC address - Long -~- soo 

SOA 

t-- DST address - Long 

$06 
Opcode Word 

$04 

1-- Return address - Long 

5p-. 

Figure 23-1 
Stack frame for halt 

Set-Halt-Vector has one input operand: the address of a 32-bit integer, which is 
interpreted as the halt vector (that is, the address to transfer control to in case a halt 
occurs). 

Get-Halt-Vector has one input operand: the address of a 32-bit integer, which receives 
the halt vector. 

- Long 

Word 

Word 

The halt mechanism 169 



Using the halt mechanism 
This example illustrates the use of the halt mechanism. The program must set the halt 
vector to the starting address of a halt handler routine. This particular halt handler 
returns control to FP68K, which will continue as if no halt had occurred, returning to 
the next instruction in the program. 

HROUTINE 

LEA 
MOVE.L 
PEA 
FSETHV 

HROUTINE,AO 
AO, H_ADR 
H ADR 

PEA 
<FOPMACRO> 

MOVE .L 
ADDA.W 
JMP 

(SP)+,AO 
US,SP 
(AO) 

AO gets address of halt routine 
H_ADR gets same 

set halt vector to HROUTINE 

floating-point operand here 
a floating-point call here 

called by FP68K 
AO saves return address in FP68K 
increment stack past arguments 
return to FP68K 

The FP68K halt mechanism is designed so that a halt procedure can be written in 
Pascal (assuming MPW Pascal calling conventions). This is the form of a Pascal 
equivalent to HROUTINE: 

type miscrec ~ record 
halterrors: integer ; 
ccrpending: integer ; 
DOpending : longint ; 

end {record) ; 

procedure haltroutine 
var misc: miscrec 
src2, src, dst: longint 
opcode: i nteger ) ; 

begin {haltroutine ) 
end {haltroutine) ; 

Like HROUTINE, halt routine merely continues execution as if no halt had 
occurred. 

170 Chapter 23: Halts In MC68000 SANE 



Chapter 24 

Elementary Functions 
in MC68000 SANE 

171 



The elementary functions that are specified by the Standard Apple Numerics 
Environment are made available to MC68000 assembly-language programs by 
Elems68K. Elerns68K also includes two functions that compute logi(l + x) and 2x - 1 
accurately. Elems68K makes calls to FP68K for its basic arithmetic. The access 
schemes for FP68K (described in Chapter 19) and Elerns68K are similar. The 
examples that follow use macros provided with the Macintosh Programmer's 
Workshop. Opwords are listed in Appendix E, "MC68000 SANE Quick Reference 
Guide." 

One-argument functions 
The following SANE elementary functions have one extended argument, passed by 
address: 

o Log2(x) computes the base-2 logarithm of x. 

o Ln(x) computes the natural logarithm of x. 

o Lnl(x) computes the natural logarithm of (1 + x). 

o Exp2(x) computes 2x. 

o Exp(x) computes ex. 

o Expl(x) computes ex-1. 

o Cos(x) computes the cosine of x. 

o Sin(x) computes the sine of x. 

o Tan(x) computes the tangent of x. 

o Atan(x) computes arctangent of x. 

o RandomX(x) computes a pseudorandom value with x as seed. 
o Log21(x) computes log2(1 + x). 

o Exp2l(x) computes 2x - 1. 

The operation syntax is 

DST~ <op> DST 

These functions use the following one-address calling sequence: 

PEA <DST> 

<fopmacro> 

<fopmacro> is one of the macros that generate code co push an opword and invoke 
Elems68K. Those macros are listed in Appendix E, "MC68000 SANE Quick Reference 
Guide." The calling sequence follows the FP68K access scheme for unary operations, 
such as Square Root and Negate. 

172 Chapter 24: Elementary Functions in MC68000 SANE 



Example 
B ~ sin(B), where Bis of extended type. 

PEA B ADR 

FSINX 

push address of B 

B <-- sin (B) 

Two-argument functions 
The following SANE elementary functions have two-extended arguments, passed by 
address: 

o XPwrY(x,y) computes xY. 

o XPwrI(x,i) computes x 1 . 

General exponentiation (XPwrY) has two extended arguments, both passed by 
address. The result is returned in x. 

Integer exponentiation (XPwrl) also has two arguments. The extended argument x, 
passed by address, receives the result. The 16-bit integer argument i is also passed by 
address . 

Both exponentiation functions use the following calling sequence for binary 
operations: 

PEA 

PEA 

<SRC address> 

<DST address> 

push exponent address first 

push base address second 
<f oprnacro> 

The operations compute 

DST~ DST5RC 

Example 
B ~ BK, where the type of Bis extended and Kis a 16-bit integer. 

PEA 

PEA 

FXPWRI 

K ADR 

B ADR 

push address of K 

push address of B 

integer exponentiation 

Two-argument functions 173 



Three-argument functions 
Compound and Annuity use the following calling sequence: 

PEA 

PEA 

<SRC2 address> 

<SRC address> 

push address of rate first 

push address of number of 

periods second 

PEA <DST address> push address of destination third 
<f opmacro> 

The operations compute 

DST f-- <op> (SRC2, SRC) 

where <op> is compound or annuity, SRC2 is the rate, and SRC is the number of 
periods. All arguments SRC2, SRC, and DST must be of the extended type. 

Example 
C f-- (1 + R)N, where C, R, and N are of type extended. 

PEA 

PEA 

PEA 

R ADR 

N ADR 

C ADR 

FCOMPOUND 

push address of R 

push address of N 

push address of C 

compound 

174 Chapter 24: Elementary Functions In MC68000 SANE 



Chapter 25 

MC68000 SANE Scanners 
and Formatter 

175 



The Standard Apple Numerics Environment specifies conversions between decimal 
strings and decimal records. These scanning and formatting routines are contained in 
DecStr68K. DecStr68K is designed for use with FP68K, which provides binary-decimal 
conversions between decimal records and the SANE data formats. Thus, with 
DecStr68K and FP68K the application developer has a solution to the problems of 
scanning input strings to produce SANE-type values and of formatting SANE-type 
values for output. 

Opwords are listed in Appendix E, "MC68000 SANE Quick Reference Guide." 

DecStr68K uses an access scheme similar to that of FP68K. (See Chapter 19, "MC68000 
SANE Basics and Data Types.") DecStr68K removes its arguments from the stack 
before returning. 

Numeric scanners 
The DecStr68K numeric scanners are called Pstr2dec (P for Pascal programming 
language) and Cstr2dec (Cfor the Cprogramming language). Both scanners take four 
arguments, all passed by address: 

o string co be scanned 

o 16-bit integer index into string 

o decimal record for result 

o 8-bit Boolean for valid-prefix indication on output 

The index on input indicates where scanning is to begin, and on output is one greater 
than the index of the last character in the numeric substring just parsed. The longest 
possible numeric substring is parsed and returned in the decimal record. If no 
numeric substring is recognized, then the index remains unchanged. The valid-prefix 
parameter on output contains 1 if the entire input string beginning at the input index is 
a valid numeric string or a prefix of a valid numeric string. It contains 0 otherwise. 

The only difference between the scanners is in the string input argument. Pstr2dec 
expects a Pascal string: the string length in the zeroth byte of the string and the initial 
character of the string in the first byte (index = 1). Cstr2dec expects a C string: the 
initial character of the string in the zeroth byte (index = O), no length byte, and 
termination of the string by a null character (ASCII code O). Cstr2dec can be used to 
scan numbers embedded in large text buffers. 

The scanners use the following calling sequence: 

PEA <address of string> 

PEA <address of index> 
PEA <address of decimal record> 

PEA <address of valid-pref ix> 
FCSTR2DEC or FPSTR2DEC 

176 Chapter 25: MC68000 SANE Scanners and Formatter 



Numeric formatter 
The formatter Dec2Str takes three arguments, all passed by address: 

o decform record for formatting specification 

o decimal record to be formatted 

o string for result 

This routine returns a decimal string representing the input value from the decimal 
record, formatted according to input specifications passed in the decform record. 
The result string is a Pascal string: the zeroth byte contains the string length, and the 
first byte contains the first character in the string. For a full description of Dec2Str, see 
the section "Conversion From Decimal Records to Decimal Strings" in Chapter 3. 

The formatter uses the following calling sequence: 

PEA 

PEA 

PEA 
FDEC2STR 

<address of decf orm record> 
<address of decimal record> 
<address of string> 

Numeric formatter 177 



Chapter 26 

Examples: Using the 
MC68000 SANE Engine 

179 



The following examples illustrate the use of the 68000 SANE engine. In the comments, 
&x means the address of x ; STACK : x < y < z means xis on the top-of-stack, 
y is next deeper in the stack, and z is next deeper after y. 

Example: polynomial evaluation 
This example, taken verbatim from Elems68K source code, illustrates the evaluation of 
a polynomial 

£:oXn + clxn-1 + . . . + Cn 

using Homer's recurrence: 

resf- Co 

n!Sf- ras x x+ c1, for j= 1 to n 

On entry, AO points to an extended result field, Al points to the coefficient table of 
extended values, and A2 points to the extended function argument x. The coefficient 
table consists of a leading word that is a positive integer n giving the degree of the 
polynomial, and then n + 1 extended coefficients, starting with c0. For example, for 
the polynomial x3 + zx2 - 5, Al points to 

. WORD 3 

.WORD $3FFF,$8000,$0000,$0000,$0 000 

.WORD $4000 , $8000 , $0000,$0000 , $0000 

.WORD $0000,$0000 , $0000 , $0000 , $0000 

.WORD $C001 , $A000 , $0000 , $0000 , $0000 

Entry is by a JSR instruction to location POLYEVAL. 

POLYEVAL 

MOVE . W (Al)+, DO n- >DO, &cO->Al 

PEA (Al) STACK: &cO < &ret 

PEA (AO) STACK: &res < &cO 

n = 3 
CO a 1 

c l = 2 

c 2 = 0 

c3 - 5 

< &r et 

FX2X cO->res, STACK : &ret 

POLYLOOP 

PEA (A2) ; STACK : &x < &r et 
PEA (AO) ; STACK : &res < &x < &ret 
FMULX ; r es*x- >res , STACK : &ret 
ADD.W i lO ,Al adva nce to next coe f 
PEA (Al) STACK : &cj < &r et 
PEA (AO ) STACK : &res < &cj < &ret 

fADDX res +cj - >r es , STACK: &ret 
SUBQ. W #1,DO d ecrement loop counter 

BGT . S POLYLOOP a nd branch if > 0 
RTS 

180 Chapter 26: Examples: Using the MC68000 SANE Engine 



Example: language interface 
This example illustrates the kind of code required to implement a high-level language 
interface to the MC68000 SANE engine. This example implements the Pascal function 
Sea lb: 

FUNCTION Scalb(n: integer; x: extended): extended; 

The calling routine performs instructions that 

o push a 4-byte pointer to a 10-byte space for the return value 

o push a 2-byte value for n 

o push the 4-byte address of the 10-byte value x 

o execute a JSR to Scalb 

Thus, on entry, the stack contains &ret < &x < n < &res< .... The called routine 
clears the stack back to the result pointer. 

SCALB 

MOVEM.L (SP)+,DO/AO &ret- >DO, &x- >AO, 

STACK: n < &res 
PEA (SP) STACK: &n < n < &res 

MOVEA.L 6 (SP) ,Al &res- >Al 

PEA (Al) STACK: &res < &n < n < 
&res 

MOVE . L (AO)+, (Al)+ x->res (10 bytes) 
MOVE .L (AO)+, (Al)+ 

MOVE.W (AO) I (Al) 

FSCALBX Scalb(n,x)->res, 
STACK: n < &res 

ADDQ.L #2,SP STACK: &res 
MOVEA.L DO,AO &ret->AO 

JMP (AO) 

Example: scanning and formatting 
This example illustrates the use of the numeric scanner and formatter. It accepts as its 
argument an ASCII string representing a number of degrees and returns the 
trigonometric sine of its argument as a numeric ASCII string. Both input and output are 
Pascal strings: the zeroth byte gives the length; the first byte contains the first 
character in the string. The caller of the procedure pushes the address of the input 
string and executes a JSR instruction to location SINE. The procedure oveiwrites the 
input string with the result, whose length may be as large as 80, and clears the stack. 
The rout.ine Sine could be declared in Pascal by the following statement: 

PROCEDURE Sine(VAR s: DecStr); 
Example: scanning and formatting 181 



; Offsets 

sOff 

.iOff 

dOff 

vOff 

xOff 

SINE 

Pil80 

DecForm 

from A6 for i/o pointer and temporaries -

. EQU 8 s: i/o string 

.EQU -2 i: 16-bit integer index 

.EQU iOff-26 

.EQU dOff-2 

.EQU vOff-10 

LINK A6, JixOff 

MOVE.W #l,i0ff(A6) 

MOVE.L s0ff(A6), - (A7) 

PEA iOff (A6) 

PEA dOff (A6) 

PEA vOff (A6) 

FPSTR2DEC 

PEA dOff (A6) 

PEA xOff (A6) 

FDEC2X 

PEA 

PEA 

FMULX 

PEA 

FSINX 

PEA 

PEA 

PEA 

FX2DEC 

Pil80 

xOff (A6) 

xOff (A6) 

DecForm 

xOff (A6) 

dOff (A6) 

PEA DecForm 

PEA dOff (A6) 

MOVE.L s0ff(A6),-(A7) 

FDEC2STR 

UNLK A6 

MOVE.L (SP)+, (SP) 

RTS 

d: decimal record 

note extra word-alignment 

byte 

v: 16- bit boolean valid prefix 

note extra word-alignment 

byte 

x: extended 

STACK: x < v < d < i < A6 

< &ret < &s 

1 -> i 

push &s 

push &i 

push &d 

push &v 

s->d 

push &d 

push &x 

d->x 

push &(pi/180) 

push &x 

convert to radians: 

x*(pi/180)->x 

push &x 

sin(x)->x 

push &DecForm 

push &x 

push &d 

x->d 

push &DecForm 

push &d 

push &s 

d->s 

STACK: &ret < &s < 
STACK : &ret < 

.WORD 

.WORD 

$3FF9,$8EFA,$3512,$94E9,$C8AE; pi/180 

$0100,$000A style= fixed, 

; digits = 10 

182 Chapter 26: Examples: Using the MC68000 SANE Engine 



Part IV 

Using the MC68881 
SANE Engine 

Part IV is a delta guide to the SANE implementation for Apple Macintosh computers 
that use the MC68020 microprocessor and the MC68881 coprocessor. It describes the 
important differences between the floating-point software packages for the MC68000 
and the floating-point hardware embodied in the MC68881. 

For a complete description of the operation of the MC68000 SANE packages, please 
refer to Part III of this book. For complete information about the Motorola MC68881, 
please refer to Motorola's MC68881 Floating-Point Coprocessor User's Manual. 

183 



Chapter 27 

About the MC68881 
and SANE 

185 



This chapter describes the differences between two methods of performing SANE 
floating-point arithmetic on Macintosh models equipped with the Motorola MC68881 
floating-point coprocessor. One method involves making calls directly to the 
MC68881; the other involves calls to the floating-point packages, which themselves 
use the MC68881 for much of their internal processing. 

The floating-point packages built into Macintosh models that use the MC68020 and 
MC68881 are functionally identical to the floating-point packages for the MC68000. 

SANE implementations on the Macintosh 
Across the Macintosh model line there are three different implementations of SANE: 

o SANE software: floating-point packages for the MC68000 

o SANE hybrid: floating-point packages for the MC68020 and MC68881 

o SANE hardware: the MC68881 called directly by applications 

All three implementations support Apple's approach to IEEE Standard numerics, 
which is characterized by the following features: 

o extended format as a user type 

o expression evaluation in extended format 

o full conformity to the IEEE Standard 754 for floating-point arithmetic 

o application access to exceptions and exception handling 

On the MC68000-equipped Macintosh models, SA.NE is implemented as a set of 
software packages. Macintosh models equipped with the MC68020 and MC68881 have 
a different (bur functionally identical) set of SANE packages that take advantage of the 
MC68881 floating-point processor to obtain improved performance while 
maintaining object-code compatibility with applications written for the earlier 
models. Applications that require still more speed can access the MC68881 directly, at 
the expense of compatibility; those applications will not run on machines that don't 
have the MC68881. 

SANE software for the MC68881 
This section describes three ways of using SANE with the MC68881: 

o software package calls only 

o MC68881 calls for fundamental operations; package calls for transcendental 
operations and a few others 

o MC68881 calls for fundamental and transcendental operations; package calls for a 
few other operations 

186 Chapter 27: About the MC68881 and SANE 



All calls to software packages 
On Macintosh models that use the MC68020 processor and the MC68881 floating­
point coprocessor, the numerics packages have been written to exploit the power of 
the MC68881 while maintaining complete compatibility with arithmetic on other 
models of the Macintosh. Programs that call the SANE packages run on both kinds of 
machines and obtain identical results; the only difference is that they run faster on 
machines that use the MC68881. Depending on the operations performed, the SANE 
packages that exploit the MC68881 perform floating-point operations 5 to 50 times as 
fast as the packages on a Macintosh Plus, with an average speed improvement of about 
10 times. 

Arithmetic on the MC68881 floating-point coprocessor conforms to IEEE Standard 
754. For the fundamental operations-arithmetic operations ( +, -, *, / , Square Root, 
and Remainder), comparisons, and binary-to-binary conversions-the MC68881 
obtains results that are bit-for-bit identical with those obtained by the software SANE 
packages. For the transcendental functions, results differ in the last few bits. 

The hybrid SAl"\lE packages use the MC68881 to provide fundamental operations. The 
hybrid packages also use those operations to provide fast transcendentals with results 
identical to those of the software SANE packages. Figure 27-1 illustrates this idea. 
(Chapter 28, "Functions of the MC68881 and SANE Software," gives specific 
information about the differences between the SANE software packages and the 
MC68881.) 

( Application ) 

I 
Calls to packages for 

oil arithmetic 

+ 
Software 

SANE packages 

Computer without MC68881 

Figure 27-1 
Application calling packages tor all arithmetic 

c-~~A_P_P_llc~a_t_lo_n~~) 
I 

Coifs to packages for 
a ll arithmetic 

+ 
Hybrid 

SANE packages 

Coifs to hardware for 
fundamental operations 

+ 
MC68881 

Computer with MC68881 

SANE software for the MC6888 l 187 



Fundamental operations on the MC68881 

A program that doesn't need to run on all models of the Macintosh can obtain 
performance benefits by calling the MC68881 directly. Depending on the operations 
performed, such a program will perform floating-point operations 40 to 700 times as 
fast as on a Macintosh Plus, with an average speed improvement of about 100 times. 

A program that does not require the speed of the MC68881 transcendental functions 
should call the MC68881 only for fundamental operations (arithmetic operations, 
comparisons, and conversions between binary formats) and rely on the packages for 
other operations. Figure 27-2 illustrates this idea. 

c~~~~-,-~~A_P_P_llc_a_ti_o_n~~,...-~~~) 
I 

Ca/ls to packages for 
transcendental operations 

and a few others 

' ( 
Hybrid J 

SANE packages 
------__,~ 

I 
Calls to hardware for 

fundamental operations 

' MC68881 

Figure 27-2 

Direct calls to 
hardware for 
fundamental 
operations 

! 
Application calling the MC68881 for fundamental operations 

188 Chapter 27: About the MC68881 and SANE 



Transcendental operations on the MC68881 

To further improve the speed of cranscendental operations at the cost of a slight 
decrease in accuracy, programs can call the MC68881 for both fundamental and 
transcendental operations, as shown in Figure 27-3. Such programs still need to make 
calls to the packages for functions the MC68881 doesn't perform, such as conversions 
involving decimal records, financial functions, and certain logarithmic and 
exponential functions. All such functions are discussed in Chapter 28, "Functions of 
the MC68881 and SAl'ffi Software." 

c-~~~~~~A_P_P_llc_o_t_lo_n~~~~~~) 
I 

Calls to hardware 
for both fundamental 
and transcendental 

operations 

! 

Coils to packages for 
o few other operations 

t 
( 

Hybrid J 
SANE packages 

I 
Coils to hardware for 

fundamental operations 

t 
MC68881 

Figure 27-3 
Application calling the MC6888 l for all floating-point arithmetic 

•!• High-level language note: The MPW Pascal and C compilers and libraries include 
options for specifying whether the MC68881 is to be called directly for fundamental 
operations and whether the MC68881 is to be called directly for transcendental 
functions as well. Normally, source code need not be changed. For more 
information, please refer to the reference manual for the language you are using. 

Warning 

The decision to make direct calls to the MC6888 l should not be made lightly. 
The resulting program will not run on machines that don't have an MC68881. 
Furthermore. calling the MC68881 for other than the fundamental operations 
gives less accurate results. For more Information, see the section "Accuracy of 
the MC68881 's Elementary Functions· in Chapter 28. 

SANE software for the MC6888 l 189 



/ 

Calls to SANE and calls to the MC6888 l 
•!• High-level language note: This section deals with the syntax of assembly-language 

calls. Programmers who use high-level languages need not be concerned with the 
differences between calls to SANE packages and calls to the MC68881, because the 
compilers take care of all that. 

The numerics packages for the MC68881 are called FP881 (pack4) and Elems881 
(packS). The syntax for assembly-language calls is the same as it is for calls to FP68K 
and Elems68K, the numerics packages for the MC68000. For example, to add d + e 
with the result in e, with din double format and e in extended, the package call would 
look like this: 

PEA 

PEA 

FAD DD 

D ADR 

E ADR 

push operand addresses 

onto the stack 
macro for call to add (double) 

The syntax for calls directly to the MC68881 is quite different. Instead of pushing the 
operands onto the stack, you move them to and from any of eight floating-point 
registers, FPO through FP7. To add d + ewith the result in e, tl1e MC68881 call might 
look like this: 

FMOVE.D <d>,FP2 

FADD.X <e>,FP2 

FMOVE.X FP2,<e> 

move d operand to reg. 2 
add (extended) in reg. 2 
move result into e 

If the result operand e were already in one of the floating-point registers, say FP4, the 
call would look like this: 

FADD.D <d>,FP4 ; add (double) with (extended) result in reg . 4 

MC6888 l data types 
Like the SANE software, the MC68881 floating-point coprocessor performs arithmetic 
on numbers in extended format. This chapter describes the way the MC68881 handles 
extended-format numbers. 

The MC68881 also has byte, word, and longword integer formats and a packed 
decimal floating-point format. For information about those formats, please consult 
Motorola's MC68881 Floating-Point Coprocessor User's Manual. 

190 Chapter 27: About the MC68881 and SANE 



MC68881 floating-point registers 

The MC68881 coprocessor makes available eight floating-point registers, FPO through 
FP7. Each of those registers is 80 bits wide and holds an extended-format number. 
High-level languages for the MC68881 use some or all of the floating-point registers for 
evaluating floating-point expressions. Programmers using those languages who want 
to use floating-point registers for temporary storage in assembly-language routines will 
need to consult language documentation to determine which ones are scratch registers 
and which ones must be preseived. 

96-bit extended format 

For data storage, the MC68881 floating-point coprocessor uses a 96-bit extended 
format made up of five fields, as shown in Figure 27-4. Note that the s, e, i, and/fields 
in the 96-bit format are the same as those in the standard SANE 80-bit format; the 
shaded field is unused. The 96-bit format is a multiple of 4 bytes to exploit the 
MC68020 microprocessor's ability to fetch data faster when the data is aligned on 
longword boundaries. 

l 15 16 63 

Isl e f 

msb lsb msb 

Figure 27-4 
96-blt extended format 

Table 27-1 shows how the value v of the number is determined by the fields shown in 
Figure 27-4. 

Table 27-1 
Values of extended-format numbers 

Biased exponent e Integer/ Fraction f Valuev Class of v 

lsb 

0 s; es; 32766 1 (any) v= (-l)sx z<e-16383) x (lj) Normalized 

0 s; es; 32766 0 ft:· 0 v= c- 1)sx 2Ce-16383) x (Oj) Denormalized 

0 s; es; 32766 0 f=O v= (-1)5 x0 Zero 

e = 32767 (any) f=O v = (-1)5 x Infinity Infinity 

e= 32767 (any) f:t:O visa NaN NaN 

MC6888 l data types 191 



Important 

The extended format is not a standard format. You should not use it for data 
stored In files used by other programs. The IEEE Standard specifies only minimum 
precision and range for extended format; implementations of the IEEE Standard 
(or SANE) may use a different extended format that meets those minimum 
specifications. 

Comparison of extended formats 

Despite the difference in lengths of the formats, numbers stored in the MC68881 's 
96-bit extended format have exactly the same precision as numbers in SANE's 80-bit 
extended format. Figure 27-5 shows the resemblance between the two extended 
formats. Notice that the 16-bit unused field in the 96-bit format is aligned on a word 
boundary. Also notice that the exponent part of both formats also occupies 16 bits on 
a word boundary. 

Expo~ent I 
and sign 

96-bit extended format 

·-- I Significand 

~ 80-bit extended format ~ 

Exponent J 
and sign . Significand 

: .............. ......... ; ...................... .:. ...................... :.. ...................... ; ....................... : ....................... : 

~---------Word boundaries---------~ 

Figure 27-5 
Comparison of extended formats 

The MC68881 loads 96-bit extended values into its 80-bit floating-point registers by 
ignoring the unused 16 bits. When the MC68881 writes the contents of a floating-point 
register to memory, it also writes over the unused 16 bits. 

192 Chapter 27: About the MC68881 and SANE 



Conversions between extended formats 

Programs that must be compatible with MC68000-based machines should continue to 
use the 80-bit extended format used by the software SANE packages. Ideally, programs 
that make calls directly to the MC68881 should use the 96-bit extended format 
exclusively. It is not a good idea to mix formats in the same program because there is 
no way for the program to determine whether a stored value is in 80-bit format or 
96-bit format. 

High-level languages that support SANE use the software packages and store data in the 
80-bit extended format. Many of those languages provide an option to produce code 
that makes use of the MC68881 and stores data in the 96-bit extended format. 

For programs that call routines that use the 80-bit extended format, the SANE library 
for the MC68881 includes conversion routines (X96ToX80 and X80ToX96). Using 
these conversion routines, the programmer can define a new interface to the 80-bit 
routines and so make the conversions happen each time the routines are called. 

For example, suppose you have a routine that uses the 80-bit format; call it FPFunc. 
You could reuse your routine under the MC68881 option by creating a 96-bit interface 
around it. The interface to your function could look like the following code. 
(Remember to name your 80-bit extended data type something distinct from the name 
of the 96-bit extended type.) 

FUNCTION FPFunc (x : Extended80): Extended80 ; External ; 

FUNCTION FPFunc96 (x: Extended): Extended; 

BEGIN 

FPFunc := X80ToX96(FPFunc(X96ToX80(x))); 

END; 

Using the comp format with the MC68881 
The MC68881 doesn't support the comp format directly. High-level languages for the 
MC68881 machines must handle comp format conversions with software even when 
directed to make calls directly to the MC68881. Assembly-language programmers who 
want to use the comp format can either use the SANE package software to perform 
arithmetic with comp variables or call the conversion routines Comp2X and 
X2Comp, which convert back and forth between comp and extended. 

MC6888 l data types 193 



SANE macros for the MC68881 
MPW version 3.0 (and subsequent versions) includes new macros that replace SANE 
package calls with MC68881 operations using the 96-bit extended format. For 
operations not available on the MC68881, the macros convert 96-bit values to 80-bit 
extended format and make package calls. By changing their programs to use the 96-bit 
extended format and reassembling with the new macros, programmers who use MPW 
can gain a performance improvement from the MC68881. 

The macros make it easy to reassemble programs for the MC68881, but they don't 
make the best use of the MC68881's floating-point registers. To obtain maximum 
performance, you may prefer to rewrite your programs for the MC68881 rather than to 
use the macros. 

194 Chapter 27: About the MC68881 and SANE 



Chapter 28 

Functions of the MC68881 
and SANE Software 

195 



Though different in detail, the MC68881 and the SANE packages are both 
implementations of the IEEE Standard 754. The MC68881 and the packages perform 
many of the same functions, and of those, many give the same results on both. Other 
functions give slightly different results; a few other functions are available on only one 
or the other. 

This chapter lists the functions in all those categories. For complete information about 
the MC68000 SANE packages, please refer to Part III of this book. For complete 
information about the Motorola MC68881, please refer to Motorola's MC68881 
Floating-Point Coprocessor User's Manual. 

Functions that are the same on both 
For fundamental operations and certain other functions, the MC68881 obtains results 
that are bit-for-bit identical to those obtained by the SANE packages. On machines 
that use the MC68020 and the MC68881, the SANE packages call MC68881 operations 
for those functions, as explained in the previous chapter. Programs that need not be 
compatible with MC68000-based models of the Macintosh can obtain increased speed 
by calling the MC68881 directly for those functions. 

•!• Note: The MC68881 and the SANE software packages return the same values for the 
operations listed here, except when the operation creates a NaN, such as square 
root of a negative number. Both implementations create NaNs, but the MC68881 
does not support the SANE NaN codes; see the section on NaNs in Chapter 5. 

The MC68881 and the SANE software packages return identical results for the following 
operations: 

o addition 

o subtraction 

o multiplication 

o division 

o square root 

o remainder (but format of quo is different) 

o round-to-integral value 

o comparison 

o conversions between floating-point formats 

•!• Note: Motorola's MC68881 manual refers to all these operations, along with the 
binary-to-binary conversions, as the arithmetic operations. This book calls those 
the fundamental operations, reserving the word arithmetic for the set comprising 
only addition, subtraction, multiplication, division, square root, and remainder. 

196 Chapter 28: Functions of the MC68881 and SANE Software 



Functions that are similar 
For some operations, the MC68881 and the software packages return different results. 
For transcendental operations, the MC68881 obtains results that are slightly less 
accurate than those obtained by the software packages; for a few operations, the 
MC68881 obtains results that are different for cases involving 0, Infinities, and NaNs. 
Programs that can tolerate the diminished accuracy and that need not run on 
MC68000-based models of the Macintosh can obtain increased speed by calling the 
MC68881 for those functions instead of using the software packages. 

The following operations are less accurate on the MC68881 compared with the software 
or differ in other ways, as noted: 

o binary scale (MC68881 truncates scale factors to 14 bits) 

o binary-to-decimal and decimal-to-binary conversion (MC68881 's decimal format 
has shorter fields; it doesn't support extended format) 

o base-e logarithm 

o base-2 logarithm 

o base-e logarithm of 1 + x 

o base-e exponential 

o base-2 exponential 

o base-e exponential minus 1 

o sine 

o cosine 

o tangent 

o arctangent 

The following operations on the MC68881 have the same accuracy as the software, but 
behave differently for zero, denormalized numbers, Infinities, and NaNs: 

o negation (only the MC68881 can signal exceptions and halt) 

o absolute value (only the MC68881 can signal exceptions and halt) 

o classify (Mode Control byte in the MC68881 classifies numbers but does not 
distinguish between normalized and denormalized numbers) 

o round-to-integer (identical except when out-of-range: the packages give largest 
negative value, while the MC68881 preserves sign) 

o truncate-to-integer (identical except when out-of-range: the packages give largest 
negative value, while the MC68881 preserves sign) 

o binary logarithm (identical results except for 0 and Infinity) 

Functions that are similar 197 



Functions only the SANE software has 
The SANE software packages include several functions that the MC68881 doesn't have. 
Those functions are 

o copy sign 

o next afrer 

o integer exponentiation 

D general exponentiation 

o base-2 logarithm of 1 + x 

o base-2 exponential minus 1 

o compound interest 

o annuity factor 

o random number generator 

o conversions between floating-point types and decimal records 

o scanning and formatting berween ASCII strings and decimal records 

The SANE software packages also support the comp type in arithmetic operations, 
conversions, classifications, and comparisons, whereas the MC68881 does not. 

Functions only the MC68881 has 
IThe MC68881 includes several functions that the SANE software packages don't have. 
Those functions are 

o binary mantissa 

o sine and cosine (in a single call) 

o arcsine 

o arccosine 

o hyperbolic sine 

o hyperbolic cosine 

o hyperbolic tangent 

o hyperbolic arctangent 

o base-10 logarithm 

o base-10 exponential 

o modulo remainder (rounds toward zero) 

198 Chapter 28: Functions of the MC6888 l and SANE Software 



o set condition (floating-point) 

o multiply and round to single 

o divide and round to single 

The MC68881 also supports the single-byte signed-integer format; the software 
packages do not. 

(• Note: The transcendental operations in this list return results with accuracy similar 
to that of the other transcendental operations on the MC68881. 

Accuracy of the MC68881 's elementary functions 
The hybrid SANE packages on Macintosh models with MC68881 coprocessors call the 
MC68881 for basic arithmetic and comparisons, where its results are identical to those 
obtained by the SANE packages for the MC68000. For the elementary functions (that 
is, transcendental functions), hybrid SANE performs the operations in software, using 
the MC68881's basic arithmetic to make them relatively fast. 

The hybrid SANE packages compute the elementary functions in software both for 
accuracy and for compatibility: the hybrid packages for the MC68881 return the same 
results, bit-for-bit, as the software packages for the MC68000 do. Programs that run on 
either kind of Macintosh are assured of consistency of results. Furthermore, the SANE 
packages are better behaved than the MC68881. Even where there are errors, the SANE 
packages are more nearly monotonic, and more often return correct answers for 
inverse operations. For example, when asked to compute 

y = arctan (tan (0.5)) 

the MC68881 returns an extended value for y of 0.49999999999999999800, whereas the 
SANE packages return 0.50000000000000000000 for y. 

For the elementary functions, both the SANE packages and the MC68881 have errors in 
the least significant bits of the fraction part of extended-format results, but the 
packages' errors rarely exceed the last bit, whereas the MC68881 's errors can extend to 
as many as the lase five bits. For individual elementary functions, the MC68881 and the 
SANE packages return results that are practically identical when rounded co single or 
double precision. For complicated expressions involving elementary 
(transcendental) functions, the MC68881 is much more likely co return an error in a 
double-precision result than the SANE packages are. 

Accuracy of the MC68881 · s elementary functions 199 



Chapter 29 

Controlling the MC68881 
Environment 

201 



The MC68881 version of SANE differs from the MC68000 version in the way it stores the 
floating-point environment information. 

Where the MC68000 SANE packages maintain an Environment word in low memory, 
the MC68881 version keeps the floating-point environment in the MC68881's status 
and control registers . The location of environment information is completely 
transparent to programs that access the environment with the SANE environment­
control calls described in Chapter 7. For compatibility with programs written for 
machines that use the MC68000, the hybrid SAl\TE packages for MC68881 machines use 
the same environment-control calls as the software SANE packages for the MC68000. 

Warning 

Programs that change their environment flags by directly manipulating bits in 
SANE 's Environment word In low memory will not run correctly on models of the 
Macintosh that use the MC68881. This might also affect compilers that set the 
default environment by storing zero d irectly into the Environment word. As 
a lways, direct manipulation of global data in low memory is ill-advised. 

The MC68881 's environment registers 
The MC68881 has two registers that contain (among other things) the floating-point 
environment information. Those registers are FPCR, the Floating-Point Control 
register, and FPSR, the Floating-Point Status register. Figures 29-1 and 29-2 show the 
bytes making up the registers. The control register FPCR contains 4 bytes, but only 2 
are used: the Exception Enable byre and the Mode Control byte. The status register 
FPSR contains 4 bytes: the Condition Code byte, the Quotient byte, the Exception 
Status byte, and the Accrued Exception byte. 

31 23 15 7 0 ............................................................. ~----~----~ 
0 Exception Mode 

Enable Control ... ...... . ... ... . ... .... ... .. .. .. ... . ... ..... . ......... . ..... '--~'-"---''----''----"-.0.--_..:..;,__J 

Figure 29-1 
The MC68881 's Floating-Point Control register (FPCR) 

31 

Condition 
Code 

Figure 29-2 

23 

Quotient 

15 

Exception 
Status 

7 

Accrued 
Exceptions 

0 

The MC6888 l 's Floating-Point Status register (FPSR) 

202 Chapter 29: Controlling the MC68881 Environment 



The MC68881 bytes that include the equivalent of the SANE packages' environmental 
information are the FPCR's Exception Enable and Mode Control bytes and the FPSR's 
Exception Status and Accrued Exception bytes. The next two sections describe those 
bytes in detail. 

•!• Note: The environment bits in the MC68881 's FPCR and FPSR are similar to the 
environment bits in the SANE software for the MC68000, but they aren't in the same 
locations in the bytes. 

The Exception Enable and Mode Control bytes 
The FPCR's Exception Enable and Mode Control bytes contain bits for enabling traps 
(halts) and for setting the rounding modes- that is, rounding precision and direction. 
Those bits have near counterparts in the MC68000 SANE Environment word. 
Figure 29-3 and Table 29-1 identify the individual bits in the Exception Enable and 
Mode Control bytes. 

•!• Note: The trap mechanism on the MC68881 is similar to the halt mechanism used 
by the software SANE packages. See Chapter 30, "The MC68881 Trap Mechanism." 

Traps enabled 

Rounding precision 
(see Table 29-l) 

Rounding direction 
(see Table 29-l ) 

Figure 29-3 

msb lsb 

I 1s I 14 I13I12I11 I1019 I a I 1 I 61 s I 41 3 I 2 I 1 I o I 
Branch or set on unordered __J J 

Q Q 

Signaling NaN 

Operand erro r 

Overflow 

Underflow 

Divide-by-zero 

Inexact result 

Inexact input 

The MC68881 's Exception Enable and Mode Control bytes 

The Exception Enable and Mode Control bytes 203 



Table 29-1 
Bits In the MC6888 l 's Exception Enable and Mode Control bytes 

Group name Mask bits Mask value Description 

Traps enabled 15 14 13 12 11 10 9 8 
(Bit group $FFOO) 1 0 0 0 0 0 0 0 $8000 Branch or set on unordered 

0 1 0 0 0 0 0 0 $4000 Signaling NaN 
0 0 1 0 0 0 0 0 $2000 Operand error 
0 0 0 1 0 0 0 0 $1000 Overflow 
0 0 0 0 1 0 0 0 $0800 Underflow 
0 0 0 0 0 1 0 0 $0400 Divide-by-zero 
0 0 0 0 0 0 1 0 $0200 Inexact result 
0 0 0 0 0 0 0 1 $0100 Inexact input 

Rounding precision 

~ 
(Bit group $00CO) 0 $0000 Extended 

1 $0040 Single 
0 $0080 Double 
1 $00CO (Undefined) 

Rounding direction 

~ (Bit group $0030) 0 $0000 To-nearest 
1 $0010 Toward-zero 
0 $0020 Downward 
1 $0030 Upward 

Note: Bits 0, 1, 2, and 3 are not used. 

•!• Note: To trap on all operations that generate the inexact exception, you must 
enable traps on both inexact result and inexact input. Similarly, to trap on all 
operations that generate the invalid exception, enable traps on the following three 
exceptions: 

o branch or set on unordered 

o signaling NaN 

o operand error 

204 Chapter 29: Controlling the MC68881 Environment 



The Exception Status and Accrued Exception bytes 
The MC68881's FPSR contains bits for two kinds of exception flags: exception status 
flags and accrued exception flags. The exception status flags reflect the status of the last 
instruction; they are cleared at the start of each instruction. The accrued exception 
flags reflect the history of all previous instructions since the last time they were cleared 
by the application. The accrued exception flags are equivalent to the exception flags in 
the MC68000 S.Al\TE software. Figure 29-4 and Table 29-2 identify the individual bits in 
the FPSR's Exception Status and Accrued Exception bytes. 

At the end of each operation that can affect the Accrued Exception bits, each of the 
Current Exception bits that is set in tum causes the setting of the corresponding 
Accrued Exception bit. Either the inexact-result bit or the inexact-input bit can cause 
setting of the inexact Accrued Exception bit. Similarly, any of the following three 
exception bits causes the setting of the invalid Accrued Exception bit: 

o branch or set on unordered 

o signaling NaN 

o operand error 

m~ ~ 

I 15 ii4 I 13 I 12 I 11 I 10 I 9 I a I 1 I 6 I 5 1 4 I 31 2 I 1 I o I 
Branch or set on unordered _J 

I 

Current 
Exception 
bits 

Accrued 
Exception 
bits 

Figure 29-4 

Signalin gNaN 

Operan d error 

Overflo w 

Underfl ow 

Divide-by-zero 

Inexact result 

Inexact input 

Invalid 

Overflo w 

Underfl ow 

Divide-by-zero 

Inexact 

The MC68881 's Exception Status and Accrued Exception bytes 

The Exception Status and Accrued Exception bytes 205 



Table 29-2 
Bits In the MC6888 l 's Exception Status and Accrued Exception bytes 

Group name Mask bits Mask value Description 

Current Exception flags 15 14 13 12 11 10 9 8 
(Bit group $FFOO) 1 0 0 0 0 0 0 0 $8000 Branch or set on unordered 

0 1 0 0 0 0 0 0 $4000 Signaling NaN 
0 0 1 0 0 0 0 0 $2000 Operand error 
0 0 0 1 0 0 0 0 $1000 Overflow 
0 0 0 0 1 0 0 0 $0800 Underflow 
0 0 0 0 0 1 0 0 $0400 Divide-by-zero 
0 0 0 0 0 0 1 0 $0200 Inexact result 
0 0 0 0 0 0 0 1 $0100 Inexact input 

Accrued Exception flags 7 6 5 4 3 
(Bit group $00F8) 1 0 0 0 0 $0080 Invalid operation 

0 1 0 0 0 $0040 Overflow 
0 0 1 0 0 $0020 Underflow 
0 0 0 1 0 $0010 Divide-by-zero 
0 0 0 0 1 $0008 Inexact 

Note: Bits 0, 1, and 2 are not used. 

206 Chapter 29: Controlling the MC6888 l Environment 



Chapter 30 

The MC68881 Trap Mechanism 

207 



Traps in the MC68881 and halts in the software SAL"'\/E packages are two differenc 
mechanisms for handling exceptional events. The MC68881 implernents the traps that 
are an optional part of the IEEE Standard. For more information about the way the 
MC68881 handles traps, please refer to Motorola's MC68881 Floating-Point 
Coprocessor User's Manual. For information about halts and SANE software, please 
refer to Chapter 23, "Halts in MC68000 SAL"'\/E." 

Halts and traps 
Halts and traps respond to the SANE exceptions in different ways. In the event of a 
halt, the SANE packages put information about the halt onto the stack and pass control 
through one halt vector to a single halt-handling routine. (For a complete 
description, please refer to Chapter 23.) The MC68881 deals with a trap by passing 
control through one of seven trap vectors to separate trap handlers, which find 
information about the trap in the MC68881's registers. 

Calls to hybrid SANE packages, which use the MC68881 coprocessor, use the same 
one-vector halt mechanism as the software SANE packages, thus maintaining 
compatibility with programs written for other models of the Macintosh. On the other 
hand, programs that call the MC68881 directly must use the MC68881's trap 
mechanism. 

MC68881 exception handling 
Exception handlers for programs that make direct calls to the MC68881 must use the 
trap mechanism described in Motorola's MC68881 Floating-Point Coprocessor 
User's Manual and use the routines SetTrapVector and GetTrapVector in the SANE 
library. Several functions in the SANE library are implemented internally by calls to 
the package software because the MC68881 does not perform those functions. To avoid 
forcing your program to deal with two different mechanisms, the MPW libraries for the 
MC68881 protect the calling program against package-type halts by substituting an 
MC68881 trap whenever an exception occurs that would otherwise have caused a 
package halt. 

•!• Note: Programmers using high-level languages needn't be concerned about mixing 
halts and traps. Programs compiled with the MC68881 options and linked to the 
SANE libraries for the MC68881 always use the MC68881 's trap mechanism. Any 
exception handlers must be coded for the appropriate mechanism. 

Assembly-language programs that use the MC68881 directly can make calls to the 
software packages by using macros for the MC68881, which automatically map the 
software halts into hardware traps. (See "SANE Macros for the MC68881" in 
Chapter 27.) Alternatively, programmers can use a similar approach in their own 
code. 

208 Chapter 30: The MC68881 Trap Mechanism 



The Pascal and C SANE libraries in MPW include routines for use with the MC68881. 
Those routines bracket SANE package calls with routines chat map the software 
exceptions to the equivalent hardware flags. One of those routines saves MC68881 
exception and trap flags, clears the package flags, then calls the SANE packages. Thus, 
the packages never see enabled halts. Before returning to the caller, the other routine 
restores the saved MC68881 exception and halt flags and signals any exceptions 
pending from the packages. In this way the package halt mechanism is disabled and 
exceptions are handled by the MC68881 's trap mechanism. 

• 

MC6888 l exception handling 209 



Chapter 31 

Examples: Using the 
MC6888 l SANE Engine 

211 



The following examples illustrate direct calls to the MC68881 coprocessor. The 
examples are similar to those in Chapter 26, "Examples: Using the MC68000 SANE 
Engine." 

In the comments, &x means the address of xand STACK : x < y < z .. . means x 
is on the top-of-stack, y is next deeper in the stack, and z is next deeper after y. 

Example: polynomial evaluation 
This example illustrates the evaluation of a polynomial 

coxn + C1Xn -1 + ... + en. 

using Homer's recurrence: 

res~ c0 

res~ res x x + c1, for j = 1 to n 

On entry, Al points to the coefficient table of extended values and FPl contains the 
extended function argument x. The example returns its result in FPO. The coefficient 
table consists of a leading word that is a positive integer equal to n - 1, where n is equal 
to the degree of the polynomial, followed by n + 1 extended coefficients, starting with 
c0. For example, for the polynomial x3 + 2x2 - 5, Al points to the following table: 

DC.W 2 n-1 = 2 (one less than last subscript) 
DC.X "1" co 1 
DC.X "2" cl = 2 
DC.X " 0 " c2 0 
DC.X "-5" c3 -5 

Entry is by a JSR instruction to location PolyEval. 

PolyEval Proc Entry 
MOVE . W (Al)+,DO 

FMOVE.X (Al)+,FPO 

PolyLoop 
FMUL.X FPl,FPO 
FADD.X (Al)+,FPO 
DBRA DO,PolyLoop 

RTS 

copy n into DO 
and advance Al to point to first coeff 

initialize the result space with cO 
and advance Al to point to cl 

multiply accumulated result by x 
add next coefficient , advance coeff pointer 
decrement loop counter, cont i nue if DO ~ 0 

212 Chapter 31: Examples: Using the MC6888 l SANE Engine 



Example: language interface 
This example illustrates the kind of code required to implement a high-level language 
interface to the MC68881 coprocessor. This example implements the following Pascal 
function: 

FUNCTION ScalbNew(n : integer; x : extended) : extended; 

The calling routine performs the following steps: 

o push a 4-byte pointer to a 12-byte space for the return value 

o push a 2-byte value for n 

o push the 4-byte address of the 12-byte value x 

o execute a JSR instruction to SCALBnew 

Thus, on entry, the stack contains &ret < &x < n <&res< .. . . The called routine 
will clear the stack back to the result pointer. 

SCALBNEW Proc 

MOVEM.L 

FMOVE.X 
FSCALE.W 
MOVE .L 
FMOVE.X 
JMP 

Entry 

(SP)+,AO / Al 

(Al) I FPO 
(SP)+,FPO 
(SP) ,Al 
FPO, (Al) 
(AO) 

return address - > AO, 
address of x - > Al, 
removing both from the stac k 

copy x to working register 
scale x by n and remove n from stack 
collect result address, leave on stack 
return result 
return to caller 

Example: scanning and formatting 
The following example shows the mixing of package calls with direct MC68881 calls. It 
must use 80-bit extended for calls to the software packages, and 96-bit extended for 
calls to the MC68881. The last two equates (x0ff80 and x0ff96) are exploited to 
convert in place between the two extended formats; Figure 27-5 shows how this is 
done. Concurrency between the MC68020 and the MC68881 sometimes allows this 
format conversion to take zero time. 

The example illustrates the use of the numeric scanner and formatter. It accepts as 
argument an ASCII string representing a number of degrees and returns the 
trigonometric sine of its argument as a numeric ASCII string. Both input and output are 
Pascal strings: the zeroth byte gives the length; the first byte contains the first 
character in the string. The caller of the procedure pushes the address of the input 
string and executes a JSR instruction to location SINE. The procedure overwrites the 
input string with the result, whose length may be as large as 80, and clears the stack. 
The procedure Sine could be declared in Pascal as follows: 

PROCEDURE Sine(var s : DecStr); 

Example: scanning and formatting 213 



Notice that the example includes two methods for computing the sine. It makes a call 
to the MC68881, but it also includes code, in the form of comments, for making the 
equivalent package call. 

SINE PROC Entry 

; Offset s from AG for i/o pointer and temporaries -
sOff EQU 8 s i/o strng 
iOff EQU -2 i : lG-bit integer index 
dOff EQU i0ff- 2G d : decimal record 

vOff EQU dOf f - 2 

note extra word-alignment byte 

v : lG-bit boolean for valid p refix 
n ote extra wo rd-alignment byte 

xOffBO EQU 

x0ff9G EQU 
vOff- 10 
x OffB0-2 

x when viewed as BO-bit extended 
x : when viewed as 9G- bit extended 

LINK AG, fxOff96 
MOVE .W U,iOff(AG) 
MOVE . L sOff (AG) ,-(A7) 

PEA iOff (A6) 
PEA dOff (AG) 
PEA vOff (AG) 

FPSTR2DEC 

PEA dO ff (AG) 
PEA xOffBO (A6) 

FDEC2X 

STACK: x < v < d < i < AG < &ret < &s 

initialize i to 1 
; push s address 
push i address 

push d address 
push v address 

call Pack? to convert string to deci mal r ecord 

push d addr ess 
push x addres s (pack call , so delivers SO - bits) 

call Pack4 to conver t decimal to extended 

LEA PilBO , AO collect address of 1t / 1 80 (below) 

FMOVE.X (AO) ,FPO move 1t/180 to a working register 
MOVE. W xOffBO (AG) , x0ff9G (A6) ; convert x to 96-bit extended 

FMUL.X x0ff96 (A6), FPO; x * 7t/ 180 (881 call, so use 96- bits) 

214 Chapter 31: Examples: Using the MC68881 SANE Engine 



deliver sin (x * 7t/180) to x as an 80 - bit extended 
FSIN . X FPO sin (x * 7t/180) 
FMOVE.X FPO,x0ff96(A6) ; deliver binary result to x (BBl call, 96-bits) 
MOVE . W x0ff96 (A6), x0ff80 (A6) ; convert x to 80-bit extended 

or use this alternate code for more precise (but slower) sine calculation : 
FMOVE . X FP0,x0ff96(A6) ; copy x * 7t/180 to x 

MOVE . W x0ff96 (A6), xOffBO (A6) ; convert x to 80 - bit extended 

PEA x0ff80 (A6) push x address (pack call, use 80-bit extended) 
FSINX call packS to effect sin (x) -> x 

PEA DecForm 
PEA x0ff80 (A6) 
PEA dOff (A6) 

FX2DEC 

PEA DecForm 
PEA dOff (A6) 

push DecForm address 
push x addres s (pack call , BO-bits) 

push d address 

call Pack4 to convert extended to decimal 

push DecForm address 

push d address 
MOVE. L sOff (A6), - (A 7) ; push s address 
FDEC2STR call Pack? to convert decimal to string 

UNLK A6 
MOVE . L (SP) + , (SP) 

RTS 

restore stack to: &ret < &s 
leaving only &ret on stack 

PilBO DC.X 

DecForm DC. W 

DC . W 

" $3FF93FF98EFA351294E9C8AE " ; 7t/18 0, 96-bit format 
$0100 style = fixed 
$000A ; digits = 10 

Example: scanning and formatting 215 



Appendixes 

217 



Appendix A 

SANE in High-Level 
Languages 

Much of the Standard Apple Numerics Environment, as specified in this manual, can 
be provided to the high-level language programmer through a run-time library. 
However, to use extended-precision arithmetic efficiently and effectively, and to 
handle NaNs and Infinities, some extensions to standard languages are required. 
Apple has designed SANE extensions for languages, including Pascal and C, following 
the design goals of 

o full and scrupulous conformance to the IEEE floating-point standard 

o maximum exploitation of extended-precision arithmetic 

o upward compatibility from current language standards 

o minimum deviation from current language standards 

This appendix describes the SANE extensions to high-level languages and includes 
SANE library interfaces. A programming language that makes the features of SANE 
available to its users by providing SANE extensions and a SANE library is said to 
support SANE. (A programming language may also use SANE without fully supporting 
SANE; that is, it may use the SANE engine to perform arithmetic without making all 
features of SANE available to its users.) 

.:. Note: These extensions and interfaces are implemented in Apple's MPW and APW 
languages. Other language products that support SA1\1E have similar extensions and 
interfaces. 

2 19 



Low-level SANE arithmetic (as well as the floating-point chips Intel 8087, 80287, 
and 80387, and Motorola 68881 and 68882) evaluates arithmetic operations to the 
range and precision of the 80-bit extended type. Thus, extended naturally becomes 
the basic arithmetic type for computing purposes. The types single, double, and 
comp serve as space-saving storage types. Adding floating-point types and installing 
extended in the role of the basic arithmetic type are the most salient changes to 
standard languages. 

•) Note: The extended type can be used as long double in ANSI C. 

The SANE extensions expand the syntax for input/output to accommodate NaNs and 
Infinities, and include the treatment of NaNs in relationals as required by the IEEE 
Standard. 

The SANE extensions are upward compatible from current language standards: most 
programs using only the traditional floating-point types and operations may be 
compiled and run without modjfication; the rest require only setting of rounding 
precision to single or double in a few places. (See "Example: Is x Negligible?» in 
Chapter 3.) SANE does not affect integer arithmetic. 

SANE programming 
Automatic use of the extended type by SANE language systems produces results that are 
generally better than those of language systems without extended-based IEEE floating 
point. Extended precision yields more accuracy, and extended range avoids 
unnecessary underflow and overflow of intermediate results. The programmer can 
further exploit the extended type by declaring all floating-point temporary variables, 
formal value parameters, and function results to be type extended. This is generally 
both time-efficient and space-efficient, because it reduces the number of automatic 
conversions between types. External data should be stored in one of the three smaller 
SANE types (single, double, comp), not just for economy but also because the 
extended format may vary between SANE implementations. As a general rule, use 
single, double, or comp data as program input; extended arithmetic for 
computations; and single, double, or comp data as program output. 

In many instances, IEEE aridunetic allows simpler algorithms than were possible 
without IEEE arithmetic. The handling of Infinities enlarges the domain of some 
formulas. For example, 1+1/x2 computes correctly even if x2 overflows. Running 
with halts disabled (the IEEE Standard default), a program will never crash because of 
a floating-point exception. Hence, by monitoring exception flags, a program can test 
for exceptional cases after d1e fact. The alternative, screening out bad input, is often 
infeasible, sometimes impossible. 

Part I of this book gives several examples of me way IEEE arithmetic can make 
programs simpler. 

220 Appendix A: SANE In High-Level Languages 



SANE library 
A SANE language system includes a SANE library. This library rounds our the IEEE 
Standard implementation and provides basic tools for developing a wide range of 
applications. A SANE library includes the following features: 

o logarithmic, exponential, and trigonometric functions 

o financial functions 

o random number generation 

o binary-decimal conversion 

o numeric scanning and formatting 

o environment control 

o other functions required or recommended by the IEEE Standard 

Pascal SANE extensions 
With the extensions described below (and a SANE library), ANSI Pascal supports 
SANE. 

Data types 
The Pascal real type and three new Pascal types correspond to the four SANE numeric 
data types, as shown in Table A-1. 

Table A-1 
Pascal data types 

Pascal name 

Real 
Double 
Comp 
Extended 

SANE type 

IEEE single 
IEEE double 
SANE comp 
IEEE extended 

Pascal SANE extensions 221 



Constants 
Two types of numeric constants are of type extended: those that include floating-point 
syntax-a point (.) or an exponent field- and those that lie outside the range of 
longint. 

Decimal-to-binary conversions for numeric constants are done at compile time in the 
IEEE default numeric environment-see "Numeric Environment," later in this 
section. Exceptions that arise from those conversions are not signaled at run time. 

In SANE Pascal, assignment of constants to variables is always done at run time. 

You may need a constant in executable code rounded some way other than the default 
rounding set by the compiler. To cause conversions of decimal constants in 
executable code to occur at run time, use Str2Num. For example, replace the first of 
these statements by the second: 

x : = 1.234 ; 

x : = St r2Num('l.234'); 

Expressions 
The SANE types real, double, comp, and extended can be mixed in expressions with 
each other and with integer types. An expression consisting solely of a SANE-type 
variable, constant, or function is of type extended. An expression formed by 
subexpressions and an arithmetic operation is of type extended if either of its 
subexpressions is of that type. Extended expressions are evaluated by using extended­
precision SANE arithmetic, with conversions to extended type generated 
automatically as needed. An extended expression can be assigned to any SANE-type 
variable, but cannot be assigned to an integer-type variable. 

Expressions in constant definitions are evaluated at compile time; all other evaluation 
of extended expressions is done at run time. 

Comparisons 
In IEEE Standard arithmetic, the result of a comparison involving a NaN operand is 
unordered. Thus, the usual trichotomy of numbers is expanded to less, greater, equal, 
and unordered. The Pascal relational operator <> means not equal, rather than 
less or greater. The other Pascal relational operators ( <, <=, =, >, >=) retain their 
traditional interpretations. Note, however, that the negation of a less than bis not 
a greater than or equal to b but (a greater than or equal to b) OR (a and b 
unordered). 

222 Appendix A: SANE In High-Level Languages 



Functions and procedures 

Parameter passing follows the same rules of types that govern assignments. (See the 
earlier section "Expressions.") 

Input/output 
In addition to the usual syntax accepted for numeric input, the read routine recognizes 
INF as Infinity and NAN as a NaN. NAN may be followed by parentheses, which 
may contain an integer (a code indicating the NaN's origin). INF and NAN are 
optionally preceded by a sign and are case insensitive. 

The write routine formats values of extended expressions in the manner of standard 
Pascal number formatting, with the following exceptions: 

o Infinities are written as [-)INF and NaNs as [-)NAN(ddd), where ddd is the NaN 
code. 

o Exponent-digits fields are four characters wide (numbers from the extended type 
may require this); the first exponent digit is 0 only if the exponent is zero, and the 
field is padded on the right with space characters. 

o The ANSI restriction that the second colon parameter must be positive may be 
removed to facilitate formatting large integral values from SANE types. 

Numeric environment 
The numeric environment contains rounding direction, rounding precision, halt 
enables, and exception flags. IEEE Standard defaults-rounding to nearest, rounding 
to extended precision, and all halts disabled- are in effect for compile-time 
arithmetic (including decimal-to-binary conversion). A Pascal system may begin 
programs with these defaults and with all exception flags clear. Alternatively, to 
conform more nearly to ANSI specifications for floating-point errors, a Pascal system 
may begin programs with halts on invalid, overflow, and divide-by-zero enabled, and 
IEEE default settings otherwise. Regardless of the Pascal system defaults, programmers 
can easily modify the environment by using the functions for managing the 
environment included in the run-time SANE library. Optimizing compilers should not 
rearrange the order of floating-point evaluation in any way that might change either 
the computed value or the side effects (such as exception flag settings) from what may 
have been intended in the source code. 

Pascal SANE extensions 223 



Pascal SANE library 
Following is the interface for a Pascal library using the SANE packages. This interface is 
part of Apple's MPW Pascal; other Pascal language products that support SANE have 
similar interfaces. 

In this interface, INTEGER refers to 16-bit integers and LONG INT refers to 32-bit 
integers . 

•:• Note: This Pascal interface includes sections for machines with and without an 
MC68881 coprocessor. Conditional compilation selects the appropriate section 
based on the settings of compiler options MC68881 and Elems881. 

SANE . p - Pascal interface for Standard Apple Numeric Environment 

Copyright Apple Computer, Inc. 1983 - 1987 
All rights reserved. } 

UNIT SANE; 

INTERFACE 

{ Elems881 mode set by -d Elems88l=true on Pascal command line } 

($IFC UNDEFINED Elems881} 
{$SETC Elems881 = FALSE} 

{ $ENDC} 

{$IFC OPTION(MC68881)} 

(*===============-======================================================* 
* The interface specific to the MC68881 SANE library * 
*======================================================================*} 

CONST 

{---------------------------------------------------
* Exceptions. 

---------------------------------------------------} 
I nexact = 8; 
DivByZero = 16; 
Underflow = 32; 
Overflow = 64 ; 
Invalid = 12 8; 

Curinexl = 256; 
Curinex2 = 512; 
CurDivByZero = 1024; 
CurUnderflow = 2048; 
CurOverflow = 4096; 
CurOpError = 8192; 
CurSigNaN = 16384; 
CurBSonUnor = 32768; 

224 Appendix A: SANE In High-Level Languages 



{---------------------------------------------------
* Environmental control. 

---------------------------------------------------} 
TYPE 

TrapVector = RECORD 
Unordered: LONGINT; 
Inexact LONGINT; 
DivByZero: LONGINT; 
Underflow: LONGINT; 
OpError LONGINT; 
Overflow LONGINT; 
SigNaN LONGINT; 

END; 

Exception = LONGINT; 
Environment = RECORD 

FPCR: LONGINT; 
FPSR: LONGINT ; 

END; 

FUNCTION IEEEDefaultEnv: Environment; 
{ return IEEE default environment } 

PROCEDURE GetTrapVector(VAR Traps: TrapVector); 
{ Traps <-- FPCP trap vectors ) 

PROCEDURE SetTrapVector(Traps: TrapVector) ; 
{ FPCP trap vectors <-- Traps ) 

{-------------------------------------------------------------------
* TYPEs and FUNCTIONs for converting between SANE Extended formats 

-------------------------------------------------------------------} 
TYPE 

Extended80 =ARRAY (0 .. 4) OF INTEGER; 

FUNCTION X96t oX80(x : EXTENDED): Extended80; 
{ X96toX80 <-- 96 bit x in 80 bit extended format 

FUNCTION X80toX96(x: Extended80): EXTENDED; 
{ X80toX96 <-- 80 bit x in 96 bit extended format 

Pascal SANE extensions 225 



{---------------------------------------------------------------------
* Compatible Transcendental functions - bypasses direct MC68881 calls 

-----·----------------------------------------------------------------} 
{$IFC Elems881 = false ) 

FUNCTION Sin(x: EXTENDED) : EXTENDED; 
{ sine ) 

FUNCTION Cos(x : EXTENDED): EXTENDED; 
{ cosine ) 

FUNCTION ArcTan(x: EXTENDED): EXTENDED; 
{ inverse tangent } 

FUNCTION Exp(x : EXTENDED): EXTENDED; 
{ base-e exponential } 

FUNCTION Ln(x: EXTENDED): EXTENDED; 
{ base- e log } 

FUNCTION Log2(x : EXTENDED): EXTENDED; 
{ base - 2 log } 

FUNCTION Lnl(x: EXTENDED): EXTENDED; 
{ ln {l+x) } 

FUNCTION Exp2(x: EXTENDED): EXTENDED; 
{ base - 2 exponential ) 

FUNCTION Expl(x: EXTENDED): EXTENDED; 
{ exp(x ) - 1 ) 

FUNCTION Tan(x: EXTENDED): EXTENDED; 
{ tangent ) 

{$ENDC ) 

{$ELSEC) 

{*============================================================~=========* 

* The interface specific to the software SANE library * 
*==================================c============================~======*} 

CONST 
{---------------------------------------------------
* Exceptions. 
--------------------------------------------------- ) 

Invalid = l; 
Underflow = 2; 
Ove rflow = 4; 
DivByZero = 8; 
Inexact = 16; 

226 Append ix A: SANE In High-Level Languages 



{---------------------------------------------------
* IEEE default environment constant. 

---------------------------------------------------} 
IEEEDefaultEnv = 0 ; 

{---------------------------------------------------
* Environmental control . 

---------------------------------------------------} 
TYPE 

Exception 
Environment 

INTEGER; 
INTEGER; 

FUNCTION GetHaltVector: LONGINT; 
{ return halt vector } 

PROCEDURE SetHal tVector(v: LONGINT); 
{ halt ve ctor <-- v } 

{-------------------------------------------------------------------
* TYPES and FUNCTIONS for converting between SANE Extended formats 

-------------------------------------------------------------------} 
TYPE 

Extended96 =ARRAY (0 . . 5) OF INTEGER; 

FUNCTION X96toX80(x: Extended96) : EXTENDED; 
{ 96 bit x in 80 bit extended for mat ) 

FUNCTION X80toX96(x: EXTENDED): Extended96 ; 
{ 80 bit x in 96 bit extended format ) 

{-------------------------------------------------------------------
* SANE library functions 

-------------------------------------------------------------------} 
FUNCTION Log2(x : EXTENDED): EXTENDED; 
( base - 2 log } 

FUNCTION Lnl(x: EXTENDED): EXTENDED; 
{ ln (l+x) l 

FUNCTION Exp2(x: EXTENDED): EXTENDED; 
{ base- 2 exponential } 

FUNCTION Expl(x : EXTENDED) : EXTENDED; 
{ exp (x) - 1 l 

FUNCTION Ta n(x: EXTENDED ): EXTENDED; 
{ tangent 

{$ENDC} 

Pascal SANE extensions 227 



* The common interface for the SANE library * 
*=m================m===================================•============~==*} 

CONST 
DecStrLen = 255; 
SigDigLen = 20; { for 68K; use 28 in 6502 SANE } 

TYPE 
{---------------------------------------------------
* Types for handling decimal representations. 

---------------------------------------------------} 
DecStr = STRING(DecStrLen); 

CStrPtr 

Decimal 

DecForm 

"CHAR; 

RECORD 
sgn: 0 •. 1; 
exp: INTEGER; 
sig: STRING(SigDigLen) 

END; 

RECORD 
style: (FloatDecimal, FixedDecimal); 
digits: INTEGER; 

END; 

{---------------------------------------------------
* Ordering relations. 
---------------------------------------------------} 

Re lOp = (GreaterThan, LessThan, EqualTo, Unordered); 

{---------------------------------------------------
* Inquiry classes. 
---------------------------------------------------} 

NumClass = (SNaN, QNaN, Infinite, ZeroNum, NormalNum, DenormalNum); 

RoundDir (ToNearest, Upward, Downward, TowardZero); 

RoundPre (ExtPrecision, DblPrecision, RealPrecision); 

228 Appendix A: SANE In High-Level Languages 



{*======================================m=============================~~* 

* The functions and procedures of the SANE library * 
*---------===========================ceca---~-=========================*} 

{---------------------------------------------------
* Conversions between numeric binary types . 

---------------------------------------------------} 
FUNCTION Num2Integer(x: EXTENDED): INTEGER; 

FUNCTION Num2Longint(x: EXTENDED): LONGINT; 

FUNCTION Num2Real(x: EXTENDED): real; 

FUNCTION Num2Double(x : EXTENDED ) : DOUBLE; 

FUNCTION Num2Extended(x : EXTENDED}: EXTENDED; 

FUNCTION Num2Corap(x : EXTENDED) : comp; 

{---------------------------------------------------
* Conversions between binary and decimal. 

---------------------------------------------------} 
PROCEDURE Num2Dec(f : DecForm; x: EXTENDED; VAR d: Decimal); 
{ d <- - x according to format f } 

FUNCTION Dec2Num(d : Decimal): EXTENDED; 
{ Dec2Num <-- d } 

PROCEDURE Num2Str(f : DecForm; x: EXTENDED; VAR s : DecStr); 
{ s <- - x according to format f } 

FUNCTION Str2Num(s : DecStr ) : EXTENDED; 
( Str2Num <-- s } 

Pascal SANE extensions 229 



{---------------------------------------------------
* Conversions between decimal formats. 

---------------------------------------------------} 
PROCEDURE Str2Dec(s: DecStr; VAR Index: INTEGER; VAR d: Decimal; 

VAR ValidPrefix : BOOLEAN); 
On input Index is starting index into s , on output Index is 
one greater than index of last character of longest numeric 
substring; 
d <-- Decimal rep of longest numeric substring ; 
ValidPrefix <-- "s, beginning at Index, contains valid numeric 
string or valid prefix of some numeric st r i ng " } 

PROCEDURE CStr2Dec(s : CStrPtr; VAR Index: INTEGER; VAR d: Decimal ; 
VAR ValidPrefix : BOOLEAN); 

Str2Dec for char acter buffers or C strings instead of Pascal 
strings: the first argument is the the address of a character 
buffer and ValidPr efix <-- "scanning ended with a null byte" 

PROCEDURE Dec2Str(f : DecForm; d: Decimal; VAR s : DecStr); 
{ s <-- d according to format f } 

{---------------------------------------------------
* Arithmetic, auxiliary, and elementary functions . 

---------------------------------------------------} 
FUNCTION Remainder{x, y: EXTENDED; VAR quo: INTEGER) : EXTENDED; 
( Remainder <-- x rem y; quo <-- low- order seven bits of integer 

quotient x/y so that -127 < quo < 127 

FUNCTION Rint(x: EXTENDED): EXTENDED; 
{ round to integral value ) 

FUNCTION Scalb(n: INTEGER; x : EXTENDED): EXTENDED; 
( scale binary; Scalb <-- x * 2An ) 

FUNCTION Logb(x: EXTENDED): EXTENDED; 
{ Logb <-- unbiased exponent of x ) 

FUNCTION CopySign(x, y: EXTENDED): EXTENDED; 
( CopySign <-- y with sign of x } 

FUNCTION NextReal(x, y : real): real; 

FUNCTION NextDouble{x , y: DOUBLE): DOUBLE; 

FUNCTION NextExtended (x, y: EXTENDED): EXTENDED; 
{ return next representable value from x toward y 

230 Appendix A: SANE In High-Level Languages 



FUNCTION XpwrI (x: EXTENDED; i: INTEGER): EXTENDED; 
{ XpwrI <-- xAi ) 

FUNCTION XpwrY(x, y: EXTENDED): EXTENDED; 
( XpwrY <-- xAy ) 

FUNCTI ON Compound(r, n: EXTENDED): EXTENDED; 
{Compound<-- (l+r)An } 

FUNCTI ON Annuity(r, n: EXTENDED): EXTENDED; 
(Annuity<-- (1 - (l+r)A (-n)) Ir 

FUNCTION RandomX(VAR x: EXTENDED): EXTENDED; 
( r eturns next random number and updates argument; 

x integral, 1 <= x <= (2A31)-2 } 

(---------------------------------------------------
* Inquiry routines . 

---------------------------------------------------} 
FUNCTION ClassReal(x: real): NumClass; 

FUNCTION ClassDouble(x: DOUBLE): NumClass; 

FUNCTION ClassComp(x: comp) : NumClass; 

FUNCTION ClassExtended(x: EXTENDED): NumClass; 
( return class of x } 

FUNCTION SignNum(x: EXTENDED) : INTEGER; 
( 0 if sign bit clear, 1 if sign bit set 

{---------------------------------------------------
* NaN function. 

---------------------------------------------------) 
FUNCTION NAN(i: INTEGER): EXTENDED; 
( returns NaN with code i } 

Pascal SANE extensions 231 



{---------------------------------------------------
* Environment access r outines. 

---------------------------------------------------) 
PROCEDURE SetException(e: Exception; b: BOOLEAN) ; 
{ set e f l ags if b is true, clear e flags otherwise; may cause halt ) 

FUNCTION TestException(e: Exception): BOOLEAN; 
{ return true if any e flag is set , return false otherwise ) 

PROCEDURE SetHalt(e: Exception; b : BOOLEAN); 
{ set e halt enables if b is true, clear e halt enables otherwise ) 

FUNCTION TestHalt(e: Exception): BOOLEAN; 
{ return true if any e halt is enabled, return fal se otherwise ) 

PROCEDURE SetRound(r: RoundDir) ; 
{ set rounding direction to r ) 

FUNCTION GetRound: RoundDir; 
{ return rounding direction ) 

PROCEDURE SetPrecision(p: RoundPre); 
{ set rounding precision to p ) 

FUNCTION GetPrecision: RoundPre; 
{ return r ounding p r e c i sion 

PROCEDURE SetEnvironment(e: Environment) ; 
{ set environment to e ) 

PROCEDURE GetEnvironment(VAR e: Environment); 
{ e <-- environment ) 

PROCEDURE ProcEntr y(VAR e: Environment); 
{ e <-- envi ronment; environment <-- IEEE default env ) 

PROCEDURE ProcExit(e: Environment ); 
{ temp <-- exce ptions ; environment <-- e ; 

signal exceptions in temp ) 

{---------------------------------------------------
* Comparison routine . 

---------------------------------------------------) 
FUNCTION Relation(x, y : EXTENDED) : RelOp; 
{ return Relation such that "x Relation y " is true ) 

END. 

232 Appendix A: SANE in High-Level Languages 



C SANE extensions 
With the extensions described below (and a SANE library), conventional Kernighan 
and Ritchie-style C supports SANE. Future versions of SANE C may have minor 
changes to conform to the ANSI C standard. 

Data types 
The usual C data types, float and double, and two new C types correspond to the four 
SANE numeric data types, as shown in Table A-2. 

Table A-2 
C data types 

Cname 

float 
double 
comp 
long double 
extended 

Constants 

SANE type 

IEEE single 
IEEE double 
SANE comp 
IEEE extended 
IEEE extended 

Decimal-to-binary conversions for numeric constants are done at compile time in the 
IEEE default numeric environment-see "Numeric Environment," later in this 
section. Exceptions that arise from those conversions are not signaled at run time. 

Expressions 
The SANE types float, double, comp, and extended can be mixed in expressions with 
each other and with integer types in the same manner that float and double can be 
mixed in conventional C. An expression consisting solely of a SANE-type (that is, 
float, double, comp, or extended) variable, constant, or function is of type extended. 
An expression formed by subexpressions and an arithmetic operation is of type 
extended if either of its subexpressions is of that type. Extended expressions are 
evaluated using extended-precision SANE arithmetic, with conversions to extended 
type generated automatically as needed. Parentheses in extended-type expressions 
are honored. Initialization of external and static variables, which may include 
expression evaluation, is done at compile time; all other evaluation of extended 
expressions is done at run time. 

C SANE extensions 233 



Comparisons 

In IEEE Standard arithmetic, the result of a comparison involving a NaN operand is 
unordered. Thus, the usual trichotomy of numbers is expanded to less, greater, equal, 
and unordered. The C relational operators(<,<=,==,>,>=, !=) retain their 
traditional interpretations. Note, however, that the negation of a less than bis not 
a greater than or equal to b but (a greater than or equal to b) OR (a and b 
unordered). 

Functions 

A numeric actual parameter passed by value is an expression and hence is of extended 
or integer type. All extended-type arguments are passed as extended values. Similarly, 
all results of functions declared float, double, comp, or extended are returned in the 
extended format. 

Input/output 
In addition to the usual syntax accepted for numeric input, the standard C library 
function scanf recognizes INF as Infinity and NAN as a NaN. NAN may be 
followed by parentheses, which may contain an integer (a code indicating the NaN's 
origin). I NF and NAN are optionally preceded by a sign and are case insensitive. 
Scanf specifiers for SANE types extend conventional C as follows: conversion 
characters f, e, and g indicate type float; lf, le, and lg indicate type double; mf, me, and 
mg indicate type comp; and ne, nf, and ng indicate type extended. 

•:• ANSI C note: The Scan f specifiers for type extended may be different for SANE 
ANSI C. 

Print f writes Infinities as (-]INF and NaNs as [-]NAN(ddd), where dddis the NaN 
code. 

Numeric environment 

The numeric environment contains rounding direction, rounding precision, halt 
enables, and exception flags. IEEE Standard defaults-rounding to nearest, rounding 
to extended precision, and all halts disabled-are in effect for compile-time 
arithmetic (including decimal-to-binary conversion). Each program begins with 
these defaults and with all exception flags clear. Functions for managing the 
environment are included in the run-time SANE library. Optimizing compilers should 
not rearrange the order of floating-point evaluation in any way that might change 
either the computed value or the side effects (such as exception flag settings) from what 
may have been intended in the source code. 

234 Appendix A: SANE In High-Level Languages 



C SANE library 
Following is the interface for a C library using the SANE packages. This interface is part 
of Apple's MPW C; other C language products that support SANE have similar 
interfaces. 

In this interface, short refers to 16-bit signed integers and long refers to 32-bit 
signed integers. 

•) Note: This C interface includes sections for machines with and without an MC68881 
coprocessor. Conditional compilation selects the appropriate section based on the 
settings of compiler option - MC 6 8 8 81. 

/* 
SANE.h - Standard Apple Numeric Environment 

C Interface to the Macintosh Libraries 

Copyright Apple Computer, Inc . 1985- 1988 
All rights reserved . 

*I 

iifndef SANE - -
tdef ine SANE - -
Hfdef mc68881 

/* MC68881 Exceptions */ 

#define INEXACT 8 

IFdefine DIVBYZERO 16 

If define UNDERFLOW 32 
#define OVERFLOW 64 
If define INVALID 128 

If define CURINEXl 256 
If define CURINEX2 512 
#define CURDIVBYZERO 1024 
If define CURUNDERFLOW 2048 
IFdef ine CUROVERFLOW 4096 
If define CUROPERROR 8192 
idefine CURSIGNAN 16384 
If define CURBSONUNOR 32768 

typedef long exception; 
typedef struct trapvector 

void (*unordered)(); 
void (*inexact) (); 
v oid (*di vbyzero) () ; 
void (*underflow)(); 
void (*operror) (); 
void (*overflow) () ; 
void (*signan) (); 

C SANE extensions 235 



} trapvector; 
typedef struct environment 

long FPCR; 
long FPSR; 

environment ; 

envi ronment IEEEDEFAULTENV = {OL,OL}; 

void gettrapvector(trapvector) ; 
voi d settrapvector(trapvector); 

#el se 

I* Software SANE Excepti ons */ 

idefine INVALID 1 
idefine UNDERFLOW 2 
idefine OVERFLOW 4 
idefine DIVBYZERO 8 
#define INEXACT 16 
#define IEEEDEFAULTENV 0 

typedef short exception; 
typedef short environment; 
typedef void (*haltvector) (); 

haltvector gethaltvector(); 
void sethaltvector(haltvector); 

iendif 

/* Decimal Representation Constants */ 

#define SIGDIGLEN 20 /* significant decimal digits */ 
idefine DECSTROUTLEN 80 /* max length for decimal string output */ 

/* Decimal Formatting Styles */ 

#define FLOATDECIMAL 0 
#define FIXEDDECIMAL 1 

I* Ordering Relations */ 

#define GREATERTHAN 0 
#define LESSTHAN 1 
/fdefine EQUAL TO 2 
idefine UNORDERED 3 

/* Inquiry Classes */ 

#define SNAN 0 
idef ine QNAN 1 
idefine INFINITE 2 

236 Appendix A: SANE in High-Level Langua ges 



#define ZERONUM 3 

#d e fine NORMALNUM 4 
#define DENORMALNUM 5 

/* Rounding Directions */ 

#define TONEAREST 0 
#defi ne UPWARD 1 
#defi ne DOWNWARD 2 
tdefine TOWARDZERO 3 

/* Rounding Precisions * / 

#defi ne EXTPRECISION 0 
tdef i ne DBLPRECI SION 1 
#define FLOATPRECISION 2 

typedef short relop; 

typedef short numclass; 
t y pede f short rounddi r ; 

typed e f short roundpre; 
typedef struct decimal { 

char sgn, unused; 

short exp; 

/* relational operator */ 
I* inquiry c l ass */ 
/ * r o unding direction */ 
/* rounding p recision */ 

/* sign 0 for +, 1 for - * / 
I* decimal exp onent */ 

struct {unsi gned char l e ngth, text[SIGD I GLEN] , unused;} sig ; 

/* significant d i gits * / 
decimal; 

typedef struct decform { 

c har style , unused; 
shor t digits; 

decform; 

/* FLOATDECIMAL or FIXEDDECI MAL */ 

/* Conversions between Binary and Decimal Records */ 

void num2dec (decform * f, extended x, decimal * d); 
/* d <-- x , according to format f */ 

extended dec2num(decimal * d); 
/* returns d as extended */ 

/* Conversions between Decimal Records a nd ASCII Strings * / 

void dec2str(decform * f, decimal * d, char * s); 
/* s <-- d , according to format f */ 

void str2dec(char * s, short* ix, decimal* d, short* vp) ; 
/* on input ix is starting index into s , on */ 

/* o utput i x is one greater than index of last */ 
/* c haracter o f longest numeric substring ; */ 

/* boolean vp = " s beginning at given ix is a */ 
/* valid numeric string or a valid prefix of */ 
/* some numeric string" */ 

C SANE extensions 237 



/* Arithmetic, Auxiliary, and Elementary Functions */ 

extended fabs(extended x); I* absolute value */ 
extended remainder(extended x, extended y, short * quo); 

I* IEEE remainder; quo <-- 7 low */ 
I* order bits of integer quotient 
I* -127 <= quo <= 127 *I 

extended sqrt(extended x); I* square root *I 
extended rint(extended x); I* round to integral value *I 
extended scalb(short n, extended x); 

/* binary scale: x * 2An; *I 
/* first coerces n to short */ 

extended logb(extended x); I* binary log: binary exponent of*/ 
I* normalized x */ 

extended copysign(extended x, extended y); 
/* returns y with sign of x */ 

extended nextfloat(extended x, extended y); 

x/y, 

/* next float representation after */ 

*/ 

/* (float) x in direction of (float) y *I 
extended nextdouble(extended x, extended y); 

/* next double representation after */ 
I* (double) x in direction of (double) y *I 

extended nextextended(extended x, extended y) ; 
/* next extended representation 
I* x in direction of y */ 

extended log2(extended x); I* base-2 log */ 
extended log(extended x); I* base-e log */ 
extended logl(extended x); I* log(l + x) *I 
extended exp2(extended x); I* base-2 exponential */ 
extended exp(extended x); /* base-e exponential *I 
extended expl(extended x); I* exp(x) - 1 */ 
extended power(extended x, extended y); 

/ * general exponential: x y */ 
extended ipower(extended x, short i); 

/* integer exponential : x i */ 
extended compound(extended r, extended n ) ; 

I* compound: (1 + r) A n *I 
extended annuity(extended r, extended n); 

after */ 

extended tan(extended X); 

/* 
I* 

annuity: (1 - (1 + r) A (-n)) I r * / 
tangent * / 

extended sin(extended x); I* sine * / 

extended cos(extended x); I* cosine */ 
extended atan(extended x); I* arctangent */ 
extended randomx(extended * X); 

I* returns next random number; update s x */ 
I* x must be integral , 1 <= x <= 2A31 - 2 */ 

238 Appendix A: SANE In High-Level Languages 



/* Inquiry Routines */ 

numclass classfloat(extended X); /* class of (float) x */ 
numclass classdouble(extended x); I* class of (double) x */ 
numclass classcomp(extended x); /* class of (comp) x */ 

numclass classextended(extended x); /* class of x */ 

long signnum(extended x); /* returns 0 for +, 1 for - */ 

I* Environment Access Routines */ 
/* An exception variable encodes the exceptions whose sum is its value * / 

void setexception(exception e, longs); 
/* clears e flags if s is 0, sets */ 

/* e flags otherwise; may cause halt * / 
long testexception(exception e); /*returns 1 if any e flag is set, */ 

/* returns 0 otherwise */ 
void sethalt(exception e, longs); /*disables e halts ifs is 0, enables e */ 

/* halts otherwise */ 
long testhalt(exception e); 

void setround(rounddir r); 
rounddir getround(); 
void setprecision(roundpre p); 
roundpre getprecision(); 
void setenvironment(environment 
void getenvironment(environment 

void procentry(environment * e); 

void procexit(environment e); 

haltvector gethaltvector(); 

/* returns 1 if any e halt is enabled, */ 
/* returns 0 otherwise */ 
/* sets rounding direction to r */ 
/* returns current rounding direction */ 
/* sets rounding precision to p */ 
/* returns current rounding precision */ 

e); /*sets SANE environment toe*/ 
* e); 

/* e <- - SANE environment */ 
/* e <-- SANE environment; */ 
/* SANE environment <-- IEEEdefaultenv */ 
/* temp <- - current exceptions; */ 
/* SANE environment <-- e; */ 
/* signals exceptions in temp */ 
/* returns SANE halt vector */ 

void sethaltvector(haltvector v); /* SANE halt vector <-- v */ 

/* Comparision Routine */ 

relop relation(extended x, extended y); 

/* NaNs and Special Constants */ 

extended nan(unsigned char c); 
extended inf(); 
extended pi(); 

/* returns relation such that * / 
/* "x relation y" is true */ 

/* returns NaN with code c */ 

/* infinity */ 

/* pi */ 

C SANE extensions 239 



Appendix B 

The SANE Engines: 
Availability 

Different kinds of Apple computers require different implementations of SANE. Here 
is information about how to obtain the SA.J.'IE engines for the different machines, 
based on the type of microprocessor they have. 

SANE for the 6502 
You can obtain the object code for the 6502 SANE software (FP6502, Elems6502, and 
DecStr6502) by writing to the following address and asking for 6502 assembly-language 
SANE: 

Apple Software Licensing 
20525 Mariani Avenue 
Cupertino, CA 95014 

Included with the object code are the macros mentioned in this manual and complete 
instructions for use with ProDOS® and DOS assemblers and with the Apple Pascal 
Assembler. The code can be used on any Apple II computer w ith at least 64K of 
memory, or on an Apple III. 

SANE for the 65C8 l 6 
Support for SANE is built-in on all Apple computers that use the 65C816: the SANE 
functions are part of the system tools. 

Most development systems, such as the Apple IIGS Programmer's Workshop (APW), 
provide macros for convenient use of SANE. 

240 



SANE for the MC68000 
Support for SANE is built-in on all Apple computers that use the MC68000: the SANE 
functions are part of the system tools. The Package Manager automatically makes 
available the object code for the 68000 SANE software (FP68K, Elems68K, and 
DecStr68K), as needed. 

If you are using the Macintosh Programmer's Workshop Assembler, you should 
include the file SANEMacs, which contains the macros mentioned in this manual. 
Other assemblers provide similar macros; consult the accompanying manual for 
instructions on using them. 

SANE for the MC68020 and MC68881 
Support for SANE is built-in on all Apple computers that use the MC68020: the SANE 
functions are part of the system tools. The Package Manager makes available the 
MC68881 versions of the floating-point (SANE) packages. 

The Macintosh Programmer's Workshop, version 2.0, supports the MC68881 in its 
assembler as well as its high-level languages. Other development systems for Apple 
computers also suppon SANE; consult the accompanying manuals for details. 

-> Note: There are non-Apple hardware products for adding the MC68020 and 
MC68881 processors to MC68000-based Apple computers. Those products also 
include support for SANE; consult the accompanying manuals. 

SANE for the MC68020 and MC68881 241 



Appendix C 

Porting Programs 
to SANE 

Porting programs to run in the Apple numerics environment is easier than porting to 
other computers. Expressions that produce good results on other computers usually 
give at least as good results with SA.!'ffi. 

This appendix contains information of interest to programmers who are porting 
programs from some other machine to run on an Apple computer with SANE. If you 
are such a programmer and you think you're getting problems because of differences 
in numerics, you should read this appendix. 

Semantics of arithmetic evaluation 
When you translate programs from one language to another, you must be aware of the 
hidden pitfalls in translation. For example, certain operations in different languages 
may have similar syntax without being similar semantically. Here's an example of 
similar functions with different syntaxes: 

o in Fortran, SIGN (A, B) (two operands) 

D in BASIC, SIGN (A) (one operand) 

Different languages have different ways of dealing with mixed integers and reals. For 
example, Fortran truncates integer quotients to integers, so 3/7 = 0 (you have to write 
3.0/7.0 for a fraction) . The programmer doing the translating must be aware that such 
expressions are not independent of language. 

In the case of conversion from real to integer, different languages have different 
semantics. For example, in Fortran, assigning a floating-point value to an integer 
rounds toward zero. 

242 



Here are the operations used to truncate a real to an integer in three different 
languages: 

o in C: assignments and casts 

D in Fortran : AINT, INT 

o in Pascal: Trunc 

Mixed formats 
On some other computers, the formats for single and double are identical except for 
length. On those machines, for arguments passed by address, a calling routine can 
store data in one format and a called routine can read data in the other format without 
apparent error. 

If you have a program that exploits this confusion, you'll have to revise it before you 
can run it on a machine that uses SANE. (Type checking is no help here; if the 
discrepancy was such that type checking could detect it, the original compiler would 
have caught it.) 

Floating-point precision 
You should be aware of differences between the floating-point precision on the 
original machine and on the target machine. 

Wider precision 

Some computers have floating-point formats that have more precision than the 
current SANE extended formats. These include the VAX. H format, the IBM Q format, 
and the HP Spectrum quad format. Programs use these wide formats for computation 
involving input data from a narrower format to minimize the occurrence of overflow 
and underflow and to preserve accuracy. The IEEE extended data type was designed to 
be sufficiently large to provide these benefits in most cases. However, for a given 
algorithm, it is difficult to be sure that the SANE extended format is adequate, so the 
possibility of problems arising with programs that used formats wider than SANE 
extended should not be ignored. 

CDC and Cray computers have a single format that is wider than SANE single and a 
double format that is wider than SANE extended. When porting code from those 
machines, you should consider changing type declarations from single to double and 
from double to extended. 

Floating-point precision 243 



Double rounding 
SANE implementations evaluate expressions with real variables in extended format, 
then round the results. This sometimes leads to double rounding, but the double 
rounding doesn 't increase errors in the results, because the difference in magnitudes is 
so large that the second rounding swamps errors in the firs t. 

Computed error bounds 
In applications that compute convergence criteria and error bounds by doing 
arithmetic, evaluation in extended can cause problems. For example, with x and y of 
type single, you might have your program evaluate 

z := ((x + y) - x) - y) 

to find the error due to rounding (x + y). This expression gives 0 on Apple machines, 
so it can't be used to find the rounding error. 

Using such expressions is bad programming practice because it causes many other 
machines to malfunction. If you have this problem after porting your code to SANE, 
you should find out the evaluation rules for the original environment so that you can 
make appropriate changes to the code. 

The rules of evaluation 
There are many possible evaluation rules. Here are three reasonable ones: 

o Rule 1: Round the result to the wider of the two operand formats. 

o Rule 2: Round the result to the widest available format. 

o Rule 3: Round the result to the widest format in the expression. 

Rule 1 is instant rounding: It is the rule on computers with many registers the same 
width as memory. This rule has been used by IBM and CDC Fortran since 1963. It is 
not part of the Fortran standard, though often thought to be. 

Rule 2 is what Apple does by evaluating in extended precision. Other machines using 
this approach include the PDP-llC (using double precision) and floating-point 
coprocessors such as the 8087 and the MC68881. This approach doesn't take best 
advantage of machines with separate processing units for each floating-point type. 

Rule 3 is the way you do it when computing by hand. It was the rule in Fortran until 
1963. By this rule, if you see an expression with mixed precision, you assume the user 
wants the widest visible precision. 

244 Appendix C: Porting Programs to SANE 



With SA.J.'\ffi, you can write code to simulate any of these rules. To simulate Rule 1, use 
separate assignments when computing subexpressions. To simulate Rule 3, you have to 
examine the expression, find the widest format, and set the rounding precision 
accordingly. 

For transported code, either you have to understand the programmer's tricks or you 
have to mimic the way rounding works on the programmer's machine. With SANE, 
you can set the precision and rounding direction to mimic other machines. 

The invalid-operation flag 
For the many improvements SANE provides, there is a price to be paid: Some old 
things no longer work the way they used to. 

Many computers used to stop on an invalid operation, such as 0/ 0. Programmers have 
made the best of this and not bothered to test in advance for values that could cause an 
invalid operation. It's better to stop than to give a plausible but incorrect answer. 

When a program written that way runs on SANE, it may produce a NaN where it 
formerly would have stopped. The NaN might cause the program to take an unplanned 
branch and thus produce an erroneous answer. Because the program doesn't test for 
invalid operations, the user won't know whether the answers the program finally 
delivers have been influenced by exceptional events that formerly would have stopped 
the computer. 

Programs sometimes contain code that depends on an ill-documented effect or one 
that varies from machine to machine. If you have inherited such a program and you 
don't know what it does about exceptional conditions, here are some possible 
strategies: 

o Insert tests on operands that could cause invalid operations. 

o Change the program to make sure that NaNs propagate as NaNs, rather than as 
plausible answers. 

o After evaluations, add code to test the invalid flag and deliver a meaningful result or 
message and then lower the flag. 

If you have a program with code you can't change and you distrust the results it gives 
when invalid operations occur, you should set halts to stop on those invalid 
operations and set the environment to simulate the environment in which the 
program was designed to run. 

The Invalid-operation flag 245 



Appendix D 

65C816 and 6502 SANE 
Quick Reference Guide 

This guide is your quick reference for the 65C816 and 6502 SANE engines. It contains 
diagrams of the data formats and tables of the operations and the Environment word. 
The operation tables show the macro names and opwords for all operations. 

Formats of SANE types 
Each of the format diagrams is followed by a table that gives the rules for evaluating a 
number v in that format. 

In each field of each diagram, the leftmost bit is the msb and the rightmost is the lsb. 
The SANE engines for the 65C816 and the 6502 use the convention that least significant 
bytes are stored at lowest addresses. Figure D-1 shows the locations of the bytes in 
memory for a variable of type single. 

msb 

$1003 

Figure D-1 

lsb msb 

e,I fo 
I . I 

Order of the bits in the variable 

$1002 $1001 

Locations of the bytes in memory 

Memory format of a variable of type single 

246 

$ lCXX) 

lsb 

,'~! 



Table D-1 
Format diagram symbols 

Symbol Description 

v Value of number 
s Sign bit 
e Biased exponent 

Explicit one's bit (extended type only) 
f Fraction 
d Nonsign bits (comp type only) 

Single: 32 bits 

l 8 

Isl e 
rnsb lsb rnsb. 

Figure D-2 
Single format 

Table D-2 

23 

f 

lsb 

Values of single-format numbers (32 bits) 

Biased exponent e Fraction f Value v 

0 < e< 255 (any) V = (-l)S x zCe-127) x (lj) 

e=O fi:O v = (-1) x zC-l26) x (Of) 

e=O f=O v= (-l)5 x0 

e=255 f=O v = (-1)5 x Infinity 

e=255 f-:t:O vis a NaN 

Class of v 

Normalized 

Denormalized 

Zero 

Infinity 

NaN 

Formats of SANE types 247 



Double: 64 bits 

1 11 

Isl e 
msb lsb msb 

Figure 0-3 
Double format 

Table 0-3 

52 

f 

lsb 

Values of double-format numbers (64 bits) 

Biased exponent e Fraction f Value v Class of v 

O<e<2047 

e=O 

e=O 

e= 2047 

e= 2047 

Comp: 64 bits 

msb 

Figure 0-4 
Comp format 

Table 0-4 

(any) 

f-:t.O 

f=O 

f=O 

f-:t.O 

v = (-l )sx 2Ce-1023) x (1./) Normalized 

V = (-l)s x 2C-1022) x (Of) Denormalized 

v = (-1)5 x0 Zero 

v = (-1) 5 x Infinity Infinity 

visa NaN NaN 

63 

d 

lsb 

Values of comp-format numbers (64 bits) 

Sign bits 

s~ 1 
s= 1 
s=O 

Nonslgn bits d 

d =O 
d-:t: 0 
(any) 

Value v 

vis the unique NaN in the comp type. 
vis the cwo's-complement value of the 64-bit representation. 
vis the cwo's-complement value of the 64-bit representation. 

248 Appendix D: 65C8 l 6 and 6502 SANE Quick Reference Gulde 



Extended: 80 bits 

1 15 1 

msb lsb msb 

Figure D-5 
Extended format 

Table D-5 

63 

Values of extended-format numbers (80 bits) 

Biased exponent e Integer I Fraction f 

0 s; es; 32766 1 (any) 

0 s; es; 32766 0 f:t;O 

0 s; es; 32766 0 f=O 

e= 32767 (any) f =O 

e= 32767 (any) f:t;O 

Operations 

lsb 

Value v Class of v 

v= (-l)SX 2(e-16383) X (1./) Normalized 

v= (-l)sx 2<e-16383) x (0/) Denormalized 

v= (-l)sxo Zero 

v= (-l )sxlnfinity Infinity 

visa NaN NaN 

Tables D-6 through D-10 define the abbreviations and symbols used in the operation 
tables that follow. Tables D-11 through D-24 show the mnemonic name, opword, 
operand types, and exceptions for each operation. 

In the opword, the first byte is the operand format code and the second is the 
operation code. For some operations, the first byte (xx) of the opword is ignored. 

Abbreviations and symbols 

The symbols and abbreviations in this section closely parallel those in the text, 
although some are shortened. In some cases, the same symbol has different 
meanings, depending on context; for example, in data types, x stands for extended; 
in exceptions, x stands for inexact. 

Operations 249 



Operands 

Table 0-6 
Operands 

Abbreviation 

DST 
DST2 
SRC 
SRC 
SRC2 

Description 

Destination operand (passed by address) 
Second destination operand (passed by address) 
Source operand (passed by address) 
Source operand (passed by value) 
Second source operand (passed by address) 

Note: Push operands in the order SRC2 (if any), SRC, DST2 (if any), DST. 

Offset 

Previous contents 
SOD t---------------1 

SRC2 address Long 

S09 t---------------1 

SRC address Long 

sos t---------------1 

DST address Long 

SOl 
SP --+-~----------' 

Figure 0-6 
SANE operands on the. 65C816 stack 

Offset 

Previous contents 
S07 t----- ----------1 

SRC2 address Word 
sos t---------------1 

SRC address Word 
S03 t---------------1 

DST address Word 
SOl t---------------1 

SP ---+- ......__ ________ _.. 

Figure D-7 
SANE operands on the 6502 stack 

250 Appendix D: 65C816 and 6502 SANE Quick Reference Gulde 



Data types 

Table D-7 
Data types 

Abbreviation 

x 
D 
s 
I 
I 
L 
c 
Dec 
DecForm 
DecStr 

Description 

Extended (80 bits, passed by address) 
Double (64 bits, passed by address) 
Single (32 bits, passed by address) 
Integer (16 bits, passed by address) 
Integer (16 bits, passed by value) 
Long integer (32 bits, passed by address) 
Comp (64 bits, passed by address) 
Decimal record (33 bytes, passed by address) 
Decform record ( 4 bytes, passed by address) 
Pascal or C decimal string 

65C816 and 6502 processor registers 

Table D-8 
65C8 l 6 and 6502 processor registers 

Abbreviation 

Xreg 
Yreg 
Preg 
Nbit 
Zbit 

Des~rlptlon 

X register" 
Y register" 
Processor Status register 
Negative bit of Processor Status register 
Zero bit of Processor Status register 

• 8-bit values. For the 65C816, these values occupy the 
low-order bits of 16-bit registers; high-order bits are set 
according to Figure D-8. 

Operations 251 



Exceptions 

Table D-9 
Exceptions 

Abbreviation 

Xcps 
I 
u 
0 
D 
x 

Description 

Exceptions, collectively 
Invalid operation 
Underflow 
Overflow 
Divide-by-zero 
Inexact 

Environment and halts 

Table D- 10 
Environment and halts 

Abbreviation 

EnvWrd 
HltVctr 

Description 

SANE Environment word (16-bit integer) 
SANE halt vector (32-bit address•) 

• The halt vector in 6502 SANE is a 16-bit address. 

252 Appendix D: 65C8 l 6 and 6502 SANE Quick Reference Guide 



Arithmetic operations (entry points FP816, FP6502) 
Table D-11 
Arithmetic operations (entry points FP8 l 6, FP6502) 

SRC 
Name Opword Operation type Exceptions 

FAD DX $0000 DST f- DST+ SRC x I - 0 - x 
FADDD $0100 DST f- DST + SRC D I - 0 - x 
FADDS $0200 DST f- DST + SRC s - 0 - x 
FAD DC $0500 DST f- DST + SRC c - 0 - x 
FAD DI $0400 DST f- DST + SRC I - 0 - x 
FADDL $0300 DST f- DST + SRC L - 0 - x 
FSUBX $0002 DST f- DST - SRC x - 0 - x 
FSUBD $0102 DST f- DST - SRC D - 0-X 
FSUBS $0202 DST f- DST - SRC s - 0 - x 
FSUBC $0502 DST f- DST - SRC c - 0 - x 
FSUBI $0402 DST f- DST - SRC - 0 - x 
FSUBL $0302 DST f- DST - SRC L - 0 - x 
FMULX $0004 DST f- DST * SRC x u 0 - x 
FMULD $0104 DST f- DST * SRC D I u 0 - x 
FMULS $0204 DST f- DST * SRC s u 0 - x 
FMULC $0504 DST f- DST * SRC c - 0 - x 
FMULI $0404 DST f- DST * SRC - 0 - x 
FMULL $0304 DST f- DST * SRC L - 0 - x 
FDIVX $0006 DST f- DST I SRC x U 0 DX 
FDIVD $0106 DST f- DST I SRC D U 0 DX 
FDIVS $0206 DST f- DST I SRC s U 0 DX 
FDIVC $0506 DST f- DST I SRC c u - DX 
FDIVI $0406 DST f- DST I SRC I u - DX 
FDIVL $0306 DST f- DST I SRC L u - DX 

FSQRTX $0012 DST f- sqrt(DSD x 
FREMXt $000C DST f- DST rem SRC x 
FREMDt $010C DST f- DST rem SRC D - - - -
FREMSt $020C DST f- DST rem SRC s - - - -
FREMCt $050C DST f- DST rem SRC c - - - -
FREMit $040C DST f- DST rem SRC I 
FREMLt $030C DST f- DST rem SRC L - - - -
FRINTX $0014 DST f- md(DSD - - - x 
FTINTX $0016 DST f- chop(DST) - x 

Note: For all arithmetic operations, the destination is of type extended. 
t Also, the 7 low-order bits of xreg contain the corresponding bits of I n I , 

Nbit ~sign bit of n, and sign(Yreg) ~sign of n, 
where n =integer quotient DST/ SRC. 

Operations 253 



Auxiliary routines (entry points FP8 l 6, FP6502) 

Table D-12 
Auxiliary routines (entry points FP8 l 6, FP6502) 

SRC 
Nome Opword Operation type Exceptions 

FSCALBX $0018 DST~ DST x zSRC I UO-X 

FLOG BX $001A DST ~ logb(DST) D-

FNEGX $000D DST~ -DST - - - - -

FABSX $000F DST~ IDSTI 

FCPYSGNX $0011 DST~ DST with sign of SRC x - - - - -
FCPYSGND $0111 DST~ DST with sign of SRC D 
FCPYSGNS $0211 DST~ DST with sign of SRC s 
FCPYSGNC $0511 DST ~ DST with sign of SRC c - - - - -
FCPYSGNI $0411 DST ~ DST with sign of SRC - - - - -
FCPYSGNL $0311 DST ~ DST with sign of SRC L - - - - -

FNEXTX $001E DSTf ~ Nextafter DST toward SRC xt I u 0 - x 
FNEXTD $011E DSTf ~ Nextafter DST toward SRC Dt I u 0- x 
FNEXTS $021E DSTf ~ Nextafter DST toward SRC st u 0 - x 
Note: For most auxiliary routines, the destination is of type extended. 
t For Nextafter, SRC and DST are of the same type. 

254 Appendix D: 65C816 and 6502 SANE Quick Reference Guide 



Conversions (entry points FP8 l 6, FP6502) 

Table D-13 
Binary-to-binary conversions (entry points FP8 l 6, FP6502) 

DST SRC 
Name Opword Operation type type Exceptions 

FX2X $0010 DSf f- SRC x x - - -
FX2D $0110 DSf f- SRC D x u 0 - x 
FX2S $0210 DSf f- SRC s x u 0 - x 
FX2C $0510 DSf f- SRC c x x 
FX21 $0410 DSf f- SRC I x I - x 
FX2L $0310 DSf f- SRC L x I - x 
FD2X $010£ DSf f- SRC x D I -
FS2X $020£ DSf f- SRC x s 
FC2X $050£ DSf f- SRC x c 
FI2X $040£ DSf f- SRC x I 
FL2X $030£ DSf f- SRC x L 

Table D-14 
Binary-to-decimal conversions (entry points FP8 l 6, FP6502) 

DST SRC SRC2 
Name Opword Operation type type type Exceptions 

FX2DEC $000B DST f- SRC using SRC2 Dec x SRC2 I - - -X 
FD 2DEC $010B DST f- SRC using SRC2 Dec D SRC2 I - - -X 
FS2DEC $020B DSf f- SRC using SRC2 Dec s SRC2 I - - -X 
FC2DEC $050B DSf f- SRC using SRC2 Dec c SRC2 - -X 
FI2DEC $040B DSf f- SRC using SRC2 Dec SRC2 - - X 
FI2DEC $030B DSf f- SRC using SRC2 Dec L SRC2 - -X 

Note: First push SRC2, then SRC, then DST. 

Table D-15 
Decimal-to-binary conversions (entry points FP8 l 6, FP6502) 

DST SRC 
Name Opword Operation type type Exceptions 

FDEC2X $0009 DSf f- SRC x Dec - u 0 - x 
FDEC2D $0109 DSf f- SRC D Dec - u 0 - x 
FDEC2S $0209 DSf f- SRC s Dec - u 0 - x 
FDEC2C $0509 DSf f- SRC c Dec - x 
FDEC2I $0409 DSf f- SRC Dec - x 
FDEC2L $0309 DSf f- SRC L Dec - - - x 

Operations 255 



Comparisons (entry points FP8 l 6, FP6502) 
The comparison operations in Table D-17 return relation information in the P register 
and in the low bytes of the X and Y registers, as shown in Table D-16. 

Table 0 -16 
Relation information 

P-reglster bit 

Relation z N v X register• Y register• 

SRC >DST 0 0 1 $40 $40 
SRC <DST 0 1 0 $80 $80 
SRC =DST 1 0 0 $02 $00 
SRC, DST unordered 0 0 0 $01 $01 

• 1-byte value, in the low byte of register on the 65C816 

Table 0 -17 
Comparisons (entry points FP816, FP6502) 

DST SRC 
Name Op word Opera tion type type Exceptions 

FCMPX
0 

$0008 SRC <relation> DST x x I -
FCMPD

0 

$0108 SRC <relation> DST D x I -
FCMPS0 

$0208 SRC <relation> DST s x I -
FCMPC' $0508 SRC <relation> DST c x I -
FCMPI' $0408 SRC <relation> DST x I -
FCMPL0 

$0308 SRC <relation> DST L x I -
FCP:xxt $000A SRC <relation> DST x x I -
FCPXDt $010A SRC <relation> DST D x I -
FCPXSt $020A SRC <relation> DST s x I -
FCPXCt $050A SRC <relation> DST c x I -
FCPXIt $040A SRC <relation> DST I x I -
FCPXLt $030A SRC <relation> DST L x 
• These comparisons don't signal invalid for unordered but do signal invalid for signaling 

NaN inputs. 
t These comparisons signal invalid for unordered. 

256 Appendix D: 65C816 and 6502 SANE Quick Reference Gulde 



Inquiries: class and sign (entry points FP8 l 6, FP6502) 
The classify operations shown in Table D-20 return class information in the low byte of 
the X register and sign in the low byte of the Y register and in the N bit of the P register, 
as shown in Tables D-18 and D-19. 

Table 0-18 
Class Information 

Class X registe r• 

Signaling NaN 
Quiet NaN 
Infinity 
Zero 
Normalized 
Denormalized 

$FC 
$FD 
$FE 
$FF 
$00 
$01 

• 1-byte value, in the low byte 
of register on the 6SC816 

Table 0-19 
Sign information 

Sign Y register• N bit 

Positive $00 0 
Negative $80 1 

• 1-byte value, in the low byte 
of register on the 6SC816 

Table 0-20 
Classify (entry p oints FP8 l 6, FP6502) 

Name Opword Operation 

FCLASSX $001C Xreg, Yreg, Nbit 
FCLASSD $011C Xreg, Yreg, Nbit 
FCLASSS $021C Xreg, Yreg, Nbit 
FCLASSC $051C Xreg, Yreg, Nbit 
FCLASSI $041C Xreg, Yreg, Nbit 
FCLASSL $031C Xreg, Yreg, Nbit 

f-- SRC 
f-- SRC 
f-- SRC 
f-- SRC 
f-- SRC 
f-- SRC 

SRC 
type Exceptions 

x 
D 
s 
c 

L 

Op era tions 257 



Environmental control (entry points FP816, FP6502) 
Table D-21 shows the first byte of the opword as xx to indicate that the byte is ignored. 

Table D-21 
Environmental control (entry points FP8 l 6, FP6502) 

SRC 
Name Opword Operation type Exceptions 

FGETENV $xx03 Xreg ~ low byte of EnvWrd• - - -
Yreg ~high byte of EnvWrd• 

FSETENvt $xx01 EnvWrd~SRC I 

FTESTXCP $xx1B Zbit ~ SRC Xcps clear I 

FSETXCP $xx15 EnvWrd ~ EnvWrd OR SRC*256 I I u 0 

FPROCENTRY $xx17 DST ~ EnvWrd,EnvWrd ~ 0 

FPROCEXIT $xx19 EnvWrd ~ SRC OR current Xcps I I u 0 

• Figure D-8 shows how these 8-bit values are returned in the 16-bit registers of the 65C816. 
t Exceptions set by Set-Environment do not cause halts. 

65C816 Y register ~ Byte 3 Byte 2 

~-!-~-~.-~ 
65C8 l 6 X register -__.;..---~-~ B~e 2 Byte 1 

• Return information Byte3 Byte2 Byte 1 

6502 Y register - ---- -------1 Byte 2 

6502 X register ----- -----------l Byte l 

Figure D-8 
Data returned in X and Y registers 

258 Appendix D: 65C8 l 6 and 6502 SANE Quick Reference Guide 

- -

D x 

DX 



Halt control (entry points FP816, FP6502) 
Table D-22 shows the first byte of the opword as xx to indicate that the byte is ignored. 

Table 0 ·22 
Ho lt control (entry points FP8 16, FP6502) 

Name Opword Operation 

FSETHV $xx05 HltVctr f- SRe 
FGETHV $xx07 Xreg f- low bytes ofHltVctrt 

Yreg f- high bytes of HltVctrt 

SRC 
type 

I 

Exceptions 

• On the 65C816, SRC is a 32-bit value with a 24-bit address in its low-order bytes; on 
the 6502, SRC is a 16-bit value. 

t Figure D-8 shows how the halt vector is returned. HltVctr is three bytes for the 
65C816, two bytes for the 6502. 

Elementary functions (entry points Elems816, Elems6502) 
Table D-23 shows the first byte of the opword as xx to indicate that the byte is ignored. 

Table 0·23 
Elementary functions (entry points Elems8 l 6, Elems6502) 

DST SRC SRC2 
Name Opword Operation type type type 

FLNX $xx00 DST f- ln(DSD x x 
FLOG2X $xx02 DST f- logz(DST) x x 
FLNl X $xx04 DST f- ln(l + DST) x x 
FLOG21X $xx06 DST f- log2(1 + DST) x x 
FEXPX $x:x08 DST f- eDST x x 
FEXP2X $xx0A DST f- 2DST x x 
FEXPlX $xxOC DST f- eDsr - 1 x x 
FEXP21X $xxOE DST f- zDsr _ 1 x x 
FXPWRI $xx10 DST f- DSTSRC x I 
FXPWRY $xx12 DST f- DST5RC x x 
FCOMPOUND $xx14 DST f- compound(SRC2,SRC)° x x x 
FANNUITY $xx16 DST t- annuity(SRC2,SRC)• x x x 
FATANX $x:x18 DST f- atan(DSD x x 
FSINX $xx1A DST f- sin(DSD x x 
FCOSX $xx1C DST f- cos(DST) x x 
FTANX $xx1E DST f- tan(DST) x x 
FRANDxt $xx20 DST f- randomx(DSD x x 
• SRC2 is the rate; SRC is the number of periods. 
t No exceptions for valid arguments. 

Exceptions 

I - - D x 
I - - D x 
I u - DX 
I u - DX 
I u 0 - x 
I u 0 - x 
I u 0 - x 
I u 0 - x 
I u 0 D x 

u OD x 
I u 0 D x 

u 0 D x 
u - - x 
u - - x 
u - - x 
u - DX 

I u 0 - x 

Opera tions 259 



Scanners and formatter (entry points DecStr8 l 6, DecStr6502) 
Table D-24 shows the first byte of the opword as xx to indicate that the byte is ignored. 

Table D-24 
Scanners and formatter (entry points DecStr8 l 6, DecStr6502) 

Name Opword Operation 

FPSTR2DEC $xx02 

FCSTR2DEC $xx04 

DST2° f- SRC2 
beginning at SRC 
SRC f- new index 
DST f- valid prefix flag 

DST2" f- SRC2 
beginning at SRC 
SRC f- new index 
DST f- valid preftx flag 

DST 
type 

DST2 SRC SRC2 
type type type 

Dec DecStr 

Dec DecStr 

Exceptions 

FDEC2STR $xx03 DST f- SRC according 
to SRC2 

DecStr Dec DecForm - - - - -

• Push SRC2, then SRC, then DST2, then DST. 

260 Appendix D: 65C816 and 6502 SANE Quick Reference Guide 



The Environment word 
Rounding direction and precision are stored as 2-bit encoded values; exception and 
halt-enabled flags are set as individual bits. Note that the default environment is 
represented by the integer value zero. 

Rounding direc 
(see Table D-25 

tion 
) 

,-Inexact 

Divide-by-zero 

Exception flag s- Overflow 

Underflow 

__ Invalid 

Rounding prec 
(see Table D-25 

ls ion 
) 

r lnexact 

Divide-by-zero 

Halts enabled ____, Overflow 

Underflow 

__ Invalid 

Figure D-9 

msb lsb 

I 15I14I13I12I 11 I10 J 9 I a I 7 I 615 l 4 J 3 J 2 I 1 I o I 
y 

I 

L,J 

The Environment word for the 65C816 and 6502 

The Environment word 261 



Table D-25 
Bits In the Environment word for the 65C8 l 6 a nd 6502 

Group name Mask bits Mask value Description 

Rounding direction 

rn4 (Bit group $6000) 0 $0000 To-nearest 
1 $4000 Upward 
0 $6000 Downward 
1 $8000 Toward-zero 

Exception flags 12 11 10 9 8 
(Bit group $1FOO) 1 0 0 0 0 $1000 Inexact 

0 1 0 0 0 $0800 Divide-by-zero 
0 0 1 0 0 $0400 Overflow 
0 0 0 1 0 $0200 Underflow 
0 0 0 0 1 $0100 Invalid 

Rounding precision 

ITT 
(Bit group $00CO) 0 $0000 Extended 

1 $0040 Double 
0 $0080 Single 
1 sooco (Undefined) 

Halts enabled 4 3 2 1 0 

(Bit group $001F) 1 0 0 0 0 $0010 Inexact 
0 1 0 0 0 $0008 Divide-by-zero 
0 0 1 0 0 $0004 Overflow 
0 0 0 1 0 $0002 Underflow 
0 0 0 0 1 $0001 Invalid 

Note: Bits 5 and 13 are not used. 

262 Appe ndix D: 65C8 l 6 a nd 6502 SANE Quick Reference Guide 



Appendix E 

MC68000 SANE 
Quick Reference 
Guide 

This guide is your quick reference for the MC68000 SANE engine. It contains diagrams 
of the SANE formats and tables of the SANE operations and Environment word. The 
operation tables show the macro names and opwords for all operations. 

Formats of SANE types 
Each of the diagrams below is followed by a table that gives the rules for evaluating the 
number v. 

In each field of each diagram, the leftmost bit is the msb and the rightmost is the lsb. 
The SANE engine for the MC68000 uses the convention that the most significant bytes 
are stored at the lowest addresses. 

Order of the bits in the variable 

msb lsb msb 

1 • i··, e11 fo 
\ I I 

I $1000 
r 

$1001 $1002 $1003 

Locations of the bytes in memory 

Figure E-1 
Memory format of a variable of type single 

lsb 

I '"I: 

r 

263 



Table E-1 
Format diagram symbols 

Symbol Description 

v Value of number 
s Sign bit 
e Biased exponent 
i Explicit one's bit (extended type only) 
f Fraction 
d Nonsign bits (comp type only) 

Single: 32 bits 

l 8 

Isl e I 
msb lsbmsb 

Figure E-2 
Single format 

Tobie E-2 

23 

lsb 

Values of single-format numbers (32 bits) 

Biased exponent e Fraction f Value v 

0 < e< 255 (any) v= (-1)5 x zCe-l27) X (lj) 

e= O j,;:.O v~ (-1)5 x 2c-126) x (Of) 

e=O f=O v= (-1)5 x0 

e=255 f=O v = (-1)5 x Infinity 

e =255 f*-0 vis aNaN 

Class of v 

Normalized 

De normalized 

Zero 

Infinity 

NaN 

264 Appendix E: MC68000 SANE Quick Reference Guide . 



Double: 64 bits 

1 11 

Isl e 
msb lsb msb 

Figure E-3 
Double format 

Table E-3 

52 

f 

lsb 

Values of double-format numbers (64 bits) 

Biased exponent e Fraction f Value v C lass of v 

O<e<2047 (any) V = (- l)S X z{e-1023) X (1.j) Normalized 

e=O f#O v= (-l)sx 2C-1022) x (Oj) Denormalized 

e=O f=O v= (-1)5 x0 Zero 

e= 2047 f=O v = (-1)5 x Infinity Infinity 

e= 2047 f t::O visa NaN NaN 

Comp: 64 bits 

63 

msb 

Figure E-4 
Comp format 

Table E-4 

d 

lsb 

Values of comp-format numbers (64 bits) 

Sign bit s Nonslgn bits d 

s= l d=O 
s = 1 d:t= 0 
s=O (any) 

Value v 

v is the unique NaN in the comp type. 
v is the two's-complement value of the 64-bit representation. 
vis the two's-complement value of the 64-bit representation. 

Formats of SANE types 265 



Extended: 80 bits 

1 15 1 

msb lsb msb 

Figure E-5 
Extended format 

Table E-5 

63 

f 

Va lues of extended-format numbers (80 bits) 

Biased exponent e Integer I Fraction f Value v 

o~ e~ 32766 1 (any) v= (-l)sx 2Ce-16383) x (l.J) 

o~ e~ 32766 0 f:F-0 v = (- l)S x 2Ce-16383) x (0./) 

0 ~es; 32766 0 f=O v= (-1)5 x0 

e~ 32767 (any) f=O v = (-1)5 x Infinity 

e= 32767 (any) f :F-0 visa NaN 

Operations 

lsb 

Class of v 

Normalized 

Denormalized 

Zero 

Infinity 

NaN 

Tables E-6 through E-10 define the abbreviations and symbols used in the operation 
tables that follow. Tables E-11 through E-24 show the mnemonic name, opword, 
operand types, and exceptions for each operation. 

In the opword, the first byte is the operand format code and the second is the 
operation code. 

Abbreviations and symbols 

The symbols and abbreviations in this section closely parallel those in the text, 
although some are shortened. In some cases, the same symbol has different 
meanings, depending on context; for example, in data types, x stands for extended; 
in exceptions, x stands for inexact. 

266 Appendix E: MC68000 SANE Quick Reference Guide 



Operands 

Table E-6 
Operands 

Abbreviation Description 

DST Destination operand (passed by address) 
DST2 Second destination operand (passed by address) 
SRC Source operand (passed by address) 
SRC2 Second source operand (passed by address) 

Note: Push operands in the order SRC2 (if any), SRC, DST2 (if any), DST. 

Offset 

soc Previous contents 

I-- SRC2 address - Long 
$08 

I-- SRC address -Long 
$04 

I-- DST address - Long 
SP _.. 

Figure E-6 
SANE operands on the MC68000 stack 

Data types 

Table E-7 
Data types 

Abbreviation Description 

X Extended (80 bits, passed by address) 
D Double (64 bits, passed by address) 
S Single (32 bits, passed by address) 
B Byte (8 bits, passed by address) 
I Integer (16 bits, passed by address) 
L Long integer (32 bits, passed by address) 
C Comp (64 bits, passed by address) 
Dec Decimal record (25 bytes, passed by address) 
DecForm Decform record (4 bytes, passed by address) 
DecStr Pascal or C decimal string 

Operations 267 



MC68000 processor registers 

Table E-8 
MC68000 p rocessor registers 

Abbreviation Description 

DO Data register 0 
X Extend bit of Processor Status register 
N Negative bit of Processor Status register 
Z Zero bit of Processor Status register 
V Overflow bit of Processor Status register 
C Carry bit of Processor Status register 

Exceptions 

Table E-9 
Exceptions 

Abbreviation Description 

Xcp Exception 
I Invalid operation 
u Underflow 
0 Overflow 
D Divide-by-zero 
x Inexact 

Environment and halts 

Table E-10 
Environment and halts 

Abbreviation 

EnvWrd 
HltVctr 

Description 

SANE Environment word (16-bit integer) 
SANE halt vector (32-bit long integer) 

268 Appendix E: MC68000 SANE Quick Reference Gulde 



Arithmetic operations (entry point FP68K) 

Table E-11 
Arithmetic operations (entry point FP68K) 

SRC 
Name Opword Operation type Exceptions 

FAD DX $0000 DST~ DST+ SRC x - 0 - x 
FAD DD $0800 DST~ DST+ SRC D I - 0 - x 
FADDS $1000 DST~ DST+ SRC s I - 0 - x 
FAD DC $3000 DST~ DST+ SRC c I - 0 - x 
FAD DI $2000 DST~ DST+ SRC I I - 0 - x 
FADDL $2800 DST~ DST+ SRC L I - 0 - x 
FSUBX $0002 DST~ DST - SRC x - 0- x 
FSUBD $0802 DST~ DST - SRC D - 0- x 
FSUBS $1002 DST~ DST - SRC s - 0- x 
FSUBC $3002 DST~ DST - SRC c - 0- x 
FSUBI $2002 DST~ DST - SRC I - 0- x 
FSUBL $2802 DST~ DST - SRC L - 0 - x 
FMULX $0004 DST~ DST* SRC x UO-X 
FMULD $0804 DST~ DST* SRC D I UO-X 
FMULS $1004 DST~ DST * SRC s UO-X 
FMULC $3004 DST~ DST* SRC c - 0- x 
FMULI $2004 DST~ DST* SRC I - 0- x 
FMULL $2804 DST~ DST* SRC L - 0- x 
FDIVX $0006 DST~ DST I SRC x UODX 
FDIVD $0806 DST ~ DST I SRC D UODX 
FDIVS $1006 DST~ DST I SRC s UODX 
FDIVC $3006 DST~ DST I SRC c U- DX 
FDIVI $2006 DST~ DST I SRC U- DX 
FDIVL $2806 DST~ DST I SRC L U- DX 

FSQRTX $0012 DST~ sqrt(DS'D - - - x 
FREMXt $000C DST~ DST rem SRC x 
FREMDt $080C DST~ DST rem SRC D 
FREMSt $100C DST~ DST rem SRC s 
FREMCt $300C DST~ DST rem SRC c - - - -
FREMit $200C DST~ DST rem SRC - - - -
FREMLt $280C DST~ DST rem SRC L - - - -

FRINTX $0014 DST~ rnd(DS'D - x 
FTINTX $0016 DST~ chop(DSD - - - x 
Note: For all arithmetic operations, the destination is of type extended. 
t Also, DO f- low-order 7 bits of I n I , negated if n < 0, where n a integer 

quotient DST/ SRC. 

Operations 269 



Auxiliary roµtines (entry point FP68K) 

Table E-12 
Auxiliary routines (entry point FP68K) 

Name Opword Operation 

FSCALBX $0018 DST~ DST* 2SRC 

FLOG BX $001A DST~ logb(DST) 

FNEGX $OOOD DST~ - DST 

FABSX $000F DST~ IDSTI 

FCPYSGNX $0011 SRC ~ SRC with sign of DST 

FNEXTX $0013 SRC ~ Nextafter SRC toward DST 
FNEXTD $0813 SRC ~ Nextafter SRC toward DST 
FNEXTS $1013 SRC ~ Nextafter SRC toward DST 

Note: For most auxiliary routines, the destination is of type extended. 
• For CopySign, SRC and DST can be of type X, D, or S. 
t For Nextafter, SRC and DST are of the same type. 

270 Appendix E: MC68000 SANE Quick Reference Guide 

SRC 
type Exceptions 

u 0- x 
- - D-

- - - - -

- - - - -

- - - - -
xt I u 0 - x 
Dt I u 0 - x 
st u 0 - x 



Conversions (entry point FP68K) 

Table E-13 
Binary-to-binary conversions (entry point FP68K) 

DST SRC 
Name Opword Operation type type Exceptions 

FX2X $0010 DSf ~ SRC x x 
FX2D $0810 DSf ~ SRC D x I u 0 - x 
FX2S $1010 DSf ~ SRC s x I u 0 - x 
FX2C $3010 DSf ~ SRC c x I - - - x 
FX2I $2010 DSf ~ SRC x I - - - x 
FX2L $2810 DSf ~ SRC L x I - - - x 

Fx2x• $000E DSf ~ SRC x x I -
FD2X $080E DSf ~ SRC x D I -
FS2X $100E DSf ~ SRC x s I - - - -
FC2X $300E DSf ~ SRC x c 
FI2X $200E DSf ~ SRC x I - - - - -
FL2X $280E DSf ~ SRC x L 

• Included for completeness; functionally identical to first FX2X in table. 

Table E- 14 
Binary-to-decimal conversions (entry point FP68K) 

DST SRC SRC2 
Name Opword Operation type type type Exceptions 

FX2DEC $000B DST ~ SRC using SRC2 Dec x Decform I - - - x 
FD2DEC $080B DSf ~ SRC using SRC2 Dec D Decform I - - - x 
FS2DEC $100B DSf ~ SRC using SRC2 Dec s Decform - - - x 
FC2DEC $300B DSf ~ SRC using SRC2 Dec c Decform - - - - x 
FI2DEC $200B DSf ~ SRC using SRC2 Dec I Dec form - - - - x 
FL2DEC $280B DSf ~ SRC using SRC2 Dec L Decform - - - - x 

Note: First push SRC2, then SRC, then DST. 

Table E-15 
Decimal-to-binary conversions (entry point FP68K) 

DST SRC 
Name Opword Operation type type Exceptions 

FDEC2X $0009 DSf ~ SRC x Dec - u 0 - x 
FDEC2D $0809 DSf ~ SRC D Dec - u 0 - x 
FDEC2S $1009 DSf ~ SRC s Dec - u 0 - x 
FDEC2C $3009 DSf ~ SRC c Dec x 
FDEC2I $2009 DSf ~ SRC I Dec - - - x 
FDEC2L $2809 DSf ~ SRC L Dec - - - x 

Operations 271 



Comparisons (entry point FP68K) 
The comparison operations return the relation information in the Processor Status 
register, as shown in Table E-16. 

Table E-16 
Relation information 

Status bit 

Relation x N z v 

DST> SRC 0 0 0 0 
DST< SRC 1 1 0 0 
DST= SRC 0 0 1 0 
DST, SRC unordered 0 0 0 1 

Table E-17 
Comparisons (entry point FP68K) 

Name Op word Operation 

FCMPX* $0008 DST <relation> 
FCMPD* $0808 DST <relation> 
FCMPS* $1008 DST <relation> 
FCMPC* $3008 DST <relation> 
FCMPI* $2008 DST <relation> 
FCMPL* $2808 DST <relation> 

FCPxxt $000A DST <relation> 
FCPXDt $080A DST <relation> 
FCPxst $100A DST <relation> 
FCPxct $300A DST <relation> 
FCPXIt $200A DST <relation> 
FCPXLt $280A DST <relation> 

c 

0 
1 
0 
0 

DST 
type 

SRC x 
SRC x 
SRC x 
SRC x 
SRC x 
SRC x 

SRC x 
SRC x 
SRC x 
SRC x 
SRC x 
SRC x 

SRC 
type 

x 
D 
s 
c 
I 
L 

x 
D 
s 
c 

L 

Exceptions 

I -

I - - - -
I - - - -
I - - - -
I - - - -

• These comparisons don't signal invalid for unordered but do signal invalid for s ignaling NaN 
inputs. 

t These comparisons s ignal invalid for unordered. 

272 Appendix E: MC68000 SANE Quick Reference Guide 



Inquiries: class and sign (entry point FP68K) 
The classify operations set the sign of the destination to the sign of the source and the 
value of the destination according to the class of the source, as shown in Table E-18. 
The destination is an integer variable. 

Table E-18 
Class information 

Class of SRC Value 

Signaling NaN 1 
Quiet NaN 2 
Infinity 3 
Zero 4 
Normalized 5 
Denormalized 6 

Table E-19 
Sign information 

Sign of SRC 

Positive 
Negative 

Table E-20 

Sign of DST 

Positive 
Negative 

Classlfy (entry point FP68K) 

OST SRC 
Name Opword Operation type type Exceptions 

FCLASSX $001C DST ~ sign and <class> of SRC I x - -
FCLASSD $081C DST~ sign and <class> of SRC I D - -
FCLASSS $101C DST ~ sign and <class> of SRC I s 
FCLASSC $301C DST~ sign and <class> of SRC c 

-
-

Operations 273 



Environmental control (entry point FP68K) 

Table E-21 
Environmental control (entry point FP68K) 

DST 
Name Opword Operation type 

FGETENV $0003 DST~ EnvWrd I 
FSETENV• $0001 EnvWrd ~ SRC 
FTESTXCP $001B DST high byte f-- DST Xcp set 
FSETXCPt $0015 EnvWrd f-- EnvWrd OR SRC Xcp 
FPROCENTRY $0017 DST f-- EnvWrd, EnvWrd f-- 0 
FPROCEXIT $0019 EnvWrd ~ SRC OR current Xcps 

• Exceptions sec by Sec-Environment do nor cause halts. 
t 0 = invalid, 1 = underflow, 2 = overflow, 3 = divide-by-zero, 4 = inexact 

Halt control (entry point FP68K) 

Table E-22 
Halt control (entry point FP68K) 

DST SRC 
Name Opword Operation type type Exceptions 

FSETHV $0005 
FGETHV $0007 

HltVctr f-- SRC 
DST~ HltVctr 

L 
L 

274 Appendix E: MC68000 SANE Quick Reference Guide 

SRC 
type Exceptions 

- - - - -

- - - - -
u 0 D x 

- - - - -
u 0 D x 



Elementary functions (entry point Elems68K) 

Table E-23 
Ele me nta ry func tio ns (entry po int Ele ms68K) 

DST SRC SRC2 
Name Opword Operation type type type Exceptions 

FL!\TX $0000 DST ~ ln(DST) x I - - D x 
FLOG2X $0002 DST ~ logi(DST) x I - - D x 
FLNlX $0004 DST ~ ln(l +DST) x u - D x 
FLOG21X $0006 DST ~ log2(1 + DST) x u - D x 
FEXPX $0008 DST ~ eDST x u 0 - x 
FEXP2X $000A DST ~ 2DST x u 0 - x 
FEXPlX $000C DST ~ eDST- 1 x u 0 - x 
FEXP21X $000E DST ~ 2DST-l x u 0- x 
FXPWRI $8010 DST ~ DSTSRC x u OD x 
FXPWRY $8012 DST ~ DSTSRC x x u OD x 
FCOMPOUND $C014 DST ~ compound(SRC2,SRC)• x x x I u OD x 
FANNUITY $C016 DST~ annuity(SRC2,SRC)• x x x I u OD x 
FSINX $0018 DST ~ sin(DST) x x I u x 
FCOSX $001A DST~ cos(DST) x x I u x 
FTANX $001C DST ~ tan(DST) x x u - D x 
FATANX $001E DST ~ atan(DST) x x u x 
FRANDX $0020 DST ~ randomx(DST) x x u 0- x 
• SRC2 is the rate; SRC is the number of periods. 

Scanners and formatter (entry point DecStr68K) 

Table E-24 
Scanners a nd formatter (entry point DecStr68K) 

DST DST2 SRC SRC2 
Name Op word Operation type type type type Exceptions 

FPSTR2DEC $0002 DST2 ~ SRC2 beginning B Dec I De cs tr - - - - -
at SRC 

SRC ~new index 
DST ~ valid prefLx flag 

FCSTR2DEC $0004 DST2 ~ SRC2 beginning B Dec De cs tr - - - - -
at SRC 

SRC ~new index 
DST ~ valid prefix flag 

FDEC2STR $0003 DST ~ SRC according DecStr Dec DecForm - - - - -
to SRC2 

Note: Push SRC2, SRC, DST2, then DST. 

Operations 275 



The Environment word 
Rounding direction and precision are stored as 2-bit encoded values; exception and 
halt-enabled flags are set as individual bits. Note that the default environment is 
represented by the integer value zero. 

ti on Rounding direc 
(see Table E-25 ) 

' Inexact 

Divide-by-zero 

Exception flag s - Overflow 

Underflow 

J nvalid 

Rounding prec 
(see Table E-25 

is ion 
) 

r 
Inexact 

Divide-by-zero 

Halts enabled ----, Overflow 

Underflow 

Jnvalid 

Figure E-7 

msb lsb 

'1sli4l13l12l11l10l9lsl1161 514l 3l 2l 1 I ol 
~ 

I 

y 

The Environment word for the MC68000 

276 Appendix E: MC68000 SANE Quick Reference Guide 



Table E-25 
Bits in the Environment word for the MC68000 

Group name Mask bits Mask value Desc ription 

Rounding direction ml (Bit group $6000) 0 $0000 To-nearest 
1 $2000 Upward 
0 $4000 Downward 
1 $6000 Toward-zero 

Exception flags 12 11 10 9 8 
(Bit group $1FOO) 1 0 0 0 0 $1000 Inexact 

0 1 0 0 0 $0800 Divide-by-zero 
0 0 1 0 0 $0400 Overflow 
0 0 0 1 0 $0200 Underflow 
0 0 0 0 1 $0100 Invalid 

Rounding precision 

m (Bit group $0060) 0 $0000 Extended 
1 $0020 Double 
0 $0040 Single 
1 $0060 (Undefined) 

Halts enabled 4 3 2 1 0 
(Bit group $001F) 1 0 0 0 0 $0010 Inexact 

0 1 0 0 0 $0008 Divide-by-zero 
0 0 1 0 0 $0004 Overflow 
0 0 0 1 0 $0002 Underflow 
0 0 0 0 1 $0001 Invalid 

Note: Bits 7 and 15 are not used. 

The Environme nt wo rd 277 



Glossary 

application type: Any data type, other than 
extended, used to store data for applications. SANE 
application types are single, double, and comp. 

arithmetic type: Any data type used to hold 
results of calculations inside the computer. The 
SANE arithmetic type, extended, has greater range 
and precision than the application types. 

binade: The collection of numbers that lie 
between two successive powers of 2. 

binary floating-point number: A string of bits 
representing a sign, an exponent, and a 
significand. Its numerical value, if any, is the 
signed product of the significand and 2 raised to 
the power of the exponent. 
comp type: A 64-bit application data type for 
storing integral values of up to 18- or 19-decimal­
digit precision. It is used by accounting 
applications, among others. 

decform record: A data type for specifying the 
formatting for decimal results (of conversions). It 
specifies fixed- or floating-point form and the 
number of digits. 

decimal record: A Pascal record type for storing 
decimal data. It consists of three fields: sign (16 
bits), exponent (16 bits), and significand (a Pascal 
string). 
decimal string: A decimal number represented 
as a string of ASCII characters with a length byte, 
like a Pascal string. 

default environment: The environment settings 
when a SANE implementation starts up: rounding 
is to-nearest, rounding precision is extended, and 
all exception flags and halts are off. 

delta guide: A description of something new in 
terms of its differences from something the reader 
already knows about, so-called from 
mathematicians' use of the Greek letter delta (.!l) to 
represent a difference. 

denormalized number: A nonzero binary 
floating-point number that is not normalized (that 
is, whose significand has a leading bit of zero) and 
whose exponent is the minimum exponent for the 
number's storage type. Also called denorm. 

double type: A 64-bit application data type for 
storing floating-point values of up to 15- or 
16-decimal-digit precision. It is used by statistical 
and financial applications, among others. 

environmental settings: The rounding 
direction, rounding precision, and the exception 
flags and their respective halt-enables. 

exception flag: Each exception has a flag that can 
be set, cleared and tested. It is set when its 
respective exception occurs and stays set until 
explicitly cleared. 

exceptions: Special cases, specified by the IEEE 
Standard, in arithmetic operations. The 
exceptions are invalid, underflow, overflow, 
divide-by-zero, and inexact. 

exponent: The part of a binary floating-point 
number that indicates the power to which 2 is 
raised in determining the value of the number. 
The wider the exponent field in a numeric type, 
the greater range the type will handle. 

279 



extended type: An 80-bit arithmetic data type for 
storing floating-point values of up to 19- or 
20-decimal-digit precision. SANE uses it to hold 
the results of arithmetic operations. 

flush-to-zero: A system that excludes 
denormalized numbers. Results smaller than the 
smallest normalized number are rounded to zero. 

gradual underflow: A system that includes 
denormalized numbers. 

halt: Each exception has a halt-enable that can be 
set, cleared, or tested. When an exception is 
signaled and the corresponding halt-enable flag is 
set, the SANE engine will transfer control to the 
address in a halt vector. A high-level language 
need not pass on to its user the facility to assign the 
halt vector, but may halt the user's program. Halt­
enable flags remain set until explicitly cleared. 

Infinity: A special value produced when a 
floating-point operation should produce a 
mathematical infinity or when a floating-point 
operation attempts to produce a number greater in 
magnitude than the largest representable number 
in a given format. Infinities are signed. 

integer types: System types for integral values. 
Integer types typically use 16- or 32-bit two's­
complement integers. Integer types are not SANE 
types but are available to SANE users. 

integral value: A value, perhaps in a SANE type, 
that is exactly equal to a mathematical integer: 
.. ., -2, -1, 0, 1, 2, .... 

NaN (Not-a-Number): A special bit pattern 
produced when a floating-point operation cannot 
produce a meaningful result (for example, 0/0 
produces a NaN). NaNs propagate through 
arithmetic operations. 

normalized number: A binary floating-point 
number in which all significand bits are 
significant: tl1at is, the leading bit of the 
significand is 1. 

quiet NaN: A NaN that propagates through 
arithmetic operations without signaling an 
exception (and hence without halting a program). 

280 Glossary 

rounding direction: When the result of an 
arithmetic operation cannot be represented 
exactly in a SANE type, the computer must decide 
how to round the result. Under SANE, the 
computer resolves rounding decisions in one of 
four directions, chosen by the user: to-nearest (the 
default), upward, downward, and toward-zero. 

SANE engine: Software or hardware that 
implements some or all of the SANE functionality. 

signaling NaN: A NaN tl1at signals an invalid 
exception when tl1e NaN is an operand of an 
arithmetic operation. If no halt occurs, a quiet 
NaN is produced for tl1e result. No SANE operation 
creates signaling NaNs. 

sign bit: The bit of a single, double, comp, or 
extended number that indicates the number's 
sign: 0 indicates a positive number; 1, a negative 
number. 

significand: The part of a binary floating-point 
number that indicates where the number falls 
between two successive powers of 2. The wider the 
significand field in a numeric type, the more 
resolution the type has. 

single type: A 32-bit application data type for 
storing floating-point values of up to 7- or 
8-decimal-digit precision. It is used by 
engineering applications, among others. 

supports SANE: (of an application or language) 
Uses the SANE engine for all calculations except 
operations on machine types, and gives the user 
access to all data types, operations, and 
environmental controls. Compare uses SANE. 

tiny: Characteristic of a number whose magnitude 
is smaller tl1an the smallest positive normalized 
number in the format of tl1e number. 

unit in the last place (ULP): Magnitude of the 
smallest possible change in a binary value . 

uses SANE: (of an application or language) Uses 
the SANE engine for all calculations except 
operations on machine types, without necessarily 
giving the user access to all data types, operations, 
and environmental controls. Compare supports 
SANE. 



Bibliography 

[1] Alefeld, G., and]. Hertzberger. Introduction to Interval Computations. New 
York: Academic Press, 1983. 

This book presents a mathematically rigorous description of interval arithmetic. 

[2] "Appendix D: The Standard Apple Numeric Environment and the SANE 
Library," Macintosh Pascal Technical Appendix. Lexington, MA: THINK 
Technologies, Inc. , and Cupertino, CA: Apple Computer, Inc. , 1984. 

Included are an early version of Part I of the Apple Numerics Manual and an 
interface to a Pascal SANE library. 

[3] Apple Pascal Numerics Manual: A Guide to Using the Apple Pascal SANE and 
Elems Units. Cupertino, CA: Apple Computer, Inc., 1983. 

This manual describes the Apple II and Apple III Pascal implementation of the 
Standard Apple Numerics Environment (SANE) through procedure calls to the 
SANE and Elems units. 

[ 4] Apple III Pascal Numerics Manual: A Guide to Using the Apple III Pascal SANE 
and Elems Units. Cupertino, CA: Apple Computer, Inc., 1983. 

This manual describes the Apple III Pascal implementation of the Standard Apple 
Numerics Environment (SANE) through procedure calls to the SANE and Elems 
units. This was Apple's first full implementation of IEEE arithmetic. 

[5] Apple Ill Pascal Programmer's Manual, Volume 2. "Appendix A: The 
TRANSCEND and REALMODES Units" and "Appendix E: Floating-Point 
Arithmetic." Cupertino, CA: Apple Computer, Inc. , 1981. 

These appendixes describe the implementation of single-precision arithmetic in 
Apple III Pascal, which was based upon Draft 8.0 of the proposed Standard. 

[6] Apple JIGS Programmer's Workshop C Reference, version 1.0. Renton, WA: 
Apple Programmer's and Developer's Association, 1987. 

This is the reference manual for the C language in the Apple IIGS Programmer's 
Workshop. 

281 



[7] Apple JIGS Toolbox Reference, Volumes 1 and 2. Reading, MA: Addison­
Wesley, Inc., and Cupertino, CA: Apple Computer, Inc., 1987. 

Volume 1 includes information about starting and using the tool sets. Volume 2 
tells about specific tool sets, including the SANE tool set. 

[8] Apple II Instant Pascal Language Reference Manual. Reading, MA: Addison­
Wesley, Inc., and Cupertino, CA: Apple Computer, Inc., 1985. 

This manual documents SANE extensions to Pascal. Appendix E introduces SANE 
and the SANE Pascal library functions. 

[9] Cody, W.]. "Analysis of Proposals for the Floating-Point Standard." IEEE 
ComputerVol. 14, No. 3 (March 1981) . 

This paper compares the several contending proposals presented co the Working 
Group. 

[10) Cody, W . ]. , et al. "A Proposed Radix- and Word-length-independent Standard 
for Floating-point Arithmetic." IEEE Micro Vol. 4, No. 4 (August 1984). 

This article makes the proposed IEEE 854 Standard available for public comment 
and discusses implementation problems. SANE implementations conform to the 
more general proposed Standard 854, as well as to Standard 754. 

[11] Coonen, Jerome T. "An Implementation Guide to a Proposed Standard for 
Floating-Point Arithmetic. " IEEE Computer Vol. 13, No. 1 (January 1980). 

This paper is a forerunner to the work on the draft Standard. 

[1 2] Coenen, Jerome T. "Contributions to a Proposed Standard for Binary Floating­
Point Arithmetic. " Ph.D. Thesis, University of California at Berkeley, 1984. 
(Available from University Microfilm, Ann Arbor, MI.) 

The thesis, developed alongside the standard itself, is a set of clarifications and 
elaborations of the terse 754 document (17]; it is an aid to implementors and a 
demonstration that the implementation is feasible. 

[13) Coenen, Jerome T. "Underflow and the Denormalized Numbers. " IEEE 
ComputerVol. 14, No . 3 (March 1981). 

(14] Demmel, James. "The Effects of Underflow on Numerical Computation." SIAM 
journal on Scientific and Statistical Computing, Vol. 5, No. 4 (December 1984), 
pp. 887-919. 

These two papers examine one of the major features of the proposed Standard, 
gradual underflow, and show how problems of bounded exponent range can be 
handled through the use of denormalized values. 

[15] Farnum, Charles. "Compiler Support for Floating-Point Computation." 
Submitted to Software Practices and Experience, 1988. 

This paper describes many of the things a compiler writer should know about 
floating-point arithmetic. 

282 Bibliography 



(16) Fateman, Richard]. "High-Level Language Implications of the Proposed IEEE 
Floating-Point Standard." ACM Transactions on Programming Languages and 
Systems Vol. 4, No. 2 (April 1982). 

This paper describes the significance to high-level languages, especially Fortran, 
of various features of the IEEE proposed Standard. 

(17) Floating-Point Working Group 754 of the Microprocessor Standards Committee, 
IEEE Computer Society. "A Proposed Standard for Binary Floating-Point 
Arithmetic." IEEE Computer Vol. 14, No. 3 (March 1981). 

This is Draft 8.0 of the proposed Standard, which was offered for public 
comment. The final Standard (21) is substantially simpler than this draft; for 
instance, warning mode and projective mode have been eliminated, and the 
definition of underflow has changed. However, the intent of the Standard is 
basically the same, and this paper includes some excellent introductory 
comments by David Stevenson, Chairman of the Floating-Point Working Group. 

(18) Harbison, S. T., and G. L. Steele, Jr. C Reference Manual, Second Edition. 
Englewood Cliffs, NJ: Prentice-Hall, 1987. 

(19] Hough, D. "Applications of the Proposed IEEE 754 Standard for Floating-Point 
Arithmetic." IEEE Computer Vol. 14, No. 3 (March 1981). 

This paper is an excellent introduction to the floating-point environment 
provided by the proposed Standard, showing how it facilitates the 
implementation of robust numerical computations. 

(20] HP-15C Advanced Functions Handbook. Corvallis, OR: Hewlett-Packard 
Company, 1982. 

An appendix, "Accuracy of Numerical Calculations," gives a good analysis of 
rounding, albeit in decimal. 

(21) IEEE Std 754-1985. IEEE Standard for Binary Floating-Point Arithmetic. New 
York: IEEE, Inc., 1985. 

SANE is based on this standard. 

[22] Kahan, W. "Interval Arithmetic Options in the Proposed IEEE Floating-Point 
Arithmetic Standard." In Interval Mathematics 1980, edited by K. E. L. Nickel. 
New York: Academic Press, 1980. 

This paper attempts to allay certain widespread misconceptions about computer 
arithmetic. 

[23] Kahan, W. "To Solve a Real Cubic Equation." Berkeley, CA: Report No. PAM-
352, Center for Pure and Applied Mathematics, University of California, 1986. 

This paper compares the behavior of different numerical methods for extracting 
cube roots of complex numbers. 

Bibliography 283 



[24) Kahan, W. "Rational Arithmetic in Floating-Point." Berkeley, CA: Report No. 
PAM-343, Center for Pure and Applied Mathematics, University of California, 
1986. 

This paper describes preconditioning and the use of the inexact flag. 

[25) Kahan, W. "Branch Cuts for Complex Elementary Functions." In The State of the 
An of Numerical Analysis, edited by A. Iserles and M. ]. D. Powell. Oxford 
University Press, 1987. 

[26) Kahan, W., and Jerome T. Coonen. "The Near Orthogonality of Syncax, 
Semantics, and Diagnostics in Numerical Programming Environments. " In The 
Relationship between Numerical Computation and Programming Languages, 
edited by]. K. Reid. New York: North Holland, 1982. 

This paper describes high-level language issues relating to the proposed IEEE 
Standard, including expression evaluation and environment handling. 

[27) LightspeedC User's Guide and Reference Manual. Lexington, MA: THINK 
Technologies, Inc., 1986. 

[28) Lightspeed Pascal User's Guide and Reference Manual. Lexington, MA: THINK 
Technologies, Inc., 1986. 

LightspeedC and Lightspeed Pascal are development systems that support SANE. 

[29] Mac C and Mac C Toolkit: A Programmer's Guide. Version 2.0. Portola Valley, 
CA: Consulair Corp., 1985. 

This manual documents SANE extensions to C and a SANE C library. 

[30) Macintosh Pascal Reference Manual. Lexington, MA: THINK Technologies, 
Inc., and Cupertino, CA: Apple Computer, Inc., 1984. 

This manual documents SANE extensions to Pascal. 

[31) MC68881 Floating-Point Coprocessor User's Manual. Phoenix, AZ: Motorola, 
Inc., 1985. 

This is the refe rence manual for the MC68881, a hardware implementation of the 
IEEE Standard for Floating-Point Arithmetic, P754, for the MC68000 family of 
microprocessors. 

[32) Moore, R. E. Methods and Applications of Interval Analysis. Society for 
Industrial and Applied Mathematics, 1979. 

This is a good introductory book, helpful to someone implementing an interval 
arithmetic. 

[33) MPW C Reference, version 2.0. Renton, WA: Apple Programmer's and 
Developer 's Association, 1987. 

This is the reference manual for the C language in Apple's Macintosh 
Programmer's Workshop. 

284 Bib liography 



[34] MPW Pascal Reference, version 2.0. Renton, WA: Apple Programmer's and 
Developer's Association, 1987. 

This is the reference manual for the Pascal language in Apple's Macintosh 
Programmer's Workshop. 

[35] Rice, John R. Numerical Methods, Software, and Analysis. New York: McGraw­
Hill, 1983. 

This book is a compendium on currently-available numerical software libraries, 
mostly in Fortran. It discusses numerical methods and gives advice-some of it 
good. It also includes a large bibliography. 

[36] Sterbenz, Pat H. Floating-Point Computation. Englewood Cliffs, NJ: Prentice­
Hall, 1974. 

This book is obsolescent. It describes some things you have to know and others 
you used to have to know; it gives a good idea of why floating-point computation 
is simpler nowadays. 

[37] Turbo Pascal for the Mac User's Guide and Reference Manual. Scotts Valley, 
CA: Borland International, Inc., 1986. 

Bibliography 285 



A 
Absolute Value function 49, 55, 

95, 150, 197 
Accrued Exception byte 202, 203, 

205-206 
Accrued Exception flag 205, 206 
accuracy 

conversions 23 
maximizing for 65C816 103 
maximizing for 68000 159 
MC68881 elementary functions 

199 
addition 55, 93, 196 
AINT 243 
Annuity function 64--05, 123, 174, 

198 
special cases 65 

Annuity(r,n) 123 
Al register 142, 180, 212 
Apple Pascal Assembler 240 
Apple II 240 
Apple IIGS 85 
Apple Iles Programmer's Workshop 

(APW) 82--88, 98, 219, 240 
Apple Iles Toolbox 85 
Apple III 240 
application types 12 
APW. See Apple Iles Programmer's 

Workshop 
arccosine 71, 198 
arccosine, hyperbolic 74 
arcsine 71, 198 
arcsine, hyperbolic 74 
arctangent 66, 67, 120, 172, 197 
arctangent, hyperbolic 74 
area, triangle 77-78 
A register 86, 116 
argument reduction 47, 66 

Index 

arithmetic, IEEE Standard 4-10, 
220 

arithmetic operations 36, 46--47, 
196, 253, 269 

arithmetic type 12. See also 
extended type 

assembly-language calls 82 
assembly-language macros 88--89, 

92, 144 
Atan(x) 120, 172 
atomic operations 58, 110 
ATOMICPROC 110, 165 
A2 register 180 
auxiliary routines 

65C816 94, 95, 254 
68000 150-151, 270 
68881 197, 198 

AO register 142, 180 

B 

base-e exponential 63, 120, 172, 
197 

base-e exponential minus 1 
63, 120, 172, 197 

base-e logarithm 62, 120, 172, 
197 

base-10 exponential 198 
base-10 logarithm 198 
base-2 exponential 63, 120, 172, 

197, 198 
base-2 logarithm 62, 120, 172, 

197, 198 
BASIC 242 
biased exponent 16 
binade 42 
binary exponent 50, 94, 150 
binary logarithm 94, 150, 197 

binary mantissa 198 
binary operations 83 
binary scale 94, 150, 181, 197 
bytes 246 
bytes in memory, order 90, 102, 

145, 246 

c 
calling conventions 82, 140 
calling sequence 

for 65C816 86--89, 92, 
100-102, 121-123, 127 

for 68000 143, 148, 156-158, 
172-174, 176 

CCR 168 
CDC computers 243 
C language 

data types 233 
interface 235 
SANE extensions 233-239 
SANE library 235-239 
scaling functions 50 

classify operation 97, 197, 257, 
273 

class inquiry 97 
comparison 

in C extension 234 
FCPX, FCMP operations 96-97, 

151-152 
and invalid operations 55 
involving NaNs and Infinities 48 
in Pascal extension 222 
in 65C816 SANE 84, 96-97, 

256 
in 68000 SANE 142, 151-152, 

277 
using 68881 196 

287 



compatibility 187, 202 
comp format 13, 17, 193, 221, 

233 
compilers 55 

options 224, 235 
compound conditional statements 

7-8 
compounded value Q 63 
Compound function 64, 174, 198 

special cases 65 
Compound(r,n) 123 
computer approximation of real 

numbers 23 
computer voice xxvi 
Condition Code byte 202 
constant C 70 
constant definitions, evaluating 222 
constants 

in C extensions 231 
for exceptions 54 
extended 222 
in Pascal extensions 220 
for Sinh and Cosh 72 

CONST DivByZero 54 
CONST Inexact 54 
CONST Invalid 54 
CONST Overflow 54 
CONST Underflow 54 
continued fractions 76-77 
controlling the environment 52-59 

with 65C816 SANE 106-110, 
258 

with 68000 SANE 162-165, 274 
with 68881 202-206 

convergence criteria 244 
conversions 20- 34 

accuracy of decimal to binary 23 
between binary fonnats 

100- 101, 156-157 
binary to decimal 22-29, 

102- 103, 157-159 
between decimal fonnats 29-34 
between decimal strings and 

records 176 
between extended fonnats 193 
to comp and other integral 

formats 22 
cycles (binary-decimal) 24 
decimal to binary 22-29, 

102-103, 157-159 

288 Index 

to extended 100, 156 
from extended 21, 101, 157 
invalid conditions 55 
numeric constants 222, 233 
with 65C816 84, 100-103, 255 
with 68000 141, 156-159, 271 
with 68881 196-198 

CopySign 55, 95, 150, 198 
cosecant 70 
cosine 66, 120, 172, 197 
cotangent 71 
Cray computers 243 
C SANE extensions 233-239 
C SANE library 235-239 
C status bit 151 
Cstr2dec 126, 176 
current exception flags 206 
current rounding direction 47, 52 

D 
data types 12-18 

with 65C816 70 
with 68000 145 
with 68881 190 

DecForm.digits 26-27 
decform records 

in conversions 31-32, 84, 
101-102, 157, 158 

definition 26-27 
digits field 26-27 
as numeric formatter input 127, 

177 
style field 26-27, 102. 157 

DecForm. style 26-27, 102, 157 
decimal data 24-25 
Decimal.exp 27, 102 
decimal fractions 23 
decimal records 27-33 

in conversions 27-33, 101-102, 
157-159 

definition 27 
exp field 27 
as numeric formatter input 127, 

177 
as numeric scanner output 126, 

176 
sgn field 27 
sig field 27 

Decimal.sgn 27, 102, 157 

Decimal. sgn 27, 102, 157 
Decimal. sig 27, 101, 102, 157, 

158, 159 
decimal strings 25 
DecStr 25 
DecStr816 82, 85, 86, 112, 127 
DecStr68K 140, 176, 241 
DecStr6502 82, 85, 86, 87, 127, 

135, 240 
Dec2Str 127, 177 
default environment 52, 53, 106, 

162, 223 
default rounding 223 

direction 52 
precision 53 

delta guide 183 
denormalized numbers 13, 15, 40, 

42-43, 50 
destination operand (DST) 

definition 83 
in 65C816 operation fonns 

83-84, 86-87, 92 
in 68000 operation forms 

141-143, 148, 151 
development systems 88 
direct page 85, 113, 114 
divide and round 199 
divide-by-zero exception 56 
Divide function 93 
division 55, 93, 196 

by zero 9, 77 
Dl register 142 
DOS assemblers 240 
double format 13, 17, 221, 233, 

248, 265 
double precision 244 
double rounding 244 
downward rounding 52 
DST. See destination operand 
DO register 142, 148, 149, 168 

E 
80-bit extended fonnat 18, 

191-194, 213, 220 
8087 coprocessor 244 
e lementary functions 10, 62, 120, 

172, 259, 275 
accuracy using 68881 199 

Elems881 190, 224 
Elems816 82, 85, 86, 112, 120 



Elems68K 140, 172, 190, 241 
Elems6502 82, 85-87, 135, 240 
environment 52-59, 223, 234, 

245 
environmental control 52-59 

with 65C816 SANE 106-110, 
250 

with 68000 SANE 162-165, 274 
with 68881 202- 206 

environment flags 106, 162 
environment registers (68881) 

202-206 
Environment word 85 

for 65C816 106-110 
for 68000 162-163 
for 68881 202-203 

EnvWrd 252, 267 
equal (comparison) 47, 49, 96 
error bounds 244 
evaluation rules 244 
exceptional events 7, 77 
Exception Enable byte 202, 

203-204 
exception handling 10, 70, 

208-209 
exceptions 10, 49, 85, 116, 150, 

168, 209, 233 
with C extensions 233, 234 
in Environment word 106-107, 

162- 163 
in Exception word 109, 164-165 
and halt mechanism 54, 116, 

168 
with Pascal extensions 222, 223 
setting 58 
during sign manipulation 49 
spurious 59, 70 
stimulating 109, 110, 165 
types of 55-56 

Exception Status byte 202, 203, 
205- 206 

Exception Status flags 205 
Exception word 109, 164 
Exp field 63 
explicit one's bit 16 
Expl 63 
exponent 13 

binary 50 
exponential functions 63-64 
Expl (x) 120, 172 
expressions 222, 233 

Exp21 (x) 120, 172 
Exp2 63 
Exp2 (x) 120, 172 
Exp (x) 120, 172 
extended type 

F 

advantages 4, 12-13, 77 
in arithmetic operations 46 
in C extension 233 
constants in 222 
conversions between 80- and 

96-bit 193 
80-bit format 18 
format 18 
96-bit format 18, 192 
in Pascal extention 221 
when porting programs 243 
precision 12-13 
range 12-13 
using temporaries 37 

FADDD 190 
FADDS 144 
FALSE 48 
FBINF 98 
FBLE 97, 98 
FBLES 152 
FBNE 97, 98 
FBNES 152 
FCMP 96, 151, 152 
FCMPD 152 
FCOMPOUND 123, 174 
FCPX 96, 151, 152 
FCPXS 152 
FCPYSGNC 95 
FCPYSGNX 150 
FCSTR2DEC 176 
FC2DEC 158 
FC2X 100, 156 
FDEC2D 102, 158 
FDEC2STR 177 

FDIVD 93, 148 
FD2X 100, 144, 156 
FGETENV 108, 164 
FI2X 100, 156 
fixed-format overflow 102 
Floating-Point Control register 202 

Exception Enable/Mode Control 
bytes 202, 203- 204 

floating-point coprocessors 244. 
See also MC68881 

floating-point registers (68881) 191 
Floating-Point Status register 202 

Exception Status/ Accrued 
Exception bytes 203, 
205-206 

floating-point storage formats 
12-13 

float type (C) 233 
FL2X 100, 156 
flush-to-zero systems 43 
FNEXTD 95, 151 
formatters, numeric 29, 32, 260, 

275 
formatting 198 

MC68881 213-214 
MC68000 181- 182 
65C816 132-133 
6502 135-136 

Fortran 242, 243, 244 
FPCR (Floating-Point Control 

register) 202 
FP881 190 
FP816 82, 85, 86, 112, 127, 131 
FPl register 212 
FPROCENTRY 110, 165 
FPROCEXI T 110, 165 
FP7 register 190, 191 
FP68K 140, 141, 142, 150, 151, 

156, 158, 159, 168, 170, 176, 
190, 241 

FP6502 82, 85, 86, 87, 127, 134, 
135, 240 

FPSR (Floating-Point Status 
register) 202 

FPO register 190, 191, 212 
fractions 16 
FREMS 94, 149 
frexp 50 
FRINTX 93 
FSCALBX 94, 150 
FSETENV 108, 164 
FSETHV 116, 117, 168 
FSINX 121, 173 
FSQRTX 93, 144, 149 
FS 2X 100, 156 
FSUBS macro 82 
FTESTXCP 10~ 165 
FTINTX 93 

Index 289 



FUNCTION Annuity 65 
FUNCTION ArcCos 71 
FUNCTION ArcCosh 74 
FUNCTION ArcSin 71 
FUNCTION ArcSinh 74 
FUNCTION ArcTan 66 
FUNCTION ArcTanh 74 
FUNCTION ClassComp 44 
FUNCTION ClassDouble 44 
FUNCTION ClassExtended 44 
FUNCTION ClassReal 44 
FUNCTION ClassSignNum 44 
FUNCTION Compound 64 
FUNCTION CopySign 49 
FUNCTION Cos 66 
FUNCTION CoSecant 70 
FUNCTION Cosh 73 
FUNCTION CoTangent 71 
FUNCTION Dec2Num 28 
FUNCTION Exp 63 
FUNCTION Expl 63 
FUNCTION Exp2 63 
FUNCTION FPFunc 193 
FUNCTION GetHal tVector 54 
FUNCTION Ln 62 
FUNCTION Lnl 62 
FUNCTION Logb 50 
FUNCTION Log2 62 
FUNCTION NAN 41 
FUNCTION NextDouble 50 
FUNCTION NextExtended 50 
FUNCTION NextReal 50 
FUNCTION NumFcn 59 
FUNCTION Num2Comp 22 
FUNCTION Num2Double 21 
FUNCTION Num2 Integer 22 
FUNCTION Num2Longint 22 
FUNCTION Num2Real 21 
FUNCTION RandomX 67 
FUNCTION Relation 49 
FUNCTION Remainder 46 
FUNCTION Rint 47 
FUNCTION Scalb 50, 181 
FUNCTION ScalbNew 213 
FUNCTION Secant 70 
FUNCTION SetHaltVector 54 
FUNCTION Sin 66 
FUNCTION Sinh 72 
FUNCTION Str2Num 25 
FUNCTION Tan 66 

290 Index 

FUNCTION Tanh 73 
FUNCTION XpwrI 63 
FUNCTION XpwrY 63 
fundamental operations 5, 

187-189, 196 
FXPWRI 122, 173 
FX2C 101, 157 
FX2D 101, 144, 157 
FX2 I 101, 157 
FX2L 101, 157 
FX2S 101, 157 
FX2X 100, 101, 156, 157 

G 
gamma 72 
general exponentiation function 

122, 173, 198 
Get-Environment 107, 108, 163, 

164 
GetHaltVector 115, 169 
GetTrapVector 208 
gradual underflow 5, 42-43 
greater (comparison) 47, 49, 96 
greater-or-equal (comparison) 47 

H 
halt 109, 112, 113, 114, 168 
halt address 84 
halt bit 109 
halt control 259, 274 
halt-enable bit 112, 168 
halt-enable flags 106, 162, 261, 

276 
halt flags 209 
halt handlers 114, 116, 168, 170, 

208 
halt mechanism 112, 116-117, 

168- 170 
halts enabled 107, 163, 223, 234, 

262, 277 
halt settings 57 
halt status information 113 
halt (trap) vector 85, 112, 114, 

116, 169, 170, 208 
operations 115 

hardware exception trapping 54 
Heron's formula 77-78 
high-level languages 219-239 

comparisons 48 
halts and traps 208 

HltVctr 252, 267 
Homer's recurrence 130, 133, 

180, 212 
HP Spectrum quad format 243 
HROUTINE 170 
hyperbolic arccosine 74 
hyperbolic arcsign 74 
hyperbolic arctangent 74, 198 
hyperbolic cosine 73, 198 
hyperbolic sine 72, 198 
hyperbolic tangent 198 

I, J 
IBM Q format 243 
IEEE double type 13, 221, 233 
IEEE extended type 13, 221, 

233, 243 
IEEE rounding 22 
IEEE single type 13, 221, 233 
IEEE Standard 12, 23, 38, 96, 152 
IEEE Standard arithmetic 4-10, 

220 
IEEE Standard defaults 223, 234 
IEEE Standard 854 50 
IEEE Standard numerics 186 
IEEE Standard 754 50, 186, 187, 

196 
binary floating-point arithmetic 

xxv, 22, 137 
index 126, 176 
Index 30 
inexact exception 56 
inexact flag 36 
INF 223, 234 
Infinity 7-10, 22, 26, 28, 40, 44, 

77, 220, 223, 234 
comparisons 48 
negative 40 
positive 40 

inquiries 84, 97-98, 153, 257, 273 
instant rounding 244 
INT 243 
integer exponentiation function 

122, 173, 198 
integral values 22, 47, 52 
internal rate of return 63 
interval arithmetic 9 
invalid-operation exception 41, 55 
invalid-operation flag 48, 245 
inverse operations 6, 199 



K 
Kahan, William 70 

L 
lambda 72 
language interface, MC68881 213 
ldexp 50 
Jess (comparison) 47, 49, 96 
less-or-equal (comparison) 47 
limits, theory 40 
Ln (1 + x) 62 
Ln l (x) 62, 120, 172 
Ln (x) 62, 120, 172 
logarithmic functions 62 
Logb 94, 150 
Log21 (x ) 120, 172 
Log2 (x) 62, 120, 172 

M 
Macintosh 186 
Macintosh Programmer's Workshop 

(MPW) 140, 148, 152, 172, 
194, 208, 241 

c 235 
C compiler 189 
Pascal 8, 170, 224 
Pascal and C SANE libraries 209 
Pascal compiler 189 
revision 2.0 241 

macro calls 122 
macro names 140 
macros 148, 152, 172, 194, 240 
mantissa 50 
MC68881 compiler option 224, 

235 
MC68881 coprocessor 18, 54, 183, 

196, 197, 244 
accuracy 199 
calls 190, 213 
comp format 193 
data types 190-193 
environment registers 202- 203 
exception and halt flags 209 
exception handling 208-209 
floating-point registers 191 
functions 196-199 
functions not performed 189 
language interface 213 
96-bit extended format 191- 193 
numerics packages 190 

polynomial evaluation 212 
SANE libraries 208 
SANE macros 194 
SANE software 186-189, 241 
scanning and formatting 

213-214 
status and control registers 202 
traps 208 

MC68020 microprocessor 187 
MC68000 microprocessor 18, 137, 

183, 191, 196 
assembly-language 141, 142, 

172 
CCR flags 142 
floating-point packages 186 
language interface 181 
polynomial evaluation 180 
registers 142, 267 
stack 267 

MC68000 SANE engine, 137, 140, 
145, 156, 157, 180, 181, 263 

data types 145 
Environment word 203 
software 202, 241 
scanning and formatting 

181-182 
memory, order of bytes 90, 102, 

145, 246 
Memory Manager 85, 130 
Miscellaneous Tool Set 85 
MISC record 168 
mixed formats 243 
Mode Control byte 202, 203-204 
modulo function 4647 
modulo remainder 198 
monotonic packages 199 
mu 72 
multiplication 55, 93, 196 
multiply and round 199 
Multiply function 93 

N 
NAN 26, 223, 234 
NaN codes 25, 28, 41, 223 

SANE 196 
NaNs 7, 8, 10, 22, 28, 32, 40, 41, 

77, 196, 222, 223, 234, 245 
comparisons 48 
quiet 41, 55 
signaling 41, 48, 49, 55, 150 

needle-shaped triangles 78 
Negate function 49, 55, 95, 150 
negation 197 
negative Infinity 40 
Nextafter function 50, 151, 198 
96-bit extended format 18, 

191-194 , 213 
96-bit interface 193 
nonsign bits 16 
normalized numbers 13-15, 40, 42 
Not-a-Number. See NaNs 
not-equal (comparison) 47, 48 
N status bit 96, 97, 151 
numeric ASCII strings 30 
numeric constants, conversions 

222, 233 
numeric formatter 127, 132, 135, 

177, 181 
numeric scanner 126-127, 132, 

135, 176, 181 

0 
operands 82 

classes 153 
destination 83, 86, 92, 96, 141, 

148, 151 
format code 88 
order 49 
passed by address 83, 101, 141, 

148 
passed by value 83 
source 86, 88, 96, 141, 148, 

151, 153 
operation forms 83-84, 140-142 
o pword 88, 143 
order of operands 49 
output 

fixed-style 32 
floating-style 31 

overflow exception 56 

p 

package calls 194, 209, 213 
package halt mechanism 209 
Package Manager 241 
parser 103 
Pascal 20, 21, 31, 243 
Pascal data types 221 
Pascal SANE extensions 221-232 

Index 291 



Pascal SANE library 224-232 
Pascal strings 176, 181 
Pascal-type rounding 22 
PDP-llC, double-precision 244 
periodic functions 66 
pi 66 
PolyEval 212 
POLYEVAL 131, 134, 180 
polynomial evaluation 

MC68000 180 
MC68881 212 
65C816 130- 131 
6502 133-134 

porting programs 242 
positive Infinity 40 
P register 257 
PROCEDURE Dec2Str 31 
Procedure-Entry 57, 58, 70, 107, 

110, 163, 165 
Procedure-Exit 57, 58, 70, 107, 

110, 163, 165 
PROCEDURE GetEnvironment 57 
PROCEDURE GetPrecision 53 
PROCEDURE GetRound 52 
PROCEDURE Num2Dec 28 
PROCEDURE Num2Str 26 
PROCEDURE ProcEntry 57 
PROCEDURE ProcExit 57 
PROCEDURE SetEnvironment 57 
PROCEDURE Set Exception 54 
PROCEDURE SetHalt 54 
PROCEDURE SetPrecision 53 
PROCEDURE SetRound 52 
PROCEDURE Sine 135, 181, 213 
PROCEDURE Str2Dec 30 
PROCEDURE TestException 54 
PROCEDURE TestHalt 54 
processor status bits 92, 96 

CCR 148 
Processor Status register 109, 272 
ProDOS assemblers 240 
PROGRAM invop; 6 
Pstr2dec 126, 176 
PUSH 82 
PUSHLONG macro 82, 86 
PUSHWORD macro 86 

Q 
quiet NaN 41, 55 
Quotient byte 202 

292 Index 

R 
radians 66 
random number generator 67, 198 
RandomX(x) 120, 172 
real numbers 48 

computer approximatio n 23 
rectangular distribution 67 
registers 114 
relational operators 48, 96 
relations 96 
Remainder function 46-47, 55, 94, 

149, 196 
remainder magnitude 47 
result, tiny 56 
rounding 4, 5, 9, 245 

default 6, 222 
double 244 
IEEE 22 
instant 244 
Pascal-type 22 

rounding direction 9, 52-53, 103, 
106, 107, 149, 162, 163, 203, 
204, 223, 234, 245, 261, 262, 
276, 277 

current 47 
default 52 
setting 57 

rounding error 244 
rounding modes 203 
rounding precision 53, 57, 107, 

162, 163, 203, 204, 223, 234, 
261, 262, 276, 277 

rounding upward 53 
Round-to-Integer 93, 149, 197 
round-to-integral value 196 
run-time library 219 

s 
SANE x.xv, 4, 6 

comp type 13, 221, 233 
engine calls 140 
Environment word 85 
function number 85 
hardware 186 
hybrid packages 186, 187, 199, 

202, 208 
implementations for different 

microprocessors 22 
language products supporting 

219 

language systems 220, 221 
MC68881 macros 194 
NaN codes 196 
operations 82 
opword 113 
Pascal interface 224 
types 14-15, 20, 220 

SANE library 219, 221 
c 209, 235-239 
MC68881 208 
Pascal 209, 224-232 

SANEShutdown 130 
SANE software 193, 198, 202 

functions 196-198 
halts 208 
MC68000 241 
MC68020 241 
MC68881 186-189, 241 
65C816 240 
6502 240 

SANEStartUp 85, 130 
SANE Tool Set 85 
Scalb 94, 150, 181 
scanf 234 

specifiers 234 
scanners 29, 31, 114, 126-127, 

260, 275 
scanning 198 

MC68000 181-182 
MC68881 213-214 
routines 126-127, 176 
65C816 132- 133 
6502 135-136 

Secant 70 
seed 67 
set condition 199 
Set-Environment 107, 108, 163, 

164 
Set-Exception 107, 109, 163, 

164- 165 
SetHaltVector 112, 115, 169 
SetTrapVector 208 
sgn field 27 
short-circuit option ($SC+) 8 
sig field 27 
SIGN (A) 242 
SIGN(A,B) 242 
signaling NaN 41, 48, 49, 55, 150 
sign bit 16 
signed-integer format 199 
significand 13 



significant digits, number of 158, 
159 

sign inquiry 97 
sign manipulations 49, 55 
sign of zero 43-44 
sine 66, 120, 172 

in examples 132, 135, 244 
sine, hyperbolic 72 
single format 13, 15, 16, 221 , 233 
single-precision arithmetic 37 
65C816 microprocessor 79 

addresses 115 
direct page 113 
halt example 116 
polynomial evaluation 130-131 
processor registers 251 
stack 250 

65C816 SANE engine 79, 82, 85, 
89, 90, 92, 103, 112, 121 

data types 90 
halt mechanism 112 
software 240 
scanning and formatting 

132-133 
6502 microprocessor 79 

halt example 117 
polynomial evaluation 133-134 
processor registers 251 
stack 250 
status bit 114 

6502 SANE engine 79, 82, 85- 90, 
92, 94, 100, 103, 108, 112, 
121 

halt status record 114 
macros 88 
software 240 
scanning and formatting 

135-136 
68000. See MC68000 
68881. See MC68881 
software packages 197, 208 

calls 187 
source operand 86, 88, 96, 141, 

148, 151, 153 
passed by address 92 
passed by value 92, 94 

speed improvement with 
MC68881 188, 197 

spurious exceptions 59, 70 
square root 55, 93, 149, 196 
SRC. See source operand 

stack frame 168, 169 
Standard Apple Numerics 

Environment. See SANE 
status flags 86 
stopping 8 
stopping computation 77 
stopping program 245 
string 126, 127, 176, 177 

conversions 26 
Str2Num 222 
style field (of decform record) 

26-27, 102, 157 
Subtract function 93 
subtraction 55, 93, 196 

T 
tangent 66, 120, 172, 197 
tangent, hyperbolic 73 
temporary variables 37 
Test-Exception 107, 109, 163, 

164-165 
theory of limits 40 
time value of money 64 
to-nearest rounding 52 
Tool Dispatcher 85-88 
Tool Locator 85 
tool set number 85 
toward-zero rounding 52 
transcendental functions 70, 188 
transcendental operations 189, 

197, 199 
transported code 245 
trap handlers 208 
trap mechanism 208, 209 
traps 203, 204 
traps enabled 204 
trap vectors 208 
triangle 

area 77-78 
needle-shaped 78 

trigonometric functions 66-67 
TRUE 48 
Trunc 243 
Truncate-to-Integer 93, 149, 197 
type comp 12, 13, 20, 36, 90, 

145, 220, 221, 233 
type double 12, 13, 20, 90, 145, 

220, 221, 233 
TYPE Environment 57 
TYPE Exception 54 

type extended 12, 13, 20, 37, 90, 
145, 221, 233 

type integer 90, 145, 224 
type long 235 
type long double 233 
type longint 90, 145, 224 
TYPE NumClass 44 
type real 13, 221 
TYPE RelOp 49 
TYPE RoundDir 52 
TYPE RoundPre 53 
type short 235 
type single 12, 20, 90, 145, 220, 

246, 263 

u 
unary operations 83 
underflow 4 

gradual 5, 42-43 
underflow exception 56 
underflow halt 56 
unit in last place 52 
UNIT SANE 224 
University of California (Berkeley) 

70 
unordered (comparison) 48, 49, 96 
upward rounding 52 

V, W 
ValidPrefix 30 
valid prefix 126, 176 
values 

integral 47, 52 
number 16 

variables, temporary 37 
VAX H format 243 
V status bit 96, 151 

x 
xOffBO 213 
x0ff96 213 
XpwrI 63 
XPwrI(x,i) 122, 173 
XpwrY 63 
XPwrY (x, y) 122, 173 
X register 86, 92, 96, 97, 108, 

112, 114, 115, 257 
X status bit 151 

Index 293 



y 
Y register 86, 92, 96, 97, 112, 

114, 115, 257 

z 
zero 

division by 9, 77 
sign of 43-44 

zero bank 130 
zero page 85 
Z flag 109 
Z status bit 96, 151 

294 Index 



THE APPLE PUBLISHING SYSTEM 

This Apple manual was written, 
edited, and composed on a 
desktop publishing system using 
Apple Macintosh® computers 
and Microsoft® Word. Proof 
pages were created on the Apple 
LaserWriter® Plus. Final pages 
were created on the Varityper® 
VT600™. POSTSCRIPT®, the 
LaserWriter page-description 
language, was developed by 
Adobe Systems Incorporated. 
Some of the illustrations were 
created using Adobe 
Illustrator TM. 

Text type is ITC Garamond® 
(a downloadable font distributed 
by Adobe Systems). Display type 
is ITC Avant Garde Gothic®. 
Bullets are ITC Zapf Dingbats®. 
Some elements, such as program 
listings, are set in Apple Courier, 
a fixed-width font. 


